Institut fiir Parallele und Verteilte Systeme

Abteilung Simulation groBer Systeme

Universitét Stuttgart
Universititsstral3e 38
D - 70569 Stuttgart

Master's Thesis Nr. 47

Design and Implementation of a Fault
Simulation Layer for the Combination
Technique on HPC Systems

Johannes Walter

Studiengang: Informatik

Priifer: Jun.-Prof. Dr. rer. nat. Dirk Pfliiger
Betreuer: M.Sc. Mario Heene

begonnen am: 13.07.2015

beendet am: 12.01.2016

CR-Klassifikation: D.4.1,D.4.4,D.45,D.4.7,D.4.8

Zusammenfassung

In heutigen Supercomputern wird hohe Rechenleistung durch eine grofie Anzahl
an parallel betriebenen Prozessoren erzielt. Mit wachsender Anzahl gleichzeitig be-
nutzter Prozessoren erhoht sich jedoch die Wahrscheinlichkeit fiir das Auftreten
von Hardwarefehlern und daraus resultierten Prozessabstiirzen. Ein weitverbrei-
teter Standard zum Austausch von Nachrichten in Netzwerken ist MPI. Aktuelle
MPI-Versionen sind nicht fehlertolerant und terminieren im Falle von Fehlern das
ganze MPI-Netzwerk. ULFM, eine fehlertolerante Erweiterung fiir MPI, ist nicht
stabil implementiert und ist auf Supercomputern nicht verfiigbar.

In dieser Masterarbeit wird ein Konzept fiir einen Fehlersimulator als Zwischen-
schicht zwischen MPI und der Anwendung vorgestellt und implementiert, mit des-
sen Hilfe Prozessabstiirze und das Verhalten von ULFM simuliert werden kénnen,
ohne dass das darunterliegende MPI Netzwerk terminiert wird.

Abstract

In today’s supercomputers, computing power is achieved by using a large amount
of parallel executed processors. With growing amount of simultaneously used pro-
cessors, the probability of hardware faults with resulting process failures grows as
well. A popular standard for exchanging messages in networks is MPI. Current
MPI versions are not fault-tolerant and terminate the whole MPI network in case
of faults. ULFM, which is a proposed fault-tolerant extension of MPI, is not stable
implemented and not available on supercomputers.

In this master’s thesis, a concept of a fault simulator as intermediate layer between
MPI and application is introduced and implemented. By means of this fault sim-
ulator, process crashes and the behavior of ULFM shall be able to be simulated,
without resulting in termination of the underlying MPI network.

Contents

Contents

1 Introduction and basics
1.1 Imtroduction

1.2 Definitions and terminology L.
1.3 MPIL .. o

2 Fault tolerance
2.1 Fault types
2.2 Why fault tolerance?
2.3 ULFMo
2.3.1 New semantics oo

2.3.2 New functions

3 Sparse grid combination technique

3.1 Handling process failures

4 Combi technique framework

4.1 Master/worker concept

5 Fault simulator
5.1 Consistency and first ideas
5.2 Concept
5.2.1 Blocking send/recvo oo
5.2.2 Blocking collective functions
5.2.3 Non-blocking collective functions
5.2.4 Non-blocking send/recv
5.3 Implementation: functions and description
5.3.1 Blocking send/recvo

5.3.2 Blocking collective functions

© oo N ~N

11
11
12
12
13
13

15
17

19
19

21
21
23
23
25
25
26
27
28
28

CONTENTS

5.3.3 Non-blocking send/recv 30
5.3.4 Non-blocking collective functions 31
5.3.5 Background broadcast 33
53.6 Killme. 36
5.3.7 MPIFINALIZE, 37
5.3.8 ULFM functions 39
539 MPIPROBE 41
5.3.10 MPI_.COMM_FREE and free outstanding non-blocking oper-
ations 41
5.4 Silent faults 49
5.5 Other approaches 51
5.5.1 One master coordinates all failures 51
5.5.2 Use topology of Combigrid-Framework 51
5.5.3 Replace all blocking operations with their non-blocking versions 53
5.5.4 Using remote procedure call 53
5.5.5 Spawning processes or threads 54
5.6 Using the fault simulator 55
6 Integration into Combigrid and tests 57
6.1 Fault tolerant master/worker00 57
6.2 Tests 61
6.2.1 Performance testso 61
6.2.2 Stability tests oL 62
6.2.3 Functional tests L. 62
6.2.4 Testresultso 63
6.3 Conclusion and outlook L. 67
Test results (full) oo oo 69
A1 Performance Tests, 69
List of Figures 89
List of Figures. 91
Bibliography 93

1 Introduction and basics

1.1 Introduction

MPT (section 1.3) is used in supercomputers to transfer messages and access dis-
tributed stored data. With growing network size the probability of process failures
due to hardware malfunction is rising steadily. The current MPI standard does not
support handling process faults. After a failure is detected, the MPI network is
terminated. A proposed standard ULFM (section 2.3), an addition to the current
MPI standard, offers fault tolerance. A prototype implementation of ULFM exists
(implemented in Open MPI), but supercomputers mostly use custom implementa-
tions of MPI and thus ULFM is not available. There are numerical methods like

| Application
A

ULFM
Interface

v
. FaultSimulator |
A

MPI

Figure 1.1: Fault simulator as layer between MPI and the application.

the combination technique (chapter 3) , that can handle process faults. To be able
to run and test these methods, a fault simulator is needed, providing the ability to
simulate process failures.

In this thesis we discuss and create a fault simulator (chapter 5) as a layer between
the regular MPI implementation and the application. The simulator shall support
all important MPI functions used by the combi technique framework (chapter 4),
like for example blocking and non-blocking point-to-point operations, or specific
blocking collective operations. Also for the sake of realism the fault simulator
should use as least resources as possible. In chapter 6.2 we define and execute
some tests and discuss the test results. For the implementation the programming
language C++ 11 is used. The C++ code located on the CD-R on the last page is
part of this thesis. While the implementation is theoretically portable and could

1 Introduction and basics

be used on multiple operating systems, it is only tested on current Linux distri-
butions, because Linux is widely used for high performance computing. The MPI
environments used for testing the fault simulator were MPICH, Open MPI and the
implementation on Hazel Hen.

In this thesis the information about MPI and its functions is directly taken from
the MPI standard specification [MPI15], whereas the information regarding ULFM
is taken from the proposed ULFM standard [ULF].

1.2 Definitions and terminology

In this section we define a few notions we use frequently. At first let’s take a look
at the definition of a deadlock according to [Tan08].

Definition 1.2.1 (Deadlock)
A deadlock is a state in a distributed system, where a set of processes wait for an
event to occur, that can only be triggered by a process in the same set.

For example if we have two processes, p; and p,. We have a deadlock if p; waits
for a message from po, while p, waits for a message from p;. In our fault layer we
have to be really careful with deadlocks.

In our fault layer we use various distributed algorithms and protocols. We can
think of them as a ’distributed function’, where we input some values and expect a
specific output. The following definitions of strong and weak consistency are based

on [KRST13].

Definition 1.2.2 (Strong consistency)
A distributed algorithm is strong consistent, if it behaves as if it was executed
locally and any intermediate (inconsistent) steps are not visible to the application.

While strong consistency is very desirable, it is not possible to achieve it in every
situation. Additionally it comes with a possible high overhead, because processes
have to be synchronized in order to guarantee only consistent states.

Definition 1.2.3 (Weak consistency)
A distributed algorithm is weak consistent if it is possible to read inconsistent
values within its execution, but eventually a consistent state is achieved.

An inconsistent state is for example if one process has access to the finished results
of the algorithm, while another can access unfinished values.

The definitions of fault, failure and fault tolerance according to [IEE90].
Definition 1.2.4 ((Hardware) fault)

A defect in a hardware device or component; for example, a short circuit or broken
wire.

1.3 MPI

Definition 1.2.5 (Failure)
The inability of a system or component to perform its required functions within
specified performance requirements.

A fault might (but doesn’t have to) lead to a failure. The cause of a failure might
be as well hardware faults as also software faults (like software bugs).

Definition 1.2.6 (Fault tolerance)
The ability of a system or component to continue normal operation despite the
presence of hardware or software faults.

1.3 MPI

MPI (Message Passing Interface, [MPI15]) is a standard for a portable message-
passing interface in a network. Multiple implementations of MPI are available, like
Open MPIT or MPICH and its many derivatives (from vendors like IBM, Intel or
Microsoft).

The current version of MPI is 3.1 (released 2015). It gives support for blocking and
non-blocking point-to-point operations (such as MPI_.SEND and the non-blocking
version MPI_LISEND) and collective operations (for example MPI_ BCAST and the
non-blocking version MPI_.IBCAST). Additionally MPI gives a standardized inter-
face to access files, handle process topologies, dynamically spawn processes and
more. Explicitly NOT included is support for interrupts or remote procedure calls.

While non-blocking point-to-point operations are included in the standard since
MPI 1.0 (released 1994), non-blocking collective operations are included only since
MPI 3.0 (released 2012) and thus possibly not included in all today used MPI im-
plementations, especially regarding custom implementations in high performance
computers. We therefore try to avoid using non-blocking collectives in our fault
layer and use custom versions of MPI_.IBCAST and MPILIREDUCE (also see sec-
tion 5.3.5.1).

2 Fault tolerance

(Also see chapter 8.3 in [MPI15])

The current MPI standard does not support handling process faults (especially
process failures). If an error is detected by the MPI network, the MPI network
will be aborted similar to executing MPI_ABORT and the execution state from
this point will be undefined. It is possible to change the MPI error handler from
MPI_LERRORS_ARE_FATAL to another handler like MPI_ ERRORS_RETURN,
which leads to the network not being terminated immediately after an error, but
the state is still undefined and calling MPI functions after an error occurred might
be not possible (depending on the implementation).

2.1 Fault types

Before we begin discussing an approach to simulate faults we first need to define,
what is considered faulty behavior and which types of faults we intend to simulate.

Using the classifications and definitions from [KKLO05], we have four types of fault
models as depicted in Figure 2.1. Fail-Stop is a very common used model, where a
process either works as specified or stops its execution completely. This might be
detected by other processes. Fail-Stutter includes (detectable) hardware corrup-
tion like memory bit flips or performance loss, while the process might still continue
its operation. Silent Fail-Stutter adds undetectable malfunction, like undetectable
memory bit flips or performance loss due to hardware malfunction. Byzantine
means the behavior is totally unspecified and anything could happen, including
(detectable and undetectable) corrupted data, freezes, undetectable random mes-
sage initiation in the network (concerning MPT), etc.

Byzantine is the most undesirable kind of faulty behavior, because although a faulty
process acts totally undefined and unpredictable, from the outside it might not be
detectable and might look like the process performs just like the other processes.

For our fault simulator, we use the Fail-Stop model, meaning a process either
works as expected without any faults, or the process crashes completely. In our
fault simulator if a process is dead, it stays dead until the application is terminated
by calling MPI_FINALIZE or MPI_ABORT. Additionally we briefly discuss Silent
faults in section 5.4 and implement the possibility to simulate random bit flips.

11

2 Fault tolerance

Byzantine

Silent Fail-
Stutter

Fail-Stutter

Figure 2.1: Different types of faults / fault models according to [KKLO05].

2.2 Why fault tolerance?

We begin with a simple fictional example. Assume we have a supercomputer with
5000 nodes and the lifetime of a node (that means the time until it fails) is exponen-
tial distributed with an expected lifetime of % = 1000 days. By further assuming,
the lifetimes are stochastically independent, we can calculate the expected value of
the event 'any node dies’:

1 1000 1
E ({any node dies}) = = = — (in days).
S0 L7 5000 5

As you can see, while with one node a failure is expected after years, with 5000
nodes a failure is to be expected only after a few hours. Without any fault tolerance
this would mean, the whole network fails, the failed component has to be repaired
and the network has to be restarted every few hours.

One possibility to counteract this problem is to install redundant and fault tolerant
components to reduce the risk of hardware failures or at least to reduce the impact.
Another possibility is to make the software itself fault tolerant, this means for
example instead of restarting the network after a failure is detected, the failed
node is just excluded and the current operation is continued using only the other
nodes.

2.3 ULFM

ULFM (User Level Fault Mitigation) [ULF] is a proposal of a fault tolerant MPI
specification based on the (back then) upcoming MPI version 3.1. The proposal

12

2.3 ULFM

is created by the MPI Forum’s Fault Tolerance working group !. The idea is that
instead of terminating the whole MPI network after an error is detected, the user

has the possibility to catch errors and react to them without having to restart the
MPI network.

