
Efficient Code Offloading Techniques
for Mobile Applications

Von der Fakultät Informatik, Elektrotechnik und

Informationstechnik der Universität Stuttgart

zur Erlangung der Würde eines Doktors der Naturwissenschaften

(Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Florian Andreas Berg

aus Ludwigsburg

Hauptberichter: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel

Mitberichter: Prof. Dr. phil. nat. Christian Becker

Tag der mündlichen Prüfung: 20.12.2017

Institut für Parallele und Verteilte Systeme (IPVS)

der Universität Stuttgart

2017

Acknowledgements

At this point, I take the opportunity to thank all the people that continuously supported
and encouraged me during my research making this dissertation possible.

Above all, I express my special thanks and appreciation to my doctoral supervisor,
Prof. Dr. Kurt Rothermel, who give me the opportunity to conduct my research in his
group. His appropriate guidance, excellent support, and prolific discussions during my
whole time at the University of Stuttgart were invaluable contributions for the success
of my research presented in this thesis. He always gave helpful feedback and advice,
asking the right questions whenever necessary. The great conditions provided in his
group for learning and enhancing fundamental skills let me grow as a research scientist.

Furthermore, my thanks also go to the co-advisor of my thesis, Prof. Dr. Christian
Becker, for his time and effort to review my dissertation giving me appropriate feedback.

Special thanks also go to my great project supervisor, Dr. Frank Dürr, for his
encouragement, support, and (technical as well as personal) help during my research
with many inspiring discussions and constructive feedback, sometimes to the detriment
of his full schedule. His love and dedication to research like pursuing new ideas inspired
not only me but also the approaches presented in this dissertation significantly.

During my research in the Distributed Systems group at the University of Stuttgart,
I met exceptional colleagues, creating an amazing atmosphere within the institute.
The productive and friendly working environment was both inspiring and fun, why
I had a great time as a doctoral researcher – not only due to the countless matches
at the soccer table. The brilliant, enthusiastic colleagues inspired me with new ideas,
provided to me insightful feedback, and improved my research work a lot. In partic-
ular, I want to mention (in alphabetical order) Thomas Bach, Dr. Patrick Baier, Dr.
Andreas Benzing, Ben Carabelli, Christoph Dibak, Dr. Stefan Föll, Hannes Hannak,
Thomas Kohler, Dr. Boris Koldehofe, Christian Mayer, Ruben Mayer, Naresh Nayak,
Dr. Damian Philipp, Stephan Schnitzer, David Schäfer, and of course all the other
members of the research group. Having worked in the ARAMiS project – Automotive,
Railway and Avionics Multicore Systems – over several years, I enjoyed very much the
collaboration with researchers from other universities and employees from companies

3

Acknowledgements

all across Germany, elaborating on interesting research problems. In this context, I also
express my gratitude towards the “Bundesministerium für Bildung und Forschung” for
partially funding my research through the ARAMiS project. This funding enabled my
research in the first place and allowed me to present my results to the research com-
munity on various international conferences. Also, I am grateful to Annemarie Rösler,
Eva Strähle, and Martin Brodbeck for supporting me in administrative matters and
thus, allowing me to focus on my research.

Finally, I thank my family and friends for their strong support, encouragement, and
patience over all these years, sharing with me the joy of good times and supporting me
through hard times. Special thanks go to my parents Günther and Regina, my brother
Markus, and my sisters Franziska and Julia for their care and love. I am very happy
to know that I can count on them not only during this important stage of my life but
also in the future whatever happens next.

The last “thank you” goes out to my wife Corinna and my son Jonas, who were and
are always there for me, why I am deeply grateful for having you both in my life.

Thank you all very much!

Florian Andreas Berg, December 20, 2017

4

Contents

Abstract 21

Deutsche Zusammenfassung 25

1. Introduction 31
1.1. Motivation . 32
1.2. Research Focus . 34
1.3. Contributions . 36
1.4. Structure of the Thesis . 39

2. Background 43
2.1. Mobile Computing . 43

2.1.1. Environment . 44
2.1.2. Architecture . 44
2.1.3. Limitations . 45

2.2. Wireless Network . 46
2.2.1. Wireless Fidelity Network . 46
2.2.2. Cellular Network . 47
2.2.3. Bluetooth Network . 49

2.3. Cloud Computing . 50
2.3.1. Essential Characteristics . 50
2.3.2. Service Models . 51
2.3.3. Deployment Models . 51

2.4. Technological Trends . 52
2.5. Mobile Cloud Computing . 53

2.5.1. Overview . 53
2.5.2. Architectures . 54
2.5.3. Framework . 56
2.5.4. Challenges . 57

2.6. Summary . 58

5

Contents

3. System Overview 61
3.1. System Model . 61
3.2. Problem Statement . 62
3.3. System Components . 65

3.3.1. Offloading Client . 66
3.3.2. Offloading Service . 66
3.3.3. Communication Network . 67

3.4. Failure Model . 67
3.5. System Requirements . 68
3.6. Summary . 69

4. Efficient Code Offloading with Annotations 71
4.1. Basic Distribution . 71
4.2. System Overview . 73
4.3. Runtime-layer Offloading . 75

4.3.1. Overview . 75
4.3.2. Offloading Client . 76
4.3.3. Offloading Service . 77
4.3.4. Java Platform . 78

4.4. Offloading Timeline . 82
4.5. Offloading Framework . 87

4.5.1. Extended Java Compiler . 87
4.5.2. Offloading Client . 87
4.5.3. Offloading Service . 94

4.6. Implementation . 96
4.6.1. Jikes Research Virtual Machine 96
4.6.2. Open Java Development Kit . 97
4.6.3. Android Open-Source Project 98
4.6.4. Modifications . 99
4.6.5. Measurement Boards . 100

4.7. Evaluation . 102
4.7.1. Setup . 102
4.7.2. Results . 104

4.8. Summary . 111

5. Robust Code Offloading through Safe-point’ing 113
5.1. Preemptable Distribution . 113

6

Contents

5.2. System Overview . 115
5.3. Offloading Timeline . 116
5.4. Offloading Framework . 118

5.4.1. Offloading Client . 118
5.4.2. Offloading Service . 120

5.5. Evaluation . 125
5.5.1. Setup . 125
5.5.2. Results . 126

5.6. Summary . 134

6. Deadline-aware Code Offloading with Predictive Safe-point’ing 137

6.1. Predictive Distribution . 137
6.2. System Overview . 139
6.3. Optimal Schedule for Safe-point’ing . 141

6.3.1. Prediction of Link Connectivity 145
6.3.2. Prediction of Remaining Runtime 147

6.4. Evaluation . 148
6.4.1. Setup . 148
6.4.2. Results . 153

6.5. Summary . 165

7. Optimized Code Offloading through Cooperative Caching 167

7.1. Caching-aware Distribution . 167
7.2. System Overview . 169

7.2.1. System Model . 170
7.2.2. Problem Statement . 170
7.2.3. System Components . 173

7.3. Offloading Timeline . 174
7.4. Offloading Framework . 176

7.4.1. Offloading Client . 176
7.4.2. Offloading Service . 178
7.4.3. Caching Service . 178

7.5. Evaluation . 179
7.5.1. Setup . 180
7.5.2. Results . 182

7.6. Summary . 190

7

Contents

8. Code Offloading in Environments with Multiple Tiers 193

8.1. Bubbling Distribution . 194
8.2. System Overview . 196
8.3. Offloading Timeline . 198
8.4. Offloading Framework . 200

8.4.1. Application Programming Interface 200
8.4.2. Offloading Client . 202
8.4.3. Offloading Service . 204
8.4.4. Tier Service . 205

8.5. Evaluation . 206
8.5.1. Setup . 207
8.5.2. Results . 209
8.5.3. Securing Overhead . 219

8.6. Summary . 220

9. Related Work 223

9.1. Efficient Code Offloading with Annotations 224
9.2. Robust Code Offloading through Safe-point’ing 226
9.3. Deadline-aware Code Offloading with Predictive Safe-point’ing 228
9.4. Optimized Code Offloading through Cooperative Caching 228
9.5. Code Offloading in Environments with Multiple Tiers 230
9.6. Summary . 231

10.Conclusion 233

10.1. Summary . 233
10.2. Outlook . 237

Appendix 239

A. Java Bytecode Instructions 241

B. Mobile Applications 245

B.1. “Hello, World!” Application . 245
B.2. Chesspresso Application . 245
B.3. Chess Game . 249
B.4. Face Recognition Application . 253
B.5. Text-to-Voice Application . 255

8

Contents

C. System Devices 257
C.1. Samsung Galaxy Nexus . 257
C.2. Dell Inspiron Mini 10v . 258
C.3. Lenovo ThinkPad T61 . 258
C.4. HP Compaq 8200 Elite . 259
C.5. AWS EC2 t2.micro . 259
C.6. Huawei E1750 Surf Stick . 259
C.7. Linksys WRT54GL Wireless Router . 260
C.8. LevelOne GSW-0809 Gigabit Ethernet Switch 260

Bibliography 260

9

List of Figures

2.1. A Typical Two-tier Architecture from Mobile Cloud Computing 54
2.2. A Multi-tier Architecture from Mobile Cloud Computing 55

3.1. An Exemplary Call Graph G(V,E) for an Application A 63
3.2. The System Components for Code Offloading 65

4.1. The System Components for the Basic Distribution 74
4.2. Overview of (a) the Software Stack and (b) the Run-time Environment

on a Resource to Execute Portable Code from an Application 75
4.3. The Extended Runtime Environment for the Offloading Client Enabling

Code Offloading . 77
4.4. The Extended Runtime Environment for the Offloading Service Enabling

Code Offloading . 78
4.5. Overview of the Internal Architecture for a Java Virtual Machine [Venry] 80
4.6. Offloading Timeline of the Basic Distribution for an Application Part . 83
4.7. Overview of (a) the Timeline and (b) the Decision Making for Code

Offloading . 85
4.8. The Runtime Environment on the Offloading Client for the Basic Dis-

tribution . 88
4.9. The Runtime Environment on the Offloading Service for the Basic Dis-

tribution . 94
4.10. The Software Stack from the Android OS [And16a, And16b] 97
4.11. The Measurement Board for the Samsung Galaxy Nexus 100
4.12. The Measurement Board for the Dell Inspiron Mini 10v and the Lenovo

ThinkPad T61 . 101
4.13. Power Consumption on the Netbook for a Local Execution and the Basic

Distribution of the Chesspresso Application 105
4.14. Power Consumption on the Laptop for a Local Execution and the Basic

Distribution of the Chesspresso Application 105

11

List of Figures

4.15. Power Consumption on the Smart Phone for a Local Execution and the
Basic Distribution of the Mobile Application 110

5.1. The Preemptable Distribution of an Application Part (a) without and
(b) with Failures between an Offloading Client and an Offloading Service
via a Communication Network . 117

5.2. Overview of the Runtime Environment on the Offloading Client for the
Preemptable Distribution . 119

5.3. Overview of the Runtime Environment on the Offloading Service for the
Preemptable Distribution . 120

5.4. Power Consumption on the Netbook for the Preemptable Distribution
of the Chesspresso Application . 127

5.5. Power Consumption on the Laptop for the Preemptable Distribution of
the Chesspresso Application . 128

5.6. Power Consumption on the Netbook for a Remote Execution of the
Chesspresso Application based on the Preemptable Distribution with
Failures at te = 16.14 s, 16.31 s, and 17.31 s 129

5.7. Power Consumption on the Netbook for a Remote Execution of the
Chesspresso Application based on the Preemptable Distribution with
failures at te = 18.54 s, 17.97 s, and 19.02 s 130

5.8. Power Consumption on the Laptop for a Remote Execution of the Chess-
presso Application based on the Preemptable Distribution with a failure
at te = 5.424 s . 132

5.9. Power Consumption on the Laptop for a Remote Execution of the Chess-
presso Application based on the Preemptable Distribution with a failure
at te = 6.146 s . 133

5.10. Power Consumption on the Laptop for a Remote Execution of the Chess-
presso Application based on the Preemptable Distribution with a failure
at te = 6.749 s . 133

6.1. An Exemplary Execution Graph for a Java Method at Compile-time. . 141
6.2. An Exemplary Modification of Variables for Each Execution Block . . . 143
6.3. An Exemplary Execution Graph for a Java Method at Run-time 147
6.4. Power Consumption on the Laptop for (a) a Local Execution and (b) a

Remote Execution of the Chesspresso Application 149
6.5. A Section of the Topographic Map from the Public Transport of Stuttgart150
6.6. Frequency of Execution Times for the Chesspresso Application on the

Netbook based on the Connectivity Traces for T-Mobile 153

12

List of Figures

6.7. Frequency of Energy Consumption for the Chesspresso Application on
the Netbook based on the Connectivity Traces for T-Mobile 154

6.8. Frequency of Execution Times for the Chesspresso Application on the
Netbook based on the Connectivity Traces for O2 155

6.9. Frequency of Energy Consumption for the Chesspresso Application on
the Netbook based on the Connectivity Traces for O2 156

6.10. Frequency of Execution Times for the Chesspresso Application on the
Laptop based on the Connectivity Traces for T-Mobile 157

6.11. Frequency of Energy Consumption for the Chesspresso Application on
the Laptop based on the Connectivity Traces for T-Mobile 158

6.12. Frequency of Execution Times for the Chesspresso Application on the
Laptop based on the Connectivity Traces for O2 159

6.13. Frequency of Energy Consumption for the Chesspresso Application on
the Laptop based on the Connectivity Traces for O2 159

6.14. Frequency of Execution Time for the Face Recognition Application on
the Netbook based on the Connectivity Traces for T-Mobile 160

6.15. Frequency of Energy Consumption for the Face Recognition Application
on the Netbook based on the Connectivity Traces for T-Mobile 161

6.16. Frequency of Execution Time for the Face Recognition Application on
the Netbook based on the Connectivity Traces for O2 162

6.17. Frequency of Energy Consumption for the Face Recognition Application
on the Netbook based on the Connectivity Traces for O2 163

6.18. Frequency of Execution Time for the Face Recognition Application on
the Laptop based on the Connectivity Traces for T-Mobile 163

6.19. Frequency of Energy Consumption for the Face Recognition Application
on the Laptop based on the Connectivity Traces for T-Mobile 164

6.20. Frequency of Execution Time for the Face Recognition Application on
the Laptop based on the Connectivity Traces for O2 165

6.21. Frequency of Energy Consumption for the Face Recognition Application
on the Laptop based on the Connectivity Traces for O2 165

7.1. The System Components for the Caching-aware Distribution 173

7.2. Offloading Timeline of the Caching-aware Distribution for an Applica-
tion Part . 174

7.3. The Runtime Environment on the Caching Service for the Caching-aware
Distribution . 178

13

List of Figures

7.4. Execution Time, Energy Consumption, and Monetary Cost on the Net-
book for the Evaluation of the Chess Game with the Different Opening
Moves . 183

7.5. Execution Time, Energy Consumption, and Monetary Cost on the Lap-
top for the Evaluation of the Chess Game with the Different Opening
Moves . 185

7.6. Execution Time, Energy Consumption, and Monetary Cost on the Net-
book for the Evaluation of the Text-to-Voice Application 186

7.7. Execution Time, Energy Consumption, and Monetary Cost on the Lap-
top for the Evaluation of the Text-to-Voice Application 188

7.8. Execution Time, Energy Consumption, and Monetary Cost (a) on the
Netbook and (b) on the Laptop for the Evaluation of the Mobile Scenario189

8.1. An Exemplary Environment of Multiple Tiers 195

8.2. The System Components for the Bubbling Distribution 197

8.3. The Runtime Environment on the Tier Service for the Bubbling Distri-
bution . 205

8.4. Overview of the Different Environments Evaluated for the Bubbling Dis-
tribution . 207

8.5. Execution Time of a Local Execution, the Two-tier Distribution, and
the Bubbling Distribution Evaluated in the Environments with Two Tiers210

8.6. Energy Consumption of a Local Execution, the Two-tier Distribution,
and the Bubbling Distribution Evaluated in the Environments with Two
Tiers . 211

8.7. Monetary Cost of a Local Execution, the Two-tier Distribution, the
Multi-tier Distribution, and the Bubbling Distribution Evaluated in the
Environments with Two Tiers and the Environment with Multiple Tiers 212

8.8. Power Consumption of the Bubbling Distribution Evaluated in the En-
vironment ScC . 213

8.9. Execution Time of a Local Execution, the Multi-tier Distribution, and
the Bubbling Distribution Evaluated in the Environment with Multiple
Tiers . 215

8.10. Energy Consumption of a Local Execution, the Multi-tier Distribution,
and the Bubbling Distribution Evaluated in the Environment with Mul-
tiple Tiers . 216

B.1. The Opening Move for the Chesspresso Application 246

14

List of Figures

B.2. The Different Configurations of the Chess Board Evaluated for a Chess
Game . 250

15

List of Tables

4.1. Overview of Execution Time, Energy Consumption, and Monetary Cost
on the Netbook and on the Laptop for the Evaluation of the Chess Game
with Different Opening Moves . 107

4.2. Overview of Execution Time, Energy Consumption, and Monetary Cost
on the Netbook and on the Laptop for the Evaluation of the Text-to-
Voice Application . 109

6.1. Timing Parameters Calibrated on Real-world Measurements for the Eval-
uation of the Predictive Distribution with Safe-points 151

8.1. Overview of the Execution Time, the Energy Consumption, and the
Monetary Cost for a Local Execution, the Two-tier Distribution, and the
Bubbling Distribution Evaluated in the Environments with Two Tiers
with and without Beneficial Resources 218

8.2. Overview of the Execution Time, the Energy Consumption, and the
Monetary Cost for a Local Execution, the Multi-tier Distribution, and
the Bubbling Distribution Evaluated in the Environment with Multiple
Tiers with and without Beneficial Resources 218

8.3. Overview of Execution Time on an Offloading Service for the Basic Dis-
tribution and the Bubbling Distribution for Each Resource-intensive Ap-
plication Part. 219

A.1. Part I of the Java Bytecode Instructions from 00 to 86 [LYBB15] . . . 241
A.2. Part II of the Java Bytecode Instructions from 87 to 147 [LYBB15] . . 242
A.3. Part III of the Java Bytecode Instructions from 148 to 255 [LYBB15] . 243

B.1. Comparison of the Java Applications Evaluated for Code Offloading . . 246

C.1. Overview of the Capabilities from the System Devices Utilized for Per-
formance Measurements of Code Offloading 258

17

List of Algorithms

5.1. Algorithm of the Decision Making for Safe-point’ing from the Offload
Controller on the Offloading Service . 124

7.1. Algorithm of the Decision Making for the Caching-aware Distribution
on the Offload Controller of the Offloading Client 177

19

Abstract

Since the release of the first smart phone from Apple in the year 2007, smart phones
in general experience a fast growth of rising popularity. A smart phone typically pos-
sesses among others a touchscreen display as user interface, a mobile communication
for accessing the Internet, and a System-on-a-Chip as an integrated circuit of required
components like a central processing unit. This pervasive computing platform derives
its required power from a battery, where an end user runs upon it different kinds of ap-
plications like a calendar application or a high-end mobile game. Differing in the usage
of the local resources from a battery-operated smart phone, a heavy utilization of lo-
cal resources like playing a resource-demanding application drains the limited resource
of energy in few hours. Despite the constant increase of memory, communication, or
processing capabilities of a smart phone since the release in 2007, applications are also
getting more and more sophisticated and demanding. As a result, the energy consumed
on a smart phone was, still is, and will be its main limiting factor.
To prevent the limited resource of energy from a quick exhaustion, researchers pro-

pose code offloading for (resource-constrained) mobile devices like smart phones. Code
offloading strives for increasing the energy efficiency and execution speed of applica-
tions by utilizing a server instance in the infrastructure. To this end, a code offloading
approach executes dynamically resource-intensive parts from an application on pow-
erful remote servers in the infrastructure on behalf of a (resource-constrained) mobile
device. During the remote execution of a resource-intensive application part on a re-
mote server, a mobile device only waits in idle mode until it receives the result of the
application part executed remotely. Instead of executing an application part on its
local resources, a (resource-constrained) mobile device benefits from the more powerful
resources of a remote server by sending the information required for a remote execution,
waiting in idle mode, and receiving the result of the remote execution.
The process of offloading code from a (resource-constrained) mobile device to a

powerful remote server in the infrastructure, however, faces different problems. For
instance, code offloading introduces some overhead for additional computation and
communication on a mobile device. Moreover, spontaneous disconnections during a
remote execution can cause a higher energy consumption and execution time than a

21

Abstract

local execution on a mobile device without code offloading. To this end, this dissertation
addresses the whole process of offloading code from a mobile device not only to one
but also to multiple remote resources, comprising the following steps:

1) First, code offloading has to identify feasible parts from an application for a remote
execution, where the distributed execution of the identified application part is more
beneficial than its local execution. A feasible part for a remote execution typically has
the following properties: A low size of information required for transmission before a
remote execution, a resource-intensive computation not accessing local sensors, and a
low size of information required for transmission after a remote execution. In the area of
identification of application parts for a remote execution, this dissertation presents an
approach based on code annotations from application developers that automatically
transforms a monolithic execution on a mobile device to a distributed execution on
multiple heterogeneous resources. In contrast to related approaches in the literature,
the annotation-based approach requires least interventions from application developers
and end users, keeping the overhead introduced on a mobile device low.

2) For an application part identified for a remote execution, code offloading has to
determine its execution side, executing the application part either on the local resources
of a mobile device or on the remote resource at the infrastructure. In the area of
determining the execution side for an application part, this dissertation presents the
offloading problem, where a mobile device decides whether to execute an application
part locally or remotely. Furthermore, this dissertation also presents an approach called
“code bubbling” that shifts the decision making into the infrastructure. In contrast to
related approaches in the literature, the decision-based approach on a mobile device
and the bubbling-based approach minimize the execution time, energy consumption,
and monetary cost for an application.

3) To determine the execution side for an application part identified for a remote
execution, code offloading has to obtain different parameters from the application,
participating resources, and utilized links. In the area of obtaining the information
required from an application, this dissertation presents a bit-flipping approach that
dynamically flips a bit at the modification of application-related information. Fur-
thermore, this dissertation also presents an offload-aware Application Programming
Interface (API) that encapsulates the application-related information required for code
offloading. In contrast to related approaches in the literature, the bit-flipping approach
and the offload-aware API provide an efficient gathering of information at run-time,
keeping the overhead introduced on a mobile device low.

4) Beside the information from an application, code offloading has to obtain further
information from participating resources and utilized links. In the area of obtaining the

22

Abstract

information required from participating resources and utilized links, this dissertation
presents the approach of code bubbling, already mentioned above. In contrast to related
approaches in the literature, the bubbling-based approach makes the offload decision
at the place where the related information occurs, keeping the overhead introduced on
a mobile device, participating resources, and utilized links low.
5) In case of a remote execution of an application part, code offloading has to send the

information required for a remote execution to the remote resource that subsequently
executes the application part on behalf of the mobile device. In the area of sending
the required information and executing an application part remotely, this dissertation
presents code offloading with a cache on the remote side. The cache on the remote
side serves as a collective storage of results for already executed application parts,
avoiding a repeated execution of previously run application parts. In contrast to related
approaches in the literature, the caching-aware approach increases the efficiency of code
offloading, keeping the energy consumption, execution time, and monetary cost low.
6) While a remote resource executes an application part, code offloading has to handle

the occurrence of failures like a failure of the remote resource or a disconnection. In
the area of handling the occurrence of failures, this dissertation presents a preemptable
offloading of code with safe-points. The preemptable offloading of code with safe-
points enables an interruption of an offloading process and a corresponding continuation
of a remote execution on a mobile device, without abandoning the complete result
calculated remotely so far. Based on a preemptable offloading of code with safe-points,
this dissertation further presents a predictive offloading of code with safe-points that
minimizes the overhead introduced by safe-point’ing and maximizes the efficiency of
a deadline-aware offloading. In contrast to related approaches in the literature, the
preemptable approach with safe-point’ing increases the robustness of code offloading
in case of failures. Furthermore, the predictive approach for safe-point’ing ensures a
minimal responsiveness and a maximal efficiency of applications despite failures.
7) At the end of a remote execution of an application part, code offloading has to

gather on the remote resource the required information after the execution and send
this information to the mobile device. In the area of gathering the required information,
a remote resource utilizes the same approaches as a mobile device, already mentioned
above (cf. the bit-flipping approach and the offload-aware API).
8) Last, code offloading has to receive on the mobile device the information from a

remote resource, install the information on the mobile device, and continue the execu-
tion of the application on the mobile device. In the area of installing the information
and continuing the execution locally, a mobile device utilizes the approaches already
mentioned above (cf. the bit-flipping approach and the offload-aware API).

23

Deutsche Zusammenfassung

Im Jahre 2007 stellte die Firma Apple ihr erstes Smartphone, das iPhone, vor und
ebnete damit den Weg für den Siegeszug der “smarten” Mobiltelefone. Heutzutage
sind die Smartphones aus unserem Alltag und der Geschäftswelt nicht mehr wegzu-
denken, da ein Smartphone ein klassisches Mobiltelefon mit computerähnlichen Funk-
tionalitäten und Konnektivität verknüpft. Typischerweise besitzt ein Smartphone einen
großen, berührungsempfindlichen Bildschirm für die Eingabe von Benutzerdaten über
Gesten, eine mobile Breitbandverbindung für die Kommunikation mit dem Internet
sowie einen leistungsstarken System-on-a-Chip, der die computerrelevanten Kompo-
nenten vereint. Im Alltag oder der Geschäftswelt führen Endanwender auf solch einer
mobilen Computerplattform verschiedene Anwendungen, wie zum Beispiel eine Kalen-
deranwendung oder ein hochauflösendes Videospiel, aus. Die Ausführung von Anwen-
dungen beansprucht die lokalen Ressourcen eines batteriebetriebenen Smartphones un-
terschiedlich stark. Durch eine starke Beanspruchung der lokalen Ressourcen aufgrund
der Ausführung einer ressourcenintensiven Anwendung auf dem Smartphone wird die
begrenzte Energiekapazität der Batterie in nur wenigen Stunden entladen. Im Laufe
der Zeit erfuhren durch Forschung und Entwicklung in der Kommunikationsbranche
die Hardwarekomponenten eines Smartphones stetige Verbesserungen, wodurch sich die
Leistungsfähigkeit des Speichers, der mobilen Breitbandverbindung oder des Prozessors
stetig erhöhte. Mit der voranschreitenden Weiterentwicklung der Hardwarekomponen-
ten entwickelten sich ebenfalls die mobilen Endanwendungen stetig weiter und bieten
beispielsweise eine verbesserte Grafikauflösung an, die wiederum die leistungsstärkeren,
lokalen Ressourcen eines Smartphones stärker beanspruchen. Aus diesen Gründen war,
ist und wird die Benutzung eines Smartphones durch den benötigten Energieverbrauch
stark beeinflusst und stellt das größte Hindernis bei der mobilen Nutzung im Alltag
oder der Geschäftswelt dar.

Um einer allzu schnellen Entladung der begrenzten Energiekapazität eines batteriebe-
triebenen mobilen Endgerätes, beispielsweise eines Smartphones, entgegen zu wirken,
schlagen Forscher in der Literatur den Ansatz des Code Offloadings vor. Der Ansatz des
Code Offloadings strebt nach einer verbesserten Energieeffizienz und einer schnelleren

25

Deutsche Zusammenfassung

Ausführungsgeschwindigkeit von Endanwendungen durch die Nutzung von entfern-
ten Serverinstanzen innerhalb der Infrastruktur. Dies spiegelt den Grundgedanken
des Code Offloadings wieder, welches ressourcenintensive Teile einer Endanwendung
nicht auf einem (ressourcenschwachen) mobilen Endgerät sondern auf entfernten, leis-
tungsstarken Serverinstanzen innerhalb der Infrastruktur ausführt. Während einer
solchen entfernten Ausführung eines ressourcenintensiven Anwendungsteil auf einem
entfernten Server wartet das mobile Endgerät nur auf den Empfang des Ergebnisses
der entfernten Ausführung ohne selbst den Anwendungsteil auszuführen. Aufgrund der
leistungsstärkeren Ressourcen eines entfernten Servers ist eine entfernte Ausführung für
ein (ressourcenschwaches) mobiles Endgerät im Vergleich zu einer lokalen Ausführung
profitabler, wobei eine entfernte Ausführung das Senden der benötigten Information,
das Warten während der entfernten Ausführung und das Empfangen des Ergebnisses
der entfernten Ausführung beinhaltet.

Dieser Prozess einer entfernten Ausführung von Anwendungsteilen auf einer ent-
fernten, leistungsstarken Serverinstanz innerhalb der Infrastruktur anstelle auf einem
(ressourcenschwachen) mobilen Endgerät umfasst jedoch verschiedene Herausforderun-
gen. Zum Beispiel birgt das Code Offloading zusätzlichen Berechnungs- und Kom-
munikationsmehraufwand, den es auszugleichen gilt. Des Weiteren kann durch spon-
tane Verbindungsabbrüche während einer entfernten Ausführung eines Anwendung-
steil der Energieverbrauch und die Ausführungszeit einer verteilten Anwendungsaus-
führung höher sein als für eine lokale Ausführung des Anwendungsteils auf dem mo-
bilen Endgerät. Zu diesem Zweck behandelt die vorliegende Dissertation den gesamten
Prozess des Code Offloadings von einem mobilen Endgerät zu nicht nur einer entfer-
nten Ressource sondern auch zu mehreren entfernten Ressourcen, wobei im Einzelnen
die folgenden Prozessabschnitte behandelt werden:

1) Zuallererst muss das Code Offloading geeignete Anwendungsteile identifizieren,
bei denen eine verteilte Ausführung gegenüber einer lokalen Ausführung des Anwen-
dungsteil vorzuziehen ist. Ein geeigneter Anwendungsteil besitzt hierbei eine geringe
Menge an benötigten Informationen, die für eine entfernte Ausführung übertragen wer-
den müssen, eine ressourcenintensive Berechnung, die keine lokalen Ressourcen wie zum
Beispiel einen Sensor benötigt, und eine geringe Menge an benötigten Informationen,
die nach einer entfernten Ausführung übertragen werden müssen. Auf dem Gebiet der
Identifikation von geeigneten Anwendungsteilen präsentiert die vorliegende Disserta-
tion einen Ansatz, der auf Annotationen des Quellcodes vom Anwendungsentwickler
basiert. Dieser Ansatz mit Hilfe von Annotationen ermöglicht es, automatisch eine
monolithische Ausführung auf einem mobilen Endgerät in eine verteilte Ausführung
auf mehreren verschiedenartigen Ressourcen zu transformieren. Im Gegensatz zu ver-

26

Deutsche Zusammenfassung

wandten Arbeiten in der Literatur benötigt der präsentierte Ansatz basierend auf
Codeannotationen nur sehr geringe Hilfe vom Anwendungsentwickler und Benutzer
des mobilen Endgerätes, wobei der Ansatz nur einen sehr geringen Mehraufwand auf
dem mobilen Endgerät verursacht.
2) Nach der Identifizierung eines geeigneten Anwendungsteil muss das Code Offload-

ing den Ausführungsort des Anwendungsteils bestimmen, wobei der geeignete Anwen-
dungsteil entweder auf den lokalen Ressourcen des mobilen Endgerätes oder auf den
entfernten Ressourcen innerhalb der Infrastruktur ausgeführt wird. Auf dem Gebiert
der Bestimmung des Ausführungsortes für einen identifizierten Anwendungsteil präsen-
tiert die vorliegende Dissertation einerseits ein Optimierungsproblem, mit dessen Hilfe
entschieden wird, ob der Anwendungsteil lokal oder entfernt ausgeführt wird, und an-
dererseits den “Code Bubbling” Ansatz, der die Entscheidung über den Ausführungsort
innerhalb der Infrastruktur trifft. Im Gegensatz zu verwandten Arbeiten in der Lit-
eratur minimieren die Ansätze des Optimierungsproblems sowie Code Bubblings die
Ausführungszeit, den Energieverbrauch und die monetären Kosten einer Anwendung.
3) Zur Bestimmung des Ausführungsortes eines geeigneten Anwendungsteils muss

das Code Offloading verschiedene Parameter bezüglich der Anwendung, der beteiligten
Ressourcen sowie des Netzwerks in Erfahrung bringen. Auf dem Gebiet der Beschaf-
fung von Informationen über die Anwendung präsentiert die vorliegende Dissertation
einerseits einen Ansatz, welcher geänderte Anwendungsinformationen basierend auf
Bitflipping beschafft, und andererseits einen Ansatz, welcher eine erweiterte Program-
mierschnittstelle für das Code Offloading bereitstellt. Im Gegensatz zu verwandten
Arbeiten in der Literatur stellen die Ansätze des Bitflippings sowie der erweiterten Pro-
grammierschnittstelle eine effiziente Beschaffung der Information zur Laufzeit bereit,
die beide nur einen sehr geringen Mehraufwand auf dem mobilen Endgerät verursachen.
4) Neben den zu beschaffenden Informationen bezüglich der Anwendung muss das

Code Offloading weitere Informationen über die beteiligten Ressourcen sowie des Net-
zwerks beschaffen, um den Ausführungsort eines Anwendungsteil zu bestimmen. Auf
dem Gebiet der Beschaffung von Informationen über die beteiligten Ressourcen sowie
des Netzwerks präsentiert die vorliegende Dissertation den bereits weiter oben er-
wähnten Ansatz des Code Bubblings. Im Gegensatz zu verwandten Arbeiten in der
Literatur trifft der Ansatz des Code Bubblings die Entscheidung über eine entfernte
Ausführung nicht auf einem (ressourcenschwachen) mobilen Endgerät sondern an dem
Ort, an welchem die hierfür benötigten Informationen vorliegen, wodurch der Ansatz
den verursachten Mehraufwand auf dem mobilen Endgerät, den beteiligten Ressourcen
sowie dem Netzwerk gering hält.
5) Im Falle einer entfernten Ausführung eines Anwendungsteils muss das Code Of-

27

Deutsche Zusammenfassung

floading die benötigten Informationen für eine entfernte Ausführung zur gewählten,
entfernten Ressource senden, welche anschließend den Anwendungsteil anstelle des mo-
bilen Endgerätes ausführt. Auf dem Gebiet des Senden von benötigten Informationen
und des entfernten Ausführens von Anwendungsteilen präsentiert die vorliegende Dis-
sertation einen Ansatz, der einen entfernten Cache für das Code Offloading nutzt.
Der entfernte Cache dient hierbei zur gemeinschaftlichen Speicherung von Ergebnis-
sen von bereits ausgeführten Anwendungsteilen und vermeidet somit ein wiederholtes
Ausführen von bereits ausgeführten Anwendungsteilen. Im Gegensatz zu verwandten
Arbeiten in der Literatur erhöht ein Code Offloading mit einem entfernten Cache die
Effizienz des Code Offloadings, wodurch der Energieverbrauch, die Ausführungszeit
sowie die monetären Kosten gering gehalten werden.

6) Während einer entfernten Ausführung eines Anwendungsteils muss das Code Of-
floading das Auftreten von Fehlern wie beispielsweise einem Serverausfall oder einem
Verbindungsabbruch handhaben. Auf dem Gebiet der Handhabung von Fehlern präsen-
tiert die vorliegende Dissertation ein unterbrechbares Code Offloading, welches auf
sogenannten Safe-points basiert. Die Verwendung von Safe-points ermöglicht die Un-
terbrechung des Prozesses der entfernten Ausführung mit einer einhergehenden lokalen
Fortsetzung der entfernten Ausführung auf dem mobilen Endgerät, wobei die bereits
errechneten Zwischenergebnisse der entfernten Ausführung auf dem mobilen Endgerät
zur Ausführung weitergenutzt werden. Des Weiteren präsentiert die vorliegende Dis-
sertation basierend auf einem unterbrechbaren Code Offloading ein vorausschauendes
Code Offloading, welches den einhergehenden Mehraufwand durch die Verwendung von
Safe-points minimiert und gleichzeitig die Effizienz eines Code Offloadings mit einer
gesetzten Deadline maximiert. Im Gegensatz zu verwandten Arbeiten in der Literatur
erhöht der unterbrechbare Ansatz mit Safe-points die Robustheit von Code Offloading
im Fehlerfall. Außerdem stellt der vorausschauende Ansatz mit Safe-points eine min-
imale Ansprechbarkeit und eine maximale Effizienz einer verteilten Anwendungsaus-
führung trotz dem Aufkommen von Fehlern sicher.

7) Am Ende einer entfernten Ausführung eines Anwendungsteils muss das Code
Offloading die benötigten Informationen einer entfernten Ausführung für das mobile
Endgerät beschaffen und diese Informationen zu dem mobilen Endgerät senden. Auf
dem Gebiet der Beschaffung von benötigten Informationen benutzen die entfernten
Ressourcen die gleichen Ansätze, die ein mobiles Endgerät für die Beschaffung von
Informationen benutzt, und bereits weiter oben beschrieben wurden (vgl. den Ansatz
des Bitflippings und der erweiterten Programmierschnittstelle für das Code Offloading).

8) Zuletzt muss das Code Offloading die benötigten Informationen von einer entfer-
nten Ressource nach der Ausführung eines Anwendungsteil auf dem mobilen Endgerät

28

Deutsche Zusammenfassung

empfangen, die entsprechenden Informationen auf dem mobilen Endgerät installieren
und darauf basierend die Anwendungsausführung auf dem mobilen Endgerät fortset-
zen. Auf dem Gebiet der Installation von benötigten Informationen sowie der lokalen
Fortsetzung einer Anwendungsausführung benutzt ein mobiles Endgerät die gleichen
Ansätze des Bitflippings und der erweiterten Programmierschnittstelle für das Code
Offloading, die bereits weiter oben beschrieben wurden.

29

Chapter 1
Introduction

In the year 2007, Apple released the first model of its iPhone series, “going to reinvent
the phone” [Inf07a]. Compared to popular phones at this time like the mobile phone Q
from Motorola or the E62 from Nokia, the first iPhone combines a revolutionary user
interface with exceeding hardware components like a wide multi-touch touchscreen,
plenty of sensors, and a powerful processing unit. Furthermore, the iPhone (1st gen-
eration) acquires, disseminates, and shares information with services in the Internet
based on multiple connectivity for data transfer like a Wireless Fidelity (Wi-Fi) or
cellular connection. This new interplay of the revolutionary software together with the
exceeding hardware from the first iPhone extended the typical functionality of a “tra-
ditional” mobile phone at this time, changing significantly the everyday use of mobile
phones. Due to the “smarter” functionality compared to traditional mobile phones, the
community calls such mobile phones as smart phones.
A smart phone is a ubiquitous computing platform with Internet access, powered by a

battery. An end user executes on the hardware different applications like a web browser
or a mobile game. Apart from a couple of applications pre-installed by default, a mobile
operating system like iOS on the first iPhone enables an end user to individualize the
functionality of the smart phone to its need. An end user can install and execute
further applications from an application store like the Apple App Store, where the
execution of (resource-friendly and resource-intensive) applications on a smart phone
utilizes local resources differently. A heavy utilization of the constrained resources from
a battery-operated smart phone drains its limited energy in few hours. For instance,
Apple announced 5 hours of talk time, Internet use, or video playback or 16 hours of
audio playback for the preliminary version of the first iPhone [Inf07b]. For the final
version, Apple further increased the battery life of the first iPhone, shipping it with 8

hours of talk time, 6 hours of Internet use, 7 hours of video playback, or 24 hours of
audio playback. This fact clearly shows that already at the time of delivery the main
limiting factor of the first smart phone from Apple was its constrained battery life.
Ten years later, the hardware and software of smart phones improved significantly.

Regarding the current flagship smart phone from Samsung presented in March 2017,

31

1. Introduction

the Samsung Galaxy S8 [Sam17] possesses, for instance, a 3D multi-touch touchscreen
with a higher resolution, additional sensors with higher accuracy, and a more powerful
processing unit compared to the iPhone (1st generation). Furthermore, the capabilities
of the connectivity for data transfer also improved significantly, where an end user now
accesses services in the Internet via a high-bandwidth and low-latency connection –
e.g., up to 1Gbit/s for the down link, up to 500Mbit/s for the up link, and a latency
less than 10ms based on LTE-Advanced1 [NK16]. Associated with the improvements
to the hardware of smart phones, the software steadily improved as well, enabling
an execution of more sophisticated and more demanding applications. An execution
of more sophisticated software on more sophisticated hardware overall increases the
energy demands on a battery-operated smart phone. Thus, an execution of a resource-
intensive application like a high-end video game still drains the battery of today’s smart
phones in few hours (cf. [CH10]). Like for the first iPhone released in 2007, the main
limiting factor of a today’s smart phone is still its constrained battery life. An end
user typically has to charge its smart phone every day. According to Sekar [Sek13],
the power consumption of mobile devices “remains and will remain a first-class design
constraint”. Consequently, a battery-operated mobile device like a smart phone requires
techniques to minimize its energy consumption without sacrificing the computational
power available for an execution of an application.

1.1. Motivation

A corresponding technique for a smart phone arose with the rise of cloud computing
that dramatically changed the landscape of Information Technology (IT) over the last
years [AFG+10]. Cloud providers like Amazon, Google, or Microsoft offer services
like computing infrastructure, platforms, or software to customers in a pay-as-you-go
manner (cf. Amazon Web Services, Google Cloud Platform, or Microsoft Azure). Em-
powered by this new computing paradigm of cloud computing, end users now lease
on-demand reliable, elastic, and cost-effective resources from commercial data centers
at the cloud. As a result, the technique of Code Offloading emerged both from aca-
demic researchers and industrial pioneers, striving to increase the energy efficiency of a
(resource-constrained) mobile device and the execution speed of a (resource-intensive)
application. Code offloading bridges the gap between Mobile Computing and Cloud
Computing with computation offloading via a Wireless Network, called Mobile Cloud
Computing (MCC) [SGKB13, uRKOMK14]. In detail, mobile computing comprises

1Long-Term-Evolution-Advanced (LTE-Advanced)

32

1.1. Motivation

(battery-operated) mobile devices like a smart phone, providing a ubiquitous platform
with sensing, communicating, and computing capabilities. The rise of cloud computing
in the last years brought powerful resources from the cloud closer to mobile computing,
typically paid in a pay-as-you-go manner. Last, a mobile device communicates with
resources at the cloud via a Wi-Fi or cellular connection (wireless network), providing
a high-bandwidth and low-latency link to remote resources.

Due to the combination of mobile computing with cloud computing via a wireless
network, code offloading overcomes the energy limitation of a (resource-constrained)
mobile device by executing resource-intensive parts from applications on powerful server
instances at the cloud. To this end, code offloading regards the cost for an execution
of an application part on local resources of a mobile device and on remote resources
at the cloud. The local cost includes the execution time and energy consumption for
a local execution of an application part on a mobile device. The remote cost includes
the execution time, energy consumption, and monetary cost for a remote execution of
an application part on a server instance at the cloud. Compared to a local execution,
a remote execution takes time and consumes energy on a mobile device for sending
information to a remote resource, waiting in idle mode during the execution on a remote
resource, and receiving the execution state of a remote resource after the execution.
It causes monetary cost for sending bytes to a remote resource, utilizing a remote
resource for an execution, and receiving bytes from a remote resource. Regarding the
trade-off between the local cost and the remote cost, the challenge is now to find an
optimal distribution of application parts between the local resources on a mobile device
and the remote resources at the cloud, resulting in a minimum execution time, energy
consumption, and monetary cost.

Beside the remote resources at the cloud for code offloading, technological trends
like Big Data [JBD+14, Cen12], Cyber-Physical Systems [RLSS10, KM15], and In-
ternet of Things [BLMN13, AFGM+15] made multiple classes of highly distributed
heterogeneous resources available for code offloading. As a result, multiple resources
augment an execution of an application on a (resource-constrained) mobile device,
where a mobile device has to distribute optimally an execution of application parts
between multiple resources. For instance, Fog Computing brings the cloud closer to
end users, providing powerful, elastic resources to mobile devices at the edge of the net-
work [BMZA12, VRM14]. An exemplary environment for code offloading with multiple
resources consists of a smart watch that a Bluetooth link connects to a smart phone.
Further, a Wi-Fi link connects the smart phone to a smart car that again an LTE-
Advanced link connects to a server instance at the edge. Finally, a fixed link connects
the server instance at the edge to a server instance in a data center at the cloud. These

33

1. Introduction

heterogeneous devices in such an environment differ significantly in terms of resources
for energy, computation, and communication, increasing typically from very limited
(e.g., a smart watch) to virtually unlimited (e.g., the cloud). Code offloading in such
environments with multiple resources will become relevant in future, where a plenty of
highly distributed heterogeneous resources with different performance characteristics
and cost implications surround a (resource-constrained) mobile device.

Summarizing, code offloading can increase the energy efficiency of a mobile device
and the execution speed of an application by distributing an execution of application
parts from a mobile device to remote resources in the infrastructure, causing monetary
cost for a utilization of remote resources. Regarding the whole process of offloading
code from a mobile device to a remote resource, an optimal distribution of application
parts from a (resource-constrained) mobile device to a or multiple remote resources
arises challenging research questions like feasibility, robustness, or adaptability.

1.2. Research Focus

To optimally distribute parts from an application, a realization of an efficient system
for code offloading has to address several challenging research questions. The key
challenges for a realization of an efficient system directly result from the distributed
execution of an application to multiple resources. Accordingly, the whole process of
code offloading from the identification of application parts – that can be distributed – to
the receive of the result from a remote execution classifies the scope of this dissertation,
where prior research does not sufficiently address the key challenges. The following
paragraphs give a more detailed view on the research focus of this dissertation that
encompasses the whole process for a distribution of an application execution between
a mobile device and remote resources.

First of all, code offloading has to identify parts from an application for a remote
execution. It divides an application into application parts that a mobile device has to
execute locally and into application parts that can be distributed to a remote resource
(offloadable). An application part that is offloadable only utilizes the processing ca-
pabilities on a mobile device, without accessing further local capabilities like taking a
photo via a camera. A good candidate for a remote execution of an application part
that is offloadable has a long running computation, utilizing the computing capabilities
on the remote resource heavily. Moreover, it has a small size of information required for
a remote execution and a small size of information received on a mobile device after a
remote execution, utilizing the uplink and downlink from a communication network to
a remote resource sparingly. Thus, the arising question is how to (efficiently) identify

34

1.2. Research Focus

application parts that are offloadable, keeping the burden on application developers
together with the overhead introduced to a mobile device low.
After the identification of an application part that is offloadable, code offloading has

to determine the execution side for this application part. To this end, it regards for the
application part the trade-off between the cost for a local execution on a mobile device
and the cost for a remote execution on a remote resource, typically formulated as an
optimization problem like an Integer Linear Program. The solution of the optimization
problem determines whether a mobile device executes the application part that is
offloadable locally on its resources or distributes it to a remote resource for a remote
execution. Thus, the arising question is how to (efficiently) determine the execution
side for an application part identified as offloadable, keeping the time taken for solving
the optimization problem minimal.
To solve the optimization problem related to code offloading for an application part

that is offloadable, code offloading has to obtain a set of parameters required for the
solution of the optimization problem. The required parameters result from the cost
– the time taken and energy consumed – for a local execution and – the time taken,
energy consumed, and monetary cost caused – for a remote execution. In detail, the
parameters comprise information about the application like its execution state, local
and remote resources like the performance, and network links like the bandwidth.
Thus, the arising question is how to (efficiently) obtain parameters required to solve
the optimization problem for code offloading, keeping the overhead introduced to a
mobile device, participating resources, and network links low.
After the determination of the execution side for an application part identified as

offloadable, code offloading has to execute an application part remotely if a remote
execution is more beneficial compared to a local execution. To this end, it sends the
execution state gathered locally from a mobile device to a remote resource and waits
subsequently for the end of a remote execution on a remote resource, to finally receive
the execution state on the remote resource after the remote execution. Due to the
utilization of the uplink, the remote resource, and the downlink in case of a remote
execution, an end user has to pay a corresponding fee for the utilization charged by
(link and resource) providers. Thus, the arising question is how to (efficiently) optimize
the process of sending, waiting, and receiving for a remote execution, keeping the
introduced overhead together with the charged monetary cost low.
While a remote resource executes an application part on behalf of a mobile device,

code offloading has to handle an occurrence of failures on participating nodes or con-
necting links. For instance, in case of a failure of a remote resource near the end of a
remote execution, the occurrence of the failure delays – e.g., due to a node recovery

35

1. Introduction

and a subsequent re-execution – the receive on a mobile device of the execution state
after the remote execution. It gets even worse in case of a long-lasting disconnection
between a mobile device and a remote resource near the end of a remote execution,
where a local execution of the application part would be retrospectively more benefi-
cial. Thus, the arising question is how to (efficiently) handle an occurrence of failures
during a remote execution, keeping the efficiency of code offloading high.

Summarizing, this dissertation tackles a couple of challenging research questions that
prior research does not sufficiently address. It regards the whole process of a distribu-
tion from an efficient identification to failure handling to a receive of a remote result,
proposing different concepts, algorithms, and approaches. In detail, this dissertation
realizes an efficient, scalable, and applicable system for code offloading that distributes
application parts between a mobile device and multiple remote resources.

1.3. Contributions

The dissertation investigates the challenging research questions described above, con-
tributing concepts, algorithms, and approaches for the investigated questions. We
published the contributions of this dissertation at international conferences [BDR14a,
BDR14b, BDR15, BDR16] and in an international journal [BDR18], where all pub-
lications were peer-reviewed. Concepts, algorithms, and implementations of the ap-
proaches presented in [BDR14a, BDR14b, BDR15, BDR16, BDR18] are original work
of the author, where a thesis of a student supervised by the author provided prelimary
understanding of the work proposed in [BDR15]. At all times, Kurt Rothermel and
Frank Dürr helped to improve the presentation of concepts, algorithms, and results,
where the author of this thesis contributed about 75 %, 80 %, 85 %, 90 %, and 95 %
of the scientific content for the papers [BDR14a], [BDR14b], [BDR15], [BDR16], and
[BDR18]. In particular, this dissertation has the following individual contributions:

1. To identify at run-time application parts that are offloadable, this dissertation
proposes an annotation-based distribution with least interventions from an appli-
cation developer as well as end user. An application developer only annotates at
development-time application parts that are offloadable, where an offload-aware
compiler inserts at compile-time instructions for an application part annotated as
offloadable. Based on the offload-specific instructions inserted at compile-time,
the approach automatically partitions at run-time an application to parts that
have to be executed locally and to parts that are offloadable. Thus, it does not
require any interventions from an application developer or end user. In contrast

36

1.3. Contributions

to related approaches in the literature, the annotation-based distribution with
offload-specific instructions keeps the burden on application developers and end
users low. Moreover, it also keeps the overhead introduced to the run-time system
on a (resource-constrained) mobile device low.

2. To determine the execution side for an application part that is offloadable, this
dissertation proposes a distribution with the concept of “code bubbling”. Code
bubbling shifts the offload decision – determining whether to execute an applica-
tion part locally or remotely – from a (resource-constrained) mobile device into
the infrastructure. Based on the concept of code bubbling, the approach dynam-
ically determines the best available resource for an execution of an application
part at run-time, especially in case of multiple remote resources participating in
code offloading. In contrast to related approaches in the literature, code bubbling
does not require a global view onto all resources of an environment, keeping the
overhead introduced to a run-time system on a mobile device low.

3. To obtain from an application the parameters required for the offload decision,
this dissertation proposes a bit-flipping approach. The bit-flipping approach
marks information from an execution state modified during run-time by flipping
a corresponding bit in the information header. Based on the dynamic flipping
of a bit at run-time, the bit-flipping approach minimizes the execution state
synchronized between a mobile device and a remote resource. It only includes
information from an execution state that is modified during run-time. In con-
trast to related approaches in the literature, the dynamic flipping of a bit does
not require a resource-intensive monitoring of information for an execution state
in parallel of an execution. As a result, the dynamic flipping of a bit keeps the
overhead introduced to a run-time system on a mobile device low.

4. To obtain from an application part the parameters required for the offload deci-
sion, this dissertation also proposes an offload-aware Application Programming
Interface (API) for the Java programming language beside the dynamic flipping
of a bit. The offload-aware Java API extends the Java core class libraries with
additional classes for code offloading, making the Java programming language
directly aware for offloading code. Based on the additional Java core classes,
an application developer only extends a corresponding Java core class, enabling
code offloading for its Java application. In contrast to related approaches in the
literature, the offload-aware Java API provides an ease of use and an efficient
processing of code offloading that keeps the overhead introduced to a run-time

37

1. Introduction

system on a mobile device and on a remote resource low.

5. To obtain from participating resources and network links the parameters re-
quired for the offload decision, this dissertation proposes the distribution with
code bubbling. The distribution with code bubbling makes a decision to offload
an application part at the point where the information required for an offload
decision occurs, namely at the infrastructure. Due to an offload decision on re-
mote resources at the infrastructure, a (resource-constrained) mobile device only
submits an offload request into the infrastructure. Afterwards, it automatically
receives offers from participating remote resources, where a remote execution is
more beneficial compared to a local execution. In contrast to related approaches
in the literature, the distribution with code bubbling does not obtain all pa-
rameters required for the offloading decision at a (resource-constrained) mobile
device, keeping the overhead introduced to a mobile device, participating remote
resource(s), and related network link(s) low.

6. To optimize the offloading process of sending, waiting, and receiving in case of
a remote execution, this dissertation proposes a caching-aware distribution. It
extends a distribution of application parts with a cache on the remote side. The
cache on the remote side stores collectively execution states after a local execution
or a remote execution of application parts. A mobile device queries the cache
for a corresponding entry just before offloading an application part to a remote
resource. Based on the cache on the remote side, a mobile device immediately
receives a queried execution state in case of a cache hit, whereas in case of a
cache miss it starts a distribution of the application part to a remote resource.
In contrast to related approaches in the literature, the caching-aware distribution
avoids a repeated execution of previously run application parts, keeping the time
taken, energy consumed, and monetary cost charged for a remote execution low.

7. To handle the occurrence of failures (e.g., node or link failures) during a re-
mote execution, this dissertation proposes a preemptable distribution with safe-
point’ing and a predictive distribution with safe-point’ing. The preemptable dis-
tribution stores at different points in time the execution state on a remote resource
during a remote execution called safe-points. It also transmits these safe-points
during a remote execution to a mobile device, enabling an interruption of an
offloading process and a continuation of a remote execution on a mobile device in
case of a failure. Thus, safe-point’ing does not abandon the intermediate result
calculated remotely so far. The predictive distribution extends the preemptable

38

1.4. Structure of the Thesis

distribution with an adaptive scheduler that predicts the optimal times for a cre-
ation and transmission of a safe-point during a remote execution. For instance,
in the optimal case, it only transmits one safe-point just before a disconnection
occurs. In contrast to related approaches in the literature, the preemptable dis-
tribution based on safe-point’ing increases the robustness of code offloading in
case of a failure, keeping the efficiency of code offloading high. Additionally, the
predictive distribution based on safe-point’ing ensures a minimal responsiveness
and a maximal efficiency of distributed applications despite link failures.

1.4. Structure of the Thesis

Now, this section describes the structure of the dissertation which is as follows:
The current chapter, Chapter 1, shows the ropes and starts with an introduction

about resource limitation of smart phones in the past and present time. Afterwards,
Section 1.1 gives a motivation for the technique of code offloading that augments a
(resource-constrained) mobile device with powerful remote resources. Section 1.2 de-
tails about the research focus within code offloading, where Section 1.3 highlights the
research contributions of this dissertation, both comprising the whole process of distri-
bution for code offloading. Finally, Section 1.4 outlines the structure of the thesis.
The next chapter, Chapter 2, describes in detail the background information re-

quired for this dissertation. It starts with a description of mobile computing in Sec-
tion 2.1 that communicates with other devices and the Internet via different wireless
networks described in Section 2.2. A mobile computing environment accesses via a
wireless network computing resources from cloud computing, described in Section 2.3.
It also accesses nearby computing resources at the edge of a network, favored by dif-
ferent technological trends described in Section 2.4. The combination of mobile com-
puting with cloud computing enables mobile cloud computing described in Section 2.5,
providing services like computation offloading. Last, Section 2.6 presents a summary.
The next chapter, Chapter 3, gives a system overview for code offloading in the

landscape of Mobile Cloud Computing (MCC). First, Section 3.1 outlines a related
system model before Section 3.2 formulates the problem statement. Related to the
system model and problem statement, Section 3.3 describes the system components
involved in code offloading. As each component of the system might fail, Section 3.4
highlights the underlying failure model for this dissertation, including crash failures
with eventually recovery of nodes and links. Then, Section 3.5 presents the system
requirements of a system for code offloading. Last, Section 3.6 presents a summary.
The next chapter, Chapter 4, presents an efficient code offloading with annotations,

39

1. Introduction

where a (resource-poor) mobile device offloads computation to a (powerful) remote re-
source. Section 4.1 introduces this basic distribution and Section 4.2 gives its related
system overview. Utilizing a runtime environment for code offloading, Section 4.3
describes the functionality of a runtime-layer offloading. Section 4.4 outlines the of-
floading timeline for a basic distribution and Section 4.5 the functionality provided by
an offloading framework. Afterwards, Section 4.6 highlights the implementation of the
offloading framework in different prototypes, before Section 4.7 presents the evaluation.
Last, Section 4.8 presents a summary.

The next chapter, Chapter 5, presents a robust code offloading through safe-
point’ing. The preemptable distribution described in Section 5.1 reuses, in case of a
failure, intermediate states of a remote execution, without abandoning the remote re-
sult achieved so far. To this end, Section 5.2 gives a related system overview, Section 5.3
outlines the offloading timeline for the preemptable distribution, and Section 5.4 de-
scribes the functionality provided by an offloading framework. Afterwards, Section 5.5
presents the evaluation of the preemptable distribution in multiple scenarios, where
failures occur at different point in times. Last, Section 5.6 presents a summary.

The next chapter, Chapter 6, presents a deadline-aware code offloading with pre-
dictive safe-point’ing. The predictive distribution described in Section 6.1 utilizes an
adaptive algorithm based on prediction models to dynamically adapt the point in times
for a creation and transmission of safe-points. To this end, Section 6.2 gives a related
system overview before Section 6.3 describes the optimal schedule for safe-point’ing
that minimizes the number of safe-points received on a mobile device. Afterwards,
Section 6.4 presents the evaluation of a MATLAB simulation in different scenarios.
Last, Section 6.5 presents a summary.

The next chapter, Chapter 7, presents an optimized code offloading through cooper-
ative caching. The caching-aware distribution described in Section 7.1 optimizes a basic
distribution with a cache on the remote side. The cache stores execution states from
application parts executed previously. To this end, Section 7.2 gives a related system
overview, Section 7.3 outlines the offloading timeline for a caching-aware distribution,
and Section 7.4 describes the functionality provided by an offloading framework. To
evaluate the overhead and benefits for a caching-aware distribution, Section 7.5 presents
the evaluation of an OpenJDK prototype on different mobile devices running different
mobile applications. Last, Section 7.6 presents a summary.

The next chapter, Chapter 8, presents a code offloading in environments with mul-
tiple tiers. The distribution with code bubbling described in Section 8.1 enables a basic
distribution to efficiently offload computation in environments with highly distributed
heterogeneous resources. To this end, Section 8.2 gives a related system overview, Sec-

40

1.4. Structure of the Thesis

tion 8.3 outlines the offloading timeline for a distribution, and Section 8.4 describes
the functionality provided by an offloading framework. To evaluate the overhead and
benefits for a distribution with code bubbling, Section 8.5 describes the evaluation of
a prototype based on Android and OpenJDK. Last, Section 8.6 presents a summary.
The next chapter, Chapter 9, presents the work related to this dissertation. The

discussion includes the work related to an efficient code offloading with annotations
described in Section 9.1 (cf. the basic distribution in Chapter 4), to a robust code
offloading through safe-point’ing described in Section 9.2 (cf. the preemptable distri-
bution in Chapter 5), to a deadline-aware code offloading with predictive safe-point’ing
described in Section 9.3 (cf. the predictive distribution in Chapter 6), to an optimized
code offloading through cooperative caching described in Section 9.4 (cf. the caching-
aware distribution in Chapter 7), and to a code offloading in environments with multiple
tiers described in Section 9.5 (cf. the distribution with code bubbling in Chapter 8).
Last, Section 9.6 presents a summary.
The last chapter, Chapter 10, presents the conclusion of this dissertation by giving

a summary described in Section 10.1 on the topics covered in this dissertation and an
outlook described in Section 10.2 on remaining open research questions.

41

Chapter 2
Background

This chapter presents the background information for code offloading in the scope of
Mobile Cloud Computing (MCC). As the name Mobile Cloud Computing suggests,
MCC combines mobile computing with cloud computing via a wireless network. To
this end, Section 2.1 gives a brief overview of the typical environment, classic architec-
ture, and inherent limitations related to mobile computing. Due to the portability of a
device from mobile computing, a wireless network described in Section 2.2 connects the
mobile computing environment with resources in an intranet or the Internet. Typically
connected via a Wi-Fi, cellular, or Bluetooth link, a device from mobile computing can
access powerful resources from cloud computing described in Section 2.3 with its es-
sential characteristics, service models, and deployment models. Different technological
trends described in Section 2.4 like Big Data, Internet of Things, and Cyber-Physical
System bring the resources from a distant cloud closer to a device from mobile com-
puting, providing nearby resources at the edge of a network. The augmentation of
mobile computing with nearby and distant resources via a wireless network enables
code offloading in the field of Mobile Cloud Computing. To this end, Section 2.5 first
gives an overview of MCC, before it describes the related architectures, requirements
for a framework, and arising challenges. Finally, Section 2.6 summarizes the main facts
from the background information presented in this chapter.

2.1. Mobile Computing

This section gives a brief overview of mobile computing, where devices from mo-
bile computing transmit data via a wireless link according to Koudounas and Iqbal
[KI96]. Improvements in energy-efficient but powerful hardware, wireless telecommu-
nication, and adaptive software enabled this portable computing [Sat10]. To this end,
Subsection 2.1.1 characterizes the typical environment of mobile computing, Subsec-
tion 2.1.2 the classic architecture of client-server and an extended architecture of client-
interlayers-server, and Subsection 2.1.3 the inherent limitations from mobility.

