
Institute of Software Technology

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

How to speed up BDD
automated acceptance testing for

safety-critical systems

Daniel Ryan Degutis

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Stefan Wagner

Supervisor: Yang Wang

Commenced: August 1, 2017

Completed: February 1, 2018

CR-Classification: D.2.4, D.2.5, D.2.8

Abstract

An important aspect of developing safety-critical systems is testing, and in some cases an
agile development and testing approach is desirable. To reflect and test safety requirements,
a process based on Behavior Driven Development (BDD) is considered in this work. The
goal is to have an as efficient as possible process for BDD automated acceptance testing.

The original process for this, used in an earlier experiment, is examined and automatable
parts are identified. Based on this, improvements to the process are proposed and imple-
mented. This results in an updated process, that utilizes a newly implemented command
line tool written for the purpose of producing test cases. These can then be used for the
BDD automated acceptance testing process.

Finally, an evaluation with students BDD acceptance testing a sample system is conducted,
to determine the effectiveness of the improved process. The results of the evaluation show
benefits in productivity when using the improved process.

Kurzfassung

Beim Entwickeln sicherheitskritischer Systeme ist das Testen ein wichtiger Aspekt. Es kann
sinnvoll sein, hier auf agile Methoden wie BDD zurückzugreifen. In dieser Ausarbeitung
wird ein Prozess basierend auf BDD betrachtet, der das Testen von Sicherheitsanforderun-
gen erleichtert. Das Ziel ist es, diesen Prozess zu modifizieren um möglichst effizient ein
System, mittels BDD Akzeptanztests, testen zu können.

Der ursprünglich betrachtete Prozess stammt aus einem früheren Experiment. Im Rahmen
dieser Ausarbeitung werden Verbesserungen gesucht, indem Teile des Prozesses mit Hilfe
eines neu entwickelten Kommandozeilen-Werkzeugs automatisiert werden.

Zum Abschluss wird eine Evaluation durchgeführt, bei der Studenten den neuen Prozess an-
wenden, um ein Mustersystem zu testen. Das Ergebnis der Evaluation zeigt Verbesserungen
bei der Produktivität mit Hilfe des neuen Prozesses auf.

3

Contents

1 Introduction 15
1.1 Motivation . 15
1.2 Problem Statement . 16
1.3 Research Objective . 16

2 Background 17
2.1 Safety-critical Systems . 17
2.2 STPA with STAMP and XSTAMPP . 17
2.3 Agile Testing . 18
2.4 BDD and JBehave . 19

3 Related Work 21
3.1 FMEA . 21
3.2 Cucumber . 21
3.3 BDD Security - Continuum . 21

4 Concept 23
4.1 Current Workflow: Writing Automated BDD Acceptance Tests 23
4.2 Improvements to the BDD Testing Process 27

5 Implementation 33
5.1 Extending XSTAMPP . 34
5.2 Input File Format . 35
5.3 Limitations . 36
5.4 Sample Usage Details . 36

6 Evaluation 41
6.1 EST 2017 Agile Experiment . 41
6.2 Evaluation . 41
6.3 Evaluation Results . 44
6.4 Threats to Validity . 45

7 Conclusion 49
7.1 Future Work . 49

Bibliography 51

5

List of Figures

4.1 Target Directory Structure . 24
4.2 Step 1 in the Current Workflow . 25
4.3 Step 2 in the Current Workflow . 26
4.4 tests4jbehave Setup and Usage . 30
4.5 New Workflow . 32

5.1 Sample Eclipse Workspace . 38

6.1 Results - Descriptive Statistics . 45
6.2 Results - Hypothesis Testing . 45

7

List of Tables

5.1 tests4jbehave Command Line Options . 34

9

List of Listings

2.1 Sample Scenario . 20
2.2 Sample Step Definitions for the Scenario . 20

11

List of Abbreviations

AT Acceptance Test. 18

ATDD Acceptance Test Driven Development. 18

BDD Behavior Driven Development. 3

CAST Causal Accident Analysis based on System Theory. 17

SPM System Process Model. 18

SPMV System Process Model Variable. 18

STAMP Systems-Theoretic Accident Model and Processes. 17

STPA Systems-Theoretic Process Analysis. 15

TDD Test Driven Development. 18

UAT User Acceptance Testing. 15

UCA Unsafe Control Action. 15

XSTAMPP eXtensible STAMP Platform As Tool Support for Safety Engineering. 15

13

1 Introduction

Safety analysis and verification of safety requirements are of the highest importance for
safety-critical systems. It is therefore desirable for these processes to be a continual part of
the agile development process. This can be difficult, as safety standards and regulations
that make up safety requirements are different from other requirements. They tend to
define constraints for system behavior rather than solely typical functional requirements
for singular units in a system. Development, especially testing aspects, should take these
differences into account.

In this case, an approach like Systems-Theoretic Process Analysis (STPA) to describe a
system and produce good safety requirements is useful. Many accidents in safety-critical
systems are caused by Unsafe Control Actions (UCAs), rather than single component
failures. Modeling system processes and UCAs is possible with the open-source tool
eXtensible STAMP Platform As Tool Support for Safety Engineering (XSTAMPP).