2.3.1 New semantics

If no process failures occur, ULFM behaves just like the regular MPI. In case of a
process failure, there are new MPI error codes that can be returned by point-to-
point or collective operations to inform the application of a present failed process.
MPI_LERR_-PROC_PENDING is returned for a non-blocking receive operation if
its source is MPI_ANY_SOURCE and a possible matching sending process for the
receive operation has failed.

MPI_ERR_PROC_FAILED is returned in the general case if an operation cannot
be successfully completed because of a present process failure.

If a process failure is detected, the application can create new communicators
excluding the failed processes and continue the execution. Process faults are only
propagated to processes calling MPI operations involving the failed process. If for
example a process wants to send a message to a failed process using MPI_SEND,
only this process is notified of the failure.

In case the other processes in the communicator have to be informed about the
dead process, the communicator can be revoked. As a result eventually all point-
to-point and collective MPI operations in the revoked communicator return the
error MPI_.ERR_REVOKED.

2.3.2 New functions

We take a brief look at the ULFM functions implemented in our fault layer. For
a complete and more detailed overview please take a look at the proposed ULFM
standard [ULF].

int MPI_Comm_revoke(MPI_Comm comm)

Revokes a communicator and notifies all processes in the communicator. Eventually
all operations (except MPI_.COMM_SHRINK and MPI_.COMM_AGREE) using the
revoked communicator will be completed and return MPI_ ERR_REVOKED.

int MPI_Comm_shrink(MPI_Comm comm, MPI_Comm* newcomm)

If process failures are detected, the dead processes can be excluded using this
function. The newly created communicator 'newcomm’ will contain all processes
from 'comm’ excluding the detected dead processes until this point.

Thttps://svn.mpi-forum.org/trac/mpi-forum-web /wiki/Fault ToleranceWikiPage

13

2 Fault tolerance

int MPI_Comm_failure_ack(MPI_Comm comm)

This function can be used to acknowledge process failures. After this it is possible
to receive a point-to-point message with source MPI_ANY_SOURCE (the appli-
cation is responsible to make sure the sending process is not dead). Additionally
the function MPI_.COMM_FAILURE_GET_ACKED can be called to get a group
containing all acknowledged dead processes in the communicator.

int MPI_Comm_failure_get_acked(MPI_Comm comm, MPI_Group* failedgrp)

Returns a group containing all acknowledged dead processes. Before calling this
function, MPI_.COMM_FAILURE_ACK has to be called first or otherwise the group
will be empty.

int MPI_Comm_agree(MPI_Comm comm, int* flag)

If any process failure occurs in ’comm’, this collective function will return the
error MPI_LERR_PROC_FAILED at all alive processes in the communicator. If no
process is dead, the function will return MPI_SUCCESS at all processes in the
communicator.

Additionally this function performs a bitwise ’AND’ operation with the values of
flag from all participating alive processes. That means flag will be set to 0 at all
processes if it is 0 at any alive process participating and it will stay 1 if flag is 1 at
all alive processes.

14

3 Sparse grid combination technique

This chapter is based on [HKH"15] and [HHJP].

In section 2.2 we have discussed, why fault tolerance is important. With ULFM
we have a standard that makes MPI fault tolerant. While ULFM offers the ability
to detect and treat process faults without having to terminate the MPI network,
the application has to be specifically programmed to react appropriately to dead
processes.

In this chapter we have a brief look at the sparse grid combination technique, a
numerical method that has the ability to efficiently handle detected process faults
and thus gain significant advantage by using ULFM compared to restarting the
whole computation or using checkpoint-restart.

The basic idea is for the discretization of a d-dimensional space Q = [0, 1]¢, instead
of using a uniform full grid 2,, with mesh width h,, = 27" requiring O(2"¢) points,
an approximation using a significantly lower amount of points is used, by increasing
the approximation error only insignificantly. The approximation grid is created by
linear combining smaller anisotropic grids €; with mesh-width h;, :=27% for the
multi-index so called level-vector | = [ly, s, ..., l4].

/4

w
®eo0ecoccoe
®eo0ecccoe
LR NN NN

L]

L]

L]

L]

1 . o o o s000000

[
>

1 2 3 a |

Figure 3.1: Full grid Q4 (blue) gets approximated by combining the green grids
(+) and the red grids (-).

15

3 Sparse grid combination technique

Let f,(x) be the d-dimensional solution of a problem on the grid €,,. The idea is
to approximate the solution by a weighted sum of solutions from smaller grids

fulz) = f2) =" afilx)
leL

where L is a set of level vectors of grids €); used for the combination and c¢; are
appropriate weights.

The special case

=S 8 e

q=0 4 /) ieLn,

is then the classic sparse grid combination technique with
£n7q = {l S Nd : ‘”1 = ’lmin|1 + 7= q: lmin S l S n},

where [, =n — 71,7 € Ny, so that [, > 1.

1,4
4 + : : : L B N)
+ + E E E I O
3 - + L[] L[] L[]
2 - + — : — L] : : — 0000 OO
1 - + .E. .E.
1 2 3 4 l: RN

Figure 3.2: Combination technique for d = 2, Iy, = [1,1] and n = [4,4].

16

3.1 Handling process failures

3.1 Handling process failures

If a process fails during calculation, instead of completely restarting the compu-
tation of the corresponding grid on another process, a failed calculation can be
replaced by changing the weights of the combination technique and calculating
smaller (and faster to calculate) problems, while increasing the approximation er-
ror only insignificantly. The choice of the weights is important, because bad grid
replacements might increase the approximation error noticeable or cause unneces-
sary computation cost. For more information see for example [HKH*15].

/2“
4 +
X
e00c0 0oy
+ + ocoooooc-'—
2 = + [X R RE NN X
1 - + L . L eeecvoce
- . 9=9o000cccee — ~
> L . L LR RN XN
1 2 3 a [

Figure 3.3: A possible combination of the last example with failed calculation of
grid €2z37. Only the solution of grid €2(; o) has to be calculated instead
of 9[273] .

17

4 Combi technique framework

The main purpose of this thesis is to be able to use the fault simulator in the combi
technique framework. In this chapter we have a brief look at the construction of
the framework.

4.1 Master/worker concept

In the framework we have numerous working groups consisting of a specific amount
of worker processes and one master process. Additionally we have one single man-
ager process, communicating with the master processes and sending them new jobs
to compute (see Figure 4.1). The master processes receive the jobs and forward
them to their worker processes. After the job computation is completed, the master
process contacts the manager process and asks about the next job. The workers do
not communicate with other processes outside their working group. If information
needs to be exchanged with other groups, this is done merely by communication
between the master processes and the manager process.

Figure 4.1: The Manager process distributes jobs to the master processes of each
group. The master processes forward the jobs to their workers.

19

5 Fault simulator

5.1 Consistency and first ideas

While creating and developing the fault simulator, some initial approaches lead to
problems concerning consistency and deadlocks. To have a better understanding
about the thought process of creating the fault simulator, we take a look at an
approach with possible deadlock (see Figure 5.1 as an initial example). The first

MPI1_Barrier
P1 !
/ MPI_Barrier (...?)
P2 !
sim. crash / o7
P3 |

n >

Figure 5.1: Process 3 dies, while process 1 already initiated MPI_Barrier. Possible
dead lock if not treated right.

idea for blocking collectives was for every process to immediately execute blocking
collectives after called by the application. The root process of every communicator
would then have to inform possible dead processes about recently started blocking
collectives, "command” them to participate in the blocking collective and unblock
all processes. This approach was quite promising regarding performance, because
while no process was dead, no further communication was necessary and the per-
formance would have been equal to the regular MPI.

However, the root process had to know about all dead processes and send a
command-message before its own blocking collective was executed, forcing all pro-
cesses to send a message to root prior to any blocking collective operation. Fur-
thermore some special cases like the example in Figure 5.2 lead to a deadlock. To
be able to avoid this deadlock, a more complex treatment of process failures was
required. This ultimately lead to the implemented version, where all process faults
are synchronized before any "real” blocking MPI collective is executed.

Further approaches are discussed in Section 5.5.

21

5 Fault simulator

(a) Two communicators with dead processes (b) Processes of both communicators start a
d1 and d2 being member of both commu- MPI_BCAST operation (indicated by the
nicators. border). Note that the root processes

technically start the barrier only after they
sent their last point-to-point message (af-
ter (d)).

(c) Both root processes begin to com- (d) dl begins a barrier in comm1, d2 begins a
mand the dead processes to execute an barrier in comm2. Further command mes-
MPI_BARRIER. sages are not received. Deadlock.

Figure 5.2: Special case with overlapping communicators leading to a deadlock.

22

5.2 Concept

5.2 Concept

In this chapter we present simple ideas for a layer between the application and
MPI to be able to support simulated process faults. In case of no present simu-
lated process faults, we want MPI to behave as if there was no layer between the
application and MPI. To distinct between MPI functions and the corresponding
functions in the simulated fault layer, we name the layer functions with the prefix
SIM_. In this section we first take a look at the basic ideas and in the next section
we describe the actual implementation (more detailed).

5.2.1 Blocking send/recv

Blocking functions are most straightforward. In case we have no simulated process
fault, the design of MPI requires that an MPI_SEND has a matching MPI_ RECV
on another node in the communicator (as well as any MPI_ RECV has a matching
MPI_SEND) - assuming the application itself is written correctly.

For a first simple approach we don’t take into account that MPI_SEND and MPI_
RECYV might interact with other MPI functions like MPI_PROBE.

P1 P2

Send alive msg
(non-blocking) Send alive msg
(non-blocking)

Recv alive msg Recv alive msg
(blocking) (blocking)

Send Message
(blocking)

Recv Message
(blocking)

\J \J

Figure 5.3: Blocking send to an alive process (Case 1).

23

5 Fault simulator

Case 1: A process initiates a SIM_MPI_SEND to an alive process in the
communicator

(See Figure 5.3) After initiating SIM_MPI_SEND, process 1 sends an alive-message
to process 2 and waits for an alive-message from process 2. Process 2 does the
same the other way around after initiating the matching SIM_MPI_RECV. After
both processes received the alive-message, the actual MPI_SEND and MPI_RECV
are executed.

Case 2: A process initiates a SIM_MPI_SEND to a dead process in the
communicator

(See Figure 5.4) Process 1 sends an alive-message to process 2 and waits for its
response. Process 2 responds with a dead-message and process 1 returns the MPI

call with the error MPI_ERR_PROC_FAILED.

P1 P2

Send alive msg
(non-blocking)

Recv alive msg
(by probing)

Send dead msg
(non-blocking)

Recv dead msg
(blocking)

Simulate
timeout and
return failure

\J

Figure 5.4: Blocking send to a dead process (Case 2).

Case 3: A process initiates a SIM_MPI RECYV to receive a message from
a dead process

The procedure is the same as in Case 2.

24

5.2 Concept

Case 4: A process initiates a SIM_MPI RECV to receive a message
from any process (MPI_ANY _SOURCE) in a communicator with no
dead processes

In this case we can’t just ”synchronize” with another process to know about its
alive status. Instead we probe for messages. If an incoming message is detected
by probe, receive it by calling MPI_RECV and its return code is returned by
SIM_MPI_RECV.

Case 5: A process initiates a SIM_MPI_RECYV to receive a message from
any process (MPI_ANY _SOURCE) in a communicator with one or more
dead processes

The procedure is the same as in Case 4, but instead of receiving the message, we get
notified of a present dead process in the communicator, stop probing for incoming
messages and return the error MPI_ERR_PROC_FAILED.

5.2.2 Blocking collective functions

As with the blocking send /recv we are guaranteed, that a blocking collective oper-
ation is called at every (alive) node in a communicator.

We use this fact and exchange the information through the whole communicator,
which processes are currently dead, right before an actual collective MPI operation
should be executed. If there are one or more dead processes, the collective operation
is not executed and the call is returned with the error MPI_.ERR_PROC_FAILED.
If all processes are alive, the intended collective MPI operation is executed and the
return code of this operation is returned to the application.

For our synchronization of how many processes are dead right before the blocking
operation should begin, we require the synchronization protocol to be strong con-
sistent. The reason for this is, because we intend to execute the actual blocking
MPT operation and a collective operation cannot be canceled in MPI (especially
a blocking one), we require either none or all processes in the communicator to
participate.

5.2.3 Non-blocking collective functions

Non-blocking collectives are sparsely more complicated. While the first idea might
be to immediately begin a communication and cancel it if a participating process
is dead, this is unfortunately not possible, because non-blocking collectives cannot
be canceled with MPI_CANCEL.