43

2. Background

2.1.1. Environment

Mobile computing provides an environment to an end user for sensing, communicating,
and processing, where the end user is physically on the move and not stationary in front
of a static computer at a single location. The mobile computing environment deploys
a portable device with sensing and processing resources that connects via a wireless
network to other portable and/or static devices, moving along with a mobile end user.
Due to the portability of a computing environment, inherent issues from mobility –
e.g., the size, weight, or battery life of the environment – characterize the hardware for
a mobile computing environment. For instance, the small size of a mobile computing
environment requires an alternate interface for user Input/Output (user IO) like speech
recognition compared to classic user IO of static computers. [Sat10, TAY10]

A mobile end user of a mobile computing environment collects, processes, stores,
accesses, and spreads information anywhere and anytime via a communication network,
avoiding the spatial and temporal constraint from static computers like a desktop
computer. This (spatial and temporal) flexibility enables the vision of “information at
your fingertips anywhere, anytime” [Sat10], driving academic researchers and industrial
pioneers in the past, present, and future. To perform anywhere at anytime a task like
spreading information via a mobile computing environment, a corresponding device
is a condensed modification of multipurpose computers, where a battery powers the
downgraded hardware of a mobile device. Owing to the mobility, a mobile device
communicates via a wireless communication link at a low bandwidth and high latency
compared to a wired communication link of a static computer. [Sat10, TAY10]

The availability of computation and connectivity irrespective of time and place
quickly raised the popularity and importance of devices from mobile computing in
today’s mobile systems of networked computing. Furthermore, sensing, communicat-
ing, and computing capabilities of devices from mobile computing like wireless sensors,
Personal Digital Assistants (PDAs), cellular phones, laptops, and many others are
nowadays seamlessly integrated into the world of everyday life. Being not distinguish-
able from physical objects in the world, people accomplish nowadays ordinary tasks
by unconsciously using ubiquitous computers – e.g., compare Weiser’s seminal paper
[Wei99] on the vision of ubiquitous computing. [Sat10, TAY10]

2.1.2. Architecture

The typical architecture in mobile computing is a hierarchy with two tiers, where a
transient infrastructure consists of a “client” (first tier) and a “server” (second tier) –
the classic model of client-server. To indicate the presence of resources from multiple

44

2.1. Mobile Computing

servers, nowadays “cloud” is also a name for the second tier (cf. Section 2.3). The first
tier, a client, of the two-tier hierarchy corresponds to a mobile computing environment
described above, limited by the mobility concerns like downgraded hardware or limited
battery life. The second tier, a server or the cloud, of the two-tier hierarchy corresponds
to a well-managed, stationary environment, being free of mobility concerns. This
classic model of client-server or client-cloud exists from the very beginning of mobile
computing. Nowadays, future architectures extend this two-tier hierarchy for mobile
computing with one or more interlayers between a client and a server (cf. Section 2.4).
For instance, Satyanarayanan et al. [SBCD09] propose an intermediate layer called
“cloudlet” as a remote resource at, for instance, a Wi-Fi access point. Compared
to resources in a distant cloud, it provides a lower latency and higher bandwidth of a
network link, offering its resources for processing and storage to nearby devices. [Sat10]

2.1.3. Limitations

The mobility of mobile computing – not being spatial and temporal constraint – is also
responsible for its intrinsic limitations, where technological issues are not bearing the
blame. Due to the mobility of a device from mobile computing, it has poor, vulnera-
ble, and variable resources compared to static resources from multipurpose computers
or the cloud. The device’s mobility defines its acceptable weight and compact size,
also affecting the performance from sensing, communicating, and computing resources
like processor speed or memory size. Additionally, end users always want to have a
smaller, lighter, faster, longer-running mobile device. Despite past or future progress
and improvement to mobile devices in absolute ability1, performance on mobile devices
were, are, and will be always a compromise, making a mobile device resource-poor in
relation to static resources. Especially as a limited source of energy primarily powers
the hardware and software of a mobile device2, where the battery technology evolves
and improves at a slow pace. Thus, energy concerns accompany the flexibility of mo-
bile computing, limiting its usage to the charge cycles of the limited source of energy.
Associated with the mobility of a device, the mobile device itself and the communica-
tion from or to a mobile device via a wireless link are exposed to a higher danger for
loss, damage, or attack in relation to static resources, for instance, locked in the office
and communicating via a wired link. The quality of a wireless link – especially while

1For instance, the iPhone (1st generation) executes applications on a Samsung 32-bit RISC ARM
processor running at 620MHz with a 128MB memory. The Samsung Galaxy S7 executes appli-
cations on the Samsung Exynos 8 Octa 8890 System-on-a-Chip (SoC) with a big.LITLE 64-bit
architecture of eight cores (maximum frequency: 2.6GHz) and 4GB memory. [Sam16]

2The iPhone (1st generation) has a battery capacity of 1400mAh, whereas the Samsung Galaxy S7
has a battery capacity of 3000mAh.

45

2. Background

on the move – is also highly variable in relation to static resources. For instance, a
Wi-Fi network within a building provides a reliable, high-bandwidth and low-latency
connection, whereas a cellular network provides an unreliable, low-bandwidth and high-
latency connection, suffering under transient outages. [Sat96]

2.2. Wireless Network

To provide information anywhere at anytime for ubiquitous computing, communicating
via a wireless link with other mobile or static devices in an intranet or the Internet is
a key characteristic of mobile computing. As a result, properties like coverage, data
rates, or latency from a wireless link of a communication network impact significantly
the performance of mobile computing and thus, its acceptance. Due to the rapid
improvements3 and vast number of different technologies available in mobile comput-
ing for a wireless communication network, this section gives a brief overview on the
network technologies utilized in this dissertation. In detail, this dissertation utilizes
Wireless Fidelity networks described in Subsection 2.2.1, cellular networks described
in Subsection 2.2.2, and Bluetooth networks described in Subsection 2.2.3.

2.2.1. Wireless Fidelity Network

Wireless Fidelity (Wi-Fi) is a brand name for a family of standards that implements
a Wireless Local Area Network (WLAN) communication. It specifies techniques for
Media Access Control (MAC) and physical layer, administrated by the Institute of
Electrical and Electronics Engineers (IEEE) LAN/MAN Standards Committee (IEEE
802) in IEEE 802.11. IEEE 802.11 is a mobile communication network via a wireless
link. It connects two or more mobile devices – also with the wider Internet – in a
limited area like a building, where an end user can walk around and stay connected
as long as being in the local coverage of a Wi-Fi Access Point (AP). Typically, the
coverage of a Wi-Fi AP depends on different properties like radio frequency, output
power, or receiver sensitivity. IEEE released the first version of IEEE 802.11 in the
year 1997, improved and extended by multiple amendments over the years (cf. [Soc12]).
The following paragraphs describe the amendments utilized in this dissertation.

802.11-1997: In the year 1997, IEEE released the standard 802.11-1997 that pro-
vides a raw data rate of 1Mbit/s or 2Mbit/s with a local coverage of approximately

3For a cellular link, the iPhone (1st generation) offers a peak data rate of 220 kbit/s [Inf07c], whereas
the Samsung Galaxy S7 offers a peak data rate of 150Mbit/s (uplink) and of 600Mbit/s (downlink)
with a latency less than 10ms owing to LTE-Advanced [NK16, Sam16].

46

2.2. Wireless Network

20m indoor and 100m outdoor. It transmits signals either via infrared or in the ISM4

frequency band of 2.4GHz – like other network technologies as Bluetooth (cf. Subsec-
tion 2.2.3) causing interference – with a frequency bandwidth of 22MHz. [Soc12]

802.11b: In the year 1999, IEEE released the standard 802.11b that extends the
modulation method of 802.11-1997. It increases the raw data rate to up to 11Mbit/s
with a local coverage of approximately 35m indoor and 140m outdoor. [Soc12]

802.11a: In the year 1999, IEEE also released the standard 802.11a that utilizes the
same protocols on the data link layer (Layer 25) and frame format as 802.11-1997, but
changes the modulation technique on the physical layer (Layer 15). It operates in the
relatively unused frequency band of 5.8GHz with a bandwidth of 20MHz, enabling
raw data rates of up to 54Mbit/s. Due to the higher carrier frequency, a solid object
like a wall absorbs the signal strongly. As a result, it lowers the data rates and local
coverage, being approximately 35m indoor and 120m outdoor. [Soc12]

802.11g: In the year 2003, IEEE released the standard 802.11g that improves the
modulation technique of 802.11b (2.4GHz), enabling a raw data rate of up to 54Mbit/s
and a local coverage of approximately 38m indoor and 140m outdoor. [Soc12]

802.11n: In the year 2009, IEEE released the standard 802.11n that enhances the
previous standards of 802.11a and 802.11g with the extensions of frame aggregation
on the data link layer, 4x4 Multiple Input Multiple Output (MIMO) transmission on
the physical layer, and security improvements. It operates in both frequency bands of
2.4GHz or 5.8GHz with a bandwidth of 20MHz or 40MHz. The maximum raw data
rates with a frequency bandwidth of 40MHz is 600Mbit/s with a local coverage for
both frequency bands of approximately 70m indoor and 250m outdoor. [Soc12]

2.2.2. Cellular Network

A cellular network provides a wireless link for mobile devices, usually available within
a huge range provided by (commercial) cell towers. Developed in the early 1980s, the
first cellular network only transmitted analog signals for voice calls, whereas nowadays
it supports IP6-based connectivity with a high bandwidth, low latency, and extensive

4Industrial, Scientific and Medical (ISM)
5Corresponding to the model from International Organization for Standardization (ISO)/Open Sys-
tems Interconnection (OSI)

6Internet Protocol (IP)

47

2. Background

coverage. Thus, communication ubiquity for mobile computing comes nowadays true,
being available anywhere and anytime. The following paragraphs give a brief overview
for the evolution of cellular networks utilized in this dissertation.

First Generation: The 1st generation (1G) of cellular network is only an analog sys-
tem for voice services to cellular phones, where the underlying architecture is a circuit-
switched network. In detail, Bell Labs developed the system standard of Advanced Mo-
bile Phone Service (AMPS) for analog mobile cellular phones [Ehr79, You79] – deployed
in the year 1983. In the spectrum range of 869 - 894MHz, cell sites transmit voice to
mobiles (forward channel), whereas in the spectrum range of 824 - 849MHz mobiles
transmit voice to cell sites (reverse channel) [Com81]. The main limitations are its low
data rates of about 2 kbit/s and limited services. [PSMM04, Akh09, KS11, KSK14]

Second Generation: The 2nd generation (2G) of cellular network introduces the
wireless technology of Global Systems for Mobile Communications (GSM) in the year
1991, still used today in many countries all over the world. The main focus of GSM was
the transmission of voice and data with digital signals – still based on a circuit-switched
architecture. It provides higher spectrum efficiency, better data services, and a seamless
roaming in different countries compared to 1G. In detail, next generations of cellular
network are only an evolution to the architecture of GSM. GSM – more precisely P-
GSM – technically uses the frequency band of 890-915MHz for the reverse channel and
of 935-960MHz for the forward channel. Each channel is segmented into 124 carrier
frequencies of 200 kHz and each carrier frequency is further fragmented into eight time
slots. As a result, GSM enables eight voice or data calls at the same time, increasing
the capacity of the network. The data rate for each channel increased to 9.6 kbit/s –
and with an improved channel encoding to 14.4 kbit/s. The main limitations of 2G are
a lack of security and its low data rate for web browsing. [PSMM04, Akh09, KSK14]

The 2.5th generation introduces different techniques like High Speed Circuit Switched
Data (HSCSD) or General Packet Radio Services (GPRS) in the year 1995. HSCSD
enhances circuit-switched data by improving the encoding methods and aggregating
multiple time slots for data transmission. Theoretically, the data rate increases to
115.2 kbit/s with eight combined channels. By providing circuit-switched data and
packet-switched data, GPRS enables simultaneously a phone call and data transmis-
sion, further increasing the data rate to theoretically 171.2 kbit/s.

The 2.75th generation changes the modulation scheme in the year 1999, called En-
hanced Data rates for Global Evolution (EDGE)7. It further increases the data rates per

7The original name was Enhanced Data rates for GSM Evolution

48

2.2. Wireless Network

time slot with an unchanged baud rate (sending more bits per symbol) to 59.2 kbit/s.
Realistically, a mobile phone gets maximally four time slots for the downlink and two
time slots for the uplink, resulting in 263.8 kbit/s and 118.4 kbit/s, respectively.

Third Generation: The 3rd generation (3G) of cellular network divides the core net-
work into a circuit-switched part and packet-switched part in the year 2000. It enables
IP-based services, higher data rates, increased system capacity, and worldwide roam-
ing. 3G is a set of international-accepted standards, where ITU8 defined the require-
ments of 3G in IMT-20009. The 3GPP10 organization developed Universal Terrestrial
Mobile System (UMTS) as a European variant. It utilizes the frequency bands of
800/900MHz, 1.7 - 1.9GHz, and 2.5 - 2.69GHz with a carrier frequency per channel
of 5MHz. UMTS achieves a data rate of 144 kbit/s in rural regions, 384 kbit/s in subur-
ban regions, and 2Mbit/s in low range outdoor. The main limitations of 3G are its still
lower data rates compared to Wi-Fi at this time (cf. Subsection 2.2.1), high latency
of at least 30ms, high complexity of the terminals, and high cost of the infrastructure.
[DA97, ITU97, PSMM04, Akh09, KSK14]
The 3.5th generation improves 3G with lower latency, higher data rates, and extended

capacity by applying the protocols High-Speed Downlink Packet Access (HSDPA) and
High-Speed Uplink Packet Access (HSUPA) combined in High-Speed Packet Access
(HSPA). The key features are, for instance, shared channel and multi-code transmis-
sion, higher-order modulation, and fast link adaptation and scheduling. The maximum
channel rate for HSDPA is 14.4Mbit/s and for HSUPA 5.8Mbit/s. HSPA evolution
(HSPA+) further increases the data rates to 21Mbit/s for the downlink and 11Mbit/s
for the uplink. The subsequent improvements like a combination of higher order mod-
ulation with spatial multiplexing enable a theoretical peak data rate for the downlink
of 672Mbit/s and for the uplink of 168Mbit/s. [fG00]

2.2.3. Bluetooth Network

Bluetooth is a packet-based protocol that implements a Wireless Personal Area Net-
work (WPAN) communication with a master-slave structure over a short range based
on low-power consumption, invented by Ericsson in the year 1994. The Bluetooth Spe-
cial Interest Group specifies nowadays the Bluetooth standards, where IEEE specified
a Bluetooth standard in IEEE 802.15.1, not maintaining it anymore. Bluetooth trans-
mits signals in the ISM frequency band of 2.4GHz with a bandwidth of 1MHz. The

8International Telecommunication Union (ITU)
9International Mobile Telecommunications-2000 (IMT-2000)

103rd Generation Partnership Project (3GPP)

49

2. Background

range of a Bluetooth communication depends on a power-class, where Class 1 has a
maximum permitted power of 100mW and a typical range of 100m, Class 2 of 2.5mW
and 10m, Class 3 of 1mW and 1m, and Class 4 of 0.5mW and 0.5m.

Bluetooth 1: The Bluetooth versions 1.0, 1.111, and 1.211 improve step-wise the
new standard by fixing errors and introducing, for instance, non-encrypted channels or
faster discovery and connection, having a raw data rate of up to 1Mbit/s. [Soc05]

Bluetooth 2: The Bluetooth versions 2.0 released in the year 2004 and 2.1 released
in the year 2007 introduce further improvements like Secure Simple Pairing and utilizes
a combined modulation, enabling raw data rates of up to 3Mbit/s.

Bluetooth 3: The Bluetooth version 3.0 released in the year 2009 has the main key
feature of Alternative MAC/PHY. It enables raw data rates of up to 24Mbit/s, where
the Bluetooth radio discovers a device and initiates a connection and a parallel 802.11

radio transports the data at a high speed.

2.3. Cloud Computing

The rise of cloud computing started in the early 2000s, where, for instance, Amazon
announced its Elastic Compute Cloud in the year 2006 [Ama06]. Four years later,
Microsoft also announced the general availability of its cloud computing platform,
called Azure [Hau10]. In the late 2000s, cloud computing experienced a further in-
crease, mainly based on the availability of high-capacity networks, low-cost devices,
virtualization techniques, and service-oriented architectures. The National Institute of
Standards and Technology (NIST) defines cloud computing as a model that offers to
end-users ”. . . on-demand network access to a shared pool of configurable computing
resources [. . .] rapidly provisioned and released . . . ” [BGPCV12], where configurable
resources include resources like storage, processing, or network. To this end, Subsec-
tion 2.3.1 outlines the essential characteristics, Subsection 2.3.2 the different service
models, and Subsection 2.3.3 the different deployment models of cloud computing.

2.3.1. Essential Characteristics

Following the definition from NIST, an end user utilizes cloud computing as an on-
demand self-service, where he or she autonomously allocates and releases resources
11IEEE specified version 1.1 as IEEE 802.15.1-2002 and version 1.2 as IEEE 802.15.1-2005

50

2.3. Cloud Computing

from a shared pool of configurable resources without an intervention from the cloud
provider. An end user allocates and releases capabilities from a cloud provider via a
network access, utilizing its client platform like a mobile phone or workstation. A cloud
provider uses a multi-tenant model and pools its computing resources with dynamic
re-/assignment of physical and virtual resources to serve the demands from multiple
end users. Typically, an end user does not know the exact location of its allocated
resources (location independence), defining only the resource’s location at a higher
level of abstraction like a region. An allocation and release of resources from a cloud
provider take place rapidly and elastically, scaling automatically up and down based on
the user demand. For an end user, available resources seem to be virtually unlimited,
provided in any quantity at any time. A system of cloud computing automatically
controls, meters, and optimizes the usage of its resources, providing transparency to
its provider and to end users. A cloud provider typically charges fees for utilized
resources based on a “pay-as-you-go” model. [AFG+10, BGPCV12]

2.3.2. Service Models

Cloud computing offers different service models, where common service models are
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a
Service (SaaS), increasing step-wise the level of abstraction. The service model IaaS
provides to an end user the “plain” resource like processing, storage, or network. An end
user can run arbitrary software on the resources like an operating system on a processing
resource. To this end, an end user has the highest flexibility on the total software stack
associated with the responsibility to manage the total software stack. The service model
PaaS provides to an end user the ability to deploy software onto the infrastructure from
cloud computing, where a cloud provider supports a set of programming languages
and tools. To this end, an end user does not manage the software stack provided
for software development but controls the environment for deployment as well as the
deployed software. Last, the service model SaaS provides to an end user the utilization
of applications supported by a cloud provider, where the supported applications are
accessible from various interfaces like a Web browser. To this end, an end user does
not manage the total software stack required to execute an application and just utilizes
an application as and when required. [AFG+10, BGPCV12]

2.3.3. Deployment Models

Cloud computing offers different deployment models, where common deployment mod-
els are a private cloud, a community cloud, a public cloud, and a hybrid cloud. The

51

2. Background

deployment model of a private cloud provides an infrastructure exclusively used by
a single organization, where an organization, a third-party, or a combination owns,
operates, manages, and/or hosts the cloud infrastructure internally or externally. The
deployment model of a community cloud provides an infrastructure exclusively used
by a specific community from organizations – e.g., sharing a common concern, where
one or more organization(s) from a community, a third party, or a combination owns,
operates, manages, and/or hosts the cloud infrastructure internally or externally. The
deployment model of a public cloud provides an infrastructure for the general public,
where a company owns, operates, manages, and hosts the cloud infrastructure inter-
nally. The deployment model of a hybrid cloud bounds together two or more different
infrastructures from a private cloud, community cloud, and/or public cloud that remain
unique but provide portability. [AFG+10, BGPCV12]

2.4. Technological Trends

Technological trends like Big Data, Internet of Things (IoT), or Cyber-Physical System
(CPS) pave the way for powerful computing resources at the edge of a network, to
rapidly manage and process a large amount of data. For instance, computing resources
from cloud computing (cf. Section 2.3) reside in distant data centers at a few location
all over the world, being too far-away for related applications.

Commonly, the four dimensions of volume, velocity, variety, and veracity distinguish
solutions for Big Data from conventional IT. Big Data has to manage, process, and
validate (veracity) rapidly (velocity) a large amount (volume) of structured and un-
structured data (variety). Jewell et al. characterize in [JBD+14] solutions for Big Data
as a real-time complex processing. Thus, the utilization of computing resources at a
distant data center from cloud computing is not always preferable, requiring in-network
computing resources where data arises. [Cen12, JBD+14]

IoT includes a wide variety of physical objects from everyday life, integrating the
physical world into computer-assisted systems. Augmented by sensors, actuators, and
connectivity, an everyday object becomes a so-called “smart object” that autonomously
collects, exchanges, and retrieves data with other smart objects and the Internet. This
advanced interconnection improves the efficiency, accuracy, and economic benefit from
everyday objects, generating a large amount of data at an exponential rate. This gen-
eration of a large amount of data introduces new challenges like the demand of very low
end-to-end latency and very high network bandwidth. Thus, it requires distant com-
puting resources from cloud computing together with in-network computing resources
where data arises. [BLMN13, AFGM+15, CZ16]

52

2.5. Mobile Cloud Computing

With the embedding of sensing, communicating, and processing capabilities to ev-
eryday objects in the physical world, CPS bridges the cyber-world with the physical
world by monitoring and controlling the physical world with a computer-assisted sys-
tem. A CPS influences the interaction and control of the physical world by humans,
coupling embedded real-time systems of distributed sensors and actuators with con-
trols. Thus, it requires the distant computing resources from cloud computing together
with in-network computing resources. [RLSS10, KM15]
Regarding the technological trends of Big Data, IoT, and CPS, the requirement for

closer computing resources at the edge of a network is omnipresent. For instance, fog
computing offers powerful computing resources like processing or storage at the edge
of a network [BMZA12]. It rapidly processes data where it arises due to its location in
the near proximity to end devices and its dense geographical distribution. Compared
to distant computing resources from cloud computing (cf. Section 2.3), fog computing
connects an end device with its in-network resources via a link with a higher bandwidth
and a lower latency. [BMZA12, VRM14, YLL15]

2.5. Mobile Cloud Computing

Mobile Cloud Computing (MCC) integrates the powerful computing resources from
cloud computing (cf. Section 2.3) into the environment of mobile computing (cf.
Section 2.1) via wireless networks (cf. Section 2.2) to overcome the limitations of
a (resource-poor) mobile device (cf. Subsection 2.1.3). The service of code offloading
from MCC is a potential technique that augments (resource-poor) devices from mo-
bile computing with powerful, remote resources from cloud computing. The idea of
code offloading is to execute resource-intensive parts from an application on a power-
ful, remote resource on behalf of a mobile device. The related benefits for a mobile
device are shorter execution times and lower energy consumption for an application
execution, paying a monetary cost for the utilization of the remote resource. To this
end, Subsection 2.5.1 gives a brief overview of code offloading within MCC before
Subsection 2.5.2 characterizes its typical architectures of two tiers and multiple tiers.
Afterwards, Subsection 2.5.3 discusses requirements to a framework for code offloading
before Subsection 2.5.4 outlines related challenges.

2.5.1. Overview

The driving force behind an offloading of code from a mobile device to a powerful,
remote resource is the resource poverty of mobile devices. The hardware of a mobile

53

2. Background

Figure 2.1.: A typical two-tier architecture from Mobile Cloud Computing, where
a smart phone communicates via the Internet with the cloud.

device is unavoidably resource-poor in relation to static workstations or server instances
(cf. Subsection 2.1.3). Cloud services offer on-demand computing resources with a high
performance, availability (24/7), scalability, elasticity, and accessibility (anywhere at
anytime) at a low cost (cf. Section 2.3). By offloading computation from a resource-
poor device to remote resources, the advantages for a mobile device are, for instance,
a reduced consumption of power increasing its battery life. However, the mobility
in mobile computing blurs the classic model of client-server (cf. Subsection 2.1.2),
where, for instance, a client statically executes predefined parts of an application on
a well-known remote server based on Remote Procedure Calls (RPCs). Due to the
mobility in mobile computing, the current situation on a client about user, device,
application, network, and environment changes constantly. Thus, a client requires
a more dynamic system for a distributed execution of application parts. Dependent
on information from the current situation, the system should adaptively react and
reassign application parts during the execution to the local resources of the client and
to a remote resource like a server instance at a nearby fog or a distant cloud to fit
the current situation. Especially, uncertain connectivity from a wireless network like
a cellular network (cf. Subsection 2.2.2) requires high adaptation, reacting rapidly on
its high-varying performance and reliability. [Sat96, Sat10, TAY10]

2.5.2. Architectures

In general, code offloading supports manifold architectures, where the most popular
architecture consists of two tiers (cf. Figure 2.1): A mobile device (first tier) and the
cloud (second tier). Categorized by the number of tiers within the architecture, this
kind of architecture is called a two-tier architecture. Beside a two-tier architecture,
there are also multiple tiers possible in today’s MCC (cf. Figure 2.2), where multiple
tiers surround a mobile device and participate in code offloading like smart wearable

54

2.5. Mobile Cloud Computing

Figure 2.2.: A multi-tier architecture from Mobile Cloud Computing,
where multiple resources like smart wearables, smart phones,
. . . , and server instances at the cloud surround a smart phone,
communicating via different networks with each other.

(first tier), smart phone (second tier), . . . , and the cloud (last tier). As a result, this
kind of architecture is called a multi-tier architecture.

Two-tier Architecture: Figure 2.1 shows the most popular architecture with two
tiers from Mobile Cloud Computing. It consists of a mobile device like a smart phone
(first tier), wireless and fixed networks, and remote resources like server instances at
the cloud (second tier). In detail, a mobile device communicates via a wireless network
with the Internet and thus, with remote resources located in a data center at the cloud.
A wireless network is either a Wi-Fi network or a cellular network from a network
provider that peers its wireless network with the Internet at Internet exchange nodes
like the DE-CIX in Frankfurt12, providing connectivity to the infrastructures of cloud
providers. The network within the Internet and to the cloud infrastructures is typically
a fixed network, providing high bandwidth, low latency, and high reliability.

12https://www.de-cix.net/en/locations/germany/frankfurt

55

https://www.de-cix.net/en/locations/germany/frankfurt

2. Background

Multi-tier Architecture: Figure 2.2 shows an architecture with multiple tiers from
Mobile Cloud Computing. It consists of multiple classes of highly distributed heteroge-
neous resources like smart wearables, smart phones, tablets, smart cars, workstations,
server instances at the fog, and server instances at the cloud. In detail, different kind
of (mobile and fixed) networks like a Bluetooth network, a Wi-Fi network, a cellular
network, or the Internet connect the multiple resources with each other. Thus, mul-
tiple resources surround a mobile device like a smart phone, differing significantly in
terms of capabilities like energy, computation, and communication. The capabilities
from the multiple resources increase typically from very limited (cf. smart wearable)
to virtually unlimited (cf. server instances at the cloud). An exemplary scenario for
an architecture with multiple tiers consists of a smart watch that a Bluetooth link
connects to a smart phone. The smart phone again communicates via a Wi-Fi link to
a resource on a smart car that provides connectivity via a 3G mobile communication
to an in-network server at the edge of the network. The 3G mobile communication
also provides connectivity to a server instance at the cloud, where the network from
the peering node to the cloud is a fixed network.

2.5.3. Framework

To provide code offloading for an architecture with two or multiple tiers, participating
resources like the mobile device and the remote resource require an efficient framework
that enables a dynamic distribution of application parts.

For the mobile device, a framework has to answer the following Five Ws and one
H: What does it offload, who does the offloading, when does the offloading happen,
where does it offload to, why does it offload, and how to offload. The question what
does it offload defines the type of an application part like a thread or a method. The
question who does the offloading defines the layer within the software stack of a mobile
device that is responsible for the offloading like at application layer, at run-time layer,
or at system layer. The question when does the offloading happen defines the point
in time of the decision making like at development-time or at run-time. The question
where does it offload to defines the number of remote resources that are available for
code offloading like resources at the cloud, the fog, and/or further resources from smart
devices. The question why does it offload defines the decision problem of code offloading
like increasing energy efficiency and/or execution speed and/or decreasing monetary
cost. The question how to offload defines the behavior of a mobile device during code
offloading like an execution of a mechanism to handle failures.

For the remote resource, a framework has to answer the following Five Ws and one H:

56

2.5. Mobile Cloud Computing

What does it execute, who does the execution, when does the execution happen, where
does it execute on, why does it execute, and how to execute. The question what does
it execute defines the software stack on a remote resource like a virtualization environ-
ment, a mobile operating system, or a lightweight runtime environment. The question
who does the execution defines the re-distribution from a remote resource to another
remote resource or to the client due to, for instance, a long-lasting disconnection. The
question when does the execution happen defines the point in time of the start for
an execution on a remote resource like for an execution of time-uncritical parts. The
question where does it execute on defines the number of remote executions for code
offloading like a parallel execution of an application part. The question why does it
execute defines the monetary cost charged for an execution on a remote resource like a
“pay-as-you-go” model from cloud computing. The question how to execute defines the
performance of a remote resource like the different kind of virtual machines offered in
today’s cloud computing.

2.5.4. Challenges

Combining the two different fields of mobile computing and cloud computing, code
offloading from MCC faces a number of challenges for a distribution of application
parts between a mobile device and a remote resource. Due to the resource poverty of
a mobile device like a smart phone, code offloading should sparingly use resources like
the limited resources of a mobile device, keeping the overhead introduced to the system
low. For instance, a resource-efficient monitoring of information related to the current
situation is essential for an effective distribution of an application. Due to an uncertain
connectivity of a wireless network like high-varying bandwidth, latency, and reliability,
code offloading should provide a seamless connectivity to remote resources, handling
dynamically network failures like disconnections. Regarding the low bandwidth and
high latency of a Wide Area Network (WAN) link compared to, for instance, a Wi-
Fi link, code offloading should utilize computing resources not only from distant data
centers at the cloud but also from nearby in-network data centers at the fog. Even more,
code offloading should also utilize closer computing resources from static workstations
or smart devices like a smart car. Due to the advantages from cloud computing or
fog computing like elasticity and scalability, code offloading should adapt dynamically
the usage of computing resources at the cloud or at the fog to current workload by
an adaptive provisioning and de-provisioning of computing resources. Moreover, code
offloading should also turn its attention to challenges inherited from cloud computing
and fog computing like challenges related to trust, security, or privacy, because a remote

57

2. Background

execution of application parts from an end user can contain user-related information.
Summarizing, a resource-efficient situation-aware system for code offloading is essential
to face the outlined challenges.

2.6. Summary

Mobile computing described in Section 2.1 provides a portable environment that pos-
sesses capabilities for sensing, processing, and communicating of data, where a trans-
mission of data happens via a wireless link. A mobile computing environment enables
its end user to have information at its fingertips, anywhere at anytime, accessing data
in the Internet mainly on the classic architecture of client-server. The issue of “mo-
bility” in mobile computing, however, also limits the usage of a mobile computing
environment, restricted by its lower performance like the limited battery life or the
varying wireless connectivity compared to a static workstation. To weaken the limi-
tations of a mobile computing environment, steady improvements to its hardware and
communication like the underlying technology of a mobile wireless network increased
its performance significantly. The current versions of wireless networks described in
Section 2.2 provide a wireless link from a Wi-Fi network, a cellular network, or a Blue-
tooth network with a high performance like a high bandwidth, a low latency, a high
reliability, and a high coverage, enabling the communication ubiquity. Based on this
communication ubiquity, a mobile computing environment utilizes the field of cloud
computing described in Section 2.3 that provides powerful services in infrastructures
at a few locations all over the world. The essential characteristics of cloud computing
are an on-demand provisioning of powerful, virtually unlimited computing resources
like processing or storage, automatically charged in a “pay-as-you-go” manner. The
utilization of computing resources from cloud computing happens typically based on
different service models like IaaS, PaaS, and SaaS and deployment models like private
cloud, community cloud, public cloud, or hybrid cloud. Beside computing resources
in a distant cloud infrastructure, technological trends like Big Data, IoT, and CPS de-
scribed in Section 2.4 moved the distant cloud closer to end terminals, offering nearby
computing resources at the edge of a network like fog computing. The integration of
cloud computing – and, for instance, fog computing – into mobile computing created
the field of mobile cloud computing described in Section 2.5, providing new areas of
application like code offloading. Code offloading augments a resource-poor device from
mobile computing with powerful, remote resources at the fog or at the cloud. It dy-
namically executes resource-intensive parts from an application on remote resources
dependent on the current situation of the user, device, application, network, and envi-

58

2.6. Summary

ronment. Due to the vast number of available resources for code offloading in today’s
landscape of MCC, different architectures are common like a two-tier architecture or a
multi-tier architecture. To this end, a related framework for code offloading between
two or multiple tiers arises a number of challenges like resource efficiency or situation
awareness, requiring a resource-efficient situation-aware system to offload code.

59

Chapter 3
System Overview

This chapter presents code offloading in the landscape of Mobile Cloud Computing.
In general, code offloading augments a (resource-poor) mobile device with (powerful)
remote resources by executing (resource-intensive) parts of an application remotely. To
this end, Section 3.1 describes the underlying system model for code offloading with
multiple tiers before Section 3.2 outlines the general problem statement to be solved for
offloading code. Based on the system model and the problem statement, Section 3.3
outlines the system components involved in code offloading, including an offloading
client, an offloading service, and a communication network. As each system component
can fail at any point in time, Section 3.4 describes the underlying failure model for this
dissertation and Section 3.5 the key requirements for an offloading system. Finally,
Section 3.6 summarizes the main facts of code offloading presented in this chapter.

3.1. System Model

Today’s landscape of Mobile Cloud Computing comprises multiple classes of highly
distributed heterogeneous resources that differ in performance characteristics and cost
implications (cf. Subsection 2.5.2 and especially Figure 2.2). To this end, this disserta-
tion formulates a general system model for code offloading based on multiple resources
(multi-tier architecture). The general system model for a multi-tier architecture also
includes the system model for the classic two-tier architecture presented in Subsec-
tion 2.5.2. The general system model is as follows:

Multiple highly distributed heterogeneous resources are available for code offloading,
where each resource Ξ(ξ) with ξ = 0, 1, . . . , nξ − 1 is capable of executing portable
code (p-code) with the help of a runtime environment. The performance characteristic
P

Ξ(ξ)
ppwr is the processing power of a resource Ξ(ξ), indicating how many p-code (e.g.,

instructions) the resource executes per second.

Utilizing other resources, the performance characteristics EΞ(ξl)
send , E

Ξ(ξl)
wait , E

Ξ(ξl)
recv , and

E
Ξ(ξl)
exec for a resource Ξ(ξl) are energy factors of sending bytes, waiting in idle mode,

61

3. System Overview

receiving bytes, and executing p-code, indicating how much energy the operation con-
sumes per second. Providing its computing power to other resources, the cost impli-
cation C

Ξ(ξr)
exec for a resource Ξ(ξr) is the monetary cost of a resource, indicating how

much monetary cost a resource charges per executed p-code.

A resource Ξ(ξl) and a resource Ξ(ξr) communicate with each other via a bidirectional
link Λ(ξl; ξr). For a link Λ(ξl; ξr), the performance characteristics BΛ(ξl;ξr)

up and BΛ(ξl;ξr)
down

are the up and down bandwidth of a link, indicating how many bytes a link transmits
per second. The performance characteristics LΛ(ξl;ξr)

up and LΛ(ξl;ξr)
down are the up and down

latency of a link, indicating the network delay of a link in seconds. The cost implications
C

Λ(ξl;ξr)
send and CΛ(ξl;ξr)

recv are the monetary cost of a link for sending and receiving bytes,
indicating how much monetary cost a link charges per sent or received byte.

A mobile application A consists of application parts Aα with α = 0, 1, . . . , nα−1 like
methods. To offload an application part Aα from a resource Ξ(ξl) to a resource Ξ(ξr),
the execution of the application part Aα must only rely on the processing power of
resources, not accessing further capabilities from a resource like a local sensor. Thus,
the application parts Aα consist of application parts Aαo that can be offloaded (“of-
floadable”) and application parts Aαl that must be executed locally.

Each application part Aα comprises an input execution state Istate(Aα) like method
parameters, portable code Ppcode(Aα) like method instructions, and an output execu-
tion state Ostate(Aα) like the return value of the method. An execution of Ppcode(Aα)

only depends on Istate(Aα) and transforms Istate(Aα) into Ostate(Aα). The load metric
P exe
pcode(Istate(Aα), Ppcode(Aα)) indicates the number and kind of p-code a resource Ξ(ξ)

has to actually execute from Ppcode(Aα) for an execution. Furthermore, the load met-
rics Isizestate(Aα) and Osize

state(Aα) indicates the total number of bytes for an input execution
state Istate(Aα) and an output execution state Ostate(Aα), respectively.

3.2. Problem Statement

The call graph G(V,E) of an application A represents the call stack of the application
parts Aα (cf. Figure 3.1). Each vertex Aαv ∈ V represents an application part and each
edge e(Aαu , Aαv) ∈ E with Aαu , Aαv ∈ V represents an invocation of the application
part Aαv from the application part Aαu . A resource Ξ(ξl) executes an application A by
invoking its application parts Aα and determines the optimal resource within Ξ(ξ) for
an application part Aαo ∈ V that is offloadable by minimizing the cost function fw:

min
ξ
fw(Aαo ,Ξ(ξ)) (3.1)

62

3.2. Problem Statement

Start
of

application
A

Aαt

Aαu

Aαv

Aαx

Aαy

Aαz

E
nd

of
ap
pl
ic
at
io
n
A

e(
Aα

u
, A

α t
)

e(A
α
u , A

α
v)

e(Aαt , Aαy)

e(
A
α
t
,A

α
v
)

e(Aαv , Aαz)

e(Aαy , Aαx)

e(A
α
x , A

α
t)

e(Aαx , Aαz)

Figure 3.1.: An exemplary call graph G(V,E) for an application A, where the set V of
vertexes contains the application parts Aα of an application A and the set
E of edges contains the invocations of the application parts.

where the cost function fw is the weighted sum of the execution time T , the energy
consumption E, and the monetary cost C of the application part Aαo :

fw(Aαo ,Ξ(ξ)) = wt ·T (Aαo ,Ξ(ξ)) + we ·E(Aαo ,Ξ(ξ)) + wc ·C(Aαo ,Ξ(ξ))

with the weight wt for the execution time T , the weight we for the energy consumption
E, and the weight wc for the monetary cost C. Utilizing a weighted sum for the cost
function fw, an end user or an offloading system can specify its current preference
of the execution time, energy consumption, and monetary cost. For instance, if a
mobile device is plugged in, an offloading system sets automatically the weight we to
0, neglecting temporarily the energy consumption of the mobile device and benefiting
from shorter execution times through code offloading.

The execution time T (Aαo ,Ξ(ξ)) depends on the resource Ξ(ξ) that executes the
application part Aαo . In case of a local execution of the application part Aαo on the
resource Ξ(ξl), the execution time T (Aαo ,Ξ(ξ)) with Ξ(ξ) = Ξ(ξl) evaluates to:

T (Aαo ,Ξ(ξ)) = Tlocal(Aαo ,Ξ(ξl)) =
P exe
pcode(Istate(Aα), Ppcode(Aα))

Pppwr(Ξ(ξl))

In case of a remote execution of the application part Aαo on the resource Ξ(ξr), the

63

3. System Overview

execution time T (Aαo ,Ξ(ξ)) with Ξ(ξ) = Ξ(ξr) 6= Ξ(ξl) sums up the execution time
Tsend(Aαo ,Ξ(ξr)) of sending the input execution state Istate(Aαo) to the resource Ξ(ξr),
Twait(Aαo ,Ξ(ξr)) of waiting in idle mode until the resource Ξ(ξr) executed the p-code
P exe
pcode(Istate(Aαo), Ppcode(Aαo)), and Trecv(Aαo ,Ξ(ξr)) of receiving the output execution

state Ostate(Aαo) from the resource Ξ(ξr):

T (Aαo ,Ξ(ξ)) = Tremote(Aαo ,Ξ(ξr)) = Tsend(Aαo ,Ξ(ξr))+

Twait(Aαo ,Ξ(ξr))+

Trecv(Aαo ,Ξ(ξr))

with
Tsend(Aαo ,Ξ(ξr)) =

Isizestate(Aαo)

B
Λ(ξl;ξr)
up

+ LΛ(ξl;ξr)
up

Twait(Aαo ,Ξ(ξr)) =
P exe
pcode(Istate(Aαo), Ppcode(Aαo))

Pppwr(Ξ(ξr))

Trecv(Aαo ,Ξ(ξr)) =
Osize
state(Aαo)

B
Λ(ξl;ξr)
down

+ L
Λ(ξl;ξr)
down

The energy consumption E(Aαo ,Ξ(ξ)) also depends on the resource Ξ(ξ) that exe-
cutes the application part Aαo and evolves in case of a local execution of the application
part Aαo on the resource Ξ(ξl) with Ξ(ξ) = Ξ(ξl) to:

E(Aαo ,Ξ(ξ)) = Elocal(Aαo ,Ξ(ξl)) = Tlocal(Aαo ,Ξ(ξl)) ·EΞ(ξl)
exec

In case of a remote execution of the application part Aαo on the resource Ξ(ξr) with
Ξ(ξ) = Ξ(ξr) 6= Ξ(ξl), the energy consumption E(Aαo ,Ξ(ξ)) sums up the energy con-
sumption Esend(Aαo ,Ξ(ξr)) of sending the input execution state Istate(Aαo) to the re-
source Ξ(ξr), Ewait(Aαo ,Ξ(ξr)) of waiting in idle mode until the resource Ξ(ξr) executed
the p-code P exe

pcode(Istate(Aαo), Ppcode(Aαo)), and Erecv(Aαo ,Ξ(ξr)) of receiving the output
execution state Ostate(Aαo) from the resource Ξ(ξr):

E(Aαo ,Ξ(ξ)) = Eremote(Aαo ,Ξ(ξr)) = Esend(Aαo ,Ξ(ξr))+

Ewait(Aαo ,Ξ(ξr))+

Erecv(Aαo ,Ξ(ξr))

with
Esend(Aαo ,Ξ(ξr)) = Tsend(Aαo ,Ξ(ξr)) ·EΞ(ξl)

send

Ewait(Aαo ,Ξ(ξr)) = Twait(Aαo ,Ξ(ξr)) ·EΞ(ξl)
wait

Erecv(Aαo ,Ξ(ξr)) = Trecv(Aαo ,Ξ(ξr)) ·EΞ(ξl)
recv

64

3.3. System Components

Figure 3.2.: The system components for code offloading, where an offloading client of-
floads code via a communication network – consisting of a wireless network
and a fixed network – to an offloading service.

The monetary cost C(Aαo ,Ξ(ξ)) also depends on the resource Ξ(ξ) that executes the
application part Aαo . It only applies in case of a remote execution, utilizing the resource
Ξ(ξr) with Ξ(ξ) = Ξ(ξr) 6= Ξ(ξl) and the link Λξl↔ξr to the resource Ξ(ξr). The mon-
etary cost C(Aαo ,Ξ(ξ)) sums up the monetary cost Crecv(Aαo ,Ξ(ξr)) of receiving the
input execution state Istate(Aαo) from the resource Ξ(ξl), Cexec(Aαo ,Ξ(ξr)) of executing
the p-code P exe

pcode(Istate(Aαo), Ppcode(Aαo)) on the resource Ξ(ξr), and Csend(Aαo ,Ξ(ξr))

of sending the output execution state Ostate(Aαo) to the resource Ξ(ξl):

C(Aαo ,Ξ(ξ)) = Cremote(Aαo ,Ξ(ξr)) = Crecv(Aαo ,Ξ(ξr))+

Cexec(Aαo ,Ξ(ξr))+

Csend(Aαo ,Ξ(ξr))

with
Crecv(Aαo ,Ξ(ξr)) = Isizestate(Aαo) ·CΛ(ξl;ξr)

recv

Cwait(Aαo ,Ξ(ξr)) = P exe
pcode(Istate(Aα), Ppcode(Aα)) ·CΞ(ξr)

exec

Csend(Aαo ,Ξ(ξr)) = Osize
state(Aαo) ·CΛ(ξl;ξr)

send

Summarizing, the problem for a resource Ξ(ξl) that distributes an application part
Aαo to resources that offer their computing power is to determine the right resource
Ξ(ξ) for an execution of Aαo by minimizing the cost function fw (cf. Equation 3.1).

3.3. System Components

Related to the system model and the problem statement described above, a distribution
of an application from a resource like a smart phone to another resource like a server
instance at the cloud includes three main components (cf. Figure 3.2): An offload-
ing client that offloads application parts (cf. Subsection 3.3.1), an offloading service

65

3. System Overview

that executes offloaded application parts (cf. Subsection 3.3.2), and a communication
network that connects both with each other (cf. Subsection 3.3.3).

3.3.1. Offloading Client

To distribute application parts to other resources, a resource runs an offloading client
upon its local hardware. It provides the functionality required on the client side for
code offloading to other resources. The offloading client is capable to execute portable
code from an application part on the local hardware and to monitor a related execution
of the portable code. Based on monitoring a local execution of an application part,
the offloading client is capable to identify an application part as offloadable and to
gather both its input execution state and portable code. At the invocation of an
application part that is offloadable, the offloading client minimizes the cost function
in Equation 3.1 to determine the optimal resource for an execution under the current
situation. To obtain the parameters required for Equation 3.1, the offloading client
retrieves the energy factors, samples the links to remote resources, and queries remote
resources for the cost implications (cf. Section 3.1). In case of a local execution,
the offloading client just continues the local execution of the application on the local
hardware. In case of a remote execution, the offloading client is capable to send the
input execution state and the related p-code from the application part to the remote
resource, to wait in idle mode for the end of a remote execution of the application part,
and to receive the output execution state from the remote resource. It is also capable
to install the received output execution state on the local hardware and to continue
subsequently the execution of the application.

3.3.2. Offloading Service

To execute an application part distributed by an offloading client, a resource runs an
offloading service upon its local hardware. The offloading service provides the required
functionality on the service side for an execution of offloaded code. To this end, the
offloading service is capable to receive an input execution state and the related portable
code from an offloading client, to install both on its local hardware, and to start an
execution of the portable code based on the received input execution state. At the end
of an execution for a distributed application part, the offloading service is capable to
gather the output execution state of the execution and to send the gathered output
execution state to the offloading client.

66

3.4. Failure Model

3.3.3. Communication Network

To enable resources for communicating with each other, a communication network
connects an offloading client with an offloading service. A typical resource that dis-
tributes application parts to other resources is a (resource-constrained) mobile device
like a smart phone, equipped with multiple connectivity for data transfer like a Wi-Fi
network, a cellular network, or a Bluetooth network (cf. Section 2.2). Based on a
Bluetooth link, a mobile device communicates directly via a wireless link with other
resources. Based on a Wi-Fi link, a mobile device communicates via a wireless link with
a Wi-Fi AP that again provides either a tethered connection or a wireless connection to
other resources. Furthermore, a Wi-Fi AP typically provides via a WAN connectivity
to the Internet. Last, based on a cellular link, a mobile device communicates with the
Internet via a mobile communication network like the Third Generation (3G) and via
fixed networks like the backbone network of a network provider.

3.4. Failure Model

Regarding the system components and their interplay for code offloading, each system
component can fail at any time influencing differently the process of code offloading.
The underlying failure model of this dissertation includes crash failures with eventually
recovery of the offloading client, the offloading service, and the communication network.
For the offloading client, an occurrence of a crash failure disturbs a current execution

of an application with its application parts. At a disturbance of a current execution
of an application, an end user has to restart the application execution. Restarting an
application in case of an unexpected interruption, recovery mechanisms of an operating
system have to handle an occurrence of such failures. Due to recovery mechanisms
implemented on an operating system, crash failures on an offloading client are out of
scope of this dissertation and thus not considered in the design of a related system
for code offloading. Please note that despite the occurrence of a crash failure on the
offloading client during a remote execution of an application part, an end user has to
pay for the utilization of the offloading service and the communication network.
For the offloading service, an occurrence of a crash failure also disturbs a current

execution of an application part. Executing an application part on behalf of an offload-
ing client, the quality of recovery mechanisms influence the efficiency of an offloading
service. Owing to a failure near the end of a remote execution, for instance, a total
restart of a remote execution almost doubles the waiting time, energy consumption,
and monetary cost for an offloading client. To this end, the design of a related system

67

3. System Overview

for code offloading considers crash failures for the offloading service.
For the communication network, an occurrence of a crash failure on a link that

connects an offloading client and an offloading service disturbs the communication
between both. Disturbing the communication between an offloading client and an
offloading service also influences the efficiency of an offloading client. Owing to the
mobility of an offloading client, for instance, an interference due to incomplete network
coverage that last for several seconds or longer delays a sending of an input execution
state or a receive of an output execution state. To this end, the design of a related
system for code offloading considers crash failures for the communication network.

3.5. System Requirements

The realization of a system for code offloading that distributes application parts from
an offloading client like a (resource-poor) mobile device to an offloading service like a
(powerful) remote server instance at the cloud arises the following key requirements:

Adaptation: Due to the mobility of mobile devices, the current situation for code
offloading changes constantly. Thus, a system for code offloading should adapt dy-
namically to varying parameters related to device, user, environment, application, or
network by re-considering a made offload decision.

Efficiency: Due to the resource poverty of mobile devices, a system for code offloading
should use sparingly local resources on an offloading client and links from a communica-
tion network, keeping the overhead introduced low. The sparing utilization of resources
and links includes, for instance, an efficient monitoring of the current situation and the
transmission of only required data.

Experience: Due to the general correlation of success for a system and the user
experience, a system for code offloading should keep the burden for end users and
application developers low, relying on least interventions from both developers and end
users. A high level of automation combined with minimal information where necessary
convince developers and end users, creating acceptance and applicability for a system.

Feasibility: For the feasibility of code offloading, a system for code offloading should
guarantee the equality of a distributed execution for an application on an offloading
client and offloading services with a monolithic execution for an application on an

68

3.6. Summary

offloading client. A location-transparent execution of applications results in equal exe-
cution states, no matter whether it is a monolithic execution or a distributed execution.

Heterogeneity: Due to the heterogeneity of participating offloading clients and of-
floading services, a system for code offloading should support different hardware plat-
forms like smart phones, laptops, or server instances at the fog or at the cloud. The
abstraction from different Instruction Set Architectures (ISAs) like x86 vs. ARM and
32-bit vs. 64-bit is fundamentally to support a vast number of participants.

Scalability: Due to the availability of multiple offloading services at different tiers,
a system for code offloading should scale horizontally and vertically. To this end, it
scales not only offloading services at one layer like the cloud but also supports multiple
offloading services from different tiers like the fog and the cloud. The support of
multi-tier architectures on behalf of only the classic two-tier architectures increases the
efficiency of code offloading.

Seamless Execution: Due to the distributed nature of code offloading, a system for
code offloading should enable a seamless execution of distributed application parts,
handling automatically the occurrence of failures. An applicable failure handling in-
creases not only the efficiency but also the acceptance of code offloading.

3.6. Summary

To provide code offloading in the landscape of Mobile Cloud Computing, the system
model described in Section 3.1 presents a general system model for a distribution with
multiple resources. It includes performance characteristics and cost implications for
resources that distribute application parts to other resources and resources that offer
the processing power to other resources. Based on the system model, the problem
statement described in Section 3.2 minimizes a cost function to determine the optimal
resource for an execution of an application part that is offloadable. The cost function
is a weighted sum of the execution time, energy consumption, and monetary cost for
an application part on a resource. Thus, it regards the trade-off between the cost for
a local execution and for a remote execution. The local cost comprises the execution
time and energy consumption for a local execution on an offloading client, whereas
the remote cost comprises the execution time, energy consumption, and monetary
cost for a remote execution on an offloading service. Both the offloading client and
the offloading service are parts of the system components described in Section 3.3,

69

3. System Overview

communicating via a communication network with each other. The communication
network typically consists of a wireless network and fixed networks, where an offloading
client offloads computation via the communication network to an offloading service.
Following Finagle’s Law of Dynamic Negatives “If anything can go wrong, it will.”
[Chi63], each system component might fail. To this end, the failure model for code
offloading presented in Section 3.4 involves crash failures with eventually recovery for
an offloading client, an offloading service, and the communication network. Resulting
from previous discussions, the system requirements described in Section 3.5 include key
features and functionality of a system for code offloading.

70

Chapter 4
Efficient Code Offloading with An-
notations

This chapter presents a basic distribution for code offloading with annotations. It sup-
ports the offloading of computation from an offloading client running on a (resource-
poor) mobile device to an offloading service running on a (powerful) remote resource.
As the mobile device runs the system for the basic distribution on its hardware plat-
form, the system has to use sparingly local resources, keeping the overhead introduced
low. It also has to keep the burden on application developers and end users low, be-
ing applicable with a high user experience. To this end, Section 4.1 first gives a brief
overview of a basic distribution between a mobile device and a remote resource before
Section 4.2 gives the system overview for the basic distribution, including the system
model, the problem statement, and the system components. Due to the utilization of a
runtime-layer distribution for code offloading, Section 4.3 describes the typical software
stack and functionality for a runtime environment, utilized by the offloading client and
offloading service. The offloading timeline in Section 4.4 outlines the interplay between
an offloading client and an offloading service to realize the basic distribution for compu-
tation offloading. Providing the corresponding functionality for an offloading client and
an offloading service, Section 4.5 describes the offloading framework required for the
basic distribution. To evaluate the performance of the basic distribution, Section 4.6
presents the implementation of prototypes based on the Java platform, where this dis-
sertation utilizes different Java implementations. Afterwards, Section 4.7 presents the
evaluation of the basic distribution based on three prototypes, including the evaluation
setup and the evaluation results. Last, Section 4.8 summarizes the main facts of the
efficient code offloading with annotations presented in this chapter.

4.1. Basic Distribution

The key feature of “mobility” from mobile computing is simultaneously its main chal-
lenge, requiring techniques like code offloading. It also influences the design and per-

71

4. Efficient Code Offloading with Annotations

formance of a mobile device and of the systems running on a mobile device. Compared
to stationary computing devices like workstations or server instances, a mobile device
is a resource-poor computing environment related to performance like execution speed
and battery. As a result, energy efficiency plays an important role for a mobile device
and thus, for its systems like a distribution system for code offloading.

In the literature, approaches for code offloading propose either an automatic par-
titioning of an application at development-time (cf. CloneCloud from Chun et al.
[CIM+11]), an annotation of application parts by an application developer (cf. MAUI
from Cuervo et al. [CBC+10]), or a manual distribution of application parts by an
application developer based, for instance, on a Remote Procedure Call (cf. RPC from
Kristensen [Kri10]). An automatic partitioning of an application at development-time
keeps an application developer out of business but puts a high complexity on a dis-
tribution system. It requires a full-automatic system-layer distribution that plans a
huge set of possible future situations in advance. An annotation of application parts
that are feasible for a distribution increases the burden on an application developer
but reduces the complexity of a distribution system. It requires an half-automatic
runtime-layer distribution that profits from application knowledge of an application
developer. Last, a manual distribution of application parts has the highest burden
on an application developer but the lowest complexity on a distribution system. It
requires a developer-manual application-layer distribution that fully depends on the
knowledge from an application developer.

To this end, our deployment of a distribution system for code offloading faces the
trade-off between the overhead introduced to a system and the interventions required
from an application developer. It utilizes a runtime-layer distribution with the annota-
tion of application parts that are offloadable by the application developer like Cuervo
et al. [CBC+10]. This little application-specific knowledge from an application devel-
oper goes far [FSS02], reducing noticeably the complexity of our distribution system.
In detail, it relies on an annotation-based instrumentation of the portable code (in-
structions) from an application part based on a runtime environment. An application
developer annotates at development-time an application part that is offloadable, mark-
ing it as a suitable candidate for a remote execution. A suitable candidate does not rely
on further resources like a local sensor except the processing power for an execution
of its portable code. Furthermore, it possesses a low size of information required for a
remote execution, a long running remote execution, and a low size of output informa-
tion received after the remote execution. During the compilation of the source code
to platform-independent portable code at development-time, an offload-aware compiler
introduces offload-specific portable code for application parts annotated as offloadable

72

4.2. System Overview

from an application developer. At run-time, the offload-specific portable code invokes
at its execution an offload-aware controller that afterwards handles a distribution of
the application part that is offloadable.
Summarizing, the annotation-based instrumentation of the portable code (instruc-

tions) for a distribution system keeps both the overhead introduced to a mobile device
and the burden on an application developer low. In detail, our deployment invokes
automatically an offload-aware controller for application parts that are feasible for a
distribution based on the offload-specific portable codes introduced by the offload-
aware compiler. The automatic invocation avoids, for instance, a monitoring of system
information while a mobile device executes an application. Just relying on the annota-
tion of an application part that is feasible for a distribution, our deployment hides the
distributed and parallel nature of a remote execution from an application developer by
automatically distributing application parts without further interventions. Neverthe-
less, it keeps an application developer aware of a possible distribution benefiting from
application-specific knowledge from the application developer.

4.2. System Overview

The basic distribution offloads computation in the two-tier architecture (cf. Subsec-
tion 2.5.2), where each tier has one resource. The first tier consists of a (resource-poor)
mobile device Ξ(ξk) and the second tier consists of a (powerful) server instance at the
cloud Ξ(ξm). Thus, it reduces the system model of multiple tiers with multiple re-
sources into two tiers with a resource each. The performance characteristics and cost
implications for the two resources stay the same from the general system model defined
in Section 3.1. The same applies to the definition for an application, where the basic
distribution utilizes the model defined in Section 3.1.
Like the system model, the problem statement for the basic distribution also reduces

from multiple tiers with multiple resources into two tiers with a resource each. Thus,
it still minimizes the cost function fw from Equation 3.1 but only for two resources
resulting in the trade-off between cost for a local execution on resource Ξ(ξk) and cost
for a remote execution on resource Ξ(ξm):

min I · fw(Aαo ,Ξ(ξk)) + (1− I) · fw(Aαo ,Ξ(ξm)) (4.1)

where I equals 1 in case of a local execution and I equals 0 in case of a remote execution.
The system components for the basic distribution corresponds to the system com-

ponents described in Section 3.3 – namely an offloading client (cf. Subsection 3.3.1),

73

4. Efficient Code Offloading with Annotations

Figure 4.1.: The system components for the basic distribution, where an offloading
client offloads computation via a communication network to an offloading
service. Moreover, a code service disseminates portable code of applica-
tions to clients and services.

an offloading service (cf. Subsection 3.3.2), and a communication network (cf. Sub-
section 3.3.3) – and an additional code service (cf. Figure 4.1). A code service stores
portable code of applications for dissemination among mobile devices (cf. the Google
Play Store), hosted at a server instance at the cloud. An end user downloads the
portable code for an application from the code service and installs the application on
its mobile device only once. In order to relieve an offloading client on a mobile device
from sending the portable code for an application part via the communication net-
work, an offloading service also downloads the portable code for an application from
the code service. To this end, an offloading service either downloads pro-actively the
portable code for an application from the code service or downloads it from the code
service at the first time an offloading client distributes an application part for a related
application. As a fixed network connects an offloading service and a code service with
each other, an offloading service downloads the portable code for an application very
fast, where the download time is negligible. Like an offloading service, a code service
might suffer from crash failures with eventually recovery, resulting in an unavailability
of the service (cf. Section 3.4). Due to the location at the cloud, a code service utilizes
automated failover mechanisms like service redundancy, typically found in a (cloud)
data center. Such failover mechanisms are commonly applied and automatically handle
crash failures, being out of scope of this dissertation and not considered subsequently.

74

4.3. Runtime-layer Offloading

(a) The software stack of a resource executing
portable code from an application.

(b) The essential components of a runtime en-
vironment to execute portable code.

Figure 4.2.: Overview of (a) the software stack and (b) the run-time environment on a
resource to execute portable code from an application.

4.3. Runtime-layer Offloading

The basic distribution presented in this chapter utilizes a runtime-layer distribution
with annotations to offload computation from an offloading client to an offloading
service. As both the offloading client and the offloading service extends the basic func-
tionality provided by a runtime environment, this section introduces the typical func-
tionality provided by a runtime environment to execute portable code on a resource.
To this end, Subsection 4.3.1 first gives an overview of the software stack and func-
tionality of a runtime environment, before Subsection 4.3.2 describes the functionality
for an offloading client and Subsection 4.3.3 for an offloading service. Last, Subsec-
tion 4.3.4 gives an overview of the Java platform with its Java Runtime Environment
(JRE), extended in this dissertation for code offloading.

4.3.1. Overview

Figure 4.2a shows the software stack of a resource like a smart phone, a laptop, or a
server machine, running on the hardware platform. The hardware platform typically
consists of multiple components like a Central Processing Unit (CPU), a Random Ac-
cess Memory (RAM), storage, and a Network Interface Card (NIC). These underlying
components of the hardware platform differ in capabilities and properties like the ISA

75

4. Efficient Code Offloading with Annotations

of a CPU (e.g., an x86 vs. ARM vs. PowerPC architecture with a 32-bit vs. 64-bit
instruction set). To manage the hardware platform and enable the execution of soft-
ware components, a resource executes an operating system like Windows, Linux, or
Android, specialized to the components of the hardware platform. Due to different
capabilities and properties of the hardware platform as well as the operating system,
an application developer has to explicitly compile its application for a combination of
a hardware platform and an operating system. To avoid an explicit compilation and
abstract from an actual combination of a hardware platform and an operating system,
the operating system executes a runtime environment like the Java Runtime Environ-
ment (JRE). The runtime environment enables an execution of applications written in
platform-independent portable code, where an application consists of (multiple) parts
like threads, components, or methods.

To execute the platform-independent portable code of an application part on a re-
source (cf. Figure 4.2b), the runtime environment has an application part loader. The
application part loader loads an application part by extracting its portable code and
forwarding it to the portable code compiler. The portable code compiler compiles the
platform-independent portable code to platform-dependent machine code and forwards
it to the machine code executor. The machine code executor executes the machine code
on the actual hardware platform, where the execution of an application part can re-
quire further application parts. In this case, the machine code executor invokes the
required application part, again starting its loading, compilation, and execution.

To offload an application part from a hardware platform (e.g., mobile device) to
another hardware platform (e.g., server instance at the cloud) based on a runtime
environment, the offloading client as well as the offloading service extend the above-
described functionality of a basic runtime environment.

