
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master’s Thesis

Cloud-native Applications:
Authoring and Evaluation of Two

Deployment Patterns

Mirna Alaisami

Course of Study: Computer Science - STE

Examiner: Prof. Dr. Dr. h. c. Frank Leymann

Supervisor: Michael Wurster, M.Sc.
Matthias Haeussler, NovaTec Mc.

Commenced: October 4, 2017

Completed: March 28, 2018

Acknowledgement

First and foremost, I would like to express my sincere gratitude to Professor Frank Leymann
for the opportunity to work on this thesis at the Institute of Architecture of Application
Systems, University of Stuttgart. He has always motivated and inspired me by his character,
teaching style and valuable scientific achievements.

I would also like to thank my master thesis supervisor M.Sc. Michael Wurster at the
University of Stuttgart for his continuous support, insightful comments and suggestions,
motivation and enthusiasm, and immense knowledge, which helped to achieve and enrich
this work.

Besides, I wish to thank my master thesis supervisor Mc. Matthias Haeussler at NovaTec,
who has always been there whenever I needed any question or support regarding this
thesis. His patient guidance, consistent encouragement, insightful viewpoint and valuable
discussions paved the way to fulfil this work.

Last but not least, I would like to express my very profound gratitude to the continuous
love, motivation and support of my mother, my brother, my sisters and my husband, and I
would like to dedicate this work to my late father, who has always been my constant source
of encouragement and inspiration.

3

Abstract

We live in the era of cloud computing today. Many companies are moving their legacy
applications to the cloud or building cloud-native applications from scratch. What makes
it more interesting is the fact that 80% of IT budget will be spent on cloud technology by
the year 2025 [Soa16]. However, there is no clear single approach on how to migrate or
deploy these applications to the cloud, since various platforms provide different options.

The diverse deployment approaches bring along different aspects in terms of both flexibility
and responsibility of the deployment. However, one can ask: What are the main differences
between these methodologies? What are the pros and cons? Is there a best or more robust
methodology? When to use which technique and why? Are there any factors, which
may influence your decision? Consequently, this thesis is introduced in order to answer
such kind of questions and help developers choose the most suitable approach for their
application.

This work uses a systematic literature review in order to investigate the state of the art ap-
proaches and technologies used to enable platform-as-a-service deployments. Furthermore,
considering the fact that there is still no scientific documentation for the varied approaches
as patterns out there, new patterns for the various approaches are authored, described
and documented. In addition, comparison matrices, which indicate the pros and cons of
the multiple approaches using different application types are constructed, and a sample
distributed application is deployed using the introduced patterns, in order to evaluate and
validate them. Ultimately, a final discussion of the results is conducted and a decision tree
that guides the choice of the appropriate pattern and the suitable platform is built.

5

Contents

1 Introduction 17
1.1 Research Methodology . 18
1.2 Document Structure . 19

2 SLR Process 21
2.1 Planning Phase . 22

2.1.1 The Need for a Systematic Review 22
2.1.2 Define Research Questions . 22
2.1.3 Define Review Protocol . 23

2.1.3.1 Search Strategy . 23
2.1.3.2 In- and Exclusion Criteria 26
2.1.3.3 Data Extraction . 26
2.1.3.4 Data Synthesis . 27

2.2 Conducting Phase . 28
2.2.1 Search Based on Strategy . 29
2.2.2 Filter Using In-/Exclusion Parameters 29
2.2.3 Extract Data . 30
2.2.4 Synthesize Data . 30

2.3 Reporting Phase . 30
2.3.1 Report and Discuss Findings . 30

3 PaaS Deployment Patterns 35
3.1 Bring Your Own Code Pattern (BYOCD) . 36
3.2 Bring Your Own Container Pattern (BYOCR) 42

4 Evaluation of PaaS Deployment Patterns 49
4.1 Main Application Types . 49

4.1.1 Non-Cloud-Enabled Application . 49
4.1.2 Cloud-Enabled Application . 49
4.1.3 Cloud-Native Application . 50

4.2 Matrices of Comparison . 50
4.3 Deploying a Sample CQRS Application Using the Two Patterns 52

4.3.1 Deploying the Sample App to CF . 53
4.3.2 Deploying the Sample App to Kubernetes 55

4.4 Conclusion . 57

5 Discussion and Future Work 59
5.1 Summary . 59

7

5.2 Discussion . 59
5.3 Future Work . 62

A Appendix 65

B Appendix 81

Bibliography 89

8

List of Figures

1.1 Example of a Cloud-native App . 18

2.1 SLR Process Overview . 21
2.2 Search Phrase 1 . 24
2.3 Search Phrase 2 . 24
2.4 Search Phrase 3 . 24
2.5 Search Phrase 4 . 24
2.6 Search Phrase 5 . 25
2.7 Search Phrase 6 . 25
2.8 Search Phrase 7 . 25
2.9 Search Phrase 8 . 25
2.10 Search Phrase 9 . 25
2.11 Temporal Distribution of the Included Studies 31
2.12 Spatial Distribution of the Included Studies 32
2.13 Distribution of PaaS Concepts by Study . 33
2.14 Distribution of PaaS Technologies by Study 34

3.1 Overall Process of Deploying an App to Cloud Foundry [Mar17] 40
3.2 Overall Process of Deploying an App to Heroku [Plab] 41
3.3 Kubernetes Architecture [SCH17] . 46
3.4 Docker Swarm Architecture [Rai16] . 47

4.1 Comparison Matrix of Non-cloud-enabled Applications 50
4.2 Comparison Matrix of Cloud-enabled Applications 50
4.3 Comparison Matrix of Cloud-native Applications 51
4.4 Comparison Matrix of Cloud-native Applications - Continued 51
4.5 Comparison Matrix of Cloud-native Applications - Continued 52
4.6 Sample Cloud-Native App Architecture . 53

5.1 BYOCD or BYOCR Decision Tree . 61

9

List of Tables

2.1 Search Terms and their Synonyms, Abbreviations and Alternative Spellings 24
2.2 Data Extraction Form . 27
2.3 Data Synthesis Form for RQ1 . 27
2.4 Data Synthesis Form for RQ2 . 28
2.5 Data Synthesis Form for RQ3 . 28
2.6 Data Synthesis Form for RQ4 . 28
2.7 Resulted Studies from the Data Sources . 30

A.1 Filled Data Extraction Form for [APO16] . 65
A.3 Filled Data Extraction Form for [Mah11] . 66
A.2 Filled Data Extraction Form for [PHM+16] 66
A.4 Filled Data Extraction Form for [CLC11] . 67
A.5 Filled Data Extraction Form for [Bob11] . 67
A.6 Filled Data Extraction Form for [GS13] . 68
A.7 Filled Data Extraction Form for [WASL14] 68
A.8 Filled Data Extraction Form for [Coh13] . 69
A.9 Filled Data Extraction Form for [SSKY16] 69
A.10 Filled Data Extraction Form for [GWZW16] 70
A.11 Filled Data Extraction Form for [LZL17] . 71
A.12 Filled Data Extraction Form for [SAS+15] 71
A.13 Filled Data Extraction Form for [MPA+16b] 72
A.14 Filled Data Extraction Form for [XOR+15] 73
A.15 Filled Data Extraction Form for [Pah15] . 73
A.16 Filled Data Extraction Form for [MPA+16a] 74
A.17 Filled Data Extraction Form for [PDKD17] 74
A.18 Filled Data Extraction Form for [RVC+12] 75
A.19 Filled Data Extraction Form for [Sha16] . 75
A.20 Filled Data Extraction Form for [BCC+17] 76
A.21 Filled Data Extraction Form for [WXL16] . 76
A.22 Filled Data Extraction Form for [TM16] . 77
A.23 Filled Data Extraction Form for [SSC17] . 77
A.24 Filled Data Extraction Form for [MKT17] . 78
A.25 Filled Data Extraction Form for [Kra17] . 78
A.26 Filled Data Extraction Form for [Lee17] . 79
A.27 Filled Data Extraction Form for [GKK17] . 79

B.1 Filled Data Synthesis Form for RQ1 . 81

11

B.2 Filled Data Synthesis Form for RQ2 . 82
B.3 Filled Data Synthesis Form for RQ3 . 86
B.4 Filled Data Synthesis Form for RQ4 . 87

12

List of Listings

4.1 The Dockerfile of the ToDoQueryService . 55
4.2 The Service.yml File of the ToDoQueryService 56

13

List of Algorithms

2.1 Search Algorithm Followed on Google Scholar 29

15

1 Introduction

At the heart of cloud computing trend, lie cloud-native applications. They can be defined
as applications specifically designed to leverage the advantages of a cloud environment
in an efficient manner [FLR+14]. This can be achieved by ensuring the following IDEAL
properties: Isolated state, Distribution, Elasticity, Automated management, Loose coupling
[FLR+14]. Thinking about the significant principles of these applications, it can be
concluded that: DevOps, continuous delivery, microservices and containers form the four
main tenets of cloud-native patterns [BHJ16] [Zim17].

Container technology is an approach, which is used to package full application stacks (code,
runtime, system tools, system libraries and settings) as immutable artifact, which can be
easily and reliably run in different environments. According to CA Technologies, container
technology is set to shape the future of software development standards, making it easier
and more efficient for developers to move an application from one system to another
aiming at greater interoperability [Pah15] [Sta16]. Thus, containers are a prominent tool
to enable DevOps workflows. They act as a common language between development and
IT operations and when configured properly; the operations team can utilize containers to
assemble environments without compromising security [Wee17]. Consequently, container
technology is used as a core technology in most PaaS environments.

In the cloud computing area, different alternative approaches that make use of container
technology are mainly used to deploy cloud-native applications. Let us have a look at the
cloud-native application example shown in Figure 1.1. In this simple example in which
customers can establish some orders to buy products, four components can be seen: a UI;
an order service; a catalog service and a customer service, which are interacting through
a service registry and each of the services has its own database. Here, developers have
different choices in order to deploy this cloud-native application to the cloud. They can rely
on uploading the source code of each of the components and the service registry, configure
the connection of other components to the service registry and make use of the databases as
cloud provided services. The cloud platform will take care of building the containers to run
those applications. Developers can even make use of the service registry as a cloud provided
service instead of deploying it as a separate component. Alternatively, they can package
each of the components, the service registry and the databases inside a container, deploy
those containers to the cloud and take care of configuring the connections between them.
They can even connect those containers to the databases as external services provided by
different cloud providers. If they have some scheduled tasks within those components,
which they need to run when an event happens, they can deploy it as a function-as-a-service
and benefit from the billing based on consumption model.

17

1 Introduction

Figure 1.1: Example of a Cloud-native App

Those different deployment choices offer different levels and possibilities for scalability,
resiliency, portability, load balancing, logging and monitoring. They even range in their
usability, the responsibility they put on the developer and the risks that might occur.
They, of course, converge at some points while interfere at others. The world of IT today
lacks the capability to take a clear appropriate decision to follow one approach over the
other. Companies are somehow confused about the main factors that should affect their
choice. This leads to the fact that there are still a lot of open questions related to the
multiple solutions in general, regardless which technologies are used to achieve them,
which indicates the need for further research and investigation.

1.1 Research Methodology

The research methodology chosen for this thesis is a systematic literature review (SLR).
This decision has been made due to the fact that this is a well-defined approach to identify,
evaluate, interpret and compare all available studies related to a particular research
question, topic area or phenomenon of interest [Kit04] [KC07]. This work seeks to
accomplish a deep analysis and evaluation of the platform-as-a-service (PaaS) deployment
approaches and technologies. In particular, it aims to have some idea of the extent of studies
and activities performed in that field before this thesis was introduced. Also, it pursues to
examine the different approaches followed in this field. Besides, it endeavors to address

18

1.2 Document Structure

the state of the art technologies used in the different approaches. Proceeding from the SLR
study made in the thesis, this work aims at formulating the different approaches as patterns,
which in turn reveals the factors; challenges; pros and cons, which affect evaluating and
comparing the different approaches related to PaaS deployment. Moreover, in order to
validate and evaluate the authored patterns, multiple matrices, which summarize the pros
and cons of each deployment approach considering different application types are designed,
and a sample distributed application, which utilizes the resulted patterns, is deployed.
Finally, a conclusive discussion of the results along with a decision tree that leads the choice
of the convenient pattern and platform are introduced.

1.2 Document Structure

This thesis is structured into five chapters. A short introduction to cloud-native applications
deployment approaches and the motivation, the research methodology and the structure of
the work are covered in Chapter 1. The systematic literature review that was conducted to
explore the current research state is introduced within Chapter 2. The scientific documen-
tation of the deployment approaches as patterns is the content of Chapter 3. The validation
and evaluation of the patterns using comparison matrices of the two approaches applied
on different application types and the deployment of a sample distributed application are
presented in Chapter 4. Ultimately, a summary of this work along with a discussion of
the results, the decision tree and the further research opportunities are outlined within
Chapter 5.

19

2 SLR Process

This chapter explains and describes the systematic literature review utilized in this thesis.
In this research, the SLR process suggested by Kitchenham is followed [Kit04] [KC07].
Figure 2.1 shows an overview of the used SLR process. It mainly consists of three phases:
Planning, Conducting and Reporting. Starting with the planning phase, it fundamentally
comprehends the most important pre-review activities. This includes identifying the need
for such a systematic literature review, defining the research questions addressed by
the systematic review and producing a review protocol that plans for the basic review
procedures. Moving to the conducting phase, it contains the major steps, which are essential
for executing the SLR according to the defined review protocol. These steps are: performing
the search process, filtering of material, extracting data from the collected sources, and

Figure 2.1: SLR Process Overview

21

2 SLR Process

synthesizing the data. Concluding by the reporting phase, it gives an account of the results
of the systematic review effectively.

2.1 Planning Phase

Firstly, the start is with the planning of the systematic review. This phase begins with
addressing the need for the SLR process, passes through formulating the research questions
and results in revising the way in which the review will be executed. Within the following
sections, the different steps are explained in more detail.

2.1.1 The Need for a Systematic Review

Prior to undertaking the SLR, it is important to clarify the need for it [Kit04] [KC07]. The
decision on accomplishing a systematic review arises from the requirement to explore the
state of the art approaches and technologies used to enable PaaS deployments in a thorough
and unbiased manner. This in turn stands as a substantial prelude to the contribution in
formulating those different approaches as patterns at the end of this research.