A non-blocking MPI operation call has to return immediately, so we cannot syn-
chronize our knowledge about present dead processes prior to the non-blocking call.
We therefore immediately execute any non-blocking collective function after called
by the application and check for dead processes later within a completion function.

25

5 Fault simulator

If a process fault is detected in a completion call and the detected dead process
never called the corresponding non-blocking collective function, it is assumed that
the collective operation is never going to be completed (that is true especially
for functions like MPI_IBARRIER - where every single rank in the communicator
has to participate before the call can be completed). The MPI request is then
completed by MPI_ REQUEST _FREE and the completion function returns the error
MPI_ERR_PROC_FAILED.

Because the "checking” for dead processes is done in a completion operation and
the collective operation is called even if one or more processes are dead in the
communication, we only need our synchronization protocol to be weak consistent.
That means eventually all processes know about every present dead process in the
communicator.

5.2.4 Non-blocking send/recv

We have the same situation as with non-blocking collectives. Unlike the blocking
version we cannot “check”, if a process is alive or dead before a send or receive
operation is started. A non-blocking send/recv has to return immediately.
Because of that, our layer also forwards a message by MPI_LISEND or initiates a
receive by MPI_IRECV immediately after function call. We use the fact that a
non-blocking operation has to be completed by either MPI_TEST, MPI_WAIT or
MPI_REQUEST_FREE. The "alive-checking” is done when the application calls
such a MPI completion function.

Essentially the non-blocking send and receive operations use the same approach as
the one from non-blocking collectives.

26

5.3 Implementation: functions and description

5.3 Implementation: functions and description

For the implementation we want the simulated-faults-layer to have the least impact
on the application as possible. On the one hand a programmer should only have
to include the header files 'MPI-FT.h’ and "MPI-FT _redefine.h’ instead of "MPIL.h’
to enable the fault simulator. On the other hand (as already mentioned) if no
process is killed by calling Sim_FT kill me and no ULFM functions are used, the
application shall behave as if no fault simulator was active.

Redefine MPI functions

In the layer we have customized versions of MPI functions using MPI communi-
cators or MPI requests. It is unreasonable for a programmer having to replace all
MPI functions in an application with the layer versions. For that reason by includ-
ing '"MPI-FT redefine.h’, all important MPI function names are replaced by using
the preprocessor directive '#define’ (e.g. '#define MPI_Send Sim_FT_MPI_Send’).
The programmer doesn’t have to worry about anything and continues using the
MPI functions as if there was no layer.

Use custom versions of MPI_Comm and MPI_Request

In our fault layer, for a MPI_Comm object we need to have access to much more in-
formation than "only” the MPI_Comm object. In our header 'MPI-FT.h’, we define
a C++ struct Sim_FT_Comm_struct containing variables like the real MPI_Comm
object used by the application, some copies of the MPI_Comm object (created with
MPI_.COMM_DUP) used by our fault layer, some variables needed for a custom tree
structure (also see section 5.3.5.1), a list of all currently detected dead processes in
the communicator and much more.

We want our custom MPI communicator to behave like the real MPI_Comm, that
means for example it should not contain information directly. Instead it should
behave like a pointer (similar to the real MPI_Comm) and all information is stored
at the pointed location. Our custom MPI_Comm object (Sim_FT_-MPI_Comm) is
therefore simply a pointer to a Sim_FT_Comm_struct, which replaces the native
MPI_Comm using a simple preprocessor define.

typedef Sim_FT_Comm_struct* Sim_FT_Comm;
#define MPI_Comm Sim_FT_Comm

If now the user declares a new MPI communicator object in the application, in-
stead a pointer to our custom communicator struct is declared. On creation of a
new communicator, the struct object is dynamically created using C++ new and
the custom MPI communicator points to this newly created object. If a communi-
cator is deleted by MPI_COMM_FREE, the dynamically created struct is deleted
using C++ delete and the pointer is set to nullptr (which is in our layer equal
to MPI_.COMM _NULL: if the user compares a nullptr custom comm object with
MPI_COMM_NULL using ==, it will return true).

Store currently active communicators
At some points in our implementation we need to be able to get the informa-

27

5 Fault simulator

tion, in which communicators a specific process is currently active. For that we
have a global available std::set object containing pointers to all custom commu-
nicator objects the local process is active. Every time a new communicator is
created, for example by calling MPI_.COMM_SPLIT, the newly created communi-
cator 'newcomm’ is added to this set. If a communicator is destroyed by calling
MPI_COMM_FREE, the reference to the communicator object is deleted from the
active list. This is required for example if a process calls Sim_FT kill me and has
to iterate through all active communicators.

5.3.1 Blocking send/recv

While it is true that MPI guarantees FIFO (first in first out) delivery of mes-
sages between two processes, this only applies if the communicator and the tag
are the same (1). Additionally it is possible to receive a message sent by the non-
blocking MPI_ISEND with the blocking MPI_RECV (and the other way around
with MPILIRECV and MPI_SEND) (2). For the implementation we have to take
into account that one process might have multiple outstanding incoming messages
simultaneously, especially with different tags (3).

We don’t want alive-messages to interfere with normal MPI communication from
the application. Combining the facts (1) to (3), for sending and receiving the alive-
message, we cannot use the same tag for all alive-messages because with multiple
outstanding messages to receive we wouldn’t know which alive-message belongs to
which MPI message, possibly leading to a deadlock (see Figure 5.5 for a simple
example). A solution for this problem is to duplicate the communicator ¢_comm to
c_comm_copy_p2p and use the copy merely to send alive-messages. This way point-
to-point alive-messages are delivered in the same order as their corresponding "real”
MPI messages (note this problem only occurs because MPI_RECV can receive from
MPI_ISEND; if blocked and non-blocked messages were separated, this would not
be necessary).

5.3.2 Blocking collective functions

For the implementation we use an operation similar to MPI_.TALLREDUCE to
synchronize dead processes across the communicator prior to any "real” MPI col-
lective. The call ’Sim_FT_Check_dead_processes’ consists of a reduce, combined
with a broadcast. We have two possible cases (note however there is an additional
case if the communicator is revoked, this will be discussed in section 5.3.8.3).

Case 1: No process in the communicator is dead

The simulated fault layer for blocking collectives consists of two steps.
Step 1: All ranks in the communicator initiate a reduce operation with the message
’0’ to the root rank of the communicator.

28

5.3 Implementation: functions and description

P1 P2

Send alive msg for
MPI_Revc, tag 2
(non-blocking)

Send alive msg for
MPI_Isend, tag 1
(non-blocking)

Send Message via
| MPI_lIsend, tag 1
(non-blocking)

— Sim. crash

Recv alive msg for
MPI_Recy, tag 2
(blocking)

Recv Message via
MPI_Recy, tag 2

(blocking) Send dead msg

/ /| (non-blocking)

Recv alive msg

:

N
N

N

\/ X \J
Figure 5.5: Blocking and non-blocking point-to-point can be mixed in MPI. Pos-
sible deadlock if alive-messages are transfered without tag. Example

where P1 receives an alive-message belonging to an MPI_ISEND on
another tag and starts receiving a non-existent message.

Step 2: Root rank broadcasts the information 'no processes are dead’ to all other
ranks in the communicator.
Step 3: The collective MPI function is executed at all ranks in the communicator.

Case 2: One or more processes in the communicator are dead

Step 0: After a process calls Sim_FT kill_me, it immediately sends a notification
of its dead status to the root process of every communicator the dead process is
currently active.

Step 1: All ranks in the communicator reduce the count of current dead processes
in the communicator to the root rank of the communicator.

Step 2: Root waits for incoming dead messages until the messages from all dead
processes are received.

Step 3: Root rank broadcasts the count of dead processes and a list including the
ranks of all dead processes to all members of the communicator.

Step 4: Every alive process returns the MPI call with error MPI_ ERR_PROC_
FAILED and adds the dead processes to a local list of dead processes.

29

5 Fault simulator

VR

(root root

/ LN e
BAITS: \\ Al JF NN

aanttas m I T

Step 1: Reduce Step 2: Broadcast

Figure 5.6: Collective operation without dead processes (Case 1).

Step 1: Reduce Step 2: Broadcast

Figure 5.7: Collective operation with 3 dead processes (Case 2).

5.3.3 Non-blocking send/recv

As mentioned above, any layer functions with the intention to check for present
dead processes regarding non-blocking MPI operations can only be weak consis-
tent to preserve the non-blocking behavior of these MPI operations. We have
two possible cases. For readability we assume for Case 1 and Case 2 the local
called operation is MPI_ISEND. For MPI_IRECV the procedure is similar with
switched roles of MPI_ISEND and MPI_IRECV. The special Case 3 is specifically
for MPI_IRECV.

30

5.3 Implementation: functions and description

Case 1: The point-to-point partner node is alive

Step 1: After calling SIM_FT_MPI_ISEND, an alive-message is sent non-blocking
to dest using the tag of the message and using communicator c_comm_copy_p2p.
Immediately after sending, the actual non-blocking message operation MPI_ISEND
is called using the parameters of SIM_FT_MPI_ISEND and communicator c_comm.
Step 2: dest calls SIM_FT_MPIIRECV, sends an alive-message and calls MPI_
IRECV (similar to Step 1).

Step 3: After calling a completion function, the alive-message of dest is received
and the call is completed.

Case 2: The point-to-point partner node is dead

Step 0: After the dead process calls Sim_FT kill me, a dead-message is sent to
the root of every communicator. Root initiates a broadcast containing a list of all
recently detected dead processes, including dest.

Step 1: (same as Step 1 of Case 1).

Step 2: The dead process (dest) receives the alive-message and ignores the message.
The alive process receives the broadcast from root and adds the partner node to
a local list of dead processes. Any upcoming completion operation (MPI_TEST,
MPI_WAIT,...) concerning a message to or from the partner node is returned with
the error MPI_ERR_PROC_FAILED.

Step 3: The alive process sends an "command message” to the dead one, ordering
the dead process to receive the outstanding MPI_ISEND by calling a matching
MPI_IRECYV. The purpose of this message is to complete the actual sent message
and free resources.

Case 3: MPI IRECV with source MPI_ ANY _SOURCE and a present
dead process in the communicator

In this case, after calling a completion operation, the function is returned with the
error MPI_ERR_PROC_FAILED_PENDING.

5.3.4 Non-blocking collective functions

Collective operations are guaranteed to be executed in the same order at all ranks in
the communicator [MPI15, Example 5.30]. That is for example in a communicator
with two processes (rank 0 and rank 1) if rank 0 first calls an MPI.IBARRIER,
then an MPI_BARRIER and finally an MPI_IBCAST, rank 1 has to execute these
functions in the exact same order.

By design of our fault simulator, we are guaranteed that a blocking collective
operation is only executed if no processes are dead. It is therefore not possible to
have a blocking collective active only on a subset of a communicator.

In our customized communicator object, we store for each process locally its re-
cently executed non-blocking collective operations since the last blocking collective

31

5 Fault simulator

was executed.

We use a list containing objects with the information, which non-blocking collective
was executed and what its parameters were, for example the operations’ root rank,
how big the collective message was (e.g. in case of MPI_IBCAST) or which opera-
tion was used (for MPI.TALLREDUCE or MPILIREDUCE). This object might be
extended to support tracking more non-blocking collective operations.

The purpose of this list is to be able to complete outstanding non-blocking collec-
tives on the one hand and to free blocked processes waiting for the completion of a
non-blocking collective that is never going to be completed because a dead process
never executed the corresponding non-blocking collective operation on the other
hand. The actual messages of these operations are not stored, because in order to
free an operation it is sufficient to send a dummy message with arbitrary values -
only the size of the message is important.

Let’s take a look at how non-blocking collective functions are executed in the fault
simulator, beginning with the call of the function and ending with the completion of
the collective operation. For readability we call the non-blocking collective function
MPIICOLLECTIVE.

We have three possible cases regarding the execution of non-blocking collective
functions, all beginning with the same Step 0:

Step 0: After calling SIM_FT_MPI_ICOLLECTIVE, the corresponding collective
MPIICOLLECTIVE is executed immediately and its parameters are added to
the local list of recent non-blocking collectives (as mentioned at the beginning
of this section). The return value of MPI.ICOLLECTIVE is then returned by
SIM_FT_MPI_ICOLLECTIVE. Note that no checking for failed processes is done
here in order to be consistent with the proposed ULFM standard.