As UCAs are unsafe system behavior, testing system behavior automatically is a suitable
testing method for safety requirements.

Automated acceptance testing can be accomplished by applying BDD techniques and tools,
as they show acceptable results for testing safety requirements, according to an experiment
performed in the EST 17 lecture at the University of Stuttgart (section 6.1).

However, the experiment also showed that writing BDD scenarios and test cases for
automated acceptance testing does not offer enough notable benefits in terms of speed
over manual User Acceptance Testing (UAT).

The purpose of this thesis is therefore to improve upon the current process of writing BDD
acceptance tests for safety-critical systems, by an approach that automates as much as
possible of that process.

The concepts and tools mentioned and required are explained in chapter 2.

1.1 Motivation

The goal is to integrate safety requirements testing into the agile development process in a
more efficient manner.

15

1 Introduction

1.2 Problem Statement

Currently BDD acceptance tests for safety requirements are written throughout a large
number of manual steps. Hence, the current process should be improved by automating
certain repetitive tasks. For this the current process must be examined, automatable steps
identified and a solution implemented. In chapter 4 improvements are proposed and in
chapter 5 the improvements are implemented.

1.3 Research Objective

The research objective is to determine whether there is an increase in productivity with the
improvements made to the process of writing BDD acceptance tests. For this, an evaluation
will be conducted with a group of students where the improved process is used to BDD
acceptance test a sample system. To evaluate changes in productivity, the results are then
compared to the results of the EST 2017 agile experiment (section 6.1) that used the old
process. Details are discussed in chapter 6.

Structure

This thesis is structured in the following manner:

Chapter 2 – Background: The fundamentals for discussing BDD automated acceptance
testing for safety requirements are explained.

Chapter 3 – Related Work: Some related work is introduced.

Chapter 4 – Concept: The current BDD safety requirements testing process and the
planned improvements to it are described in detail.

Chapter 5 – Implementation: The improvements to the BDD safety requirements testing
process are implemented.

Chapter 6 – Evaluation: An Evaluation to examine the effectiveness of the improvements
is conducted.

Chapter 7 – Conclusion

16

2 Background

The prerequisite concepts and tools relevant to understand and discuss BDD automated
safety requirements testing are introduced. BDD, as well as the BDD testing tool JBehave
[JBW17] are heavily relied on throughout this work.

2.1 Safety-critical Systems

Safety is an emergent property of a system and depends on context and environment
[LecQSW17]. A safe system is one that does not endanger its environment, thus, it should
not reach failure states that are harmful to its environment. This is in contrast to security,
where the main question is whether the environment can endanger the system.

A safety-critical system is one where safety is of the highest priority, thus, where a harmful
failure state may result in loss of life or other significant damage to its environment.

Safety analysis and testing methods are therefore very important, and the requirements for
system safety should be based on desired and undesired behavior of the entire system.

Since individual components of a system are not inherently safe or unsafe, but depend
on interaction and context, a way to consider the system as a whole is required. Systems-
Theoretic Accident Model and Processes (STAMP)/STPA (section 2.2) is such an approach
based on system theory.

2.2 STPA with STAMP and XSTAMPP

STAMP [LecQSW17] is an accident model, which views the system it is modeling in its
entirety. The system theoretic approach of STAMP allows to model complex relationships
between system components.

STPA and Causal Accident Analysis based on System Theory (CAST) are the main methods
of STAMP, where CAST is used for investigating the causes of an accident. STPA tries to
discover possible hazards in a system, and as a result of the STPA process refined safety
requirements, as well as other related artifacts, are produced. Safety, as an emergent
system property, can therefore be considered within STPA.

17

2 Background

STAMPs perspective on safety is that of a control problem. This means that it models
accidents as failures of component interactions due to unsafe control actions (UCAs). They
are violations of safety constraints.

The main idea is that controllers control processes via control actions according to an
internal process model (System Process Model (SPM)). It receives feedback from the
controlled process and determines the next control action based on that feedback and its
SPM. The SPM includes process variables (System Process Model Variable (SPMV)) and
their possible values.

XSTAMPP [Abdulkhaleq15] is an open-source safety engineering software written in Java.
With XSTAMPP it is possible to model system processes using STAMP methodologies.

Resulting SPMs, which model system behavior, provide a guideline for creating acceptance
tests and define safety requirements.

For BDD safety requirements testing according to the scheme used in section 4.1, the ability
to define SPMVs and possible values within the SPM, as well as UCAs is of interest.

2.3 Agile Testing

In a traditional, phased software development approach, testing activities occur at the end
of the development. One of the problems with such an approach is that testing time gets
shortened when coding takes longer than expected [CG08]. Additionally, tests might be
more difficult to write and when problems are discovered, fixing them might just become
too costly.

As an alternative, an agile approach is iterative and incremental. What an iteration looks
like might be different between projects and teams. Each new feature is tested as soon as it
is finished, which means coding can not really get ahead of testing, as both activities need
to be fulfilled for the feature to be completed [CG08].