2.1.2 Define Research Questions

Next, the most important aspect in the planning phase, which is determining the research
questions, is reached [CHHK13]. It is a crucial part in studying and analyzing the most
raised PaaS concepts and approaches. Within this study, the following research questions
are defined:

• RQ1: How much activity in the field of platform-as-a-service research has there been
since 2011?
This question is aimed at giving an overview to what extent existing research has
been active in the field of platform-as-a-service deployment before writing this thesis.

• RQ2: Who is active in this research area?
The motivation behind this question is to provide information about researchers and
organizations, who addressed the research topic in this area.

• RQ3: What kind of concepts and approaches are being used for platform-as-a-service
deployments?
This question is formulated to investigate the used concepts and followed approaches
to develop and deploy cloud-native applications in PaaS.

• RQ4: What kind of technologies enabling different PaaS approaches are being used?
The objective of this question is to highlight the most used technologies in platform-
as-a-service applications development and deployment.

22

2.1 Planning Phase

2.1.3 Define Review Protocol

Another important part in the SLR study, which is necessary to reduce the possibility of
researcher bias, is defining the review protocol [Kit04] [KC07]. This pre-defined protocol
lies as a foundation for the next actions in the SLR process. On the basis of the specified
research questions; the protocol defines various steps. First, it illustrates a search strategy
that will be employed to search for primary studies including search terms and resources to
be searched. Next, it determines the inclusion/exclusion criteria to select the studies. After
that, it clarifies the strategy in which the required information will be obtained from each
primary study. Lastly, it explains the approach that will be used for data Synthesis. Within
the subsequent sections, an effort will be made to describe in more detail how the different
steps of the protocol are designed.

2.1.3.1 Search Strategy

This step is responsible for defining the search process that will be followed in detail. In this
context, the databases that will be used for the search procedure are addressed, the search
terms are demonstrated, considering their different synonyms and alternative spellings,
and finally the sophisticated search phrases, which will be utilized to search for material,
are constructed through combining those search terms using boolean operators.

Within this thesis, an automatic search that uses the following data sources suggested by
Kitchenham is performed [KC07]:

• IEEE Xplore

• Google Scholar

• Science Direct

Based on the research questions of Section 2.1.2, the following basic search terms are
derived: (1) platform as a service, (2) concepts, (3) approaches, (4) deployment, (5)
development, (6) technologies and (7) cloud-native applications. With respect to other
keywords used often in the domain of this study, the following terms are obtained: (8)
container technology, (9) function as a service, (10) cloud foundry and (11) docker.

In consideration of search terms synonyms, abbreviations, and alternative spellings; differ-
ent alternative terms are inferred as shown in Table 2.1.

Connecting the previous defined search terms and their alternatives using Boolean operators
(ANDs and ORs), results in composing the search phrases that will be finally used for the
search procedure. Figures 2.2 to 2.10 illustrate the derived search strings, such that each
search string is represented as an And/Or tree.

23

2 SLR Process

Term Synonym/Abbreviation/Alternative Spelling
"platform as a service" PaaS
concepts notions, ideas
approaches ways, methods
“cloud-native applications” “cloud-native apps”
“container technology” “container as a service”, "container orchestrator", CaaS
"function as a service" FaaS
“cloud foundry” “cloudfoundry”, CF

Table 2.1: Search Terms and their Synonyms, Abbreviations and Alternative Spellings

AND

OR

"platform as a service" PaaS

OR

concepts ideas notions

Figure 2.2: Search Phrase 1

AND

OR

"platform as a service" PaaS

development
OR

approaches ways methods

Figure 2.3: Search Phrase 2

AND

OR

"platform as a service" PaaS

deployment
OR

approaches ways methods

Figure 2.4: Search Phrase 3

AND

OR

"platform as a service" PaaS

development technologies

Figure 2.5: Search Phrase 4

24

2.1 Planning Phase

AND

OR

"platform as a service" PaaS

deployment technologies

Figure 2.6: Search Phrase 5

AND

OR

"platform as a service" PaaS OR

"cloud-native applications" "cloud-native apps"

Figure 2.7: Search Phrase 6

AND

OR

"platform as a service" PaaS
OR

"container technology" "container as a service" "container orchestrator" CaaS

Figure 2.8: Search Phrase 7

AND

OR

"platform as a service" PaaS
docker

Figure 2.9: Search Phrase 8

AND

OR

"platform as a service" PaaS OR

"cloud foundry" "cloudfoundry" CF

OR

FaaS "function a s a service"

Figure 2.10: Search Phrase 9

25

2 SLR Process

2.1.3.2 In- and Exclusion Criteria

In fact, literature searching may lead into a huge number of eligible resources, of which
only a small proportion may eventually be included in the review. As a consequence,
the review protocol defines a set of predefined characteristics, i.e., a set of inclusion and
exclusion criteria, in order to filter results of searching.

A found resource is included in the SLR, if it fulfills all the following inclusion criteria:

• IC1: It concerns PaaS concepts, approaches or technologies

• IC2: It concerns PaaS cloud-native applications development or deployment

• IC3: It is published between 2011 and 2017 (This limitation of time frame is done
because the year 2011 coincides with the announcement of "cloud foundry")

A found resource is excluded from the SLR, if it fulfills one of the following exclusion
criteria:

• EC1: It is in a language other than English

• EC2: It is in the form of a panel discussion, preface, tutorial, book review, or presented
slide, i.e., it has too informal nature

• EC3: Duplicate reports of the same study exist (When several reports of a study exist
in different data sources, the most complete version of the study is included in the
SLR)

2.1.3.3 Data Extraction

The data from any given source, need to be extracted systematically. Thus, the data
extraction step aims at designing data extraction forms, in order to accurately extract
relevant data from the selected studies and reduce the opportunity for bias [BKB+07].

Table 2.2 shows the data extraction form that will be used for each study. These forms will
be filled with the help of the reference management tool JabRef [Jab]. On one hand, data
items DE1-DE5 will be used for documentation purposes and answering research questions
Q1 and Q2. This includes title, year, authors, organization and country of study. On the
other hand, data items DE6 and DE7 help to answer research questions Q3 and Q4. This
includes various PaaS concepts, approaches and technologies.

26

2.1 Planning Phase

Item Id Item Value
DE1 Title
DE2 Year
DE3 Author(s)
DE4 Organization
DE5 Country of study
DE6 PaaS concepts & approaches
DE7 PaaS development & deployment

technologies

Table 2.2: Data Extraction Form

2.1.3.4 Data Synthesis

In this step, the extracted data in the previous step are synthesized, in order to prepare the
interpretation of found results. In this sense, all the findings are summarized and tabulated,
such that each research question is assessed individually against the findings as follows:

• RQ1: How much activity in the field of platform-as-a-service research has there been
since 2011?
This question will be addressed by simple counts of the number of PaaS related
studies per year since 2011. Table 2.3 shows the table form that will summarize data
to answer this question.

Year Num. PaaS Related Studies
2011
2012
2013
2014
2015
2016
2017

Table 2.3: Data Synthesis Form for RQ1

• RQ2: Who is active in this research area?
In order to answer this question, it will be investigated whether any specific organi-
zation of researches has undertaken a relatively large number of research in PaaS
domain since 2011. The table form that will epitomize data to target question is
presented in Table 2.4.

27

2 SLR Process

Study Authors Institution Country of Institution

Table 2.4: Data Synthesis Form for RQ2

• RQ3: What kind of concepts and approaches are being used for platform-as-a-service
deployments?
In order to target this question, the elicited data are reviewed and the PaaS concepts
and approaches resulted from the multiple studies over the years since 2011 are
extracted, beside the number of studies in which these concepts appeared. Table 2.5
demonstrates the table form that will be used for collecting data in order to answer
this question.

PaaS concept/approach
Concepts Num. Studies

Approaches

Table 2.5: Data Synthesis Form for RQ3

• RQ4: What kind of technologies enabling different PaaS approaches are being used?
To answer this question, an effort will be made to revise the resulted data and extract
the PaaS development and deployment technologies elicited from the multiple studies
over the years since 2011, beside the number of studies in which these technologies
appeared. The table form that sums data to answer this question is shown in Table 2.6.

PaaS technology Num. Studies

Table 2.6: Data Synthesis Form for RQ4

2.2 Conducting Phase

Secondly, the conducting phase begins, in which the SLR process is executed according to
the defined review protocol (see Section 2.1.3). This phase includes searching for sources,
filtering them depending on in-/exclusion criteria, extracting data from the collected
sources and finally synthesizing the extracted data. The different steps are explained in
more detail within the following sections.

28

2.2 Conducting Phase

2.2.1 Search Based on Strategy

Within this step, the search process is executed. Regarding searching in IEEE Xplore, the
"command search" and the "metadata only" option are used. This yields 476 studies. For
searching in Science Direct, the "expert search"; the "computer science" field and the "tak"
option (search only title/abstract/keywords), are used. This yields 35 studies. Coming
to the search process in Google Scholar, the number of results without any filtering is
relatively huge (189461 studies).

2.2.2 Filter Using In-/Exclusion Parameters

Next, the in- and exclusion parameters are applied (see Section 2.1.3.2). After applying
them, the number of studies resulted from IEEE Xplore is reduced to 17 and the number of
studies resulted from Science Direct is reduced to 1. Since the number of studies resulted
from Google Scholar is relatively huge, the Algorithm 2.1 is followed, which yields 9
sources.

Algorithmus 2.1 Search Algorithm Followed on Google Scholar
Filter on (language, year)
if number of sources > 100 then

Use the "sort by date" option
if number of sources ̸= 0 then

Filter based on in- and exclusion parameters
else

Use the "sort by relevance" option instead of the previous one and "filetype:pdf"
if number of sources ̸= 0 then

Filter based on in- and exclusion parameters
end if

end if
else

Filter based on in- and exclusion parameters
end if

Table 2.7 shows references to the resulted studies from the different data sources after the
filtering step.

29

2 SLR Process

Data Source Resulted Studies
IEEE Xplore [APO16], [PHM+16], [Mah11], [CLC11], [Bob11], [GS13],

[WASL14], [Coh13], [SSKY16], [GWZW16], [LZL17], [SAS+15],
[MPA+16b], [XOR+15], [Pah15], [MPA+16a], [PDKD17]

Science Direct [RVC+12]
Google Scholar [Sha16], [BCC+17], [WXL16], [TM16], [SSC17], [MKT17],

[Kra17], [Lee17], [GKK17]

Table 2.7: Resulted Studies from the Data Sources

2.2.3 Extract Data

After that, data from each of the 27 resulted sources are extracted by filling out the
previously defined data extraction form for each study. The tables that show the extracted
data for all studies can be found within the Appendix A.

2.2.4 Synthesize Data

Having extracted all relevant data in the previous step, now the data are synthesized. The
previously defined data synthesis forms are filled out, in order to answer the four research
questions. The tables that show the synthesized data from all studies can be found within
the Appendix B.

2.3 Reporting Phase

Lastly, the reporting phase is reached, in which the results from the data synthesis step are
interpreted (see Section 2.2.4) and the answers to the research questions are discussed.

2.3.1 Report and Discuss Findings

The outcome of the SLR process is presented in this section. Within the following, the
findings triggered by the four previously defined research questions are outlined (see
Section 2.1.2).

• RQ1: How much activity in the field of platform-as-a-service research has there been
since 2011?
The number of studies by year of publication is shown in Figure 2.11. It can be
noticed that the number of PaaS publications ranges between one and three within
the years from 2011 to 2015. Then, it significantly increases in the years 2016 and
2017. Taking in consideration the bias that occurred because of using the option

30

2.3 Reporting Phase

that restricts the results to year 2017 in Google Scholar; a significant increase in
the number of PaaS publications during the year 2016 can still be noticed. This
may be due to the fact that PaaS has gained grand momentum the last two years
and investments in PaaS have grown impressively, especially with the emerge of
container-as-a-service and containers orchestration [WHJ16] [Kav16] [Hen17].

Figure 2.11: Temporal Distribution of the Included Studies

• RQ2: Who is active in this research area?
The distribution of studies by country is shown in Figure 2.12. Overall, the set of
studies is dominated by Asian researchers, who have been involved in twelve of the
studies, in particular India, which has been involved in six of the studies, two of
them were accomplished at Electronic city (MTech(IIIT), CORI-ISE Dept) and Cisco
Systems. Then, the European researchers come in second place with the participation
in nine of the studies, specially Germany, which has been involved in three of the
studies, two of them were accomplished at Stuttgart University (IAAS). Only four of
the studies had North American authors.

31

2 SLR Process

Figure 2.12: Spatial Distribution of the Included Studies

• RQ3: What kind of concepts and approaches are being used for platform-as-a-service
deployments?
The distribution of PaaS concepts by study depending on the number of studies in
which they appeared, is shown in Figure 2.13. Based on the analysis of that figure, it
can be concluded that the three primary concepts that are related to PaaS are:

• Containerization of application in PaaS

• Containers orchestration and cluster management in PaaS

• Application runtime environment and middleware provided by PaaS

There are also other important aspects that should be taken into consideration in
PaaS such as serverless platforms, security, performance, portability and scalability.

Considering the main approaches that are followed in deploying applications into a
platform-as-a-service; two fundamental approaches were found:

• Bring your own code (BYOCD), in which developers can simply write and
upload their code and let the platform deal with the container handling and any
infrastructure below.

32

2.3 Reporting Phase

• Bring your own container (BYOCR), in which developers have the option to
directly deploy applications in the same container format that the platform uses.

Figure 2.13: Distribution of PaaS Concepts by Study

• RQ4: What kind of technologies enabling different PaaS approaches are being used?
The distribution of PaaS technologies by study depending on the number of studies in
which they appeared, is shown in Figure 2.14. Analyzing this figure, it can be noticed
that the dominant PaaS technologies that are most mentioned in the publications are:

• Docker: The container platform provider that allows applications to run within
separate (i.e., logically isolated) containers by leveraging a series of Linux kernel
features [LZL17].

• Google App Engine: One of the earliest integrated cloud application tools that
serves as a web framework and cloud computing platform for developing and
hosting web applications in Google-managed data centers [Coh13] [Goo].

• Cloud Foundry: The industry standard open PaaS that abstracts away infras-
tructure, so that the developer can focus on application innovation [Pah15]
[PDKD17].

33

2 SLR Process

Figure 2.14: Distribution of PaaS Technologies by Study

• Microsoft Azure: A cloud computing platform and foundation that is intended
for building, sending and managing applications and administrations through
Microsoft-managed datacenters [TM16].