In the following let’s assume the collective operation is to be completed with
MPI_TEST. For simplicity we say 'NBC’ short for 'non-blocking collective’.

Case 1: No process in the communicator is dead at the time of comple-
tion

Step 1: After the completion function SIM_FT_MPI_TEST is called, the fault simu-
lator calls MPI_TEST and returns its return values. If the operation was completed,
the custom request object is deleted using C++ delete and the request pointer is
set to nullptr.

32

5.3 Implementation: functions and description

Case 2: One or more processes in the communicator are dead at the
time of completion and the NBC count of at least one dead process is
lower than the local NBC count

Step 1: Immediately after a process goes "dead” by calling Sim_F'T kill me, it sends
a message to the root rank of each communicator containing the current size of its
list of recent non-blocking collective operations.

Step 2: Root broadcasts this count to all ranks in the communicator if no count has
been broadcasted yet or the count is lower than the count from the last broadcast.
Step 3: The current process receives the broadcast and compares the NBC count
from the broadcast with the local NBC count. Because the local count is higher
than the one from the dead process, it assumes the dead process never participated
in the non-blocking collective and thus the operation will not be completed. The
completion function is returned with the error MPI_ERR_PROC_FAILED.

Step 4: After calling MPI.COMM_FREE on the current communicator, all out-
standing non-blocking collectives are completed at all processes in the communi-
cator, including the dead ones (also see section 5.3.10 for more details about how
the collective operations are completed).

Case 3: The communicator is revoked

Step 1: If the communicator is revoked, we have to assume that the non-blocking
collective is never executed on one or more other processes in the communicator. As
specified in the ULFM standard, the SIM_FT_MPI_ICOLLECTIVE function call
is then returned with the error MPI_LERR_COMM_REVOKED and the collective

operation is not executed.

5.3.5 Background broadcast

For our layer it is important to be able to send messages in the background through
the whole communicator. One way to do this would be directly sending a non-
blocking point-to-point message to all other ranks in the communicator. Whereas
for a small communicator this approach would be totally fine, bigger communica-
tors would lead to performance issues because this basic approach doesn’t scale.
As mentioned in chapter 1.3, we use two different scaling approaches to send mes-
sages in the background. One using non-blocking collective functions and the other
using a custom implementation of non-blocking collectives only consisting of non-
blocking point-to-point operations.

5.3.5.1 Approach without non-blocking collectives

To be able to run our fault simulation layer with MPI implementations not (fully)
supporting non-blocking collectives, we use a custom version of non-blocking MPI
_IREDUCE and MPI_LIBCAST only consisting of non-blocking point-to-point mes-
sages.

33

5 Fault simulator

When a communicator is first initialized, for example after calling MPI_.COMM
SPLIT, we have to initialize our custom communicator in the layer by calling
Sim_FT _Initialize_new_comm. On initialization we create a very simple tree topol-
ogy (described below) and saving locally for every process in the communicator
object, which ranks its successors are and which rank its predecessor is. The tree
uses the root as specified in the communicator object (default rank 0 in the com-
municator).

Having a tree topology, we can use this topology to create our custom non-blocking
collectives. Note that dead processes use slightly different versions of these collec-
tive operations than alive processes, because dead processes initiate the operations
in advance and alive processes only initiate operations when a collective MPI op-
eration is to be executed.

Tree topology

This very basic approach of creating a tree topology does not take into account the
topology of the underlying network. Assume root of the tree has id 0 and every
node in the tree shall have two (or less) children. Then the successors of root would
be rank 1 and 2. Rank 1 would have the successors 3 and 4, while rank 2 would
have the successors rank 5 and 6, etc.

200000

Figure 5.8: Simple tree topology with 8 nodes and max. 2 child nodes.

The calculation of the predecessor and the successors is very simple. The calcula-
tion of the successors is described in Algorithm 1.

Algorithm 1 Calculate successors

1. procedure BCAST_GET_SUCCESSORS(root, id, tree_size, Successor_Count)

2 for 7 < 0, Successor_Count — 1 do

3 k <~ NORMALIZEID(id,root) > Shift process ids s.th. root has rank 0.
4: k <—CoONVERTID(k, tree_size) > Make sure 0 < k < tree_size
5: j < kxSuccessor_Count + 1 + 1

6 j «+ DENORMALIZEID(j) > Revert the shift from the beginning
7 j < CONVERTID(j, tree_size) > Make sure 0 < j < tree_size
8: Add j to the vector of successors from id

9: end for

10: end procedure

In the algorithm, tree_size denotes the number of ranks in the communicator. The
assignment is unique, so the inversion (calculation of the predecessor) is just as

34

5.3 Implementation: functions and description

simple: assuming the id is already normalized, the predecessor is calculated by the
following formula

id — 1 — (id — 1) mod Successor_Count
Successor_Count

PredecessorID =

which has to be denormalized afterwards.

These functions are called every time a new communicator is created. The succes-
sors and predecessors for every process in the communicator are then permanently
stored in the custom communicator object.

Custom IBCAST

The custom non-blocking broadcast can send messages via specific tags using a
special copy of the regular communicator to not interfere with MPI communication
from the application. Every process in the communicator has to frequently call the
function 'Sim_FT _Perform_background_operations’ to forward incoming broadcast
messages. The custom broadcast waits for a non-blocking point-to-point-message
from the current process’ predecessor. After receiving the message, it forwards
the message to all successors (”child nodes”) in the tree by sending a non-blocking
point-to-point-message using the same tag.

Custom IREDUCE

The custom ireduce is a little bit more complicated because we cannot receive a
message and forward it in the same step. We need to save the information, how
many successors have already sent a message and perform a reduce operation for
every received message. After all successor messages are received, the reduced
message is then sent to the predecessor via a non-blocking point-to-point-message.

There are two slightly different versions of the custom non-blocking reduce. One
version is used by alive processes, it behaves like a blocking reduce with one im-
portant difference, that while waiting for incoming messages, our layer function
Sim_F'T _perform_background_operations is called continuously.

The other version is used by dead processes. This version has to be non-blocking,
because a dead process iterates through many different communicators and has to
maintain multiple custom non-blocking reduce operations simultaneously. For this
reason, the current reduce message and the information, which successor message
is already received, is stored inside the custom communicator object. If a new
successor message is received, the stored message gets "merged” together with the
received message by a reduce operation.

5.3.5.2 Approach using non-blocking collectives

Note that due to compatibility issues, this approach is not implemented. Never-
theless we take a look at the basic idea because of the possible performance boost.

35

5 Fault simulator

While the custom implementation of a non-blocking broadcast is function-wise to-
tally fine, the tree created does not take the topology of the network into account.
A successor of the custom topology could therefore be far away in the network,
leading to high delay and low transfer speed, while there could be multiple nodes
locally on the same machine with almost zero delay and instant data transfer.
Additionally a message in the custom broadcast is only forwarded if the succes-
sor received the message and calls the custom broadcast function, where a MPI-
internal non-blocking broadcast could be optimized to forward a message through
the communicator even if a broadcast function is not called on all nodes in the
communicator.

Now returning to the MPI non-blocking collective functions. The idea is very
simple: in our custom communicator object, we have defined a root rank and a
MPI_REQUEST object for every background broadcast we intend to use. On the
initialization of a communicator object, each rank in the communicator except root
begins a MPI_IBCAST. For example if the background message is to be 'comm is
revoked” and the used communicator object is 'comm’, the call looks like

MPI. Ibcast(0, 0, MPIINT, comm->Root_Rank,
comm->>c_comm_copy_collective, comm->Revoke_Request);

If now the communicator is to be revoked, root also calls this function and after
calling a completion function, the non-blocking broadcast will be executed at all
ranks. If a process wants to know if the communicator is revoked, it only has to
check with MPI_TEST, if the broadcast is completed (meaning, the buffer can be
used again, which implicates the broadcast message is received and forwarded).

In this case the broadcast will only be executed at most once for every commu-
nicator, because a revoked communicator stays revoked until a shrink operation
is called - creating a new communicator. If however the background broadcast
should be able to occur again, each rank in the communicator except root calls
MPI_IBCAST again immediately after the last broadcast operation is completed.

5.3.6 Kill me

If a process is to be simulated dead, it calls the function Sim_FT_Kill_me and from
this point the process does not participate in the normal flow of the application
anymore. Instead the layer waits for incoming alive-messages and responds them
with ’I_.AM_DEAD’, or waits for new collective operations and participates in the
reduce operation with a dead count "1’ and forwards dead broadcasts. Additionally
the dead process also forwards other background messages like revoke messages.
Once a process is dead, it will stay dead until the MPI network is terminated by
MPI_FINALIZE.

See Figure 5.9 for a brief overview of the execution flow of Sim_FT kill me.

The function Sim_FT _Kill_me can either be called manually in the application or by
defining specific conditions in the function Sim_FT _decide_kill, which is called prior
to every implemented MPI function. A process can be killed completely random
using a pseudo random number generator or after a specific amount of MPI calls.

36

5.3 Implementation: functions and description

It is also possible to kill a process randomly with growing probability, depending on
when the function Sim_FT _decide kill was called last (see for example equation 5.1
on page 52 and the related example). If the last check was some seconds ago, the
probability of a recent failure is much lower than if the last check was an hour ago.
Another possibility would be on initialization of the communicator to calculate the
life span of a specific process using an appropriate probability distribution, and kill
it if the execution time is higher than the calculated life span.

5.3.7 MPL_FINALIZE

The procedure is the same as with the ULFM function MPI_.COMM_SHRINK,
please see section 5.3.8.1 on page 39.

37

5

Fault simulator

Send dead message to root
of every active communicator

v

Set iterator to beginning of

N

active comm list

\

Check for incoming alive messages
"I_AM_ALIVE"

A4

and respond with dead-message
"|_AM_DEAD".

Perform custom reduce

>

Forward current active
NBC bcast or revoke bcast.

Custom reduce
is finished?

Perform custom
dead broadcast

Dead bcast is finished?

N

yes

Perform operation according

>| to next_op (Shrink, Finalize,...).
Reset reduce and bcast.

End of comm list yes

reached?

Set iterator to next element

38

of active comm list

Figure 5.9: Execution flow of Sim_FT kill me.

5.3 Implementation: functions and description

5.3.8 ULFM functions

All functions discussed and implemented up to this point are merely used for sup-
porting simulated process faults as well as propagating (and “detecting”) failed
processes. This section is about the implementation of a ULFM interface to give
the application the ability to treat detected simulated failed processes.

5.3.8.1 MPI_.COMM_SHRINK

MPI_COMM_SHRINK is a blocking collective function and thus has to be called
by all alive processes in a communicator. We already have a method to distribute
the current dead processes across the communicator (see blocking collectives sec-
tion 5.3.2). For MPI.COMM_SHRINK we expand the functionality of our function
Check_dead _processes to not only distribute the dead processes but also the infor-
mation, if the following operation shall be a regular blocking MPI function (the
distributed value in this case is 'Default’), a MPI.COMM_SHRINK (by distribut-
ing the value "Shrink’) or a MPI_FINALIZE (by the value 'Finalize’). We need this
information available at all ranks because these special collective functions require
the participation of all processes - including the dead ones.

While this function only makes sense if at least one process in the communicator
is dead (Case 2), it is totally fine to call it if all processes are alive (Case 1). The
procedure in our implementation is also the same, but for a better illustration we
distinguish these two cases.

Case 1: No process in the communicator is dead

Step 1: After calling MPI_.COMM _SHRINK, all processes in the communicator ini-
tialize a custom reduce operation with the information 'Shrink’.

Step 2: Root broadcasts the information ’Shrink’ to all processes in the communi-
cator.

Step 3: All processes call MPI_.COMM_SPLIT with the color 0’ and their cur-
rent rank as key, creating a new communicator containing all processes of the old
communicator.

Case 2: One or more processes in the communicator are dead

Step 1: After calling MPI_.COMM _SHRINK, alive processes initialize a custom re-
duce operation, attaching the information ’Shrink’ Dead processes forward this
information to their predecessor in the tree. This step is especially important if
root itself is dead. Then the only way for root to know about an upcoming Shrink
is by receiving this reduce.

Step 2: Root broadcasts the information ’Shrink’ to all processes in the communi-
cator. The broadcast guarantees that dead processes at the leafs of the tree also
receive the information ’Shrink’.

Step 3: After receiving and forwarding the broadcast message, all processes call

39

5 Fault simulator

MPI_COMM _SPLIT. Alive processes use the color 0’ and their current rank as
key, dead processes use the color 'MPI_UNDEFINED’ and their current rank as
key. The newly created communicator contains only alive processes, dead processes
are excluded.