4.3.2. Offloading Client

Figure 4.3 shows the runtime environment of the offloading client, where a decision
maker, a monitor, and a communicator extend the functionality required to distribute
an execution of application parts to an offloading service. To this end, the application
part loader forwards the platform-independent portable code from an application part
to the decision maker. The decision maker decides whether to execute an application
part on the local hardware platform or on the remote hardware platform of an of-
floading service. To determine the execution side of an application part, the decision
maker minimizes the cost function fw from Equation 4.1, where the decision requires
parameters about the current situation like network quality. As a result, the monitor

76

4.3. Runtime-layer Offloading

Figure 4.3.: The extended runtime environment for the offloading client enabling code
offloading by utilizing a decision maker, a monitor, and a communicator.

monitors the parameters required for a decision and forwards them to the decision
maker to determine the execution side. In case of a local execution of an applica-
tion part, the decision maker forwards the platform-independent portable code to the
portable code compiler, entering the process of compilation and execution on the local
hardware platform. In case of a remote execution of an application part, the deci-
sion maker forwards the platform-independent portable code and the input execution
state to the communicator. The communicator is responsible for the communication
to an offloading service, sending the portable code and the input execution state to the
offloading service. During a remote execution of an application part on an offloading
service, the communicator waits for the end of a remote execution, receiving the output
execution state of a remote execution. Receiving an output execution state of a remote
execution from an offloading service, the communicator forwards it to the machine code
executor. Afterwards, the machine code executor installs the output execution state of
a remote execution on the local hardware platform and continues the execution of the
application just as for a local execution of the application part.

4.3.3. Offloading Service

Figure 4.4 shows the runtime environment of the offloading service, where a commu-
nicator extends the functionality required to execute an application part on behalf of
an offloading client. To this end, the communicator receives the platform-independent
portable code and the input execution state of an application part from an offloading
client. Possessing the portable code and the input execution state required for a remote

77

4. Efficient Code Offloading with Annotations

Figure 4.4.: The extended runtime environment for the offloading service enabling code
offloading by utilizing a communicator.

execution, it forwards the portable code to the portable code compiler and the input
execution state to the machine code executor. The portable code compiler compiles
the platform-independent portable code to platform-dependent machine code and for-
wards it to the machine code executor. The machine code executor first installs the
received input execution state, before it starts an execution of the machine code on
its hardware platform based on the input execution state. At the end of an execution
of an application part on the offloading service, the machine code executor forwards
the output execution state to the communicator that sends it to the waiting offload-
ing client. Afterwards, the offloading service waits for further requests from offloading
clients, starting again a remote execution of an application part.

4.3.4. Java Platform

The Java programming language is a general-purpose programming language with key
properties like an object-oriented design, safety, concurrency, and portability. Tak-
ing a closer look at the portability, the famous slogan “write once, run everywhere”
[Tim97] from Sun Microsystems emphasizes the design goal of platform independence
of the Java programming language. In detail, a Java application compiled once from
an application developer runs without a recompilation on any combination of hardware
platforms and operating systems that support an adequate Java platform. Achieving
this platform independence of the Java programming language, a Java platform com-
piles the code of a Java application to Java bytecode instructions. The Java bytecode
instructions are an intermediate representation of code that runs on any architecture

78

4.3. Runtime-layer Offloading

compared to architecture-specific machine code. Due to the intermediate representation
of Java bytecode instructions, a Java platform executes the cross-platform instructions
on a run-time environment, compiling the intermediate representation of Java bytecode
instructions to architecture-specific machine code at run-time.
A Java platform is responsible for the development of a Java application written in

the Java programming language as well as the execution of its cross-platform instruc-
tions. For the execution of the cross-platform instructions, an end user utilizes a JRE,
particularly implemented for a combination of a hardware platform and an operating
system. The JRE comprises a set of components required for an execution like an im-
plementation of a Java Virtual Machine (JVM) and Java class libraries. An application
developer utilizes a Java Development Kit (JDK) that extends the functionality of a
JRE with development tools. Based on the development tools like the Java Compiler
javac, an application developer compiles Java source code to Java bytecode instruc-
tions at development-time. At run-time, a Just-In-Time (JIT) compiler from a JVM
of a JRE compiles on demand the intermediate Java bytecode instructions to native
machine code. Due to an extensive set of Java class libraries, a Java application can
access particular features from hardware platforms or operating systems.
To this end, a Java platform abstracts from the actual hardware platform and soft-

ware stack, providing a platform-independent execution of applications written in the
Java programming language. At development-time, it compiles a Java application to
the intermediate representation of Java bytecode instructions that it further compiles
to architecture-specific machine code at run-time. To provide a platform-independent
execution of Java bytecode instructions, a Java platform consists of a Java Virtual
Machine, a predefined set of Java bytecode instructions, and Java class libraries.

Java Virtual Machine: Although the Java bytecode instructions are platform-inde-
pendent, each particular combination of a hardware platform and an operating system
requires its own implementation of a Java Virtual Machine (JVM). To ensure a semantic
interpretation of Java bytecode instructions in the same way, different implementations
of a JVM have to meet the formal requirements of the JVM specification [LYBB15].
Due to the utilization of a single specification, all implementations are interoperable
no matter of underlying hardware or software. Thus, each JVM is able to execute a
Java application due to the execution of the intermediate Java bytecode instructions.
Figure 4.5 shows the internal architecture for a JVM to execute an application written

in the Java programming language. Typically, a Java application consists of (multiple)
Java classes, where a Java class is an organizational unit possessing a number of Java
bytecode instructions as well as auxiliary information for its processing like a symbol

79

4. Efficient Code Offloading with Annotations

Figure 4.5.: Overview of the internal architecture for a Java Virtual Machine. [Venry]

table. At development-time, the Java compiler javac compiles a Java class to a binary
format, representing the Java class independently from the underlying platform. At
run-time, a JVM dynamically loads a Java class – that confirms to the Java class file
format – from a Java application with the help of a class loader. Beside loading classes
from a Java application, the class loader is also responsible for locating a Java class
library, reading its content and loading the related classes within the library. Notice
that the class loader only loads a Java class on demand, once a Java application calls a
corresponding Java class. Possessing the Java bytecode instructions for a Java class, a
JVM executes the Java bytecode instructions with the help of an execution engine. The
execution engine corresponds to an abstract computing machine that translates at run-
time the Java bytecode instructions to native machine code instructions based on, for
instance, a JIT compiler. Afterwards, it executes the machine code instructions on the
host operating system. The execution engine stores required information like translated
instructions, instantiated objects, method parameters, or intermediate results in the
runtime data areas. The runtime data areas include one method area, one heap, pc
(program counter) registers, Java stacks, and native method stacks. A JVM has only
one method area and one heap, shared by all Java threads from a Java application. It
stores information from a loaded Java class file like type information in the method
area and allocates memory in the heap for new objects like class instances or arrays.
Each Java thread has its own pc register and Java stack. A pc register indicates the
execution of the next Java bytecode instruction for a Java method and the Java stack

80

4.3. Runtime-layer Offloading

stores state information for an execution of a Java method. The state information
includes method parameters, local variables, return value, intermediate computations,
and further data. In detail, the Java stack comprises for each Java method a stack
frame containing the state information for a Java method. A JVM pushes a new stack
frame at the call of a Java method onto the Java stack and pops the current stack
frame at the end of a Java method discarding its state information. A Java method
completes either by returning properly or by throwing an exception. Last, a JVM has
native method stacks to store information about the state for native methods executed
through a native method interface. The native method interface provides the capability
for a JVM to execute platform-dependent native methods on host operating systems.

Java Bytecode Instructions: The Java bytecode instructions are platform-indepen-
dent instructions, representing the instruction set of a JVM. A Java bytecode consists
of one or more bytes. The first byte identifies uniquely the instruction (opcode) and
the further bytes, if any, are parameters for the instruction. Thus, there are in total 255

Java bytecode instructions available, of which a JVM uses currently 198 instructions
(cf. Appendix A). In detail, they provide functionality like loading and storing of data
(cf. Table A.1), arithmetic operations, logic operations, and type conversions (cf. Ta-
ble A.2), and object creation, object manipulation, operand stack management, control
transfer, method invocation, method return, exception throwing, and monitor-based
concurrency (cf. Table A.3). Out of the other 57 instructions, the JVM specification
reserves 54 for future use and set 3 as permanently unimplemented. [LYBB15]
The Java bytecode instructions operate on certain data types, categorized into a set

of primitive types and a reference type, holding primitive values and reference values,
respectively. The primitive types are boolean (8-bit signed), byte (8-bit signed), char
(16-bit signed), short (16-bit signed), int (32-bit signed), long (64-bit signed), float
(32-bit signed), and double (64-bit signed). The reference type is a reference (32-bit
or 64-bit) for class types, interface types, array types, and so on.

Java Class Libraries: Due to the platform independence of a Java platform, a Java
application cannot rely on specific functions of a platform-native library. To this end,
the Java class libraries provide to a Java application the common functionality of
modern operating systems. They are a comprehensive, well-known set of reusable
functions, relying heavily on the underlying hardware platform and operating system.
At run-time, a JVM loads dynamically the Java class libraries on demand to realize
common tasks like networking or file handling. For an application developer, the Java
class libraries are an abstract interface to platform-dependent tasks.

81

4. Efficient Code Offloading with Annotations

4.4. Offloading Timeline

First of all, an application developer implements a Java application that consists at
least of a Java class with a main method (cf. Subsection 4.3.4). Commonly, a Java
application consists of multiple Java classes containing multiple Java methods (ap-
plication parts). A Java method typically encapsulates a required functionality of a
Java application. Possessing a Java method that is feasible for a remote execution, an
application developer annotates it with the annotation Offloadable (cf. Listing 4.1):

1 public class HelloWorld {
public static void main(String [] args) {

3 // Prints the String "Hello , World !" to the console
System.out.println("Hello , World!");

5

float flt = dstrbtblMthd(args);
7 System.out.println("Computation finished: " + flt);

}
9

@Offloadable
11 public static float dstrbtblMthd(String [] args) {

float result = 0.0F;
13

// Long running computation
15 ...

17 return result;
}

19 }

Listing 4.1: The Java source code of an extended “Hello, World”-application that
contains a Java method that is offloadable.

After the implementation of a Java application and a (possible) annotation of Java
methods as “offloadable”, an application developer compiles the Java source code of an
application with the program javac, the JAVA Compiler. It translates Java source code
from an application into platform-independent Java bytecode instructions. To this end,
we extended javac to introduce at development-time offload-specific Java bytecode
instructions for a Java method annotated with offloadable. During this translation
of Java source code into Java bytecode instructions, it introduces an offload-specific
Java bytecode instruction at the start of a Java method annotated with offloadable

and another one at each end of the Java method (cf. Subsection 4.5.1).
After the compilation of a Java application and a dissemination via a code service to

mobile devices, an end user can start an execution of a Java application on its mobile
device. Please note that usually an end user downloads and installs an application on its
mobile device from a code service only once, before the first execution of an application
(cf. Figure 4.6). Through a start of a Java application, an operating system on a mobile
device runs a JRE extended for the basic distribution by an offloading framework (cf.

82

4.4. Offloading Timeline

Figure 4.6.: Offloading timeline of the basic distribution for an application part between
an offloading client and an offloading service via a communication network.
Both download and install the application from a code service.

Section 4.5). Beside typical components of a JRE for an execution of a Java application
(cf. Subsection 4.3.4), the extended JRE also starts the additional components of the
offloading client required for the basic distribution (cf. Subsection 4.5.2). Afterwards,
it executes the Java application by invoking its main method that again invokes further
Java methods, communicating with each other.

After the invocation of a Java method on the offloading client, an execution of
platform-independent Java bytecode instructions requires a compiler that translates
Java bytecode instructions to platform-dependent machine code during run-time. Due
to the introduction of offload-specific Java bytecode instructions at development-time,
we extended the standard Java compiler of a Java Virtual Machine (cf. Subsec-
tion 4.5.1). The extension comprises the translation of offload-specific Java bytecode
instruction to platform-dependent machine code at run-time. The execution of trans-
lated machine code invokes the execution controller of the offloading client (cf. Sec-
tion 4.5.2). Subsequently, the execution controller invokes the offload controller of the

83

4. Efficient Code Offloading with Annotations

offloading client, informing the offload controller of the call of a Java method annotated
with offloadable by an application developer.

After the invocation of the offload controller on the offloading client, the offload
controller decides whether to distribute the called Java method to an offloading service
(cf. Figure 4.6). To this end, it minimizes the cost function in Equation 4.1, requiring
information about the application, the network, the user, the device, and the remote
resource (cf. Figure 4.7b). The information about the application comprises the input
execution state of the Java method, the execution time of the Java method on the local
resource and on the remote resource, as well as the size of the output execution state of
the Java method. To retrieve the input execution state, the execution controller on the
offloading client gathers the input execution state from the local resource, having direct
access to the Java stack (cf. Subsection 4.5.2). The input execution state comprises
the method parameters, the member values of the class declaring the method, and the
static members of all classes reachable. To retrieve the execution time on the local and
remote resource, the app profiler on the offloading client builds a profile model based
on past invocations. To this end, it requires the input execution state together with the
Java bytecode instructions of the called Java method. The app profiler retrieves the
Java bytecode instructions from the execution controller that has access to the declaring
class of a Java method. Based on the profile model built, the offload controller on the
offloading client predicts the execution time for an execution on the local resource
and on the remote resource. The same applies to the prediction for the size of the
output execution state, where the app profiler builds another profile model based on
past invocations. For this, it requires the input execution state together with the size
of the output execution state. The information about the network comprises the link
bandwidth and link latency to the remote resource. Possessing the link bandwidth
and link latency, the offload controller on the offloading client determines the duration
for sending the input execution state to the remote resource as well as for receiving
the output execution state from the remote resource. To retrieve the link bandwidth
and link latency, the network monitor on the offloading client monitors both to the
remote resource. The information about the user comprises the user-defined weights
for the execution time, the energy consumption, and the monetary cost. To retrieve the
user-defined weights, the user interface on the offloading client provides an interface
for the user to enter the weights. The information about the device comprises factors
for the energy consumption and for the performance of the mobile device. To retrieve
the factors for the energy consumption, the device interface on the offloading client
provides an interface for the device manufacturer to enter the device-specific factors.
To retrieve the factor for the performance, the device benchmark on the offloading client

84

4.4. Offloading Timeline

(a) Detailed timeline for a remote execution
of an offloadable application part.

(b) Flow of decision making for code offload-
ing of an offloadable application part.

Figure 4.7.: Overview of (a) the timeline and (b) decision making for code offloading.

benchmarks the local performance of executing Java bytecode instructions. Last, the
information about the remote resource comprises factors for its monetary cost and for
its performance. To retrieve the factors for the monetary cost and the performance, the
service monitor on the offloading client creates a resource request, requesting the factors
from an offloading service. Afterwards, it forwards the resource request to the service
connector on the offloading client. The service connector handles the communication
to the remote resource and thus, sends the resource request to the offloading service.

Upon the receipt of a resource request at the client connector on the offloading ser-
vice, the client connector requests the factors of the performance and the monetary
cost from the offload controller (cf. Subsection 4.5.3). The offload controller on the
offloading service retrieves the factor for the performance from the device benchmark
and the factors of the monetary cost from the provider interface. To retrieve the factor
for the performance, the device benchmark on the offloading service benchmarks the
local performance of executing Java bytecode instructions. To retrieve the factors for
the monetary cost, the provider interface on the offloading service provides an interface
for the provider of the remote resource to enter the resource-specific factors. Possess-
ing the factors for the performance and the monetary cost of the remote resource, the
offload controller on the offloading service forwards the factors to the requesting client
connector. The client connector on the offloading service first creates a resource re-
sponse that contains the factors, before it sends the resource response to the service
connector of the offloading client.

85

4. Efficient Code Offloading with Annotations

After the offload controller on the offloading client possesses all of the information
required to minimize the cost function, it determines the execution side of the called
Java method. In case of a local execution of the Java method, the offload controller on
the offloading client just continues the local execution of the Java method by returning
its invocation that again returns the invocation of the execution controller. In case of
a remote execution of the Java method (cf. Figure 4.6), the offload controller forwards
the input execution state of the Java method to the service connector and waits for a
response from it. Receiving the input execution state from the offload controller, the
service connector creates an offload request – containing the input execution state of
the Java method – and sends it to the client connector on the offloading service.

Upon the receipt of an offload request on the client connector of the offloading service,
the client connector forwards the input execution state to the offload controller (cf.
Subsection 4.5.3). The offload controller on the offloading service forwards the input
execution state to the execution controller that installs the state on the computing
resource and starts the execution of the Java method by calling the Java method with
its method parameters contained in the input execution state.

After the execution of the offload request on the offloading service, the execution of
the offload-specific Java bytecode instruction invokes the execution controller. The ex-
ecution controller gathers the output execution state of the Java method. It comprises
the information of an input execution state, the return value of the Java method, and
the value for the register with the “ByteCode Index” (bci) for the execution. The bci
register indicates the index of the Java bytecode instruction executed next. It holds
at the end of the execution the Java bytecode instruction executed last like a return

instruction. Possessing the output execution state of the Java method, the execution
controller forwards it to the offload controller that again forwards it together with the
monetary cost of the execution to the client connector. The client connector creates
an offload response – containing the output execution state and the monetary cost –
and sends it to the service connector of the offloading client.

Upon the receipt of an offload response on the service connector of the offloading
client, the service connector forwards the output execution state and the monetary
cost to the offload controller (cf. Subsection 4.5.2). The offload controller forwards
the output execution state to the execution controller and pays the monetary cost
charged from the offloading service. The execution controller installs the information
in the output execution state on the Java stack and jumps to the last Java bytecode
instruction of the Java method. Due to the jump to the last Java bytecode instruction,
the local execution returns the Java method with the return value contained in the
output execution state and continues the execution of the Java application.

86

4.5. Offloading Framework

4.5. Offloading Framework

The offloading framework provides the functionality for the basic distribution between
an offloading client and an offloading service on the Java platform. The offloading
framework requires an extension of the standard Java compiler of the Java platform to
translate the offload-specific Java bytecode instructions at development-time as well as
at run-time (cf. Subsection 4.5.1). Moreover, the offloading client (Subsection 4.5.2)
as well as the offloading service (Subsection 4.5.3) of the offloading framework extend
the functionality provided by a JRE.

4.5.1. Extended Java Compiler

The JAVA Compiler (javac) is responsible to translate the Java source code of a Java
application into platform-independent Java bytecode instructions at development-time
(cf. Subsection 4.3.4). As an application developer marks Java methods feasible for a
remote execution with the annotation offloadable, javac has to know this offload-
specific annotation and how to handle it. To this end, we extended javac to instrument
Java bytecode instructions for an efficient identification of annotated Java methods.
For an annotated Java method, it introduces the offload-specific Java bytecode instruc-
tions offload and offload_end during the translation of Java source code into Java
bytecode. In detail, it inserts offload at the start of the method body as the first ex-
ecuted Java bytecode instruction. Knowing the start of an execution of a Java method
that is offloadable, the Java bytecode instruction offload_end marks the end of its
execution. Thus, javac inserts it before each end of the method body. Execution ends
are a return Java bytecode instruction – return, ireturn, lreturn, freturn, dreturn,
or areturn – or a Java bytecode instruction throwing an exception like athrow (cf.
Appendix A). Executing offload_end right before the last Java bytecode instruction
of a Java method, the offloading framework gathers the execution state just before the
execution of the last instruction destroys the execution state.

4.5.2. Offloading Client

Figure 4.8 shows the runtime environment of the offloading client, providing the client-
side functionality for the basic distribution. It consists of an offload compiler, an
execution controller, a state generator, an app profiler, a network monitor, a network
interface, a user interface, a device interface, a device benchmark, a service monitor, a
service connector, and an offload controller.

87

4. Efficient Code Offloading with Annotations

Figure 4.8.: The runtime environment on the offloading client for the basic distribution
of an application part to an offloading service.

Offload Compiler: The standard Java compiler is responsible to translate platform-
independent Java bytecode instructions into platform-dependent machine code at run-
time (cf. Subsection 4.3.4). As javac introduces the offload-specific Java bytecode
instructions offload and offload_end at development-time, a standard Java compiler
of a Java implementation has to know how to translate these Java bytecode instructions
to machine code. To this end, we extended the standard Java compiler to an offload
compiler. It translates the two offload-specific Java bytecode instructions into offload-
specific machine code that internally invokes the execution controller at its execution.

Execution Controller: The execution controller of the offloading client is an interface
between the execution engine and the offloading components within a JVM (cf. Sub-
section 4.3.4). An execution of the assembler code for the offload-specific Java bytecode
instructions offload and offload_end invokes the execution controller. Only at an
execution of offload, the execution controller invokes the offload controller to inform
it of the call of a Java method that is feasible for a remote execution. The main tasks of
the execution controller are the installation of an output execution state after a remote
execution of a Java method and the manipulation of an execution of a Java method.
Moreover, it also interacts with the state generator to obtain an input execution state
and an output execution state for a called Java method.

88

4.5. Offloading Framework

To install an output execution state after an execution of a Java method on a remote
resource, the execution controller replaces the member values of the declaring Java
class with the related values contained in an output execution state. It also pushes
the return value contained in an output execution state on the stack frame of the Java
stack. Notice that the execution controller only replaces the member values and pushes
the return value, because further values on the stack frame of the Java stack have only
a local scope and thus, are only valid during an execution of the Java method. Due
to the immediate return of an execution of the Java method after the Java bytecode
instruction offload_end, the execution engine destroys the created stack frame.
To manipulate an execution of a Java method, the execution controller changes the

values of the registers from the execution engine (cf. Subsection 4.3.4), holding state
information during an execution of a Java method. For instance, it has a register
that holds the “ByteCode Index” (bci) indicating an index to the next Java bytecode
instruction executed by the execution engine (cf. pc registers). By setting the bci

register to the last Java bytecode instruction of a Java method, the execution engine
immediately returns the call of a Java method.

State Generator: The state generator of the offloading client is an interface between
the runtime data areas and the offloading components within a JVM (cf. Subsec-
tion 4.3.4). To this end, the main tasks of the state generator are the marshaling of
Java data types, the gathering of execution state information before an execution of a
Java method, the gathering of execution state information after an execution of a Java
method, and the gathering of Java bytecode instructions of a Java method.
To marshal Java data types, the state generator distinguishes between Java prim-

itives, Java objects, and Java arrays (cf. Subsection 4.3.4). For a Java primitive,
it just copies the Java identifier of the data type together with related data into a
platform-independent representation. For a Java object, it visits each member value of
the Java class and stores the Java primitives. In case of the member value of the Java
object corresponds itself to a Java object or a Java array, the state generator marshals
recursively this member value. For an one-dimensional Java array, the state genera-
tor visits each entry and stores the related data of a Java primitive or a Java object.
For a multi-dimensional Java array, it visits recursively each entry of each dimension,
reaching at the end an one-dimensional Java array that it marshals.
To gather the execution state information before the execution of a called Java

method, the state generator copies the parameters of a Java method from the Java
stack and from the Java heap (cf. Section 4.3.4). On the execution of the first Java
bytecode instruction offload, the execution engine initialized a new stack frame on

89

4. Efficient Code Offloading with Annotations

the Java stack for the invocation of a Java method. The stack frame contains the
parameters of a Java method in ascending order, where the values of Java primitives
are on the stack and the values of Java objects or Java arrays are on the heap linked
by a reference on the stack frame. To this end, the state generator directly copies
the values of a Java primitive from the stack frame on the Java stack, whereas it first
marshals the Java object or Java array from the Java heap linked by a reference. Beside
the parameters of a Java method, the first value at the stack frame on the Java stack
is a reference to the this object1, corresponding to the declaring Java class of the
Java method. Visiting the declaring Java class, the state generator directly copies its
member values. Last, the state generator requires the static members of all classes
reachable. It visits all loaded Java classes from the class loader stored in a list within
the JVM (cf. Section 4.3.4), copying the static members of the reachable Java classes.
Thus, it possesses the information required to create an input execution state.

To gather the execution state information after the execution of a Java method, the
state generator first creates an input execution state. Afterwards, it further requires
the return value for the Java method, corresponding to the last value on the stack frame
of the Java stack due to the execution of the Java bytecode instruction offload_end.
In case the last value on the stack frame of the Java stack is a Java primitive, the
state generator just copies it. In case of the last value on the stack frame of the Java
stack is a Java object or a Java array, the state generator marshals the Java object
or Java array referenced by the last value on the stack frame. Thus, it possesses the
information required to create an output execution state.

To gather the Java bytecode instructions of a called Java method, the state generator
visits the declaring Java class of a Java method through the reference to the this object
on the frame stack on the Java stack. The declaring Java class of the Java method
possesses the Java bytecode instructions of a Java method. Thus, the state generator
directly copies the Java bytecode instructions from the declaring Java class.

App Profiler: The offload controller of the offloading client invokes the app profiler
to retrieve two profile models built from past invocations of a Java method (history-
based approach). One model profiles the execution time for a local execution of a
Java method on the hardware platform, where the other model profiles the size of
the output execution state after an execution of a Java method. To build the two
profile models, the app profiler retrieves from the execution controller after a local

1In case of a static call of a Java method (e.g., invokestatic), the reference to the this object is
missing on the related Java stack. Due to the static invocation of the Java method, however, the
member values of the declaring Java class correspond to the static member values of the declaring
Java class, accessed through the class definition.

90

4.5. Offloading Framework

execution of a Java method its input execution state, its output execution state, and
its execution time. Afterwards, the app profiler creates a data sample for each profile
model. The first data sample consists of the input execution state together with the
execution time. The second data sample consists of the input execution state together
with the output execution state. Creating data samples after a local execution for a
Java method, the training set on the offloading client increases over time. Thus, the
app profiler trains from time to time new profile models due to an increased set of
training data. Notice that the offloading client does not rely on a specific algorithm to
profile the execution time or the size, being out of scope of this dissertation. In detail,
the basic distribution utilizes two k-Nearest Neighbors2 algorithms like in [MF10] for
regression-based machine learning, building and training both models.

Network Monitor: The offload controller of the offloading client invokes the network
monitor to retrieve the link bandwidth and the link latency from the offloading client
to an offloading service and vice versa. To this end, the network monitor probes the
uplink and downlink in five iterations each, where an iteration comprises a ping followed
by a packet with 10 kB of data. Afterwards, the network monitor takes the average,
possessing the actual link bandwidth and link latency.

Network Interface: The offload controller of the offloading client invokes the network
interface to retrieve the factors for the monetary cost of the network. The factors are
the monetary cost for a utilization of the communication network to and from an
offloading service. To this end, the network interface provides an interface – more
precisely a configuration file, where a network provider defines the static or dynamic
factors of the monetary cost of the communication network.

User Interface: The offload controller of the offloading client invokes the user inter-
face to retrieve the user-defined weights for the execution time, the energy consumption,
and the monetary cost of the cost function (cf. Section 3.2). To this end, the user in-
terface provides a graphical interface – more precisely three bars, where an end user of
a mobile device defines its preference for each weight. Based on the weights defined by
an end user, the end user influences the solution of the cost function.

Device Interface: The offload controller of the offloading client invokes the device
interface to retrieve static factors for the energy consumption. The static factors are
the energy consumption for executing code on the hardware platform, sending and

2For a detailed explanation of the k-Nearest Neighbor algorithm, please take a look at [WFHP16].

91

4. Efficient Code Offloading with Annotations

receiving bytes via the communication network to and from an offloading service, and
waiting in idle mode during a remote execution. To this end, the device interface
provides an interface – more precisely a configuration file, where a device manufacturer
defines the static factors of the energy consumption.

Device Benchmark: The offload controller of the offloading client invokes the device
benchmark to retrieve the performance factor of executing Java bytecode instructions.
To this end, the device benchmark benchmarks the computing speed of a hardware
platform by measuring the execution time for a predefined number of Java bytecode
instructions. In detail, the benchmark comprises measurements of Java bytecode in-
structions for the manipulation of Java primitives (Integer, Long, Float, and Double),
Java objects, and Java arrays (cf. Subsection 4.3.4). Based on the measurements of
Java bytecode instructions, the device benchmark calculates the performance factor,
possessing a comparative value for the performance of hardware platforms.

Service Monitor: The offload controller of the offloading client invokes the service
monitor to retrieve the factors of the performance and the monetary cost for a remote
execution on an offloading service. To this end, it creates a resource request that
is actually a packet containing only an identifier for requesting the factors. After the
creation of the resource request, the service monitor forwards it to the service connector
of the offloading client and waits for a resource response from the offloading service. A
resource response is a packet with a related identifier and the requested factors.

Service Connector: The offload controller and the service monitor of the offloading
client invoke the service connector to handle the communication between the offloading
client and an offloading service. To this end, it receives the input execution state from
the offload controller, creating an offload request and sending it to the client connec-
tor on an offloading service. Afterwards, the service connector waits for a receive of
an offload response at the end of a remote execution. Receiving an offload response
from a client connector on an offloading service, the service connector on the offloading
client extracts the output execution state and the monetary cost of a remote execu-
tion, forwarding both to the offload controller. Beside sending of offload requests and
receiving of offload responses, the service connector receives resource requests from the
service monitor. To this end, it sends a resource request to the client connector on
an offloading service and waits for a receive of a resource response. Afterwards, the
service connector on the offloading client extracts the factors of the performance and
the monetary cost of an offloading service and forwards both to the offload controller.

92

4.5. Offloading Framework

Offload Controller: The execution controller of the offloading client invokes the
offload controller at the execution of the offload-specific Java bytecode instruction
offload. This indicates the call of a Java method that is feasible for a remote ex-
ecution. Thus, the offload controller minimizes the cost function from Equation 4.1,
requiring the information about the application, the network, the user, the device, and
the offloading service. For the information about the application, the offload controller
invokes the execution controller retrieving the input execution state of the called Java
method. Furthermore, it invokes the app profiler retrieving the profile models for the
execution time on the hardware platform and for the size of the output execution state.
Based on the profile models built from the app profiler, the offload controller predicts
the execution time on the hardware platform and the size of the output execution state
based on the input execution state of the called Java method. To retrieve the execution
time on an offloading service, the offload controller multiplies the execution time pre-
dicted for the local hardware platform by a speedup factor. It calculates the speedup
factor based on the factor for the performance of the local hardware platform and of
the offloading service. For the information about the network, the offload controller
invokes the network monitor retrieving the link bandwidth and the link latency to an
offloading service. For the information about the user, the offload controller invokes
the user interface retrieving the user-defined weights for the execution time, the energy
consumption, and the monetary cost. For the information about the device, the offload
controller invokes the device interface retrieving the factors for the energy consump-
tion and for the performance of the hardware platform. For the information about
the offloading service, the offload controller invokes the service monitor retrieving the
factors for the monetary cost and for the performance of the offloading service.

By minimizing the cost function with the retrieved information, the offload controller
decides whether it executes the called Java method on the hardware platform of the
offloading client or distributes the execution of the called Java method to the hardware
platform of the offloading service. In case of a local execution on the offloading client,
the offload controller just returns its invocation – and thus, the invocation of the
execution controller – continuing the execution of the Java method locally on the
offloading client. In case of a remote execution on the offloading service, the offloading
client forwards the input execution state to the service connector. Afterwards, it waits
for the output execution state and the monetary cost of a remote execution on the
offloading service from the service connector. Receiving the output execution state
and the monetary cost from the service connector, the offload controller forwards the
output execution state to the execution controller. It also pays the monetary cost
charged from the offloading service for the remote execution of the Java method.

93

4. Efficient Code Offloading with Annotations

Figure 4.9.: The runtime environment on the offloading service for the basic distribu-
tion to execute application parts distributed from an offloading client.

4.5.3. Offloading Service

Figure 4.9 shows the runtime environment of the offloading service, providing the
service-side functionality for the basic distribution. It consists of an offload compiler,
an execution controller, a state generator, a provider interface, a device benchmark, a
client connector, and an offload controller.

Offload Compiler: The offload compiler of the offloading service corresponds to the
offload compiler on the offloading client (cf. Subsection 4.5.2), translating both offload-
specific Java bytecode instructions into offload-specific machine code.

Execution Controller: The execution controller of the offloading service corresponds
to the execution controller on the offloading client (cf. Subsection 4.5.2). Only the
execution of the offload-specific Java bytecode instruction offload_end invokes the
execution controller that invokes the offload controller, informing it about the execution
end of a Java method and forwarding the output execution state to it.

State Generator: The state generator on the offloading service provides the same
functionality as the state generator on the offloading client (cf. Subsection 4.5.2),

94

4.5. Offloading Framework

extended with the functionality to install an execution state for an invocation of a
Java method. To install an execution state for an invocation of a Java method, the
state generator replaces the member values of the declaring Java class with the related
values contained in the execution state. Notice that the state generator only replaces
the member values, because the offload controller calls a Java method with the right
parameters contained in the execution state. For the replacement of the member values,
the state generator visits the declaring Java class through the reference to the this

object on the stack frame on the Java stack. Afterwards, it replaces the member values
in memory with the values contained in the execution state.

Provider Interface: The offload controller of the offloading service calls the provider
interface to retrieve dynamic factors. The dynamic factors are the monetary cost for
executing code on the hardware platform, and sending and receiving bytes via the
communication network to and from an offloading client. To this end, the provider
interface provides an interface – more precisely text entry boxes, where a provider of a
remote resource defines the resource-specific factors for the monetary cost.

Device Benchmark: The device benchmark of the offloading service corresponds to
the device benchmark on the offloading client (cf. Subsection 4.5.2), benchmarking the
performance of the hardware platform.

Client Connector: According to the basic distribution (cf. Section 4.4), the receive
of a resource request or an offload request invokes the client connector of the offloading
service. By receiving a resource request from the service connector of an offloading
client, the client connector on the offloading service invokes the offload controller to
retrieve the factors for the performance and the monetary cost of executing, sending,
and receiving. Retrieving the factors from the offload controller, the client connector
creates a resource response – containing the factors – and sends it to the requesting
service connector on the offloading client. By receiving an offload request from the
service connector of the offloading client, the client connector on the offloading service
extracts the input execution state from the offload request. Afterwards, the client
connector forwards it to the offload controller that starts the execution of the Java
method. After the execution of the Java bytecode instructions of the Java method, the
offload controller invokes the client connector, forwarding the output execution state
and the monetary cost of the remote execution. The client connector creates an offload
response – containing the output execution state and the monetary cost of the remote
execution – and sends it to the service connector of the offloading client.

95

4. Efficient Code Offloading with Annotations

Offload Controller: The client connector of the offloading service invokes the offload
controller due to the receive of an offload request. To this end, the client connector
forwards the input execution state of a Java method to the offload controller. The
offload controller forwards it to the execution controller that installs the input execution
state for an invocation of the Java method (cf. Subsection 4.5.2). Afterwards, the
offload controller starts the execution of the Java method. At the end of an execution
of a Java method, the execution controller invokes the offload controller and forwards
the output execution state gathered due to the execution of the offload-specific Java
bytecode instruction offload_end. Based on the time elapsed for the execution of
the Java method, the offload controller calculates the monetary cost for the execution.
Possessing the output execution state and the monetary cost for the execution of a
Java method, the offload controller forwards both to the client connector.

4.6. Implementation

The basic distribution is the basis for the concepts and algorithms presented in this
dissertation. Thus, we implemented the functionality required for the basic distribu-
tion on the Java platform (cf. Subsection 4.3.4). For the Java platform, there are
different implementations available, where this dissertation deploys a prototype for
code offloading based on the Jikes Research Virtual Machine (cf. Subsection 4.6.1),
the Open Java Development Kit (cf. Subsection 4.6.2), and the Android Open-Source
Project (cf. Subsection 4.6.3). Beside the implementation of prototypes based on
the Java platform, this dissertation utilizes two self-designed measurement boards (cf.
Subsection 4.6.5) that measure the energy consumption of the offloading clients.

4.6.1. Jikes Research Virtual Machine

The Jikes Research Virtual Machine (RVM) is an open-source implementation of a
JVM, written in the Java programming language (meta-circular). Despite the meta-
circular implementation style, the Jikes RVM is self-hosted, where it executes its Java
bytecode instructions on itself. In November 1997, the development of the Jikes RVM
started as an internal research project at IBM’s Thomas J. Watson Research Center.
At 2012, the Jikes RVM won the ACM SIGPLAN Software award [SIG12]. The cita-
tion of the award says that “The high quality and modular design of Jikes has made it
easy for researchers to develop, share, and compare advances in programming language
implementation.” At the year 2015, the Jikes RVM possesses a large community of re-
searchers and scientific publications, spawning more than 200 papers and at least 40

96

4.6. Implementation

Figure 4.10.: The software stack from the Android OS. [And16a, And16b]

dissertations at almost 100 universities [Mac16]. Focusing on the research of new tech-
niques, the Jikes RVM offers a rapid prototyping for a JVM, supporting the PowerPC
and the Intel x86 32-bit ISAs with a Linux operating system. As Java class libraries,
it utilizes either the implementation from Apache Harmony or from GNU Classpath.

4.6.2. Open Java Development Kit

The Open Java Development Kit (OpenJDK) is a free and open-source implementa-
tion of the Java Platform, Standard Edition (Java SE). The main components of the
OpenJDK project are an implementation of the JVM named HotSpot, the Java class
libraries, and the Java compiler javac. The OpenJDK project implements its compo-
nents mainly in the C++ programming language and the Java programming language.
Back to 2006, Sun Microsystems announced that Java would become open-source and
released main parts like the Java HotSpot virtual machine as free software. To provide
a JDK as free software, Sun Microsystems released at the year 2007 the Java class
libraries as open-source code. Today, the Java platform of OpenJDK is the standard
Java installation on many Linux distributions like Ubuntu.

97

4. Efficient Code Offloading with Annotations

4.6.3. Android Open-Source Project

The Android Open-Source Project (AOSP) is a mobile Operating System (OS) and
application environment for mobile devices like smart phones or tablets. It supports
multiple architectures like ARM, x86, and MIPS3 architecture in 32-bit and 64-bit
variants. Initially developed by Android Inc. and later bought by Google in the year
2005, it provides an open-source software stack. The commercial version Android OS
from Google had 1.4 billion active devices in September 2015 [Goo15]. Thus, it is the
most widespread (mobile) OS. Due to the open nature of AOSP, it has a large commu-
nity of developers that utilizes AOSP for own projects. The software stack of AOSP
runs above a device hardware and comprises a Linux kernel, a Hardware Abstraction
Layer (HAL), an Android platform that consists of the Android runtime, the native
libraries, and the Android framework, the Binder Inter-Process Communication (IPC),
and the applications (cf. Figure 4.10). Depending on the actual hardware platform
of a mobile device, AOSP utilizes a Linux kernel specialized with important additions
(cf. the Binder IPC driver in Figure 4.10) for a (mobile) embedded platform. Through
the Linux kernel and the HAL, AOSP accesses device resources like camera, audio, or
network functions. To this end, the HAL provides a standard interface for software
hooks between the higher-level Android platform and the lower-level drivers. The An-
droid platform consists of the Android runtime, the native libraries, and the Android
framework. The Android runtime includes the Dalvik Virtual Machine (DVM) and
Java-compatible core libraries to execute applications written in the Java program-
ming language. The DVM contains a JIT compiler that executes dex-code (Dalvik
EXecutable), compiled from Java bytecode at development-time. With Android ver-
sion 5.0, Google replaced the JIT compiler with an Ahead-Of-Time (AOT) compiler
that compiles the entire code of an application into machine code at the installation
of an application. The Java-compatible core libraries correspond to a subset of the
discontinued Apache Harmony. Since Android version 7.0, OpenJDK replaces Apache
Harmony. The native libraries provide access to particular features of a hardware plat-
form. For instance, OpenGL ES provides an application programming interface to
render graphics on an embedded device. The Android framework summarizes system
services like the Window Manager or the MediaPlayer Service that access the hardware
platform of a mobile device. In detail, AOSP groups system services under the System
Server and the Media Server (cf. Figure 4.10). The System Server contains services
involved in the system like the Window Manager. The Media Server contains services
involved in playing and recording media like the MediaPlayer Service. The Binder

3Microprocessor without Interlocked Pipeline Stages (MIPS)

98

4.6. Implementation

IPC provides mechanism for a communication across process boundaries, enabling an
interaction between system services as well as between system services and higher-level
applications. Actually, there are two sources for applications in the software stack. The
first source is the pre-installation of applications, providing key capabilities of mobile
devices like calling or browsing. The second source is the user-driven installation of
applications, customizing the functionality of a mobile device with third-party appli-
cations. To this end, Android offers the Android Software Development Kit (SDK),
supporting an environment for an open development of applications. It is a compre-
hensive set of development tools like a debugger or software libraries for application
developers to deploy applications written in the Java programming language. Until
December 2014, Google provided the Android SDK based on a plugin – namely the
Android Development Tools (ADT) plugin – for the Eclipse Integrated Development
Environment (IDE). Nowadays, the Android Studio from Google is the primary IDE
for the deployment of Android applications.

4.6.4. Modifications

Jikes RVM and OpenJDK: The changes to the Jikes RVM (cf. Subsection 4.6.1)
and to the OpenJDK (cf. Subsection 4.6.2) comprise modifications to the JAVA Com-
piler (javac), the implementation of the JVM, and the Java core class libraries (cf.
Subsection 4.3.4). The changes to javac include the integration of the offload-specific
annotation and the offload-specific Java bytecode instructions. The integration enables
the compilation of offload-specific Java source code to offload-specific Java bytecode
instructions at development-time (cf. Subsection 4.5.1). The changes to the imple-
mentation of the JVMs include the execution of the offload-specific Java bytecode
instructions and the functionality required for the offloading client and for the offload-
ing service. Thus, the JVM provides either the execution as an offloading client or as an
offloading service. The changes to the Java core class libraries include the integration
of the offload-specific annotation in the java.lang package.

AOSP: The modification to the AOSP comprises changes to the Android runtime
and an additional system service to the Android application framework (cf. Subsec-
tion 4.6.3). The changes to the Android runtime include the integration of the offload-
specific annotation, the offload-specific Java bytecode instructions, and the function-
ality required for the offloading client (cf. Subsection 4.5.2). To this end, we adapted
among others the DVM corresponding to an implementation of a JVM that executes
the Dalvik Bytecode on the hardware platform. In detail, we enabled the DVM to

99

4. Efficient Code Offloading with Annotations

Figure 4.11.: The measurement board for the Samsung Galaxy Nexus, consisting of a
Raspberry Pi and a self-designed extension board.

execute the two offload-specific Dalvik bytecodes offload and offload_end. More-
over, we enabled it to gather an input execution state of a Java method, install an
output execution state received from an offloading service, and skip a local execution.
Through the execution of offload, the DVM informs an additional system service,
namely the Offload Manager, from the Android application framework of the current
execution of a Java method that is offloadable. Like other managers (e.g., Activity
Manager or Location Manager) from the Android application framework, the Offload
Manager also possesses a category in the Android settings. Via this Android setting,
an end user easily controls the system service of the Offload Manager like starting the
service, stopping the service, or changing the user-defined weights.

4.6.5. Measurement Boards

To measure the energy consumption of an offloading client that offloads computation
to an offloading service, this subsection provides an insight about the self-designed
measurement boards for this dissertation. Due to mobile and stationary measure-
ments of the hardware platforms from a smart phone (cf. Section C.1), a netbook (cf.
Section C.2), and a laptop (cf. Section C.3), this dissertation designs two different

100

4.6. Implementation

Figure 4.12.: The measurement board for the Dell Inspiron Mini 10v and the Lenovo
ThinkPad T61, consisting of a self-designed board and a 16-bit Analog
Data Acquisition Board from Meilhaus Electronic [Ele17].

measurement boards, namely one for the Samsung Galaxy Nexus and another one for
the Dell Inspiron Mini 10v & Lenovo ThinkPad T61.

Samsung Galaxy Nexus: A Raspberry Pi and a self-designed extension board mea-
sures the power consumption of the battery-operated smart phone (cf. Figure 4.11).
The Raspberry Pi runs a real-time operating system – a Linux with RT PREEMPT
patch – polling concurrently samples from a 12 bit Analog-to-Digital Converter (ADC)
on the extension board. The ADC samples the continuous voltage U and current I
of the device under test, namely the Samsung Galaxy Nexus. To this end, the ADC
measures the voltage drop along a 0.01 Ohm shunt resistor, connected in series with the
device under test. The measured voltage drop is proportional to the current I flowing
through the shunt (Ohm’s law R = U

I
). Furthermore, the extension board measures

the voltage U directly at the device under test. Last, the extension board amplifies the
voltage of the shunt resistor with the help of an instrumentation amplifier for precise
measurements. The corresponding design of hardware and software are open-source4.

Dell Inspiron Mini v10 & Lenovo ThinkPad T61: A self-designed board together
with the ME-Jekyll ME-4610 PCI 16-bit Analog Data Acquisition Board from Meil-
haus Electronic (cf. [Ele17]) measures the power consumption of the power-supplied

4github.com/duerrfk/rpi-powermeter

101

github.com/duerrfk/rpi-powermeter

4. Efficient Code Offloading with Annotations

netbook and laptop (cf. Figure 4.12). The self-designed board amplifies the voltage
drop along a 0.1 Ohm shunt resistor with the help of an operational amplifier for precise
measurements. It connects the shunt resistor in series with the device under test, either
the Dell Inspiron Mini 10v or the Lenovo ThinkPad T61. Moreover, it also measure the
voltage U directly at the device under test. Both the voltage and the voltage drop are
analog inputs to the 16-bit Analog Data Acquisition Board that does a high-precision
16 bit/500 kHz A/D conversion. As the analog inputs from the Data Acquisition Board
have a voltage range of ±10V, the self-designed board has a preceding voltage divider
for the power input of 19V/20V from the netbook/laptop.

4.7. Evaluation

To evaluate the performance of the basic distribution, a mobile device executes a Java
application on an unaltered Java Runtime Environment (JRE) and on an offload-
aware JRE. To this end, Subsection 4.7.1 describes the evaluation setup before Sub-
section 4.7.2 presents the evaluation results.

4.7.1. Setup

The different implementations of the prototype for the basic distribution categorize the
evaluation setup (cf. Section 4.6), where this subsection describes the setup for the
prototypes of the Jikes RVM, the OpenJDK, and the AOSP.

Jikes Research Virtual Machine

For the Jikes RVM, the netbook Dell Inspiron Mini 10v (cf. Section C.2) and the
laptop Lenovo ThinkPad T61 (cf. Section C.3) execute the offloading client of the
Jikes RVM prototype, representing two heterogeneous mobile devices. The netbook
is a resource-poor and energy-efficient device, whereas the laptop is a more powerful
device with higher energy consumption. To measure the power consumption of the
netbook or of the laptop, we utilized the measurement board described in detail in
Subsection 4.6.5. The desktop computer HP Compaq 8200 Elite (cf. Section C.4)
executes the offloading service of the Jikes RVM prototype, being the most powerful
device and having a power connection. As an underutilized desktop computer in the
vicinity executes the offloading service, it does not charge a monetary cost for its
utilization (cf. CΞ(ξr)

exec in Section 3.1). The netbook and the laptop communicate via a
3.5 Generation (3.5G) mobile communication network to the desktop computer with
a varying bandwidth of round about 1Mbit/s and a varying latency of round about

102

4.7. Evaluation

100ms. The Huawei E1750 Surf Stick (cf. Section C.6) provides the link to the mobile
communication network. It does not charge a monetary cost for its utilization (cf.
C

Λ(ξl;ξr)
send and C

Λ(ξl;ξr)
recv in Section 3.1), because an end user has today typically a flat-

rate data plan. The application evaluated on the netbook and on the laptop is the
Chesspresso application (cf. Section B.2), where the end user sets the weight for the
time wt, the energy we, and the cost wc to 1 (cf. Section 3.1).

Open Java Development Kit

For the OpenJDK, the evaluated mobile devices are also the resource-poor netbook
and the more powerful laptop (cf. Section C.2 and Section C.3). Both mobile devices
execute the offloading client of the OpenJDK prototype for the basic distribution.
We also measured the power consumption of the netbook or of the laptop with the
measurement board described in detail in Subsection 4.6.5. The desktop computer (cf.
Section C.4) executes the offloading service of the OpenJDK prototype being the most
powerful device and having a power connection. For the monetary cost charged by the
offloading service (cf. CΞ(ξr)

exec in Section 3.1), we consider the price charged by Amazon5

for an m3.medium machine type from its cloud, causing a monetary cost of 0.070 $ per
hour. For the communication network, the netbook and the laptop communicate via a
Wi-Fi link to the desktop computer, not charging a monetary cost for its utilization (cf.
C

Λ(ξl;ξr)
send and CΛ(ξl;ξr)

recv in Section 3.1). The Wi-Fi link has a varying bandwidth of round
about 3Mbit/s and a varying latency of round about 5ms, provided by the Linksys
WRT54GL wireless router (cf. Section C.7). The applications evaluated on the netbook
and on the laptop are a chess game (cf. Section B.2) and a text-to-voice application
(cf. Section B.2), differing in the computational complexity and the communication
required for code offloading. For the user-defined weights, the end user sets the weight
wt for the time, we for the energy, and wc for the cost to 1 (cf. Section 3.1).

Android Open-Source Project

For the AOSP, the evaluated mobile device is the Samsung Galaxy Nexus (cf. Sec-
tion C.1), executing the offloading client of the AOSP prototype. This smart phone
is a resource-constrained device with a high energy consumption for the execution of
resource-intensive application parts. To measure the power consumption on the smart
phone, we utilize the measurement board described in detail in Subsection 4.6.5. A
t2.micro instance from the Amazon Web Services (AWS) Elastic Compute Cloud (EC2)
(cf. Section C.5) executes the offloading service from the OpenJDK prototype, being

5https://aws.amazon.com/ec2/pricing/?nc1=h_ls

103

https://aws.amazon.com/ec2/pricing/?nc1=h_ls

4. Efficient Code Offloading with Annotations

the most powerful device. As a result, we consider the price charged by Amazon6 for a
t2.micro instance from its cloud, causing a monetary cost of 0.012 $ per hour (cf. CΞ(ξr)

exec

in Section 3.1). For the communication network, the smart phone communicates via a
Wi-Fi network and fixed networks to the t2.micro instance, not charging a monetary
cost for the utilization (cf. CΛ(ξl;ξr)

send and C
Λ(ξl;ξr)
recv in Section 3.1). The networks have

a varying bandwidth of round about 2.5Mbit/s and a varying latency of round about
10ms. The Linksys WRT54GL wireless router provides the Wi-Fi AP to the Inter-
net (cf. Section C.7). The mobile application evaluated on the smart phone consists
of resource-friendly and resource-intensive parts, where the resource-friendly parts are
graphical user input and output. The resource-intensive parts are a best chess move
engine (cf. Section B.3), a human face recognition engine (cf. Section B.4), and a text-
to-voice engine (cf. Section B.5), differing in the computational complexity and the
communication required for code offloading. Beside the standard applications always
started on an Android OS, the end user only starts the implemented application for a
better comparison and sets the weight wt for the time, we for the energy, and wc for
the cost to 1 (cf. Section 3.1).

4.7.2. Results

The different implementations of the prototypes for the basic distribution also catego-
rize the evaluation results (cf. Section 4.6), where this subsection describes the results
for the prototypes of the Jikes RVM, the OpenJDK, and the AOSP.

Jikes Research Virtual Machine

The netbook consumes in idle mode 8.40W on average (cf. power consumption at 35 s
in Figure 4.13). Executing the Chesspresso application totally on the netbook with an
unaltered Jikes RVM, this local execution takes in total 29.542 s and consumes in total
294.07 J, resulting in a power consumption of 9.95W on average (cf. Figure 4.13). Now,
executing the Chesspresso application on the netbook with the Jikes RVM enabled for
the basic distribution, it takes in total 16.825 s (cf. Figure 4.13). The remote execution
starts at 14.59 s and ends at 18.69 s, taking 4.10 s. The netbook consumes for the basic
distribution in total 178.00 J resulting in a power consumption of 10.58W on average.
Thus, an execution of the Chesspresso application on the netbook benefits significantly
from the basic distribution, taking 12.717 s less time and consuming 116.07 J less energy.

Compared to the power consumption of the netbook, the absolute power consump-
tion on the laptop is in total higher due to the smaller energy efficiency. The laptop

6https://aws.amazon.com/ec2/pricing/?nc1=h_ls

104

https://aws.amazon.com/ec2/pricing/?nc1=h_ls

4.7. Evaluation

Figure 4.13.: Power consumption on the netbook for a local execution and the
basic distribution of the Chesspresso application.

Figure 4.14.: Power consumption on the laptop for a local execution and the
basic distribution of the Chesspresso application.

105

4. Efficient Code Offloading with Annotations

consumes in idle mode 27.29W on average (cf. power consumption at 10 s Figure 4.14).
Executing the Chesspresso application totally on the laptop with an unaltered Jikes
RVM, this local execution in total takes 8.841 s and consumes 408.97 J, resulting in
a power consumption of 46.25W on average (cf. Figure 4.14). Now, executing the
Chesspresso application on the laptop with the Jikes RVM enabled for the basic dis-
tribution, it takes in total 6.737 s. The remote execution starts at 2.695 s and ends at
6.963 s taking 4.268 s. The laptop consumes for the basic distribution in total 244.89 J
resulting in a power consumption of 36.34W on average. Thus, an execution of the
Chesspresso application on the laptop also benefits from the basic distribution, taking
2.104 s less time and consuming 164.08 J less energy.

Summarizing, the basic distribution increases on both devices the energy efficiency
of the devices as well as the execution speed of the Chesspresso application.

OpenJDK

Chess Game: For the chess game, each mobile device plays 10 rounds with the dif-
ferent opening moves from Figure B.2 and a chess difficulty of 2 (cf. Section B.3).

For the netbook, Table 4.1 summarizes the execution time, energy consumption,
and monetary cost for a local execution and the basic distribution after 10 rounds of
chess moves for each opening move. A local execution of the chess game totally on the
netbook takes the longest time and consumes the most energy for every opening move.
In detail, the execution time for a local execution is between 134.70 s and 345.03 s
with an energy consumption between 1450.38 J and 3715.22 J. Comparing the time
taken and the energy consumed of a local execution with the basic distribution (cf.
Table 4.1), the basic distribution of the Java method that is offloadable from the chess
game reduces both the execution time and the energy consumption significantly. In
detail, it requires at least 24.44 s and 241.10 J and at most 45.31 s and 433.51 J. Due to
the utilization of the offloading service, it reduces the execution time by up to 86.87%

and energy consumption by up to 88.33%, causing monetary cost between 0.05273 $

and 0.12995 $.

For the laptop, Table 4.1 also summarizes the execution time, energy consumption,
and monetary cost for a local execution and the basic distribution after 10 rounds of
chess moves for each opening move. Overall, the results for the evaluation on the laptop
follow the same characteristics as the results for the evaluation on the netbook. Due to
the fact that the laptop is a more powerful device with a higher energy consumption
compared to the netbook, the laptop halves the time taken and more than duplicates
the energy consumed for a local execution of the chess game, still taking the longest

106

4.7. Evaluation

N
et
bo
ok

1
a4

1
b
4

1
c4

1
d
4

1
h
4

1
a3

1
g3

L
oc

al
E
xe

cu
ti

on
E
xe
cu
ti
on

T
im

e:
23

5.
02

34
5.
03

20
4.
06

16
3.
70

13
4.
70

16
2.
98

5
21

4.
95

8
E
ne
rg
y
C
on

su
m
pt
io
n:

25
30

.6
1

37
15

.2
2

21
97

.3
0

17
62

.6
8

14
50

.3
8

17
54

.9
9

23
14

.6
2

M
on

et
ar
y
C
os
t:

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

B
as

ic
D

is
tr

ib
u
ti

on
E
xe
cu
ti
on

T
im

e:
35

.0
3

45
.3
1

31
.8
1

27
.7
9

24
.4
4

27
.6
4

34
.6
0

E
ne
rg
y
C
on

su
m
pt
io
n:

33
8.
78

43
3.
51

30
9.
07

27
2.
00

24
1.
10

27
0.
68

33
7.
66

M
on

et
ar
y
C
os
t:

0.
09

18
1

0.
12

99
5

0.
07

99
3

0.
06

49
7

0.
05

27
3

0.
06

44
2

0.
08

34
8

La
pt
op

1
a4

1
b
4

1
c4

1
d
4

1
h
4

1
a3

1
g3

L
oc

al
E
xe

cu
ti

on
E
xe
cu
ti
on

T
im

e:
12

2.
85

17
8.
61

10
6.
37

89
.3
2

69
.0
2

89
.9
8

11
0.
03

E
ne
rg
y
C
on

su
m
pt
io
n:

56
73

.3
5

82
48

.1
2

49
12

.3
5

41
24

.7
1

31
87

.3
0

41
55

.2
3

50
81

.1
4

M
on

et
ar
y
C
os
t:

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

B
as

ic
D

is
tr

ib
u
ti

on
E
xe
cu
ti
on

T
im

e:
34

.5
7

44
.8
9

31
.2
2

27
.2
7

23
.9
1

27
.0
6

32
.4
2

E
ne
rg
y
C
on

su
m
pt
io
n:

12
03

.0
6

15
19

.6
7

11
10

.3
4

98
8.
40

89
0.
93

99
3.
11

11
38

.2
4

M
on

et
ar
y
C
os
t:

0.
09

21
6

0.
12

96
6

0.
07

76
9

0.
06

35
0

0.
04

99
7

0.
06

00
5

0.
08

41
4

Ta
bl
e
4.
1.
:O

ve
rv
ie
w
of

ex
ec
ut
io
n
ti
m
e,
en
er
gy

co
ns
um

pt
io
n,

an
d
m
on

et
ar
y
co
st

on
th
e
ne
tb
oo

k
an

d
on

th
e
la
pt
op

fo
rt

he
ev
al
ua

ti
on

of
th
e
ch
es
s
ga

m
e
w
it
h
di
ffe

re
nt

op
en
in
g
m
ov
es
.

107

4. Efficient Code Offloading with Annotations

time and consuming the most energy (cf. Table 4.1). In detail, the execution time for a
local execution is between 69.019 s and 178.608 s with an energy consumption between
3187.30 J and 8248.12 J. Despite the higher performance of the laptop, the benefits
of the basic distribution to the offloading service are still notable (cf. Table 4.1).
Compared to a local execution, the basic distribution reduces the execution time and
the energy consumption by up to 74.87% and 81.58%. It requires at least 23.912 s and
890.93 J and at most 44.889 s and 1519.67 J with a monetary cost of at least 0.04997 $

and at most 0.12966 $.
Summarizing, the basic distribution increases on the netbook and on the laptop the

energy efficiency of the devices as well as the execution speed of the chess game.

Text-to-Voice Application: For the text-to-voice application, each mobile device
transforms either from the beginning the next 15 words (Idx=0 Cnt=15) or from the
word at position 15 the next 20 words (Idx=15 Cnt=20) from ThinkAir or MAUI with
the voice “Alan” to voice (cf. Section B.5).

For the netbook, Table 4.2 shows the execution time, energy consumption, and
monetary cost for a local execution and the basic distribution, transforming 15 or 20

words from ThinkAir or MAUI to voice. A local execution transforms the words to
voice totally on the netbook, taking the longest time (minimum: 65.532 s; maximum:
85.024 s) and consuming the most energy (minimum: 705.64 J; maximum: 915.52 J)
compared to the basic distribution (cf. Table 4.2). As the text-to-voice application
is on the netbook a good candidate for a distribution, the basic distribution reduces
significantly the execution time and energy consumption by up to 51.48% and 54.00%

(cf. Table 4.2). In detail, it takes at least 32.519 s and at most 41.472 s, consumes at
least 332.97 J and at most 423.29 J, and raises at least 0.03867 $ and at most 0.05560 $.

For the laptop, Table 4.2 shows the execution time, energy consumption, and mon-
etary cost for a local execution and the basic distribution, transforming the words to
voice. A local execution of the text-to-voice application takes between 26.083 s and
33.731 s and consumes between 280.86 J and 363.21 J (cf. Table 4.2). Due to the fact
that, on the one hand, the laptop is a more powerful device with a higher energy con-
sumption and, on the other hand, the text-to-voice application has a big size of the
output execution state, a local execution on the laptop is better than a remote execu-
tion on the offloading service. As a result, the basic distribution does not distribute
the Java method that is offloadable of the text-to-voice application. Regarding a naive
basic distribution that still distributes the Java method that is offloadable, it increases
the execution time (minimum: 29.304 s; maximum: 38.508 s) by up to 16.16%, the
energy consumption (minimum: 298.35 J; maximum: 392.98 J) by up to 10.09%, and

108

4.7. Evaluation

N
et
bo
ok

T
h
in

kA
ir

:
T

h
in

kA
ir

:
M

A
U

I:
M

A
U

I:
Id

x=
0

C
nt

=
15

Id
x=

15
C

nt
=

20
Id

x=
0

C
nt

=
15

Id
x=

15
C

nt
=

20
L
oc

al
E
xe

cu
ti

on
E
xe
cu
ti
on

T
im

e:
65

.5
3

84
.4
5

65
.9
3

85
.0
2

E
ne
rg
y
C
on

su
m
pt
io
n:

70
5.
64

90
9.
34

70
9.
88

91
5.
52

M
on

et
ar
y
C
os
t:

0.
00

0.
00

0.
00

0.
00

B
as

ic
D

is
tr

ib
u
ti

on
E
xe
cu
ti
on

T
im

e:
32

.5
3

41
.4
7

32
.5
2

41
.2
5

E
ne
rg
y
C
on

su
m
pt
io
n:

33
2.
97

42
3.
29

33
3.
98

42
1.
17

M
on

et
ar
y
C
os
t:

0.
04

14
4

0.
05

56
0

0.
03

86
7

0.
05

49
8

La
pt
op

T
h
in

kA
ir

:
T

h
in

kA
ir

:
M

A
U

I:
M

A
U

I:
Id

x=
0

C
nt

=
15

Id
x=

15
C

nt
=

20
Id

x=
0

C
nt

=
15

Id
x=

15
C

nt
=

20
L
oc

al
E
xe

cu
ti

on
E
xe
cu
ti
on

T
im

e:
26

.0
8

33
.7
3

26
.5
5

33
.1
5

E
ne
rg
y
C
on

su
m
pt
io
n:

28
0.
86

36
3.
21

28
5.
89

35
6.
96

M
on

et
ar
y
C
os
t:

0.
00

0.
00

0.
00

0.
00

N
ai

ve
D

is
tr

ib
u
ti

on
E
xe
cu
ti
on

T
im

e:
29

.3
0

37
.9
1

29
.9
9

38
.5
1

E
ne
rg
y
C
on

su
m
pt
io
n:

29
8.
35

38
5.
29

30
7.
03

39
2.
98

M
on

et
ar
y
C
os
t:

0.
04

10
7

0.
05

47
9

0.
03

80
3

0.
05

17
8

Ta
bl
e
4.
2.
:O

ve
rv
ie
w

of
ex
ec
ut
io
n
ti
m
e,

en
er
gy

co
ns
um

pt
io
n,

an
d
m
on

et
ar
y
co
st

on
th
e
ne
tb
oo

k
an

d
on

th
e
la
pt
op

fo
r
th
e
ev
al
ua

ti
on

of
th
e
te
xt
-t
o-
vo
ic
e
ap

pl
ic
at
io
n.