• Kubernetes: An open-source system that can be configured to allow orchestrating
Docker containers. It is based on processes running on Docker hosts that bind
hosts into clusters and manage containers [PHM+16].

• Heroku: A cloud platform based on a managed container system that lets
companies build, deliver, monitor and scale applications bypassing infrastructure
headaches [Plab].

Proceeding from the fact that the two inferred approaches followed in PaaS applications
deployment, BYOCD and BYOCR, have not been formulated as documented patterns before,
an effort to investigate and evaluate them will be made, by means of formulating the two
deployment approaches as patterns in the next chapter, capitalizing on the found PaaS
concepts and technologies.

34

3 PaaS Deployment Patterns

As it can be seen within the previous chapter, two variants in the space of PaaS application
deployment have been detected: BYOCD and BYOCR. Studying the two approaches has
taken a lot of concern recently. Based on the achieved SLR process, it could be argued that
many attempts have been there to evaluate the two approaches. For example, Beth Cohen,
in his article "PaaS: New Opportunities for Cloud Application Development", has focused on
giving an overview on some PaaS technologies such as Azure, Cloud Foundry and OpenShift
[Coh13]. Also, Claus Pahl, has described briefly some PaaS evolution technologies and their
use of Containerization technology in his article "Containerization and the PaaS Cloud"
[Pah15]. Moreover, the authors of the article "Towards a Full-Stack DevOps Environment
for Cloud-Hosted Applications", talked about different PaaS technologies such as Microsoft
Azure, Cloud Foundry, Docker and others [LZL17].

However, the previous attempts have only tried to highlight or compare some specific
technologies that belong to the two approaches, but there was no real study that analyzes
and evaluates the two deployment approaches in general. This leads to the fact that there
are still a lot of open questions related to the two general solutions, regardless of which
technologies are used to achieve them.

Relying on the previous discussion and the fact that there is still no scientific documentation
for the two approaches as patterns out there, the two PaaS deployment approaches will be
described as patterns within the following chapter, documented and evaluated exploiting
the different concepts and technologies discovered in Chapter 2.

A pattern can be defined as structured text that follows a well-defined format and captures
nuggets of advice on how to deal with recurring problems in a specific domain [Ale78]
[Ale80]. Consequently, the two approaches will be analyzed and evaluated through the
patterns, highlighting the main differences, pros and cons, and the factors that may
influence the developer’s choice to prefer one approach over the other. The individual
patterns are structured in a way, in which they utilize the pattern format introduced by
Alexander [Ale78].

35

3 PaaS Deployment Patterns

3.1 Bring Your Own Code Pattern (BYOCD)

A platform to which the developer uploads his or her source code and asks to run
it on the cloud without caring how. The platform then takes care of everything to
deploy and run the code on the cloud.

How can a developer focus on the application business logic and not
on the infrastructure, middleware and container implementation, when
deploying and operating an application or a piece of code on the cloud?

Context

DevOps is a strong and popular movement in companies nowadays. It mainly refers to
the principle of bridging the gap between development and IT operations via establishing
cross functional teams, which are responsible for design, development and operating of
applications [Htt12].

Looking at DevOps from a development (and not management) perspective, it puts addi-
tional responsibilities to operate applications into the same team that developed them. The
challenge is that many developers are not familiar or concerned with building containers
or tweaking middleware internals in order to run their applications on the cloud. As a
result, an approach should be followed in order to remove the undifferentiated heavy
lifting from application developers, i.e., the burdensome responsibilities associated with
delivering software such as application runtime configuration and containers construction,
load balancing and traffic routing, service discovery, databases provisioning and many other
tasks [Win17], so that developers can just focus on their application’s business code.

Forces

Developers should focus on building their applications well and fast. They should also
be able to deploy and run them on the cloud without caring how. This means that the
platform should provide the operating system, middleware and language runtime, in such
a way as if the developer, who wrote the code himself or herself, has used them to run the
application on his or her own laptop.

Besides, the developer should still be able to use necessary backing services (such as
datastores, messaging/queueing systems, SMTP services, etc.) for his or her applications in
an easy scalable manner that does not affect the application code or requires modifications
to it.

36

3.1 Bring Your Own Code Pattern (BYOCD)

Solution

The "application-focused" PaaS standardizes the developer’s application stack via Runtime-
Dependencies. The runtime-dependency is typically a set of rules that wraps whatever
is needed to run the uploaded code. It examines the user-provided artifact in order to
determine which dependencies to download and how to configure applications and runtime
dependencies.

Consequently, when the developer pushes an application source code, the Platform Con-
troller takes it and uses the runtime-dependency in order to detect the framework and
runtime dependencies and it encapsulates the application along with runtime dependencies
into an executable Container Image. Then, it runs the containers and manages them using a
Container Orchestrator. Finally, the required process is started, the application is deployed
and a URL is given back to the developer.

Usually, developers need to make use of additional services in their applications, which
are referred to as backing services (databases, message queues, email services, etc.). In
this solution, applications can easily be bound to a wide set of backing services that are
provided and wired completely by the platform, and can be available on-demand. Basically,
developers do not have influence on that and have to accept it as it is.

With respect to the uploaded application architecture, it should follow a set of guidelines
that make it cloud-native, which facilitates its deployment to cloud platforms. Designing
a cloud-native application is nothing more than building your application in a way that
takes advantage of the cloud [Hof16]. These cloud-native applications are purposefully
designed to be infrastructure unaware, meaning that they are decoupled from the un-
derlying infrastructure and free to move as required [Win16], which meets at the end
the purpose of PaaS, to which the applications will be uploaded. In order to optimize
building this kind of applications, a collection of design principles that describes the rules
and guidelines to be followed, has been developed and referred to as 12-factor app [Twe].
These rules concentrate mainly on speed, safety, and scale, making no assumptions about
the environments, to which they will be deployed. This in turn paves the way for the
underlying cloud platforms to deploy cloud-native applications fast and consistently.

Another specialization to this solution is function-as-a-service (FaaS). When talking about
uploading or deploying only a piece of code or a function to the cloud, the same funda-
mental ideas and concepts of the general solution discussed before are basically addressed.
However, what makes FaaS special, is its small event-driven functions, which are only run
when they are triggered by an event. Here, the developers do not push a whole application
to the cloud, they only push small units of works or functions and tell the system how to
knit them together.

At the end, whether developers want to deploy a function or a cloud-native application
to the cloud, they do not have to be concerned about the underlying infrastructure and
container construction. They can build, test, deploy and scale functions or applications
easily by uploading their code to the platform that takes care of and facilitates everything
else for them.

37

3 PaaS Deployment Patterns

Sketch

Consequences

Using BYOCD pattern, developers can focus on the business logic of their applications
and do not have to care about which container and middleware functions to use. As a
result, the operating complexity is decreased and the development productivity is increased,
which makes the deployment of functions and applications easy and fast. Moreover, the
platform can scale applications (horizontally and vertically) and handle the wiring of
backing services automatically. Hence, following this pattern, the platform automatically
runs everything, which leads to a higher operational efficiency and less chance of human
error.

However, the flexibility of this solution can be low compared to configuring your own
development environment. The variety of available runtime-dependencies might be limited.
Consequently, the choice to use any language, framework and data store you want, might
be restricted. Besides, generally talking, the portability of applications from one platform to
another is limited using this pattern. The prerequisite of using certain platform-supported
runtime-dependencies, makes it difficult to run the same application on various application-
focused platforms without modifying these runtime-dependencies.

Related Patterns

• Distributed application [FLR+14]: Cloud-native applications are generally divided into
multiple components in order to be distributed among different resources, which signifi-
cantly simplifies management tasks, such as scaling, failure resiliency, and load-balancing.

38

3.1 Bring Your Own Code Pattern (BYOCD)

This pattern covers different approaches for the decomposition of the application’s func-
tionality into multiple independent components that provide a certain function. It also
describes how the decomposed application components may be combined to a cloud
application.

• Loose coupling [FLR+14]: The distributed nature of cloud-native applications enforces
the need to avoid dependencies between application components in order to scale
components independently and to avoid that failing components impact each other.

• Stateless component [FLR+14]: Scaling-out applications should ideally rely on external
state information, either passed with every request or retrieved from a storage offering.
Consequently, the applications deployed using BYOCD pattern should not keep any
internal state as described by the stateless component pattern, in order to simplify scaling
them by the platform.

• Service deployment platform [Ric]: This pattern describes the use of a deployment
platform, which is an automated infrastructure for application deployment that provides
a service abstraction, after the developer has architected the system as a set of services
that need to be packaged and deployed.

• Serverless deployment [Ric]: This pattern describes the use of a deployment infrastructure
that hides any concept of servers, physical or virtual hosts, or containers, after the
developer has architected the system as a set of services that need to be packaged and
deployed. The developer uploads the service’s code and the infrastructure takes and runs
it.

Known Uses

Many platforms already support the BYOCD pattern. Here, the cases of Cloud Foundry
and Heroku are covered. Starting with Cloud Foundry, it is an open source cloud platform-
as-a-service (PaaS), on which developers can build, deploy, run and scale applications
[SSC17]. In Cloud Foundry, runtime-dependencies are achieved via buildpacks. A buildpack
is composed of a set of scripts that provides detection of framework and runtime support,
application compilation and application execution. These buildpacks can either be located
remotely (e.g., on GitHub) or stay locally on PaaS by means of a process to be packaged
and uploaded for offline use [Docc].

The life-cycle of a buildpack contains three stages: detect, compile and release. These
life-cycle stages of a buildpack are known as staging in CF parlance [Win17]. Consequently,
when a developer deploys a standalone application artifact to Cloud Foundry via Cloud
Controller, it stages the pushed application and produces a droplet, which is an encapsu-
lated version of the application along with all of the required runtime components and
dependencies [Win17]. This droplet incorporated with a stack (filesystem) constitutes a
container image. The resulting container images are run then as isolated containerized
processes in Cloud Foundry using the container scheduler and orchestrator Diego. This
overall process is shown in Figure 3.1.

39

3 PaaS Deployment Patterns

Figure 3.1: Overall Process of Deploying an App to Cloud Foundry [Mar17]

At the end, the buildpack model used in Cloud Foundry leads to a differentiation in roles
between the platform operator and the developer [Win17]. The platform operator provides
buildpacks, which are then consumed by applications pushed by developers in order to be
run and deployed.

Cloud Foundry provides many additional important features such as dynamic routing
and load balancing, scaling, service discovery, centralized log aggregation, blue/green
deployments and built-in resilience and fault tolerance [Win17].

Moving to Heroku, it is a cloud platform-as-a-service (PaaS) that lets developers build,
deliver, monitor and scale applications [Plab]. Heroku is similar in principle to Cloud
Foundry. Also here, runtime-dependencies are achieved via buildpacks. A buildpack is
used as a script to set up the runtime for a language or framework on the platform. These
buildpacks can either be defined as custom buildpacks by developers or consumed directly
as built-in buildpacks.

A buildpack here typically consists of three core scripts: detect, compile and re-
lease. When the developer uploads an application to Heroku using Git, it pro-
cesses the pushed application and produces a Slug, which is a pre-packaged copy
of the application after it has been processed by the buildpack [KG13]. Using
these slugs, Heroku will provision out new Dynos. These dynos are isolated smart
containers, which provide the environment required in order to run an application
[Plab]. The resulting containers are then run, managed and coordinated using the
container orchestrator Dyno Manager. This overall process is shown in Figure 3.2.

40

3.1 Bring Your Own Code Pattern (BYOCD)

Figure 3.2: Overall Process of Deploying an App to Heroku [Plab]

Heroku also enables additional beneficial features such as scaling, code and data rollback,
continuous delivery, GitHub integration and App metrics [Plab].

Both platforms, Cloud Foundry and Heroku, provide scaling for applications, either hor-
izontally by adjusting the number of application instances or vertically by adjusting the
disk space limit or memory limit for each application instance. They also enable logging,
monitoring and built-in resiliency. They automate the recovery of failed applications,
components, and processes via self-healing mechanisms.

In conclusion, whether developers use Heroku or Cloud Foundry, they never deal with
creation and orchestration of containers, which in turn removes complexity and increases
efficiency. This also enables easy and continuous deployment of applications and DevOps-
friendly workflows.

41

3 PaaS Deployment Patterns

3.2 Bring Your Own Container Pattern (BYOCR)

A platform to which the developer uploads his or her application container and asks
to run it on the cloud, in a way that allows the developer to have more control over
the container construction and application runtime configuration.

How can a developer have more control and focus on creating the appli-
cation container(s) that can be moved between different environments
by himself or herself, and maintain it in the future, instead on focusing
only on the application business logic?

Context

Generally, developers tend to focus on controlling what goes on inside the application,
while IT operations tend to focus on running, managing, securing and scaling applications.
Over decades, the main challenge in application development lifecycle, has been bringing
developers and IT operations team closer together. They usually spend hours trying to figure
out why an application works in the development environment but not in a production
setting [Hig17].

As a result, an approach is needed in order to guarantee the consistent behavior of
applications across development and production environments, erasing the tension between
development and IT operations team and supporting DevOps.

Forces

The developer should have the freedom to use any programming language to develop
the application, on any operating system and infrastructure. At the same time the IT
operations team should be able to run, manage and scale applications without disrupting
the application code. This leads to the need for a mechanism that allows developers and IT
operations to work together in order to build, ship and run their applications anywhere
without the need to affect or modify each others’ work.

Solution

First of all, let us introduce some important concepts about containerization technology.
The basic concept that enabled containerization was Linux Containers LxC. LXC is a Linux
operating system level virtualization method for running multiple isolated Linux systems
on a single host [GJ16]. It provides kernel mechanisms such as namespaces and cgroups
in order to isolate processes and control resources on a shared operating system [PL15].
Then, technologies like Docker, which is an example of Application Containers, appeared in
order to ease the leverage of LXC capabilities and provide additional high-level tooling and
services.

42

3.2 Bring Your Own Container Pattern (BYOCR)

As a result, application containers essentially emerged in order to create a logical packaging
mechanism that abstracts and decouples applications from the surrounding environment,
so that they can be moved consistently between different environments. A Container
Image is a lightweight, stand-alone, executable package of a piece of software that includes
everything needed to run it: code, runtime, system tools, system libraries, and settings
[Doca]. Based on the image, many containers can begin their lifecycle. Thus, a Container is
a running instance of a container image [Pah15].