Step 1: Reduce Step 2: Broadcast Step 3: Split. newcomm con-
tains only alive processes.

Figure 5.10: (Case 2) Shrink with 4 dead processes (including root) and 2 alive
ones.

5.3.8.2 MPI_COMM_AGREE

We use the same mechanic as in MPI_.COMM_SHRINK (section 5.3.8.1). We have
two special values ’AFalse’ and ’ATrue’. In the reduce phase of our Check dead_
processes, these values are combined by a bit wise ’AND’ operation. In the broad-
cast phase, the same "agreed” value is broadcasted to the communicator and re-
turned by all alive functions.

5.3.8.3 MPI_COMM_REVOKE

After calling MPI_.COMM_REVOKE on a communicator, a non-blocking revoke-
message is directly sent to the root node of the communicator, if the communicator
is not revoked yet. Root receives the revoke message (this receive is part of the func-
tion perform_background_operations) and initiates a custom background revoke-
broadcast to the communicator. Once a process receives the broadcast, it sets the
variable 'Revoked’ in the custom communicator to true and afterwards returns all
point-to-point and collective operations with the error MPI_LERR_REVOKED.

As an addition to the discussed cases in section 5.3.2, after a comm is revoked,
Check_dead _processes uses different tags for its custom reduce and custom broad-
cast. This is done so that it is not possible for some processes to initiate a dead
sync operation, while others have already received their revoke messages and never
participate in those operations, leading to a deadlock.

Already started reduce operations with the ”old” tag are then directly responded

40

5.3 Implementation: functions and description

with a broadcast, informing the sender about the revoked communicator. This is
especially important for reduce messages initiated by dead processes. By accept-
ing the messages and responding with 'the communicator is revoked’, the dead
processes can switch the used tags to the new ones.

Note that this implementation does not scale and could flood the root node in
huge communicators, if multiple processes revoke the communicator at the same
time. Also currently the call might lead to a dead lock, if not treated right. If in
our fault simulator one process calls a blocking collective MPI function, all other
alive processes are required to call the blocking collective function as well in order
to "unblock” the processes that already called the collective function. If a revoke
message is received, the programmer has to know, which blocking collective is called
next in the application and call it at all ranks.

5.3.9 MPI_PROBE

Additionally MPI_PROBE was implemented, but only to receive messages from
blocking MPI_SEND. Because messages are not sent directly in our layer, the
layer first sends a probe request to the sending process via the same channel
as alive-messages. The sending process receives the request and responds over
a special probe communicator with a message containing the size of the message
to be sent. Then, the probing process receives the count and returns the call.
MPI_GET_COUNT returns then the count received from this message.

5.3.10 MPI_COMM _FREE and free outstanding non-blocking
operations

MPI_COMM _FREE is in our fault simulator required to be called as if it was a
blocking collective operation, that means it has to be called by all alive processes
simultaneously. We use MPI_.COMM_FREE not only to free (delete) the commu-
nicator, but also to complete all outstanding non-blocking collective operations.
Some operations might have been started at multiple processes, while a possible
dead process never participated. According to the MPI standard, all non-blocking
collective operations have to be completed.

A simple test (create a new comm with MPI.COMM_SPLIT, initiate the non-
blocking MPI_IBARRIER at one process in the comm and try to free the comm
at all ranks) using MPICH MPI revealed, that by calling MPI.COMM_FREE,
outstanding operations are indeed NOT completed. Additionally the communicator
object does not get freed. By executing the test in a loop, the application terminates
after some time with an error stating that the maximum amount of communicators
is reached (in our case 2048 communicators) and no more can be created.

Behavior in our fault layer

The following steps describe the behavior of our SIM_MPI_COMM _FREE.

41

5 Fault simulator

Step 1: A simple synchronization operation (check_dead_processes) is executed with
next_op Default. We do this because after this operation the process with the
highest count of recent NBC ! operations is known to root.

Step 2: Root sends a request message to the process with the highest count of
recent NBC operations.

Step 3: The process responds the request with a serialized version of its local NBC
vector.

Step 4: Another synchronization operation is startet, but this time with next_op
‘Commfree’. Root attaches the received serialized NBC vector to the synchroniza-
tion broadcast and after this operation, all processes (including the dead ones) have
the same NBC vector available. This "remote” vector has an equal or greater size
than the local recent non-blocking collectives vector. In MPI all NBC operations
have to be executed in the same order at all ranks in the communicator, that’s why
the first entries of the remote vector are identical to the entries of the local vector.
(also see Figure 5.11)

Step 5: Let n be the size of the local recent NBC vector. FEach process in the
communicator begins executing the NBC operations stored in the remote NBC
vector, beginning with the entry n + 1.

Step 6: Each process completes all operations. For the first n operations, the
request object from the local NBC vector is used (because they were initiated prior
to the completion protocol). For the rest, the request object from the remote NBC
vector is used (which were initiated in Step 5). The custom request objects are
then deleted using C++ delete (because they were created dynamically using C++
new).

Step 7: The MPI communicator and all its copies created by our fault layer are
deleted using MPI_COMM _FREE. The custom communicator is deleted from the
local list of currently active communicators and the custom communicator object
is deleted using C++ delete.

Local vector of non-

blocking operations
2| .. |[L]
(RL | R2 [.. |[Rn [Rn#l|Rn#2| .. | Rm

Remote vector of nbn-blocking operations,
received from the synchronization method

Figure 5.11: Local and remote vectors containing the information, which non-
blocking operations were started, including the necessary parameters
to complete them.

'non-blocking collective

42

5.3 Implementation: functions and description

5.3.10.1 Detailed example

To get a better understanding of the functioning, we take a look at a detailed
example. In our example we have four processes in the same MPI network and
the same communicator (other than MPI_.COMM_WORLD, because otherwise we
couldn’t free the communicator). Each process executes the same MPI program
(see Algorithm 2 for an excerpt of our very basic fictitious program).

Algorithm 2

1: MPI_IBARRIER

2: MPI_WaAIT > Wait for Ibarrier to complete
3: MPI_IBCAST > With root process 1 and any message
4: MPI_WAIT > Wait for Ibcast to complete
5: MPI_IBARRIER

6: MPI_WaAIT > Wait for Ibarrier to complete
7. MPI_COMM _FREE > Free the comm where the operations were called

Right before calling MPI_Ibcast (line 3), process 2 crashes. The following 10 Figures
illustrate the behavior of the processes step-by-step. The number next to the
processes indicates the currently executed line of the fictional algorithm. Process
0 is the root process of our custom communicator.

Behavior of our processes step-by-step

bamer

@

1
‘ ’@

o3

bamer

bamer

w3

Figure 5.12: (1.) All processes call MPI_Ibarrier. The call is stored in the local list
of recent non-blocking collectives.

43

5 Fault simulator

Figure 5.13: (2.) There are currently no failed processes, so after calling MPI_Wait
the Ibarrier is successfully completed at all ranks.

|_ Ibamer Ibcast

o)

w(0)
bamer Ibcast
o o

bamer

X

Figure 5.14: (3.) Process 2 fails and the layer immediately sends a dead message
to root. The other processes have initialized an MPI_Ibcast and wait
for its completion.

44

5.3 Implementation: functions and description

L: ‘ Ibam'er‘ Ibcast ‘ Ibam'er‘

(4)

Figure 5.15: (4.) Despite the present (but undetected) dead process, MPI_Ibcast is
quickly completed at process 1, because as root of the broadcast, the
broadcast message is sent immediately by MPI and the buffer can be
reused. After the completion of Ibcast, the Ibarrier is initialized and
process 1 waits for its completion.

Meanwhile, after process 0 receives the dead message, it initializes a
background dead broadbast to inform the other processes of the dead
process.

L: ‘ Iban’ierl Ibcast | Ibam'erl

(7)

Figure 5.16: (5.) All processes received the dead broadcast and return from their
MPI_Wait functions with an error. New non-blocking calls are also
returned with an error.

All alive processes therefore reach MPI_Comm_free and initialize the
completion protocol by reducing their current local NBC vector size.

45

5 Fault simulator

L: ‘ Ibarrier‘ Ibcast ‘ Ibarrier‘

)

bamer

X

Figure 5.17: (6.) Root of the communicator requests the NBC vector from the
process with the greatest vector (process 1).

L: ‘ Ibam'erl Ibcast | Iban'ierl

bamer Ibcast

s

bamer

3

Figure 5.18: (7.) Process 1 responds the request with a message containing its local
NBC vector elements.

46

5.3 Implementation: functions and description

L: ‘ Ibam'erl Ibcast | Ibarrier‘

Figure 5.19: (8.) Root sends the NBC vector to all processes in the communicator.

L: Ibamer Ibcast

L: |Ibarrier| Ibcast ‘Ibarrier‘

w1

) @ R:|Ibarrier
7
L Ibamer Ibcast

) @ R: | lbarmier

R:| lbcast |Ibarrier
(x)

Figure 5.20: (9.) All processes receive the NBC vector and initialize non-blocking

collectives newly

received from the (remote) NBC vector and not yet

in their local vector. All processes in the communicator have now
access to the same list of non-blocking collectives.

47

5 Fault simulator

L: ‘ Ibarrierl Ibcast | Ibarrierl

L: Ibamer Ibcast

(7)@ R Ibarrier|
L: Ibarrier] Ibcast |
R: |Ibarrier
n(3)
L: Ibarrier

R:| Ibcast |Ibarrier
(x)

Figure 5.21: (10.) All non-blocking collectives (local and remote) are completed
at all ranks in the communicator. The communicator object and all
its copies are then destroyed by MPI_Comm_free. The corresponding
custom communicator object is deleted from the active communicators

set.

48

5.4 Silent faults

5.4 Silent faults

We implemented a fault simulator to be able to simulate process failures in an
MPI network. In section 2.1 we saw other possible fault models. While faults
such as performance loss due to hardware malfunction is very hard to simulate,
faulty memory leading to unwanted random bit flips can be easily simulated by
manipulating bits directly in MPI messages.

Possible implementation

Let’s assume we have an array of n variables (like in Figure 5.22) being sent by
MPI_SEND. One variable in the array has the size of k bits, so a message with a
total of kn bits will be sent. In our model, given a memory module is faulty, let
the chance of an arbitrary bit being flipped (that means 1 will be changed to 0, 0
will be changed to 1) be 0 < py < 1.

If we further assume, the event 'the bit at index j is being flipped due to a fault’
happens independent of any other possible flips, we can use the binomial distribu-
tion along with a uniform distributed continuous random number generator and
the Inverse transform sampling to calculate, how many of our kn bits are going to
flip.

After we have calculated the number of bits to be flipped (let’s call the number
m) we fill a std::vector with the numbers 1,2,...,kn. Then we shuffle our vector
randomly (for example using std::random_shuffle) and flip the bits in the message
at the bit positions stored in the first m entries of the shuffled vector (or in other
words: we choose m random bit positions from the set {1,2,....kn}).

B[O] B[1] B[2] B[3]
IERERERENENENRERENERENRNRNREREDE
*

Figure 5.22: A possible representation of a char array in the memory (the values
are omitted). The tagged bit has the position 17.

Our implementation Sim_FT_Manipulate_bits takes as parameters an integer array
and its size, together with the probability of a bit flip. We make use of the standard
C++ class binomial distribution to generate the amount of bits to be flipped, given
a specific flip probability p.

Impact of bit flips on the application stability itself

Our model is only realistic, if with growing probability ps of bit errors, the prob-
ability of a total process failure p, also grows. That is because bit flips could not
only affect the messages, but also the system stability itself. If MPI or system
critical areas of the memory are defective, the application or the operating system
is very likely to crash or fail.

49

5 Fault simulator

The probability of a process crash in a specific time range could for example consist
of a constant part p. and a variable failure part depending on p;. Our model has
some requirements on our probability values:

(1.) If py =1, p, should be 1. If p. = 1, p, should be 1 as well.

(2.) If p; = 0, we want p, = p.. If p. = 0, we want p, = 1 — (1 — p;)*, where
k > 1 is a value that should represent the size that the application uses in the

memory (with greater program size, the impact of bit flips should be greater and
more likely), greater k results in a higher process failure probability.

(3.) We would like p, to be equal to or greater than p. and equal to or greater than
ps. Also p, should be monotonically increasing if we change the values py or p..