109

4. Efficient Code Offloading with Annotations

Figure 4.15.: Power consumption on the smart phone for a local execution and the
basic distribution of the mobile application.

causes monetary cost between 0.03803 $ and 0.05479 $ compared to a local execution.
Summarizing, the basic distribution increases on the netbook and on the laptop

the energy efficiency of the device as well as the execution speed of the chess game.
The basic distribution only offloads the Java method that is offloadable from the text-
to-voice application on the netbook, benefiting from computation offloading. On the
laptop, the basic distribution does not offload the Java method that is offloadable from
the text-to-voice application due to its big size of the output execution state. The
evaluation results of a naive basic distribution that still offloads the Java method that
is offloadable would decrease the energy efficiency of the device as well as the execution
speed of the text-to-voice application on the laptop, highlighting the importance of
proper decisions for computation offloading.

Android Open-Source Project

Figure 4.15 shows the power consumption on the smart phone for a local execution
of the application on its hardware platform in airplane mode. On average, the smart
phone consumes 1.107W in idle mode, 3.612W for utilizing the cellular link, and
2.412W during the execution of the resource-intensive application parts. Once an end
user starts the application on the smart phone, the smart phone starts the execution
of the best chess move engine with configuration 0 of the chess board (cf. Figure B.2i)
and a chess difficulty of 2. The best chess move engine takes in total 37.216 s caused by

110

4.8. Summary

its high code complexity. After a short period of time for user input and output (0.5 s),
the application executes the human face recognition engine with a minimum scale of
1, a maximum scale of 100, and an image size of 1258 pixels times 1024 pixels. It takes
11.431 s caused by its moderate code complexity. After another period of time for user
input and output (0.5 s), the application executes the text-to-voice engine that finishes
the execution. The text-to-voice engine transforms all words from OWN with the voice
“Alan” (cf. Section B.5). The text-to-voice engine takes 18.624 s caused by a higher
code complexity than the human face recognition engine but a lower code complexity
than the best chess move engine. In total, the local execution of the application on the
smart phone takes 68.853 s and consumes 173.159 J.
Figure 4.15 also shows the power consumption on the smart phone for the basic

distribution of the application via a Wi-Fi link to the Internet and thus, to an offloading
service at the cloud. The Wi-Fi link between the smart phone and the server instance
at the cloud has a bandwidth of 1.5MB/s and a latency of 8.605ms. As a result, the
basic distribution executes the best chess move engine, the human face recognition
engine, and the text-to-voice engine on the offloading service, reducing its execution
time to 4.208 s, to 7.654 s, and to 2.084 s, respectively. In total, the basic distribution
results in an execution time of 15.705 s and an energy consumption of 45.301 J.
Summarizing, the basic distribution increases significantly on the smart phone the

energy efficiency of the device as well as the execution speed of the application.

4.8. Summary

To offload computation from a (resource-poor) mobile device to a (powerful) remote
resource like a server instance at the cloud, the basic distribution described in Sec-
tion 4.1 provides an efficient code offloading with annotations. An efficient code of-
floading uses sparingly resources from both a mobile device and a remote resource
relying on least interventions from both an application developer and an end user.
To this end, it utilizes an annotation-based instrumentation of portable code, requir-
ing a little application-specific knowledge from an application developer. The system
overview described in Section 4.2 specifies the system model, the problem statement,
and the system components of the basic distribution between a mobile device and a re-
mote resource (two-tier architecture). As features like a dynamic adaptation, resource
efficiency, or a seamless execution are necessarily for the basic distribution, it utilizes
a runtime-layer offloading described in Section 4.3. It runs a runtime environment on
the hardware platform of participating resources to abstract from actual capabilities
and properties from different hardware platforms and software stacks in the landscape

111

4. Efficient Code Offloading with Annotations

of Mobile Cloud Computing (MCC). In detail, the offloading client and the offloading
service extends the functionality provided from a runtime environment like the Java
platform to enable an efficient code offloading based on portable code. The offload-
ing timeline described in Section 4.4 for the basic distribution between an offloading
client and an offloading service via a communication network describes each step from
an identification of application parts for a remote execution to a receive of an output
execution state after a remote execution. Each step described in the timeline from
the basic distribution requires specific functionality on the offloading client and on the
offloading service provided by the offloading framework described in Section 4.5. The
functionality provided by the offloading framework are interfaces for the device manu-
facturer, end user, and resource provider, benchmark of the hardware, controllers for
the distribution and execution, monitors for the network and service, connectors to
the client and the service, an application profiler, a state generator, and a compiler.
To analyze the interplay of the functionality required for the basic distribution, this
dissertation deploys different implementations described in Section 4.6 of a prototype
based on the Jikes Research Virtual Machine, the OpenJDK (Java Development Kit),
and the Android Open-Source Project. Furthermore, each prototype performs an eval-
uation described in Section 4.7 of the performance for the basic distribution between a
mobile device like a smart phone, netbook, or laptop to a server instance at a desktop
or the Amazon cloud. In summary, the evaluation results for the basic distribution
of an application like a chess game, a face recognition application, or a text-to-voice
application outperform significantly a related execution of the applications locally on
the hardware platform of the mobile devices.

112

Chapter 5
Robust Code Offloading through
Safe-point’ing

A mobile device might suffer from crash failures of the communication network that
last for longer periods of seconds to minutes during the basic distribution presented in
detail in Chapter 4. To make the basic distribution robust against crash failures, this
chapter presents a robust code offloading of application parts through safe-point’ing. To
this end, Section 5.1 describes a preemptable distribution of application parts between
an offloading client on a (resource-poor) mobile device and an offloading service on a
(powerful) remote resource. The preemptable distribution enables an offloading client
to react on failures by interrupting a remote execution on an offloading service and
continuing the remote execution locally based on the execution state of the offloading
service. First, Section 5.2 gives the system overview for the preemptable distribution,
including the system model, the problem statement, and the system components, before
Section 5.3 highlights a related offloading timeline. The basic idea of the preemptable
distribution is the creation and transmission of safe-points of a remote execution, where
a safe-point conceptually corresponds to a snapshot of the state of a remote execution.
The offloading framework described in Section 5.4 enables an offloading client on a
mobile device to continue a remote execution locally from the safe-point received most
recently, containing the intermediate state of the remote execution on an offloading
service. To evaluate the benefit and overhead of the preemptable distribution compared
to the basic distribution, Section 5.5 presents the evaluation of a prototype, including
the evaluation setup and the evaluation results. Last, Section 5.6 summarizes the main
facts of a robust code offloading through safe-point’ing presented in this chapter.

5.1. Preemptable Distribution

The basic distribution – presented in detail in Chapter 4 – of applications parts com-
prises an offloading client that distributes application parts, an offloading service that
executes the distributed application parts, and a (wireless) link that connects both

113

5. Robust Code Offloading through Safe-point’ing

(communication network). Corresponding to the failure model in Section 3.4, the
offloading service as well as the (wireless) link suffer from crash failures. Multiple
evaluations in the literature show that mobile connections are error-prone, causing
(temporary) disconnections between an offloading client and an offloading service. For
instance, Ding et al. [DWC+13] measure the signal strength of a 3G mobile commu-
nication network from smart phones with Android OS based on a data set from 3785

volunteers worldwide. The measurements show that over 80% (60%) of the end users
have a poor signal strength for over 15% (32%) of their active usage time. As end users
of smart phones move frequently in an area with a poor coverage of cellular networks,
Ding et al. [DWC+13] identify geographic variations of network coverage as the major
reason for temporary disconnections.

Approaches proposed in the literature only consider very limited strategies to handle
failures during a remote execution of application parts. Popular strategies either start
a local re-execution of an application part or wait for a re-connection to the remote site
in case of failures. Both strategies have adverse effects for the efficiency of the energy
consumption as well as for the execution time of an application: On the one hand, a
distribution plus a re-execution of an application part consume more energy and take
more time than a local execution of the application part. Aborting a distribution of
an application part due to a failure wastes the energy consumed and the time spent
so far for the distribution plus the waiting in idle mode for the end of the remote
execution. On the other hand, a distribution plus waiting for a re-connection block
an offloading client for an (arbitrary) long time. Moreover, an offloading client again
consumes energy and spends time while waiting, possible beyond the point in time,
where a local execution would be more efficient.

In order to solve the dilemma of either waiting for a re-connection or starting a local
re-execution in case of a failure, we propose the approach of a preemptable distribution.
The preemptable distribution enables an offloading client to re-use the intermediate
state of a remote execution on an offloading service for a local continuation in case of
a failure. To this end, an offloading service creates from time to time the intermediate
states for an execution of an application part and transmits these intermediate states
to the offloading client. In case of a failure, the offloading client does not need to either
wait for a re-connection or start a local re-execution, because it now continues the
execution locally based on the intermediate state received most recently. We call such
an intermediate state of a remote execution a safe-point, containing the information
required on an offloading client for a continuation of the partial remote execution of
an application part. The challenge of the preemptable distribution is to determine the
right times of creating and transmitting safe-points such that it increases the energy

114

5.2. System Overview

efficiency on the offloading client and the execution speed of an application. In de-
tail, if the preemptable distribution utilizes too many safe-points, the communication
overhead and thus, the energy consumption increases. If it utilizes too few safe-points,
the risk of falling back to a very old intermediate state in case of a failure increases
ultimately. At worst, it converges into the basic distribution without safe-points, just
waiting for a re-connection or starting a local re-execution. The computation complex-
ity of an application part together with the size of a safe-point influence the decision
for creating and transmitting a safe-point. For instance, if a local re-execution of an
application part is inexpensive with regard to energy, fewer safe-points are sufficient.
To this end, the preemptable distribution estimates the energy saved by a safe-point
based on online measurements to calculate the right time for safe-points such that it
reduces effectively the energy consumption of an offloading client in average.
Summarizing, we make the following contributions: (1) A framework for the preempt-

able distribution based on safe-points for applications written in the Java programming
language; (2) an adaptive algorithm with online measurements that schedules the cre-
ation and transmission of safe-points such that it minimizes the energy consumption
and increases the robustness under failures; (3) an implementation of the offloading
framework for the preemptable distribution on the Java platform; and (4) an evalua-
tion with state of the art mobile devices that shows the efficiency of the preemptable
distribution based on safe-points.

5.2. System Overview

The preemptable distribution increases the robustness of the basic distribution by
re-using intermediate states of a remote execution. Thus, the system model and the
system components of the preemptable distribution are same as before (cf. Section 4.2).
Beside the minimization of the cost function fw for the basic distribution, the pre-

emptable distribution additionally increases the robustness of an application under
crash failures. While increasing the robustness of an application, the execution time
and energy consumption should stay small in cases with failures. Regarding the cost
function fw of Equation 4.1, the creation and transmission of safe-points influence the
execution time T (Aαo ,Ξ(ξ)), the energy consumption E(Aαo ,Ξ(ξ)), and the monetary
cost C(Aαo ,Ξ(ξ)) of a remote execution. We assume that safe-point’ing is an additional
feature offered by the provider of an offloading service and, for instance, financed by
advertising (cf. Google with Android OS), not charging additional monetary cost.
However, safe-point’ing increases the execution time Twait(Aαo ,Ξ(ξr)) on an offloading
client due to the time for creating safe-points on an offloading service. It also causes

115

5. Robust Code Offloading through Safe-point’ing

the execution time Tsfpt(Aαo ,Ξ(ξr)) on an offloading client due to receiving safe-points
from an offloading service. Thus, the execution time T (Aαo ,Ξ(ξ)) is defined as:

T (Aαo ,Ξ(ξ)) = Tremote(Aαo ,Ξ(ξr)) = Tsend(Aαo ,Ξ(ξr)) + Twait(Aαo ,Ξ(ξr))

+ Tsfpt(Aαo ,Ξ(ξr)) + Trecv(Aαo ,Ξ(ξr))

with

Twait(Aαo ,Ξ(ξr)) =
P exe
pcode(Istate(Aαo), Ppcode(Aαo))

Pppwr(Ξ(ξr))
+

N(SP)−1∑
s

Tcrtn(SP i)

Tsfpt(Aαo ,Ξ(ξr)) =

N(SP)−1∑
s

(
SP size

i (Aαo)

B
Λ(ξl;ξr)
down

+ L
Λ(ξl;ξr)
down)

Please note that the time Tcrtn(SP i) spent for creating a safe-point depends on the
current execution state of the remote execution and thus, is unknown in advance.

Beside increasing the execution time on an offloading client, safe-point’ing also con-
sumes energy, causing the energy consumption Esfpt(Aαo ,Ξ(ξr)) for receiving safe-
points. Please note that the energy consumption Ewait(Aαo ,Ξ(ξr)) includes the increase
of the energy consumption caused by creating safe-points on the remote side. Thus,
the energy consumption E(Aαo ,Ξ(ξ)) is defined as:

E(Aαo ,Ξ(ξ)) = Eremote(Aαo ,Ξ(ξr)) = Esend(Aαo ,Ξ(ξr)) + Ewait(Aαo ,Ξ(ξr))

+ Esfpt(Aαo ,Ξ(ξr)) + Erecv(Aαo ,Ξ(ξr))

with
Esfpt(Aαo ,Ξ(ξr)) = Tsfpt(Aαo ,Ξ(ξr)) ·EΞ(ξl)

recv

As the total number N(SP) − 1 of created and received safe-points as well as the
time for creating each safe-point Tcrtn(SP i) are unknown in advance, Twait(Aαo ,Ξ(ξr)),
Tsfpt(Aαo ,Ξ(ξr)), Ewait(Aαo ,Ξ(ξr)), and Esfpt(Aαo ,Ξ(ξr)) are also unknown in advance.

5.3. Offloading Timeline

Figure 5.1a shows the preemptable distribution with safe-point’ing of an application
part between an offloading client and an offloading service, where no failures occur
during the remote execution. Compared to the basic distribution of an application

116

5.3. Offloading Timeline

(a) No failures during the remote execution. (b) Failures during the remote execution.

Figure 5.1.: The preemptable distribution of an application part between an offloading
client and an offloading service via a communication network, where (a)
no failures occur during the remote execution and (b) failures occur during
the remote execution, where the offloading client continues the execution
locally.

part (cf. Section 4.4), an offloading service creates and transmits safe-points to an
offloading client during an execution of an application part. In detail, in case of a remote
execution, the offload controller invokes a safe-point generator to create a safe-point on
the offloading client (cf. Subsection 5.4.1). A safe-point includes the parameters of the
method, all reachable values of heap objects, declared class member objects, and static
objects, corresponding to the input execution state of the basic distribution. After
the creation of a safe-point on the safe-point generator, the offload controller forwards
the created safe-point to the service connector and waits for the output execution
state. The service connector creates the offload request that contains among others the
safe-point and sends it to the offloading service.
Due to the receive of an offload request, the offloading service installs the contained

information and calls the Java method, starting a remote execution just like for the
basic distribution. To execute the Java method, the Java Runtime Environment (JRE)
invokes the offload compiler to translate the platform-independent Java bytecode in-
structions into platform-dependent machine code. During the translation of Java byte-
code instructions into machine code, the offload compiler instruments the machine code
with breakpoints to interrupt the execution of the Java method at certain points de-
tailed below. The introduced breakpoints invokes the execution controller that again
invokes the offload controller. Due to the invocation of the offload controller, it decides
whether to create a safe-point at this point in time and transmit it to the offloading
client. During the execution of the Java method on the offloading service, the offload

117

5. Robust Code Offloading through Safe-point’ing

controller might create several safe-points, but not transmitting each. It only transmits
a safe-point to the offloading client if the energy consumption on the offloading client to
locally reach the execution state contained in a safe-point is higher than a transmission
of the safe-point from the offloading service to the offloading client.

While the offloading service executes the Java method, the offloading client runs
a failure handler. The failure handler decides whether to preempt the distribution
and continue the remote execution on the offloading service locally based on the safe-
point received most recently (cf. Figure 5.1b). To this end, the failure handler on the
offloading client monitors via the service connector the link to the offloading service as
well as the remote service itself (cf. Subsection 4.5.2). In case of the failure handler
detects a connection failure or a node failure, it invokes the offload controller to continue
the remote execution locally on the offloading client.

5.4. Offloading Framework

The preemptable distribution extends the functionality provided from the offloading
framework of the basic distribution (cf. Section 4.5), adapting the offloading client (cf.
Subsection 5.4.1) and the offloading service (cf. Subsection 5.4.2).

5.4.1. Offloading Client

Figure 5.2 shows the runtime environment on the offloading client that enables the
preemptable distribution with safe-point’ing. Compared to the runtime environment of
the basic distribution (cf. Subsection 4.5.2), the changes comprise the offload controller
and the state generator – now named safe-point generator – and a failure handler.

Offload Controller: The execution controller on the offloading client invokes the of-
fload controller due to the execution of the Java bytecode instruction offload, marking
the call of the Java method as feasible for a distribution. To this end, the offload con-
troller on the offloading client invokes the safe-point generator to create a safe-point
of the current execution state. The generated safe-point corresponds to the input exe-
cution state of the basic distribution. Thus, the safe-point generator forwards it after
the creation to the offload controller that again forwards it to the service connector
just like for the basic distribution. The failure handler on the offloading client invokes
the offload controller due to the occurrence of a connection failure to or a node fail-
ure of the offloading service. To this end, the offload controller invokes the safe-point
generator to retrieve the execution state last known of the remote execution. The

118

5.4. Offloading Framework

Figure 5.2.: Overview of the runtime environment on the offloading client enabling the
preemptable distribution based on safe-point’ing with an adapted offload
controller and an added safe-point generator and failure handler.

safe-point generator generates the execution state last known based on the safe-point
created locally (input execution state) together with the safe-point(s) received from
the offloading service. Retrieving the execution state last known, the offload controller
forwards it to the execution controller that installs it and continues the execution of
the remote execution locally.

Safe-point Generator: The safe-point generator on the offloading client extends the
state generator from the basic distribution (cf. Subsection 5.4.1) by providing func-
tionality for safe-point’ing. It creates the first safe-point before the execution of a Java
method that is offloadable. This first safe-point corresponds to the input execution
state of the basic distribution that contains all of the information required for a remote
execution. Furthermore, the safe-point generator is responsible to generate the execu-
tion state last known of the remote execution on the offloading service. To this end, it
combines all incremental safe-points received from the offloading service into a single
safe-point. This combined safe-point contains the execution state last known from a
remote execution like all variables required and modified during a remote execution.

Failure Handler: The failure handler on the offloading client decides whether to pre-
empt the distribution of the Java method and continue its remote execution on the

119

5. Robust Code Offloading through Safe-point’ing

Figure 5.3.: Overview of the runtime environment on the offloading service enabling the
preemptable distribution based on safe-point’ing with an adapted offload
compiler, execution controller, and offload controller and an added safe-
point generator.

offloading service locally based on the execution state last known. To this end, it
monitors via the service connector the link to the offloading service as well as the re-
mote service itself by sending periodically heartbeat messages. Due to the periodically
pinging of the offloading service, the failure handler invokes the offload controller in
case of receiving no heartbeat message after a timeout period. Receiving no heartbeat
message after a timeout period corresponds to the occurrence of a failure.

5.4.2. Offloading Service

Figure 5.3 shows the runtime environment on the offloading service that enables the
preemptable distribution with safe-point’ing. Compared to the runtime environment of
the basic distribution (cf. Subsection 4.5.3), the changes comprise the offload compiler,
the execution controller, the offload controller, and the safe-point generator.

Offload Compiler: The offload compiler on the offloading service inserts breakpoints
at each Java bytecode instruction, where an execution of the Java bytecode instruction
branches an execution of a Java method. Java bytecode instructions that branch an
execution of a Java method are goto, goto_w, jsr, jsr_w, ret, tableswitch, and

120

5.4. Offloading Framework

lookupswitch (cf. Appendix A). These Java bytecode instructions are particularly
well-suited for safe-point’ing, because the execution state at these branching instruc-
tions has a small footprint of memory. As variables with a local scope – e.g., inside
the body of a loop – are typically not visible after the branch, a safe-point does not
include such variables with a local scope and thus, has a small footprint of memory.
Furthermore, the offload compiler on the offloading service inserts additional As-

sembler code to efficiently keep track of modifications to the Java stack, the Java
heap, and static Java objects during an execution of a Java method (cf. Subsec-
tion 4.3.4). To track modifications during an execution, the offload compiler inserts
the additional Assembler code at each Java bytecode instruction that modifies a value
of the Java stack, the Java heap, or a static Java object. Java bytecode instruc-
tions that change a value of the Java stack are istore, lstore, fstore, dstore,
astore, istore_0, istore_1, istore_2, istore_3, lstore_0, lstore_1, lstore_2,
lstore_3, fstore_0, fstore_1, fstore_2, fstore_3, dstore_0, dstore_1, dstore_2,
dstore_3, astore_0, astore_1, astore_2, astore_3, iastore, lastore, fastore,
dastore, aastore, bastore, castore, and sastore (cf. Appendix A). The Java byte-
code instruction that changes a value of the Java heap is putfield and the Java
bytecode instruction that changes a value of a static Java object is putstatic (cf.
Appendix A). At execution, the inserted Assembler code flips a certain Bit in the
Java header of the corresponding Java object, where a Bit flipped in the Java header
indicates the modification of a Java object during an execution.

Execution Controller: Each time the execution of a Java method reaches the addi-
tional Assembler code inserted by the offload compiler for Java bytecode instructions
that branches an execution of a Java method, the inserted Assembler code invokes
the execution controller on the offloading service. On the one hand, the execution
controller counts the number of Assembler code executed since the safe-point created
last and, on the other hand, invokes the offload controller to create and transmit a
safe-point to the offloading client at the current state of an execution.

Offload Controller: The execution controller on the offloading service invokes the
offload controller due to the execution of the additional Assembler code inserted by the
offload compiler for Java bytecode instructions that branches an execution of a Java
method. The offload controller decides whether to create a safe-point at this point in
time and transmit it to the offloading client by evaluating the energy savings for the
offloading client through receiving a safe-point.
In order to evaluate the energy savings of a safe-point, the offload controller estimates

121

5. Robust Code Offloading through Safe-point’ing

the energy consumption on the offloading client to reach the execution state contained
in the safe-point through a local execution. To this end, it estimates the execution
time required on the offloading client to execute the Assembler code counted since the
last safe-point by the execution controller. Multiplying the estimated execution time
with the energy factor for executing portable code (cf. Section 3.1), the offload con-
troller calculates the energy consumption spent on the offloading client for this partial
execution. In detail, the estimation of the energy consumption for a local execution
includes the following parameters: (1) The number P exe

asm(Si(Aαo), Ppcode(Aαo)) with
S0(Aαo) = Istate(Aαo) of Assembler code executed since the last safe-point to reach
the execution state contained in the current safe-point. The offload controller obtains
the number P exe

asm(Si(Aαo), Ppcode(Aαo)) from the execution controller that counts the
number of executed Assembler code based on the additional Assembler code inserted
by the offload compiler. (2) The performance characteristic PΞ(ξk)

ppwr (asm) of the offload-
ing client Ξ(ξk) that indicates how many Assembler code the offloading client executes
per second. (3) The performance characteristic EΞ(ξk)

exec (asm) of the offloading client
Ξ(ξk) that indicates an energy factor of how much energy the execution of Assembler
code consumes per second. Please note that an offload request contains both perfor-
mance characteristics of the offloading client. Thus, the energy consumption for a local
execution EΞ(ξk)

exec (Si(Aαo) is defined as:

EΞ(ξk)
exec (Si(Aαo), Ppcode(Aαo)) =

P exe
asm(Si(Aαo), Ppcode(Aαo))

P
Ξ(ξk)
ppwr (asm)

·EΞ(ξk)
exec (asm) (5.1)

Beside the estimation of the energy consumption on the offloading client for a local
execution, the offload controller on the offloading service also estimates the energy
consumption for a transmission of the safe-point to the offloading client. To this end,
it invokes the safe-point generator to create a safe-point at the current state of the
execution. Based on the created safe-point, the offload controller determines the size
of it and multiplies the size with the energy factor for receiving bytes (cf. Section 3.1).
In detail, the estimation of the energy consumption for a transmission includes the
following parameters: (1) The size Ssizei in bytes of the safe-point. In order to calculate
the size Ssizei of a safe-point, the safe-point generator creates a safe-point that the
offloading service might not sent if it is not beneficial for the offloading client. (2)
The performance characteristic BΛ(ξk;ξm)

down and LΛ(ξk;ξm)
down for a link Λ(ξk; ξm) between the

offloading service Ξ(ξm) and the offloading client Ξ(ξk) that indicates the number of
bytes the link transmits per second and the network delay of the link in seconds,
respectively (cf. Section 3.1). (3) The performance characteristic EΞ(ξk)

recv that indicates
an energy factor for receiving bytes on the offloading client (cf. Section 3.1). Please note

122

5.4. Offloading Framework

that an offload request contains the three performance characteristics of the offloading
client. Thus, the energy consumption for a transmission EΞ(ξk)

trnsmt(Si(Aαo) is defined as:

E
Ξ(ξk)
trnsmt(Si(Aαo)) =

(
Ssizei

B
Λ(ξk;ξm)
down

+ L
Λ(ξk;ξm)
down

)
·EΞ(ξk)

recv (5.2)

Finally, the offload controller only sends the created safe-point to the offloading client
if the transmission of the safe-point saves energy on the offloading client compared to
a local execution: EΞ(ξk)

exec (Si(Aαo), Ppcode(Aαo)) > E
Ξ(ξk)
trnsmt(Si(Aαo)). Therefore, the of-

floading service ensures for a safe-point that the energy consumption for a transmission
is lower than for a local execution.

Algorithm 5.1 summarizes the decision making for safe-points on the offload con-
troller. Keeping the overhead on the offloading service low, the offload controller only
generates a new safe-point if P exeasm(Si(Aαo),Ppcode(Aαo))

P
Ξ(ξk)
ppwr (asm)

is greater than a time threshold

T exethrshld (cf. Line 3). As a result, the time threshold T exethrshld defines the rate at which
the offloading service generates potential safe-points for a transmission, avoiding a
too-frequent generation of safe-points for a code sequence with closely-spaced break-
points. Furthermore, it only sends a safe-point if the sum of the energy consumption
for a transmission E

Ξ(ξk)
trnsmt(Si(Aαo)) plus an energy threshold Etrnsmt

thrshld is smaller than
for a local execution E

Ξ(ξk)
exec (Si(Aαo), Ppcode(Aαo)) (cf. Line 9). Please note that the

energy threshold Etrnsmt
thrshld functions as a parameter for the accuracy of the estimations

to include, for instance, bandwidth or latency variations in the network link.

Last, the execution controller on the offloading service invokes the offload con-
troller due to the execution of the Assembler code for the Java bytecode instruction
offload_end. To this end, the offload controller always invokes the safe-point genera-
tor to create a last safe-point due to the end of the remote execution of the Java method.
The offload controller forwards the safe-point created last to the client connector that
transmits it to the offloading client.

Safe-point Generator: The safe-point generator on the offloading service is respon-
sible for an efficient creation of safe-points. Thus, the safe-point generator utilizes its
own serialization and deserialization of Java objects. Utilizing its own serialization and
deserialization, it does not require from an application developer the implementation
of an individual serialization and deserialization for each Java class based on the Java
interface serializable. Not relying on the Java interface serializable keeps the
generation of safe-points from Java classes transparent to application developers. To
this end, the safe-point generator implements a memory module for the Java Virtual

123

5. Robust Code Offloading through Safe-point’ing

Constant: JBCbrnch # Branching Java ByteCode (JBC) instructions
Constant: JBCofldnd # Java bytecode instruction offload_end

Input: JBCnxt # Java bytecode instruction executed NeXT
Input: T curthrshld # Current time threshold, initialized to T exethrshld

1: if JBCnxt ∈ JBCbrnch then
2: ttmp :=

P exeasm(Si(Aαo),Ppcode(Aαo))

P
Ξ(ξk)
ppwr (asm)

;

3: if ttmp > T curthrshld then
4: T curthrshld := T curthrshld + T exethrshld;

5: Si := gnrtSfPnt(); # Generate a safe-point . . .
6: Ssizei := sizeof(Si); # . . . and determine the size of it

7: E
Ξ(ξk)
trnsmt(Si(Aαo)) :=

(
Ssizei

B
Λ(ξk;ξm)

down

+ L
Λ(ξk;ξm)
down

)
·EΞ(ξk)

recv ;

8: E
Ξ(ξk)
exec (Si(Aαo), Ppcode(Aαo)) := ttmp ·EΞ(ξk)

exec (asm);

9: if EΞ(ξk)
exec (Si(Aαo), Ppcode(Aαo)) >

(
E

Ξ(ξk)
trnsmt(Si(Aαo)) + Etrnsmt

thrshld

)
then

10: sndSfPnt(Si); # Send safe-point to the offloading client
11: T curthrshld := T exethrshld;

12: end if

13: end if

14: else if JBCnxt == JBCofldnd then
15: Si := gnrtSfPnt(); # Generate last safe-point . . .
16: sndSfPnt(Si); # . . . and send it to the offloading client
17: end if

Algorithm 5.1: Algorithm of the decision making for safe-point’ing from the offload
controller on the offloading service.

124

5.5. Evaluation

Machine (JVM) that transforms Java primitives, objects, and arrays into a platform-
independent representation and vice versa (cf. Subsection 4.3.4). In order to minimize
the size of a safe-point, the safe-point generator only serializes objects required and
modified since the safe-point transmitted last (incremental safe-point’ing). It identifies
the required and modified Java objects by visiting all Java objects that are reachable
from an execution of a Java method and inspects their flag of modification. The set of
reachable objects includes all visible static objects, members from the declaring class
of the method, local values on the stack, and accessible objects on the heap (cf. Sub-
section 4.3.4). As the offload compiler inserts additional Assembler code that flips a
Bit in the Java header on a modification of a related Java object, the offloading service
only monitors modifications at the level of Java bytecode instructions. In detail, it
cannot detect modifications outside the JVM, for instance, due to an execution of a
native method. However, the tracking of modifications based on Bit flipping keeps the
overhead introduced to the runtime environment low.

5.5. Evaluation

To evaluate the performance of the preemptable distribution compared to the basic
distribution, a mobile device executes a Java application on an unaltered JRE (local
execution), on an offload-aware JRE (basic distribution), and on a preemptable-aware
JRE (preemptable distribution). To this end, we extended the implementation of the
Jikes RVM prototype for the basic distribution (cf. Subsection 4.6.1) to provide the
functionality required for the preemptable distribution. The extensions to the Jikes
RVM prototype comprise changes to the implementation of the JVM to provide the
functionality required for the preemptable distribution on the offloading client and on
the offloading service. Next, Subsection 5.5.1 describes the evaluation setup before
Subsection 5.5.2 presents the evaluation results.

5.5.1. Setup

The evaluation setup for the preemptable distribution extends the evaluation setup for
the basic distribution on the Jikes RVM described in Subsection 4.7.1 as follows:
The evaluation compares the preemptable distribution with two basic approaches

found in the literature (cf. Section 9.2). Both approaches provide a non-preemptable
distribution based on different strategies at the occurrence of a failure. The first
approach – named Basic Distribution with a Re-Execution (BDwRE) – starts a re-
execution of the Java method on the offloading client as soon as the failure occurs. As

125

5. Robust Code Offloading through Safe-point’ing

only the input execution state is available at the occurrence of a failure, the offloading
client must re-execute the complete Java method locally again. The second approach
– named Basic Distribution waiting for a Re-Connection (BDwRC) – waits for a re-
connection to the offloading service at the occurrence of a failure to receive the last
safe-point of a remote execution from the offloading service.

5.5.2. Results

Now, this subsection describes the results for the evaluation of the preemptable dis-
tribution. As the creation and transmission of safe-points introduce some overhead,
the evaluation compares first the different approaches in a scenario, where no failures
occur during a distribution of a Java method. Afterwards, it compares the different
approaches in scenarios, where failures occur during a distribution at different points
in time, highlighting the benefits of the creation and transmission of safe-points.

Distributing the Java method without failures: The creation and transmission
of safe-points for the preemptable distribution introduces a certain overhead that only
pays off in case of the occurrence of failures. Thus, for a distribution of the Java method
without the occurrence of a failure, we expect that the preemptable distribution is less
efficient due to the usage of safe-points than the other approaches not using safe-
points. Note that in a scenario without failures, the approaches BDwRE and BDwRC
behave identically and perform like the basic distribution, because the only difference
of the approaches is the reaction on failures. To evaluate the overhead introduced by
safe-point’ing, we compare the preemptable distribution with the basic distribution –
corresponding to BDwRE and BDwRC – and both approaches with a local execution
in a scenario without failures. Ideally, the overhead introduced by safe-point’ing does
not affect the overall performance of the preemptable distribution significantly.

To give an insight of the introduced overhead, we start with the comparison of the
different approaches on the netbook, where Subsection 4.7.2 describes the evaluation
results for a local execution (29.542 s; 294.07 J) and the basic distribution (16.825 s;
178.00 J) of the Chesspresso application on the Jikes RVM. To this end, Figure 5.4
shows the power consumption on the netbook for the preemptable distribution of the
Chesspresso application. It takes in total 16.746 s, where the remote execution takes
4.500 s and the netbook receives five safe-points. During the preemptable distribution,
the netbook consumes in total 181.45 J resulting in a power consumption of 10.84W
on average. Thus, the preemptable distribution and basic distribution perform similar
for the scenario without the occurrence of failures, virtually resulting in the same

126

5.5. Evaluation

Figure 5.4.: Power consumption on the netbook for the preemptable distribution of the
Chesspresso application.

execution time and energy consumption. Compared to the energy consumption of the
basic distribution, the overhead of the preemptable distribution is smaller than 2%.

Now, we compare the different approaches on the laptop, giving an insight of the
introduced overhead, where Subsection 4.7.2 also describes the evaluation results for
a local execution (8.841 s; 408.97 J) and the basic distribution (6.737 s; 244.89 J) of
the Chesspresso application on the Jikes RVM. To this end, Figure 5.5 shows the
power consumption on the laptop for a preemptable distribution of the Chesspresso
application. It takes in total 6.914 s, where the remote execution takes 4.428 s and
the laptop receives five safe-points. During the preemptable distribution, the laptop
consumes in total 253.85 J resulting in a power consumption of 36.71W on average.
Thus, the preemptable distribution and basic distribution also perform on the laptop
similar for the scenario without the occurrence of failures, virtually resulting in the same
execution time and power consumption. The relative difference of the preemptable
distribution compared to the basic distribution for the consumed energy is only 3.66%.

Summarizing, the relative difference of the basic distribution and the preemptable
distribution is very small in a scenario without the occurrence of failures. The reason for
the small overhead introduced by safe-point’ing is primarily the small number and size
of received safe-points (cf. Algorithm 5.1). As a result, the preemptable distribution
still saves a lot of energy compared to a local execution of the Chesspresso application.

127

5. Robust Code Offloading through Safe-point’ing

Figure 5.5.: Power consumption on the laptop for the preemptable distribution of the
Chesspresso application.

Distributing the Java method with failures: The creation and transmission of
safe-points for the preemptable distribution pay off in case of the occurrence of fail-
ures, where we consider now different scenarios with the occurrence of failures. Thus,
for a distribution of the Java method with the occurrence of failures, we expect the
preemptable distribution to be more efficient due to the usage of safe-points than the
other approaches not using safe-points. To evaluate the benefits of the preemptable
distribution with safe-points, we compare all approaches in multiple scenarios, where
disconnections happen at different points in time.

As BDwRC waits until a re-connection in case of a failure, it performs equally than
the basic distribution described in Subsection 4.7.2 if a disconnection together with a
re-connection occurs before the end of a remote execution. In such a scenario, BDwRC
and the preemptable distribution receive the last safe-point at the end of the remote
execution from the offloading service. Receiving the last safe-point from the offloading
service, BDwRC (basic distribution) performs better than the preemptable distribu-
tion, because the preemptable distribution continues the remote execution locally based
on the safe-point received last and stops the continuation in case of a re-connection.
Depending on the point in time the failure occurs, the duration of the disconnection
increases the energy consumption but not the execution time of the preemptable dis-

128

5.5. Evaluation

(a) Failure occurs at te = 16.14 s with 0 safe-points received.

(b) Failure occurs at te = 16.31 s with 1 safe-point received.

(c) Failure occurs at te = 17.31 s with 2 safe-points received.

Figure 5.6.: Power consumption on the netbook for a remote execution of
the Chesspresso application based on the preemptable distri-
bution, where failures occur at different points in time (te =
16.14 s, 16.31 s, and 17.31 s) during the remote execution.

129

5. Robust Code Offloading through Safe-point’ing

(a) Failure occurs at te = 18.54 s with 3 safe-points received.

(b) Failure occurs at te = 17.97 s with 3 safe-points received.

(c) Failure occurs at te = 19.02 s with 4 safe-points received.

Figure 5.7.: Power consumption on the netbook for a remote execution of
the Chesspresso application based on the preemptable distri-
bution, where failures occur at different points in time (te =
18.54 s, 17.97 s, and 19.02 s) during the remote execution.

130

5.5. Evaluation

tribution. For instance, in a worst-case scenario for the preemptable distribution on
the netbook, a disconnection occurs at 14.60 s and a re-connection at 18.60 s. BDwRC
(basic distribution) consumes in total 178.00 J, whereas the preemptable distribution
consumes in total 221.25 J instead of 181.45 J. The same applies to a disconnection
before the end of a remote execution with a re-connection after the end of a remote exe-
cution but before the end of a local continuation (preemptable distribution). Depending
on the point in time of the re-connection, the continuation of the remote execution on
the netbook increases the energy consumption of the preemptable distribution but not
the execution time. Actually, the point in time of the re-connection determines whether
BDwRC and the preemptable distribution stay below the time for a local execution.
In contrast to BDwRC, the duration of the local continuation and thus, the number of
received safe-points determine for the preemptable distribution whether it stays below
the time for a local execution. For instance, if the local continuation finishes before
30.00 s and the disconnection is still long in coming, the preemptable distribution stays
below the time for a local execution instead of BDwRC. To this end, Figure 5.6 and
Figure 5.7 show in total six scenarios, where a disconnection occurs at 16.14 s, 16.31 s,
17.31 s, 18.54 s, 17.97 s, and 19.02 s and the offloading client receives 0, 1, 2, 3, 3, and
4 safe-points. Regarding the worst-case scenarios for the preemptable distribution,
a re-connection happens just before the local continuation finishes at 45.63 s, 42.55 s,
39.15 s, 36.02 s, 30.55 s, and 25.14 s, where it consumes 81.68 J, 76.43 J, 62.42 J, 51.65 J,
39.34 J, and 21.55 J more energy compared to BDwRC.

BDwRE starts a re-execution in case of a failure, where only failures are interesting
that occur before the remote execution finishes and last for a longer period. Otherwise,
BDwRE and the preemptable distribution perform similar apart from safe-point’ing,
because both start a local continuation – BDwRE from the start and the preemptable
distribution from the safe-point received last – and receive the last safe-point at the
end of the remote execution. Regarding the scenario with a disconnection at 16.14 s
(cf. Figure 5.6a), the preemptable distribution does not receive a safe-point due to
the short time of the remote execution. Thus, BDwRE and the preemptable distribu-
tion perform equally, taking 42.23 s and consuming 467.34 J. For a disconnection at
16.31 s, the preemptable distribution only generates one intermediate safe-point before
it continues the execution locally. It takes 39.29 s and consumes 437.83 J compared to
42.54 s and 434.41 J for BDwRE. Due to the short period of the remote execution of
2.3 s, the preemptable distribution consumes still more energy than BDwRE or a local
execution (294.07 J). The preemptable distribution generates more safe-points due to
a longer period of the remote execution if the disconnection occurs later. Thus, the
energy efficiency of the preemptable distribution further increases while the execution

131

5. Robust Code Offloading through Safe-point’ing

Figure 5.8.: Power consumption on the laptop for a remote execution of the Chesspresso
application based on the preemptable distribution, where a failure occurs
at te = 5.424 s with 1 safe-point received.

time further decreases. For a disconnection at 17.31 s, it generates two intermediate
safe-points before it continues the execution locally. Based on the two intermediate
safe-points, the execution time as well as the energy consumption of the preemptable
distribution are smaller than BDwRE (36.03 s vs. 43.68 s and 399.59 J vs. 447.14 J),
but are higher than a local execution (36.03 s vs. 29.54 s and 399.59 J vs. 294.07 J).
Generating four intermediate safe-points for a disconnection at 19.02 s, the preempt-
able distribution now performs better than a local execution with an execution time of
22.36 s vs. 29.54 s and an energy consumption of 246.14 J vs. 294.07 J. Compared to
BDwRE, the preemptable distribution reduces the execution time by 23.34 s and the
energy consumption by 220.47 J.

On the laptop, the same applies for BDwRC and BDwRE as for the netbook, de-
scribed above. In case of a disconnection together with a re-connection before the
end of a remote execution, the only difference between BDwRC and the preemptable
distribution is the local continuation of the remote execution of the preemptable dis-
tribution. As a result, the execution time of BDwRC and the preemptable distribution
is equal, whereas the energy consumption of the preemptable distribution is higher
due to the local continuation. For instance, in a worst-case scenario for the preempt-
able distribution, a disconnection occurs at 2.90 s and a re-connection at 4.40 s, where

132

5.5. Evaluation

Figure 5.9.: Power consumption on the laptop for a remote execution of the Chesspresso
application based on the preemptable distribution, where a failure occurs
at te = 6.146 s with 2 safe-points received.

Figure 5.10.: Power consumption on the laptop for a remote execution of the Chess-
presso application based on the preemptable distribution, where a failure
occurs at te = 6.749 s with 3 safe-points received.

133

5. Robust Code Offloading through Safe-point’ing

BDwRC consumes 244.89 J and the preemptable distribution 282.35 J (local execution:
8.841 s and 408.97 J). In case of a disconnection before and a re-connection after the
end of a remote execution, the worst-case scenarios for the preemptable distribution
against BDwRC contain a re-connection just before the local continuation finishes (cf.
Figure 5.8 - 5.10). In detail, a re-connection happens just before the local continua-
tion finishes at 11.87 s, 9.93 s, and 8.51 s, where the preemptable distribution consumes
135.25 J, 80.33 J, and 37.42 J more energy.

To this end, we concentrate on disconnections that occur before the remote execution
ends and last for a longer period. Figure 5.8, Figure 5.9, and Figure 5.10 show three
scenarios, where a disconnection occur at 5.42 s, 6.16 s, and 6.75 s and the offloading
client receives 1, 2, and 3 safe-points. In general, the results for the laptop follow the
same trend as for the netbook. For short periods of a remote execution until the discon-
nection, the preemptable distribution is more energy efficient than BDwRE. Actually,
the preemptable distribution generates one intermediate safe-point for a disconnection
at 5.42 s that already leads to a smaller execution time and energy consumption than
BDwRE (11.46 s vs. 12.56 s and 501.85 J vs. 513.12 J). Compared to a local execution
(8.841 s and 408.97 J), the execution time and energy consumption of the preemptable
distribution is higher. Again, longer periods of a remote execution pronounce more
the savings of the energy consumption and the execution time. For a disconnection at
6.75 s, the preemptable distribution generates three safe-points resulting in an execu-
tion time of 8.14 s and an energy consumption of 318.85 J. Thus, it performs better
than a local execution and BDwRE with an execution time of 8.841 s and 13.88 s and
an energy consumption of 408.97 J and 533.65 J, respectively.

Summarizing, for scenarios with the occurrence of failures, the preemptable distri-
bution with safe-points reduces the execution time on the netbook and on the laptop.
The reduction of the execution time results from the creation and transmission of
safe-points together with a continuation of the local execution. Furthermore, the pre-
emptable distribution stays below the time for a local execution, whereas the two basic
approaches BDwRC and BDwRE do not meet it.

5.6. Summary

To provide a robust code offloading through safe-point’ing, the preemptable distribution
described in Section 5.1 extends the basic distribution described in Section 4.1. The
preemptable distribution re-uses – in case of a failure – the intermediate state of a
remote execution so far without abandoning the complete progress executed remotely.
As a result, it increases the energy efficiency and responsiveness of the basic distribution

134

5.6. Summary

under failures. The system overview described in Section 5.2 with the system model,
problem statement, and system components corresponds almost to the system overview
of the basic distribution, considering safe-point’ing in the problem statement. The
basic idea of the preemptable distribution is the interruption and local continuation of
a current distribution in case of a failure without losing the partial result calculated
remotely so far and avoiding a local re-execution of the complete application part,
described in the offloading timeline in Section 5.3. A safe-point contains from a remote
execution all of the information required to continue a remote execution locally on
the offloading client. Thus, an offloading service creates and transmits safe-points
to the offloading client during a remote execution whenever it is beneficial in terms
of energy consumption. The offloading framework described in Section 5.4 provides
the additional functionality required for the preemptable distribution on an offloading
client and an offloading service. Compared to the offloading framework for the basic
distribution (cf. Section 4.5), the changes are mainly on the offload compiler, offload
controller, state generator, and failure handler. To evaluate the introduced overhead
and gained benefit by the preemptable distribution compared to the basic distribution
with common mechanism to handle failures, the evaluation described in Section 5.5
presents the evaluation setup and the evaluation results. In detail, a prototype based
on the Jikes RVM runs in multiple scenarios, where failures occur at different point in
times. Although the creation and transmission of safe-points introduce communication
and energy overhead, the evaluation results show that this overhead quickly pays off.
Especially, in scenarios with failures, safe-point’ing leads to a lower energy consumption
on the evaluated mobile device like a netbook and a laptop. Moreover, the utilization
of safe-points for the preemptable distribution also improves the responsiveness of an
application by staying below the corresponding time for a local execution under failures.

135

Chapter 6
Deadline-aware Code Offloading
with Predictive Safe-point’ing

The preemptable distribution presented in detail in Chapter 5 improves the efficiency
of the basic distribution under failures through the utilization of safe-points. However,
the scheduling strategy that determines the point in times for the creation and trans-
mission of a safe-point is not always optimal with regard to efficiency. To improve the
efficiency of the preemptable distribution, this chapter presents a predictive distribu-
tion described in Section 6.1 that optimizes the schedule of creating and transmitting
safe-points. The system overview in Section 6.2 describes the system model, problem
statement, and system components for the predictive distribution. On the one hand,
the predictive distribution tries to avoid the creation and transmission of safe-points
that – considered afterwards – are not needed. In the optimal case, an offloading client
only receives one safe-point just before the occurrence of a failure. On the other hand,
the predictive distribution ensures a minimal responsiveness of an application execution
by adding an additional constraint for the execution time to meet a predefined dead-
line for the application execution. To this end, the predictive distribution improves the
preemptable distribution with an optimal schedule for safe-point’ing described in Sec-
tion 6.3 by predicting the link connectivity and the remaining runtime. To evaluate the
performance of the predictive distribution compared to the preemptable distribution,
Section 6.4 presents the evaluation of a simulation, including the evaluation setup and
the evaluation results. Last, Section 6.5 summarizes the main facts for a deadline-aware
code offloading with predictive safe-point’ing presented in this chapter.

6.1. Predictive Distribution

The approach of the preemptable distribution based on safe-points – described in Chap-
ter 5 – shows the benefits of safe-point’ing the intermediate states of a remote execution.
The preemptable distribution uses a scheduling strategy of creating and transmitting

137

6. Deadline-aware Code Offloading with Predictive Safe-point’ing

safe-points that is not always optimal with regard to the efficiency of the energy con-
sumed on an offloading client. To improve the basic approach of the preemptable
distribution based on safe-points, we propose an optimized schedule of creating and
transmitting safe-points based on the following two improvements: First, the optimized
schedule tries to avoid the creation and transmission of safe-points that – considered
afterwards – are not needed on the offloading client. For instance, receiving two safe-
points on the offloading client, the receive of the first safe-point is needless, because
no failure occurred in the meanwhile. In the optimal case, an offloading client only
receives during a remote execution one safe-point to continue the execution locally just
before the occurrence of a failure like a disconnection. Second, the optimized schedule
ensures a minimal responsiveness of an application execution by adding an additional
constraint for the execution time to meet a predefined deadline for the application
execution. These two improvements related to the preemptable approach comprise
the design of an adaptive algorithm for scheduling safe-points that adapts dynamically
the point in time of creating and transmitting safe-points due to dynamic conditions
of the communication network. On the one hand, the optimized schedule creates and
transmits fewer safe-points for a communication network where communication failures
are less frequent. On the other hand, it creates and transmits more safe-points for a
communication network where communication failures are more frequent, being pre-
pared for impending failures. To this end, the improved approach solves a constrained
optimization problem. The problem minimizes the overhead for safe-point’ing under a
deadline constraint for the execution by using a predictive approach that forecasts the
link quality of the communication network and the remaining runtime of the execution.

During the remote execution of an application part that is offloadable, the offload
controller on the offloading service determines at the breakpoints introduced for safe-
point’ing (cf. Subsection 5.4.2) whether it creates and transmits a safe-point to the
offloading client. To improve the decision making for safe-point’ing on the offload con-
troller, it solves a scheduling problem of optimal safe-point’ing under a constraint of the
maximum time for the execution using an Integer Linear Program (ILP). The solution
of the scheduling problem requires a prediction of the link connectivity and a prediction
of the remaining runtime for the execution. The offload controller on the offloading
service should intuitively create and transmit a safe-point to the offloading client at
the current breakpoint if the probability of a connection loss is high and the remaining
runtime for an execution lasts too long until reaching the next breakpoint. Otherwise,
it takes the risk to wait until it reaches the next breakpoint and again decides about
the creation and transmission of a safe-point. Thus, the offload controller waits for the
next breakpoint without the creation and/or transmission of a safe-point if either the

138

6.2. System Overview

probability of a connection loss is low or the probability of reaching the maximum time
for the execution is high. As the creation and transmission of a safe-point is ideally
equivalent to switch the execution side from the offloading service to the offloading
client, the offload controller only creates and transmits a safe-point if – according to
the prediction models – it does not reach the next breakpoint. Subsequently, if the
offloading client receives a safe-point from the offloading service, it continues the local
execution of an application part based on the safe-point received. The offloading client
can theoretically re-distribute the application part – that it continued locally – again
to the offloading service after the disconnection. Regarding the typical duration of a
disconnection that lasts longer than the typical duration of the remaining execution
for an application part, however, a re-distribution is very unlikely.
At the same time, during a remote execution of an application part, the failure

handler on the offloading client monitors via the service connector the link to the
offloading service as well as the remote service itself. To monitor the link and the
service, the failure handler utilizes message probing as well as the receipt of safe-points.
Based on the prediction of the remaining runtime for the execution, the failure handler
sets a deadline until it has to receive a response or a safe-point from the offloading
service to meet the constraint of the maximum time for the execution. Please note
that the failure handler sets adaptively the deadline such that a local continuation of
a remote execution based on a safe-point received most recently will end before the
maximum time for the execution. Thus, if the failure handler does not receive a further
safe-point until the deadline set, it invokes the offload controller to continue the remote
execution locally based on the safe-point received most recently.
Summarizing, we make the following contributions: (1) A formulation of the problem

to optimally schedule safe-point’ing under temporal disconnections of the communica-
tion network together with a given deadline constraint for the execution time; (2) an
adaptive algorithm that solves the formulated problem with the help of an ILP and a
prediction model for the link quality of the communication network and the remain-
ing time of the execution; (3) an implementation of the predictive approach for the
preemptable distribution; and (4) an evaluation of the efficiency of the predictive dis-
tribution based on simulations, calibrated through energy measurements on mobile
devices and through connectivity traces of mobile devices.

6.2. System Overview

The predictive distribution adds to the preemptable distribution an adaptive algorithm
based on prediction models for safe-point’ing. Thus, the system model as well as the

139

6. Deadline-aware Code Offloading with Predictive Safe-point’ing

system components are same as before (cf. Section 5.2).

The scheduling problem of the predictive distribution improves the preemptable dis-
tribution with an adaptive approach for safe-point’ing based on prediction models.
Regarding the problem statement of the preemptable distribution (cf. Section 5.2),
the predictive distribution adds the additional constraint Tmax(Aαo ,Ξ(ξ)) for the ex-
ecution time. Tmax(Aαo ,Ξ(ξ)) is the maximum time tolerated for an execution of the
application part Aαo on Ξ(ξ). Due to the constraint added to the problem statement, it
meets a deadline predefined for an execution of an application part, ensuring a minimal
responsiveness of an application. The offload controller searches for a strategy of the
creation and transmission of safe-point(s) that selects the optimal times and numbers
for safe-point’ing such that the total consumed energy is minimal under the given time
constraint. Formally, the objective is to minimize the cost function fw under the given
constraint of the maximum time for the execution:

min
ξ

fw(Aαo ,Ξ(ξ))

s.t. T (Aαo ,Ξ(ξ)) ≤ Tmax(Aαo ,Ξ(ξ))
(6.1)

As an end user sets the constraint Tmax(Aαo ,Ξ(ξ)) of the maximum time for the execu-
tion, we set the user-defined weight wt for the execution time to 0. Moreover, we also
set the monetary cost C(Aαo ,Ξ(ξ)) to 0, because the question of monetary cost charged
in case of a failure is left as a remaining open research question1. This simplifies the
equation as follows:

min
ξ

we ·E(Aαo ,Ξ(ξ))

s.t. T (Aαo ,Ξ(ξ)) ≤ Tmax(Aαo ,Ξ(ξ))
(6.2)

Summarizing, the goal is to find an optimal schedule for the creation and transmission
of safe-points that solves the given constrained optimization problem under dynamic
network conditions like link failures or varying bandwidth. Please note that both the
number of safe-points and the points in time of the creation and transmission of safe-
points influence the constrained optimization problem.

1For instance, based on a received safe-point, an offloading client has continued the execution locally
due to the occurrence of a failure and receives later on the last safe-point of the remote execution
from the offloading service due to a re-connection. In case of the offloading client did not finish
the execution yet, it utilizes the last safe-point and pays for the whole remote execution as well.
In case of the offloading client already finished the execution, it only pays for the partial remote
execution for receiving the safe-point to continue the execution locally. As a result, an offloading
service may not continue a remote execution in case of the occurrence of a failure, because the
offloading client will not pay for it if the result of the remote execution receives too late.

140

6.3. Optimal Schedule for Safe-point’ing

input
execution

state

EB0

EB5

EB4

EB1 EB2

EB3 EB7

EB8EB6

output execution state

Figure 6.1.: An exemplary execution graph for a Java method at compile-time, divided
into nine execution blocks by the offload compiler.

6.3. Optimal Schedule for Safe-point’ing

The goal of the optimal schedule for the creation and transmission of safe-points is
to minimize the cost function under the given constraint of the maximum time for an
execution. To this end, it models an execution of a Java method (application part)
as an execution graph G =

(
V,E, εv, εe(u,v), τ v, τ e(u,v)

)
being a vertex-weighted and

edge-weighted graph. The graph-based execution model consists of a set of vertices V ,
where each v ∈ V represents an execution block. An execution block corresponds to
a sequential execution of code between two breakpoints. Please note that the offload
compiler presented in Subsection 5.4.2 inserts a breakpoint before each Java bytecode
instruction that branches the execution of a Java method. An edge e(u, v) ∈ E with
u, v ∈ V defines a transition between execution blocks according to the execution flow
of a Java method. Figure 6.1 shows an exemplary execution graph of a Java method
that the offload compiler divided into nine execution blocks EBi with i = 0, 1, 2, . . . , 8.
At run-time, a possible execution path is EB0 → EB1 → EB2 → EB6 → EB7.
The execution graph G further defines two weights εv and τ v with v ∈ V for a vertex

and two weights εe(u,v) and τ e(u,v) with e(u, v) ∈ E and u, v ∈ V for an edge. The
function εv : V → R denotes the energy consumed for an execution of the related
execution block. The function εe(u,v) : E → R denotes the energy consumed between
two execution blocks for distributing the Java method from the offloading client to the
offloading service and vice versa (i.e., switching the execution side again). The function
τ v : V → R denotes the execution time of the related execution block according to the
prediction model for the execution time. The function τ e(u,v) : E → R denotes the time
for switching the execution from the offloading client to the offloading service and vice
versa, depending on the bandwidth and latency of the network link.

141

6. Deadline-aware Code Offloading with Predictive Safe-point’ing

Based on the vertex-weighted and edge-weighted execution graph G, we formulate
the problem of the optimal schedule for safe-point’ing as an Integer Linear Program
(ILP). Intuitively, the ILP searches for the placement of each execution block from
the execution graph G either on the offloading client or on the offloading service,
minimizing the cost function and not violating the constraint of the maximum time for
the execution of the Java method. To define the placement of an execution block, the
ILP uses a binary vector B ∈ {0, 1}|V |. Bv = 0 means an execution of v ∈ V on the
offloading service and Bv = 1 means an execution of v ∈ V on the offloading client.
Thus, the optimal solution of the ILP is the placement vector that minimizes the cost
function without a constraint violation. Using this placement vector, the following
equation expresses the execution time T (Aαo ,Ξ(ξ)):

T (Aαo ,Ξ(ξ)) =
∑
v∈V

(
Bv · τ vΞ(ξk) + (1−Bv) · τ vΞ(ξm)

)
+∑

e(u,v)∈E

|Bu −Bv| · τ e(u,v)
Bu,Bv

(6.3)

where τ vΞ(ξk) is the time for a local execution if the optimal solution places the execution
block v on the offloading client Ξ(ξk). Otherwise, it adds the time τ vΞ(ξm) for a remote
execution if the offloading service Ξ(ξm) executes the execution block v. The second
term defines the time for switching the execution side, where the optimal solution adds
this switching time if the execution blocks u, v ∈ V are on different sides. Beside the
execution time, the ILP also requires the energy consumption E(Aαo ,Ξ(ξ)):

E(Aαo ,Ξ(ξ)) =
∑
v∈V

(
Bv · εvΞ(ξk) + (1−Bv) · (τ vΞ(ξm) ·EΞ(ξk)

wait)
)

+∑
e(u,v)∈E

|Bu −Bv| · εe(u,v)
Bu,Bv

(6.4)

where εvΞ(ξk) is the energy consumed for a local execution if the optimal solution places
the execution block v on the offloading client Ξ(ξk). Otherwise, it adds the energy
consumed of the offloading client waiting in idle mode if the offloading service Ξ(ξm)

executes the execution block v. The second term of the equation defines the energy
consumed for switching the execution side from u to v that includes the creation and
transmission of a safe-point. Thus, if the block placement of u, v ∈ V differs – for
instance, u on the offloading client and v on the offloading service, or vice versa, the
optimal solution has to add the energy cost for switching the execution side.

Regarding Equation 6.3 and Equation 6.4, the execution time and the energy con-
sumption depend on the time taken and the energy consumed for each individual

142

6.3. Optimal Schedule for Safe-point’ing

IES
int i
float f
short s
String str

EB0

int i

short s

EB1

int i

EB2

int i
float f

Figure 6.2.: An exemplary modification of variables for each execution block.

execution block v ∈ V . The execution blocks differ in the number and kind of the
executed Java bytecode instructions (computational complexity), where the execution
time of the same execution block differs on the offloading client and on the offloading
service. Thus, we express the energy consumed and the time taken for an execution
block v ∈ V as follows:

τ vΞ(ξ) =
P exe
pcode

(
Istate(Aα), P v

pcode(Aα)
)

P
Ξ(ξ)
ppwr

εvΞ(ξ) = τ vΞ(ξ) ·EΞ(ξk)
exec

(6.5)

where PΞ(ξ)
ppwr is the processing power of a resource Ξ(ξ), EΞ(ξk)

exec the energy factor for
executing code, and P exe

pcode(Istate(Aα), Ppcode(Aα)) the load metric (cf. Section 3.1).
Please note that the offloading framework calibrates PΞ(ξ)

ppwr through online benchmarks,
where we calibrate EΞ(ξk)

exec for the offloading framework through offline measurements.

Beside the energy consumed and the time taken for each individual execution block,
Equation 6.3 and Equation 6.4 require the time taken and the energy consumed for a
switch of the execution side. The size of a safe-point determines the consumed energy
and the taken time, where the size depends on the variables modified since the safe-
point transmitted last (incremental safe-point’ing). For instance, the offloading client
distributes a Java method (cf. Figure 6.1), sending the input execution state (first
safe-point) to the offloading service. The offloading service starts the execution of the
Java method based on the first safe-point (at node input execution state). Now, the
optimal schedule for safe-point’ing determines to switch the execution side from the
offloading service to the offloading client between the execution blocks EB2 and EB6.
To this end, it requires all variables modified since the offloading service started the
execution (EB0 → EB2). Figure 6.2 shows an exemplary modification of variables,
where a safe-point contains the variables i (EB2), f (EB2), and s (EB0).

143

6. Deadline-aware Code Offloading with Predictive Safe-point’ing

As a result, the last synchronization of the execution state through safe-point’ing
Si−1 with i ≥ 1 determines the energy consumed and the time taken for a switch of the
execution side. Please note that S0 equals to the execution state contained in the first
safe-point at the start of the execution on the offloading service (input execution state).
The following equation defines the time taken τ e=(u,v)

Bu,Bv
for a switch of the execution side,

where the offloading service executes u ∈ V and the offloading client v ∈ V :

τ
e=(u,v)
Bu,Bv

= δ(Si, Si−1) ·BΛ(ξk;ξm)
down + L

Λ(ξk;ξm)
down (6.6)

The function δ(Si, Si−1) calculates the size of the incremental safe-point’ing. Moreover,
B

Λ(ξk;ξm)
down is the bandwidth and LΛ(ξk;ξm)

down the latency of the link Λ(ξk; ξm) between the
offloading client and the offloading service (cf. Section 3.1). Please note that for a
switch of the execution side from the offloading client to the offloading service only the
bandwidth BΛ(ξk;ξm)

up and the latency LΛ(ξk;ξm)
up changes.