The "container-focused" PaaS, sometimes referred to as CaaS (Container-as-a-service),
provides a complete container environment for deploying and managing containers, appli-
cations and clusters. It consists mainly of a Container Image Catalog, which is a repository
for storing container images that can either be hosted by a third-party or as a public/private
catalog, a Container Orchestrator, which is the core of this solution that differentiates one
platform from the other, and a set of developer tools and APIs.

The container orchestrator is the substantial component that allows for the management of
complex container architectures. It is responsible for tasks such as container deployment,
cluster management, scaling, reporting and lifecycle management. Using it, developers can
build and maintain containers themselves.

A container orchestrator mainly consists of two types of nodes: Main Nodes and Servant
Nodes. The main nodes are responsible for managing and orchestrating the servant nodes,
by handling API calls and reacting in order to assign workloads to the servant nodes, on
which containerized applications will be run.

Consequently, the developer encapsulates his or her application code, runtime, system
tools, system libraries, and settings within one package, which is called a Container Image.
Subsequently, he or she pushes the resulting container image to the platform container
image catalog using an API. Afterwards, the container image is pulled via the main node
and tasks are assigned to servant nodes in order to run Containers, which are running
instances of a container image. Lastly, the required process is started and the application is
deployed.

Considering the backing services (databases, message queues, email services, etc.) that a
developer may use, they in turn can also be deployed as container images to the cloud
using this solution and then managed to be connected to the container images belonging
to other application parts via configurations provided by the developer.

With respect to the uploaded application architecture, on one hand, it can be cloud-native
following a set of guidelines. As mentioned earlier, making use of the design principles
and rules described in the 12-factor app [Twe], creating cloud-native applications can be
optimized. This type of applications can be efficiently deployed using BYOCR pattern by
wrapping the different services and application parts into container images, deploying them
and managing and scheduling them on the platform container orchestrator. On the other
hand, nothing prevents deploying monolithic applications using this pattern too. Generally
speaking, developers can wrap the application along with all its internal layers, libraries
and components into a single container image and deploy it to the cloud.

43

3 PaaS Deployment Patterns

At the end, this solution provides the needed infrastructure to run application containers
with providing more flexibility and control over applications to developers, and that is by
letting them build and deploy their own application containers.

Sketch

Consequences

Using BYOCR pattern, portability of container images between computer hosts is achieved,
which guarantees that what you run in development is the same as what you run in
production environment. This in turn facilitates testing cycles and bug tracking, considering
the fact that there is no difference between running an application locally, on a test server,
or in production. It also enables DevOps and ensures to deliver software faster by erasing
the old "it worked on my machine" challenge between development and IT operations
teams [Hig17] [Arm17].

Moreover, this solution provides higher flexibility in terms of configuring your own develop-
ment environment. Here, developers are not limited by what is supported by the provider.
They are free to choose their desired programming languages, frameworks and datastores.
Besides, the platform can scale applications (horizontally and vertically) automatically.

However, following this pattern, more responsibility and work remains with the developer,
who should take care of creating container images, deploying, managing and maintaining
them. The developer is also responsible for the backing services and making sure that the
required instances are started with the appropriate scaling settings. This all may lead to
more complexity, potential vulnerabilities and time consumption.

44

3.2 Bring Your Own Container Pattern (BYOCR)

Related Patterns

• Monolithic Architecture [Ric]: This pattern describes the deployment architecture of
an application as a monolithic architecture such as a single Java WAR file or a single
directory hierarchy of Rails or NodeJS code. BYOCR pattern can be used to wrap a
monolithic application inside a container and deploy it to the cloud.

• Distributed application [FLR+14]: Cloud-native applications are generally divided into
multiple components in order to be distributed among different resources, which signifi-
cantly simplifies management tasks, such as scaling, failure resiliency, and load-balancing.
This pattern covers different approaches for the decomposition of the application’s func-
tionality into multiple independent components that provide a certain function. It also
describes how the decomposed application components may be combined to a cloud
application. Hence, BYOCR can be used to wrap the different components of cloud-native
applications inside different containers and deploy them to the cloud.

• Loose coupling [FLR+14]: Considering the fact that BYOCR pattern can be used to deploy
cloud-native applications, the distributed nature of these applications enforces the need
to avoid dependencies between application components in order to scale components
independently and to avoid that failing components impact each other.

• Service instance per container [Ric]: This pattern describes the solution of packaging
the service as a container image and deploy each service instance as a container to the
platform, after the developer has architectured the system as a set of services that need
to be packaged and deployed.

• Stateless component [FLR+14]: Scaling-out applications should ideally rely on external
state information, either passed with every request or retrieved from a storage offering.
Consequently, the applications that do not keep internal state as described by the stateless
component pattern, can be easily deployed using BYOCR pattern.

Known Uses

Various platforms follow the BYOCR pattern. Since the orchestration platform is the core
of this solution, the two cases of Kubernetes “K8s” and Docker Swarm are covered here.
Before diving into the details, it is important to mention the lowest layer software in the
orchestration platform that enables all of containerization and orchestration. It is the
layer that manages starting and stopping containers, which is referred to as the Container
Runtime [Liu17]. The most widely known container runtime is Docker. Nevertheless,
Docker is not the only one, there are others such as rkt, containerd, and lxd.

Starting with Kubernetes, it is an open-source platform designed to automate deploying,
scaling, and operating application containers [Kub]. Docker is the most common runtime
used in Kubernetes. However, it also supports the usage of other container runtimes such
as rkt and containerd, utilizing the Container Runtime Interface (CRI) [Liu17]. The overall
architecture of Kubernetes is shown in Figure 3.3. It mainly consists of a master server
and multiple nodes (previously known as minions). The master along with the nodes
constitute a container cluster. The master is the server that is responsible for the Kubernetes

45

3 PaaS Deployment Patterns

management tasks [Hig17]. It is composed of three processes: the API service, the replication
controller and the scheduler. The nodes are the worker machines and are managed by the
master components. Each node runs three services: the kubelet, the kube-proxy and the
Docker engine. The master and nodes communicate using Kubernetes APIs. The master
decides what runs on all of the cluster’s nodes. This can include scheduling workloads such
as containerized applications and managing the workloads’ lifecycle; scaling; and upgrades
[Plaa]. It also manages network and storage resources for those workloads.

Figure 3.3: Kubernetes Architecture [SCH17]

A very important concept in Kubernetes is the pod. The pod represents the smallest unit of
deployment, i.e., a single instance of an application in Kubernetes, which might consist of
either a single container or a small number of containers that are tightly coupled and that
share resources [Kub]. Docker is the most common container runtime used in a Kubernetes
Pod, but Pods support other container runtimes as well. Thus, each node may run multiple
pods and the master automatically schedules the pods across the nodes.

Kubernetes enables manual as well as automatic horizontal scaling of applications, by
changing the number of Pods that encapsulate the application’s container(s). It also
provides a self-healing mechanism to restart failed containers, replace and reschedule
containers when nodes die and kill containers that do not respond to user-defined health
check [Kub]. Besides, it automates application configuration in the form of service discovery

46

3.2 Bring Your Own Container Pattern (BYOCR)

and secrets. Moreover, it provides a set of APIs that results in custom deployment workflows
such as rolling updates, canary deploys, and blue-green deployments [Hig17].

Moving to Docker Swarm, it is a tool used to cluster, schedule and orchestrate Docker
containers. It enables IT administrators and developers to establish and manage a cluster of
Docker nodes as a single virtual system [Docb]. Figure 3.4 shows the overall architecture of
Docker Swarm. It mainly contains two types of nodes: managers and workers. Applications
here are called services. A node is any machine installed and able to run containers
(services). Manager nodes dispatch units of work to worker nodes. It is possible to have
multiple manager nodes, but they elect one node to be the leader, which will perform all
the orchestration and cluster management tasks. Worker nodes in turn receive and execute
tasks dispatched from manager nodes. By default, manager nodes are also Worker nodes,
yet they can be configured to run manager tasks exclusively and not accept any workload,
therefore be manager-only nodes [Docb]. In order to maintain the desired state of the
cluster, each worker node notifies the state of its tasks to the manager.

Docker Swarm does not enable auto-scaling of services directly. The developer can declare
the number of tasks to run for each service and when manually scaling up or down, the
Swarm manager automatically adapts by adding or removing tasks [Docb]. However, it
provides load balancing capabilities by dividing the workload on the nodes and ensuring
that there are sufficient resources for distributed containers. It also supports service
discovery by assigning each service a unique DNS name and enabling developers to access
services via their names. Moreover, it ensures rolling-back and health checks capabilities.

Figure 3.4: Docker Swarm Architecture [Rai16]

47

4 Evaluation of PaaS Deployment Patterns

In order to validate and evaluate the two introduced patterns in Chapter 3, an effort will
be made to come up with different comparison matrices that indicate which pros and cons
can be gained by applying the two approaches (BYOCD and BYOCR), using Cloud Foundry
and Kubernetes as examples, on different application types. Then, the focus will be on
the case of cloud-native applications in order to deploy a Spring CQRS (Command-Query-
Responsibility-Segregation) application using the two created patterns and discuss the
results. It is important to mention that Cloud Foundry is basically capable of working as a
plain container orchestrator, i.e., Docker containers can be pushed directly to CF. However,
this is not its initial idea (and probably not its strength). Consequently, within this thesis,
CF is only used in its purpose as an application-focused platform.

4.1 Main Application Types

Here, three main application types that may be deployed to the cloud are differenti-
ated: non-cloud-enabled applications, cloud-enabled applications and cloud-native applica-
tions.

4.1.1 Non-Cloud-Enabled Application

A non-cloud-enabled application describes a traditional application that was originally
developed to run in a traditional data center, in a way that makes it not possible to run this
application in a cloud environment. In other words, this application is incapable of running
inside a container, because it has some characteristics, which prevent running it in a cloud
environment (e.g., having multiple processes application, in which all the processes need
to run on one particular host, with a shared file system and a GUI). As a result, a set of
steps have to be done in order to make this kind of applications cloud-enabled [ASL13]. As
an example, a Windows GUI-based application is a non-cloud-enabled application.

4.1.2 Cloud-Enabled Application

A cloud-enabled application is an application that was not originally developed to run in the
cloud, i.e., it was primarily developed to run in a traditional data center. However, it has
characteristics that can be changed or customized in order to run it in a cloud environment

49

4 Evaluation of PaaS Deployment Patterns

[ASL13]. As an example, a legacy Java EE application that is not divided into microservices,
but still can be run as a single process application; is a cloud-enabled application.

4.1.3 Cloud-Native Application

A cloud native application is an application that has already started being developed
specifically for the Cloud [ASL13]. That means that it has been developed with the
cloud principles of multi-tenancy, elastic scaling, statelessness, loose coupling, and easy
integration and administration in its design. As discussed before, in order to facilitate
building and managing this kind of applications, a number of identified principles and rules
have been defined and referred to as 12-factor app [Twe].

4.2 Matrices of Comparison

Taking into consideration the three mentioned application types, the following matrices
that summarize the pros and cons of deploying those applications to both Cloud Foundry
and Kubernetes are concluded:

Figure 4.1: Comparison Matrix of Non-cloud-enabled Applications

Figure 4.2: Comparison Matrix of Cloud-enabled Applications

50

4.2 Matrices of Comparison

Figure 4.3: Comparison Matrix of Cloud-native Applications

Figure 4.4: Comparison Matrix of Cloud-native Applications - Continued

51

4 Evaluation of PaaS Deployment Patterns

Figure 4.5: Comparison Matrix of Cloud-native Applications - Continued

4.3 Deploying a Sample CQRS Application Using the Two
Patterns

A cloud-native sample application has been used in order to validate the two patterns, via
deploying it into Cloud Foundry and Kubernetes. The CQRS Spring application consists
mainly of three microservices, a service registry, and two backing services. The three
microservices are: ToDoCommandService, ToDoQueryService, and ToDoUIService. The two
backing services include RabbitMQ and MySQL. The interactions between the microservices
are managed using a ToDoServiceRegistry. The microservices use the service registry in
order to register themselves and look up other services, with which they can communicate
directly. The ToDoCommandService uses a RabbitMQ service as a message broker in order
to manage the messages in a queue. The ToDoQueryService in turn uses a MySQL service
in order to store the ToDoList and update the database whenever a command has been
processed. The overall architecture of the cloud-native application is shown in Figure 4.6.

52

4.3 Deploying a Sample CQRS Application Using the Two Patterns

Figure 4.6: Sample Cloud-Native App Architecture

4.3.1 Deploying the Sample App to CF

Throughout this practical example, Pivotal Cloud Foundry is used, as it is the easiest
available version. In order to deploy the sample CQRS application to PCF, multiple steps
are needed. Within this section, the required steps are outlined in detail. As a tool that
facilitates running PCF locally, PCF Dev is used. As an example of the necessary commands,
the commands performed on the ToDoQueryService are described.

The first step to be performed, is to configure the application properties in the applica-
tion.yml file for each of the microservices and the service registry in a suitable way, in order
to manage registering the application into the service registry.

Next, the dependency tree should be framed and the needed components, of each of
the microservices as well as the service registry, should be downloaded by executing the
following Maven command:

mvn clean install

The following step that should be done is to login to PCF locally and push each of the
microservices and the service registry using the created jar file after performing the previous
step. The following cmd commands are used in order to push the ToDoQueryService as an
example:

53

4 Evaluation of PaaS Deployment Patterns

cf login -a https://api.local.pcfdev.io –skip-ssl-validation

cf push ToDoQueryService -m 1G -p target\ToDoQueryService-0.0.1-SNAPSHOT.jar

An important step now is to create the backing services, bind them to the related mi-
croservices and restage the application in order to make the change effective. As an
example, the cmd commands used in order to create the MySQL service and bind it to the
ToDoQueryService are shown here:

cf marketplace

cf create-service p-mysql 512mb my_mysql

cf bind-service ToDoQueryService my_mysql

cf restage ToDoQueryService

It is important to mention that the previous steps of pushing an application to cloud
foundry, can also be done by providing a manifest.yml configuration file, which defines the
deployment options to be used.

Afterwards, the created services and pushed applications can be checked using the following
cmd commands:

cf services

cf apps

Ultimately, after pushing the applications, creating the services and binding them to the
suitable applications, the desired application can be reached for using in the Browser.