By combining these three requirements, our process failure probability could be

pe+ps + (1 —pg)pe + (1= pe)(2 — 2(1 — py)* _Pf)>

Py = pepy + (1 —pcpf)< 5

where p. would be the process failure probability without taking the memory fault
into account and py would be the probability of a single bit to be flipped. In Figure
5.23 you can see a plot of p, using the parameter k = 3.

Figure 5.23: A plot of p, created using the parameter £ = 3. The x-axis denotes the
values of ps, the y-axis denotes the values of p.. The color represents
the process failure probability.

20

5.5 Other approaches

5.5 Other approaches

We presented a working solution to be able to simulate process faults in current
MPI implementations. Our solution is a compromise between performance and
compatibility. Because of the many other ways to create a fault simulator, we
present possible other approaches, including clarifications why a particular other
approach was not used for our implementation - this could be for example due to
performance issues or missing functionality in MPI.

5.5.1 One master coordinates all failures

This is a simple approach, where a dead process reports to a coordinating master
process immediately after calling Sim_FT kill me. If another process attempts to
send a message to a dead process, it requests an alive-status from the master process
and proceeds depending to the masters’ answer. If the master process responds
with ’the process is alive’, the MPI operation is executed, otherwise an error is
returned to the application. This leads to some problems concerning consistency
and performance.

On the one hand a process requesting the alive-status of another process might get
the wrong information ’the process is alive’ due to network delay. After sending a
message, the receiving process might be already dead an never receives the message,
creating a deadlock at the sending process. This leads to the conclusion that either
a message would need to be able to be canceled or the alive-status would need to be
requested directly from the receiving process - which would make the coordinating
master process dispensable.

On the other hand every process in the network would have to synchronize with
the coordinating master process prior to every single communication operation -
including collective operations - which would lead to a bottleneck at the master
process.

Conclusion

+ Simple approach, quickly implemented

— Consistency problems lead to more complicated implementation

— Approach not scaling in network size; leads to performance issues in large net-
works

5.5.2 Use topology of Combigrid-Framework

Instead of simulating single process faults, the manager process calculates the prob-
ability that a process is dead in a specific time span. For every group, the manager
runs a random number generator and decides depending on the quantity of pro-
cesses present in each group, if a group is to be removed.

Let’s assume the probability of a process going dead within a time range AT > 0
is p € (0,1) and for j processes in the network, for i € [0, j — 1] let X; a¢(w) 1 w —

o1

5 Fault simulator

{false, true} be independent random variables indicating if process i is dead after
the time At.
Furthermore we assume each group consists of k£ processes and j = mx*k for m € N.

Then we have
At

P(X;ar = true) =1 — (1 — p)ar (5.1)
and the probability of any process in a specific group is dead after the time At is
P(a process in a group has died in the time At) =1 — (1 — P(X; o, = true))*.
For an implementation this means after the passed time At, we generate a random
value n € [0,1) using a uniform pseudo random number generator. Then we
calculate the probability p that any process is dead in a given group. If n < p, the

currently considered group is deleted / dropped.
Note that in our model a once dead process stays dead, as well as a once removed
group is also removed permanently.

Example

Consider a network of 129 processes, one manager process and 8 groups containing
16 processes each. Let the probability p of an arbitrary process being dead within
one day be p = 0.001.
Then the probability of any dead process in a group after a time of At = 2 hours
would be ,
1—(1—(1—(1-0.001)2)))" ~0.0013
or after a time of At = 3 days the probability would be
1—(1—(1—(1-0.001)*)))"~0.047 .

Conclusion

+ Simple approach; very quickly implemented

+ No performance loss, because no MPI functions have to be overwritten by layer
functions

+/— Assuming a constant probability of a process failure in a given time range is
also not realistic. The reason for a process fault is often due to a hardware failure,
for example HDD, RAM or CPU failure and thus the probability of a failure changes
with the age of the hardware. If we however only simulate for some hours or days
it would be totally fine to use a constant failure rate, because the rate wouldn’t
change significantly in such a short time.

— Current model assumes the random variables are independent, which is not very
realistic due to interactions of processes (for example when a process dies because
of overheat, it is much more likely that more processes die as well shortly after it)
— The event ’a process changes its state from alive to dead’ can occur in any
infinitesimally small time range. So if a process is considered dead, it might be in
fact already dead for several time, while it actually went on with its execution.

— This approach does not offer any of the new ULFM features (like MPI_.COMM_
SHRINK). If the communicator needs to be shrunk, this has to be implemented at
the application layer.

52

5.5 Other approaches

5.5.3 Replace all blocking operations with their non-blocking
versions

In this approach every blocking collective function is substituted by the corre-
sponding non-blocking collective function. The most simple case is with no present
process faults. In this case, all ranks in the communicator will eventually call
the collective function. The inside of the layer then called non-blocking collective
will afterwards be completed by MPI_TEST or MPI_WAIT to achieve the blocking
characteristic.

In case of a present process failure, there are some steps to perform. For a better
illustration let’s assume the current ongoing blocking collective is MPI_BARRIER.

Step 1: After calling ’kill_me’, a dead process sends a notification (”dead-message”)
to the root rank of the communicator.

Step 2: Once the root rank receives the message, it notifies the other ranks in the
communicator about the present dead process and responds to the dead process
with a request to begin an MPI_IBARRIER immediately and unblock all other
processes.

This approach is similar to the proposed handling of non-blocking collectives. If a
dead process is detected, any outstanding operation should eventually be completed
to free resources.

The approach only works if the MPI implementation fully supports non-blocking
collectives, this is also the main reason why it wasn’t used in our implementation.
As mentioned at the beginning of this document, non-blocking collectives were in-
troduced in 2012 and some implementations still do not fully support non-blocking
collectives.

5.5.4 Using remote procedure call

This approach is more theoretical, because MPI itself does not support interrupts
or remote procedure call (abbreviated to RPC) and using functions outside MPI is
not the intention of this thesis. Nevertheless this approach possibly offers higher
performance.

The idea is that MPI communication functions are called much more frequently
than a process dies in a communicator, therefore it could be better to instantly
execute MPI functions when called by the application and "clean up the mess”
in case a process is detected dead afterwards. While in our previous approaches
(including the implemented version) a process was dead the moment it called the
"kill me” function. If a process is to be killed in this approach, it calls the "kill
me” function and every other process in every currently active communicator is
notified via RPC (possibly via some kind of broadcast for better performance) of
its intention by a message 'can I kill myself?”. If another process receives this mes-
sage, it either responds with a message ’ok’ if there is currently no outstanding
MPI communication with the dead process, or 'not ok’ - initializing a completion

93

5 Fault simulator

protocol to clean up outstanding communication.

5.5.5 Spawning processes or threads

In our implementation the biggest problem is the exchange of information in the
background. For our custom non-blocking collectives implementation every process
needs to frequently call MPI functions in order to allow the background messages
to be transfered.

We could avoid this problem by spawning either a thread or a process for every
single MPI process present in MPI_.COMM_WORLD. Let’s take a look at the case
where we spawn new processes (assuming the MPI implementation supports it).
Instead of directly exchanging information about dead processes, a process only
contacts its "own” spawned process. The spawned process then can either initiate
a background operation or respond with the information that another process is
dead, the communicator is revoked, etc.

Also the spawned process does only interact with the parent process (that is the
process, which spawned the new process) or with other spawned processes. While
this approach seems promising, it has some downsides. Spawning threads or pro-
cesses well depends on implementation and some implementations don’t support
spawning threads at all. When threads or spawned processes wait for incoming
messages using MPI_RECV, they do not idle the processor but use 100% CPU and
thus leads to a performance loss for the application.

For illustration figure 5.24 shows a simplified depiction of this approach. Figure
5.25 shows a simple example using a combined version of spawned processes and
the method from approach 5.5.4 (RPC, "clean up the mess”).

Communicator visible
to application

! ;
j\/
g

Figure 5.24: Every process has its own spawned partner process outside the com-
municator visible to the application.

54

5.6 Using the fault simulator

‘/"
A ok __/
<\ Ok /{77
\5/ //77{‘/
ok w)(/ () \0\
~—)
a P P
N \\7 P N,
ok - T ok

(a) Process 4 sends a kill request to its partner (b) In this case no communication with pro-
process. The partner process forwards the cess 4 is active. All partner processes re-
request to all other partner processes. spond with ’ok’. Process 4 receives the "ok’

from its partner process.

Figure 5.25: Example where process 4 wants to be dead.

Conclusion

+ Effectively send background messages without interfering with the application
— Performance and availability heavily depending on the MPI implementation;
100 % CPU usage while waiting for new instructions / messages

— One process or thread is required for each node in the network; needs more
resources

5.6 Using the fault simulator

The fault simulator can be integrated into the application by including MPI-F'T.h
and MPI-FT _redefine.h instead of MPIL.h. In MPI-FT.h, the location and name
of the regular MPI header can be set in REAL_MPI_INCLUDE, the simulated
timeout can be set in SIM_FT_TIMEOUT and the width of our custom tree can
be set in TREE_.SUCCESSOR_COUNT (where 2’ would result in a binary tree).

The makefile can be used to create a test program. 'make MPI_Test_ft’ compiles
with active fault simulator, 'make MPI_Test_regular’ compiles without the fault
simulator.

95

6 Integration into Combigrid and
tests

6.1 Fault tolerant master/worker

This section is about a possible way of making use of the new ULFM functions to
make the current combi technique framework fault tolerant. In the current version
of the framework, the manager sends jobs to an arbitrary amount of groups of
workers. The more groups available, the faster the computation goes, but not all
groups are required for the computation to be functional. We can use this and let
the manager process remove every group with a present dead process if detected.
The only problem is, how to detect these dead processes.

If a master process is dead (also see Figure 6.1), the manager process will be noti-
fied of the dead master process after calling a collective operation followed by an
MPI_COMM _AGREE. However, if no collective operation is planned, the manager
can also make use of the fact, that an MPI_IRECV with source MPI_ANY_SOURCE
will eventually fail with the error MPI_ ERR_PROC_PENDING in case of a present

dead process.

(a) A master process of a group is dead. (b) The manager gets notified by ULFM
about the present dead master process and
removes the whole group. No more jobs
are sent to that group.

Figure 6.1: Case with a dead master process.

57

6 Integration into Combigrid and tests

If a worker process is dead (Figure 6.2), we have two possible ways of detecting the
dead process at the manager process.

One way would be for the master of the group of the dead worker to send a signal
message like "Dead worker” after detecting it. The manager would receive the
signal and remove the group.

Another way would be to initiate an MPI_IRECV with source MPI_ ANY_SOURCE
at the communicator MPI_.COMM_WORLD using a tag that is not used any-
where else in the application. This way the manager process can check the re-
quest from time to time using MPI_TEST. If then a worker (or master) process
is dead, the function will return an error MPI_.ERR_PROC_FAILED and we can
extract the failed process using MPI_.COMM _FAILURE_GET_ACKED after call-
ing MPI_.COMM_FAILURE_ACK. After that we have to find the group contain-
ing the dead process and delete it. We can use our group of failed processes
and intersect it with every other group currently known to the manager using
MPI_GROUP_INTERSECTION. If one of the intersected groups has a size > 0
(extracted using MPI_.GROUP_SIZE), we know there is a dead process inside and
we can remove the corresponding working group.

Additionally in our fault simulator it is possible to access the currently dead pro-
cesses directly by accessing comm—>dead_set or comm—>dead_nodes.

o8

6.1 Fault tolerant master/worker

Message:
Read worker

(b) The master of the group gets notified by (c¢) The manager process removes the whole
ULFM about the present dead worker pro- group. No more jobs are sent to that
cess and sends a status message to the group.
manager, informing it about the present
dead worker.

Figure 6.2: Case with a dead worker process.

29

6.2 Tests

6.2 Tests

Just like any other software the prototype must be tested to minimize the possibility
of software bugs or unwanted behavior. For this purpose we define some test cases.
On the one hand we have some functional and stability tests to show that the
prototype behaves as intended. On the other hand we define some performance
tests and run them with and without the active fault simulator and compare the
results, which hopefully are as much identical as possible. While performance is
quite important, scalability is even more important, because it should be possible
to use the fault simulator with a huge MPI network.

Each test is executed 128 times with n nodes in the MPI network, sending messages
of size k integers (with n and k variable sizes, depending on the test). The tests
are executed on the communicator MPI_.COMM_WORLD. Every test is expected
to run without any unexplainable abort or error. The test results are located in
the Appendix A.

6.2.1 Performance tests

The following tests shall show, how the use of the fault simulator impacts the
performance of an application with no present simulated dead processes. The tests
are executed both using a regular MPI only and with the active fault simulator.