The following equation defines the energy consumed εe=(u,v)
Bu,Bv

for a switch of the exe-
cution side between the execution blocks u, v ∈ V . The offloading service executes u
and the offloading client v, hence receiving a safe-point on the offloading client:

ε
e=(u,v)
Bu,Bv

= τ
e=(u,v)
Bu,Bv

·EΞ(ξk)
recv (6.7)

where EΞ(ξk)
recv is the energy consumed for receiving bytes (cf. Section 3.1).

Summarizing, the optimal schedule solves the following ILP for the creation and trans-
mission of safe-points on the offloading service:

min
∑
v∈V

(
Bv ·

P exe
pcode

(
Istate(Aα), P v

pcode(Aα)
)

P
Ξ(ξk)
ppwr

·EΞ(ξk)
exec +

(1−Bv) ·
P exe
pcode

(
Istate(Aα), P v

pcode(Aα)
)

P
Ξ(ξm)
ppwr

·EΞ(ξk)
wait

)
+∑

e(u,v)∈E

(
|Bu −Bv| ·

(
δ(Si, Si−1) ·BΛ(ξk;ξm)

down + L
Λ(ξk;ξm)
down

)
·EΞ(ξk)

recv

)

s.t.
∑
v∈V

(
Bv ·

P exe
pcode

(
Istate(Aα), P v

pcode(Aα)
)

P
Ξ(ξk)
ppwr

+

(1−Bv) ·
P exe
pcode

(
Istate(Aα), P v

pcode(Aα)
)

P
Ξ(ξm)
ppwr

)
+∑

e(u,v)∈E

(
|Bu −Bv| ·

(
δ(Si, Si−1) ·BΛ(ξk;ξm)

down + L
Λ(ξk;ξm)
down

))
≤ Tmax(Aαo ,Ξ(ξ))

(6.8)

144

6.3. Optimal Schedule for Safe-point’ing

6.3.1. Prediction of Link Connectivity

The solution of the ILP presented above depends on the knowledge of the bandwidth
BΛ(ξk;ξm) and the latency LΛ(ξk;ξm) of the link Λ(ξk; ξm) between the offloading client
and the offloading service. To this end, the optimal schedule uses a prediction model
of the link based on Markov chains. Researchers widely use Markov chains for the
prediction of the link quality like in [ZWG+13], because a Markov chain requires a low
memory space together with a low computational complexity. A Markov chain is a
stochastic process with an initial state of a state space, where a transition describes
the change from a state to another state based on a transition probability. A transition
matrix outlines the transition probabilities of a Markov chain that satisfies the Markov
property. Fulfilling the Markov property, a Markov chain predicts the future of a
stochastic process solely based on its current state. Thus, the transition probability for
switching from a state into another state only depends on the current state and not on
the state history of past transitions. Formally, let the pair (Ω,F) be a measurable space
with the sample space Ω and the σ-algebra F . The set Ω contains all possible outcomes,
where an outcome represents for a single execution the output. The collection F is
a subset of Ω that contains the considered events, where an event is a set of zero or
more outcomes. Moreover, let the triplet (Ω,F ,P) be the probability space with the
probability measure P that returns an event’s probability and thus, is the function
P : F → [0, 1]. Based on the measurable space (Ω,F), the filtration {Ft}t≥0 with
Ft ⊆ F and t ∈ T fulfills t1 ≤ t2 =⇒ Ft1 ⊆ Ft2 , where the index set T equals
R≥0 = {r ∈ R|r ≥ 0}. [Ste94, Str13]
An (Ω,F)-valued stochastic process X = (Xt, t ∈ T) fulfills the Markov property if

P(Xl ∈ A|Fk) = P(Xl ∈ A|Xk) (6.9)

is true ∀ A ∈ F and ∀ k, l ∈ T with k < l. For a Markov chain with a discrete time
where T equals N0 = {0, 1, 2, . . . } and a finite space of discrete states where F is a
discrete set (called a Discrete-Time Markov Chain (DTMC)) the Markov property is:

P(Xn = xn|Xn−1 = xn−1, Xn−2 = xn−2, . . . , X0 = x0) = P(Xn = xn|Xn−1 = xn−1)

To build the prediction model of the link based on a Markov chain, the optimal sched-
ule considers the bandwidth and latency of past connections from the offloading client.
As a result, the offloading client does not measure in parallel the bandwidth and latency
to an offloading service, keeping the (energy) overhead introduced to the system low.
The optimal schedule maps the continuous values for the bandwidth and latency moni-

145

6. Deadline-aware Code Offloading with Predictive Safe-point’ing

tored from past connections onto n discrete quality classes of the link. For instance, an
interpretation of the mapping to the five latency classes [0ms, 50ms], (50ms, 100ms],
(100ms, 200ms], (200ms, 300ms], and (300ms,∞] is “very low latency”, “low latency”,
“medium latency”, “high latency”, and “disconnected”. Likewise, possible quality classes
for the link bandwidth are, for instance, [0 kbit/s, 50 kbit/s], (50 kbit/s, 350 kbit/s],
(350 kbit/s, 700 kbit/s], (700 kbit/s, 1050 kbit/s], and (1050 kbit/s,∞], interpreted as
“disconnected”, “very low bandwidth”, “low bandwidth”, “medium bandwidth”, and
“high bandwidth”. Based on the discrete quality classes for the bandwidth and for
the latency of the link, the optimal schedule models each direction (downstream and
upstream) of the link as an DTMC with a finite state space QB,L of n2 states. For
instance, the finite state space for the above-described quality classes consists of 25

states. The variable pij with i, j = [0, 1, . . . ,m] and m = n − 1 represents the tran-
sition probabilities between a state QB,L

i and a state QB,L
j , resulting in the following

transition matrix P :

P =

p00 p01 . . . p0m

p10 p11 . . . p1m

...
...

pm0 pm1 . . . pmm

 (6.10)

where the time duration spent in each state is a non-negative natural number (e.g., with
a time step size of 500ms). Moreover, we assume that the probability of a link failure
and a corresponding link recovery is exponentially distributed, fulfilling the Markov
property (cf. Nicholson et al. [NN08]). Based on the transition rates, we calculate
iteratively the mean recurrence time Mii and the mean first passage time Mij. The
mean first passage timeMij represents the number of steps expected that the stochastic
process takes for reaching node j from node i for the first time:

M (k+1) = E + P ∗ (M (k) − diag{M (k)}) (6.11)

with

M (k) =

m

(k)
00 m

(k)
01 . . . m

(k)
0s

m
(k)
10 m

(k)
11 . . . m

(k)
1s

...
...

m
(k)
s0 m

(k)
s1 . . . m

(k)
ss

 diag{M (k)} =

m

(k)
00 0 . . . 0

0 m
(k)
11 . . . 0

...
...

0 0 . . . m
(k)
ss

where M (0) = E and E denote the identity matrix. [Ste94]

146

6.3. Optimal Schedule for Safe-point’ing

input
execution

state

EB0

EB5

EB4

EB1 EB2

EB3

#4

EB7

EB8EB6

output execution state

Figure 6.3.: An exemplary execution graph (red flow) for a Java method at run-time,
executing a loop four times.

Summarizing, the offload controller on the offloading service predicts the time-
dependent connectivity factors of the bandwidth BΛ(ξk;ξm) and the latency LΛ(ξk;ξm)

based on the prediction models from Markov chains. By summing up the values for
the bandwidth and for the latency, it results in the time-invariant factors for the quality
class b with b = 0, 1, . . . ,m of the bandwidth and l with l = 0, 1, . . . ,m of the latency:

BΛ(ξk;ξm) =
m∑
c=0

m∞bc LΛ(ξk;ξm) =
m∑
c=0

m∞cl

6.3.2. Prediction of Remaining Runtime

Beside the prediction of the link connectivity for the solution of the ILP presented
above, the solution of the ILP also depends on the prediction of the remaining runtime
for an execution of a Java method on the offloading client as well as on the offloading
service. To this end, the optimal schedule uses a prediction model of the execution time
to satisfy the constraint of the maximum time for the execution. The prediction model
predicts the path for an execution – more precisely, the sequence of execution blocks
– of a Java method based on the input execution state. To build the prediction model
of execution paths, the optimal schedule monitors past executions of the Java method,
retrieving the sequence of blocks executed for the input execution state (history-based
approach). Like the app profiler for the basic distribution (cf. Subsection 4.5.2), it
utilizes a k-Nearest Neighbors algorithm to profile the sequence of blocks executed for
a Java method based on the input execution state. For instance, Figure 6.3 highlights
an exemplary execution graph executed at run-time for a Java method (cf. Figure 6.1)

147

6. Deadline-aware Code Offloading with Predictive Safe-point’ing

that executes the loop EB3 → EB4 → EB5 four times. Based on the prediction model
of execution paths, the optimal schedule predicts the sequence of execution blocks for
a Java method. During the execution of the Java method, the offload controller on the
offloading service keeps track of execution blocks already executed, knowing at each
breakpoint the number and kind of individual execution blocks that the offloading ser-
vice or the offloading client still has to execute. As a result, it calculates the remaining
time for an execution of remaining execution blocks on the offloading service or on the
offloading client based on Equation 6.5.

6.4. Evaluation

The performance of the predictive distribution relies on multiple parameters like net-
work quality, energy characteristics of mobile devices, or application complexity. To
this end, we implemented a simulation in MATLAB2 to analyze the performance for
a wide range of parameter combinations. To provide a realistic evaluation based on
the MATLAB simulation, however, real-world measurements of the connectivity qual-
ity from communication networks, energy consumed on mobile devices, and execution
times of applications calibrate the parameters used within the MATLAB simulation.
Thus, the evaluation gains results under realistic circumstances, where the MATLAB
simulation runs different scenarios. First, Subsection 6.4.1 describes the evaluation
setup before Subsection 6.4.2 presents the evaluation results.

6.4.1. Setup

The evaluation of the optimal schedule for the predictive distribution with safe-points
uses the same setup presented in Subsection 5.5.1 with the following differences.

Beside the Chesspresso application already considered for the preemptable distribu-
tion (cf. Section B.2), the evaluation further considers a face recognition application
presented in detail in Section B.4. The face recognition application recognizes human
faces in an image. In detail, it is a good candidate for a distribution, because it has a
high complexity of computation, a huge size of the input execution state, a small size
of safe-points, and a small size of the output execution state.

In order to solve the given ILP in Equation 6.8, the offloading service uses the stan-
dard solver from MATLAB that is highly optimized and quickly solves the problem
in a few milliseconds keeping the overhead introduced to the offloading service small.
In detail, the time overhead of the standard solver from MATLAB executed on the

2https://www.mathworks.com/products/matlab.html

148

https://www.mathworks.com/products/matlab.html

6.4. Evaluation

(a) Power consumption on the laptop for a local execution of the Chesspresso application.

(b) Power consumption on the laptop for a remote execution of the Chesspresso application.

Figure 6.4.: Power consumption on the laptop for (a) a local execution and (b) a remote
execution of the Chesspresso application, highlighting the timing parame-
ters for the predictive distribution.

149

6. Deadline-aware Code Offloading with Predictive Safe-point’ing

Figure 6.5.: A section of the topographic map from the public transport of
Stuttgart (Germany), where the red line highlights the rail be-
tween the station ”Universität Stuttgart“ and ”Schwabstraße“.

offloading service for solving the ILP is less than 50ms for the Chesspresso application
or for the face recognition application. The MATLAB simulation takes several timing
parameters into account, basically depending on the processor speed of the device, the
computational complexity of the application, and the data rate of the communication
link. To this end, we calibrated the timing parameters through the execution of both
applications on the Jikes RVM prototype for the preemptable distribution on both
devices. Beside the timing parameters, we also measured the energy consumed for the
execution of the application code on the offloading client and on the offloading service
(cf. Section 4.7). The measurements of the timing parameters and the energy con-
sumption on the physical devices provide a realistic basis for the simulation. Table 6.1
summarizes and Figure 6.4 outlines the timing parameters. In detail, Tlsc is the time
until the execution reaches the Java method that is offloadable. Tlec and Trmc are the
time for an execution of the Java method on the offloading client and on the offloading
service. Tlsg and Tlst are the time for the creation of the input execution state (first
safe-point) on the offloading client and the transmission of the first safe-point from the
offloading client to the offloading service. Similarly, Trsg and Trst are the time for the
creation of a safe-point on the offloading service and the transmission of a safe-point
from the offloading service to the offloading client. Tlsi and Trsi are the time for the in-
stallation of a safe-point on the offloading client and on the offloading service. Finally,
Th defines the constraint of the maximum time for the application execution, which we
set lower for the Chesspresso application than for the face recognition application. We
set Th according to the execution time of the applications on the offloading client.

150

6.4. Evaluation

Table 6.1.: Timing parameters calibrated on real-world measurements for the evalua-
tion of the predictive distribution with safe-points.

Name Description
Chesspresso Ap-
plication

Face Recognition
Application

Netbook Laptop Netbook Laptop
Th Maximum time for the ap-

plication execution
40.000 s 10.000 s 50.000 s 30.000 s

ts Granularity of the time slot 0.001 s
Tlsc Execution time for reaching

the offloadable Java method
5.797 s 1.421 s 2.903 s 1.684 s

Tlmc Execution time for a lo-
cal execution of the Java
method

27.705 s 7.307 s 39.158 s 21.728 s

Trmc Execution time for a re-
mote execution of the Java
method

4.249 s 6.594 s

Tlec Execution time for reaching
the end of the application

0.778 s 0.110 s 5.806 s 3.261 s

Tlsg Time of generating the in-
put execution state

1.146 s 0.655 s 3.182 s 1.746 s

Tlst Time of transmitting the in-
put execution state to re-
mote side

0.100 s 3.385 s

Tlsi Time of installing a safe-
point locally

0.157 s 0.014 s 0.128 s 0.015 s

Trsg Time of generating a safe-
point on the remote side

0.029 s 0.024 s

Trst Time of transmitting a safe-
point to the client

0.010 s 0.009 s

Trsi Time of installing the input
execution state remotely

0.327 s 0.083 s

151

6. Deadline-aware Code Offloading with Predictive Safe-point’ing

Beside the execution time and energy consumption, the simulation requires connec-
tivity parameters of the network link. To this end, we measured the network connec-
tivity in the cellular networks of the providers O2 and T-Mobile. We measured the
connectivity traces at different days while riding a train of the public transport from
Stuttgart, Germany (cf. Figure 6.5). To retrieve the connectivity traces, a mobile de-
vice pings periodically via a cellular connection a server at the University of Stuttgart
connected to the Internet through the fixed university network. Based on the con-
nectivity traces measured for the cellular network of O2 and T-Mobile, the offloading
service builds the prediction models with the help of Markov chains. Equation 6.12
outlines the prediction model for the cellular network of T-Mobile and Equation 6.13
of O2, differing significantly in the occurrence and duration of disconnections:

P =

(
0.8861 0.1139

0.1950 0.8051

)
M

(∞)
ij =

(
1.5842 8.7826

5.1304 2.7119

)
(6.12)

P =

(
0.9859 0.0141

0.1081 0.8919

)
M

(∞)
ij =

(
1.1307 70.7500

9.2500 8.6486

)
(6.13)

Informally, the quality of the cellular network is higher for T-Mobile in comparison to
O2 (cf. M

(∞)
01 of Equation 6.12 and 6.13). Due to the significance of the prediction

models for the connectivity, we evaluated the accuracy of the applied Markovian model,
dividing the real-world traces of the connectivity into a training set and a test set.
Based on the training set and the test set, we built the Markov model on the training
set and evaluated it against the test set. In average, the (simple) stochastic model
based on Markov chains predict the quality of the cellular network in 65% properly.

To evaluate the performance and efficiency of the predictive distribution called Pre-
dictive, the evaluation compares it with a local execution, the basic distribution with
a re-execution in case of a failure called Baseline, the preemptable distribution with
periodic safe-point’ing called Periodic, and an optimal distribution called Optimal. A
local execution executes the application locally on the mobile device without code of-
floading. Baseline uses a basic strategy at the occurrence of a failure by re-executing
the offloaded Java method as soon as a disconnection occurs like in [KT12]. Peri-
odic uses a static schedule (i.e., non-predictive and non-optimized) for the creation
and transmission of safe-points, where the offloading client receives from the offloading
service a safe-point at an application-specific time interval predefined to 1 s for the
evaluation. As a reference, Optimal uses a perfect schedule for safe-point’ing knowing
in advance the point in times for a disconnection as well as its duration. Please note
that an optimal distribution with a perfect schedule is only achieved theoretically.

152

6.4. Evaluation

Figure 6.6.: Frequency of execution times for the Chesspresso application on the net-
book based on the connectivity traces for T-Mobile.

6.4.2. Results

This subsection describes the results for the evaluation of the predictive distribution,
categorized into the evaluated applications.

Chesspresso Application

Now, we present the evaluation results of the execution time and the energy consump-
tion on the netbook and on the laptop, distributing the Java method of the Chesspresso
application. Please note that, for a better overview, each following figure only shows
the frequencies of the execution time or the energy consumption that are greater than
0. Due to the heterogeneity of the hardware platform from the netbook and the laptop,
the execution time for a local execution of the Chesspresso application differs signifi-
cantly on both hardware platforms, taking 29.542 s on the netbook and 8.841 s on the
laptop. We define the maximum time for the execution of the Chesspresso application
slightly higher than a local execution, setting it to 40 s on the netbook and to 10 s on
the laptop (cf. Table 6.1).

For the netbook, Figure 6.6 shows the frequency of execution times for the different
approaches, distributing the Java method to the offloading service based on 1278 con-
nectivity traces of the cellular network of T-Mobile. Regarding the frequencies in the
figure for the different approaches, the different approaches result in execution times,
centered around two peeks at 12.60 s and 34.28 s. The execution time 12.60 s (first peek)
corresponds to the duration of a distribution, where no disconnections occur during
the remote execution and the offloading service executes completely the Java method.

153

6. Deadline-aware Code Offloading with Predictive Safe-point’ing

Figure 6.7.: Frequency of energy consumption for the Chesspresso application on the
netbook based on the connectivity traces for T-Mobile.

In detail, the frequency of the execution time for the first peek counts for Baseline 676,
for Periodic 641, for Predictive 666, and for Optimal 717. The execution time 34.28 s
(second peek) corresponds to the duration of a local execution for the Java method on
the netbook, where Baseline, Periodic, and Predictive counts 532 and Optimal counts
270. The reduction of the execution time about 21.68 s shows the benefits for the dis-
tribution of the Java method, utilizing the faster hardware platform of the desktop on
behalf of the slower hardware platform of the netbook. Having a closer look at the exe-
cution times between the two peeks, Baseline finishes an execution of the Java method
63 times, Periodic 40 times, Predictive 78 times, and Optimal 291 times between the
two peeks. Thus, the execution times for Optimal stay totally between the two peeks,
where the execution time for the worst case corresponds to a local execution of the
Java method on the netbook (34.28 s). Predictive results in 2 execution times that are
higher than the execution time for a local execution, Periodic in 65, and Baseline in 7.
The lowest number of execution times between the two peeks together with the highest
number of execution times after the second peek causes the highest execution time for
Periodic of 23.27 s on average. Baseline results on average in a slightly smaller exe-
cution time of 22.26 s, which Predictive further reduces to 22.09 s. However, Optimal
has on average an execution time of 19.20 s and thus, a 13.08% lower execution time
than Predictive. Regarding the latest time the execution of the Java method finishes,
Baseline violates 5-times the maximum time set for an execution, whereas Periodic
stays below the maximum time set and finishes an execution not later than 38.00 s.
This shows the positive effect of safe-point’ing in general. Predictive also stays below
the maximum time set with a maximum time for an execution of 36.00 s.

154

6.4. Evaluation

Figure 6.8.: Frequency of execution times for the Chesspresso application on the net-
book based on the connectivity traces for O2.

Regarding the energy consumption caused by the different approaches for a distribu-
tion of the Java method on the netbook (cf. Figure 6.7), a total execution of the Java
method on the offloading service consumes 128.53 J (first peek) and on the offloading
client 369.12 J (second peek). So, the first peek corresponds to a remote execution,
where no disconnections occur. The second peek corresponds to a local execution on
the netbook due to the occurrence of failures. Thus, the netbook saves energy of
240.59 J by distributing the Java method to the desktop. In detail, the average energy
consumed for Baseline and Predictive are similar, consuming in average 234.43 J and
233.95 J, respectively. Due to the improved schedule for safe-point’ing, the average
energy consumed for Predictive is lower than Periodic that causes a higher energy
consumption of 13.00 J. The lowest energy consumed in average causes Optimal with
198.76 J, resulting in a 15.04% lower energy consumption compared to Predictive.

Figure 6.8 shows the frequency of execution time for 1185 connectivity traces of the
cellular network of O2. Like for the cellular network of T-Mobile, the frequency of
execution times has two peeks at 12.60 s and at 34.28 s, where the execution time of a
local execution dominates over the execution time for a remote execution. In detail,
Baseline counts 323 at the first peek and 783 at the second peek, Periodic 319 and 783,
Predictive 322 and 783, and Optimal 353 and 489. The main reason for the decrease
of the first peek together with the increase of the second peek for all approaches is
the higher likelihood of a disconnection for O2. As a result, the failure handler of the
approaches starts more often a local execution in case of the occurrence of a failure.
As a result, the average time for an execution increases for Baseline to 27.87 s (an
increase of 5.61 s), Periodic to 28.32 s (an increase of 5.05 s), Predictive to 27.55 s (an

155

6. Deadline-aware Code Offloading with Predictive Safe-point’ing

Figure 6.9.: Frequency of energy consumption for the Chesspresso application on the
netbook based on the connectivity traces for O2.

increase of 5.46 s), and Optimal to 24.31 s (an increase of 5.11 s). Beside the increase
of the average time for an execution, the connectivity traces of the cellular network of
O2 leads to the same characteristics as of T-Mobile. Periodic has the highest average
time with 30 execution times between the two peeks and 53 execution times after the
second peek. In detail, it finishes an execution not later than 38.00 s and thus, does not
violate the maximum time for an execution, showing the benefits of safe-point’ing. Due
to 61 execution times between the two peeks and 18 execution times after the second
peek, Baseline reduces the average time compared to Periodic, however, violating the
maximum time for an execution 16 times. Predictive further decreases the maximum
time for an execution. Due to 76 execution times between the two peeks and 4 execution
times after the second peek, it finishes an execution not later than 35.50 s and thus,
staying below the maximum time set. Only Optimal keeps the time for an execution
below 34.28 s, counting 343 execution times between the two peeks. As a result, the
average time for an execution of Optimal is 11.76% lower compared to Predictive.

Regarding the energy consumption caused by the different approaches for a distribu-
tion of the Java method with the cellular network of O2 (cf. Figure 6.9), the consumed
energy is proportionally similar to the cellular network of T-Mobile. It is only increased
in general by the higher execution times due to the higher likelihood for the occurrence
of a failure. In detail, the average energy consumed for Baseline is 273.14 J, for Periodic
279.27 J, for Predictive 271.53 J, and for Optimal 234.79 J, where the average energy
consumed for Predictive is lower than Periodic as well as Baseline. However, Optimal
consumes in average the lowest energy, resulting in a 13.53% lower energy consumption
compared to Predictive.

156

6.4. Evaluation

Figure 6.10.: Frequency of execution times for the Chesspresso application on the lap-
top based on the connectivity traces for T-Mobile.

Now, we consider the execution times (cf. Figure 6.10 and Figure 6.12) and energy
consumption (cf. Figure 6.11 and Figure 6.13) for the different approaches on the
laptop. The laptop also distributes the Chesspresso application to the offloading service
based on the connectivity traces of the cellular network for T-Mobile and O2. Compared
to the hardware platform of the netbook, the hardware platform of the laptop is more
powerful and thus, closer to the performance of the desktop. As a result, the time (and
energy) benefit for a distribution of the Java method is smaller, where also a short
duration of a disconnection matters significantly.

For the laptop, Figure 6.10 shows the frequency of execution times for the different
approaches based on 1428 connectivity traces of the cellular network for T-Mobile.
Here, the execution times settle around the two peeks of 6.92 s and 8.84 s. The first peek
at 6.92 s corresponds to a remote execution of the Java method, where the offloading
service executes it totally without the occurrence of a failure. For the first peek,
Baseline counts to 761, Periodic and Predictive to 746, and Optimal to 784. The
second peek at 8.84 s corresponds to the execution time for a local execution on the
offloading client due to the occurrence of failures. For the second peek, Baseline and
Periodic counts to 585, Predictive to 599, and Optimal to 567. The reduction of the
execution time by 1.92 s is the benefit for a distribution of the Java method. Due to the
smaller benefit of a distribution for the laptop, the number of executions times between
the two peeks is for Baseline and Periodic low (22 and 0, respectively), reacting too
late on the occurrence of a failure. Utilizing the predictive scheduler for safe-point’ing,
Predictive results in 67 execution times between the two peeks, only 10 execution times
lower than Optimal. Furthermore, Optimal finishes an execution of the Java method
not later than the execution time for a local execution (second peek: 8.84 s), where

157

6. Deadline-aware Code Offloading with Predictive Safe-point’ing

Figure 6.11.: Frequency of energy consumption for the Chesspresso application on the
laptop based on the connectivity traces for T-Mobile.

Predictive results in 16 execution times that are higher than 8.84 s but lower than the
maximum time set to 10 s for the laptop. Both Baseline and Periodic violate several
times the maximum time set (56 and 74, respectively), highlighting the positive effect
of the utilization of the prediction models. On average, Predictive leads to lower times
for an execution (7.78 s) compared to Baseline (7.85 s) as well as Periodic (7.93 s).
Compared to Optimal, Predictive leads only to a 0.77% higher average time for an
execution, i.e., being very close to optimal.

Figure 6.11 shows the energy consumption for the connectivity traces of the cellular
network for T-Mobile on the laptop, corresponding to 250.26 J (first peek) for a remote
execution and 406.78 J (second peek) for a local execution. Thus, a distribution of the
Java method reduces the energy consumption on the laptop by 156.52 J. Regarding the
average energy consumed of the different approaches for T-Mobile, Predictive (317.56 J)
consumes in average less energy than Periodic (324.28 J), whereas it consumes in av-
erage more energy than Baseline (315.88 J). As the energy consumed by Baseline is
not higher than 406.78 J (energy for a local execution), the 16 energy consumption for
Predictive that are higher than 406.78 J are responsible for the higher average energy
consumed by Predictive (cf. Figure 6.11). Having a closer look at the 16 connectiv-
ity traces for T-Mobile that cause the higher energy consumption for Predictive, they
correspond to the worst-case scenario of the preemptable distribution. Compared to
Optimal (311.69 J), Predictive consumes in average only 1.85% more energy.

The higher likelihood of a disconnection for the 1335 connectivity traces of O2 in-
creases in general the execution times of the different approaches like for the netbook
(cf. Figure 6.12). It shifts the execution times towards the second peek (8.84 s) of a
local execution, because the failure handler of the different approaches starts a local
execution or continues a remote execution locally in case of the occurrence of a fail-

158

6.4. Evaluation

Figure 6.12.: Frequency of execution times for the Chesspresso application on the lap-
top based on the connectivity traces for O2.

Figure 6.13.: Frequency of energy consumption for the Chesspresso application on the
laptop based on the connectivity traces for O2.

ure. The increase of the average time for an execution is roughly 6%, resulting in an
average time of 8.36 s for Baseline, 8.38 s for Periodic, 8.27 s for Predictive, and 8.21 s
for Optimal. In detail, Baseline counts to 378 for the first peek and 878 for the second
peek, Periodic to 375 and 878, Predictive to 375 and 898, and Optimal to 396 and
876. Regarding the number of execution times between the two peeks, Baseline and
Periodic reacts too late at the occurrence of a failure (2 and 0, respectively), whereas
the utilization of the prediction models improves the reaction to failures and increases
the number to 41 for Predictive, being only 22 less than Optimal. Moreover, Baseline
and Periodic violate in total 72 and 62 times the maximum time set for an execution,
whereas Predictive (and Optimal) never violates the maximum time set (10 s).

The energy consumption of the different approaches on the connectivity for O2 has
the same characteristics as for T-Mobile, only increased by roughly 11% owing to the
higher likelihood for the occurrence of a failure (cf. Figure 6.13). In detail, the average
energy consumed for Baseline is 355.89 J, for Periodic 361.93 J, for Predictive 357.05 J,

159

6. Deadline-aware Code Offloading with Predictive Safe-point’ing

Figure 6.14.: Frequency of execution time for the face recognition application on the
netbook based on the connectivity traces for T-Mobile.

and for Optimal 352.44 J, where Predictive consumes 1.16 J more energy than Baseline
due to the worst-case scenarios like for T-Mobile. Compared to Optimal, Predictive
consumes only 1.29% more energy.

Summarizing, the basic strategy of failure handling from Baseline violates a maxi-
mum time set for a distribution of the Java method from the Chesspresso application.
The utilization of the preemptable distribution with safe-points improves the results,
however, still violating the maximum time set. Only the improvement with a predictive
schedule for safe-point’ing does not violate the maximum time set despite the occur-
rence of failures due to the utilization of the prediction models. In comparison with an
optimal approach that knows in advance the point in time as well as the duration of a
failure, the predictive schedule only performs slightly worse.

Face Recognition Application

Now, we present the evaluation results of the execution time and the energy con-
sumption on the netbook and on the laptop, distributing the Java method of the face
recognition application. Like for the evaluation results of the chess game, each follow-
ing figure only shows the frequencies that are greater than 0. Moreover, due to the
heterogeneity of the hardware platform from the netbook and the laptop, we also set
the maximum time to 50 s on the netbook and to 30 s on the laptop related to the
execution time for a local execution of 42.89 s and 24.64 s, respectively (cf. Table 6.1).

For the netbook, Figure 6.14 shows the frequency of execution times and Figure 6.15
of the energy consumption for the different approaches. The different approaches dis-
tribute the Java method of the face recognition application to the offloading service
based on 1228 connectivity traces of the cellular network of T-Mobile. Like for the
distribution of the chess game, the two peeks of a remote execution and of a local exe-

160

6.4. Evaluation

Figure 6.15.: Frequency of energy consumption for the face recognition application on
the netbook based on the connectivity traces for T-Mobile.

cution dominate the frequencies of the execution time (22.59 s and 42.89 s) and of the
energy consumption (233.19 J and 463.60 J) for the different approaches. The difference
between the two peeks highlights the benefits of a distribution without the occurrence
of a failure, reducing the execution time by 20.30 s and the energy consumption by
230.41 J. For the execution time (and for the energy consumption), Baseline counts
for the first peek and for the second peek to 561 and 581 (561 and 581), Periodic to
503 and 593 (503 and 581), Predictive to 572 and 581 (508 and 581), and Optimal to
632 and 299 (615 and 298). The execution time (energy consumption) between the
two peeks sums up for Baseline to 75 (77), for Periodic to 51 (63), for Predictive to 70

(134), and for Optimal to 297 (315). Moreover, Baseline causes 11-times (9-times) a
higher execution time (energy consumption) than a local execution, Periodic 81-times
(81-times), and Predictive 5-times (5-times), whereas Optimal takes not longer than
and consumes not more than a local execution. Baseline as well as Periodic violate
in total 9-times and 31-times the maximum time set, whereas Predictive as well as
Optimal do not violate it. Due to the similarity of the frequencies for Baseline and
Predictive, the average taken time as well as the average consumed energy are similar
for both approaches, where the results are slightly lower for Predictive (time: 0.79%;
energy: 1.78%). In detail, Baseline results in 32.96 s and 349.28 J and Predictive in
32.70 s and 348.66 J. Compared to the average taken time (29.46 s) and the average
consumed energy (307.63 J) for Optimal, Predictive leads to a higher average taken
time of 9.91% and a higher average consumed energy of 11.77%.

Figure 6.16 shows the frequency of the execution time and Figure 6.17 of the energy
consumption on the netbook from 1335 connectivity traces for the cellular network of
O2. The evaluation results are comparatively similar to the connectivity traces for the
cellular network of T-Mobile, only increased by the higher likelihood of the occurrence

161

6. Deadline-aware Code Offloading with Predictive Safe-point’ing

Figure 6.16.: Frequency of execution time for the face recognition application on the
netbook based on the connectivity traces for O2.

of a disconnection. In detail, the higher likelihood roughly halves the frequency at the
first peek and mainly adds it to the second peek, resulting for the execution time (the
energy consumption) in 237 and 813 (237 and 810) for Baseline, 217 and 819 (217 and
810) for Periodic, 246 and 810 (218 and 810) for Predictive, and 289 and 544 (277 and
540) for Optimal. The frequency between the two peeks as well as after the second
peek stays similar for the execution time (and the energy consumption), where Baseline
sums up to 72 and 13 (76 and 12), Periodic to 38 and 61 (47 and 61), Predictive to 67

and 12 (95 and 12), and Optimal to 302 and 0 (318 and 0). Due to the simple strategy
of failure handling in case of a disconnection, Baseline violates 12 times the maximum
time set, where Periodic violates it 23 times despite the utilization of safe-point’ing.
Only Predictive (and thus, Optimal) does not violate the maximum time set due to the
utilization of a predictive schedule for safe-point’ing. On average, the execution time
and energy consumption for Baseline (38.09 s and 406.99 J) and Predictive (37.79 s and
406.11 J) are similar, whereas the execution time and energy consumption for Periodic
is roughly 1.00 s and 12.50 J higher. Compared to Optimal, the average time and the
average energy for an execution of Predictive is 7.94% and 9.52% higher.

For the laptop, Figure 6.18 shows the frequency of the execution time and Figure 6.19
of the energy consumption on the laptop from 1328 connectivity traces for the cellular
network of T-Mobile. The time taken as well as the energy consumed for a remote exe-
cution (16.04 s and 654.70 J) and for a local execution (24.64 s and 1148.20 J) dominate
the frequencies for all approaches like 637 and 585 of the time as well as 647 and 588

of the energy for Baseline, 575 and 585 as well as 575 and 603 for Periodic, 637 and
590 as well as 575 and 586 for Predictive, and 675 and 428 as well as 706 and 419 for
Optimal. Thus, the benefit for a distribution of the face recognition application is on

162

6.4. Evaluation

Figure 6.17.: Frequency of energy consumption for the face recognition application on
the netbook based on the connectivity traces for O2.

Figure 6.18.: Frequency of execution time for the face recognition application on the
laptop based on the connectivity traces for T-Mobile.

the laptop 8.60 s and 493.50 J. For the taken time and the consumed energy between
the two peeks, Baseline results in 55 and 78, Periodic in 32 and 50, Predictive in 77

and 142, and Optimal in 225 and 203. The taken time and the consumed energy are
for Baseline 51 times and 15 times higher than for a local execution, 136 times and
100 times for Periodic, 24 times and 25 times for Predictive, and 0 times and 0 times
for Optimal. As a consequence of the frequencies, the average time for an execution is
similar for Baseline (20.51 s) and Predictive (20.27 s), whereas the average energy con-
sumed for Baseline (896.51 J) is slightly lower than for Predictive (901.69 J). However,
Baseline violates 26 times the maximum time set, where Predictive stays below it for
all the connectivity traces. The average time taken and the average energy consumed
for an execution is for Periodic higher (21.17 s and 941.89 J), violating 39 times the
maximum time set. Compared to Optimal (19.46 s and 834.47 J), Predictive has in
average a 4.0% higher execution time and a 7.46% higher energy consumption.

Figure 6.20 shows the frequency of the execution time and Figure 6.21 of the energy

163

6. Deadline-aware Code Offloading with Predictive Safe-point’ing

Figure 6.19.: Frequency of energy consumption for the face recognition application on
the laptop based on the connectivity traces for T-Mobile.

consumption on the laptop from 1235 connectivity traces for the cellular network of
O2. Due to the higher likelihood of a disconnection for the cellular network of O2,
it increases the frequencies for both the execution time and the energy consumption
towards a local execution (second peek) compared to the cellular network of T-Mobile.
The frequencies for the first peek and the second peek are 283 and 841 (288 and 844)
for Baseline, 266 and 841 (266 and 853) for Periodic, 283 and 848 (266 and 841) for
Predictive, and 307 and 725 (324 and 715) forOptimal. The frequencies between the two
peeks as well as after the second peek are similar for O2 and T-Mobile. Baseline results
in 42 and 69 for the execution time as well as 68 and 35 for the energy consumption,
Periodic in 22 and 106 as well as 36 and 80, Predictive in 64 and 40 as well as 86 and 42,
and Optimal in 203 and 0 as well as 225 and 0. Moreover, Baseline and Periodic violate
46 times and 30 times the maximum time set, whereas Predictive and Optimal stay
below it for all the connectivity traces. In average, Baseline takes 22.86 s and consumes
1029.80 J, taking 0.34 s longer and consuming 2.90 J more energy than Predictive. Due
to the static strategy of periodic safe-point’ing, Periodic takes the longest average time
(23.01 s) and consumes the highest average energy (1048.90 J). Knowing in advance the
point in time and the duration of a disconnection, Optimal reduces the average taken
time and the average consumed energy by 3.33% and 5.82% compared to Predictive.

Summarizing, like for the Chesspresso application, Baseline and Predictive perform
for the face recognition application similar on the netbook as well as on the laptop.
Both result in a similar execution time and energy consumption for the connectiv-
ity traces of T-Mobile and of O2. However, the basic strategy of failure handling from
Baseline violates the maximum time set for a distribution of the face recognition appli-
cation, whereas Predictive stays below it for all the connectivity traces. In many cases,
Periodic takes the longest time and consumes the highest energy compared to the other

164

6.5. Summary

Figure 6.20.: Frequency of execution time for the face recognition application on the
laptop based on the connectivity traces for O2.

Figure 6.21.: Frequency of energy consumption for the face recognition application on
the laptop based on the connectivity traces for O2.

approaches, emphasizing the utilization of a predictive schedule for safe-point’ing from
Predictive. For instance, the static schedule for safe-point’ing from Periodic violates
several times the maximum time set. Knowing in advance the point in time and the
duration of a failure, Optimal performs best, reducing the average taken time and the
average consumed energy only slightly compared to Predictive.

6.5. Summary

The predictive distribution described in Section 6.1 improves the safe-point schedule
of the preemptable distribution described in Section 5.1 with an adaptive algorithm
based on prediction models. It dynamically adapts the point in times for a creation
and transmission of safe-points due to dynamic conditions of the communication net-

165

6. Deadline-aware Code Offloading with Predictive Safe-point’ing

work. During a remote execution of an application part, the adaptive algorithm on
the offloading service predicts impending link failures to minimize the number of safe-
points received on an offloading client. In the optimal case, the offloading client only
receives one safe-point from the offloading service just before a disconnection happens
that lasts longer than the remaining time from a time constraint set for the execution.
The underlying system overview described in Section 6.2 with the system model, prob-
lem statement, and system components extends the preemptable distribution with an
additional constraint for the maximum time of an execution. To optimize the efficiency
of the preemptable distribution with safe-point’ing under the constraint, the predictive
distribution utilizes an optimal schedule for safe-point’ing described in Section 6.3. It
selects the optimal time to send a safe-point from the offloading service to the offload-
ing client by using a predictive approach that takes future network connectivity into
account. To evaluate the efficiency of the predictive distribution compared to the pre-
emptable distribution, the evaluation described in Section 6.4 presents the evaluation
setup and the evaluation results of multiple MATLAB simulations calibrated with real-
world measurements. The evaluation of the predictive distribution shows that it sig-
nificantly increases the efficiency – often tending the optimal performance – compared
to other distribution approaches and additionally guarantees a maximum time for an
execution under network failures. In detail, application parts that are computational-
intensive and have a small execution state like the Chesspresso application pronounce
more the benefits for a predictive distribution. These kind of application parts nat-
urally lend themselves better for code offloading than application parts with a larger
execution state transferred between an offloading client and an offloading service.

166

Chapter 7
Optimized Code Offloading
through Cooperative Caching

The basic distribution presented in detail in Chapter 4 causes computation and commu-
nication overhead due to, for instance, executing the offloading framework or sending
and receiving execution states. Moreover, an end user has to pay monetary cost for a
remote execution of an application part distributed to an offloading service at a com-
mercial cloud. To this end, this chapter presents a caching-aware distribution described
in Section 7.1 that extends the offloading framework of the basic distribution with a
cache on the remote side. The addition of a cache on the remote side changes the
system overview described in Section 7.2 related to the basic distribution. The offload-
ing timeline described in Section 7.3 highlights the function of the cache on the remote
side. A remote-side cache serves as a collective storage for output execution states from
already executed application parts, avoiding a repeated execution of previously run ap-
plication parts. Making the offloading framework described in Section 7.4 aware of a
cache on the remote side, the offloading client queries the introduced cache for a related
output execution state of an application part instead of executing it on an offloading
service. In case of a cache hit, the caching service that provides the cache immediately
sends the output execution state to the offloading client. Otherwise, in case of a cache
miss, the offloading client distributes the application part to an offloading service just
like the basic distribution. To evaluate the introduced overhead and gained benefits of
the caching-aware distribution compared to the basic distribution, Section 7.5 presents
the evaluation of an implemented prototype, including the evaluation setup and the
evaluation results. Last, Section 7.6 summarizes the main facts of an optimized code
offloading through cooperative caching presented in this chapter.

7.1. Caching-aware Distribution

The offloading client of the basic distribution presented in detail in Subsection 4.5.2
identifies an application part for a distribution, gathers its input execution state, and

167

7. Optimized Code Offloading through Cooperative Caching

determines its execution side. Afterwards, in case of a remote execution on an offload-
ing service, the offloading client sends the required information to the offloading service
and waits in idle mode during the remote execution. Finally, it receives the output
execution state from the offloading service, installs the contained information on its
hardware platform, and continues the execution of the application. Regarding these
eight substeps – identify, gather, determine, send, wait, receive, install, and continue –
on the offloading client for the basic distribution, each substep introduces either com-
putation or communication overhead to the offloading client. In case of a distribution
of an application part, the process of code offloading – including the eight substeps –
significantly increases the efficiency of the offloading client. In case of a local execution
of an application part, the process of code offloading – now, only including the first
three substeps – introduces an overhead to the offloading system. Please note that the
basic distribution proposed in Chapter 4 improves these first three substeps, keeping
the overhead low. Regarding the remaining five substeps – send, wait, receive, install,
and continue – on the offloading client, the offloading client has to perform immutably
the last two substeps of installing and continuing. Consequently, we propose the ap-
proach of a caching-aware distribution. The caching-aware distribution improves on
the offloading client the substeps of sending, waiting, and receiving from the basic dis-
tribution with a cache. The cache serves as a collective storage for output execution
states from already executed application parts on an offloading client or an offloading
service to avoid a repeated execution of previously run application parts.

Before the substep of sending the input execution state to an offloading service, the
offloading client just queries the introduced cache. Querying the cache for an output
execution state of an application part, the cache starts a lookup in its storage of output
execution states from already executed application parts. In case of a cache hit, the
cache responses to the offloading client with the related output execution state, avoid-
ing a repeated execution of a previously run application part on the offloading service.
As the offloading client immediately receives the output execution state for the appli-
cation part, it skips the substeps of sending, waiting, and receiving and proceeds with
the substeps of installing and continuing. In case of a cache miss, the cache does not
possess the related output execution state for an application part. Thus, the offloading
client has to proceed with the substeps of sending, waiting, receiving, installing, and
continuing. The caching-aware distribution benefits from previous executions of appli-
cation parts by replacing the time cost of distribution – send, wait, and receive – with
the space cost of caching – query, wait, and receive.

In general, there are multiple locations possible for the cache of the caching-aware
distribution like directly on the hardware platform of an offloading client, at any place

168

7.2. System Overview

in the infrastructure (cf. at the Fog [BMZA12]), or at a commercial cloud data center.
A cache located on the hardware platform of an offloading client has the lowest delay
of querying the cache, but introduces computation and storage overhead for a local
processing and storing of the cache. Due to the single usage by an offloading client, only
one client fills the cache with output execution states after an execution or a distribution
of application parts. Moving the location of the cache to the infrastructure, the delay of
communicating with the cache increases dependent on the link quality of the network.
However, a cache located in the infrastructure replaces the computation and storage
overhead for a cache located on the hardware platform of an offloading client with
the communication overhead and monetary cost. The monetary cost arises due to the
utilization of resources located in the infrastructure. Now, several offloading clients
fill the cache with output execution states, increasing the probability for a cache hit.
Going one step further, a cache located at a commercial cloud data center differs from
a cache located in the infrastructure in the delay of communicating with the cache and
the number of offloading clients filling the cache. However, the communication delay
increases slightly and the number of participants considerably.

As the benefits of the caching-aware distribution directly depends on the fill level
of the cache, the caching-aware distribution utilizes a cache located at a commercial
cloud data center. Thus, the caching-aware distribution benefits from a collective
sharing of output execution states cached on the remote side, where multiple offloading
clients distribute application parts, filling the remote cache over time. Summarizing,
we make the following contributions: (1) A formulation of the problem to make the
basic distribution aware of a collective sharing of output execution states based on a
cache; (2) an adaptive algorithm that solves the caching-aware problem increasing the
efficiency of the basic distribution; (3) an implementation of the adaptive approach
for the caching-aware distribution; and (4) an evaluation of the overhead and benefit
for the caching-aware distribution based on real-world measurements, where different
mobile devices execute different mobile applications.

7.2. System Overview

The caching-aware distribution extends the basic distribution with a cache on the re-
mote side. To this end, Subsection 7.2.1 describes the changes to the system model,
Subsection 7.2.2 to the problem statement, and Subsection 7.2.3 to the system compo-
nents related to the basic distribution (cf. Section 4.2).

169

7. Optimized Code Offloading through Cooperative Caching

7.2.1. System Model

The system model of the caching-aware distribution extends the basic distribution with
a cache on the remote side. Thus, an offloading client on a resource Ξ(ξl) distributes
application parts to an offloading service on a resource Ξ(ξr) and queries a cache on
a resource Ξ(ξc). Providing a cache to offloading clients and offloading services, the
performance characteristic QΞ(ξc)

chlu for a resource Ξ(ξc) is a performance factor, indicat-
ing how much time the resource requires for processing a cache query. Moreover, the
cost implication QΞ(ξc)

qury for a resource Ξ(ξc) is the processing fee, indicating how much
monetary cost the resource charges per cache query. Utilizing a cache provided by a
resource Ξ(ξc), the load metrics Qsize

Istate
(Aαo) and QΞ(ξ)

chms indicates the total number of
bytes for a cache query of the input execution state Istate(Aαo) and for the information
about the cache miss. For the communication network, the offloading client communi-
cates with the cache via a bidirectional link Λ(ξl; ξc), where the offloading service and
the cache communicate with each other via a bidirectional link Λ(ξr; ξc). Please note
that the communication network consists for Λ(ξl; ξc) of wireless and fixed networks,
whereas it consists for Λ(ξr; ξc) of a fixed network.

7.2.2. Problem Statement

A remote execution from the basic distribution – identifying, gathering, determining,
sending, waiting, receiving, installing, and continuing – replaces a local execution of
an application part if it is worthwhile. The caching-aware distribution introduces the
substep of ”querying“ a cache before ”sending“ information to an offloading service,
substituting ”sending“ in case of a cache hit. To keep the resource efficiency and the
user experience high, the caching-aware distribution minimizes the cost function fw

(cf. Section 3.2) subject to the additional constraint Tmax(Aαo ,Ξ(ξ)) on the maximum
time for an execution of an application part. Tmax(Aαo ,Ξ(ξ)) is the maximum time
tolerated for an execution of the application part Aαo on Ξ(ξ), ensuring a minimal
responsiveness of an application. For instance, a distribution in case of a limited quality
of the communication network keeps the energy consumed on the offloading client low
but increases the overall time for an execution of an application part. Formally, the
caching-aware distribution changes the problem stated in Equation 3.1 as follows:

min
ξ

fw(Aαo ,Ξ(ξ))

s.t. T (Aαo ,Ξ(ξ)) ≤ Tmax(Aαo ,Ξ(ξ))
(7.1)

170

7.2. System Overview

As an end user sets the constraint Tmax(Aαo ,Ξ(ξ)) of the maximum time for the exe-
cution, we set the user-defined weight wt for the execution time to 0. Thus, the cost
function fw is the sum of the energy consumption multiplied by the weight we and the
monetary cost multiplied by the weight wc, simplifying the equation as follows:

min
ξ

we ·E(Aαo ,Ξ(ξ)) + wc ·C(Aαo ,Ξ(ξ))

s.t. T (Aαo ,Ξ(ξ)) ≤ Tmax(Aαo ,Ξ(ξ))
(7.2)

Having a closer look on the execution time T (Aαo ,Ξ(ξ)), each substep of a remote ex-
ecution with caching – identifying, gathering, determining, sending/querying, waiting,
receiving, installing, and continuing – takes time on the offloading client. In detail, a
local execution of the application part on the offloading client takes time for identifying,
gathering, determining, and continuing. A cache hit from the cache takes time for the
eight substeps with ”querying“, where a remote execution on the offloading service takes
time for the eight substeps with ”sending“. A cache miss from the cache takes time for
the eight substeps of a cache hit, but receives a small message about the cache miss
instead of the output execution state. Thus, it additionally takes time for a remote
execution on the offloading service after the receive of the message about the cache
miss. As a result, the execution time T (Aαo ,Ξ(ξ)) is either the time for a local execu-
tion on the resource Ξ(ξl), a cache hit from the cache on the resource Ξ(ξc), a remote
execution on the resource Ξ(ξr), or a cache miss from the cache on the resource Ξ(ξc).
Please note that Section 3.2 defines the time Tlocal(Aαo ,Ξ(ξl)) for an execution on a
resource Ξ(ξl) and Tremote(Aαo ,Ξ(ξr)) for a distribution to a resource Ξ(ξr), consisting
of the execution time Tsend(Aαo ,Ξ(ξr)), Twait(Aαo ,Ξ(ξr)), and Trecv(Aαo ,Ξ(ξr)). For a
cache hit, Tchht(Aαo ,Ξ(ξ)) sums up the execution time Tqury(Aαo ,Ξ(ξc)) for querying
the cache, Tchlu(Aαo ,Ξ(ξc)) for waiting until the cache processed the cache query, and
Trecv(Aαo ,Ξ(ξc)) for receiving the output execution state from the cache. For a cache
miss, Tchms(Aαo ,Ξ(ξ)) sums up the execution time Tqury(Aαo ,Ξ(ξc)) for querying the
cache, Tchlu(Aαo ,Ξ(ξc)) for processing the cache query at the cache, T chmsrecv (Aαo ,Ξ(ξc))

for receiving the information about the cache miss, and Tremote(Aαo ,Ξ(ξr)) for executing
the application part Aαo remotely on the resource Ξ(ξr).

Tqury(Aαo ,Ξ(ξc)) =
Qsize
Istate

(Aαo)

B
Λ(ξl;ξc)
up

+ LΛ(ξl;ξc)
up

Tchlu(Aαo ,Ξ(ξc)) = Q
Ξ(ξc)
chlu

T chmsrecv (Aαo ,Ξ(ξc)) =
Q

Ξ(ξc)
chms

B
Λ(ξl;ξc)
down

+ L
Λ(ξl;ξc)
down

171

7. Optimized Code Offloading through Cooperative Caching

Like the time taken for each substep, each substep also consumes energy on the of-
floading client. In detail, the energy consumption E(Aαo ,Ξ(ξ)) is the energy consumed
for a local execution on the resource Ξ(ξl), a cache hit from the cache on the resource
Ξ(ξc), a remote execution on the resource Ξ(ξr), or a cache miss from the cache on the
resource Ξ(ξc). Again, please note that Section 3.2 defines the energy Elocal(Aαo ,Ξ(ξl))

consumed for an execution on a resource Ξ(ξl) and Eremote(Aαo ,Ξ(ξr)) for a distri-
bution to a resource Ξ(ξr), consisting of the energy consumption Esend(Aαo ,Ξ(ξr)),
Ewait(Aαo ,Ξ(ξr)), and Erecv(Aαo ,Ξ(ξr)). For a cache hit, Echht(Aαo ,Ξ(ξ)) sums up
the energy consumption Equry(Aαo ,Ξ(ξc)) for querying the cache, Echlu(Aαo ,Ξ(ξc)) for
waiting until the cache processed the query, and Erecv(Aαo ,Ξ(ξv)) for receiving from
the cache the output execution state. For a cache miss, Echms(Aαo ,Ξ(ξ)) sums up
the energy consumption Equry(Aαo ,Ξ(ξc)) for querying the cache, Echlu(Aαo ,Ξ(ξc)) for
waiting until the cache processed the query, Echms

recv (Aαo ,Ξ(ξc)) for receiving the cache
miss, and Eremote(Aαo ,Ξ(ξr)) for executing Aαo remotely on the resource Ξ(ξr).

Equry(Aαo ,Ξ(ξc)) = Tqury(Aαo ,Ξ(ξc)) ·EΞ(ξl)
send

Echlu(Aαo ,Ξ(ξc)) = Tchwt(Aαo ,Ξ(ξc)) ·EΞ(ξl)
wait

Echms
recv (Aαo ,Ξ(ξc)) = T chmsrecv (Aαo ,Ξ(ξc)) ·EΞ(ξl)

recv

Having a closer look on the monetary cost C(Aαo ,Ξ(ξ)), a cache hit from the cache
on the resource Ξ(ξc) (querying, waiting, and receiving), a remote execution on the re-
source Ξ(ξr) (sending, waiting, and receiving), and a cache miss from the cache on the
resource Ξ(ξc) (querying, waiting, receiving, sending, waiting, and receiving) raise mon-
etary cost for the offloading client. Again, please note that Section 3.2 defines the mon-
etary cost Cremote(Aαo ,Ξ(ξr)) raised for a distribution to a resource Ξ(ξr), consisting
of the monetary cost Crecv(Aαo ,Ξ(ξr)), Cwait(Aαo ,Ξ(ξr)), and Csend(Aαo ,Ξ(ξr)). For a
cache hit, Cchht(Aαo ,Ξ(ξ)) sums up the monetary cost Cqury(Aαo ,Ξ(ξc)) for querying the
cache, Cchlu(Aαo ,Ξ(ξc)) for processing the query on the cache, and Csend(Aαo ,Ξ(ξc)) for
receiving the output execution state from the cache. For a cache miss, Cchms(Aαo ,Ξ(ξ))

sums up the monetary cost Cqury(Aαo ,Ξ(ξc)) for querying the cache, Cchlu(Aαo ,Ξ(ξc))

for processing the query on the cache, Cchms
send (Aαo ,Ξ(ξc)) for receiving the informa-

tion about the cache miss from the cache, and Cremote(Aαo ,Ξ(ξr)) for executing Aαo
remotely on the resource Ξ(ξr).

Cqury(Aαo ,Ξ(ξc)) = Qsize
Istate(Aαo) ·CΛ(ξl;ξc)

recv

Cchlu(Aαo ,Ξ(ξc)) = QΞ(ξc)
qury

Cchms
send (Aαo ,Ξ(ξc)) = Q

Ξ(ξc)
chms ·CΛ(ξl;ξc)

send

172

7.2. System Overview

Figure 7.1.: The system components for the caching-aware distribution, where an of-
floading client offloads code via a communication network to an offloading
service. A caching service provides a cache of output execution states.

Summarizing, the caching-aware distribution may increase the efficiency of the offload-
ing client compared to the basic distribution by querying a cache for an application part
instead of executing it on an offloading service. If the cache possesses a corresponding
value in its storage (cache hit), it responses to the offloading client with the output
execution state. Optimally, each query of an offloading client to the cache corresponds
to a cache hit that significantly reduces the execution time, energy consumption, and
monetary cost for an application part. In case of a cache miss, additional time, energy,
and money arise for caching and distributing. Thus, the substeps required for caching
introduces some overhead compared to the basic distribution.

7.2.3. System Components

Figure 7.1 shows the integration of a caching service to the system components of the
basic distribution, where the caching service functions as a cache on the remote side.
It is a classic server machine, hosted in a (commercial) cloud data center, providing
Caching as a Service (CaaS) to offloading clients and offloading services with a pay-
as-you-go cost model. Due to the pay-as-you-go cost model, each cache query or cache
insert causes monetary cost for an offloading client or an offloading service that queries

173

7. Optimized Code Offloading through Cooperative Caching

Figure 7.2.: Offloading timeline of the caching-aware distribution for an application
part between an offloading client and an offloading service via a communi-
cation network, where the offloading client inserts and requests the output
execution state from the caching service for application parts.

or inserts values (cf. Google’s Memcache [Pla16]). To handle cache queries or cache
inserts, the caching service stores key-value pairs in a database, where a key identifies
globally uniquely its corresponding value. Offloading clients and offloading services
query the caching service for key-value pairs and/or insert key-value pairs into it.

7.3. Offloading Timeline

Figure 7.2 shows a timeline for the caching-aware distribution that extends the basic
distribution described in Section 4.4 with a cache on the remote side (caching service).
First, an offloading client sends a cache request to the caching service, requesting the
monetary cost charged for a utilization of the caching service. On a receive of a cache
request, the caching service creates a cache response that contains the monetary cost
for its utilization and sends the cache response to the offloading client. Like for the
basic distribution, the offloading client identifies an application part that is feasible
for a distribution based on the offload-specific annotation offloadable. Invoking an
annotated application part, the offloading client gathers the input execution state of

174

7.3. Offloading Timeline

the Java method and creates an offload request containing the input execution state.
Afterwards, the offloading client determines the execution side for the Java method.
To make the basic distribution aware of caching, the caching-aware distribution

additionally determines whether to query the caching service before either executing
the Java method locally or distributing it to the offloading service. In case of querying
the caching service, the offloading client creates three hash values for a Java method:
(1) A hash value from the complete name of the application like app_name-v1.3, (2) a
hash value from the entire signature of the Java method like d.s.Klass.call(Ljava.
lang.String;J[F)S, and (3) a hash value of the offload request. For the computation
of the hash values, the offloading client utilizes the efficient function DJB (Daniel Julius
Bernstein)1 for hash computation (cf. Henke et al. [HSZ08]). These three hash values
provide a proper mapping between the call of a Java method within an application
and its right output execution state, constituting an Identifier (ID) for the call of a
Java method within an application. To this end, a cache request only consists of the
three hash values that the offloading client sends to the caching service querying for a
corresponding output execution state.
Each time the caching service receives a cache request from an offloading client,

it starts a cache lookup in its local database based on the received ID (key). The
local database is a (huge) hash map that stores key-value pairs requiring O(n) for the
storage space and in average O(1) (in worst case O(n)) for searching, inserting, or
deleting values [CSRL09]. If the database contains a corresponding output execution
state (value) for the received key (cache hit), the caching service immediately sends
the offload response to the offloading client. Otherwise, it sends a small message to the
offloading client indicating the non-existence of a key-value pair (cache miss).
In case of a cache hit, the offloading client receives the offload response, installs the

contained information, and continues the execution of the application. In case of a
cache miss, the offloading client receives the information of a cache miss and starts
either an execution of the Java method locally or a distribution of the Java method to
the offloading service as the basic distribution (Figure 7.2).
To fill the cache of the caching service with key-value pairs, offloading clients and

offloading services send after a local execution of a Java method its ID together with the
offload response to the caching service (cache insert). Then, the caching service updates
its local database with the key-value pairs proactively, inserting the appropriate entries
into the hash map. Regarding the memory limit of a cache storage, a caching service
has to start a replacement strategy in case of running out of space, where the caching
service utilizes the common replacement strategy of Least-Recently-Used (LRU) [JS94].

1Professor Daniel J. Bernstein invented the algorithm for the hash function.

175

7. Optimized Code Offloading through Cooperative Caching

7.4. Offloading Framework

The caching-aware distribution extends the offloading framework of the basic distribu-
tion described in Section 4.5 by modifying the offloading client (cf. Subsection 7.4.1)
and the offloading service (cf. Subsection 7.4.2). Beside the modifications to the offload-
ing client and the offloading service, it adds the caching service (cf. Subsection 7.4.3).

7.4.1. Offloading Client

On the offloading client, the caching-aware distribution only adjusts the offload con-
troller to send cache inserts and cache requests (cf. Subsection 4.5.2). To send a cache
insert after a local execution of an application part that is offloadable, the execution
controller on the offloading client invokes the offload controller due to the execution
of the offload-specific Java bytecode instruction offload_end. Afterwards, the offload
controller generates a cache insert for the application part and sends it via the service
connector to the caching service. To send a cache request before a local execution or
the basic distribution of an application part that is offloadable, the offload controller
on the offloading client minimizes the cost function from Equation 7.1 at its invocation
from the execution controller due to the execution of the offload-specific Java bytecode
instruction offload. Please note that the execution time T (Aαo ,Ξ(ξ)), the energy
consumption E(Aαo ,Ξ(ξ)), and the monetary cost C(Aαo ,Ξ(ξ)) depend in general on
dynamic parameters that the offload controller only knows at run-time. For instance,
an end user playing a chess game determines the parameters of the Java method that
is offloadable by moving a chess piece during the play. Thus, the offload controller has
to minimize online the cost function at run-time based on the current parameters.