The deployed CQRS application into Cloud Foundry has been tested successfully against
the following features:

• Recovery by a microservice failure

• Recovery by a backing service failure

• Debugging and Logging

• Horizontal and Vertical manual-scaling

54

4.3 Deploying a Sample CQRS Application Using the Two Patterns

4.3.2 Deploying the Sample App to Kubernetes

Within this section, the various steps, which are needed in order to deploy the sample
CQRS application to K8s are described in detail. As a tool that facilitates running Kubernetes
locally, Minikube is used. As an example of the necessary commands, the commands
performed on the ToDoQueryService are outlined.

The first important step is to write a Dockerfile for each of the microservices and the service
registry. These files contain the commands that will be used in order to build Images, which
in turn will produce containers when they are run. Listing 4.1 shows an example of the
Dockerfile of the ToDoQueryService:

1. The image inherits from openjdk, the Docker official base image for Java.

2. A new directory is created.

3. The current directory is changed to the created directory to run next commands.

4. The compiled binary (jar file) is copied to the working directory in the container.

5. Finally, the runnable jar file is executed.

1 FROM openjdk:8−alpine
2 RUN mkdir −p /opt/ToDoQueryService
3 WORKDIR /opt/ToDoQueryService
4 COPY target/ToDoQueryService−0.0.1−SNAPSHOT.jar /opt/ToDoQueryService
5 CMD ["java", "−Dspring.profiles. active=k8s", "−jar",

"ToDoQueryService−0.0.1−SNAPSHOT.jar"]

Listing 4.1: The Dockerfile of the ToDoQueryService

Another important and critical step now is to create the Service and Deployment Yaml
configuration files for each of the microservices, the service registry as well as the backing
services. These files contain a lot of necessary information for creating containers such as
objects metadata, networking info, the used container image, resources requests and the
information needed to connect the applications and the services together. Listing 4.2 shows
an example of the Service.yml file of the ToDoQueryService.

55

4 Evaluation of PaaS Deployment Patterns

1 apiVersion: v1
2 kind: Service
3 metadata:
4 namespace: todo−cn−app
5 name: todoqueryservice
6 labels:
7 app: todoqueryservice
8 spec:
9 type: NodePort

10 ports:
11 - port: 9082
12 name: todoqueryservice
13 targetPort: 9082
14 selector :
15 app: todoqueryservice
16 type: NodePort

Listing 4.2: The Service.yml File of the ToDoQueryService

Next, the application properties in the application.yml file should be configured in a suitable
way depending on the deployment.yml files of the microservices, the service registry and
the backing services, in order to manage registering the application into the service registry
and accessing the backing services.

The following step that should be performed is to frame the dependency tree and download
the needed components for each of the microservices as well as the service registry via
executing the following Maven command:

mvn clean install

Then, a Docker image should be built for each microservice using its Dockerfile. The follow-
ing cmd command is used to build the image of the ToDoQueryService as an example:

docker build -t todoqueryservice .

After that, the created images are pushed into a Docker registry using the following cmd
commands:

docker login

docker push todoqueryservice

Within this practical example, the public Docker registry Docker Hub is used. However,
this is not recommended for productive usage, because the operations team can not have
control over this public registry.

56

4.4 Conclusion

Afterwards, the configuration changes are pushed to the K8s cluster and the resources are
created using the following cmd command for each of the constructed Yaml files:

kubectl apply -f cloud-native-todo-sample\ToDoQueryService\deployment.yml

Later on, the created pods and services can be checked using the following cmd com-
mands:

kubectl get pods –namespace todo-cn-app

kubectl get services –namespace todo-cn-app

Finally, after creating the pods and exposing the services, the desired application can be
reached for using in the Browser.

The deployed CQRS application into Kubernetes has been tested successfully against the
following features:

• Recovery by a microservice failure

• Recovery by a backing service failure

• Debugging and Logging

• Horizontal and Vertical manual-scaling

• Horizontal auto-scaling

4.4 Conclusion

Following the comparison matrices and the deployment of the sample CQRS application,
the several parts that constitute each of the two patterns (BYOCD and BYOCR) have been
validated and evaluated.

As a summary to what has been experienced during building up the comparison matri-
ces and going through the various steps to deploy the sample application; the runtime-
dependencies comprise the main component of the BYOCD solution, in which the developer
uploads the application code and asks the platform to take care of everything else in order
to run it. Nevertheless, the container images shape the major ingredient of the BYOCR
solution, in which the developer uploads the application container and asks the platform to
run it in the way he or she wants.

Furthermore, it can be concluded that the responsibility of the developer becomes less
and less in the BYOCD pattern, such that he or she can focus on the application business
code. This in turn leads to less operating complexity, more usability and less chance

57

4 Evaluation of PaaS Deployment Patterns

of human error, counter to the BYOCR pattern. However, the flexibility to support any
runtime dependency and the portability of container images is much higher with following
the BYOCR pattern. Both patterns support scalability, load balancing, auto-recovery and
zero-downtime deployments.

58

5 Discussion and Future Work

This final chapter summarizes the previous research and contributions of this work. More-
over, it discusses the results and concludes a decision tree that guides the choice of the
proper pattern and platform. Ultimately, it provides possible further research in the
future.

5.1 Summary

Studying and analyzing the various cloud deployment approaches, has gained a noticeable
attention by enterprises these days. They are seeking to reach a knowledge about the main
differences between the different deployment approaches and their major advantages and
disadvantages. Furthermore, they aspire to have some beneficial guidelines that advise
them about choosing one approach over the other. However, the world of IT today lacks the
existence of a scientific research that studies, analyzes and outlines the multiple deployment
approaches along with their different technologies in general solutions, and discusses the
considerable differences and factors that may lead the decision to follow one of them over
the other.

In order to fill the mentioned gap, this thesis has been introduced. A systematic literature
review that investigates the state of the art approaches and technologies used to enable
PaaS deployments in a thorough and unbiased manner has been conducted in Chapter 2.
Proceeding from the results of the achieved SLR process, a scientific authoring, docu-
mentation and description of two new deployment patterns (BYOCD and BYOCR) have
been outlined in Chapter 3. With a view to validate and evaluate the described patterns
and considering the three different application types that may be deployed to the cloud
(non-cloud-enabled, cloud-enabled and cloud-native applications), multiple comparison
matrices that consider various aspects when applying the two patterns using CF and K8s
as examples, have been concluded in Section 4.2, and the deployment of a sample CQRS
application utilizing the two patterns has been accomplished in Section 4.3

5.2 Discussion

On the whole, it can be concluded that non of the approaches is the best or the most robust
in general. The two approaches offer different choices with respect to various aspects such
as developer responsibility, potential vulnerabilities, runtime support, backing services,

59

5 Discussion and Future Work

manual and auto-scaling, load balancing, auto-recovery, and zero-downtime deployment. It
always depends on the enterprise needs, the application type and the technical and business
considerations. However, a useful hint can be suggested in order to help enterprises enclose
the factors that may affect their decision to follow the most suitable approach that achieves
their application needs perfectly. The working team should always look at the project in
hand and the problem they are solving and ask some questions such as:

• What is the type of application that is being dealt with? Is it a non-cloud-enabled,
cloud-enabled or cloud-native application?

When the application is non-cloud-enabled, then some work should be done in
order to make it run in a container and the tendency here is toward the BYOCR
pattern. Nevertheless, when the application is cloud-enabled, a discussion about its
statefulness should be done. If it is stateful, then the orientation is to use BYOCR
pattern. If it is stateless or a cloud-native application, then further investigation
should be done answering the next questions.

• Is the required time in order to accomplish the deployment short, such that less
responsibility and configuration complexity, less chance of human error and more
ease of deployment have to be assigned to the developer?

When the time to deliver is relatively short, then the complexity of the solution and
the chance of human error should be low, which heads to the use of the BYOCD
pattern. However, further discussion regarding the backing services and runtime
support aspects has to be taken into consideration.

• Does the project need runtime dependencies, which are not provided as buildpacks
by the platform or in the marketplace? If yes, does the enterprise intend to spend
time on building custom buildpacks?

When the project in hand requires runtime dependencies, which are not provided as
buildpacks out there and the enterprise does not intend to spend time on customizing
new buildpacks; then the propensity is to follow the BYOCR pattern. Otherwise,
further consideration has to be done answering the next questions.

• Are the required backing services provided as cloud services by the platform?

This question affects mainly the choice of the specific technology or platform to use.
Weather a developer tends to use a provided service, link to external services provided
by other platforms, provide the service as a user-provided service or package it in a
container, depends on the capabilities that each platform offers.

• Is auto-scaling as an OOTB feature a critical aspect for the project?

This question also does not affect directly the use of one of the patterns over the
other. However, it affects the tendency to choose one platform over the other. For
example, when the enterprise tends to use an out-of-the-box auto-scaling feature that
can be used directly, then an evaluation of the various Cloud Foundry options should
be done.

60

5.2 Discussion

• Does the project need blue/green deployment as an OOTB feature?

In this question as well, a decision to use one of the patterns over the other can
not be properly made. A more convenient decision will be made depending on
the capabilities of different platforms. For example, K8s provides more granular
configuration options, which can not be done using CF. However, these options have
not been covered within this thesis.

At the end, answering some critical questions such as the ones described above and
following the resulted comparison matrices presented in Section 4.2, a proper decision can
be made to utilize one of the two patterns using the most suitable platform. Figure 5.1
shows a decision tree, which summarizes the questions that should be asked and the paths
that should be followed depending on the answers to those questions; in order to take
the right decision to follow one of the patterns or evaluate various platforms within those
patterns and choose the most suitable one.

Type of
App BYOCRStateful?BYOCR

Time to
deliver
short?

BYOCD

Need
runtime-

dependencies
not provided

as
buildpacks?

Intend to
spend time

on new
buildpacks?

BYOCR

Evaluation of various platforms re-
garding auto-scaling, backing ser-

vices and zero-downtime deployment

Cloud-native App

Non-cloud-enabled App

Cloud-enabled AppYes

No

Yes

No

YesNo

NoYes

Figure 5.1: BYOCD or BYOCR Decision Tree

61

5 Discussion and Future Work

5.3 Future Work

Within this thesis, the security concerns have been discarded. This security aspect may
constitute by itself a further research sector. Since security issues are some of the biggest
concerns in cloud computing, it is important to analyze this challenge in detail within the
two patterns and compare the two approaches with respect to that aspect.

Another interesting aspect to address, is the portability of the application from one pattern
to the other. Even more motivating is to also study the portability of the application within
the same pattern, but between different platforms and technologies. This will raise new
questions regarding the steps to be done when converting a containerized application into
application code with a suitable buildpack and vise versa. Moreover, it will pave the way
to analyze situations in which an application may be moved between different runtime
environments and study the challenges resulting from such a decision. Consequently, the
portability aspect could be a starting point for further research.

Another research opportunity appears in the context of the effect of the application design
patterns on the tendency toward choosing one of the introduced patterns in Chapter 3 over
the other. This is a motivating aspect that should be studied in the future.

Furthermore, the serverless concept, its effect on the two introduced approaches and the
possibility to support it within them, could be taken as a starting point for further research
opportunity.

Ultimately, the research area of PaaS deployment approaches and technologies is quite
interesting and the number of yearly publications might still increase over the next years.
Therefor, a steady change in the whole culture may occur; bringing along new platforms,
strategies and technologies. This in turn may have its effect on the introduced work and
should be taken into consideration in the future.

62

Appendices

63

A Appendix

Item Id Item Value
DE1 Title Cloud-Based Development

Environments: PaaS
DE2 Year 2016
DE3 Author(s) Mehmet Aydin and Nazim

Perdahci and Bahadir Ode-
vci

DE4 organization Kadir Has University, Mi-
mar Sinan Fine Arts Univer-
sity, Imonacloud.com

DE5 Country of study Turkey
DE6 PaaS concepts & ap-

proaches
application runtime envi-
ronments, database system
and middleware

DE7 PaaS development & de-
ployment technologies

Google App Engine, Mi-
crosoft Azure

Table A.1: Filled Data Extraction Form for [APO16]

65

A Appendix

Item Id Item Value
DE1 Title Cloud Computing: Char-

acteristics and Deployment
Approaches

DE2 Year 2011
DE3 Author(s) Z. Mahmood
DE4 organization University of Derby (School

of Computing & Mathemat-
ics)

DE5 Country of study UK
DE6 PaaS concepts & ap-

proaches
runtime environment

DE7 PaaS development & de-
ployment technologies

Google App Engine,
Heroku, Engine Yard

Table A.3: Filled Data Extraction Form for [Mah11]

Item Id Item Value
DE1 Title A Container-Based Edge

Cloud PaaS Architecture
Based on Raspberry Pi Clus-
ters

DE2 Year 2016
DE3 Author(s) C. Pahl and S. Helmer and

L. Miori and J. Sanin and B.
Lee

DE4 organization Free University of Bozen-
Bolzano, Athlone Institute
of Technology

DE5 Country of study Italy, Ireland
DE6 PaaS concepts & ap-

proaches
Containers, application
packaging and orchestra-
tion

DE7 PaaS development & de-
ployment technologies

Cloud Foundry, Docker,
Rocket, Kubernetes

Table A.2: Filled Data Extraction Form for [PHM+16]

66

Item Id Item Value
DE1 Title Overview and analysis of

cloud computing research
and application

DE2 Year 2011
DE3 Author(s) Y. Chen and X. Li and F.

Chen
DE4 organization Shanghai University

(School of Management)
DE5 Country of study China
DE6 PaaS concepts & ap-

proaches
–

DE7 PaaS development & de-
ployment technologies

Saleforce AppExchange,
Google App Engine

Table A.4: Filled Data Extraction Form for [CLC11]

Item Id Item Value
DE1 Title Optimal Multitenant De-

signs for Cloud Apps
DE2 Year 2011
DE3 Author(s) S. Bobrowski
DE4 organization salesForce
DE5 Country of study USA
DE6 PaaS concepts & ap-

proaches
container in which you sim-
ply deploy your app

DE7 PaaS development & de-
ployment technologies

Heroku

Table A.5: Filled Data Extraction Form for [Bob11]

67

A Appendix

Item Id Item Value
DE1 Title What are Developers’ Pref-

erences on Platform as a
Service? An Empirical In-
vestigation

DE2 Year 2013
DE3 Author(s) A. Giessmann and K.