Test 1

Each process executes an MPI_ALLREDUCE with root rank 0.

Test 2
5 processes execute an MPI_SEND, the other 7 processes execute an MPI.RECV

so that we have 7 matching MPI.SEND and MPI_RECV.

Test 3

5 processes execute a (non-blocking) MPILISEND, the other § processes execute
an MPILIRECV so that we have § matching MPILISEND and MPILIRECV. The
non-blocking communications are completed by an MPI_WAIT.

Test 4

Each process executes an MPI_BCAST with root rank 0. This test is intended to
evince disadvantages of our fault simulator due to the barrier-like synchronization
of dead processes prior to a blocking collective.

61

6 Integration into Combigrid and tests

Test 5

First execute Test1, afterwards execute Test2. This test shows the impact of alter-
nately executing collective and point-to-point operations on the performance and
stability.

6.2.2 Stability tests

Test 6

Execute Testl to Test6 with 7 < n processes dead.

In the fault layer, the root of a communicator has an important role. The test
therefore shall cover a case with root alive (and some other processes dead) and a
case with root dead.

Test 7

Execute Test1 multiple times with root and multiple other processes dead. At the
end of the test, there should be no memory leaks. The reason for this test is to
show correct behavior of the layer in case there are dead processes (especially if
root is dead).

Test 8

Create a new communicator with MPI_COMM _SPLIT and free it with MPI_COMM _
FREE. Execute this test multiple times. There should be no memory leaks or other
unexpected behavior.

6.2.3 Functional tests

The tests in this section shall show the correctness of the simulated faults layer
in terms of functionality. These tests are only executed with active fault layer -
obviously because we cannot "kill” a process in the regular MPI. Because basic
functionality was already tested in the other tests until this point, we will not test
those again.

Test 9

Step 1: In a communicator with present dead processes, create a new communi-
cator using MPI_.COMM _SHRINK.

Step 2: On the newly created communicator, execute an MPI_BCAST with spe-
cific values to broadcast. The broadcast should execute correctly and all processes
should have the correct values received by the broadcast.

62

6.2 Tests

Test 10

Revoke an active communicator using MPI_.COMM_REVOKE and execute some
MPI functions afterwards. The behavior should be in accordance with the ULFM
standard.

Test 11

Run Test 8 with a dead process after initiating a non-blocking barrier and broad-
cast, without completing them. The uncompleted MPI operations shall be success-
fully completed by the completion protocol.

6.2.4 Test results

We have a big amount of test results and diagrams. In this section we give a brief
overview of the most important results. The remaining test results are located in
Appendix A.

We run our tests on the HLRS supercomputer Hazel Hen. Because the network
performance largely depends on the network usage of other concurrent running
applications on the supercomputer, our test results vary significantly and therefore
we run the tests multiple times at different times of the day.

An example for this problem: one test run resulted in an overall higher performance
with the active fault layer than without the active fault layer - this should not
be possible, because the fault layer uses additional resources to the normal MPI
functions and the expected run-time is longer than the version without active fault
layer. Therefore this test result was discarded.

For authenticity test results were not discarded if only a few values seemed "odd”.

We run our stability and performance tests with different amounts of processes
used, namely 264, 768, 1536, 6144, 12288 and 36864. In our diagrams the x-axis
denotes the size k of integers used for the test, the y-axis denotes the time needed
for the test to finish. The blue curve illustrates the results having the fault layer
active, whereas the red curve only uses the regular MPI without the fault layer.

Performance tests

In Figure 6.3 we take a look at a single test run from Test 1 using 6144 processes.
The diagram of our test results contains information about how much time our
allreduce operation took to complete (128 times). The scales are logarithmic. The
x-axis denotes the amount of integer values transferred in each allreduce operation,
the y-axis denotes the time needed to complete 128 of them. The blue curve
belongs to the values obtained with the active fault simulator (but without present
process failures), the red curve belongs to the ones without active fault layer. The
values are as expected. As you can see for small message sizes, the fault layer
has (relatively speaking) a high impact on the performance, but the speed is still

63

6 Integration into Combigrid and tests

2,600
0,822
—&FT
0260 —o—MPI
0,082
0,026
1 4 16 64 256 1024 4096 16384 65536 262144 1048576

Figure 6.3: 128 allreduce operations using 6144 processes.

acceptable. With growing message size, the relative impact becomes smaller. In
Figure 6.4 you can see the same values, but the fault tolerant version relative to
the normal MPI version (for example 2" means, the fault simulator version took
twice as long).

4,000

3,000

2,000

1,000
1 4 16 64 256 1024 409 16384 65536 262144 1048576

Figure 6.4: 128 allreduce operations using 6144 processes. The curve shows, how
much the active fault simulator needed relative to the "regular” MPI
version.

64

6.2 Tests

Test 4 (test with broadcasts, see diagrams in Appendix A.1.4) has a significant
worse result for the fault layer compared to the normal MPI version, this is because
our synchronization call Sim_FT_Check_dead_processes (section 5.3.2), behaves like
a barrier. Only after all processes have called the function, it is possible to con-
tinue with the real MPI_BCAST. Without the fault layer, MPI has the ability to
immediately return successfully from the call MPI_BCAST, when the broadcast
message is forwarded. After the return, the next MPI_.BCAST call is initialized
(as the 128 operations are called in a loop). So if an MPI_BCAST is not even fin-
ished at all ranks, one or more MPI_BCAST operations could already be initiated
- even though the calls are blocking - and therefore gain a significant performance
boost compared to our fault layer. This is one of the bigger disadvantages of our
fault layer. Although the performance is still acceptable, some MPI optimizations
aren’t possible anymore with the active fault simulator, especially using blocking
operations.

The other test results concerning performance tests are located in the Appendix

A.

Stability tests and functional tests

For the stability tests, we have no diagrams, because the tests require present
dead processes and therefore a comparison with the "regular” MPI version was
not possible. The tests were also run on the Hazel Hen and performed well, the
behavior was as expected. The test program MPI Test is included in the source
code.

65

6.3 Conclusion and outlook

6.3 Conclusion and outlook

Our implementation of a fault simulator allows the simulation of a possible ULFM
implementation by using any recent regular MPI implementation. The most impor-
tant ULFM functions, needed for the integration in the combi technique framework,
were implemented.

In our simulator, blocking MPI operations check for present process faults prior to
the operation call. Only if all processes participating in the operation are alive, the
operation is executed, otherwise an error is returned. Non-blocking operations are
called immediately and the "alive-checking” is done in a completion function like
MPI_TEST.

Messages within our fault layer are transferred via special duplications of the com-
municator used by the application layer. This way the messages don’t interfere
with each other.

In MPI a communicator can only be deleted using MPI_.COMM_FREE; if no non-
blocking operations are outstanding. We therefore implemented a completion pro-
tocol, allowing outstanding non-blocking collectives to be completed at all ranks in
the communicator (including the dead ones).

As seen in the test results, our implementation scales logarithmic in network size
and can therefore be used in huge MPI networks. For compatibility we did not use
any native non-blocking MPI collectives for our fault layer and therefore our fault
simulator can be used with MPI implementations using a standard before MPI 3.0.

Outlook

While completion of non-blocking collectives was successfully implemented as a
"proof of concept”, outstanding non-blocking point-to-point operations are cur-
rently ignored in our layer. If their completion is required as well, a similar proto-
col as with our non-blocking collectives can be implemented. The only difference
would be, that any non-blocking point-to-point operation call has to be stored for
each used TAG separately.

In the ULFM standard exist some more new functions, not implemented in our
simulator. These are for example functions regarding Windows and file access.

Many of our layer functions are independent of ULFM. If in the future a fault
simulator using another fault tolerant MPI standard is required, this can be im-
plemented quickly.

Although the current ULFM proposal wasn’t integrated into the MPI standard 3.1,
it is very likely to get this functionality in future MPI versions. With the existence
of real fault tolerance, a fault simulator is not required anymore, a dead process is
then achieved by just killing the process with a task manager.

67

A Test results (full)

A Test results (full)

In the following part are the remaining results of our test runs involving comparison
between the tests with active fault simulator and without the active fault simulator.

A.1 Performance Tests

A.1.1 Test 1

1,000

0,316

—-—FT
0,032 —&—MPI

0,010

1 4 16 64 256 1024 409 16384 65536 262144 1048576

Figure A.1: 128 allreduce operations using 264 processes.

69

6 Integration into Combigrid and tests

1,000
0,100
=T
—o— MPI
0,010
0,001
1 4 16 64 256 1024 4096 16384 65536 262144 1048576

Figure A.2: 128 allreduce operations using 768 processes. There was some network

70

load at the beginning of the fault layer tests resulting in a higher test
run time than expected.

2,884
1,122

0,437

—&FT

0,170 MPI

0,066
0,026

0,010

-
I

16 64 256 1024 409 16384 65536 262144 1048576

Figure A.3: 128 allreduce operations using 1536 processes.

A Test results (full)

1,000

0,316

—.—FT
—— MPI

0,100

0,032

0,010

-
I
&
R

256 1024 4096 16384 65536 262144 1048576

Figure A.4: 128 allreduce operations using 12288 processes.

2,512
1,000
0,398

—FT
0,158 —o— MPI
0,063

0,025

0,010

-
IS

16 64 256 1024 4096 16384 65536 262144 1048576

Figure A.5: 128 allreduce operations using 36864 processes.

71

A.1.2 Test 2

2,000
0,796
0,317
0,126
0,050
0,020
0,008
0,003
0,001
0,001

0,000

=

A Test results (full)

—FT
—— MPI

16384 65536 262144 1048576

Figure A.6: 128 blocking point-to-point operations using 264 processes.

2,800

0,885

0,280

0,089

0,028

0,009

0,003

0,001

0,000

=

—&FT
—o— MPI

16384 65536 262144 1048576

Figure A.7: 128 blocking point-to-point operations using 768 processes.

73

6 Integration into Combigrid and tests

1,265
0,400
0,126

0,040 —&—FT

—&— MP|
0,013

0,004
0,001

0,000

-
IS

16 64 256 1024 4096 16384 65536 262144 1048576

Figure A.8: 128 blocking point-to-point operations using 1536 processes.

1,265
0,400
0,126

0,040 —&—FT

—&— MPI
0,013

0,004
0,001

0,000

-
IS

16 64 256 1024 409 16384 65536 262144 1048576

Figure A.9: 128 blocking point-to-point operations using 6144 processes.

74

A Test results (full)

1,581
0,500
0,158

0,050
—.—FT

—&— MP|
0,016

0,005
0,002

0,001

.
IN

16 64 256 1024 4096 16384 65536 262144 1048576

Figure A.10: 128 blocking point-to-point operations using 12288 processes.

1,265
0,400
0,126

0,040 —&—FT

—&— MPI
0,013

0,004
0,001

0,000

-
I

16 64 256 1024 4096 16384 65536 262144 1048576

Figure A.11: 128 blocking point-to-point operations using 36864 processes.

5

A.1.3 Test 3

2,000
0,632
0,200
0,063
0,020
0,006
0,002
0,001

0,000

=

A Test results (full)

—FT
—— MPI

16384 65536 262144 1048576

Figure A.12: 128 blocking point-to-point operations using 264 processes.

2,000

0,632

0,200

0,063

0,020

0,006

0,002

0,001

0,000

=

—&FT
—o— MPI

16384 65536 262144 1048576

Figure A.13: 128 blocking point-to-point operations using 768 processes.

7

6 Integration into Combigrid and tests

1,265
0,400
0,126

0,040 —&—FT

—&— MP|
0,013

0,004
0,001

0,000

-
IS

16 64 256 1024 4096 16384 65536 262144 1048576

Figure A.14: 128 blocking point-to-point operations using 1536 processes.

1,265
0,400
0,126

0,040 —&—FT

—&— MPI
0,013

0,004
0,001

0,000

-
IS

16 64 256 1024 409 16384 65536 262144 1048576

Figure A.15: 128 blocking point-to-point operations using 6144 processes.

78

A Test results (full)

1,265
0,400
0,126

0,040 —m—FT

—&— MP|
0,013

0,004
0,001

0,000

=
IS

16 64 256 1024 4096 16384 65536 262144 1048576

Figure A.16: 128 blocking point-to-point operations using 12288 processes.

1,265
0,400
0,126

0,040 —&—FT

—&— MPI
0,013

0,004
0,001

0,000

-
I

16 64 256 1024 4096 16384 65536 262144 1048576

Figure A.17: 128 blocking point-to-point operations using 36864 processes.