Algorithm 7.1 visualizes the decision making of the offload controller on the offloading
client minimizing the cost function at run-time. To this end, it first considers for a
Java method Aαo the tradeoff between a local execution on the hardware platform of
the offloading client or receiving an offload response from the caching service due to
a cache request (cf. Line 4). The offload controller executes the Java method locally
in two cases: (1) If the sum of the energy consumption WE

chht and the monetary cost
WC
chht for a cache hit is equal or higher than the energy consumption WE

lcl for a local
execution or (2) the execution time W T

chht for a cache hit is equal or higher than the
maximum time Tmax(Aαo ,Ξ(ξ)) for its execution. For instance, in case of a bad quality
of the communication network (e.g., due to a high latency of the wireless link), a local
execution is more beneficial than querying the caching service for an offload response.
In case the if-statement in Line 4 of Algorithm 7.1 is true, the offloading client sends

176

7.4. Offloading Framework

1: W T
lcl = wt ·T (Aαo ,Ξ(ξl)) W T

chht = Tchht(Aαo ,Ξ(ξc))

2: WE
lcl = we ·E(Aαo ,Ξ(ξl)) WE

chht = we ·E(Aαo ,Ξ(ξc))

3: WC
chht = wc ·C(Aαo ,Ξ(ξc))

4: if (WE
chht +WC

chht) < WE
lcl && W T

chht < Tmax(Aαo ,Ξ(ξ)) then

5: if sndCchRqstAndRcvCchRspns() == Cache Hit then
6: return ofldRspns

7: else
8: W T

rmt = Tchht(Aαo ,Ξ(ξr))

9: WE
rmt = we ·E(Aαo ,Ξ(ξr))

10: WC
rmt = wc ·C(Aαo ,Ξ(ξr))

11: if (WE
rmt +WC

rmt) < WE
lcl && W T

rmt < Tmax(Aαo ,Ξ(ξ)) then
12: return sndOfldRqustAndRcvOfldRspn()

13: end if
14: end if
15: end if
16: exctLcl()

Algorithm 7.1: Algorithm of the decision making for the caching-aware distribution on
the offload controller of the offloading client.

a cache request to the caching service. The caching service responses to the offloading
client with the cache response containing either the offload response (cache hit) or the
information about the cache miss. In case of a cache hit, the offload controller on the
offloading client installs the contained information and continues the execution of the
application (cf. Line 6). In case of a cache miss, the offload controller considers a further
tradeoff between a local execution on the offloading client or a remote execution on the
offloading service (cf. Line 11). Like for the first tradeoff, the offload controller executes
the Java method locally in two cases: (1) If the sum of the energy consumption WE

rmt

and the monetary cost WC
rmt for a remote execution is equal or higher than the energy

consumption WE
lcl for a local execution or (2) the execution time W T

rmt for a remote
execution is equal or higher than the maximum time Tmax(Aαo ,Ξ(ξ)) for its execution.
In case the if-statement in Line 11 is true, the offloading client sends an offload
request to the offloading service. After the remote execution of the offload request on
the offloading service, the offloading service responses to the offloading client with the
offload response. On receiving the offload response, the offloading client installs the
contained information and continues the execution of the application (cf. Line 12).

177

7. Optimized Code Offloading through Cooperative Caching

Figure 7.3.: The runtime environment on the caching service for the caching-aware
distribution.

7.4.2. Offloading Service

For the offloading service, the caching-aware distribution only adjusts the offload con-
troller and adds a service connector to send cache inserts (cf. Subsection 4.5.3). To
send a cache insert after an execution of an application part that is offloadable, the
execution controller invokes the offload controller due to the execution of the offload-
specific Java bytecode instruction offload_end. Afterwards, the offload controller
generates a cache insert for the application part and sends it via the service connector
to the caching service. Please note that the service connector corresponds to a service
connector on an offloading client, providing the same functionality.

7.4.3. Caching Service

Figure 7.3 shows the runtime environment of the caching service, providing the cache-
side functionality for the caching-aware distribution. It consists of a cache interface, a
cache connector, a cache controller, and a cache database.

Cache Interface The cache controller of the caching service invokes the cache in-
terface to retrieve the monetary cost for querying the caching service of an output
execution state and inserting an input execution state to the caching service. To this

178

7.5. Evaluation

end, the cache interface provides an interface – more precisely text entry boxes, where
a provider of the cache defines the monetary cost.

Cache Connector The cache connector of the caching service receives cache requests,
cache inserts, and cache queries from offloading clients and offloading services. More-
over, it sends cache responses to offloading clients and offloading services. Receiving a
cache request, an offloading client or an offloading service requests the monetary cost
for querying and inserting of the caching service. To this end, the cache connector for-
wards the cache request to the cache controller. Receiving a cache insert, an offloading
client or an offloading service updates the caching service with an output execution
state after an execution of an application part. Thus, the cache connector forwards the
cache insert to the cache controller. Receiving a cache query, an offloading client or
an offloading service queries the caching service for an output execution state before
an execution of an application part. To this end, the cache connector forwards the
cache query to the cache controller. Receiving a cache response, the cache controller
responses to a cache request, cache insert, or a cache query. Thus, the cache connector
forwards it to the corresponding offloading client or offloading service.

Cache Controller The cache connector of the caching service invokes the cache con-
troller due to the receive of a cache request, a cache insert, or a cache query. In case
of a cache request, the cache controller creates a cache response – that contains the
monetary cost of the caching service requested from an offloading client or an offloading
service – and forwards the cache response to the cache connector. In case of a cache
insert, the cache controller updates the cache database if it does not possess the key-
value pair from the cache insert. In case of a cache query, the cache controller starts a
lookup on the cache database if it possesses a corresponding value (output execution
state) for the queried key. Afterwards, the cache controller creates a cache response –
that contains either a corresponding value of the output execution state (cache hit) or
the information about the cache miss – and forwards it the the cache connector.

Cache Database The cache database is a hash map that provides an efficient insert
and lookup of key-value pairs for the caching service.

7.5. Evaluation

To evaluate the introduced overhead and gained benefits of the caching-aware dis-
tribution, we extended the implementation of the OpenJDK prototype for the basic

179

7. Optimized Code Offloading through Cooperative Caching

distribution (cf. Subsection 4.6.2). The extensions to the OpenJDK prototype com-
prise changes to the implementation of the JVM to provide the functionality required
for the caching-aware distribution on the offloading client and the offloading service
(cf. Section 7.4). Moreover, we implemented the caching service in a Java application,
executed on an unaltered OpenJDK JRE. For the evaluation, mobile devices execute
Java applications on an unaltered OpenJDK JRE (local execution), on an offload-aware
OpenJDK JRE (basic distribution), and on a caching-aware OpenJDK JRE (caching-
aware distribution). To this end, Subsection 7.5.1 describes the evaluation setup before
Subsection 7.5.2 presents the evaluation results.

7.5.1. Setup

The evaluation setup for the caching-aware distribution extends the evaluation setup
for the basic distribution on the OpenJDK described in Subsection 4.7.1 as follows:

The desktop computer that executes the offloading service also executes the Java
application for a caching service on its hardware platform, possessing enough processing
power for the execution of both services (cf. Section C.4).

The application evaluated for the caching-aware distribution are the chess game (cf.
Section B.3) and the text-to-voice application (cf. Subsection B.5). The Java method
that is offloadable from the chess game occupies only a small amount of memory on
the cache of the caching service due to its small size of the output execution state.
Regarding the huge number of possible configurations of the chess board2, however,
the hit ratio of a cache for chess decreases fast with the number of rounds played for
chess. Today’s chess engines also look up favorable chess moves from a chess opening
book in place of actually calculating the next best move on hardware. The Java
method that is offloadable from the text-to-voice application occupies a large amount
of memory on the cache of the caching service due to its big size of the output execution
state. Regarding the general frequency of a word in a text (cf. Zipf’s law [Pow98]),
however, the hit ratio of a cache for text-to-voice is significantly higher than for chess.
For instance, Fagan and Gençay analyzed in [FG10] the Brown University Standard
Corpus of Present-Day American English (text collection)3 that consists of 1, 014, 312

words in total. Remarkably, half of the text collection only requires 135 different words.

For the monetary cost charged by the offloading service or the caching service, we

2In the year 1950, Claude E. Shannon estimated the number of possible positions of chess pieces in
the general order of roughly 1043. [Sha50]

3http://clu.uni.no/icame/manuals/BROWN/INDEX.HTM

180

http://clu.uni.no/icame/manuals/BROWN/INDEX.HTM

7.5. Evaluation

consider the prices charged by Google4 or Amazon5 for the utilization of instances
from their cloud platform. Both providers of cloud instances do not charge for data
sent to the data center as well as data received from the data center. Together with
the availability of a flat-rate data plans for end users, we set CΛ(ξl;ξc)

recv – and thus
Cqury(Aαo ,Ξ(ξc)) and Crecv(Aαo ,Ξ(ξr)) – as well as C

Λ(ξl;ξc)
send – and thus Cchms

send (Aαo ,Ξ(ξc))

and Csend(Aαo ,Ξ(ξr)) – to 0 (cf. Subsection 7.2.2). Typically, a cloud instance from
Google or Amazon executes either the offloading service or the caching service. As the
desktop computer executes both services, the monetary cost for Cwait(Aαo ,Ξ(ξr)) or
Cchlu(Aαo ,Ξ(ξc)) equals the prices for an m3.medium machine type from Amazon as
well as an n1-standard-1 machine type from Google. The utilization of an m3.medium
machine type from Amazon causes a monetary cost of 0.070 $ per hour and an n1-
standard-1 machine type from Google 0.063 $ per hour. As a provider of an offload-
ing service or a caching service want to earn money with its service running on a
cloud instance, we assume the sum of the price for a cloud instance from Amazon
and Google, resulting in a monetary cost of 3.69 · 10−5

(
= 0.070+0.063

60 · 60

)
$ per second for

Cwait(Aαo ,Ξ(ξr)) and Cchlu(Aαo ,Ξ(ξc)). For instance, utilizing a Google n1-standard-
1 instance, a provider amortizes the leasing cost of an hour (3600 s) for the Google
instance after 1705.26 s of consecutive execution of application parts distributed to
its service. As a provider of a caching service wants its cache to be filled by many
participants, it does not charge monetary cost for cache inserts.

The evaluation compares the caching-aware distribution – named Cached – in two
configurations – named CachedEmpty and CachedFull – differing in the fill level of the
cache on the caching service with the two approaches Local and Baseline. The approach
Local totally executes an application on an unaltered OpenJDK JRE, not distributing
or caching a Java method that is offloadable. The approach Baseline utilizes the
basic distribution (cf. Section 4.1) distributing but not caching a Java method that
is offloadable. The configuration CachedEmpty of Cached represents the worst case of
the caching-aware distribution. The fill level of the cache from the caching service is
empty and thus, the caching service responses to an offloading client that queries the
caching service every time with a cache miss. The configuration CachedFull of Cached
represents the optimal case of the caching-aware distribution. The cache from the
caching service possesses each corresponding value for a key queried from an offloading
client and thus, responses to an offloading client that queries the caching service every
time with a cache hit. Based on the two configurations of CachedEmpty and CachedFull,
the evaluation highlights for the caching-aware distribution its overhead and benefit.

4https://cloud.google.com/compute
5https://aws.amazon.com/ec2/pricing/?nc1=h_ls

181

https://cloud.google.com/compute
https://aws.amazon.com/ec2/pricing/?nc1=h_ls

7. Optimized Code Offloading through Cooperative Caching

Beside the evaluation of the overhead and benefit for the caching-aware distribution,
the evaluation further gives an insight into the actual performance of the caching-
aware distribution (Cached) with the help of a mobile scenario. To this end, each
mobile device executes alternately on its hardware platform either the chess game or
the text-to-voice application with different parameters like the configuration of the
chess board or the transformed sentence. Both mobile devices utilize the same cache
for the chess game and the text-to-voice application, where the fill level of the cache is
empty at the start of the mobile scenario. To keep the results of Cached comparable
with Baseline, only two mobile devices fill the cache of the caching service, because
the hit ratio of the cache increases with the number of participating devices. The total
space of the cache amounts to 1GB that is large enough to store all of the values filled
from the two mobile devices during the mobile scenario.

7.5.2. Results

Now, the following subsection presents the evaluation results, first describing the eval-
uation results for the chess game and afterwards the evaluation results for the text-to-
voice application. Last, it describes the evaluation results for the mobile scenario.

Chess Game

For the netbook, Figure 7.4 shows the execution time, energy consumption, and mon-
etary cost of the different approaches after 10 rounds of chess moves for each opening
move. Subsection 4.7.2 describes the evaluation results for a local execution (134.70 s
and 345.03 s; 1450.38 J and 3715.22 J; 0 $) and the basic distribution (24.44 s and
45.31 s; 241.10 J and 433.51 J; 0.0527260 $ and 0.1299504 $) of the chess game on the
related OpenJDK JRE (cf. dark-red and red bars in Figure 7.4a, Figure 7.4b, and
Figure 7.4c). Regarding the execution time, energy consumption, and monetary cost
of CachedEmpty (cf. cyan bars in Figure 7.4a, Figure 7.4b, and Figure 7.4c), the caching-
aware distribution keeps the (computation and communication) overhead introduced
by caching low. Compared to the evaluation results of Baseline, the differences are
minimal resulting in similar results for Baseline and CachedEmpty. For instance, the
difference of the execution time is in the order of ten milliseconds owing to the addi-
tional queries to the caching service. The benefits of a cache that possesses all values
queried in advance are significantly (cf. blue bars in Figure 7.4a, Figure 7.4b, and
Figure 7.4c), because the time taken, the energy consumed, or the money raised for
a cache query compared to a remote execution is very small. In detail, CachedFull

takes at least 10.156 s and at most 10.255 s, consumes at least 109.34 J and at most

182

7.5. Evaluation

(a) Execution time on the netbook for the chess game.

(b) Energy consumption on the netbook for the chess game.

(c) Monetary cost on the netbook for the chess game.

Figure 7.4.: Execution time, energy consumption, and monetary cost on the netbook
for the evaluation of the chess game with the different opening moves.

183

7. Optimized Code Offloading through Cooperative Caching

110.41 J, and raises at least 0.0000242 $ and at most 0.0000402 $. Compared to Base-
line, CachedFull reduces the execution time, energy consumption, and monetary cost by
up to 77.45%, 74.62%, and 99.98%, respectively. Compared to Local, it further reduces
both execution time and energy consumption by up to 97.04%.

For the laptop, Figure 7.5 shows the execution time, energy consumption, and mon-
etary cost of the different approaches after 10 rounds of chess moves for each open-
ing move. Subsection 4.7.2 also describes the evaluation results for a local execution
(69.019 s and 178.608 s; 3187.30 J and 8248.12 J; 0 $) and the basic distribution (23.912 s
and 44.889 s; 890.93 J and 1519.67 J; 0.0499715 $ and 0.1296594 $) of the chess game
on the related OpenJDK JRE (cf. dark-red and red bars in Figure 7.5a, Figure 7.5b,
and Figure 7.5c). Like for the netbook, the caching-aware distribution keeps the intro-
duced (computation and communication) overhead low (cf. cyan bars in Figure 7.5a,
Figure 7.5b, and Figure 7.5c), where the maximum overhead of CachedEmpty for the
execution time is in average 0.237 s and for the energy consumption 10.964 J com-
pared to Baseline. Regarding the benefits produced from CachedFull (cf. blue bars
in Figure 7.5a, Figure 7.5b, and Figure 7.5c), it reduces the execution time (mini-
mum: 9.637 s; maximum: 9.968 s), energy consumption (minimum: 444.89 J; maxi-
mum: 460.18 J), and monetary cost (minimum: 0.0000239 $; maximum: 0.0000479 $)
by up to 78.46%, 70.63%, and 99.97% compared to Baseline. Compared to Local, it
further reduces both execution time and energy consumption by up to 94.59%.

Summarizing, the caching-aware distribution further increases the benefits of the ba-
sic distribution that already improves a local execution of applications. As it only sends
the ID to a caching service to query the cache, the total number of bytes transferred
is low, especially compared to sending the offload request to the offloading service for
a remote execution (order of bytes vs. multiple kilobytes or even megabytes). Thus,
the caching-aware distribution outperforms the basic distribution in the optimal case
(CachedFull), also keeping the introduced overhead low in the worst case (CachedEmpty).

Text-to-Voice Application

For the netbook, Figure 7.6 shows the execution time, energy consumption, and mon-
etary cost of the different approaches transforming 15 or 20 words from ThinkAir
or MAUI to voice. Subsection 4.7.2 also describes the evaluation results for a local
execution (65.532 s and 85.024 s; 705.64 J and 915.52 J; 0 $) and the basic distribu-
tion (32.519 s and 41.472 s; 332.97 J and 423.29 J; 0.0386653 $ and 0.0555976 $) of the
text-to-voice application on the related OpenJDK JRE (cf. dark-red and red bars
in Figure 7.6a, Figure 7.6b, and Figure 7.6c). The difference of the results between

184

7.5. Evaluation

(a) Execution time on the laptop for the chess game.

(b) Energy consumption on the laptop for the chess game.

(c) Monetary cost on the laptop for the chess game.

Figure 7.5.: Execution time, energy consumption, and monetary cost on the laptop for
the evaluation of the chess game with the different opening moves.

185

7. Optimized Code Offloading through Cooperative Caching

(a) Execution time on the netbook for the text-to-voice application.

(b) Energy consumption on the netbook for the text-to-voice application.

(c) Monetary cost on the netbook for the text-to-voice application.

Figure 7.6.: Execution time, energy consumption, and monetary cost on the netbook
for the evaluation of the text-to-voice application.

186

7.5. Evaluation

Baseline and CachedEmpty highlights the (computation and communication) overhead
introduced by caching, being for the execution time, energy consumption, and mone-
tary cost very low (cf. cyan bars in Figure 7.6a, Figure 7.6b, and Figure 7.6c). Thus,
the basic distribution (Baseline) and the caching-aware distribution (CachedEmpty) re-
sults in similar execution time (in the order of 100 milliseconds), energy consumption
(in the order of 2 joules), and monetary cost (in the order of 0.1 cent). Regarding
the benefits of a cache that possesses all values queried in advance (cf. blue bars in
Figure 7.6a, Figure 7.6b, and Figure 7.6c), CachedFull takes the shortest time (mini-
mum: 21.686 s; maximum: 26.872 s), consumes the least energy (minimum: 233.48 J;
maximum: 289.32 J), and raises the lowest monetary cost (minimum: 0.0000596 $;
maximum: 0.0001426 $) compared to the other approaches. CachedFull reduces the ex-
ecution time, energy consumption, and monetary cost compared to Baseline by up to
35.39%, 31.85%, and 99.86%, respectively. Compared to Local, it further reduces both
execution time and energy consumption by up to 68.39% and 68.40%.

For the laptop, Figure 7.7 shows the execution time, energy consumption, and mone-
tary cost of the different approaches transforming the words to voice. Subsection 4.7.2
also describes the evaluation results for a local execution (26.083 s and 33.731 s; 280.86 J
and 363.21 J; 0 $) and the naive basic distribution (29.304 s and 38.508 s; 298.35 J and
392.98 J; 0.03803 $ and 0.05479 $) of the text-to-voice application on the related Open-
JDK JRE (cf. dark-red and red bars in Figure 7.7a, Figure 7.7b, and Figure 7.7c).
Please note that the basic distribution would not distribute the Java method that is
offloadable from the text-to-voice application just like CachedEmpty or CachedFull. How-
ever, both CachedEmpty and CachedFull can still send a query to the caching service.
As a result, Baseline corresponds on the laptop to the naive basic distribution that
still distributes the Java method that is offloadable. Regarding the (computation and
communication) overhead introduced by caching, the caching-aware distribution also
keeps the overhead on the laptop low (cf. cyan bars in Figure 7.7a, Figure 7.7b, and
Figure 7.7c), resulting in an average increase of the execution time and energy con-
sumption by up to 0.033 s and 0.35 J. Despite the fact that the Java method that
is offloadable is a bad candidate for a distribution, CachedFull reduces the execution
time (minimum: 18.156 s; maximum: 23.333 s) and energy consumption (minimum:
195.48 J; maximum: 251.18 J) compared to Local and thus, to Baseline (cf. blue bars in
Figure 7.7a, Figure 7.7b, and Figure 7.7c). Raising monetary cost between 0.0000417 $

and 0.0001527 $, CachedFull lowers the execution time and energy consumption by up to
39.46% and 36.33% compared to Baseline. Compared to Local, it has a lower execution
time and energy consumption of up to 31.62% and 31.62%.

Summarizing, the caching-aware distribution on the netbook further increases the

187

7. Optimized Code Offloading through Cooperative Caching

(a) Execution time on the laptop for the text-to-voice application.

(b) Energy consumption on the laptop for the text-to-voice application.

(c) Monetary cost on the laptop for the text-to-voice application.

Figure 7.7.: Execution time, energy consumption, and monetary cost on the laptop for
the evaluation of the text-to-voice application.

188

7.5. Evaluation

(a) Execution time, energy consumption, and
monetary cost on the netbook.

(b) Execution time, energy consumption, and
monetary cost on the laptop.

Figure 7.8.: Execution time, energy consumption, and monetary cost (a) on the net-
book and (b) on the laptop for the evaluation of the mobile scenario.

benefits of the basic distribution that already improves a local execution of applications.
Due to the fact that, on the one hand, the laptop is a more powerful device with a
higher energy consumption and, on the other hand, the text-to-voice application has a
big size of the output execution state, only the additional utilization of a caching service
(CachedFull) reduces the execution time and energy consumption on the laptop lower
than a local execution. Thus, on both mobile devices, the caching-aware distribution
outperforms the basic distribution in the optimal case (CachedFull), also keeping the
introduced overhead in the worst case low (CachedEmpty).

Mobile Scenario

For the mobile scenario, each mobile device executes in parallel five times either the
chess game or the text-to-voice application as follows. The randomly selected sequence
on the netbook is a chess game with 1 d4, a text-to-voice application with ThinkAir:
Idx=0 Cnt=15, a text-to-voice application with ThinkAir: Idx=0 Cnt=15, a chess
game with 1 h4, and a chess game with 1 c4. On the laptop, the randomly selected
sequence is a text-to-voice application with MAUI: Idx=15 Cnt=20, a text-to-voice
application with ThinkAir: Idx=0 Cnt=15, a chess game with 1 a4, a chess game
with 1 h4, and a chess game with 1 d4.

Figure 7.8 shows the execution time, energy consumption, and monetary cost on
the netbook (cf. Figure 7.8a) and on the laptop (cf. Figure 7.8b) for the different
approaches executing the sequence of applications for the mobile scenario. Regarding
the execution time of Local, Baseline, and Cached on both devices (cf. white-dotted
bars in Figure 7.8), Local takes the longest time for the execution, namely on the
netbook 633.521 s and on the laptop 340.424 s. Compared to Local, Baseline reduces

189

7. Optimized Code Offloading through Cooperative Caching

the execution time by 76.46% on the netbook and by 53.72% on the laptop, resulting in
149.102 s and 157.562 s, respectively. At the start of the mobile scenario, the cache on
the caching service is empty, where both mobile devices fill it up during the evaluation of
the mobile scenario. As a result, the execution time of Baseline and Cached are similar,
where Cached further reduces the execution time of Baseline by 6.41% on the netbook
and 23.89% on the laptop as well as of Local by 97.95% on the netbook and 98.24% on
the laptop. It takes on the netbook 139.550 s and on the laptop 119.913 s. The same
applies to the energy consumption of the three approaches (cf. white-squared bars in
Figure 7.8), where Local consumes the most energy with 6821.63 J on the netbook and
13623.17 J on the laptop. Baseline reduces the energy consumption ofLocal by 78.19%

on the netbook and 70.94% on the laptop (1488.11 J and 3958.74 J, respectively), where
Cached reduces it by 79.56% on the netbook and 78.60% on the laptop (1394.30 J
and 2914.73 J). Regarding the monetary cost of Local, Baseline, and Cached on both
devices (cf. white-waved bars in Figure 7.8), Local raises no monetary cost, executing
the sequence of applications totally on the mobile devices. To reduce the execution
time and energy consumption of Local, Baseline raises monetary cost of 0.2805151 $

on the netbook and 0.2984818 $ on the laptop due to the remote execution of the Java
methods on the Distribution Service. Due to the cache hits during the mobile scenario,
Cached reduces the monetary cost raised by 65.64% on the netbook and 69.81% on the
laptop, resulting in 0.0963923 $ and 0.0901089 $.
Summarizing, the netbook and the laptop benefits significantly from the basic dis-

tribution of the Java methods that are offloadable in the mobile scenario. Extending
the basic distribution with a cache on the remote side, however, the execution time
and energy consumption reduces slightly due to an increased hit ratio of the cache dur-
ing the mobile scenario. Moreover, the cache hits from the caching-aware distribution
reduces significantly the monetary cost raised during the mobile scenario.

7.6. Summary

To provide an optimized code offloading through cooperative caching, the caching-
aware distribution described in Section 7.1 extends the basic distribution with a cache
on the remote side. The cache stores output execution states (value) of application
parts previously executed on offloading clients or offloading services. As stated by
Satyanarayanan in [Sat96], “caching plays a key role in mobile computing”, the caching-
aware distribution adds a caching service to the system overview described in Sec-
tion 7.2, adapting the system model, problem statement, and system components of
the basic distribution. Regarding the offloading timeline described Section 7.3 the ad-

190

7.6. Summary

ditional utilization of a caching service for the basic distribution enables an offloading
client to query the cache on the remote side for a corresponding output execution state
of an application part that is offloadable. To this end, the offloading client just sends
a cache query either before the local execution of the application part or the basic
distribution of it. In case of a cache hit, the cache queries, on the one hand, avoids a
repeated execution of application parts previously executed, and, on the other hand,
reduces significantly the execution time required to get an output execution state. In
case of a cache miss, the overhead introduced for cache queries is small, consisting
only of hash values that identify the call of an application part. The offloading frame-
work described in Section 7.4 provides the functionality required for the caching-aware
distribution on the offloading client, on the offloading service, and on the caching ser-
vice. To evaluate the overhead introduced and benefit gained by the caching-aware
distribution compared to the basic distribution, the evaluation described in Section 7.5
analyzes different mobile devices with different applications based on the implemented
prototype on the OpenJDK JRE. The evaluation results show that the caching-aware
distribution increases the efficiency of the basic distribution. It reduces the execution
time, energy consumption, and monetary cost for an application part that is offloadable
compared to the basic distribution as well as to a local execution.

191

Chapter 8
Code Offloading in Environments
with Multiple Tiers

The basic distribution presented in detail in Chapter 4 offloads computation between
a mobile device and a remote resource (two-tier architecture). It increases the effi-
ciency on a mobile device and the execution speed of a mobile application. A common
environment in today’s Mobile Cloud Computing (MCC), however, comprises highly
distributed heterogeneous resources that can participate in code offloading. Such envi-
ronments enlarge the number of available resources for a remote execution of application
parts that are offloadable. To this end, this chapter presents a bubbling distribution
in environments with multiple tiers described in Section 8.1. The bubbling distribu-
tion makes the basic distribution aware of an efficient and applicable code offloading
to multiple resources with different performance characteristics and cost implications
(multi-tier architecture). Thus, the system overview described in Section 8.2 with
the system model, problem statement, and system components changes now from a
two-tier architecture (basic distribution) to a multi-tier architecture (bubbling distri-
bution). For a multi-tier architecture with multiple resources, it is very costly for a
resource-poor mobile device to gather a global view of all available resources in all
available tiers. For this reason, the bubbling distribution utilizes the concept of code
bubbling. Code bubbling moves application parts that are offloadable dynamically and
adaptively towards more powerful and more distant tiers, described in the offloading
timeline in Section 8.3. Each tier makes autonomous decisions either to execute an
application part in the tier or to forward it further to the next tier. To support such
a recursive escalation of application parts along autonomous tiers, the bubbling dis-
tribution extends the offloading framework described in Section 8.4. The offloading
framework provides a corresponding Application Programming Interface for the Java
programming language to support code bubbling. Moreover, it also extends the offload-
ing client and offloading service to support code bubbling and introduces a tier service
to manage tiers. To evaluate the efficiency and applicability of a distribution with code
bubbling compared to the basic distribution, Section 8.5 presents the evaluation of a

193

8. Code Offloading in Environments with Multiple Tiers

prototype, including the evaluation setup and the evaluation results. Last, Section 8.6
summarizes the main facts of a code offloading in environments with multiple tiers
through code bubbling presented in this chapter.

8.1. Bubbling Distribution

The basic distribution presented in Section 4.1 of applications parts comprises an of-
floading client (first tier), an offloading service (second tier), and a (wireless) commu-
nication network that connects both tiers. In such a two-tier environment, the basic
distribution can increase the energy efficiency of devices and execution speed of appli-
cations by executing resource-intensive application parts on more powerful resources
(offloading service) in the infrastructure. To ensure a minimum execution time, energy
consumption, and monetary cost, an offloading client regards the trade-off between the
cost for a local execution and the cost for a remote execution of an application part
(cf. Section 4.2). The cost for a local execution comprises the energy and time for an
execution on the offloading client, whereas the cost for a remote execution comprises
the energy, time, and monetary cost for an execution on an offloading service.

In the literature, researchers propose different approaches for offloading computa-
tion considering mostly two-tier environments or (seldom) three-tier environments.
Compared to a two-tier environment, a three-tier environment, for instance, considers
additionally a server instance at the edge of a network being close to the offloading
client (cf. Fog Computing [BMZA12]). We assume that in the future, environments
with multiple tiers will become relevant, where multiple classes of highly distributed
heterogeneous resources are available for code offloading. Figure 8.1 shows such an
environment with multiple tiers as an exemplary scenario. It consists of a smart watch
(Tier 1) connected via Bluetooth to a smart phone (Tier 2). The smart phone in turn
is connected via Wi-Fi to a smart car (Tier 3) that is connected to a server at the
edge of the network (Tier 4) via a 3G cellular network. The server at the edge is
finally connected to a server in a cloud data center (Tier 5) via a fixed network. In
such a multi-tier environment, the heterogeneous devices differ significantly in terms of
energy, compute, and communication resources, increasing typically from very limited
(Tier 1) to virtually unlimited (Tier n).

The bubbling distribution targets such environments with multiple tiers that consists
of highly distributed heterogeneous resources with different performance characteristics
and cost implications. It utilizes a distributed architecture of autonomous tiers to fully
exploit the capabilities of environments with multiple tiers. Each tier manages par-
ticipating resources within its tier independently and decides autonomously whether

194

8.1. Bubbling Distribution

Figure 8.1.: An exemplary environment of multiple tiers. It consists of a smart watch
(Tier 1) connected via Bluetooth to a smart phone (Tier 2). The smart
phone in turn is connected via Wi-Fi to a smart car (Tier 3) that is con-
nected to an edge server (Tier 4) via a 3G cellular network. The edge
server is finally connected to a cloud server (Tier 5) via a fixed network.

to execute an application part within the tier or to forward it to the next upper tier.
Due to the recursive escalation of application parts along autonomous tiers, an offload-
ing client only interacts with its neighboring tier. At run-time, the offloading client
forwards to its neighboring tier the request of offloading an application part and contin-
ues asynchronously the local execution of this application part (pessimistic approach).
This decoupled and non-blocking distribution of application parts keeps the overhead
on the offloading client low, not requiring a global view on the environment with multi-
ple tiers. Moreover, the decentralized architecture based on autonomous tiers handles
the increasingly connected environment in a simple, scalable, and flexible way. We call
this concept of a recursive distribution of application parts within autonomous tiers
code bubbling, since code rises towards higher tiers like bubbles towards the surface.
Code bubbling keeps the distribution of application parts for an offloading client effi-
cient, because it neither requires the interaction nor the exchange of state information
with all tiers or resources in the environment. Moreover, the distribution decision on
an offloading client is rather simple compared to the question on which resource to
execute which application part, requiring a global view onto multiple tiers.

Summarizing, we make the following key contributions: (1) A framework for a dis-
tribution based on code bubbling in environments with multiple tiers that supports
highly distributed heterogeneous resources with different performance characteristics
and cost implications; (2) the concept of code bubbling that dynamically and adaptively
distributes application parts in environments with multiple tiers based on a recursive
escalation of code along autonomous tiers, where participating resources are unknown

195

8. Code Offloading in Environments with Multiple Tiers

a priori; (3) an extension of the Application Programming Interface (API) from the
Java programming language that, on the one hand, requires least interventions from
application developers or end users and, on the other hand, keeps the overhead intro-
duced on participating resources low; (4) a mechanism to prove if an a priori unknown
resource really executed an application part, not fooling an offloading client with in-
activity; (5) an implementation of the framework and the extended Java API for the
bubbling distribution on the Android OS and the OpenJDK Java platform; and (6) an
extensive evaluation of the operational system including real-world measurements in
environments with two tiers and multiple tiers.

8.2. System Overview

The bubbling distribution is applicable in environments with multiple tiers, where each
tier has zero or more resources available for code offloading. To this end, the system
model for the bubbling distribution extends the general system model for multiple re-
sources described in detail in Section 3.1 with tiers. It structures the multiple classes of
highly distributed heterogeneous resources in several tiers Γ(γ) with γ = 0, 1, . . . , nγ−1.
Each tier Γ(γ) comprises a number of resources Ξ(γ, ξ) with ξ = 0, 1, . . . , nγ,ξ−1, where
the performance characteristics and cost implications of a resource are the same as in
the general system model. Thus, compared to the basic distribution, the problem
statement of the bubbling distribution changes as follows:

min
γ,ξ

fw(Aαo ,Ξ(γ, ξ)) (8.1)

with

fw(Aαo ,Ξ(γ, ξ)) = wt ·T (Aαo ,Ξ(γ, ξ)) + we ·E(Aαo ,Ξ(γ, ξ)) + wc ·C(Aαo ,Ξ(γ, ξ))

The execution time T (Aαo ,Ξ(γ, ξ)), the energy consumption E(Aαo ,Ξ(γ, ξ)), and the
monetary cost C(Aαo ,Ξ(γ, ξ)) for a resource Ξ(γ, ξ) are calculated like the execu-
tion time T (Aαo ,Ξ(ξ)), the energy consumption E(Aαo ,Ξ(ξ)), and the monetary cost
C(Aαo ,Ξ(ξ)) for a resource Ξ(ξ) (cf. Section 3.2).

To efficiently provide the bubbling distribution for environments with multiple tiers,
the architecture of the bubbling distribution uses a multi-tiered hierarchy (cf. Fig-
ure 8.2), consisting of an offloading client, a tier service on each tier, an offloading
service on each resource within a tier, and a communication network.

196

8.2. System Overview

Figure 8.2.: The system components for the bubbling distribution, where an offloading
client (OC) offloads computation via a communication network to tier
services (TSs) and accordingly to offloading services (OSs).

Offloading Client: The offloading client on a resource Ξ(γi, ξk) controls the local
execution of an application (cf. Subsection 3.3.1). Each time an execution of an appli-
cation reaches an application part Aαo that is offloadable, the offloading client gathers
the input execution state Istate(Aαo) and the portable code Ppcode(Aα) of the applica-
tion part Aαo . Beside the application-related information of Istate(Aαo) and Ppcode(Aα),
the offloading client further gathers resource-related and user-related information. The
resource-related information are the energy factors of sending bytes EΞ(γi,ξk)

send , waiting
in idle mode EΞ(γi,ξk)

wait , and receiving bytes EΞ(γi,ξk)
recv on the resource Ξ(γi, ξk). The user-

related information are the user-defined weights of wt for the execution time, we for the
energy consumption, and wc for the monetary cost. Based on the application-related,
resource-related, and user-related information, the offloading client creates an offload
request. The offload request contains all of the information required, on the one hand,
to minimize the cost function fw on a tier service and, on the other hand, to execute
the application part remotely on an offloading service.

Tier Service: A tier service manages centrally participating resources within its tier.
For instance, in Figure 8.1, a smart car provides for its passengers a Wi-Fi Access
Point (AP) and runs a tier service that possesses a direct connection to each (partic-
ipating) resource within its tier. On the one hand, a tier service monitors the non-
varying performance characteristic (cf. P

Ξ(γ,ξ)
ppwr) and cost implications (cf. C

Ξ(γj ,ξm)
exec ,

197

8. Code Offloading in Environments with Multiple Tiers

C
Λ(γi,ξk;γj ,ξm)
send , and C

Λ(γi,ξk;γj ,ξm)
recv) as well as the time-varying performance characteris-

tics (cf. B
Λ(γi,ξk;γj ,ξm)
up , BΛ(γi,ξk;γj ,ξm)

down , LΛ(γi,ξk;γj ,ξm)
up , and L

Λ(γi,ξk;γj ,ξm)
down) of participating

resources (cf. Section 3.1). On the other hand, a tier service functions as a gateway
to other tiers and plans the execution of offload requests for participating resources
within its tier. Receiving an offload request, the tier service regards the application-
related, resource-related, and user-related information, determining dynamically the
best available resource within its tier.

Offloading Service: The offloading service on participating resources executes an
offload request on its hardware platform (cf. Subsection 3.3.2), providing a lightweight
execution engine for portable code. It transforms an input execution state Istate(Aαo)
into an output execution state Ostate(Aαo) based on the execution of portable code
Ppcode(Aαo) on its hardware platform. As an offloading client distributes an application
part to unknown remote resources, an offloading service guarantees the “real” execution
of an application part based on a further instrumentation of Java bytecode instructions.

Communication Network: The communication network connects each offloading
service with its tier service, each tier service with its neighboring tier service(s), and an
offloading client with its neighboring tier service(s). Thus, the communication network
consists of multiple wireless network(s) and/or fixed network(s).

8.3. Offloading Timeline

A resource that wants to distribute application parts to other resources runs an of-
floading client. If it also functions as an Access Point (AP) for other resources (cf. the
smart phone in Figure 8.1 that a Bluetooth link connects to the smart watch), the dis-
tributing resource also runs a tier service managing offloading services from connected
resources. Each time the execution of an application A reaches an application part Aαo
that is offloadable, the execution of the application part annotated with offloadable

invokes the offloading client that creates a corresponding offload request for Aαo . Based
on the cost function fw (cf. Equation 8.1), the offloading client calculates the cost for
a local execution of Aαo and adds it to the offload request. To keep the communication
overhead and the waiting time low, the offloading client only submits a downgraded
version of the offload request to the next tier service and continues the local execution
of Aαo . The downgraded offload request only contains the input size Isizestate(Aα), the
output size Osize

state(Aα), and the code complexity P exe
pcode(Istate(Aα), Ppcode(Aα)) instead

of the actual values of Istate(Aαo) and Ppcode(Aαo). The asynchronous submission of a

198

8.3. Offloading Timeline

downgraded offload request decouples the decision of a distribution from the offloading
client into the infrastructure.

Managing offloading services from participating resources within a tier, each time
a tier service receives a downgraded offload request, it determines the best available
offloading service within its tier. To this end, it first calculates the value of the cost
function for the available offloading services within its tier. As it currently does not
know the actual bandwidth and latency of the link between the offloading client and
its tier, it assumes an infinite bandwidth and a zero latency. Later on, the offloading
client replaces these optimistic values for the bandwidth and latency with the proper
bandwidth and latency. After the calculation of the value of the cost function, a tier
service compares it with the value of the cost function for a local execution contained in
the downgraded offload request. Only in case of a smaller value, the tier service sends to
the offloading client a resource offer containing the performance characteristics and cost
implications for an execution on the offloading service within its tier. Independently
from the calculated value of the cost function, the tier service forwards the downgraded
offload request to its next upper tier service. It finds its next upper tier service with the
help of a service discovery, where the bubbling distribution does not rely on a specific
service discovery protocol. Thus, an efficient and optimal discovery is out of scope of
this dissertation. Forwarding the downgraded offload request to the next tier service,
the offload request bubbles up the tiers, visiting recursively multiple tier services until
it reaches the highest tier (cf. the cloud resources in Figure 8.1).

Due to the code bubbling of the bubbling distribution, an offloading client receives
from multiple tier services at different points in time a resource offer. Receiving a
resource offer, an offloading client measures simultaneously the bidirectional latency
of the link to the corresponding tier service. Possessing the actual latency of the link,
an offloading client incorporates the measured latency and a profiled bandwidth of
the link into the value of the cost function offered from a tier service. Due to the
local continuation of the application execution, an offloading client also recalculates
the value of the cost function for finishing the execution of the application locally.
Comparing the recalculated values, an offloading client decides whether to continue
the local execution or to distribute the application part Aαo to the offloading service in
the tier. In case of a distribution of Aαo , an offloading client sends the input execution
state Istate(Aαo) and the portable code Ppcode(Aαo) to the corresponding tier service,
waiting for the output execution state Ostate(Aαo) from the remote execution of Aαo .

Receiving the actual Istate(Aαo) and Ppcode(Aαo) of an offload request, a tier service
allocates the offloading service offered from the resource offer and forwards the offload
request to the offloading service. Moreover, it starts a monitoring of the execution on

199

8. Code Offloading in Environments with Multiple Tiers

the offloading service, to react on varying conditions in its tier like a crash failure with
a redistribution of the offload request to another resource.

Receiving an offload request, an offloading service installs the input execution state
Istate(Aαo) and starts the execution of the portable code Ppcode(Aαo). At the end of
the execution, it sends the output execution state Ostate(Aαo) to its tier service that
subsequently sends Ostate(Aαo) to the offloading client.
Receiving an output execution state Ostate(Aαo), an offloading client interrupts the

local execution of the portable code Ppcode(Aαo) and installs the output execution state
Ostate(Aαo). After the installation of Ostate(Aαo), the offloading client jumps to the end
of the local execution of Ppcode(Aαo) and continues the execution of the application.

8.4. Offloading Framework

The offloading framework for the bubbling distribution adjusts the offloading frame-
work for the basic distribution described in Section 4.5. To provide the functional-
ity required for the bubbling distribution, Subsection 8.4.1 describes the Application
Programming Interface (API) for the Java programming language extended for the
bubbling distribution. Afterwards, Subsection 8.4.2 and Subsection 8.4.3 presents the
changes to the offloading client and to the offloading service, respectively. Last, Sub-
section 8.4.4 outlines the tier service for the bubbling distribution.

8.4.1. Application Programming Interface

The bubbling distribution utilizes an extended Application Programming Interface
(API) for the Java programming language (cf. Subsection 4.3.4) to abstract from the
actual hardware architectures of smart phones, laptops, or server machines (e.g., x86 vs.
ARM and 32-bit vs. 64-bit). Due to the extension of the Java technology for a distribu-
tion with code bubbling, the extended Java platform provides a platform-independent
execution of Java bytecode instructions on different hardware architectures.

To keep the complexity for end users as well as application developers low, the ex-
tended Java API of the bubbling distribution hides the distributed and parallel nature
of environments with multiple tiers. It relies on least interventions from an end user and
an application developer. An end user only specifies the user-related information for the
weights of execution time, energy consumption, and monetary cost (cf. Equation 8.1)
via the user interface of the offloading client (cf. Subsection 4.5.2). An application de-
veloper simple extends a provided Java core class at development-time to enable the dis-
tribution of a Java method. The Java core class libraries like java.lang.* are essential

200

8.4. Offloading Framework

1 package java.lang;
import java.io.Serializable;

3

public abstract class OffloadExecution implements Serializable {
5 private static final long serialVersionUID = 42L;

7 @Offloadable
public abstract OffloadIO execute(OffloadIO inputs);

9 }

Listing 8.1: The source code of the abstract Java class OffloadExecution from
the Java core package java.lang. The class OffloadExecution has an
abstract Java method execute with the annotation Offloadable that
utilizes the Java class OffloadIO as input and output.

libraries for using a Java Virtual Machine (JVM) of a Java Runtime Environment (JRE)
(cf. Subsection 4.3.4). The additional core classes Offloadable, OffloadExecution,
and OffloadIO in the core class library java.lang enable the bubbling distribution of
application parts from an offloading client to offloading services. In detail, an applica-
tion developer only extends the abstract Java class OffloadExecution that possesses
the abstract Java method execute (cf. Listing 8.1). This method possesses the anno-
tation Offloadable (cf. Section 4.4), marking a Java method as a suitable candidate
for a remote execution. For instance, a suitable candidate only relies on the process-
ing resource of a hardware platform not accessing a local sensor like Global Positioning
System (GPS) for localization. Due to the annotation of Java methods that are offload-
able, the extended Java compiler instruments the Java bytecode instructions of the Java
method with offload and offload_end at development-time (cf. Subsection 4.5.1).
At run-time, the execution of the Java bytecode instructions offload or offload_end
invokes the execution controller (cf. Subsection 4.5.2), creating an offload request for
the Java method. Thus, an application developer implements an offload request by
simply implementing the method execute of the Java core class OffloadExecution.
The parameter and the return value of the Java method execute of the Java core class
OffloadExecution correspond both to the Java core class OffloadIO (cf. Listing 8.1).
This core class serves as an efficient storage of the data for Java primitives, arrays, and
objects of the parameters or the return value for a Java method (cf. Subsection 4.3.4).
For an efficient serialization and deserialization of the Java data types stored in the
Java core class OffloadIO, it implements the standard Java Serializable interface
of the Java core class libraries (cf. Subsection 4.3.4).

The execution of an offload request on an offloading service only utilizes data from
the input execution state – e.g., the parameters of the Java method or the members
of its declaring Java class. As a result, an application developer only references data

201

8. Code Offloading in Environments with Multiple Tiers

from the declaring Java class of the Java method execute during its execution. Based
on this Input → Execution → Output processing of the extended Java API, an execu-
tion does not alter the execution state of an application outside of an offload request
beside the resulting output. This guarantees the equality of a monolithic execution of
an application on a local resource with a distributed execution of an application on
multiple resources. Moreover, the Input → Execution → Output processing offers a
resource-friendly execution on an offloading service, not needing to trace or monitor
changes to the execution state during an execution.

8.4.2. Offloading Client

For a dynamic distribution of application parts, an offloading client has to obtain the
application-related, resource-related, and network-related information.

Application-related Information: The application-related information required for
an offload request comprises from an application part Aαo the input execution state
Istate(Aαo) and its size Isizestate(Aαo), the Java bytecode instructions Ppcode(Aαo) and its
code complexity P exe

pcode(Istate(Aαo), Ppcode(Aαo)), and the size of the output execution
state Ostate(Aαo) and its size Osize

state(Aαo) (cf. Section 8.3). At the call of a Java method
Aαo that is offloadable, its input execution state Istate(Aαo) and its Java bytecode
instructions Ppcode(Aαo) are immediately available from the state generator (cf. Sub-
section 4.5.2). Due to the implementation of the standard Java serialization of the Java
core class OffloadIO, the size of the input execution state Isizestate(Aαo) is also directly
available by serializing the input execution state Istate(Aαo). To obtain the code com-
plexity P exe

pcode(Istate(Aαo), Ppcode(Aαo)) of the Java bytecode instructions Ppcode(Aαo) as
well as the size of the output execution state Ostate(Aαo), the offload controller predicts
the code complexity P exe

pcode(Istate(Aαo), Ppcode(Aαo)) or the size Osize
state(Aαo) with the help

of the profile models built by the app profiler (cf. Subsection 4.5.2).

Resource-related Information: The resource-related information required for an of-
fload request comprises on an offloading client on the resource Ξ(γi, ξk) its execution
speed of Java bytecode instructions PΞ(γi,ξk)

ppwr and its energy factors EΞ(γi,ξk)
exec , EΞ(γi,ξk)

send ,
E

Ξ(γi,ξk)
recv , and EΞ(γi,ξk)

wait . Moreover, the resource-related information comprises the mon-
etary cost CΞ(γj ,ξm)

exec for an offloading service on the resource Ξ(γj, ξm). To obtain the
performance characteristic PΞ(γi,ξk)

ppwr , an offloading client as well as an offloading service
support an execution mode for the JVM that benchmarks the underlying capabilities of
a resource including the architectural differences of participating resources (cf. Subsec-

202

8.4. Offloading Framework

tion 4.5.2). This specific execution mode determines the execution speed of simple Java
bytecode instructions like add or mod for Java primitive data types, array data types,
and object data types (cf. Subsection 4.3.4). The outcome of this specific execution
mode is a profile of a resource based on Java bytecode instructions, where this per-
formance model determines the execution speed of Java bytecode instructions on the
resource. To obtain the performance characteristics EΞ(γi,ξk)

exec , EΞ(γi,ξk)
send , EΞ(γi,ξk)

recv , and
E

Ξ(γi,ξk)
wait , an offloading client provides the device interface (cf. Subsection 4.5.2), where

a device manufacturer defines these resource-specific factors of the energy consump-
tion offline. To obtain the cost implication C

Ξ(γj ,ξm)
exec , an offloading service provides

the provider interface (cf. Subsection 4.5.3), where a resource provider defines this
resource-specific factor of the monetary cost either offline or online.

Network-related Information: The network-related information required for an of-
fload request comprises for a link between two resources Ξ(γi, ξk) (offloading client) and
Ξ(γj, ξm) (offloading service) the up and down latency LΛ(γi,ξk;γj ,ξm)

up and LΛ(γi,ξk;γj ,ξm)
down ,

the up and down bandwidth B
Λ(γi,ξk;γj ,ξm)
up and B

Λ(γi,ξk;γj ,ξm)
down , and the monetary cost

C
Λ(γi,ξk;γj ,ξm)
send and CΛ(γi,ξk;γj ,ξm)

recv . To obtain the performance characteristic of the up and
down latency and use sparingly link resources, the network monitor on an offloading
client measures the up and down latency associated with the resource offers from avail-
able resources within a tier (cf. Section 8.3). Moreover, it measures the up and down
bandwidth for each connection type (e.g., GSM, UMTS, LTE, or WiFi) in the back-
ground while an end user utilizes its resource like a smart phone during the day. Based
on the bandwidth measured for each connection type, it calculates a weighted average
based on the occurrence of the measured bandwidth. This avoids a periodic lavish mea-
surement of the up and down bandwidth with message probing to multiple tiers (cf.
Subsection 4.5.2). Combining the actual latency with the history-based bandwidth,
the offload controller determines a profiled duration for the transmission of an input
execution state and an output execution state. During the sending or receiving of the
data for an input execution state or an output execution state, the network monitor
monitors the actual bandwidth and reacts, for instance, in case of a too low bandwidth
by invoking the offload controller. Subsequently, the offload controller reacts on the
too low quality of the link for a distribution with, for instance, a re-distribution to
another resource or a local completion of the execution. To obtain the cost implica-
tions CΛ(γi,ξk;γj ,ξm)

send and CΛ(γi,ξk;γj ,ξm)
recv , an offloading client provides the network interface

(cf. Subsection 4.5.2), where a network provider defines the link-specific factor of the
monetary cost either offline or online.

203

8. Code Offloading in Environments with Multiple Tiers

8.4.3. Offloading Service

The functionality provided by the offloading service is nearly the same as for the basic
distribution described in detail in Subsection 4.5.3. As an offloading client does not
know a priori – and maybe does not trust – the resource that executes the offload-
ing service, the bubbling distribution extends the offloading service with a mechanism
that provides the prove for an offloading client if the offloading service really executed
an application part. To guarantee the “real” execution of an application part on an
unknown resource, the bubbling distribution secures a remote execution based on the
extended API for the Java programming language (cf. Subsection 8.4.1). To this end,
the bubbling distribution utilizes a shared secret at the run-time level between an of-
floading client and offloading services. It utilizes a shared secret at the run-time level,
because an attacker possibly knows the Java bytecode instructions of a Java method
(application level) and can intercept the machine code produced by an offloading ser-
vice during an execution of the Java method (system level). The shared secret is a
large set of mathematical functions f i(x) with i = 0, 1, . . . only known to the run-time
environments of an offloading client and an offloading service. During an execution
of a Java method on an unknown remote resource, its offloading service calculates
f i(x) in parallel. At the end of a remote execution, an offloading service hashes the
result of f i(x), the values chosen for i and x, the input execution state Istate(Aao),
the portable code Ppcode(Aao), and the output execution state Ostate(Aao) based on the
cryptographic hash function SHA-31 (Secure Hash Algorithm 3). After the hashing of
the corresponding values, an offloading service sends the hash value, the values of i
and x, and the output execution state to the offloading client. The offloading client
verifies the correctness of the output execution state by recalculating the result of f i(x)

requiring i and x, hashing the six values, and comparing the equality of the two hash
values. Due to the inclusion of the result from f i(x) and the values of i and x, an at-
tacker cannot intercept the hash value and replace it with an own generated hash value
due to the shared secret of f i(x). Due to the inclusion of Istate(Aao), Ppcode(Aao), and
Ostate(Aao), an attacker cannot produce a valid hash value based on the “wrong” exe-
cution of a resource-friendlier Java method, sparing its resources. As an attacker can
trace the machine codes executed by an offloading service for a Java method and the
mathematical function, an offloading service executes additionally from time to time
unused machine codes to circumvent the comparison with a code trace from an execu-
tion on an unaltered JRE. Technically, the offload-aware Java compiler further inserts
at development-time before branching instructions the offload-specific Java bytecode

1https://www.nist.gov/node/555116?pub_id=919061

204

https://www.nist.gov/node/555116?pub_id=919061

8.4. Offloading Framework

Figure 8.3.: The runtime environment on the tier service for the bubbling distribution.

instruction offload_branch. At run-time, the execution of offload_branch invokes
either the next step of the calculation for the mathematical function or unused machine
codes. Summarizing, a remote resource has to actually execute the Java method to
obtain the correct hash value. It cannot just fool an offloading client with an arbitrary
output execution state, charging monetary cost for an execution that never happened.

8.4.4. Tier Service

Figure 8.3 shows the runtime environment of the tier service, providing the tier-side
functionality for the bubbling distribution. It consists of a network monitor, a net-
work interface, a service monitor, a service connector, a tier connector, and a tier
controller. The network interface, service monitor, and service connector provides the
same functionality as for the basic distribution described in detail in Subsection 4.5.3.

Network Monitor: The network monitor for the bubbling distribution is the same as
the network monitor of the basic distribution described in detail in Subsection 4.5.3,
offering to a tier service the capability to measure the link bandwidth and link latency.

Tier Connector: The tier controller of the tier service invokes the tier connector to
handle the communication between the tier service and its neighboring tier service(s).

205

8. Code Offloading in Environments with Multiple Tiers

Moreover, it also invokes the tier connector to handle the communication between the
tier service and an offloading client being also a tier. Receiving an offload request
from its next lower tier service, the tier service forwards the offload request to the tier
controller and to its next upper neighboring tier service. Receiving an input execution
state and the Java bytecode instructions for an application part from an offloading
client, the tier connector forwards both to the tier controller. Last, receiving from the
tier controller a resource offer or an output execution state, the tier connector sends
both to the corresponding offloading client.

Tier Controller: The tier controller of the tier service manages the participating of-
floading services within its tier, functioning as a gateway to other tiers. To this end,
it plans the execution of received offload requests by minimizing Equation 8.1 with
the application-related, resource-related, and user-related information contained in an
offload request. To determine dynamically the best available offloading service within
its tier, the tier controller requires from participating offloading services further pa-
rameters. First, it requires from an offloading service the non-varying parameters of
the processing power and monetary cost retrieved via the service monitor. Second,
it requires from the utilized links to offloading services the non-varying parameters
of the monetary cost retrieved via the network interface as well as the time-varying
parameters of the up and down bandwidth and latency retrieved via the network mon-
itor. Possessing the required parameters to minimize Equation 8.1, the tier controller
sends a resource offer for the best available offloading service within its tier via the tier
connector to the service connector on the offloading client that sent the offload request.

Receiving an input execution state and the Java bytecode instructions for an appli-
cation part from the tier connector – because the tier service sent a resource offer to
an offloading client, the tier controller forwards both via the service connector to the
corresponding offloading service. During the execution of an application part on an
offloading service, the tier controller monitors via the service monitor the execution, to
react, for instance, on crash failures of the offloading service.

Receiving from the service connector an output execution state from an offloading
service after the execution of an application part, the tier controller forwards the output
execution state to the tier connector.

8.5. Evaluation

This section evaluates the overhead and benefit for the operational system of the bub-
bling distribution in real-world environments compared to related approaches from the

206

8.5. Evaluation

S Fw

(a) A smart phone (S) and the fog (F) commu-
nicate via a Wi-Fi link (w) with each other.

S C
w/c

(b) A smart phone (S) and the cloud (C) com-
municate either via a Wi-Fi link (w) or a
cellular link (c) with each other.

D S L F Cb w t t

(c) A smart wearable (D) and a smart phone (S) communicate via a Bluetooth link (b) with each
other, the smart phone (S) and a laptop (L) via a Wi-Fi link (w), the laptop (L) and the fog (F)
via a tethered link (t), and the fog (F) and the cloud (C) via a tethered link (t).

Figure 8.4.: Overview of the different environments evaluated for the bubbling distri-
bution, where (a) and (b) shows the environments with two tiers and (c)
the environment with multiple tiers.

literature. In detail, the evaluation considers two different environments, namely an
environment with two tiers and an environment with multiple tiers. To this end, we
extended the implementation of the AOSP prototype for the basic distribution (cf.
Subsection 4.6.3) to provide the functionality required on the offloading client for the
bubbling distribution. Moreover, we extended the implementation of the OpenJDK
prototype for the basic distribution (cf. Subsection 4.6.2) to provide the functional-
ity required on the offloading service for the bubbling distribution. Please note that
through the execution of an adapted OpenJDK JRE instead of a complete Android
OS on the hardware platform of an offloading service, the bubbling distribution keeps
the overhead introduced on participating resources very low. The extension to the
AOSP prototype as well as to the OpenJDK prototype comprises changes to the im-
plementation of the JVM and the Java core class libraries. Last, we implemented the
functionality required for a tier service (cf. Subsection 8.4.4) in a Java application,
executed on an unaltered OpenJDK JRE. The following subsections describe the eval-
uation setup (cf. Subsection 8.5.1) and the evaluation results (cf. Subsection 8.5.2).

8.5.1. Setup

The evaluation setup for thea bubbling distribution extends the evaluation setup for
the basic distribution on the AOSP described in Subsection 4.7.1 as follows:
Figure 8.4 shows the environments with two tiers (cf. Figure 8.4a and Figure 8.4b)

and the environment with multiple tiers (cf. Figure 8.4c) evaluated for the bubbling
distribution. The environments with two tiers consist of a smart phone (S) that dis-

207

8. Code Offloading in Environments with Multiple Tiers

tributes code to a remote tier, where the remote tier is either a fog distribution tier (F)
or a cloud distribution tier (C). Both tiers differ in the performance of the participating
resources. The smart phone and the remote tier communicate either via a Wi-Fi con-
nection (w) or a cellular connection (c) with each other, differing in the latency as well
as the bandwidth of the link. In total, the environments with two tiers result in SwF,
SwC, and ScC. The environment with multiple tiers consists of a smart phone (S), a
device distribution tier (D), a local distribution tier (L), a fog distribution tier (F), and
a cloud distribution tier (C) (cf. Figure 8.4c). The smart phone communicates via a
Bluetooth connection (b) with the device distribution tier and via a Wi-Fi connection
(w) with the local distribution tier. The local distribution tier communicates via a
tethered connection (t) with the fog distribution tier that again communicates via a
tethered connection (t) with the cloud distribution tier. Thus, the environment with
multiple tiers results in DbSwLtFtC.

The device distribution tier (D) consists of the netbook Dell Inspiron Mini 10v (cf.
Section C.2). It runs a tier service and an offloading service on its resources, possessing
a benchmark value of 1.305, and raises no monetary cost. The smart phone (S) is the
Samsung Galaxy Nexus (cf. Section C.1). It runs an offloading client on its resources
with a benchmark value of 3.106. The local distribution tier (L) consists of the laptop
Lenovo ThinkPad T61 (cf. Section C.3). It runs a tier service and an offloading
service on its resources, possessing a benchmark value of 0.989, and also raises no
monetary cost. The fog distribution tier (F) consists of the desktop HP Compaq
8200 Elite (cf. Section C.4). It runs a tier service and three offloading services on
its resources, possessing a benchmark value of 0.434, and raises half the prices of the
cloud distribution tier (C). Last, the cloud distribution tier (C) consists of the server
instance t2.micro from the AWS EC2 (cf. Section C.5). It runs a tier service and an
offloading service on its resources, possessing a benchmark value of 0.335, and raises
the prices2 from the AWS EC2.

The smart phone (S) establishes the Bluetooth link (b) to the netbook (D) based
on the Bluetooth version 2.1, having an average latency and bandwidth of 7.751ms
and 235 kB/s. The Linksys WRT54GL wireless router (cf. Section C.7) establishes
a wireless Access Point (AP) based on IEEE 802.11g connecting the smart phone
(S) either with the laptop (L), the desktop computer (F), or the cloud (C) with an
average latency and bandwidth of 3.681ms and 752 kB/s, 3.712ms and 2.7MB/s, or
8.562ms and 2.6MB/s, respectively. Moreover, the smart phone (S) communicates via
a 3.5G mobile communication network with the cloud (C) having an average latency
and bandwidth of 43.964ms and 200 kB/s. The LevelOne GSW-0809 Gigabit Ethernet

2Prices of the AWS for the utilization of instances from its EC2: aws.amazon.com/de/ec2/pricing

208

aws.amazon.com/de/ec2/pricing

8.5. Evaluation

Switch (cf. Section C.8) connects the laptop (L) and the desktop computer (F) with
each other, where the average latency and bandwidth of a link between the smart
phone (S) and the desktop computer (F) is 4.936ms and 2.1MB/s. Last, a 10 Gigabit
Ethernet link3 connects the desktop computer (F) and the cloud (C) with each other,
where the average latency and bandwidth of a link between the smart phone (S) and
the cloud (C) is 7.614ms and 2.0MB/s.
The evaluation compares the bubbling distribution with two approaches from the

literature: An approach for a distribution regarding two tiers – named Two-tier Distri-
bution – and an approach for a distribution regarding multiple tiers – named Multi-tier
Distribution. The two-tier distribution distributes application parts from the smart
phone to resources in the vicinity (fog distribution tier) or in a far-away cloud (cloud
distribution tier) like MAUI [CBC+10]. To this end, it utilizes an offload-enabled An-
droid OS for code offloading in environments with two tiers. The multi-tier distribution
distributes code to resources organized into multiple tiers like Cloudlets [SBCD09]. To
this end, it utilizes an offload-enabled Android OS for code offloading in environments
with multiple tiers. We also compared the two-tier distribution, the multi-tier distri-
bution, and the bubbling distribution with a local execution of the application. A local
execution serves as a baseline, where the smart phone executes everything on its local
resources in airplane mode. To this end, it utilizes an unaltered Android OS.

8.5.2. Results

The following subsection presents the evaluation results. First, it describes the overhead
and benefit for a distribution in the environments with two tiers and for a distribution
in the environment with multiple tiers. Afterwards, it presents the overhead introduced
for securing a remote execution on an a priori unknown resource.

Environments with two tiers

The evaluation result of a local execution, the two-tier distribution, and the bubbling
distribution are categorized into the overhead and benefit of a distribution.

Overhead of a Distribution: Figure 8.5 shows the execution time, Figure 8.6 the
energy consumption, and Figure 8.7 the monetary cost of the local execution, the two-

3The University of Stuttgart is part of the network “Baden-Württembergs extended LAN (BelWü)”
that connects scientific organizations in Baden-Württemberg with low-latency and high-bandwidth
links (https://www.belwue.de/netz/topologie/aktuell.html). The BelWü network peers
with DE-CIX Frankfurt (https://www.de-cix.net/de/locations/germany/frankfurt), where
the data center of the server instance from the Amazon Web Service is located in Frankfurt.