Stanoevska-Slabeva
DE4 Organization University of St.Gallen,

SAP Research Center St.
Gallen

DE5 Country of study Switzerland
DE6 PaaS concepts & ap-

proaches
container platform, execu-
tion environment

DE7 PaaS development & de-
ployment technologies

Google’s App Engine

Table A.6: Filled Data Extraction Form for [GS13]

Item Id Item Value
DE1 Title Characterizing and Evalu-

ating Different Deployment
Approaches for Cloud Ap-
plications

DE2 Year 2014
DE3 Author(s) J. Wettinger and V. An-

drikopoulos and S. Strauch
and F. Leymann

DE4 organization University of Stuttgart (In-
stitute of Architecture of
Application Systems)

DE5 Country of study Germany
DE6 PaaS concepts & ap-

proaches
Cloud-enabled middleware
solutions

DE7 PaaS development & de-
ployment technologies

Cloud Foundry, Google App
Engine, Amazon Elastic
Beanstalk

Table A.7: Filled Data Extraction Form for [WASL14]

68

Item Id Item Value
DE1 Title PaaS: New Opportunities

for Cloud Application De-
velopment

DE2 Year 2013
DE3 Author(s) B. Cohen
DE4 organization Luth Computer Specialists
DE5 Country of study USA
DE6 PaaS concepts & ap-

proaches
–

DE7 PaaS development & de-
ployment technologies

Cloud Foundry, Azure,
OpenShift, Heroku, Google
App Engine, SalesForce
Cloud

Table A.8: Filled Data Extraction Form for [Coh13]

Item Id Item Value
DE1 Title Overview of PaaS and SaaS

and its application in cloud
computing

DE2 Year 2016
DE3 Author(s) A. Singh and S. Sharma

and S. R. Kumar and S. A.
Yadav

DE4 organization AMITY UNIVERSITY (De-
partment of Electronics &
Communication Engineer-
ing, Department of Com-
puter Science & Engineer-
ing, Department of Infor-
mation Technology)

DE5 Country of study India
DE6 PaaS concepts & ap-

proaches
execution environment

DE7 PaaS development & de-
ployment technologies

–

Table A.9: Filled Data Extraction Form for [SSKY16]

69

A Appendix

Item Id Item Value
DE1 Title Microservices Architecture

Based Cloudware Deploy-
ment Platform for Service
Computing

DE2 Year 2016
DE3 Author(s) D. Guo and W. Wang and G.

Zeng and Z. Wei
DE4 organization Tongji University (Depart-

ment of Computer Science
and Technology), Tongji
Branch National Engineer-
ing & Technology Center of
High Performance, The Key
Laboratory of Embedded
System and Service Com-
puting

DE5 Country of study China
DE6 PaaS concepts & ap-

proaches
Containerization

DE7 PaaS development & de-
ployment technologies

Docker, Amazon EC2,
Google App Engine

Table A.10: Filled Data Extraction Form for [GWZW16]

70

Item Id Item Value
DE1 Title Towards a full-stack devops

environment (platform-as-
a-service) for cloud-hosted
applications

DE2 Year 2017
DE3 Author(s) Z. Li and Y. Zhang and Y.

Liu
DE4 organization Tsinghua University

(School of Software)
DE5 Country of study China
DE6 PaaS concepts & ap-

proaches
DevOps environments,
Container

DE7 PaaS development & de-
ployment technologies

Google App Engine, Google
Borg, Docker, Cloud
Foundry, Hadoop YARN,
AWS Elastic Beanstalk,
Microsoft Azure, Google
Kubernetes, Heroku

Table A.11: Filled Data Extraction Form for [LZL17]

Item Id Item Value
DE1 Title Dynamic Tailoring and

Cloud-Based Deployment
of Containerized Service
Middleware

DE2 Year 2015
DE3 Author(s) S. G. Sáez and V. An-

drikopoulos and R. J.
Sánchez and F. Leymann
and J. Wettinger

DE4 organization University of Stuttgart (In-
stitute of Architecture of
Application Systems)

DE5 Country of study Germany
DE6 PaaS concepts & ap-

proaches
containers, middleware as
a service

DE7 PaaS development & de-
ployment technologies

Docker, AWS Beanstalk,
Google App Engine, Mi-
crosoft Azure

Table A.12: Filled Data Extraction Form for [SAS+15]

71

A Appendix

Item Id Item Value
DE1 Title Docker container security

via heuristics-based multi-
lateral security-conceptual
and pragmatic study

DE2 Year 2016
DE3 Author(s) A. R. Manu and J. K. Pa-

tel and S. Akhtar and V.
K. Agrawal and K. N. B. S.
Murthy

DE4 organization Electronic city
(MTech(IIIT), CORI-ISE
Dept), Cisco Systems

DE5 Country of study India
DE6 PaaS concepts & ap-

proaches
container as a service, secu-
rity, lightweight container
virtualization

DE7 PaaS development & de-
ployment technologies

Docker, Kubernetes

Table A.13: Filled Data Extraction Form for [MPA+16b]

72

Item Id Item Value
DE1 Title A Performance Isolation

Analysis of Disk-Intensive
Workloads on Container-
Based Clouds

DE2 Year 2015
DE3 Author(s) M. G. Xavier and I. C. D.

Oliveira and F. D. Rossi and
R. D. D. Passos and K. J.
Matteussi and C. A. F. D.
Rose

DE4 organization Pontifical Catholic Univer-
sity of Rio Grande do Sul
(PUCRS) (Faculty of Infor-
matics)

DE5 Country of study Brazil
DE6 PaaS concepts & ap-

proaches
containers, container-
based architecture, Perfor-
mance

DE7 PaaS development & de-
ployment technologies

Docker

Table A.14: Filled Data Extraction Form for [XOR+15]

Item Id Item Value
DE1 Title Containerization and the

PaaS Cloud
DE2 Year 2015
DE3 Author(s) C. Pahl
DE4 organization Irish Centre for Cloud Com-

puting and Commerce
DE5 Country of study Ireland
DE6 PaaS concepts & ap-

proaches
Containers, lightweight
virtualization, container-
based application deploy-
ment, cluster orchestration,
Lightweight Virtualization,
Application Packaging

DE7 PaaS development & de-
ployment technologies

Docker, Garden/Warden,
Diego, Cloud Foundry,
OpenShift, Azure, Heroku,
Mesos, Kubernetes

Table A.15: Filled Data Extraction Form for [Pah15]

73

A Appendix

Item Id Item Value
DE1 Title A study, analysis and deep

dive on cloud PAAS secu-
rity in terms of Docker con-
tainer security

DE2 Year 2016
DE3 Author(s) A. R. Manu and J. K. Pa-

tel and S. Akhtar and V.
K. Agrawal and K. N. B. S.
Murthy

DE4 organization Electronic city
(MTech(IIIT), CORI-ISE
Dept), Cisco Systems

DE5 Country of study India
DE6 PaaS concepts & ap-

proaches
containers, security, Cluster
management

DE7 PaaS development & de-
ployment technologies

Docker, Google compute
engine, Amazon EC2, Ku-
bernetes, Cloud Foundry,
OpenShift

Table A.16: Filled Data Extraction Form for [MPA+16a]

Item Id Item Value
DE1 Title Dynamically Compiled Arti-

fact Sharing for Clouds
DE2 Year 2017
DE3 Author(s) P. Patros and D. Dilli and K.

B. Kent and M. Dawson
DE4 organization University of New

Brunswick, IBM Canada
DE5 Country of study Canada
DE6 PaaS concepts & ap-

proaches
upload and write your
code, upload your own
OS image, containers,
lightweight virtualization

DE7 PaaS development & de-
ployment technologies

Docker, Cloud Foundry,
IBM Bluemix, Pivotal

Table A.17: Filled Data Extraction Form for [PDKD17]

74

Item Id Item Value
DE1 Title Building safe PaaS clouds:

A survey on security in mul-
titenant software platforms

DE2 Year 2012
DE3 Author(s) Luis Rodero-Merino and

Luis M. Vaquero and Eddy
Caron and Adrian Muresan
and Frédéric Desprez

DE4 organization UMR CNRS, SysFera,
Universidad Polite´cnica
de Madrid (Facultad de
Informa´tica), Hewlett-
Packard Labs

DE5 Country of study France, Spain, UK
DE6 PaaS concepts & ap-

proaches
container platform, secu-
rity

DE7 PaaS development & de-
ployment technologies

Google App Engine

Table A.18: Filled Data Extraction Form for [RVC+12]

Item Id Item Value
DE1 Title A Review of Major Security

Issues in Cloud Computing
DE2 Year 2016
DE3 Author(s) Mitesh Sharma
DE4 organization JIET College of Engineer-

ing (Department of CSE)
DE5 Country of study India
DE6 PaaS concepts & ap-

proaches
security, portability

DE7 PaaS development & de-
ployment technologies

Google App Engine, Win-
dows Azure

Table A.19: Filled Data Extraction Form for [Sha16]

75

A Appendix

Item Id Item Value
DE1 Title Serverless Computing: Cur-

rent Trends and Open Prob-
lems

DE2 Year 2017
DE3 Author(s) I. Baldini and P. Castro and

K. Chang and P. Cheng and
others

DE4 organization IBM Research, Bentley Uni-
versity

DE5 Country of study Australia, USA
DE6 PaaS concepts & ap-

proaches
Function-as-a-Service,
serverless platforms

DE7 PaaS development & de-
ployment technologies

OpenLambda, Project
Kratos, Cloud Foundry,
Docker

Table A.20: Filled Data Extraction Form for [BCC+17]

Item Id Item Value
DE1 Title Cloud Computing Platform

Based on the Docker
DE2 Year 2016
DE3 Author(s) Z. WANG and L. XUE and Y.

LUO
DE4 organization Anhui Sun Create Elec-

tronic Co., Hefei University
of Technology (Computer
College)

DE5 Country of study China
DE6 PaaS concepts & ap-

proaches
lightweight container en-
gine

DE7 PaaS development & de-
ployment technologies

Docker

Table A.21: Filled Data Extraction Form for [WXL16]

76

Item Id Item Value
DE1 Title Virtualization in Cloud

Computing
DE2 Year 2016
DE3 Author(s) P. Thakur and M. Mahajan
DE4 organization CGC College of Engineer-

ing Landran (CSE Depart-
ment)

DE5 Country of study India
DE6 PaaS concepts & ap-

proaches
–

DE7 PaaS development & de-
ployment technologies

Force.com, Google Apps,
Microsoft Azure

Table A.22: Filled Data Extraction Form for [TM16]

Item Id Item Value
DE1 Title A Business Driven Scalable

Cloud Computing Service
Platform (PaaSXpert)

DE2 Year 2017
DE3 Author(s) A. Sreeramaneni and B.

Seo and K. Chan
DE4 organization Crossent Inc., Seoul Na-

tional University of Science
& Technology

DE5 Country of study Korea
DE6 PaaS concepts & ap-

proaches
performance, scalability,
use your own code

DE7 PaaS development & de-
ployment technologies

cloud foundry, BOSH, IBM
Bluemix, Pivotal, Open-
Shift

Table A.23: Filled Data Extraction Form for [SSC17]

77

A Appendix

Item Id Item Value
DE1 Title FUJITSU Cloud Service K5

PaaS Digitalizes Enterprise
Systems

DE2 Year 2017
DE3 Author(s) O. Matsumoto and K.

Kawai and T. Takeda
DE4 organization Fujitsu
DE5 Country of study Japan
DE6 PaaS concepts & ap-

proaches
Container

DE7 PaaS development & de-
ployment technologies

Cloud Foundry

Table A.24: Filled Data Extraction Form for [MKT17]

Item Id Item Value
DE1 Title Smuggling Multi-Cloud

Support into Cloud-native
Applications using Elastic
Container Platforms

DE2 Year 2017
DE3 Author(s) Nane Kratzke
DE4 organization Lübeck University of Ap-

plied Sciences
DE5 Country of study Germany
DE6 PaaS concepts & ap-

proaches
Elastic container platforms,
Cloud-native applications,
container cluster

DE7 PaaS development & de-
ployment technologies

Kubernetes, Docker Swarm,
Apache Mesos

Table A.25: Filled Data Extraction Form for [Kra17]

78

Item Id Item Value
DE1 Title Building Software Defined

Systems on HPC and
Clouds

DE2 Year 2017
DE3 Author(s) Hyungro Lee
DE4 organization Indiana University (School

of Informatics and Comput-
ing)

DE5 Country of study USA
DE6 PaaS concepts & ap-

proaches
Container Technology,
Functions-as-a-Service

DE7 PaaS development & de-
ployment technologies

Docker

Table A.26: Filled Data Extraction Form for [Lee17]

Item Id Item Value
DE1 Title Performance Comparison

between Light Weight Vir-
tualization Using Docker
and Heavy Weight Virtual-
ization

DE2 Year 2017
DE3 Author(s) V. Gupta and K. Kaur and S.

Kaur
DE4 organization U-Net Solutions, AD Col-

lege (Computer Science
and Applications)

DE5 Country of study India
DE6 PaaS concepts & ap-

proaches
lightweight container tech-
nology

DE7 PaaS development & de-
ployment technologies

Docker

Table A.27: Filled Data Extraction Form for [GKK17]

79

B Appendix

Year Num. PaaS Related Studies
2011 3
2012 1
2013 2
2014 1
2015 3
2016 9
2017 8

Table B.1: Filled Data Synthesis Form for RQ1

81

B Appendix

Table
B

.2:
Filled

D
ata

Synthesis
Form

for
R

Q
2

Stu
dy

A
u

thors
In

stitu
tion

C
ou

n
try

of
In

sti-
tu

tion
[A

PO
16]

M
.A

ydin
N

.Perdahci
B

.O
devci

K
adir

H
as

U
niversity

M
im

ar
Sinan

Fine
A

rts
U

niversity
Im

onacloud.com

Turkey

[PH
M

+
16]

C
.Pahl

S.H
elm

er
L.M

iori
J.Sanin
B

.Lee

Free
U

niversity
ofB

ozen-B
olzano

Free
U

niversity
ofB

ozen-B
olzano

Free
U

niversity
ofB

ozen-B
olzano

Free
U

niversity
ofB

ozen-B
olzano

A
thlone

Institute
ofTechnology

Italy
Italy
Italy
Italy
Ireland

[M
ah11]

Z.M
ahm

ood
U

niversity
ofD

erby
(SchoolofC

om
puting

&
M

athem
atics)

U
K

[C
LC

11]
Y.C

hen
X

.Li
F.C

hen

ShanghaiU
niversity

(SchoolofM
anagem

ent)
C

hina

[B
ob11]

S.B
obrow

ski
salesForce

U
SA

[G
S13]

A
.G

iessm
ann

K
.Stanoevska-Slabeva

U
niversity

ofSt.G
allen

SA
P

R
esearch

C
enter

St.
G

allen
Sw

itzerland

[W
A

SL14]
J.W

ettinger
V.A

ndrikopoulos
S.Strauch
F.Leym

ann

U
niversity

of
Stuttgart

(Institute
of

A
rchitecture

of
A

pplica-
tion

System
s)

G
erm

any

[C
oh13]

B
.C

ohen
Luth

C
om

puter
Specialists

U
SA

82

St
u

dy
A

u
th

or
s

In
st

it
u

ti
on

C
ou

n
tr

y
of

In
st

i-
tu

ti
on

[S
SK

Y1
6]

A
.S

in
gh

S.
Sh

ar
m

a
S.