79

A Test results (full)

A.1.4 Test 4

1,000

0,316

0,100

0,032 —&—FT

—&— MPI

0,010

0,003

1 4 16 64 256 1024 409 16384 65536 262144 1048576

Figure A.18: 128 blocking broadcast operations using 264 processes.

1,000
0,100
—&FT
—o— MPI
0,010
0,001
1 4 16 64 256 1024 4096 16384 65536 262144 1048576

Figure A.19: 128 blocking broadcast operations using 768 processes.

81

6 Integration into Combigrid and tests

1,500
0,474

0,150

—&—FT
0,047 ——MPI

0,015
0,005

0,002
1 4 16 64 256 1024 409 16384 65536 262144 1048576

Figure A.20: 128 blocking broadcast operations using 1536 processes.

2,000
0,632

0,200

—&FT

0,063 —&— MPI

0,020
0,006

0,002
1 4 16 64 256 1024 409 16384 65536 262144 1048576

Figure A.21: 128 blocking broadcast operations using 6144 processes.

82

A Test results (full)

2,000
0,632

0,200

—.—FT

0,063 —&— MP|

0,020
0,006

0,002

=
H

16 64 256 1024 4096 16384 65536 262144 1048576

Figure A.22: 128 blocking broadcast operations using 12288 processes.

2,000
0,632

0,200

—FT

0,063 —&— MPI

0,020
0,006

0,002

-
IS

16 64 256 1024 4096 16384 65536 262144 1048576

Figure A.23: 128 blocking broadcast operations using 36864 processes.

33

A Test results (full)

A.1.5 Test b

10,000
1,000
—-—FT

0.100 —— MPI
0,010

L — *
0,001

1 4 16 64 256 1024 409 16384 65536 262144 1048576

Figure A.24: 128 blocking broadcast operations, combined with blocking point-to-
point operations using 264 processes.

2,561
0,810

0,256

—-FT

0,081 MPI

0,026
0,008
0,003

0,001
1 4 16 64 256 1024 4096 16384 65536 262144 1048576

Figure A.25: 128 blocking broadcast operations, combined with blocking point-to-
point operations using 768 processes.

85

6 Integration into Combigrid and tests

8,000

2,530

0,800

=T

0,253 —— MPI

0,080

0,025

0,008

fay
N

16 64 256 1024 4096 16384 65536 262144 1048576

Figure A.26: 128 blocking broadcast operations, combined with blocking point-to-

point operations using 1536 processes.

7,273

2,300

0,727

—&FT
—o—MPI

0,230

0,073

0,023

-
S

16 64 256 1024 409 16384 65536 262144 1048576

Figure A.27: 128 blocking broadcast operations, combined with blocking point-to-

point operations using 6144 processes.

A Test results (full)

6,325

2,000

0,632
- FT
—o— MPI

0,200

0,063

0,020

=
H

16 64 256 1024 4096 16384 65536 262144 1048576

Figure A.28: 128 blocking broadcast operations, combined with blocking point-to-
point operations using 12288 processes.

6,325

2,000

0,632
—&FT

—&— MPI

0,200

0,063

0,020
16 64 256 1024 4096 16384 65536 262144 1048576

-
S

Figure A.29: 128 blocking broadcast operations, combined with blocking point-to-
point operations using 36864 processes.

87

List of Figures

1.1

2.1

3.1

3.2
3.3

4.1

0.1

5.2
2.3
5.4
2.5

2.6
5.7
5.8
2.9
5.10

5.11

5.12

Fault simulator as layer between MPI and the application.
Different types of faults / fault models according to [KKLO05].

Full grid Q4 (blue) gets approximated by combining the green
grids (4) and the red grids (-).

Combination technique for d = 2, l,,;, = [1, 1] and n = [4,4].

A possible combination of the last example with failed calculation
of grid Q3. Only the solution of grid €2, o) has to be calculated
instead of Qa3o

The Manager process distributes jobs to the master processes of each
group. The master processes forward the jobs to their workers.

Process 3 dies, while process 1 already initiated MPI_Barrier. Pos-
sible dead lock if not treated right.

Special case with overlapping communicators leading to a deadlock.
Blocking send to an alive process (Case 1).
Blocking send to a dead process (Case 2).

Blocking and non-blocking point-to-point can be mixed in MPI. Pos-
sible deadlock if alive-messages are transfered without tag. Example
where P1 receives an alive-message belonging to an MPI_ISEND on
another tag and starts receiving a non-existent message.

Collective operation without dead processes (Case 1).
Collective operation with 3 dead processes (Case 2).
Simple tree topology with 8 nodes and max. 2 child nodes.
Execution flow of Sim FT kill me.

(Case 2) Shrink with 4 dead processes (including root) and 2 alive
OMES. « v v v vt e

Local and remote vectors containing the information, which non-
blocking operations were started, including the necessary parameters
to complete them.

(1.) All processes call MPI_Ibarrier. The call is stored in the local
list of recent non-blocking collectives.

15
16

17

19

21
22
23
24

29
30
30
34
38

89

LIST OF FIGURES

90

5.13 (2.) There are currently no failed processes, so after calling MPI_Wait
the Ibarrier is successfully completed at all ranks.

5.14 (3.) Process 2 fails and the layer immediately sends a dead message
to root. The other processes have initialized an MPI_Ibcast and wait
for its completion.

5.15 (4.) Despite the present (but undetected) dead process, MPI_Ibcast
is quickly completed at process 1, because as root of the broadcast,
the broadcast message is sent immediately by MPI and the buffer can
be reused. After the completion of Ibcast, the Ibarrier is initialized
and process 1 waits for its completion. Meanwhile, after process 0
receives the dead message, it initializes a background dead broadbast
to inform the other processes of the dead process.

5.16 (5.) All processes received the dead broadcast and return from
their MPI_Wait functions with an error. New non-blocking calls
are also returned with an error. All alive processes therefore reach
MPI_Comm _free and initialize the completion protocol by reducing
their current local NBC vector size.

5.17 (6.) Root of the communicator requests the NBC vector from the
process with the greatest vector (process 1).

5.18 (7.) Process 1 responds the request with a message containing its
local NBC vector elements.,

5.19 (8.) Root sends the NBC vector to all processes in the communica-
tor. . .o

5.20 (9.) All processes receive the NBC vector and initialize non-blocking
collectives newly received from the (remote) NBC vector and not yet
in their local vector. All processes in the communicator have now
access to the same list of non-blocking collectives.

5.21 (10.) All non-blocking collectives (local and remote) are completed
at all ranks in the communicator. The communicator object and all
its copies are then destroyed by MPI_Comm _free. The corresponding
custom communicator object is deleted from the active communica-
torsset.o

5.22 A possible representation of a char array in the memory (the values
are omitted). The tagged bit has the position 17.

5.23 A plot of p, created using the parameter k = 3. The x-axis denotes
the values of py, the y-axis denotes the values of p.. The color
represents the process failure probability.

5.24 Every process has its own spawned partner process outside the com-
municator visible to the application.

5.25 Example where process 4 wants to be dead.

6.1 Case with a dead master process.

LIST OF FIGURES

6.2 Case with a dead worker process. 59
6.3 128 allreduce operations using 6144 processes. 64
6.4 128 allreduce operations using 6144 processes. The curve shows,

how much the active fault simulator needed relative to the "regular”

MPI version. 64
A.1 128 allreduce operations using 264 processes. 69
A.2 128 allreduce operations using 768 processes. There was some net-

work load at the beginning of the fault layer tests resulting in a

higher test run time than expected. 70
A.3 128 allreduce operations using 1536 processes. 70
A.4 128 allreduce operations using 12288 processes. 71
A.5 128 allreduce operations using 36864 processes. 71
A.6 128 blocking point-to-point operations using 264 processes. 73
A.7 128 blocking point-to-point operations using 768 processes. 73
A.8 128 blocking point-to-point operations using 1536 processes. 74
A.9 128 blocking point-to-point operations using 6144 processes. 74
A.10 128 blocking point-to-point operations using 12288 processes. 75
A.11 128 blocking point-to-point operations using 36864 processes. 75
A.12 128 blocking point-to-point operations using 264 processes. 77
A.13 128 blocking point-to-point operations using 768 processes. 77
A.14 128 blocking point-to-point operations using 1536 processes. 78
A.15 128 blocking point-to-point operations using 6144 processes. 78
A.16 128 blocking point-to-point operations using 12288 processes. 79
A.17 128 blocking point-to-point operations using 36864 processes. 79
A.18 128 blocking broadcast operations using 264 processes. 81
A.19 128 blocking broadcast operations using 768 processes. 81
A.20 128 blocking broadcast operations using 1536 processes. 82
A.21 128 blocking broadcast operations using 6144 processes. 82
A.22 128 blocking broadcast operations using 12288 processes. 83
A.23 128 blocking broadcast operations using 36864 processes. 83

A.24 128 blocking broadcast operations, combined with blocking point-

to-point operations using 264 processes. 85

A.25 128 blocking broadcast operations, combined with blocking point-

to-point operations using 768 processes. 85

A.26 128 blocking broadcast operations, combined with blocking point-

to-point operations using 1536 processes. 86

91

LIST OF FIGURES

A.27 128 blocking broadcast operations, combined with blocking point-
to-point operations using 6144 processes.

A .28 128 blocking broadcast operations, combined with blocking point-
to-point operations using 12288 processes.

A.29 128 blocking broadcast operations, combined with blocking point-
to-point operations using 36864 processes.

92

86

Bibliography

[HHJP)

[HKH*15]

[IEE90]

[KKLO5]

[KRS*13]

[MPI15]
[Tan08]

[ULF]

Hupp, Philipp ; HEENE, Mario ; JACOB, Riko ; PFLUGER, Dirk: Global
communication schemes for the numerical solution of high-dimensional
PDFEs. Parallel Computing. Submitted.,

Hinojosa, Alfredo P. ; Kowirz, Christoph ; HEENE, Mario ;
PFLUGER, Dirk ; BUNGARTZ, Hans-Joachim: Towards a fault-tolerant,
scalable implementation of GENE. In: Proceedings of ICCE 2014,
Springer-Verlag, January 2015 (Lecture Notes in Computational Sci-
ence and Engineering)

IEEFE Standard Glossary of Software Engineering Terminology. TEEE
Standards Board, (Std 610.12-1990), 1990. ISBN 1-55937467-X

KorA, George ; KosARr, Tevfik ; LivNy, Miron: Faults in Large Dis-
tributed Systems and What We Can Do About Them. Euro-Par’05 Pro-
ceedings of the 11th international Euro-Par conference on Parallel Pro-
cessing Pages 442-453, 2005

KEMME, Bettina ; RAMALINGAM, Ganesan ; SCHIPER, André ;
SHAPIRO, Marc ; VAswaNI, Kapil: Consistency in Distributed
Systems. In: Dagstuhl Reports 3 (2013), Juni, Nr. 2, 92-126.
http://dx.doi.org/10.4230/DagRep.3.2.92. — DOI 10.4230/Da-
gRep.3.2.92

MPI: A Message-Passing Interface Standard, — Version 3.1.
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf, 2015
TANENBAUM, Andrew S.: Modern Operating Systems. Third Edition.
Prentice Hall International, 2008. — ISBN 978-0138134594

ULFM: User Level Fuailure Mitigation. https://svn.mpi-
forum.org/trac/mpi-forum-web/attachment /ticket /323 /mpi31-t323-
r419-20150301.pdf,

93

Erklarung

Ich versichere, diese Arbeit selbststindig verfasst zu haben.

Ich habe keine anderen als die angegebenen Quellen benutzt und alle wortlich oder sinngemaf aus anderen
Werken iibernommene Aussagen als solche gekennzeichnet.

Weder diese Arbeit noch wesentliche Teile daraus waren bisher Gegenstand eines anderen Priifungsverfahrens.
Ich habe diese Arbeit bisher weder teilweise noch vollstindig verdffentlicht.

Das elektronische Exemplar stimmt mit allen eingereichten Exemplaren iiberein.

Unterschrift:

Stuttgart, 11.01.2016

Declaration

I hereby declare that the work presented in this thesis is entirely my own.

I did not use any other sources and references that the listed ones. I have marked all direct or indirect
statements from other sources contained therein as quotations.

Neither this work nor significant parts of it were part of another examination procedure. I have not published
this work in whole or in part before.

The electronic copy is consistent with all submitted copies.

Signature:

Stuttgart, 11.01.2016