209

https://www.belwue.de/netz/topologie/aktuell.html
https://www.de-cix.net/de/locations/germany/frankfurt

8. Code Offloading in Environments with Multiple Tiers

Figure 8.5.: Execution time of a local execution, the two-tier distribution, and the
bubbling distribution evaluated in the environments with two tiers.

tier distribution, and the bubbling distribution evaluated in the environments SwF,
SwC, ScC, and Sc-C. For the first four group of bars in Figure 8.5 and Figure 8.6,
the offloading service on the remote side does not possess a beneficial resource for a
remote execution, indicating the overhead introduced by each approach. Please note
that Table 8.1 outlines each value for the execution time, energy consumption, and
monetary cost of the approaches evaluated in the environments with two tiers.

To make the decision of distributing a Java method that is offloadable, the two-tier
distribution probes periodically the link to and monitors the state of the remote tier
like in MAUI from Cuervo et al. [CBC+10]. Due to the missing beneficial resource in
the remote tier, the two-tier distribution decides each time to execute the offloadable
Java method locally on the smart phone. Compared to a local execution of the mobile
application on the smart phone, the periodic link probing and state monitoring increase
the execution time as well as the energy consumption of the two-tier distribution. For
a latency of the Wi-Fi link between the smart phone and the fog distribution tier of
6.669ms (SwF), the two-tier distribution takes 6.380 s longer and consumes 17.017 J
more energy than a local execution. In case of a distant tier with a bad quality of
the cellular link between the smart phone and the cloud distribution tier (cf. Sc-C in
Figure 8.5 and Figure 8.6), the overhead of the two-tier distribution increases heavily
with a latency of the cellular link of 294.197ms. In detail, it takes 10.729 s longer and
consumes 56.636 J more energy compared to a local execution.

In contrast to the periodic link probing and state monitoring, the bubbling dis-
tribution only submits the downgraded offload requests into the infrastructure and
continues the local execution on the smart phone. As the gathering of a downgraded

210

8.5. Evaluation

Figure 8.6.: Energy consumption of a local execution, the two-tier distribution, and the
bubbling distribution evaluated in the environments with two tiers.

offload request interrupts a pure local execution, the evaluation results of the bubbling
distribution are worse than for a local execution. For the environment SwF, a local
execution and the bubbling distribution have in average a similar power consumption
of 2.5W. However, the bubbling distribution finishes the local execution of the mobile
application on the smart phone later at 72.139 s (cf. Figure 8.5) and thus, consumes
more energy (cf. Figure 8.6). Compared to the two-tier distribution, the bubbling
distribution performs better with a shorter execution time of 3.094 s and a lower en-
ergy consumption of 15.493 J. Distributing the Java methods that are offloadable to a
distant cloud with a bad quality of the link (cf. Sc-C in Figure 8.5 and Figure 8.6), the
execution time and the energy consumption for the bubbling distribution only minor
increase by 1.460 s and 10.495 J, respectively. As the high latency to the cloud distri-
bution tier does not influence the bubbling distribution much, it performs better than
the two-tier distribution. In detail, it reduces the execution time by 5.983 s and the
energy consumption by 44.671 J.

Summarizing, the two-tier distribution as well as the bubbling distribution introduce
some overhead in the environments with two tiers, increasing the execution time and
the energy consumption compared to a local execution. Due to the distribution with-
out a beneficial resource on the remote side, both approaches cause no monetary cost
at all. In detail, the overhead introduced by the two-tier distribution is higher than for
the bubbling distribution, because the two-tier distribution probes periodically the link
to and monitors the state of the remote tier. The decoupled submission of downgraded
offload requests keeps the overhead introduced by the bubbling distribution low, espe-
cially in case of a bad quality of the link between the smart phone and the remote tier.

211

8. Code Offloading in Environments with Multiple Tiers

Figure 8.7.: Monetary cost of a local execution, the two-tier distribution, the multi-tier
distribution, and the bubbling distribution evaluated in the environments
with two tiers and the environment with multiple tiers, respectively.

Benefit of a Distribution: Figure 8.5 shows the execution time, Figure 8.6 the en-
ergy consumption, and Figure 8.7 the monetary cost of a local execution, the two-tier
distribution, and the bubbling distribution evaluated in the environments SwF, SwC,
ScC, and Sc-C. For the last four group of bars in Figure 8.5 and Figure 8.6 and the
first four group of bars in Figure 8.7, the offloading service on the remote side possesses
a beneficial resource for a remote execution, indicating the benefit gained.

The environment SwF corresponds to a perfect environment for a distribution of
the Java methods that are offloadable, providing a sufficient link with a latency of
4.679ms and a bandwidth of 1.9MB/s between the smart phone and the remote tier
with the beneficial resource. As a result, the two-tier distribution distributes all three
Java methods that are offloadable, where the execution time of the best chess move
engine decreases to 4.217 s, of the human face recognition engine to 7.456 s, and of the
text-to-voice engine to 1.589 s. In total, it takes 14.900 s and consumes 44.518 J with
a monetary cost of 3.653 E-6 $, outperforming significantly a local execution on the
smart phone. Changing the environment to a distant tier with a cellular link (cf. ScC
in Figure 8.5 and Figure 8.6), the bandwidth decreases to 185 kB/s. Thus, the two-tier
distribution does not distribute the human face recognition engine due to its huge size
of the input execution state. The local execution of the human face recognition engine
on the smart phone increases the execution time and the energy consumption of the
two-tier distribution, however, still resulting in a shorter execution time of 33.860 s

212

8.5. Evaluation

Figure 8.8.: The power consumption of the bubbling distribution evaluated in the en-
vironment ScC. The bubbling distribution recognizes the too bad band-
width of the link between the smart phone and the remote tier after the
transmission of 250 kB to the cloud distribution tier.

and a lower energy consumption of 84.882 J compared to a total local execution of the
application on the smart phone. Increasing simultaneously the latency of the cellular
link to 253.772ms (cf. Sc-C in Figure 8.5 and Figure 8.6), the two-tier distribution only
distributes the best chess move engine to the remote tier. Despite the local execution
of the two Java methods that are offloadable, it still performs better than a total local
execution of the application on the smart phone. In detail, the two-tier distribution
results in an execution time of 58.831 s and an energy consumption of 155.566 J with
a monetary cost of 8.088 E-6 $.

For the environment SwF, the bubbling distribution results in a similar execution
time, energy consumption, and monetary cost as the two-tier distribution. Due to
the huge size of the input execution state, the bubbling distribution also does not dis-
tribute the human face recognition engine for the environment ScC. It recognizes the
too bad bandwidth of the link between the smart phone and the remote tier by send-
ing the first 250 kB to the cloud distribution tier (cf. the peak at 14 s in Figure 8.8).
As the bubbling distribution executes in parallel the human face recognition engine
on the smart phone, however, the evaluation results of the bubbling distribution are
better than of the two-tier distribution. The bubbling distribution reduces the execu-
tion time by 8.333 s and the energy consumption by 2.282 J with a similar monetary
cost. Increasing simultaneously the latency of the cellular link to the cloud distribu-
tion tier (cf. Sc-C in Figure 8.5 and Figure 8.6), the bubbling distribution also does
not distribute the text-to-voice engine like the two-tier distribution. It executes the

213

8. Code Offloading in Environments with Multiple Tiers

text-to-voice engine locally based on the bandwidth and latency measured during the
evaluation, not sending any bytes for the input execution state to the remote tier unlike
for the human face recognition engine. Thus, the evaluation results of the bubbling
distribution evaluated in Sc-C are better than of the two-tier distribution, reducing the
execution time by 25.711 s and the energy consumption by 53.097 J. Compared to a
local execution, the bubbling distribution reduces the execution time by 35.733 s and
the energy consumption by 70.690 J with a monetary cost of 12.582 E-6 $.

Summarizing, the benefits gained of the two-tier distribution and the bubbling dis-
tribution for a distribution are high for the environments with two tiers possessing a
sufficient link to the remote tier with a beneficial resource. Due to the distribution
with a beneficial resource, both approaches reduce the execution time and the energy
consumption compared to a local execution, causing monetary cost for the remote exe-
cution on an offloading service. In detail, the benefit gained of the two-tier distribution
is lower than of the bubbling distribution, because the two-tier distribution probes pe-
riodically the link to and monitors the state of the remote tier. Especially in case of a
link with a high latency and a low bandwidth, the decoupled submission of downgraded
offload requests keeps the benefit of the bubbling distribution high.

Environment with Multiple Tiers

The evaluation result of a local execution, the multi-tier distribution, and the bubbling
distribution are categorized into the overhead and benefit of a distribution.

Overhead of a Distribution: Figure 8.5 shows the execution time, Figure 8.6 the en-
ergy consumption, and Figure 8.7 the monetary cost of a local execution, the multi-tier
distribution, and the bubbling distribution evaluated in the environments DbSwLtFtC,
DbSwLtFt-C, and DbSwLt-Ft-C. For the first three group of bars in Figure 8.5 and
Figure 8.6, the offloading services at the multiple tiers do not possess a beneficial re-
source for a remote execution, indicating the introduced overhead. Please note that
Table 8.1 outlines each value for the execution time, energy consumption, and monetary
cost of the approaches evaluated in the environment with multiple tiers.

The multi-tier distribution also makes its decision for a distribution in the environ-
ment with multiple tiers by periodically probing the link to and monitoring the state
of the tiers. Due to the missing beneficial resources in each tier, the multi-tier dis-
tribution executes all of the Java methods that are offloadable on the smart phone.
Thus, the periodic probing and monitoring together with the local execution of the
mobile application increases the execution time and the energy consumption of the

214

8.5. Evaluation

Figure 8.9.: Execution time of a local execution, the multi-tier distribution, and the
bubbling distribution evaluated in the environment with multiple tiers.

multi-tier distribution compared to a local execution without code offloading. In de-
tail, it takes 15.932 s longer and consumes 28.141 J more energy (cf. DbSwLtFtC in
Figure 8.5 and Figure 8.6). Increasing the latency of the tethered link between the fog
distribution tier and the cloud distribution tier to 268.189ms, the evaluation results
for the multi-tier distribution are getting worse. In detail, it takes 22.362 s longer and
consumes 44.986 J more energy compared to a local execution without code offloading
(cf. DbSwLtFt-C in Figure 8.5 and Figure 8.6). Increasing simultaneously the latency
of the tethered link between the local distribution tier and the fog distribution tier
to 154.686ms and between the fog distribution tier and the cloud distribution tier to
402.399ms, it takes 32.937 s longer and consumes 58.891 J more energy compared to a
local execution without code offloading (cf. DbSwLt-Ft-C in Figure 8.5 and Figure 8.6).

Due to the gathering and submitting of the downgraded offload requests, the bub-
bling distribution results in worse results compared to a local execution without code
offloading. In detail, it takes 4.835 s longer and consumes 1.360 J more energy for the
environment DbSwLtFtC (cf. Figure 8.5 and Figure 8.6). However, both increases
of the latency of the links do not affect the results of the bubbling distribution, keep-
ing the execution time and the energy consumption constant (cf. DbSwLtFt-C and
DbSwLt-Ft-C in Figure 8.5 and Figure 8.6). Compared to the execution time and the
energy consumption of the multi-tier distribution, the bubbling distribution performs
better for the environment with multiple tiers with and without a bad quality of a link.
In detail, it reduces the execution time by 11.097 s, 17.403 s, and 27.711 s as well as the

215

8. Code Offloading in Environments with Multiple Tiers

Figure 8.10.: Energy consumption of a local execution, multi-tier distribution, and bub-
bling distribution evaluated in the environment with multiple tiers.

energy consumption by 29.501 J, 41.962 J, and 56.216 J (cf. Figure 8.5 and Figure 8.6).

Summarizing, the multi-tier distribution as well as the bubbling distribution intro-
duce some overhead in the environment with multiple tiers, increasing the execution
time and the energy consumption compared to a local execution without code offload-
ing. Due to the distribution without a beneficial resource in the multiple tiers, both
approaches cause no monetary cost at all. However, the overhead introduced for the
multi-tier distribution is higher than for the bubbling distribution. The decoupled
submission of downgraded offload requests also keeps the overhead introduced in the
environment with multiple tiers for the bubbling distribution low.

Benefit of a Distribution: Figure 8.5 shows the execution time, Figure 8.6 the en-
ergy consumption, and Figure 8.7 the monetary cost of a local execution, the multi-tier
distribution, and the bubbling distribution evaluated in the environments DbSwLtFtC,
DbSwLtFt-C, and DbSwLt-Ft-C. For the last three group of bars in the figures, the
offloading services at the multiple tiers possess beneficial resources for a remote execu-
tion, indicating the benefit gained by the approaches.

The environment DbSwLtFtC corresponds to an optimal environment for a distri-
bution. Thus, the multi-tier distribution distributes all three Java methods that are
offloadable to the cloud distribution tier. The distribution of the three Java methods
that are offloadable decreases the execution time by 47.049 s and the energy consump-

216

8.5. Evaluation

tion by 115.694 J with a monetary cost of 8.587 E-6 $ compared to a local execution
without code offloading (cf. Figure 8.5, Figure 8.6, and Figure 8.7). Increasing the
latency of the tethered link between the fog distribution tier and the cloud distribution
tier, the evaluation results are getting worse but still performing better than a local
execution without code offloading (cf. DbSwLtFt-C in Figure 8.5, Figure 8.6, and Fig-
ure 8.7). In detail, the multi-tier distribution distributes the best chess move engine to
the cloud distribution tier, executes the human face recognition engine locally on the
smart phone, and distributes the text-to-voice engine to the fog distribution tier. It
results in a reduction of the execution time by 20.869 s and the energy consumption by
73.187 J compared to a local execution without code offloading. However, increasing
both the latency of the tethered link between the local distribution tier and the fog
distribution tier as well as between the fog distribution tier and the cloud distribution
tier, the multi-tier distribution executes all three Java methods that are distributable
locally on the smart phone (cf. DbSwLt-Ft-C in Figure 8.5, Figure 8.6, and Figure 8.7).
As a result, the evaluation results of the multi-tier distribution are worse than a local
execution without code offloading with an increase of the execution time by 43.266 s
and the energy consumption by 73.937 J.

For the environment DbSwLtFtC, the bubbling distribution distributes all three
Java methods that are distributable to the fog distribution tier, reducing the execution
time by 8.418 s and the energy consumption by 10.971 J compared to the multi-tier dis-
tribution. Increasing the latency of the tethered link between the local distribution tier
and the fog distribution tier as well as between the fog distribution tier and the cloud
distribution tier, the evaluation results for the bubbling distribution remain constant
(cf. DbSwLtFt-C and DbSwLt-Ft-C in Figure 8.5, Figure 8.6, and Figure 8.7). Due to
the high link latency, the bubbling distribution distributes the text-to-voice engine to
the local distribution tier. In total, it performs better than the multi-tier distribution
and a local execution without code offloading for the environment with multiple tiers.

Summarizing, the benefits of the multi-tier distribution and the bubbling distri-
bution for a distribution are high for the environment with multiple tiers possessing
suitable links to the multiple tiers with beneficial resources. Due to the distribution
with beneficial resources, both approaches reduce the execution time and the energy
consumption compared to a local execution without code offloading, causing monetary
cost for the remote execution on the offloading services. In detail, the benefit gained
of the bubbling distribution is higher than of the multi-tier distribution due to the
decoupled submission of downgraded offload requests instead of the periodic probing
of the links to and monitoring of the state from the multiple tiers. Especially in case
of links with a high latency, the bubbling distribution keeps the related benefit high.

217

8. Code Offloading in Environments with Multiple Tiers

Lcl
Sw

F
Sw

C
ScC

Sc
-C

T
tD

B
lD

T
tD

B
lD

T
tD

B
lD

T
tD

B
lD

W
ithout

B
eneficialR

esources:
E
nergy

(in
Joule)

173.159
190.176

174.683
192.557

172.203
225.415

187.065
229.795

185.178
T
im

e
(in

Seconds)
68.853

75.233
72.139

74.448
73.149

79.423
74.583

79.582
73.599

C
ost

(in
10
−

6
$)

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

0.000
W

ith
B
eneficialR

esources:
E
nergy

(in
Joule)

173.159
44.518

57.215
45.301

53.340
84.882

82.600
155.566

102.469
T
im

e
(in

Seconds)
68.853

14.900
13.738

15.705
14.345

33.860
25.527

58.831
33.120

C
ost

(in
10
−

6
$)

0.000
3.653

3.665
9.083

8.701
6.282

6.411
8.088

12.582

Table
8.1.:O

verview
ofthe

execution
tim

e,the
energy

consum
ption,and

the
m
onetary

cost
for

a
localexecution

(Lcl),
the

tw
o-tier

distribution
(T

tD
),and

the
bubbling

distribution
(B

lD
)
evaluated

in
the

environ-
m
ents

w
ith

tw
o
tiers

w
ith

and
w
ithout

beneficialresources.

Lcl
D
bSw

L
tFtC

D
bSw

L
tFt -C

D
bSw

L
t -Ft -C

M
tD

B
lD

M
tD

B
lD

M
tD

B
lD

W
ithout

B
eneficialR

esources:
E
nergy

(in
Joule)

173.159
201.300

171.799
218.145

176.183
232.050

175.834
T
im

e
(in

Seconds)
68.853

84.785
73.688

91.215
73.812

101.790
74.079

C
ost

(in
10
−

6
$)

0.000
0.000

0.000
0.000

0.000
0.000

0.000
W

ith
B
eneficialR

esources:
E
nergy

(in
Joule)

173.159
57.465

46.494
99.972

48.514
247.096

57.014
T
im

e
(in

Seconds)
68.853

21.804
13.386

47.984
12.651

112.119
18.706

C
ost

(in
10
−

6
$)

0.000
8.587

3.559
14.736

3.617
0.000

2.882

Table
8.2.:O

verview
of

the
execution

tim
e,

the
energy

consum
ption,

and
the

m
onetary

cost
for

a
local

execu-
tion

(Lcl),
the

m
ulti-tier

distribution
(M

tD
),

and
the

bubbling
distribution

(B
lD

)
evaluated

in
the

environm
ent

w
ith

m
ultiple

tiers
w
ith

and
w
ithout

beneficialresources.

218

8.5. Evaluation

Application
Part

Distribution
Tier

Offloading Service Time
OverheadBasic Bubbling

Best Chess
Move
Engine

D 18.386 s 18.446 s 0.33%

L 5.014 s 5.028 s 0.28%

F 1.800 s 1.801 s 0.06%

C 2.461 s 2.463 s 0.08%

Human Face
Recognition
Engine

D 2.579 s 2.627 s 1.86%

L 0.582 s 0.591 s 1.55%

F 0.248 s 0.249 s 0.40%

C 0.616 s 0.620 s 0.65%

Text-to-
Voice
Engine

D 5.228 s 5.659 s 8.24%

L 1.216 s 1.276 s 4.93%

F 0.534 s 0.538 s 0.75%

C 0.821 s 0.834 s 1.58%

Table 8.3.: Overview of execution time on an offloading service for the basic distribution
and the bubbling distribution for each resource-intensive application part.
The distribution tiers that executes the application parts are the device
distribution tier (D), the local distribution tier (L), the fog distribution tier
(F), and the cloud distribution tier (C).

8.5.3. Securing Overhead

Table 8.3 shows the time and transmission overhead introduced for securing a remote
execution of application parts on an a priori unknown resource. To this end, participat-
ing resources in the device distribution tier (D), the local distribution tier (L), the fog
distribution tier (F), and the cloud distribution tier (C) execute each resource-intensive
application part – namely the best chess move engine, the human face recognition en-
gine, and the text-to-voice engine – 10 times on an unaltered offloading service from
the basic distribution (cf. Subsection 4.5.3) and 10 times on an offloading service for
the bubbling distribution (cf. Subsection 8.4.3).

For the best chess move engine, the time overhead introduced for the execution of
the additional Java bytecode instruction offload_branch ranges between 0.06% and
0.35% for the participating resources in D, L, F, and C (cf. Table 8.3). In detail, the
execution time for the best chess move engine in F differs only by 1ms and in C by
2ms, being very similar. The execution time in the device distribution tier (D) differs
by 60ms, also resulting in a very low time overhead. Regarding the time overhead, the
tier with the most powerful resources (F) induces the lowest overhead and the tier with
the poorest resources (D) has the highest overhead. The same characteristic applies for
the human face recognition engine and the text-to-voice engine. The time overhead for

219

8. Code Offloading in Environments with Multiple Tiers

D, L, F, and C ranges between 0.40% and 1.86% for the human face recognition engine
and between 0.75% (F) and 8.24% (D) for the text-to-voice engine (cf. Table 8.3).
However, the absolute values for the additional time from the text-to-voice engine
ranges between 0.004ms (F) and 0.431ms (D), still being acceptable with regard to
the local execution time of 18.624ms on the smart phone (cf. Subsection 4.7.2).

Beside the time overhead for the additional execution of the Java bytecode instruction
offload_branch, the offloading service for the bubbling distribution also induces a
transmission overhead. In detail, it is independent from the actual resource at the
distribution tier (cf. D, L, F, or C) that executes a Java method as well as from the
distributed Java method itself. Regarding the additional transmission, an offloading
service for the bubbling distribution transfers additionally to an offloading client the
calculated hash value and the integer values of i and x compared to an offloading
service for the basic distribution. In total, the additional number of bytes transferred
is 64 byte for the hash value plus 8 byte for the two integer values, resulting in total
in a very low transmission overhead of 72 byte.

8.6. Summary

To provide a code offloading in environments with multiple tiers through code bub-
bling, the bubbling distribution described in Section 8.1 extends the basic distribution.
The bubbling distribution offloads computation not only between a mobile device (first
tier) and a remote resource (second tier) but also between multiple tiers with highly
distributed heterogeneous resources. To this end, the bubbling distribution utilizes a
system overview described in Section 8.2 of multiple tiers, adjusting accordingly the
system model, problem statement, and system components of the basic distribution.
For the bubbling distribution, an offloading client can distribute an application part
that is offloadable among heterogeneous resources on many tiers (e.g., wearable device
↔ smart phone ↔ edge servers ↔ cloud servers, etc.). Thus, the decision making for
code offloading in environments with multiple tiers is more complex. Keeping code of-
floading in environments with multiple tiers also applicable, the bubbling distribution
introduces the concept of code bubbling – offloading timeline described in Section 7.3.
Code bubbling enables each tier to make autonomous decisions for code offloading
without the need to gather a global view onto all resources of all tiers. As a result,
the usage of code bubbling potentially scales to an arbitrary number of tiers since
the decision making for code offloading only involves neighboring tiers. The offloading
framework described in Section 8.4 provides the functionality required for the bub-
bling distribution, extending the API of the Java programming language. Moreover,

220

8.6. Summary

it extends the offloading client and the offloading service with the functionality for
the bubbling distribution, and adds a tier service for managing participating resources
within a tier. To evaluate the overhead introduced and benefit gained by the bubbling
distribution compared to the basic distribution, the evaluation described in Section 8.5
of a prototype based on the Android OS and the OpenJDK JRE analyzes multiple
approaches in different environments. The evaluation results show that a distribution
with code bubbling keeps the introduced overhead low and gained benefit high due to
the submission of downgraded offload requests and the local continuation of the appli-
cation execution. Especially, in case of a network link with a bad quality, the bubbling
distribution significantly performs better than related approaches from the literature.

221

Chapter 9
Related Work

This chapter presents the work related to the contributions previously described in this
dissertation. The related work comprises computation offloading in the landscape of
Mobile Cloud Computing (MCC) that covers both code offloading and cyber forag-
ing. Both augment a (resource-poor) mobile device with (powerful) remote resources,
where cyber foraging locates a remote resource in the vicinity like an underutilized
desktop computer and code offloading locates it at a distant data center at the cloud.
To this end, Section 9.1 discusses the work related to an efficient code offloading with
annotations described in Chapter 4. It provides the basic distribution of application
parts between a mobile device and a remote resource, keeping the efficiency of a dis-
tribution high and at the same time the burden on application developers and end
users low. During a remote execution of application parts distributed to a remote
resource, crash failures like a disconnection might occur. To this end, Section 9.2 dis-
cusses the work related to a robust code offloading through safe-point’ing described
in Chapter 5. It provides the preemptable distribution of application parts improving
the basic distribution to locally reuse intermediate states – so-called safe-points – from
the remote side, not abandoning partial computations achieved remotely so far. Sec-
tion 9.3 discusses the work related to a deadline-aware code offloading with predictive
safe-point’ing described in Chapter 6 that provides the predictive distribution. It im-
proves the preemptable distribution with an adaptive algorithm based on prediction
models to dynamically adapt the point in times for safe-point’ing due to dynamic con-
ditions of the communication network. Next, Section 9.4 discusses the work related to
an optimized code offloading through cooperative caching described in Chapter 7 that
provides the caching-aware distribution of application parts. It increases the efficiency
of the basic distribution with a cache on the remote side that stores the result of appli-
cation parts previously executed, avoiding a repeated execution. As highly distributed
heterogeneous resources surround nowadays a mobile device in the landscape of MCC,
Section 9.5 discusses the work related to a code offloading in environments with mul-
tiple tiers described in Chapter 8. It provides the bubbling distribution of application
parts to remote resources in multiple tiers, shifting the decision making for code of-

223

9. Related Work

floading from a (resource-poor) mobile device into the infrastructure, not requiring to
gather a global view onto all resources of all tiers. Last, Section 9.6 summarizes the
main facts for the related work of this dissertation presented in this chapter.

9.1. Efficient Code Offloading with Annotations

In the literature, several approaches show the capabilities of a distribution of applica-
tion parts from a (resource-constrained) mobile device like a smart phone to a (power-
ful) remote resource in the infrastructure like a server instance at the cloud.

Cuervo et al. [CBC+10] propose an offloading approach called MAUI that improves
the energy efficiency of a mobile device. MAUI distributes application parts at the
granularity of methods from a mobile device to a remote server located in a data cen-
ter at the cloud. MAUI identifies application parts that are offloadable based on an
annotation from an application developer annotated at development-time. To this end,
they formulate an Integer Linear Program (ILP) that minimizes the energy consump-
tion of a mobile application on the mobile device subjected to a maximum time for
an execution of an application. The ILP considers the network parameters like the
bandwidth and latency of the link between the mobile device and the server.

CloneCloud from Chun et al. [CIM+11] also improves the energy efficiency of a
mobile device by distributing application parts from a mobile device to a remote server
at the cloud. CloneCloud distributes application parts at the granularity of threads,
where a so-called device clone for each mobile device runs at the cloud. A main goal
for the design of CloneCloud is a transparent distribution of application parts for an
application developer by automatically transforming and partitioning the code of an
application to enable a distributed execution. To automatically distribute threads from
a mobile device to its clone, it partitions applications based on a static analysis of the
application at development-time together with a profiling of the application at run-
time. Thereupon, CloneCloud determines the execution side for an application part
by formulating an optimization problem that minimizes the energy consumption of the
mobile device subjected to a maximal time for an execution of an application.

Giurgiu et al. [GRA12] propose an approach that distributes application parts at the
granularity of modules. To this end, the approach partitions applications into modules
based on the technology of remote OSGi (Open Services Gateway initiative) [RAR07].
After the partitioning of an application, the approach distributes dynamically the par-
titioned modules between a mobile device and a remote server based on profiling the
mobile device as well as the application.

Gitzenis et al. [GB09] propose an approach that considers the local management

224

9.1. Efficient Code Offloading with Annotations

for the power consumption of a mobile device for a distribution of application parts
by adjusting, for instance, the processor speed. The approach focuses on the trade-off
between the execution time of an application and the energy saving on the mobile
device, modeling the decision problem of a distribution as a controlled Markov chain.
The solution of the problem is a policy that determines the execution side as well as
the power consumption of the mobile device.
ThinkAir from Kosta et al. [KAH+12] also distributes application parts from a mo-

bile device to a remote server at the cloud reducing the execution time and energy
consumption on the mobile device for an execution of an application. Beside the exe-
cution time and energy consumption, ThinkAir explicitly includes the monetary cost
for a remote execution at the cloud. To this end, it dynamically scales the compu-
tational power at the cloud to achieve an optimal performance, allocating on-demand
server instances at the cloud and mapping the application parts to the allocated server
instances. Furthermore, it allows a parallel execution of application parts on multiple
server instances at the cloud.
The middleware proposed from Ferber et al. [FRTH12] augments the execution

of compute-intensive applications on a resource-constrained mobile device with cloud
resources. It provisions on-demand the utilization of server instances at the cloud and
thus, considers the costs arose for a remote execution by accounting end users.
Shi et al. [SHP+14] present the distribution system COSMOS that minimizes the

execution time, energy consumption, and monetary cost of an application on a mobile
device. COSMOS also allocates resources at the cloud to schedule efficiently the remote
execution of distributed application parts. It offers the distribution of computation
as a service mapping dynamically application parts from mobile devices to compute
resources in a commercial data center at the cloud. As a result, its optimization
problem for a distribution additionally minimizes the leasing costs of cloud resources
while handling variable network connectivity.
Tasklet from Paluska et al. [PPS+12, SEV+16] provides a lightweight abstraction

for best-effort computation at the granularity of threads to migrate computation, for
instance, from local resources of a mobile device to resources in the cloud. In detail,
a Tasklet is a fine-grained and self-contained computation unit created dynamically at
run-time that includes everything for its processing like instructions, data, and state.
The underlying representation of instructions and data are chunks, building a graph
of linked chunks as a Tasklet. A Tasklet container consists of a virtual machine to
execute Tasklets, running on any suitable hardware connected to the Internet.
Summarizing, multiple approaches proposed in the literature show the benefits of

computation offloading increasing significantly the energy efficiency on a (resource-

225

9. Related Work

constrained) mobile device and the execution speed for a (resource-intensive) applica-
tion. However, MAUI from Cuervo et al. [CBC+10] and CloneCloud from Chun et al.
[CIM+11] focuses on the improvement of the energy efficiency of a mobile device and
the execution speed of an application. They do not regard monetary cost for a remote
execution of application parts distributed to a server instance, hosted, for instance, in
a commercial data center at the cloud. In detail, MAUI is similar to the basic dis-
tribution presented in Chapter 4, where an application developer annotates methods
that are offloadable. However, MAUI does not instrument bytecodes for the efficient
identification of methods that are offloadable. ThinkAir from Kosta et al. [KAH+12]
and COSMOS from Shi et al. [SHP+14] focuses on improvements on the remote side
like resource allocation and execution parallelism, executing on a server instance at the
cloud a virtual machine of a complete system from a smart phone. Tasklet from Paluska
et al. [PPS+12] focuses on the issue of best-effort computation, utilizing at the system
core an own virtual machine for thread migration implemented in a new programming
language. In contrast to the related approaches proposed in the literature, the basic
distribution presented in Chapter 4 minimizes the execution time, energy consumption,
and monetary cost for a computation offloading of application parts between a mobile
device and a remote resource. It utilizes an annotation-based instrumentation of Java
bytecode instructions that keeps both the overhead introduced to a mobile device and
the burden on application developers and end users low.

9.2. Robust Code Offloading through Safe-point’ing

The approaches related to the basic distribution of application parts described in Sec-
tion 9.1 show the benefits for a distribution of application parts between a mobile
device and a remote server. The execution of application parts on a remote server on
behalf of a mobile device reduces significantly the energy consumption and execution
time on the mobile device. Due to the utilization of a remote resource, the remote
execution causes monetary cost for an end user. Although these approaches increase
the efficiency on a mobile device, they assume a permanent link between a mobile de-
vice and a remote resource as well as a permanent availability of a remote resource.
They do not consider the adverse effects from the occurrence of failures like a link
disconnection, especially as the occurrence of failures can result in a higher execution
time and/or energy consumption than a local execution on a mobile device.

Kwon et al. [KT12] propose a basic mechanism handling the occurrence of failures.
The approach creates a single safe-point before the distribution of application parts
that are offloadable, annotated by an application developer. In case of an occurrence

226

9.2. Robust Code Offloading through Safe-point’ing

of a failure during a remote execution of an application part, it starts a complete re-
execution of the application part on the mobile device based on the single safe-point.

The ENDA system from Li et al. [LBLX13] also considers the occurrence of failures.
ENDA distributes application parts that are offloadable from a mobile device either
to small servers called cloudlets via a Wi-Fi connection or to server instances at the
cloud via a 3G mobile communication network. Based on historic traces of a mobile
device, it selects Wi-Fi access points along the predicted route that connect the mobile
device to the cloudlets. In case of the unavailability of a cloudlet, it uses the 3G mobile
communication to distribute an application part to a server instances at the cloud.
Furthermore, it simply waits for a re-connection to a cloudlet or a server instance if a
failure occurs during a remote execution of an application part.

The COMET system from Gordon et al. [GJM+12] also focuses on the robustness
for a distribution of an application part – more precisely, a thread – between a mobile
device and a remote server. To handle the occurrence of failures from the network or
the server, COMET utilizes the techniques of Distributed Shared Memory (DSM) and
Virtual Machine Synchronization (VMS), already utilized for the offloading of threads.
Based on DSM and VMS, COMET synchronizes threads distributed between a mobile
device and a remote sever, where this fine-grained heap and stack synchronization
between a (resource-constrained) mobile device and a remote server induces a high
overhead of communication. For instance, COMET has to synchronize the complete
initial state at the start of an application, resulting in a typical size of 750-810 kB.

Summarizing, multiple approaches proposed in the literature show techniques for
computation offloading that handles the occurrence of failures during a distribution of
an application part. However, the approach from Kwon et al. [KT12] starts in case of a
failure a complete re-execution on a mobile device of an application part. It abandons
the intermediate state achieved on the remote side so far resulting in a higher execution
time and energy consumption in case of a failure. ENDA from Li et al. [LBLX13] waits
in case of a failure for a re-connection to the remote resource that executes the applica-
tion part, also resulting in a higher execution time and energy consumption, especially,
for instance, for long lasting disconnections. COMET from Gordon et al. [GJM+12]
utilizes a fine-grained synchronization of threads distributed between a mobile device
and a remote resource, introducing a large communication overhead. In contrast to the
related approaches proposed in the literature, the preemptable distribution presented
in Chapter 5 utilizes incremental safe-point’ing, where a safe-point corresponds to the
intermediate state on the remote side. It re-uses locally the intermediate states of the
remote side to continue the remote execution locally, leading to a much smaller amount
of data that a remote resource transfers to a mobile device.

227

9. Related Work

9.3. Deadline-aware Code Offloading with Predictive

Safe-point’ing

The approaches related to the preemptable distribution of application parts described
in Section 9.2 handle the occurrence of failures during a remote execution of application
parts distributed between a mobile device and a remote resource. In case of an occur-
rence of a failure, the approaches either re-executes a (resource-intensive) application
part on a (resource-constrained) mobile device (cf. Kwon et al. [KT12]) or waits for a
re-connection to the remote resource (cf. Li et al. [LBLX13]). Handling an occurrence
of failures by re-executing application parts or waiting for a re-connection reduces the
efficiency on a mobile device of a distribution in case of a failure. Furthermore, both
strategies of re-executing and re-connecting might not be optimal with regard to energy
efficiency and execution speed, giving no guarantees about an execution deadline for an
application. The preemptable distribution with safe-point’ing presented in Chapter 5
re-uses locally partial results (intermediate states) from the remote side in case of a
failure to continue a remote execution on the mobile device. To this end, the preempt-
able distribution creates safe-points – that captures the temporal execution state of an
application part executed on a remote resource – and transmits these safe-points to the
mobile device during a remote execution of an application part. After an occurrence of
a failure, a mobile device continues the remote execution locally based on the safe-point
received most recently. Summarizing, the preemptable distribution with safe-point’ing
proposed from Berg et al. [BDR14a] uses a non-predictive schedule to determine the
points in time to create and transmits safe-points. The strategy that determines the
points in time for safe-point’ing does not always perform optimally under dynamic
conditions of the network. In contrast to the related approaches proposed in the liter-
ature, the predictive distribution presented in Chapter 6 utilizes an adaptive schedule
based on prediction models. It dynamically adapt the point in times for a creation and
transmission of safe-points due to dynamic conditions of the communication network,
increasing the efficiency of code offloading.

9.4. Optimized Code Offloading through

Cooperative Caching

The approaches related to the basic distribution of application parts described in Sec-
tion 9.1 show the benefits related to the basic distribution augmenting a (resource-
constrained) mobile device with a remote resource. The execution of application parts

228

9.4. Optimized Code Offloading through Cooperative Caching

distributed to a remote resource causes monetary cost due to the utilization, for in-
stance, of cloud resources (basic distribution). To this end, the caching-aware distri-
bution improves the basic distribution with a cache. Today, many computing systems
utilize different types of a cache for data and function as, for instance, nodes in a dis-
tributed system that utilize a cache for Domain Name System (DNS) to speed-up the
lookup of a name resolution. In general, the basic idea behind the concept of caching
is that a cache stores information of current requests, speeding up future requests in
case of a cache hit. In case of a cache miss, a cache needs to obtain the information
elsewhere, which is comparatively slower.
WhereStore from Stuedi et al. [SMT10] is a data cache for mobile devices that

replicates cloud data on the limited memory of a mobile device based on the device’s
history of location. WhereStore distributes the data between mobile devices and the
cloud based on filtered replication together with the device’s history of location. As
a result, it decreases the access times for the data and improves availability of the
data, especially in case of a disconnection between a mobile device and the cloud. The
main idea of this location-aware caching between mobile devices and the cloud is that
a mobile device typically accesses only specific data at certain places (e.g., restaurant
recommendations at downtown).
Michie [Mic68] proposes a run-time optimization for a local execution related to

function calls, avoiding the overhead for a redundant execution of a function locally
called Memoization. To this end, a local cache for functions stores the arguments and
the corresponding result from a previous call of a function. In case of the local cache
for functions has a corresponding result (cache hit), it returns immediately a call of a
function with the corresponding result. This avoids the local execution of the function’s
body once again, reducing the execution time of a function.
ADEOM from Jiang et al. [JHLX14] consider a cache on the remote side for a

distribution of application parts between a mobile device and a remote server. The
cache stores an input execution state of an application part required for its execution
on a remote resource. Through the integration of a cache, it reduces the time for a
transmission of an input execution state for an application part distributed between a
mobile device and a remote server. In case of a repeated execution on a remote resource
of an application part previously distributed, a mobile device does not have to sent the
input execution state already stored in the cache on the remote side. Thus, ADEOM
decreases the memory size of migrated data and accelerates the transmission time.
Summarizing, multiple approaches proposed in the literature show the benefits re-

lated to the utilization of caching. WhereStore from Stuedi et al. [SMT10] provides
a location-aware caching for information related to the location of a mobile device,

229

9. Related Work

replicating cloud data on the mobile device. “Memoization” from Michie [Mic68] is a
local cache for functions, avoiding a redundant execution of a function in case of a
cache hit. ADEOM from Jiang et al. [JHLX14] provides for computation offloading a
cache on the remote side storing input execution states for application parts, avoiding
a repeated transmission of information required for an execution on a remote resource.
In contrast to the related approaches proposed in the literature, the caching-aware
distribution presented in Chapter 7 utilizes for computation offloading a cache on the
remote side. The cache stores output execution states to (further) speed up the time
and energy required for a remote execution of an application part that is offloadable.

9.5. Code Offloading in Environments with Multiple

Tiers

The approaches related to the basic distribution of application parts described in Sec-
tion 9.1 show the benefits related to the basic distribution of application parts between
a mobile device (first tier) and a remote resource (second tier). Although these ap-
proaches increase the energy efficiency on a mobile device and the execution speed
for an application in environments with two tiers, they largely neglect a distribution
of application parts in environments with multiple tiers, typically found in today’s
landscape of MCC. Compared to an environment with two tiers, highly distributed
heterogeneous resources from multiple tiers surround a mobile device, differing in per-
formance characteristics and cost implications.

Scavenger from Kristensen [Kri10] distributes application parts in mobile, heteroge-
neous environments. Scavenger enables a resource-constrained mobile device to execute
tasks – more precisely RPCs – from Python applications on underutilized, unknown
devices in the vicinity called surrogates like a desktop computer. Scavenger selects the
best available surrogate for a task with the help of its “strength”, determined from a
CPU benchmark. To retrieve the execution time for a task on a surrogate, it utilizes
a history-based profiling of tasks and of (task, surrogate)-pairs, where an application
developer defines the task complexity.

Cheng et al. [CLWG15] propose a three-layer architecture for a distribution of ap-
plication parts. A wearable device (first layer) distributes application parts to mobile
devices like smart phones (middle layer) or to the remote cloud (third layer). To this
end, they formulate an optimization problem that maximizes the number of distributed
parts subjected to a given delay of the execution time. Cheng et al. provide a proof
that the formulated optimization problem is NP-hard and approximate the optimal

230

9.6. Summary

solution based on a genetic algorithm.
Satyanarayanan et al. [SBCD09] propose with cloudlet a nearby cloud of underuti-

lized devices for the distribution of application parts. A cloudlet comprises computing
infrastructure co-located with a Wi-Fi AP, where an agent manages the nodes within
its cloudlet. The utilization of a cloudlet avoids the high latency and low bandwidth
of a cellular network to a distant elastic cloud. A mobile device distributes applica-
tion parts on the basis of virtual machine synthesis [SBCD09] or at component level
[VSTD12]. Besides the nearby, ad hoc cloudlet, the approach also considers compu-
tation power from a distant elastic cloud, for instance, as a fallback to provide more
powerful servers or to avoid interruptions while on the move.
Summarizing, multiple approaches proposed in the literature provides computation

offloading in environments with two tiers and seldom with three tiers. Scavenger from
Kristensen [Kri10] enables computation offloading in unknown environments, relying
on high developer interventions and keeping a partial global view onto the environment.
Cheng et al. [CLWG15] enable computation offloading in a known environment with
three tiers based on a centralized algorithm. Satyanarayanan et al. [SBCD09] propose
with cloudlet an approach that distributes application parts to nearby clouds – and as
a fallback to distant clouds – by calculating “a global optimum for all the devices in
the cloudlet” [VSTD12]. In contrast to the related approaches proposed in the litera-
ture, the bubbling distribution presented in Chapter 8 enables computation offloading
in unknown environments with multiple tiers. It utilizes a recursive distribution of
application parts to autonomous tiers, not requiring a global view.

9.6. Summary

In the literature, multiple approaches propose techniques for computation offloading
related to the contributions in this dissertation. In detail, the work related to an
efficient code offloading with annotations described in Section 9.1 also proposes com-
putation offloading between a mobile device and a remote resource. However, the
related work does not provide an efficient distribution that minimizes the execution
time, energy consumption, and monetary cost for application parts that are offload-
able with least interventions from application developers and end users based on an
annotation-based instrumentation of Java bytecode instructions (cf. Chapter 4). The
work related to a robust code offloading through safe-point’ing described in Section 9.2
also proposes for computation offloading approaches to handle (network or node) fail-
ures during a remote execution of application parts on a remote resource. However,
the related work does not provide a robust distribution with safe-point’ing that locally

231

9. Related Work

re-uses intermediate states from the remote side to continue a remote execution on a
mobile device, not abandoning partial results achieved on a remote resource so far (cf.
Chapter 5). The work related to a deadline-aware code offloading with predictive safe-
point’ing described in Section 9.3 also proposes scheduling strategies for a local re-use
of intermediate states from the remote side (safe-points). However, the related work
does not provide an adaptive approach based on prediction models for the schedul-
ing strategy to dynamically adapt the point in times for a creation and transmission
of safe-points due to dynamic conditions of the communication network (cf. Chap-
ter 6). The work related to an optimized code offloading through cooperative caching
described in Section 9.4 also proposes for computation offloading an integration of a
cache to speed up the time required, for instance, for a transmission of an input exe-
cution state. However, the related work does not provide a cooperative cache on the
remote side storing output execution states from mobile devices and remote resources
to speed up the total time and energy required for an execution of an application part
distributed to a remote resource (cf. Chapter 7). The work related to a code offloading
in environments with multiple tiers described in Section 9.5 also proposes computation
offloading in environments with two tiers like a mobile device and a remote resource
and seldom in environments with three tiers like a mobile device, a fog resource, and a
cloud resource. However, the related work does not provide computation offloading in
unknown environments with multiple tires, not requiring a global view (cf. Chapter 8).

232

Chapter 10
Conclusion

By offloading computation from a (resource-constrained) mobile device to a (powerful)
remote resource, a mobile device benefits significantly through a higher energy efficiency
and a faster execution speed. In the area of code offloading, this dissertation covers
different topics like a basic distribution for an efficient offloading of computation, a
preemptable distribution for an efficient failure handling, or a bubbling distribution for
and efficient computation offloading in future environments with multiple tiers. This
chapter concludes this dissertation, first presenting a summary described in Section 10.1
on the topics covered in this dissertation together with concluding remarks on key
results. Afterwards, it gives an outlook described in Section 10.2 on research questions
remained open, guiding future work in the domain of code offloading.

10.1. Summary

Mobile devices like smart phones, tablets, or laptops have become an integral part in
daily life, where an end user, for instance, works on a project, plays a mobile game,
or surfs the web on its way. To this end, an end user executes on its battery-operated
mobile device different applications like an office suite, a high-end video game, or a web
browser, to accomplish a desired task. Due to the mobility provided to end users by a
battery-operated mobile device, however, a mobile device faces fast its main limiting
factor, the energy consumption. A heavy utilization of a mobile device via, for instance,
an execution of a resource-intensive application like a high-end video game drains its
limited battery in few hours. Beside the limited battery capacity of a mobile device,
the issue of mobility also influences further hardware resources like its processing unit,
making a mobile device a resource-constrained computing environment – especially
compared with the virtual unlimited performance of cloud platforms.
To handle the resource limitation of mobile devices, code offloading augments a

(resource-constrained) mobile computing environment like a smart phone via a wire-
less network like Wi-Fi with a (powerful) remote resource like a server instance at a
(commercial) data center of a cloud provider. Thus, code offloading combines mobile

233

10. Conclusion

computing with cloud computing to mobile cloud computing, bringing the cloud closer
to end users together with its advantages like virtual unlimited resources (e.g., storage,
processing, . . .), flexibility (e.g., on-demand up or down scale), or cost efficiency (e.g.,
pay-as-you-go manner). The augmentation involves the offloading of resource-intensive
computations from a mobile computing environment to a remote resource, where the
remote execution increases the energy efficiency of a mobile computing environment
and the execution speed of an application. Due to the utilization of remote resources
like a server instance at the cloud, an end user has to pay a monetary cost. Please note
that in today’s landscape of mobile cloud computing, highly distributed heterogeneous
resources like smart wearables, laptops, desktops, smart cars, or resources at the fog
and the cloud surround a mobile device like a smart phone, differing in performance
characteristics and cost implications.

To offload computation from a mobile computing environment (client) to a remote
resource (service), a distribution process on the client comprises the eight steps of iden-
tifying, gathering, determining, sending, waiting, receiving, installing, and continuing.
First, a client has to identify application parts that are offloadable, where a remote
execution on a service is more beneficial than a local execution on the client. An ap-
plication part that is offloadable only utilizes a processing unit – without accessing
further resources like a local sensor. After identifying an application part for a remote
execution, a client gathers the input information required for a remote execution like
method parameters or global variables. Moreover, it also has to gather further param-
eters about the current situation like network quality or performance of a service, to
determine the execution side of an application part. To this end, the client regards
the cost for a local execution and the cost for a remote execution. For an application
part, the cost for a local execution includes the execution time and energy consump-
tion for a local execution, where the cost for a remote execution includes the execution
time, energy consumption, and monetary cost for a remote execution. In case of a
local execution, a client just continues the execution of an application locally, whereas
it sends the input information required for a remote execution to a remote service in
case of a remote execution. During a remote execution of an application part, a client
waits in idle mode for the end to receive the output information of the execution on
the remote service. After receiving an output information resulted from a remote ex-
ecution, a client installs the output information locally and continues the execution of
an application just like in case of a local execution of the application part.

Regarding the distribution process described above, an offloading framework – that
enables a client to offload computation to a remote resource – has to keep the overhead
introduced by the steps for a computation offloading on a client and on a service

234

10.1. Summary

low, providing a high energy efficiency and a fast execution speed. Moreover, it also
has to keep the interventions required by an application developer or an end user low,
providing an ease of use computation offloading. To this end, this dissertation presented
the basic distribution for an efficient code offloading with least interventions, where
a (resource-poor) mobile computing environment offloads code to a (powerful) remote
resource. It utilizes an annotation-based instrumentation of Java bytecode instructions
to efficiently identify feasible parts from an application for a remote execution. As
a result, an application developer only annotates feasible parts at development-time,
where this little application-specific knowledge is enough that the offloading framework
does the rest of the distribution process at run-time on its own. The same applies to an
end user which only specifies weights for the execution time, energy consumption, and
monetary cost. The evaluation results of different prototypes implemented on the Jikes
Research Virtual Machine, the OpenJDK, and the Android Open-Source Project show
the efficiency and performance of the basic distribution, outperforming significantly a
local execution on a mobile computing environment.

Regarding the distribution process described above, an offloading framework has to
handle the occurrence of failures like node or network failures. For instance, a long-
lasting disconnection between a client and a remote service near the end of a remote
execution prevents a receive of the output information on the client. Due to the occur-
rence of failures, a client starts mechanisms for error handling like a local re-execution.
To this end, this dissertation presented the preemptable distribution for a robust code
offloading through safe-point’ing to increase the energy efficiency and responsiveness
also under (node or/and network) failures. The preemptable distribution allows an
interruption of computation offloading after a failure without losing the intermediate
result calculated remotely so far until the occurrence of a failure. This avoids a com-
plete re-execution of an application part locally or an (undefined long) waiting for a
re-connection to a remote service. The interruption of computation offloading relies on
safe-points that contain all information required to continue a remote execution locally.
Thus, a remote service creates and transmits such safe-points to a client during a re-
mote execution whenever it is beneficial in terms of energy. Although the creation and
transmission of safe-points introduce some overhead, the evaluation results show that
this overhead is small and quickly pays off in scenarios with link failures. As a result,
the preemptable distribution leads to lower execution time and energy consumption.

Regarding the preemptable distribution described above, an offloading framework
has to determine optimal points in time for the creation and transmission of safe-
points. For instance, fewer safe-points are sufficient for a communication network with
less frequent failures reducing the communication overhead, whereas a communica-

235

10. Conclusion

tion network with more frequent failures require more safe-points to be prepared for
impending network failures. To this end, this dissertation presented the predictive
distribution for a deadline-aware code offloading with predictive safe-point’ing. It op-
timizes the schedule for the creation and transmission of safe-points to minimize the
introduced overhead and guarantee a maximum time of an execution for a minimal
responsiveness. The predictive distribution utilizes an adaptive algorithm for schedul-
ing safe-points that adapts dynamically the point in time of creating and transmitting
safe-points due to dynamic conditions of the communication network. To determine the
optimal points in time for safe-point’ing, it predicts the quality of the network link and
solves a given constrained optimization problem (minimum overhead for safe-point’ing
under a constraint for the execution deadline). The evaluation results show that the
predictive distribution increases the energy efficiency and execution speed compared to
the basic distribution and the preemptable distribution by additionally guaranteeing a
maximum time for an execution under failures (improved responsiveness).

Regarding the distribution process described above, an offloading framework has to
speed up a remote execution (e.g., the three steps of sending, waiting, and receiving)
from an application part, to keep the energy efficiency and execution speed high. In
computer science, many distributed systems utilize a cache for data and function to
speed up future requests by storing information of current requests in a cache. To
this end, this dissertation presented the caching-aware distribution for an optimized
code offloading through cooperative caching. A cache on the remote side stores output
information from local executions on mobile computing environments or remote exe-
cutions on services. In case of a distribution of an application part that is offloadable,
a mobile computing environment queries a cache on the remote side, avoiding, on the
one hand, a repeated execution of application parts already executed previously, and
reducing, on the other hand, the time required for a remote execution in case of a
cache hit. As a result, a mobile computing environment benefits not only from shorter
execution times for application parts but also from lower monetary cost, not utilizing
a remote service for an execution in case of a cache hit. The evaluation results show
that the caching-aware distribution increases the energy efficiency and execution speed
as well as decreases the monetary cost compared to the basic distribution, keeping the
overhead introduced for caching low.

Regarding the distribution process described above, an offloading framework nowa-
days has to offload computation not only between a mobile computing environment
(first tier) and a remote service (second tier) but also between a mobile computing en-
vironment (first tier) and multiple highly distributed heterogeneous resources (multiple
tiers) with different performance characteristics and cost implications. For instance,

236

10.2. Outlook

a mobile computing environment can offload application parts among heterogeneous
compute resources on many tiers (e.g., smart wearables↔ laptops↔ desktops↔ edge
servers ↔ cloud servers, etc.), making a decision for code offloading more complex.
To this end, this dissertation presented the bubbling distribution for a code offloading
in environments with multiple tiers. The concept of code bubbling enables each tier
to make autonomous decisions for code offloading without the need to gather a global
view onto all resources of all tiers. Using the concept of code bubbling, code offloading
potentially scales to an arbitrary number of tiers since decisions for code offloading
only involve neighboring tiers. The evaluation results show that the bubbling distribu-
tion enables an efficient code offloading for environments with multiple tiers in today’s
landscape of mobile cloud computing, keeping the introduced overhead low as well as
the energy efficiency and execution speed high.

10.2. Outlook

Apart from a direct improvement to the basic distribution, the preemptable distri-
bution, the predictive distribution, the caching-aware distribution, or the bubbling
distribution presented in this dissertation, additional information, optimization, and
functionality improves each distribution as follows.
For the basic distribution, an application developer annotates feasible parts from

an application as “offloadable” for an execution on a remote service, relying on a little
application-specific knowledge from an application developer. An application part that
is offloadable only requires a processing unit, not accessing further resources like a local
sensor. Moreover, a suitable candidate for a remote execution is offloadable and has a
long running computation with a small size of input information required for a remote
execution and of output information received on a client. Thus, an improvement to the
basic distribution can be an approach that automatically identifies and proposes suit-
able application parts at development-time based on criteria for a suitable candidate.
This supports an application developer in its decision to annotate suitable application
parts with “offloadable”.
For the preemptable distribution and the predictive distribution, a remote service at

the cloud creates and transmits safe-points during an execution of an application part,
enabling an interruption of a remote execution and a local continuation on a client
based on the safe-point received most recently. Despite the low overhead introduced
on a client and a remote service, the main overhead for a client constitutes the com-
munication cost of receiving safe-points while waiting in idle mode during a remote
execution. Thus, an improvement to the preemptable distribution and the predictive

237

10. Conclusion

distribution can be a buffer of safe-points at, for instance, the last communication hop
(access point) to a client. Only in case of the occurrence of a failure the buffer sends
the safe-points to the client increasing the energy efficiency on the client.

For the caching-aware distribution, a cache on the remote side stores output informa-
tion from application parts previously executed on clients or remote services. Thus, a
client queries the cache for corresponding output information for application parts that
are offloadable. The significant increase of the energy efficiency and execution speed
on a client depends mainly on the hit ratio at the cache on the remote side. Thus,
an improvement to the caching-aware distribution can be a hierarchical composition of
multiple caches at a client, an access point, the fog, and the cloud, where an important
entry of a cache flows up the hierarchy improving the overall hit ratio of caching and
thus, further increasing the energy efficiency and execution speed.

For the bubbling distribution, a client gathers the input information required for
a remote execution creating an offload request. Thus, it has to interrupt the local
execution of a corresponding application part. Due to the interruption of a local
execution to gather and create an offload request, the execution time (and energy
consumption) is worse compared to a pure local execution. Thus, an improvement to
the bubbling distribution can be an optimization to the local creation of an offload
request that first only copies the input information from an application part, continues
the local execution, and then starts the steps required for code bubbling.

For all distributions, a remote service, for instance, at an underutilized desktop,
a server instance at the fog or the cloud executes an application part from a client.
Thus, an end user has to trust a corresponding (personal, fog, or cloud) provider of a
remote service. The remote processing of information like an execution of application
parts or a caching of output information raises the question of privacy and security
implications to an end user. For instance, an execution of an application part requires
personal information or a caching of output information from a specific client reveals
its execution flow. Thus, an improvement to all distributions can be the consideration
of privacy and security implications on the remote side that prevents an end user from
misuse of, for instance, its personal information.

238

Appendix

239

A. Java Bytecode Instructions

Table A.1, Table A.2, and Table A.3 outline the Java bytecode instructions:

Constants:
00 (0x00) nop
01 (0x01) aconst_null
02 (0x02) iconst_m1
03 (0x03) iconst_0
04 (0x04) iconst_1
05 (0x05) iconst_2
06 (0x06) iconst_3
07 (0x07) iconst_4
08 (0x08) iconst_5
09 (0x09) lconst_0
10 (0x0a) lconst_1
11 (0x0b) fconst_0
12 (0x0c) fconst_1
13 (0x0d) fconst_2
14 (0x0e) dconst_0
15 (0x0f) dconst_1
16 (0x10) bipush
17 (0x11) sipush
18 (0x12) ldc
19 (0x13) ldc_w
20 (0x14) ldc2_w

Loads:
21 (0x15) iload
22 (0x16) lload
23 (0x17) fload
24 (0x18) dload
25 (0x19) aload
26 (0x1a) iload_0
27 (0x1b) iload_1
28 (0x1c) iload_2
29 (0x1d) iload_3
30 (0x1e) lload_0
31 (0x1f) lload_1
32 (0x20) lload_2
33 (0x21) lload_3
34 (0x22) fload_0
35 (0x23) fload_1
36 (0x24) fload_2
37 (0x25) fload_3
38 (0x26) dload_0
39 (0x27) dload_1
40 (0x28) dload_2
41 (0x29) dload_3
42 (0x2a) aload_0
43 (0x2b) aload_1
44 (0x2c) aload_2
45 (0x2d) aload_3
46 (0x2e) iaload
47 (0x2f) laload
48 (0x30) faload
49 (0x31) daload
50 (0x32) aaload
51 (0x33) baload
52 (0x34) caload
53 (0x35) saload

Stores:
54 (0x36) istore
55 (0x37) lstore
56 (0x38) fstore
57 (0x39) dstore
58 (0x3a) astore
59 (0x3b) istore_0
60 (0x3c) istore_1
61 (0x3d) istore_2
62 (0x3e) istore_3
63 (0x3f) lstore_0
64 (0x40) lstore_1
65 (0x41) lstore_2
66 (0x42) lstore_3
67 (0x43) fstore_0
68 (0x44) fstore_1
69 (0x45) fstore_2
70 (0x46) fstore_3
71 (0x47) dstore_0
72 (0x48) dstore_1
73 (0x49) dstore_2
74 (0x4a) dstore_3
75 (0x4v) astore_0
76 (0x4c) astore_1
77 (0x4d) astore_2
78 (0x4e) astore_3
79 (0x4f) iastore
80 (0x50) lastore
81 (0x51) fastore
82 (0x52) dastore
83 (0x53) aastore
84 (0x54) bastore
85 (0x55) castore
86 (0x56) sastore

Table A.1.: Part I of the Java bytecode instructions from 00 to 86. [LYBB15]

241

A. Java Bytecode Instructions

Stack:
87 (0x57) pop
88 (0x58) pop2
89 (0x59) dup
90 (0x5a) dup_x1
91 (0x5b) dup_x2
92 (0x5c) dup2
93 (0x5d) dup2_x1
94 (0x5e) dup2_x2
95 (0x5f) swap

Math:
96 (0x60) iadd
97 (0x61) ladd
98 (0x62) fadd
99 (0x63) dadd
100 (0x64) isub
101 (0x65) lsub
102 (0x66) fsub
103 (0x67) dsub
104 (0x68) imul
105 (0x69) lmul
106 (0x6a) fmul
107 (0x6b) dmul
108 (0x6c) idiv
109 (0x6d) ldiv
110 (0x6e) fdiv
111 (0x6f) ddiv
112 (0x70) irem
113 (0x71) lrem
114 (0x72) frem
115 (0x73) drem
116 (0x74) ineg
117 (0x75) lneg
118 (0x76) fneg
119 (0x77) dneg
120 (0x78) ishl
121 (0x79) lshl
122 (0x7a) ishr
123 (0x7b) lshr
124 (0x7c) iushr
125 (0x7d) lushr
126 (0x7e) iand
127 (0x7f) land
128 (0x80) ior
129 (0x81) lor
130 (0x82) ixor
131 (0x83) lxor
132 (0x84) iinc

Conversions:
133 (0x85) i2l
134 (0x86) i2f
135 (0x87) i2d
136 (0x88) l2i
137 (0x89) l2f
138 (0x8a) l2d
139 (0x8b) f2i
140 (0x8c) f2l
141 (0x8d) f2d
142 (0x8e) d2i
143 (0x8f) d2l
144 (0x90) d2f
145 (0x91) i2b
146 (0x92) i2c
147 (0x93) i2s

Table A.2.: Part II of the Java bytecode instructions from 87 to 147. [LYBB15]

242

Comparisons:
148 (0x94) lcmp
149 (0x95) fcmpl
150 (0x96) fcmpg
151 (0x97) dcmpl
152 (0x98) dcmpg
153 (0x99) ifeq
154 (0x9a) ifne
155 (0x9b) iflt
156 (0x9c) ifge
157 (0x9d) ifgt
158 (0x9e) ifle
159 (0x9f) if_icmpeq
160 (0xa0) if_icmpne
161 (0xa1) if_icmplt
162 (0xa2) if_icmpge
163 (0xa3) if_icmpgt
164 (0xa4) if_icmple
165 (0xa5) if_acmpeq
166 (0xa6) if_acmpne

Control:
167 (0xa7) goto
168 (0xa8) jsr
169 (0xa9) ret
170 (0xaa) tableswitch
171 (0xab) lookupswitch
172 (0xac) ireturn
173 (0xad) lreturn
174 (0xae) freturn
175 (0xaf) dreturn
176 (0xb0) areturn
177 (0xb1) return

References:
178 (0xb2) getstatic
179 (0xb3) putstatic
180 (0xb4) getfield
181 (0xb5) putfield
182 (0xb6) invokevirtual
183 (0xb7) invokespecial
184 (0xb8) invokestatic
185 (0xb9) invokeinterface
186 (0xba) invokedynamic
187 (0xbb) new
188 (0xbc) newarray
189 (0xbd) anewarray
190 (0xbe) arraylength
191 (0xbf) athrow
192 (0xc0) checkcast
193 (0xc1) instanceof
194 (0xc2) monitorenter
195 (0xc3) monitorexit

Extended:
196 (0xc4) wide
197 (0xc5) multianewarray
198 (0xc6) ifnull
199 (0xc7) ifnonnull
200 (0xc8) goto_w
201 (0xc9) jsr_w

Reserved:
202 (0xca) breakpoint
254 (0xfe) impdep1
255 (0xff) impdep2

Table A.3.: Part III of the Java bytecode instructions from 148 to 255. [LYBB15]

243

B. Mobile Applications

An end user executes nowadays different mobile applications on its mobile device like
high-end video games. To this end, this chapter highlights capabilities of the mobile ap-
plications utilized in this dissertation for code offloading. Due to significant differences
with regard to computational complexity and communication overhead of the mobile
applications (cf. Table B.1), each mobile application benefits differently from code of-
floading. In detail, this dissertation utilizes a Chesspresso application (cf. Section B.2),
a chess game (cf. Section B.3), a face recognition application (cf. Section B.4), and a
text-to-voice application (cf. Section B.5).