R
.K

um
ar

S.
A

.Y
ad

av

A
M

IT
Y

U
N

IV
ER

SI
T

Y
(D

ep
ar

tm
en

t
of

El
ec

tr
on

ic
s

&
C

om
m

u-
ni

ca
ti

on
En

gi
ne

er
in

g)
A

M
IT

Y
U

N
IV

ER
SI

T
Y

(D
ep

ar
tm

en
t

of
El

ec
tr

on
ic

s
&

C
om

m
u-

ni
ca

ti
on

En
gi

ne
er

in
g)

A
M

IT
Y

U
N

IV
ER

SI
T

Y
(D

ep
ar

tm
en

t
of

C
om

pu
te

r
Sc

ie
nc

e
&

En
gi

ne
er

in
g)

A
M

IT
Y

U
N

IV
ER

SI
T

Y
(D

ep
ar

tm
en

t
of

In
fo

rm
at

io
n

Te
ch

no
l-

og
y)

In
di

a

[G
W

ZW
16

]
D

.G
uo

W
.W

an
g

G
.Z

en
g

Z.
W

ei

To
ng

ji
U

ni
ve

rs
it

y
(D

ep
ar

tm
en

to
fC

om
pu

te
rS

ci
en

ce
an

d
Te

ch
-

no
lo

gy
)

C
hi

na

[L
ZL

17
]

Z.
Li

Y.
Zh

an
g

Y.
Li

u

Ts
in

gh
ua

U
ni

ve
rs

it
y

(S
ch

oo
lo

fS
of

tw
ar

e)
C

hi
na

[S
A

S+
15

]
S.

G
.S

áe
z

V.
A

nd
ri

ko
po

ul
os

R
.J

.S
án

ch
ez

F.
Le

ym
an

n
J.

W
et

ti
ng

er

U
ni

ve
rs

it
y

of
St

ut
tg

ar
t

(I
ns

ti
tu

te
of

A
rc

hi
te

ct
ur

e
of

A
pp

lic
a-

ti
on

Sy
st

em
s)

G
er

m
an

y

[M
PA

+
16

b]
A

.R
.M

an
u

J.
K

.P
at

el
S.

A
kh

ta
r

V.
K

.A
gr

aw
al

K
.N

.B
.S

.M
ur

th
y

C
O

R
I-

IS
E

D
ep

t
El

ec
tr

on
ic

ci
ty

El
ec

tr
on

ic
ci

ty
PE

SI
T

V
TU

C
is

co
Sy

st
em

s
C

O
R

I
IS

E
D

ep
t,

PE
SI

T,
El

ec
tr

on
ic

ci
ty

PE
S

U
ni

ve
rs

it
y

In
di

a

83

B Appendix

Stu
dy

A
u

thors
In

stitu
tion

C
ou

n
try

of
In

sti-
tu

tion
[XO

R
+

15]
M

.G
.X

avier
I.O

liveira
F.R

ossi
R

.Passos
K

.M
atteussi

C
.D

.R
ose

PontificalC
atholic

U
niversity

of
R

io
G

rande
do

Sul(Faculty
ofInform

atics)
B

razil

[Pah15]
C

.Pahl
Irish

C
entre

for
C

loud
C

om
puting

and
C

om
m

erce
Ireland

[M
PA

+
16a]

A
.R

.M
anu

J.K
.Patel

S.A
khtar

V.K
.A

graw
al

K
.N

.B
.S.M

urthy

C
O

R
I-ISE

D
ept

Electronic
city

Electronic
city

PESIT
V

TU
C

isco
System

s
C

O
R

I
ISE

D
ept,PESIT,Electronic

city
PES

U
niversity

India

[PD
K

D
17]

P.Patros
D

.D
illi

K
.B

.Kent
M

.D
aw

son

U
niversity

ofN
ew

B
runsw

ick
U

niversity
ofN

ew
B

runsw
ick

U
niversity

ofN
ew

B
runsw

ick
IB

M
C

anada

C
anada

[RV
C

+
12]

Luis
R

odero-M
erino

Luis
M

.Vaquero
Eddy

C
aron

A
drian

M
uresan

Frédéric
D

esprez

U
M

R
C

N
R

S,U
niversidad

Polite´cnica
de

M
adrid

H
ew

lett-Packard
Labs

U
M

R
C

N
R

S,SysFera
U

M
R

C
N

R
S

U
M

R
C

N
R

S,SysFera

France,Spain
U

K
France
France
France

[Sha16]
M

itesh
Sharm

a
JIET

C
ollege

ofEngineering
(D

epartm
ent

ofC
SE)

India

84

St
u

dy
A

u
th

or
s

In
st

it
u

ti
on

C
ou

n
tr

y
of

In
st

i-
tu

ti
on

[B
C

C
+

17
]

V.
Is

ha
ki

an
I.

B
al

di
ni

P.
C

as
tr

o
K

.C
ha

ng
P.

C
he

ng
ot

he
rs

B
en

tl
ey

U
ni

ve
rs

it
y

IB
M

R
es

ea
rc

h
IB

M
R

es
ea

rc
h

IB
M

R
es

ea
rc

h
IB

M
R

es
ea

rc
h

IB
M

R
es

ea
rc

h

U
SA

A
us

tr
al

ia
A

us
tr

al
ia

A
us

tr
al

ia
A

us
tr

al
ia

A
us

tr
al

ia
[W

X
L1

6]
Z.

W
A

N
G

L.
X

U
E

Y.
LU

O

A
nh

ui
Su

n
C

re
at

e
El

ec
tr

on
ic

C
o.

H
ef

ei
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy
(C

om
pu

te
r

C
ol

le
ge

)
A

nh
ui

Su
n

C
re

at
e

El
ec

tr
on

ic
C

o.

C
hi

na

[T
M

16
]

P.
Th

ak
ur

M
.M

ah
aj

an
C

G
C

C
ol

le
ge

of
En

gi
ne

er
in

g
La

nd
ra

n
(C

SE
D

ep
ar

tm
en

t)
In

di
a

[S
SC

17
]

A
.S

re
er

am
an

en
i

B
.S

eo
K

.C
ha

n

C
ro

ss
en

t
In

c.
C

ro
ss

en
t

In
c.

Se
ou

lN
at

io
na

lU
ni

ve
rs

it
y

of
Sc

ie
nc

e

Ko
re

a

[M
K

T1
7]

O
.M

at
su

m
ot

o
K

.K
aw

ai
T.

Ta
ke

da

Fu
jit

su
Ja

pa
n

[K
ra

17
]

N
an

e
K

ra
tz

ke
Lü

be
ck

U
ni

ve
rs

it
y

of
A

pp
lie

d
Sc

ie
nc

es
G

er
m

an
y

[L
ee

17
]

H
yu

ng
ro

Le
e

In
di

an
a

U
ni

ve
rs

it
y

(S
ch

oo
lo

fI
nf

or
m

at
ic

s
an

d
C

om
pu

ti
ng

)
U

SA
[G

K
K

17
]

V.
G

up
ta

K
.K

au
r

S.
K

au
r

U
-N

et
So

lu
ti

on
s

A
D

C
ol

le
ge

(C
om

pu
te

r
Sc

ie
nc

e
an

d
A

pp
lic

at
io

ns
)

A
D

C
ol

le
ge

(C
om

pu
te

r
Sc

ie
nc

e
an

d
A

pp
lic

at
io

ns
)

In
di

a

85

B Appendix

PaaS concept/approach
Concepts Num. Studies
containers/container platform/containerization/container as
a service/container-based architecture/lightweight container
virtualization

16

application packaging and orchestration/cluster manage-
ment

4

middleware as a service/cloud-enabled middleware solutions 3
Function-as-a-Service/serverless platforms 2
runtime/execution environment 4
cloud-native applications 1
DevOps environments 1
security 4
performance 2
portability 1
scalability 1
Approaches
upload your own OS-image/container
upload your own code

Table B.3: Filled Data Synthesis Form for RQ3

86

PaaS technology Num. Studies
Cloud Foundry 10
Docker 13
Rocket 1
Garden/Warden 1
Diego 1
BOSH 1
Kubernetes 6
Docker Swarm 1
Amazon EC2 2
Mesos 2
Pivotal 2
IBM Bluemix 2
Heroku 5
SalesForce App Cloud 3
Engine Yard 1
Hadoop YARN 1
Google Borg 1
OpenShift 4
Amazon Elastic Beanstalk 3
Google App Engine 13
Microsoft Azure 7
OpenLambda 1
Project Kratos 1

Table B.4: Filled Data Synthesis Form for RQ4

87

Bibliography

[Ale78] C. Alexander. A Pattern Language: Towns, Buildings, Construction. Oxford
University Press, New York, 1978 (cit. on p. 35).

[Ale80] C. Alexander. The Timeless Way of Building. Oxford University Press, New
York, 1980 (cit. on p. 35).

[APO16] M. Aydin, N. Perdahci, B. Odevci. “Cloud-Based Development Environments.”
In: Encyclopedia of Cloud Computing. Wiley-IEEE Press, 2016, pp. 62–69 (cit.
on pp. 30, 65, 82).

[Arm17] J. Armstrong. Be a Budget Hero with Docker Enterprise Edition. Aug. 2017.
URL: https://blog.docker.com/2017/08/budget-hero-docker-enterprise-
edition/ (cit. on p. 44).

[ASL13] V. Andrikopoulos, S. Strauch, F. Leymann. “Decision Support for Application
Migration to the Cloud.” In: Proceedings of CLOSER 13 (2013), pp. 149–155
(cit. on pp. 49, 50).

[BCC+17] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian, N. Mitchell,
V. Muthusamy, R. Rabbah, A. Slominski, et al. “Serverless Computing: Cur-
rent Trends and Open Problems.” In: arXiv preprint arXiv:1706.03178 (2017)
(cit. on pp. 30, 76, 85).

[BHJ16] A. Balalaie, A. Heydarnoori, P. Jamshidi. “Microservices architecture enables
DevOps: migration to a cloud-native architecture.” In: IEEE Software 33.3
(May 2016), pp. 42–52 (cit. on p. 17).

[BKB+07] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, M. Khalil. “Lessons
from applying the systematic literature review process within the software
engineering domain.” In: Journal of Systems and Software 80.4 (2007),
pp. 571–583 (cit. on p. 26).

[Bob11] S. Bobrowski. “Optimal Multitenant Designs for Cloud Apps.” In: 2011 IEEE
4th International Conference on Cloud Computing. July 2011, pp. 654–659
(cit. on pp. 30, 67, 82).

[CHHK13] J. C. Carver, E. Hassler, E. Hernandes, N. A. Kraft. “Identifying Barriers
to the Systematic Literature Review Process.” In: ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement. Oct. 2013,
pp. 203–212 (cit. on p. 22).

[CLC11] Y. Chen, X. Li, F. Chen. “Overview and analysis of cloud computing research
and application.” In: 2011 International Conference on E-Business and E-
Government (ICEE). May 2011, pp. 1–4 (cit. on pp. 30, 67, 82).

89

https://blog.docker.com/2017/08/budget-hero-docker-enterprise-edition/
https://blog.docker.com/2017/08/budget-hero-docker-enterprise-edition/

Bibliography

[Coh13] B. Cohen. “PaaS: New Opportunities for Cloud Application Development.”
In: Computer 46.9 (Sept. 2013), pp. 97–100 (cit. on pp. 30, 33, 35, 69, 82).

[Doca] Docker. URL: https://www.docker.com (cit. on p. 43).

[Docb] D. Docs. URL: https://docs.docker.com (cit. on p. 47).

[Docc] C. F. Documentation. URL: https://docs.cloudfoundry.org/buildpacks/ (cit.
on p. 39).

[FLR+14] C. Fehling, F. Leymann, R. Retter, W. Schupeck, P. Arbitter. Cloud Computing
Patterns: Fundamentals to Design, Build, and Manage Cloud Applications.
Springer Vienna, 2014 (cit. on pp. 17, 38, 39, 45).

[GJ16] M. Greer, K. Jackson. Practical Cloud Security: A Cross-Industry View. CRC
Press, 2016 (cit. on p. 42).

[GKK17] V. Gupta, K. Kaur, S. Kaur. “PERFORMANCE COMPARISON BETWEEN
LIGHT WEIGHT VIRTUALIZATION USING DOCKER AND HEAVY WEIGHT
VIRTUALIZATION.” In: (Mar. 2017). 2 Days International Conference on
Recent Innovations in Engineering, Science, Humanities and Management,
pp. 211–216 (cit. on pp. 30, 79, 85).

[Goo] Google Cloud Engine. URL: https://cloud.google.com/appengine/ (cit. on
p. 33).

[GS13] A. Giessmann, K. Stanoevska-Slabeva. “What are Developers’ Preferences on
Platform as a Service? An Empirical Investigation.” In: 2013 46th Hawaii
International Conference on System Sciences. Jan. 2013, pp. 1035–1044 (cit.
on pp. 30, 68, 82).

[GWZW16] D. Guo, W. Wang, G. Zeng, Z. Wei. “Microservices Architecture Based Cloud-
ware Deployment Platform for Service Computing.” In: 2016 IEEE Symposium
on Service-Oriented System Engineering (SOSE). Mar. 2016, pp. 358–363 (cit.
on pp. 30, 70, 83).