B.1. “Hello, World!” Application

The Java programming language is object-oriented, where every data is an object
except the Java primitive types boolean, char, short, integer, float, and double

owing to performance issues. An application developer writes the application code
inside classes, where the public class contained in a source file plus the suffix .java

define its file name. The following listing, Listing B.1 “HelloWorld.java”, shows the
popular “Hello, World!” application written in the Java programming language:

1 class HelloWorld {

3 public static void main(String [] args) {
// Prints the String "Hello , World!" to the console

5 System.out.println("Hello , World!");
}

7

}

Listing B.1: The Java source code for the “Hello, World!” application.

B.2. Chesspresso Application

The Chesspresso application is a chess program that searches iteratively for the best
move of the black player after the white player moved its pawn two steps ahead (cf. Fig-
ure B.1). It utilizes the Java library Chesspresso from Bernhard Seybold [Sey03] that is

245

B. Mobile Applications

Size of Input Exe-
cution State

Code Complexity Size of Output
Execution State

Chesspresso Ap-
plication

6050 bytes⇒ con-
stant small size

High computa-
tional complexity

3023 bytes⇒ con-
stant small size

Chess Game 80 + (n · 80) + 1
integers ⇒ small
size

With a chess dif-
ficulty of 3 very
high, with 2 mod-
erate, and with 1
low

5 integers ⇒ very
small, constant
size

Face Recogni-
tion Application

Width times
height times color
space ⇒ huge size
(in the magnitude
of megabytes)

High computa-
tional complexity

4 ·n integers,
where n is the
number of de-
tected faces

Text-to-Voice
Application

Written sentence
and voice name⇒
moderate size (in
the magnitude of
kilobytes)

High computa-
tional complexity

Audio file⇒mod-
erate size (in the
magnitude of hun-
dred kilobytes)

Table B.1.: Comparison of the main facts from the Java applications evaluated for code
offloading on the prototypes.

1 e4

8rmblkans
7opopopop
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0ZPZ0Z
3Z0Z0Z0Z0
2POPO0OPO
1SNAQJBMR

a b c d e f g h

Figure B.1.: The opening move for the Chesspresso application.

246

B.2. Chesspresso Application

open-source and provides the necessary functionality like data structures and rules to
implement a chess game. After an initialization part, the Chesspresso application calls
the Java method iterativeChessCalls(...) of the Java class ChessDetectPosition
that is offloadable. It has the input parameters of the current chess board (cf. Fig-
ure B.1) and an array of empty Strings (cf. Listing B.2). As output, the Java method
has an Integer value indicating the number of calls for the Java method check(...)

(cf. Listing B.2). Regarding the size of the input parameters, the Java class Position
has a size of 2951 bytes and the array of Strings a size of 72 bytes, summing up to 3023

bytes (cf. Listing B.2). As both input parameters are Java objects, the output includes
both input parameters – now with a size of 5902 bytes and 144 bytes – as well as the
4 bytes for the return of an integer value, summing up to 6050 bytes. Summarizing,
the search algorithm from the Chesspresso application is an optimal candidate for a
computation offloading. It possesses a constant, small size of input and a constant,
small size of output with a high computational complexity. The following listing shows
the relevant code for the Chesspresso application:

/*
2 * Copyright (c) 2014 Florian Berg

<Florian.Berg@ipvs.uni -stuttgart.de >
* All rights reserved.

4 *
* ...

6 */

8 package chesspresso;

10 import chesspresso.Chess;
import chesspresso.move.IllegalMoveException;

12 import chesspresso.move.Move;
import chesspresso.position.Position;

14

public class ChessDetectPosition {
16

public int iterativeChessCalls(Position position , String [] game) {
18 short[] nm1 = position.getAllMoves ();

short[] nm2; short[] nm3; short [] nm4;
20

// record
22 int ply = position.getPlyNumber ();

Move lastMove = position.getLastMove ();
24 game[ply - 1] = lastMove.getSAN ();

26 MainChess.TEST = game.length;

28 boolean found = false;
int counter = 0;

30 try {
for (int i1=0; i1 <nm1.length; i1++) {

32 System.out.println("i1: " + i1);

34 position.doMove(nm1[i1]);
nm2 = position.getAllMoves ();

247

B. Mobile Applications

36

// record
38 ply = position.getPlyNumber ();

lastMove = position.getLastMove ();
40 game[ply - 1] = lastMove.getSAN ();

42 // check and count
found = check(position , lastMove , ply , game);

44 counter ++;

46 // one down
for (int i2=0; i2 <nm2.length; i2++) {

48 System.out.println(" - i2: " + i2);

50 position.doMove(nm2[i2]);
nm3 = position.getAllMoves ();

52

// record
54 ply = position.getPlyNumber ();

lastMove = position.getLastMove ();
56 game[ply - 1] = lastMove.getSAN ();

58 // one down
for (int i3=0; i3 <nm3.length; i3++) {

60 System.out.println("i3: " + i3);

62 position.doMove(nm3[i3]);
nm4 = position.getAllMoves ();

64

// record
66 ply = position.getPlyNumber ();

lastMove = position.getLastMove ();
68 game[ply - 1] = lastMove.getSAN ();

70 // one down
for (int i4=0; i4 <nm4.length; i4 += 2) {

72 System.out.println("i4: " + i4);

74 position.doMove(nm4[i4]);
nm5 = position.getAllMoves ();

76

// record
78 ply = position.getPlyNumber ();

lastMove = position.getLastMove ();
80 game[ply - 1] = lastMove.getSAN ();

82 // check and count
found = check(position , lastMove , ply , game);

84 counter ++;

86 position.undoMove ();
}

88

position.undoMove ();
90 }

92 position.undoMove ();
}

94

boolean debug = position.undoMove ();
96 if (debug) counter ++;

248

B.3. Chess Game

}
98 } catch (IllegalMoveException e) {

e.printStackTrace ();
100 }

102 if (!found) return counter;

104 return -1;
}

106

private boolean check(Position position , Move lastMove , int ply ,
String [] game) {

108 return (position.isMate () &&
lastMove.isCapturing () &&

110 lastMove.getMovingPiece () == Chess.KNIGHT &&
position.getPiece(lastMove.getToSqi ()) == Chess.ROOK);

112 }

114 ...

116 }

Listing B.2: The Java Source Code of the Chesspresso Application [Sey03]

B.3. Chess Game

The chess game enables an end user to play a chess game against a computer opponent,
where the source code of the chess game is from Ulf Ochsenfahrt [Och08].
The Graphical User Input (GUI) of the chess game displays the current configuration

of the chess board, takes the next move of the user, and displays the determined move
of the computer opponent. To determine the next best chess move of the computer
opponent, the search algorithm uses an Alpha-beta pruning. The input parameters are
the current configuration of the chess board, the chess history of past moves, and the
search depth (cf. Listing B.3). Notice that the search depth defines the chess difficulty
of the computer opponent, influencing significantly the code complexity of the search
algorithm. As output, the search algorithm returns the next best chess move of the
computer opponent based on the given input parameters (cf. Listing B.3). Regarding
the size of the input parameters, the chess board results in 8 · 8 + 16 = 80 integers, the
chess history of n past moves in 80 ·n integers, and the chess difficulty in 1 integer.
Regarding the size of the output, the chess return sums up to 5 integers.
For the evaluations in this dissertation, a mobile device plays multiple rounds with

different opening moves, namely 1 a3, 1 g3, 1 a4, 1 b4, 1 c4, 1 d4, and 1 h4.
Figure B.2 shows in the first row the chess board at the start of a new chess game (cf.
Figure B.2a) and the opening moves that move a pawn one-step further (cf. Figure B.2b
and B.2c). Moreover, Figure B.2 shows in the second and the third row the opening

249

B. Mobile Applications

8rmblkans
7opopopop
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
2POPOPOPO
1SNAQJBMR

a b c d e f g h

(a) Start position
1 a3

8rmblkans
7opopopop
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3O0Z0Z0Z0
20OPOPOPO
1SNAQJBMR

a b c d e f g h

(b) Opening move 1 a3
1 g3

8rmblkans
7opopopop
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0O0
2POPOPO0O
1SNAQJBMR

a b c d e f g h

(c) Opening move 1 g3

1 a4

8rmblkans
7opopopop
60Z0Z0Z0Z
5Z0Z0Z0Z0
4PZ0Z0Z0Z
3Z0Z0Z0Z0
20OPOPOPO
1SNAQJBMR

a b c d e f g h

(d) Opening move 1 a4
1 b4

8rmblkans
7opopopop
60Z0Z0Z0Z
5Z0Z0Z0Z0
40O0Z0Z0Z
3Z0Z0Z0Z0
2PZPOPOPO
1SNAQJBMR

a b c d e f g h

(e) Opening move 1 b4
1 c4

8rmblkans
7opopopop
60Z0Z0Z0Z
5Z0Z0Z0Z0
40ZPZ0Z0Z
3Z0Z0Z0Z0
2PO0OPOPO
1SNAQJBMR

a b c d e f g h

(f) Opening move 1 c4

1 d4

8rmblkans
7opopopop
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0O0Z0Z
3Z0Z0Z0Z0
2POPZPOPO
1SNAQJBMR

a b c d e f g h

(g) Opening move 1 d4
1 h4

8rmblkans
7opopopop
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0O
3Z0Z0Z0Z0
2POPOPOPZ
1SNAQJBMR

a b c d e f g h

(h) Opening move 1 h4

80ZbZkZ0Z
7spo0ZpZ0
6nZ0Z0Z0o
5Z0Z0Z0ZP
4qZ0ZPZPZ
3ZNZPZ0Z0
20Z0ZBZ0Z
1ZRZKL0Z0

a b c d e f g h

(i) Board configuration 0

Figure B.2.: The different configurations of the chess board evaluated for a chess game.

250

B.3. Chess Game

moves that move a pawn two-steps further (cf. Figure B.2d - B.2h).
Summarizing, the search algorithm from the chess game is an optimal candidate for a

computation offloading. It possesses a small size of input and a very small, constant size
of output with a high computational complexity that depends on the chess difficulty
chosen and the current configuration of the chess board.
The following listing shows the relevant code for the chess game:

/*
2 * Copyright (c) 2005 -2008 Ulf Ochsenfahrt <ulf@ofahrt.de >

* All rights reserved.
4 *

* ...
6 */

8 import ...

10 public final class aichess4k extends JComponent implements Runnable {
// board:

12 // 0-7 board
// 8 0-3 lastmove source x,y & dest x,y

14 // 4 activeplayer 5 leftrookmoved 6 kingmoved 7 rightrookmoved
// 9 0 movenum 1 movessincetake 2 check

16 // ply:
// 0-1 source position x,y

18 // 2-3 dest position x,y
// 4 target figure (only used for transformation moves)

20

// current board
22 private int [][] myboard;

24 // move including transformation target if pawn ends up on final row
private int[] myply;

26

// all previous board configurations
28 private int [][][] undo;

30 // ai result
private int[] resply;

32

// ai difficulty (modifies search depth)
34 private int difficulty;

36 private void init() { ... }

38 private boolean isCastleing(final int [][] board , final int sx, final
int sy, final int dx, final int dy) { ... }

40 private boolean isEnPassant(int [][] board , int sx, int sy, int dx ,
int dy) { ... }

42 private boolean isNormal(int [][] board , int sx, int sy , int dx, int
dy) { ... }

44 void copy(int [][] from , int [][] to) { ... }

46 boolean move(int [][] board , int[] ply) { ... }

48 int search(int [][] board , final int steps , final int maxsteps , int

251

B. Mobile Applications

alpha , int beta) {
// Check for a draw

50 ...

52 // Evaluate board if search depth is reached
...

54

// Start alpha -beta -search
56 for (int x = 0; x < 8; x++)

for (int y = 0; y < 8; y++) {
58 int figure = board[x][y];

int type = figure & FIGURE;
60 if ((figure & COLOR) == side) {

for (int dx = 0; dx < 8; dx++) {
62 for (int dy = 0; dy < 8; dy++) {

if (((board[dx][dy] & COLOR) != side) &&
64 (isEnPassant(board , x, y, dx, dy) ||

isCastleing(board , x, y, dx , dy) ||
66 isNormal(board , x, y, dx , dy))) {

int newsteps = steps;
68 if ((board[dx][dy] != EMPTY) && (steps <

maxsteps)) newsteps ++;

70 int min = QUEEN;
if ((type == PAWN) && ((dy == 0) || (dy == 7)))

min = BISHOP;
72 for (int k = min; k <= QUEEN; k++) {

int[] p = new int[] {x, y, dx , dy, k};
74 copy(board , save);

if (move(save , p)) {
76 int val = -search(save , newsteps -1,

maxsteps -1, -beta , -alpha);
if (val >= beta) return beta;

78 if (val > alpha) {
alpha = val;

80 bestply = p;
}

82 }
}

84 }
}

86 }
}

88 }

90 // Return resply
...

92 }

94 ...

96 }

Listing B.3: The Java Source Code of the Chess Game [Och08]

252

B.4. Face Recognition Application

B.4. Face Recognition Application

The face recognition application enables an end user to recognize faces on an image,
where the source code of the face recognition is from Jon’s Java Imaging Library (JJIL)
[Web08], containing various tasks for image processing.
The GUI loads or takes an image, displays it, and highlights, if any, faces recognized

by rectangles. The algorithm for face detection applies a Haar cascade to the image
based on multiple scales. The input parameters are the image together with a mini-
mum (finest) scale and a maximum (coarsest) scale (cf. Listing B.4). As output, the
algorithm for face detection returns an array of enclosing rectangles, locating the faces
detected in an image (cf. Listing B.4). Regarding the size of the input parameters,
the number of bytes of an image depends on its pixel resolution, whereas the minimum
scale and the maximum scale are an integer each. Regarding the size of the output, the
number of rectangles depends on the number of detected faces, where each rectangle
has 4 integers, namely x, y, w (width), and h (height).
For the evaluations in this dissertation, a mobile device recognizes faces either in a

color image with a width of 1258 pixel and a height of 1024 pixel or in a color image
with a width of 960 pixel and a height of 1280 pixel.
Summarizing, the algorithm for face detection from the face recognition application

is only a good candidate for a computation offloading in case of a good quality of the
network up-link. It possesses a huge size of input and a small size of output with a
high computational complexity.
The following listing shows the relevant code for the face recognition application:

package jjil.algorithm;
2

/*
4 * Gray8DetectHaarMultiScale.java

*
6 * Created on August 19, 2007, 7:33 PM

*
8 * Copyright 2007 by Jon A. Webb

*
10 * ...

*/
12

import ...
14

public class Gray8DetectHaarMultiScale extends PipelineStage {
16 private HaarClassifierCascade hcc;

18 // maximum scale is the largest factor the image is divided by
private int nMaxScale = 10;

20

// minimum scale is the smallest factor the image is divided by
22 private int nMinScale = 5;

253

B. Mobile Applications

24 // scale change is the change in scale from one search to the next
times 256
private int nScaleChange = 12 * 256 / 10;

26

public Gray8DetectHaarMultiScale(InputStream is, int nMinScale ,
int nMaxScale) throws jjil.core.Error , IOException { ... }

28

// Apply multi -scale Haar cascade and prepare a mask image showing
where features were detected.

30 public void push(Image image) throws jjil.core.Error {
// Check image

32 ...

34 int nScale = Math.min(this.nMaxScale , Math.min(image.getWidth ()
/ this.hcc.getWidth (), image.getHeight () / this.hcc.getHeight ()));

Gray8Image imMask = new Gray8Image (1,1,Byte.MIN_VALUE);
36 while (nScale >= this.nMinScale) {

// shrink the input image
38 int nTargetWidth = imGray.getWidth () / nScale;

int nTargetHeight = imGray.getHeight () / nScale;
40 Gray8Shrink gs = new Gray8Shrink(nTargetWidth ,

nTargetHeight);
gs.push(imGray);

42 Gray8Image imShrunk = (Gray8Image) gs.getFront ();
// scale the mask to the new size

44 Gray8RectStretch grs = new Gray8RectStretch(nTargetWidth ,
nTargetHeight);

grs.push(imMask);
46 imMask = (Gray8Image) grs.getFront ();

// combine the image and mask to make a masked image
48 Gray8MaskedImage gmi = new Gray8MaskedImage(imShrunk ,

imMask);
// pass the masked image to a subimage generator

50 MaskedGray8SubImgGen mgsi = new MaskedGray8SubImgGen(...);
mgsi.push(gmi);

52 // now run Haar detection on each scaled image
int nxLastFound = -hcc.getWidth ();

54 int nyLastFound = -hcc.getHeight ();
while (!mgsi.isEmpty ()) {

56 Gray8OffsetImage imSub = (Gray8OffsetImage)
mgsi.getFront ();

// if we’ve found a feature recently we skip forward
until we’re outside the masked region. There ’s no point rerunning
the detector

58 if (imSub.getXOffset () > nxLastFound + hcc.getWidth () &&
imSub.getYOffset () > nyLastFound + hcc.getHeight ()) {

60 if (hcc.eval(imSub)) {
// Found something.

62 nxLastFound = imSub.getXOffset ();
nyLastFound = imSub.getYOffset ();

64 // assign Byte.MAX_VALUE to the feature area so we
don’t search it again

Gray8Rect gr = new Gray8Rect(...);
66 gr.push(imMask);

imMask = (Gray8Image) gr.getFront ();
68 }

}
70 }

nScale = nScale * 256 / this.nScaleChange;
72 }

// Stretch imMask to original image size; this is the result

254

B.5. Text-to-Voice Application

74 Gray8RectStretch grs = new Gray8RectStretch(image.getWidth (),
image.getHeight ());

grs.push(imMask);
76 super.setOutput(grs.getFront ());

}
78

...
80 }

82 ...

84 }

Listing B.4: The Java Source Code of the Face Recognition Application [Web08]

B.5. Text-to-Voice Application

The text-to-voice application enables an end user to synthesize a written sentence to
spoken speech, where the source code of the text-to-voice application is from FreeTTS
[Lab09]. It is an open-source implementation of a speech synthesis engine, totally
written in the Java programming language.
The GUI has a field to enter a sentence and a button to start the speech synthesis.

The input parameters of the algorithm for text-to-speech are the written sentence and
the name of the utilized voice, both as a String (cf. Listing B.5). As output, the
algorithm for text-to-speech returns an audio file of the sentence spoken by the voice
(cf. Listing B.5). Regarding the size of the input parameters, the number of bytes of a
written sentence as well as the name of the voice depends on the number of characters.
Regarding the size of the output, the number of bytes of an audio file depends on both
the length of a sentence and the chosen voice.
For the evaluations in this dissertation, a mobile device transforms words from dif-

ferent text passages to voice, where the text passages correspond to the abstracts from
[KAH+12] (ThinkAir), [CBC+10] (MAUI), and an own sentence (OWN). In detail,
the relevant words from ThinkAir are
“Smartphones have exploded in popularity in recent years, becoming ever

more sophisticated and capable. As a result, developers worldwide are build-
ing increasingly complex applications that require ever increasing amounts
of computational power and energy. In . . . ” [KAH+12]
from MAUI
“This paper presents MAUI, a system that enables fine-grained energy-

aware offload of mobile code to the infrastructure. Previous approaches to
these problems either relied heavily on programmer support to partition an
application, or . . . ” [CBC+10].

255

B. Mobile Applications

and from OWN
“This is a very long sentence where FreeTTS has to transform written

text into spoken voice! ”.
Summarizing, the algorithm for text-to-voice from the text-to-voice application is

only a good candidate for a computation offloading in case of a good quality of the
network down-link. It possesses a small size of input and a big size of output with a
high computation complexity.

The following listing shows the relevant code for the text-to-voice application:
/**

2 * Copyright 2003 Sun Microsystems , Inc.
*

4 * ...
*/

6

import ...
8

public class FreeTTSHelloWorld {
10

public static void main(String [] args) {
12 ...

// The VoiceManager manages all the voices for FreeTTS.
14 VoiceManager voiceManager = VoiceManager.getInstance ();

Voice helloVoice = voiceManager.getVoice(voiceName);
16

// Allocates the resources for the voice.
18 helloVoice.allocate ();

20 // Synthesize speech.
helloVoice.speak("Thank you for giving me a voice. "

22 + "I’m so glad to say hello to this world.");

24 // Clean up and leave.
helloVoice.deallocate ();

26 System.exit (0);
}

28

...
30

}

Listing B.5: The Java Source Code from of the Text-to-Voice Application [Lab09]

256

C. System Devices

The landscape of today’s Mobile Cloud Computing includes plenty of different resources
like smart phones, tablets, laptops, workstations, or server instances at the fog or the
cloud. To this end, this chapter highlights capabilities of the system devices utilized in
this dissertation for code offloading. Due to differences in the performance characteris-
tics of the system devices (cf. Table C.1), each system device benefits differently from
code offloading. In detail, this dissertation utilizes as an offloading client a smart phone
– namely a Samsung Galaxy Nexus (cf. Subsection C.1) – a netbook – namely a Dell
Inspiron Mini 10v (cf. Subsection C.2) – and a laptop – namely a Lenovo ThinkPad
T61 (cf. Subsection C.3). Moreover, this dissertation utilizes as an offloading service
a workstation – namely an HP Compaq 8200 Elite (cf. Subsection C.4) – and a server
instance at the AWS EC2 – namely a t2.micro instance (cf. Subsection C.5). As the
system devices connect via further devices like a Wi-Fi AP to other system devices and
the Internet, this dissertation utilizes as network devices a Huawei E1750 Surf Stick
(cf. Subsection C.6), a Linksys WRT54GL Wireless Router (cf. Subsection C.7), and
a LevelOne GSW-0809 Gigabit Ethernet Switch (cf. Subsection C.8).

C.1. Samsung Galaxy Nexus

The Samsung Galaxy Nexus (GT-i9250) is a smart phone from the Google Nexus series,
running the Android OS as mobile operating system (cf. Subsection 4.6.3). Released
in the year 2011, it possesses the OMAP1 4460 System-on-a-Chip (SoC) from Texas
Instruments [Ins12]. The OMAP 4460 SoC has a dual-core CPU of ARM Cortex-A9,
where each 32-bit core runs at 1.2 - 1.5GHz. Beside the OMAP 4460 SoC, it has a
memory of 1GB and a storage of 16GB. It communicates via Near Field Commu-
nication (NFC), Bluetooth 3.0 (cf. Subsection 2.2.3), Wi-Fi IEEE 802.11 a,b,g,n (cf.
Subsection 2.2.1), or a 3.5 Generation cellular network (cf. Subsection 2.2.2). Last, a
battery of 1750mAh powers the Samsung Galaxy Nexus. [Sam11]

1Open Multimedia Application Platform (OMAP)

257

C. System Devices

System Device Central Processing
Unit (CPU)

Communication
Network

Software Stack

Samsung Galaxy
Nexus

Dual-core CPU
running at 1.2GHz

Bluetooth 3.0 +
IEEE 802.11 a,b,g,
n + 3.5 Generation

Android OS, 32-bit

Dell Inspiron
Mini 10v

Single-core CPU
running at 1.6GHz

Bluetooth 2.1 +
IEEE 802.11 b,g +
3.5 Generation

Linux + OpenJDK,
32-bit

Lenovo
ThinkPad T61

Dual-core CPU
running at 2.4GHz

IEEE 802.11
a,b,g,n + 3.5
Generation

Linux + OpenJDK,
64-bit

HP Compaq
8200 Elite

Quad-core CPU
running at 3.4GHz

up to 1Gbit/s Linux + OpenJDK,
64-bit

AWS EC2
t2.micro

single-core CPU
running at 2.4GHz

at least 10Mbit/s Linux + OpenJDK,
64-bit

Table C.1.: Overview of the capabilities from the system devices utilized for perfor-
mance measurements of code offloading.

C.2. Dell Inspiron Mini 10v

The Dell Inspiron Mini 10v (1011) is a netbook from Dell Technologies, running a
minimal Linux 32-bit version based on Debian Wheezy as operating system. Released
in the year 2009, the Dell Inspiron Mini 10v (1011) possesses an Intel Atom N270

processor, where the single-core 32-bit CPU runs at 1.6GHz. It has a memory of
1GB and communicates via 100Mbit Ethernet, Bluetooth 2.1 (cf. Subsection 2.2.3),
and Wi-Fi IEEE 802.11 b,g (cf. Subsection 2.2.1). [Inc09] As the Dell Inspiron Mini
10v (1011) has no built-in connectivity for a cellular network, it utilizes the Huawei
E1750 surf stick connected via Universal Serial Bus (cf. Subsection C.6), providing
connectivity for a 3.5 Generation cellular network.

C.3. Lenovo ThinkPad T61

The Lenovo ThinkPad T61 is a laptop from Lenovo, running a minimal Linux 64-bit
version based on Debian Wheezy as operating system. Released in the year 2007, the
Lenovo ThinkPad T61 possesses an Intel Core 2 Duo T7300 processor, where the dual-
core 64-bit CPU runs at 2.0GHz. It has a memory of 2GB and communicates via
1Gbit Ethernet, Bluetooth 2.1 (cf. Subsection 2.2.3), and Wi-Fi IEEE 802.11 a,b,g

258

C.4. HP Compaq 8200 Elite

(cf. Subsection 2.2.1). [Len07] Like the Dell Inspiron Mini 10v (1011), the Lenovo
ThinkPad T61 has no built-in connectivity for a cellular network, why it also utilizes
the Huawei E1750 surf stick connected via Universal Serial Bus (cf. Subsection C.6),
providing connectivity for a 3.5 Generation cellular network.

C.4. HP Compaq 8200 Elite

The HP Compaq 8200 Elite Microtower PC is a desktop computer from Hewlett
Packard, running a minimal Linux 64-bit version based on Debian Wheezy as op-
erating system. Released in the year 2011, the HP Compaq 8200 Elite Microtower
PC possesses an Intel Core i7-2600 processor, where the quad-core 64-bit CPU runs at
3.4GHz. It has a memory of 8GB and communicates via 1Gbit Ethernet. [Pac11]

C.5. AWS EC2 t2.micro

The Amazon Elastic Compute Cloud (EC2) is the web service for cloud computing from
Amazon (cf. Section 2.3), where an end user obtains resizable capacity of computing
resources at the cloud. Due to resizing the capacity, the computing resources quickly
scale up and down depending on changes in the user (computing) demands. Moreover,
an end user only pays for the capacity that he or she actually used (pay-as-you-go
manner). The Amazon EC2 provides different types of instances (cf. T2, M4, or C4

[Ama14]) fitting multiple use cases. This dissertation uses a t2.micro instance that
possesses one virtual CPU (vCPU) running at 2.4GHz and a memory of 1GB. As
operating system, it runs an adapted Linux 64-bit version from Amazon. [Ama14]

C.6. Huawei E1750 Surf Stick

The Huawei E1750 surf stick works in the mobile communication networks of GSM and
UMTS, supporting the frequency bands for GSM of 850/900/1800/1900MHz and for
UMTS of 2100MHz. Due to the utilization of the Qualcomm MSM7200 SoC [Qua06],
the surf stick provides for GSM the improvements of GPRS (2.5 Generation) and EDGE
(2.75 Generation) and for UMTS the improvement of HSPA (3.5 Generation). Thus,
it downloads data with a peak data rate of 7.2Mbit/s and uploads data with a peak
data rate of 5.76Mbit/s. [Hua17]

259

C. System Devices

C.7. Linksys WRT54GL Wireless Router

The Linksys WRT54GL wireless router provides a Wi-Fi AP, supporting IEEE 802.11

g,b and thus, a peak data rate of 54Mbit/s. Beside the Wi-Fi network, the wireless
router possesses a 10/100Mbit/s WAN port and four 10/100Mbit/s switched Local
Area Network (LAN) ports based on Fast Ethernet standard IEEE 802.3u. [Lin02]

C.8. LevelOne GSW-0809 Gigabit Ethernet Switch

The LevelOne GSW-0809 Gigabit Ethernet Switch provides reliable high-performance
networking with auto-learning and auto-aging of MAC addresses, where it has 8 Gigabit
Ethernet ports with a wire data rate of 10/100/1000Mbit/s. Moreover, it also supports
techniques like IEEE 802.3x flow control or IEEE 802.3az energy efficiency. [Lev17]

260

Bibliography

[AFG+10] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. A View of Cloud Computing.
Communications of the ACM, 53(4):50–58, April 2010.

[AFGM+15] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed
Aledhari, and Moussa Ayyash. Internet of Things: A Survey on En-
abling Technologies, Protocols, and Applications. IEEE Communica-
tions Surveys Tutorials, 17(4):2347–2376, Fourthquarter 2015.

[Akh09] Shakil Akhtar. Evolution of Technologies, Standards, and Deployment
of 2G-5G Networks. In Margherita Pagani, editor, Encyclopedia of Mul-
timedia Technology and Networking, Second Edition, chapter 70, pages
522–532. Information Science Reference, 2009.

[Ama06] Amazon. Announcing Amazon Elastic Compute Cloud (Amazon
EC2) - beta. https://aws.amazon.com/de/about-aws/whats-

new/2006/08/24/announcing-amazon-elastic-compute-cloud-

amazon-ec2---beta/, 2006. Accessed: 2017-10-01.

[Ama14] Amazon. Amazon Web Services Elastic Compute Cloud. https://aws.
amazon.com/ec2/?nc1=h_ls, 2014. Accessed: 2017-10-01.

[And16a] Android. Android Software Stack. https://source.android.com/

devices/images/ape_fwk_all.png, 2016. Accessed: 2017-10-01.

[And16b] Android. Android Software Stack. https://source.android.com/

security/images/android_software_stack.png, 2016. Accessed:
2017-10-01.

[BDR14a] Florian Berg, Frank Dürr, and Kurt Rothermel. Increasing the Effi-
ciency and Responsiveness of Mobile Applications with Preemptable

261

https://aws.amazon.com/de/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/de/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/de/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/ec2/?nc1=h_ls
https://aws.amazon.com/ec2/?nc1=h_ls
https://source.android.com/devices/images/ape_fwk_all.png
https://source.android.com/devices/images/ape_fwk_all.png
https://source.android.com/security/images/android_software_stack.png
https://source.android.com/security/images/android_software_stack.png

Bibliography

Code Offloading. In Proc. 3rd Intl. Conf. Mobile Services, MS’14, pages
76–83, June 2014.

[BDR14b] Florian Berg, Frank Dürr, and Kurt Rothermel. Optimal Predictive
Code Offloading. In Proc. 11th Intl. Conf. Mobile and Ubiquitous Sys-
tems: Computing, Networking and Services, Mobiquitous’14, pages 1–
10, December 2014.

[BDR15] Florian Berg, Frank Dürr, and Kurt Rothermel. Increasing the Effi-
ciency of Code Offloading through Remote-side Caching. In Proc. IEEE
11th Intl. Conf. Wireless and Mobile Computing, Networking and Com-
munications, WiMob’15, pages 573–580, October 2015.

[BDR16] Florian Berg, Frank Dürr, and Kurt Rothermel. Increasing the Effi-
ciency of Code Offloading in n-tier Environments with Code Bubbling.
In Proc. 13th Intl. Conf. Mobile and Ubiquitous Systems: Comput-
ing, Networking and Service, Mobiquitous’16, pages 170–179, November
2016.

[BDR18] Florian Berg, Frank Dürr, and Kurt Rothermel. Increasing the Effi-
ciency of Code Offloading in n-tier Environments with Code Bubbling.
Mobile Networks and Applications, pages 1–12, February 2018.

[BGPCV12] Mark L. Badger, Timothy Grance, Robert Patt-Corner, and Jeffrey M.
Voas. Cloud Computing Synopsis and Recommendations. Technical
Report Special Publication (NIST SP) - 800-146, The National Institute
of Standards and Technology (NIST), Gaithersburg, Maryland, USA,
May 2012.

[BLMN13] Joseph Bradley, Jeff Loucks, James Macaulay, and Andy Noronha.
White Paper: Internet of Everything (IoE) Value Index - How Much
Value Are Private-Sector Firms Capturing from IoE in 2013? Technical
report, Cisco Systems, San Jose, California, USA, June 2013.

[BMZA12] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
Computing and Its Role in the Internet of Things. In Proc. 1st MCC
Workshop on Mobile Cloud Computing, MCC’12, pages 13–16, August
2012.

[CBC+10] Eduardo Cuervo, Aruna Balasubramanian, Dae Cho, Alec Wolman,
Stefan Saroiu, Ranveer Chandra, and Paramvir Bahl. MAUI: Making

262

Bibliography

Smartphones Last Longer with Code Offload. In Proc. 8th Intl. Conf.
Mobile Systems, Applications, and Services, MobiSys’10, pages 49–62,
March 2010.

[Cen12] Intel IT Center. Vision Paper: Distributed Data Mining and Big
Data - Intel’s Perspective on Data at the Edge. Technical Report
0812/RF/ME/PDF-USA 327826-001, Intel Corporation, Santa Clara,
California, USA, August 2012.

[CH10] Aaron Carroll and Gernot Heiser. An Analysis of Power Consumption
in a Smartphone. In Proceedings of the 2010 USENIX Conference on
USENIX Annual Technical Conference, USENIX ATC’10, pages 21–21,
June 2010.

[Chi63] Francis P. Chisholm. The Chisholm Effect. Motive Magazine, 1963.

[CIM+11] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and
Ashwin Patti. CloneCloud: Elastic Execution between Mobile Device
and Cloud. In Proc. 6th Conf. Computer Systems, EuroSys’11, pages
301–314, March 2011.

[CLWG15] Zixue Cheng, Peng Li, Junbo Wang, and Song Guo. Just-in-Time Code
Offloading for Wearable Computing. Emerging Topics in Computing,
IEEE Transactions on, 3(1):74–83, March 2015.

[Com81] Federal Communications Commission. Cellular Service. https://www.
fcc.gov/general/cellular-service, 1981. Accessed: 2017-10-01.

[CSRL09] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E.
Leiserson. Introduction to Algorithms. MIT Press, 3rd edition, 2009.

[CZ16] Mung Chiang and Tao Zhang. Fog and IoT: An Overview of Research
Opportunities. IEEE Internet of Things Journal, 3(6):854–864, Decem-
ber 2016.

[DA97] Ian Doig and Niels Peter Skov Andersen. Universal Mobile Telecom-
munications System (UMTS); Requirements for the UMTS Terrestrial
Radio Access system (UTRA). Technical Report UMTS 21.01 ver-
sion 3.0.1, European Telecommunications Standards Institute (ETSI),
Sophia Antipolis Cedex, France, November 1997.

263

https://www.fcc.gov/general/cellular-service
https://www.fcc.gov/general/cellular-service

Bibliography

[DWC+13] Ning Ding, Daniel Wagner, Xiaomeng Chen, Abhinav Pathak, Y. Char-
lie Hu, and Andrew Rice. Characterizing and Modeling the Impact
of Wireless Signal Strength on Smartphone Battery Drain. In Proc.
ACM SIGMETRICS/Intl. Conf. Measurement and Modeling of Com-
puter Systems, SIGMETRICS’13, pages 29–40, June 2013.

[Ehr79] Nathan Ehrlich. The Advanced Mobile Phone Service. IEEE Commu-
nications Magazine, 17(2):9–16, March 1979.

[Ele17] Meilhaus Electronic. ME-Jekyll ME-4610 PCI 16-bit Analog Data
Acquisition Board. http://www.meilhaus.de/en/me-4610+pci.htm,
2017. Accessed: 2017-10-01.

[fG00] Jeanette Wannstrom (for 3GPP). HSPA. http://www.3gpp.org/

technologies/keywords-acronyms/99-hspa, 2000. Accessed: 2017-
10-01.

[FG10] Stephen Fagan and Ramazan Gençay. An Introduction to Textual
Econometrics, pages 133–153. Chapman and Hall/CRC, 2010.

[FRTH12] Marvin Ferber, Thomas Rauber, Mario Henrique Cruz Torres, and Tom
Holvoet. Resource Allocation for Cloud-Assisted Mobile Applications.
In Proc. IEEE 5th Intl. Conf. Cloud Computing, CLOUD’12, pages
400–407, June 2012.

[FSS02] Jason Flinn, Park SoYoung, and Mahadev Satyanarayanan. Balancing
Performance, Energy, and Quality in Pervasive Computing. In Proc.
22nd Intl. Conf. Distributed Computing Systems, ICDCS’02, pages 217–
226, July 2002.

[GB09] Savvas Gitzenis and Nicholas Bambos. Joint Task Migration and Power
Management in Wireless Computing. IEEE Transactions on Mobile
Computing, 8(9):1189–1204, September 2009.

[GJM+12] Mark S. Gordon, D. Anoushe Jamshidi, Scott Mahlke, Z. Morley Mao,
and Xu Chen. COMET: Code Offload by Migrating Execution Trans-
parently. In Proc. 10th USENIX Conf. Operating Systems Design and
Implementation, OSDI’12, pages 93–106, October 2012.

[Goo15] Google. September Press Event 2015. https://www.youtube.com/

watch?v=Jc-LEG0T_4c, 2015. Accessed: 2017-10-01.

264

http://www.meilhaus.de/en/me-4610+pci.htm
http://www.3gpp.org/technologies/keywords-acronyms/99-hspa
http://www.3gpp.org/technologies/keywords-acronyms/99-hspa
https://www.youtube.com/watch?v=Jc-LEG0T_4c
https://www.youtube.com/watch?v=Jc-LEG0T_4c

Bibliography

[GRA12] Ioana Giurgiu, Oriana Riva, and Gustavo Alonso. Dynamic Software
Deployment from Clouds to Mobile Devices. In Proc. 13th Intl. Mid-
dleware Conference, Middleware’12, pages 394–414, December 2012.

[Hau10] Doug Hauger. Windows Azure General Availability. https://blogs.

technet.microsoft.com/microsoft_blog/2010/02/01/windows-

azure-general-availability/, 2010. Accessed: 2017-10-01.

[HSZ08] Christian Henke, Carsten Schmoll, and Tanja Zseby. Empirical Eval-
uation of Hash Functions for Multipoint Measurements. SIGCOMM
Comput. Commun. Rev., 38(3):39–50, July 2008.

[Hua17] Huawei. Huawei E1750 Surf Stick. http://www.surfsticks.de/

modelle/huawei/e1750.html, 2017. Accessed: 2017-10-01.

[Inc09] Dell Technologies Inc. Dell Inspiron Mini 10v. http://www.dell.

com/content/products/productdetails.aspx/laptop-inspiron-

10?c=us&l=en&s=corp&, 2009. Accessed: 2017-10-01.

[Inf07a] Apple Press Info. Apple Reinvents the Phone with iPhone.
http://www.apple.com/pr/library/2007/01/09Apple-Reinvents-

the-Phone-with-iPhone.html, 2007. Accessed: 2017-10-01.

[Inf07b] Apple Press Info. iPhone Delivers Up to Eight Hours of
Talk Time. http://www.apple.com/pr/library/2007/06/18iPhone-
Delivers-Up-to-Eight-Hours-of-Talk-Time.html, 2007. Accessed:
2017-10-01.

[Inf07c] Apple Press Info. T-Mobile and Apple Announce Rate Plans
for iPhone in Germany, Starting at Just 49 Euro per Month.
http://www.apple.com/pr/library/2007/10/29T-Mobile-and-

Apple-Announce-Rate-Plans-for-iPhone-in-Germany-Starting-

at-Just-49-per-Month.html, 2007. Accessed: 2017-10-01.

[Ins12] Texas Instruments. OMAP4460. http://www.ti.com/lit/ml/

swpt034b/swpt034b.pdf, 2012. Accessed: 2017-10-01.

[ITU97] ITU. International Mobile Telecommunications-2000 (IMT-2000). Tech-
nical Report M.687-2 (02/97), International Telecommunication Union
(ITU), Geneva, Switzerland, February 1997.

265

https://blogs.technet.microsoft.com/microsoft_blog/2010/02/01/windows-azure-general-availability/
https://blogs.technet.microsoft.com/microsoft_blog/2010/02/01/windows-azure-general-availability/
https://blogs.technet.microsoft.com/microsoft_blog/2010/02/01/windows-azure-general-availability/
http://www.surfsticks.de/modelle/huawei/e1750.html
http://www.surfsticks.de/modelle/huawei/e1750.html
http://www.dell.com/content/products/productdetails.aspx/laptop-inspiron-10?c=us&l=en&s=corp&
http://www.dell.com/content/products/productdetails.aspx/laptop-inspiron-10?c=us&l=en&s=corp&
http://www.dell.com/content/products/productdetails.aspx/laptop-inspiron-10?c=us&l=en&s=corp&
http://www.apple.com/pr/library/2007/01/09Apple-Reinvents-the-Phone-with-iPhone.html
http://www.apple.com/pr/library/2007/01/09Apple-Reinvents-the-Phone-with-iPhone.html
http://www.apple.com/pr/library/2007/06/18iPhone-Delivers-Up-to-Eight-Hours-of-Talk-Time.html
http://www.apple.com/pr/library/2007/06/18iPhone-Delivers-Up-to-Eight-Hours-of-Talk-Time.html
http://www.apple.com/pr/library/2007/10/29T-Mobile-and-Apple-Announce-Rate-Plans-for-iPhone-in-Germany-Starting-at-Just-49-per-Month.html
http://www.apple.com/pr/library/2007/10/29T-Mobile-and-Apple-Announce-Rate-Plans-for-iPhone-in-Germany-Starting-at-Just-49-per-Month.html
http://www.apple.com/pr/library/2007/10/29T-Mobile-and-Apple-Announce-Rate-Plans-for-iPhone-in-Germany-Starting-at-Just-49-per-Month.html
http://www.ti.com/lit/ml/swpt034b/swpt034b.pdf
http://www.ti.com/lit/ml/swpt034b/swpt034b.pdf

Bibliography

[JBD+14] Dave Jewell, Ricardo Dobelin Barros, Stefan Diederichs, Lydia M. Dui-
jvestijn, Michael Hammersley, Arindam Hazra, Corneliu Holban, Yan
Li, Osai Osaigbovo, Andreas Plach, Ivan Portilla, Mukerji Saptarshi,
Harinder P. Seera, Elisabeth Stahl, and Clea Zolotow. Performance
and Capacity Implications for Big Data. Technical Report REDP-5070-
00, International Business Machines Corporation, Armonk, New York,
USA, January 2014.

[JHLX14] Yong Jiang, Juhua He, Qing Li, and Xi Xiao. A Dynamic Execution Of-
floading Model for Efficient Mobile Cloud Computing. In Global Com-
munications Conference, 2014 IEEE, Globecom’14, pages 2302–2307,
December 2014.

[JS94] Theodore Johnson and Dennis Shasha. 2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm. In Proc.
20th Intl. Conf. on Very Large Data Bases, VLDB ’94, pages 439–450,
September 1994.

[KAH+12] S. Kosta, A. Aucinas, Pan Hui, R. Mortier, and Xinwen Zhang.
ThinkAir: Dynamic Resource Allocation and Parallel Execution in the
Cloud for Mobile Code Offloading. In Proc. IEEE INFOCOM, INFO-
COM’12, pages 945–953, March 2012.

[KI96] Vasilis Koudounas and Omar Iqbal. Mobile Computing: Past, Present,
and Future, Volume 4 1996.

[KM15] Siddhartha Kumar Khaitan and James D. McCalley. Design Techniques
and Applications of Cyberphysical Systems: A Survey. IEEE Systems
Journal, 9(2):350–365, June 2015.

[Kri10] Mads Darø Kristensen. Scavenger: Transparent Development of Effi-
cient Cyber Foraging Applications. In Proc. IEEE Intl. Conf. Pervasive
Computing and Communications, PerCom’10, pages 217–226, March
2010.

[KS11] Evgenii Krouk and Sergei Semenov, editors. Modulation and Coding
Techniques in Wireless Communications. Wiley, 1st edition, January
2011.

[KSK14] Pratik Kanani, Kamal Shah, and Vikas Kaul. A Survey on Evolution
of Mobile Networks: 1G to 4G. International Journal of Engineering

266

Bibliography

Sciences & Research Technology (IJESRT) (Vol.3, No. 2), 3(2):803–810,
February 2014.

[KT12] Young-Woo Kwon and Eli Tilevich. Energy-Efficient and Fault-Tolerant
Distributed Mobile Execution. In Proc. IEEE 32nd Intl. Conf. Dis-
tributed Computing Systems, ICDCS’12, pages 586–595, June 2012.

[Lab09] Sun Microsystems Laboratories. FreeTTS. http://freetts.

sourceforge.net/docs/index.php, 2009. Accessed: 2017-10-01.

[LBLX13] Jiwei Li, Kai Bu, Xuan Liu, and Bin Xiao. ENDA: Embracing Net-
work Inconsistency for Dynamic Application Offloading in Mobile Cloud
Computing. In Proc. 2nd ACM SIGCOMM Workshop on Mobile Cloud
Computing, MCC’13, pages 39–44, 2013.

[Len07] Lenovo. Lenovo ThinkPad T61. https://support.lenovo.com/us/

en/documents/pd008989, 2007. Accessed: 2017-10-01.

[Lev17] LevelOne. LevelOne GSW-0809 Gigabit Ethernet Switch. http://uk.
level1.com/Switch/GSW-0809/p-3748.htm, 2017. Accessed: 2017-10-
01.

[Lin02] Linksys. Linksys WRT54GL Wireless-G Wireless Router. http://www.
linksys.com/us/p/P-WRT54GL/, 2002. Accessed: 2017-10-01.

[LYBB15] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The
Java Virtual Machine Specification - Java SE 8 Edition. https://

docs.oracle.com/javase/specs/jvms/se8/html/index.html, 2015.
Accessed: 2017-10-01.

[Mac16] Jikes Research Virtual Machine. Publications. http://www.jikesrvm.
org/Resources/Publications/, 2016. Accessed: 2017-10-01.

[MF10] Andrea Matsunaga and Jose Fortes. On the Use of Machine Learning
to Predict the Time and Resources Consumed by Applications. In Proc.
10th Intl. Conf. Cluster, Cloud and Grid Computing, CCGrid’10, pages
495–504, May 2010.

[Mic68] Donald Michie. Memo Functions and Machine Learning. Nature,
218(5136):19–22, April 1968.

267

http://freetts.sourceforge.net/docs/index.php
http://freetts.sourceforge.net/docs/index.php
https://support.lenovo.com/us/en/documents/pd008989
https://support.lenovo.com/us/en/documents/pd008989
http://uk.level1.com/Switch/GSW-0809/p-3748.htm
http://uk.level1.com/Switch/GSW-0809/p-3748.htm
http://www.linksys.com/us/p/P-WRT54GL/
http://www.linksys.com/us/p/P-WRT54GL/
https://docs.oracle.com/javase/specs/jvms/se8/html/index.html
https://docs.oracle.com/javase/specs/jvms/se8/html/index.html
http://www.jikesrvm.org/Resources/Publications/
http://www.jikesrvm.org/Resources/Publications/

Bibliography

[NK16] Takehiro Nakamura and Joern Krause. Requirements for further ad-
vancements for Evolved Universal Terrestrial Radio Access (E-UTRA)
(LTE-Advanced). Technical Report 3GPP TR 36.913 version 13.0.0
Release 13, European Telecommunications Standards Institute (ETSI),
Sophia Antipolis Cedex, France, January 2016.

[NN08] Anthony J. Nicholson and Brian D. Noble. BreadCrumbs: Forecasting
Mobile Connectivity. In Proc. 14th ACM Intl. Conf. on Mobile Com-
puting and Networking, MobiCom’08, pages 46–57, September 2008.

[Och08] Ulf Ochsenfahrt. aichess4k. http://ulf.ofahrt.de/aichess4k/,
2008. Accessed: 2017-10-01.

[Pac11] Hewlett Packard. HP Compaq 8200 Elite. https://support.hp.com/
us-en/document/c02779501, 2011. Accessed: 2017-10-01.

[Pla16] Google Cloud Platform. Memcache Overview. https://cloud.google.
com/appengine/docs/java/memcache, 2016. Accessed: 2017-10-01.

[Pow98] David M. W. Powers. Applications and Explanations of Zipf’s Law. In
Proc. Joint Conf. on New Methods in Language Processing and Compu-
tational Natural Language Learning, NeMLaP3/CoNLL’98, pages 151–
160, January 1998.

[PPS+12] Justin Mazzola Paluska, Hubert Pham, Gregor Schiele, Christian
Becker, and Steve Ward. Vision: A Lightweight Computing Model
for Fine-grained Cloud Computing. In Proceedings of the Third ACM
Workshop on Mobile Cloud Computing and Services, MCS’12, pages
3–8, June 2012.

[PSMM04] Vasco Pereira, Tiago Sousa, Paulo Mendes, and Edmundo Monteiro.
Evaluation of Mobile Communications: From Voice Calls to Ubiquitous
Multimedia Group Communications. In Proc. 2nd Intl. Working Conf.
on Performance Modeling and Evaluation of Heterogeneous Networks,
HET-NETs’04, pages 4–10, July 2004.

[Qua06] Qualcomm. Qualcomm Paves the Way for Next-Generation Services on
HSUPA. https://www.qualcomm.com/news/releases/2006/05/04/

qualcomm-paves-way-next-generation-services-hsupa, 2006. Ac-
cessed: 2017-10-01.

268

http://ulf.ofahrt.de/aichess4k/
https://support.hp.com/us-en/document/c02779501
https://support.hp.com/us-en/document/c02779501
https://cloud.google.com/appengine/docs/java/memcache
https://cloud.google.com/appengine/docs/java/memcache
https://www.qualcomm.com/news/releases/2006/05/04/qualcomm-paves-way-next-generation-services-hsupa
https://www.qualcomm.com/news/releases/2006/05/04/qualcomm-paves-way-next-generation-services-hsupa

Bibliography

[RAR07] Jan S. Rellermeyer, Gustavo Alonso, and Timothy Roscoe. R-OSGi:
Distributed Applications Through Software Modularization. In Proc.
ACM/IFIP/USENIX Intl. Conf. on Middleware, Middleware’07, pages
1–20, November 2007.

[RLSS10] Ragunathan (Raj) Rajkumar, Insup Lee, Lui Sha, and John Stankovic.
Cyber-physical Systems: The Next Computing Revolution. In Proceed-
ings of the 47th Design Automation Conference, DAC’10, pages 731–
736, June 2010.

[Sam11] Samsung. Samsung Galaxy Nexus. http://www.samsung.com/us/

support/owners/product/GT-I9250TSGGEN, 2011. Accessed: 2017-10-
01.

[Sam16] Samsung. Samsung Exynos 8 Octa. http://www.samsung.com/

semiconductor/minisite/Exynos/w/solution/mod_ap/8890, 2016.
Accessed: 2017-10-01.

[Sam17] Samsung. Samsung Galaxy S8. http://www.samsung.com/global/

galaxy/galaxy-s8, 2017. Accessed: 2017-10-01.

[Sat96] Mahadev Satyanarayanan. Fundamental Challenges in Mobile Com-
puting. In Proceedings of the Fifteenth Annual ACM Symposium on
Principles of Distributed Computing, PODC’96, pages 1–7, May 1996.

[Sat10] Mahadev Satyanarayanan. Mobile Computing: The Next Decade. In
Proceedings of the 1st ACM Workshop on Mobile Cloud Computing &
Services: Social Networks and Beyond, MCS ’10, pages 5:1–5:6, June
2010.

[SBCD09] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Cáceres, and Nigel
Davies. The Case for VM-Based Cloudlets in Mobile Computing. Per-
vasive Computing, IEEE, 8(4):14–23, October 2009.

[Sek13] Krishna Sekar. Power and Thermal Challenges in Mobile Devices. In
Proc. 19th Intl. Conf. Mobile Computing and Networking, MobiCom’13,
pages 363–368, September 2013.

[SEV+16] Dominik Schäfer, Janick Edinger, Sebastian VanSyckel, Justin Mazzola
Paluska, and Christian Becker. Tasklets: Overcoming heterogeneity
in distributed computing systems. In Proceedings of the 2016 IEEE

269

http://www.samsung.com/us/support/owners/product/GT-I9250TSGGEN
http://www.samsung.com/us/support/owners/product/GT-I9250TSGGEN
http://www.samsung.com/semiconductor/minisite/Exynos/w/solution/mod_ap/8890
http://www.samsung.com/semiconductor/minisite/Exynos/w/solution/mod_ap/8890
http://www.samsung.com/global/galaxy/galaxy-s8
http://www.samsung.com/global/galaxy/galaxy-s8

Bibliography

36th International Conference on Distributed Computing Systems Work-
shops, ICDCSW’16, pages 156–161, June 2016.

[Sey03] Bernhard Seybold. Chesspresso. http://www.chesspresso.org/,
2003. Accessed: 2017-10-01.

[SGKB13] Muhammad Shiraz, Abdullah Gani, Rashid Hafeez Khokhar, and Ra-
jkumar Buyya. A Review on Distributed Application Processing Frame-
works in Smart Mobile Devices for Mobile Cloud Computing. IEEE
Communications Surveys Tutorials, 15(3):1294–1313, Third 2013.

[Sha50] Claude E. Shannon. XXII. Programming a Computer for Playing Chess.
The London, Edinburgh, and Dublin Philosophical Magazine and Jour-
nal of Science, 7(41:314):256–275, 1950.

[SHP+14] Cong Shi, Karim Habak, Pranesh Pandurangan, Mostafa Ammar,
Mayur Naik, and Ellen Zegura. COSMOS: Computation Offloading
As a Service for Mobile Devices. In Proc. 15th ACM Intl. Symposium
on Mobile Ad Hoc Networking and Computing, MobiHoc’14, pages 287–
296, August 2014.

[SIG12] ACM SIGPLAN. Programming Languages Software Award. http:

//www.sigplan.org/Awards/Software/, 2012. Accessed: 2017-10-01.

[SMT10] Patrick Stuedi, Iqbal Mohomed, and Doug Terry. WhereStore:
Location-based Data Storage for Mobile Devices Interacting with the
Cloud. In Proc. 1st ACM Workshop on Mobile Cloud Computing &
Services: Social Networks and Beyond, MCS’10, pages 1:1–1:8, June
2010.

[Soc05] IEEE Computer Society. IEEE Standard for Information Technology -
Telecommunications and Information Exchange between Systems - Lo-
cal and Metropolitan Area Networks - Specific Requirements. Part 15.1:
Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Wireless Personal Area Networks (WPANs). Technical
Report IEEE Std 802.15.1-2005, Institute of Electrical and Electronics
Engineers (IEEE), New York, NY, USA, March 2005.

[Soc12] IEEE Computer Society. IEEE Standard for Information Technology –
Telecommunications and Information Exchange between Systems Local

270

http://www.chesspresso.org/
http://www.sigplan.org/Awards/Software/
http://www.sigplan.org/Awards/Software/

Bibliography

and Metropolitan Area Networks – Specific requirements Part 11: Wire-
less LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. Technical Report IEEE Std 802.11-2012, Institute of
Electrical and Electronics Engineers (IEEE), New York, NY, USA,
March 2012.

[Ste94] William J. Stewart. Introduction to the Numerical Solution of Markov
Chains. Princeton University Press, 1st edition, 1994.

[Str13] Daniel W. Stroock. Mathematics of Probability. American Mathematical
Society, 1st edition, 2013.

[TAY10] Asoke K. Talukder, Hasan Ahmed, and Roopa R Yavagal. Mobile Com-
puting - Technology, Applications and Service Creation (Second Edi-
tion). Tata McGraw Hill Education Private Limited, 2nd edition, 2010.

[Tim97] The New York Times. Sun Sues Microsoft on Use of Java Sys-
tem. http://www.nytimes.com/1997/10/08/business/sun-sues-

microsoft-on-use-of-java-system.html, 1997. Accessed: 2017-10-
01.

[uRKOMK14] Atta ur Rehman Khan, Mazliza Othman, Sajjad Ahmad Madani, and
Samee Ullah Khan. A Survey of Mobile Cloud Computing Application
Models. IEEE Communications Surveys Tutorials, 16(1):393–413, First
Quarter 2014.

[Venry] Bill Venners. Inside the Java 2 Virtual Machine. McGraw-Hill Profes-
sional, 2nd edition, January January.

[VRM14] Luis M. Vaquero and Luis Rodero-Merino. Finding YourWay in the Fog:
Towards a Comprehensive Definition of Fog Computing. SIGCOMM
Comput. Commun. Rev., 44(5):27–32, October 2014.

[VSTD12] Tim Verbelen, Pieter Simoens, Filip De Turck, and Bart Dhoedt.
Cloudlets: Bringing the Cloud to the Mobile User. In Proc. 3rd ACM
Workshop on Mobile Cloud Computing and Services, MCS’12, pages
29–36, June 2012.

[Web08] Jon A. Webb. Jon’s Java Imaging Library (JJIL). https://code.

google.com/archive/p/jjil/, 2008. Accessed: 2017-10-01.

271

http://www.nytimes.com/1997/10/08/business/sun-sues-microsoft-on-use-of-java-system.html
http://www.nytimes.com/1997/10/08/business/sun-sues-microsoft-on-use-of-java-system.html
https://code.google.com/archive/p/jjil/
https://code.google.com/archive/p/jjil/

Bibliography

[Wei99] Mark Weiser. The Computer for the 21st Century. SIGMOBILE Mob.
Comput. Commun. Rev., 3(3):3–11, July 1999.

[WFHP16] Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal. Data
Mining: Practical Machine Learning Tools and Techniques. Morgan
Kaufmann, 4th edition, December 2016.

[YLL15] Shanhe Yi, Cheng Li, and Qun Li. A Survey of Fog Computing: Con-
cepts, Applications and Issues. In Proceedings of the 2015 Workshop on
Mobile Big Data, Mobidata’15, pages 37–42, June 2015.

[You79] W. Rae Young. Advanced Mobile Phone Service: Introduction, Back-
ground, and Objectives. The Bell System Technical Journal, 58(1):1–14,
January 1979.

[ZWG+13] Weiwen Zhang, Yonggang Wen, Kyle Guan, Dan Kilper, Haiyun Luo,
and Dapeng Oliver Wu. Energy-Optimal Mobile Cloud Computing
under Stochastic Wireless Channel. Wireless Communications, IEEE
Transactions on, 12(9):4569–4581, September 2013.

272

Erklärung

Ich erkläre hiermit, dass ich, abgesehen von den ausdrücklich bezeichneten Hilfsmitteln
und den Ratschlägen von jeweils namentlich aufgeführten Personen, die Dissertation
selbstständig verfasst habe.

(Ort, Datum) (Florian Andreas Berg)

273

	Abstract
	Deutsche Zusammenfassung
	Introduction
	Motivation
	Research Focus
	Contributions
	Structure of the Thesis

	Background
	Mobile Computing
	Environment
	Architecture
	Limitations

	Wireless Network
	Wireless Fidelity Network
	Cellular Network
	Bluetooth Network

	Cloud Computing
	Essential Characteristics
	Service Models
	Deployment Models

	Technological Trends
	Mobile Cloud Computing
	Overview
	Architectures
	Framework
	Challenges

	Summary

	System Overview
	System Model
	Problem Statement
	System Components
	Offloading Client
	Offloading Service
	Communication Network

	Failure Model
	System Requirements
	Summary

	Efficient Code Offloading with Annotations
	Basic Distribution
	System Overview
	Runtime-layer Offloading
	Overview
	Offloading Client
	Offloading Service
	Java Platform

	Offloading Timeline
	Offloading Framework
	Extended Java Compiler
	Offloading Client
	Offloading Service

	Implementation
	Jikes Research Virtual Machine
	Open Java Development Kit
	Android Open-Source Project
	Modifications
	Measurement Boards

	Evaluation
	Setup
	Results

	Summary

	Robust Code Offloading through Safe-point'ing
	Preemptable Distribution
	System Overview
	Offloading Timeline
	Offloading Framework
	Offloading Client
	Offloading Service

	Evaluation
	Setup
	Results

	Summary

	Deadline-aware Code Offloading with Predictive Safe-point'ing
	Predictive Distribution
	System Overview
	Optimal Schedule for Safe-point'ing
	Prediction of Link Connectivity
	Prediction of Remaining Runtime

	Evaluation
	Setup
	Results

	Summary

	Optimized Code Offloading through Cooperative Caching
	Caching-aware Distribution
	System Overview
	System Model
	Problem Statement
	System Components

	Offloading Timeline
	Offloading Framework
	Offloading Client
	Offloading Service
	Caching Service

	Evaluation
	Setup
	Results

	Summary

	Code Offloading in Environments with Multiple Tiers
	Bubbling Distribution
	System Overview
	Offloading Timeline
	Offloading Framework
	Application Programming Interface
	Offloading Client
	Offloading Service
	Tier Service

	Evaluation
	Setup
	Results
	Securing Overhead

	Summary

	Related Work
	Efficient Code Offloading with Annotations
	Robust Code Offloading through Safe-point'ing
	Deadline-aware Code Offloading with Predictive Safe-point'ing
	Optimized Code Offloading through Cooperative Caching
	Code Offloading in Environments with Multiple Tiers
	Summary

	Conclusion
	Summary
	Outlook

	Appendix
	Java Bytecode Instructions
	Mobile Applications
	``Hello, World!'' Application
	Chesspresso Application
	Chess Game
	Face Recognition Application
	Text-to-Voice Application

	System Devices
	Samsung Galaxy Nexus
	Dell Inspiron Mini 10v
	Lenovo ThinkPad T61
	HP Compaq 8200 Elite
	AWS EC2 t2.micro
	Huawei E1750 Surf Stick
	Linksys WRT54GL Wireless Router
	LevelOne GSW-0809 Gigabit Ethernet Switch

	Bibliography