[Hen17] N. Henderson. Cloud Vendor Revenues Hit $148 Billion in 2016. Jan. 2017.
URL: http : / / www. channelfutures . com / cloud - services / cloud - vendor -
revenues-hit-148-billion-2016 (cit. on p. 31).

[Hig17] K. Hightower. Kubernetes: Up and Running: Dive Into the Future of Infrastruc-
ture. O’Reilly Media, 2017 (cit. on pp. 42, 44, 46, 47).

[Hof16] K. Hoffman. Beyond the Twelve-Factor App. O’Reilly Media, 2016 (cit. on
p. 37).

[Htt12] M. Httermann. DevOps for developers. Apress, 2012 (cit. on p. 36).

[Jab] JabRef. URL: http://www.jabref.org/ (cit. on p. 26).

[Kav16] M. Kavis. The PaaS Preview For 2016. Jan. 2016. URL: https://www.cloudtp.
com/doppler/cloud-providers/paas-preview-2016/ (cit. on p. 31).

90

https://www.docker.com
https://docs.docker.com
https://docs.cloudfoundry.org/buildpacks/
https://cloud.google.com/appengine/
http://www.channelfutures.com/cloud-services/cloud-vendor-revenues-hit-148-billion-2016
http://www.channelfutures.com/cloud-services/cloud-vendor-revenues-hit-148-billion-2016
http://www.jabref.org/
https://www.cloudtp.com/doppler/cloud-providers/paas-preview-2016/
https://www.cloudtp.com/doppler/cloud-providers/paas-preview-2016/

Bibliography

[KC07] B. Kitchenham, S. Charters. Guidelines for performing systematic literature
reviews in software engineering. EBSE Technical Report. Department of Com-
puter Science, Keele University and University of Durham, UK, 2007 (cit. on
pp. 18, 21–23).

[KG13] C. Kemp, B. Gyger. Professional Heroku Programming. John Wiley & Sons
Ltd, 2013 (cit. on p. 40).

[Kit04] B. Kitchenham. Procedures for Performing Systematic Reviews. Joint Technical
Report. Department of Computer Science, Keele University, UK and NICTA,
Australia, 2004 (cit. on pp. 18, 21–23).

[Kra17] N. Kratzke. “Smuggling Multi-Cloud Support into Cloud-native Applications
using Elastic Container Platforms.” In: (2017). 7th Int. Conf. on Cloud
Computing and Services Science (CLOSER 2017), At Porto, pp. 29–42 (cit.
on pp. 30, 78, 85).

[Kub] Kubernetes. URL: https://kubernetes.io/ (cit. on pp. 45, 46).

[Lee17] H. Lee. “Building Software Defined Systems on HPC and Clouds.” In: (Feb.
2017) (cit. on pp. 30, 79, 85).

[Liu17] L. Liu. Containerd Brings More Container Runtime Options for Kubernetes.
Nov. 2017. URL: http://blog.kubernetes.io/2017/11/containerd-container-
runtime-options-kubernetes.html (cit. on p. 45).

[LZL17] Z. Li, Y. Zhang, Y. Liu. “Towards a full-stack devops environment (platform-as-
a-service) for cloud-hosted applications.” In: Tsinghua Science and Technology
22.01 (Feb. 2017), pp. 1–9 (cit. on pp. 30, 33, 35, 71, 83).

[Mah11] Z. Mahmood. “Cloud Computing: Characteristics and Deployment Ap-
proaches.” In: 2011 IEEE 11th International Conference on Computer and
Information Technology. Aug. 2011, pp. 121–126 (cit. on pp. 30, 66, 82).

[Mar17] W. Mar. 2017. URL: https://www.slideshare.net/Pivotal/pivotal- cloud-
foundry-roadshow (cit. on p. 40).

[MKT17] O. Matsumoto, K. Kawai, T. Takeda. “FUJITSU Cloud Service K5 PaaS Digi-
talizes Enterprise Systems.” In: FUJITSU Sci. Tech. J 53.1 (2017), pp. 17–24
(cit. on pp. 30, 78, 85).

[MPA+16a] A. R. Manu, J. K. Patel, S. Akhtar, V. K. Agrawal, K. N. B. S. Murthy. “A study,
analysis and deep dive on cloud PAAS security in terms of Docker container
security.” In: 2016 International Conference on Circuit, Power and Computing
Technologies (ICCPCT). Mar. 2016, pp. 1–13 (cit. on pp. 30, 74, 84).

[MPA+16b] A. R. Manu, J. K. Patel, S. Akhtar, V. K. Agrawal, K. N. B. S. Murthy. “Docker
container security via heuristics-based multilateral security-conceptual and
pragmatic study.” In: 2016 International Conference on Circuit, Power and
Computing Technologies (ICCPCT). Mar. 2016, pp. 1–14 (cit. on pp. 30, 72,
83).

[Pah15] C. Pahl. “Containerization and the PaaS Cloud.” In: IEEE Cloud Computing
2.3 (May 2015), pp. 24–31 (cit. on pp. 17, 30, 33, 35, 43, 73, 84).

91

https://kubernetes.io/
http://blog.kubernetes.io/2017/11/containerd-container-runtime-options-kubernetes.html
http://blog.kubernetes.io/2017/11/containerd-container-runtime-options-kubernetes.html
https://www.slideshare.net/Pivotal/pivotal-cloud-foundry-roadshow
https://www.slideshare.net/Pivotal/pivotal-cloud-foundry-roadshow

Bibliography

[PDKD17] P. Patros, D. Dilli, K. B. Kent, M. Dawson. “Dynamically Compiled Artifact
Sharing for Clouds.” In: 2017 IEEE International Conference on Cluster Com-
puting (CLUSTER). Sept. 2017, pp. 290–300 (cit. on pp. 30, 33, 74, 84).

[PHM+16] C. Pahl, S. Helmer, L. Miori, J. Sanin, B. Lee. “A Container-Based Edge
Cloud PaaS Architecture Based on Raspberry Pi Clusters.” In: 2016 IEEE 4th
International Conference on Future Internet of Things and Cloud Workshops
(FiCloudW). Aug. 2016, pp. 117–124 (cit. on pp. 30, 34, 66, 82).

[PL15] C. Pahl, B. Lee. “Containers and Clusters for Edge Cloud Architectures – A
Technology Review.” In: 2015 3rd International Conference on Future Internet
of Things and Cloud. Aug. 2015, pp. 379–386 (cit. on p. 42).

[Plaa] G. C. Platform. Kubernetes Engine. URL: https : / / cloud . google . com /
kubernetes - engine/docs/concepts / cluster - architecture#master_and_
node_interaction (cit. on p. 46).

[Plab] T. H. Platform. URL: https://www.heroku.com/ (cit. on pp. 34, 40, 41).

[Rai16] A. Raina. Building a multi-host, multi-container orchestration and distributed
system using Docker. Sept. 2016. URL: http://opensourceforu.com/2016/
09/building-multi-host-multi-container-orchestration-distributed-system-
using-docker/ (cit. on p. 47).

[Ric] C. Richardson. URL: http://microservices.io/patterns/ (cit. on pp. 39, 45).

[RVC+12] L. Rodero-Merino, L. M. Vaquero, E. Caron, A. Muresan, F. Desprez. “Building
safe PaaS clouds: A survey on security in multitenant software platforms.”
In: Computers & Security 31.1 (2012), pp. 96–108 (cit. on pp. 30, 75, 84).

[SAS+15] S. G. Sáez, V. Andrikopoulos, R. J. Sánchez, F. Leymann, J. Wettinger. “Dy-
namic Tailoring and Cloud-Based Deployment of Containerized Service Mid-
dleware.” In: 2015 IEEE 8th International Conference on Cloud Computing.
June 2015, pp. 349–356 (cit. on pp. 30, 71, 83).

[SCH17] C. SCHRODER. What Makes Up a Kubernetes Cluster? Apr. 2017. URL: https:
//www.linux.com/news/learn/chapter/intro-to-kubernetes/2017/4/what-
makes-kubernetes-cluster (cit. on p. 46).

[Sha16] M. Sharma. “A Review of Major Security Issues in Cloud Computing.” In: In-
ternational Journal For Technological Research In Engineering (2016), pp. 186–
190 (cit. on pp. 30, 75, 84).

[Soa16] J. Soat. Mark Hurd Predicts the Future of IT: Round 2. Oct. 2016. URL: https:
//blogs.oracle.com/mark-hurd-predicts-the-future-of-it:-round-2 (cit. on
p. 5).

[SSC17] A. Sreeramaneni, B. Seo, K. Chan. “A Business Driven Scalable Cloud Com-
puting Service Platform (PaaSXpert).” In: Journal of Korean Institute of
Information Technology 15.1 (2017), pp. 35–44 (cit. on pp. 30, 39, 77, 85).

92

https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-architecture#master_and_node_interaction
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-architecture#master_and_node_interaction
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-architecture#master_and_node_interaction
https://www.heroku.com/
http://opensourceforu.com/2016/09/building-multi-host-multi-container-orchestration-distributed-system-using-docker/
http://opensourceforu.com/2016/09/building-multi-host-multi-container-orchestration-distributed-system-using-docker/
http://opensourceforu.com/2016/09/building-multi-host-multi-container-orchestration-distributed-system-using-docker/
http://microservices.io/patterns/
https://www.linux.com/news/learn/chapter/intro-to-kubernetes/2017/4/what-makes-kubernetes-cluster
https://www.linux.com/news/learn/chapter/intro-to-kubernetes/2017/4/what-makes-kubernetes-cluster
https://www.linux.com/news/learn/chapter/intro-to-kubernetes/2017/4/what-makes-kubernetes-cluster
https://blogs.oracle.com/mark-hurd-predicts-the-future-of-it:-round-2
https://blogs.oracle.com/mark-hurd-predicts-the-future-of-it:-round-2

[SSKY16] A. Singh, S. Sharma, S. R. Kumar, S. A. Yadav. “Overview of PaaS and SaaS
and its application in cloud computing.” In: 2016 International Conference
on Innovation and Challenges in Cyber Security (ICICCS-INBUSH). Feb. 2016,
pp. 172–176 (cit. on pp. 30, 69, 83).

[Sta16] V. Staff. Get Ready for a Container-Led Revolution. July 2016. URL: https:
//www.vmware.com/ciovantage/article/get-ready-for-a-container-led-
revolution (cit. on p. 17).

[TM16] P. Thakur, M. Mahajan. “Virtualization in Cloud Computing.” In: Interna-
tional Journal of Recent Trends in Engineering & Research (IJRTER) 02 (2016),
pp. 308–315 (cit. on pp. 30, 34, 77, 85).

[Twe] T. Twelve-Factor-App. URL: https://12factor.net/ (cit. on pp. 37, 43, 50).

[WASL14] J. Wettinger, V. Andrikopoulos, S. Strauch, F. Leymann. “Characterizing
and Evaluating Different Deployment Approaches for Cloud Applications.”
In: 2014 IEEE International Conference on Cloud Engineering. Mar. 2014,
pp. 205–214 (cit. on pp. 30, 68, 82).

[Wee17] D. E. Weeks. Container Considerations on Your DevOps Journey. May 2017.
URL: https://devops.com/container-considerations-devops-journey (cit. on
p. 17).

[WHJ16] A. Williams, S. Hall, J. Jackson. The Emerging Containers as a Service Market-
place. July 2016. URL: https://thenewstack.io/emerging-containers-service-
marketplace/ (cit. on p. 31).

[Win16] D. Winn. Cloud Foundry: The Cloud-Native Platform. O’Reilly Media, 2016
(cit. on p. 37).

[Win17] D. Winn. Cloud Foundry: The Definitive Guide - Develop, Deploy, and Scale.
O’Reilly Media, 2017 (cit. on pp. 36, 39, 40).

[WXL16] Z. WANG, L. XUE, Y. LUO. “Cloud Computing Platform Based on the Docker.”
In: DEStech Transactions on Computer Science and Engineering icmsie (2016)
(cit. on pp. 30, 76, 85).

[XOR+15] M. G. Xavier, I. C. D. Oliveira, F. D. Rossi, R. D. D. Passos, K. J. Matteussi,
C. A. F. D. Rose. “A Performance Isolation Analysis of Disk-Intensive Work-
loads on Container-Based Clouds.” In: 2015 23rd Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing. Mar. 2015,
pp. 253–260 (cit. on pp. 30, 73, 84).

[Zim17] O. Zimmermann. “Microservices tenets.” In: Computer Science - Research and
Development 32.3 (July 2017), pp. 301–310 (cit. on p. 17).

All links were last followed on March 27, 2018.

https://www.vmware.com/ciovantage/article/get-ready-for-a-container-led-revolution
https://www.vmware.com/ciovantage/article/get-ready-for-a-container-led-revolution
https://www.vmware.com/ciovantage/article/get-ready-for-a-container-led-revolution
https://12factor.net/
https://devops.com/container-considerations-devops-journey
https://thenewstack.io/emerging-containers-service-marketplace/
https://thenewstack.io/emerging-containers-service-marketplace/

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Research Methodology
	1.2 Document Structure

	2 SLR Process
	2.1 Planning Phase
	2.1.1 The Need for a Systematic Review
	2.1.2 Define Research Questions
	2.1.3 Define Review Protocol
	2.1.3.1 Search Strategy
	2.1.3.2 In- and Exclusion Criteria
	2.1.3.3 Data Extraction
	2.1.3.4 Data Synthesis

	2.2 Conducting Phase
	2.2.1 Search Based on Strategy
	2.2.2 Filter Using In-/Exclusion Parameters
	2.2.3 Extract Data
	2.2.4 Synthesize Data

	2.3 Reporting Phase
	2.3.1 Report and Discuss Findings

	3 PaaS Deployment Patterns
	3.1 Bring Your Own Code Pattern (BYOCD)
	3.2 Bring Your Own Container Pattern (BYOCR)

	4 Evaluation of PaaS Deployment Patterns
	4.1 Main Application Types
	4.1.1 Non-Cloud-Enabled Application
	4.1.2 Cloud-Enabled Application
	4.1.3 Cloud-Native Application

	4.2 Matrices of Comparison
	4.3 Deploying a Sample CQRS Application Using the Two Patterns
	4.3.1 Deploying the Sample App to CF
	4.3.2 Deploying the Sample App to Kubernetes

	4.4 Conclusion

	5 Discussion and Future Work
	5.1 Summary
	5.2 Discussion
	5.3 Future Work

	A Appendix
	B Appendix
	Bibliography