This is where agile development methods such as Test Driven Development (TDD) come in.
In the TDD process tests are written first, made to fail and then the required functionality
is implemented in a minimal way to make the tests pass [TDD17]. Functional test cases,
ideally based on real-world working examples, are written before any coding begins
[CG08].

The idea is that testing happens as early as possible, consequently allowing it to drive
design and coding. Moreover, errors get caught a lot earlier in comparison to traditional
approaches for testing.

An Acceptance Test (AT) is a formal and often technical description of the behavior of
a software [AT17]. Acceptance tests can also be used for TDD, as opposed to the usual
component or functional tests, resulting in Acceptance Test Driven Development (ATDD)
[ATDD17]. This kind of test is separate from a UAT, in which real-world users test the
software in a real-world scenario.

18

2.4 BDD and JBehave

Agile testing is often realized through the use of continuous integration with the support of
automation and testing tools.

2.4 BDD and JBehave

BDD [BDD17] is a collection of agile development methods that focus on software behavior.
It is based on TDD and ATDD (section 2.3).

BDD also follows a TDD style process. The difference to TDD lies in the fact that tests
de-emphasize implementation details. They focus more on testing system behavior rather
than single components. This also means that tests are less susceptible to frequent change
when implementation changes.

BDD is suitable for testing safety requirements since they, as an emergent system property,
tend to describe system behavior.

BDD testing tools provide a structured notation based on natural language that improves
communication between all stakeholders. This notation can specify desired behaviors,
in this case safety requirements. A behavior specification follows the given, when, then
template:

• Given: an initial context is defined, this is a set of preconditions or inputs.

• When: some event or action occurs within the context.

• Then: an expected outcome is defined.

Such a test, also called scenario, can be used to test for behavioral requirements. Step
definitions that map to such a scenario must then be written. They are the actual code of
the test.

Scenarios are grouped into stories which represent some core functionality of the system,
whereas a scenario represents an example of the system behavior. This is also called
specification by example.

Automated acceptance criteria testing via a set of scenarios, can be accomplished using
BDD test automation tools [Sma14a] such as JBehave [JBW17] or Cucumber (section 3.2).
These automated tests are considered executable specifications and can be used as both
acceptance and regression tests [Sma14b]. JBehave features integrations for, among others,
Eclipse, IntelliJ and Maven [JBW17]. When using JBehave to support the BDD process,
there are some steps to follow:

• Behavior specifications are written in .story files according to the established given,
when, then template as scenarios.

• Java step definitions are created that map to the stories. They are the code that is
executed when JBehave runs scenarios.

19

2 Background

• Creation of a test suite or multiple test suites for use with a testing framework, such
as JUnit.

The sample scenario (Listing 2.1)

Given a countdown counter (two step) that has a value of 20

When the countdown counter is decreased

Then the countdown counter value is 18

Listing 2.1: Sample Scenario

and its corresponding Java mapping (Listing 2.2), the step definitions,

public class DecreaseCountdownSteps {

private int countdownCounter;

@Given("a countdown counter (two step) that has a value of $value")

public void countdownCounterHasValue(int value) {

countdownCounter = value;

}

@When("the countdown counter is decreased")

public void decreaseCountDownCounter() {

countdownCounter -= 2;

}

@Then("the countdown counter value is $value")

public void theValueOfTheCounterMustBe1Greater(int value) {

assertTrue(value == countdownCounter);

}

}

Listing 2.2: Sample Step Definitions for the Scenario

show that JBehave maps the given, when, then steps in the scenario to the corresponding
Java methods with the help of the @Given, @When, @Then annotations. The values in the
scenario substitute for the marked parameters in the Java mapping. This demonstrates the
Specification-by-Example style of BDD, where the scenarios specify the behavior by sample
values.

While the current BDD testing tools are suited for automated acceptance testing, the tests
for safety requirements must still be written manually for the most part as BDD scenarios.

To improve upon the BDD automated acceptance testing process, existing assets should
be used. For example, a subset of BDD acceptance tests could be automatically generated
based on existing SPMs.

20

3 Related Work

Some related work that is not directly relied on or part of this work, is briefly introduced.

3.1 FMEA

FMEA or Failure Modes and Effects Analysis is a system safety analysis technique [PPG04].
During FMEA, lists of component failure modes are compiled and attempts are made to find
the effects of the failure modes on the system. Simple diagrams are used in understanding
how component failures affect the entire system [PPG04].

FMEA can be regarded as less effective, considering safety when compared to STAMP/STPA,
as FMEA has difficulties handling modern and complex systems [LecQSW17].

3.2 Cucumber

Cucumber [CC17] is a testing tool that enables BDD (section 2.4) style automated testing.
It features its own language, Gherkin, to write behavior examples that act as specification,
mostly in plain English. Gherkin is supposed to improve communication and collaboration
between all stakeholders. Then Cucumber is used to run the examples as automated
acceptance tests and reports back the results [CC17].

Cucumber supports many different target languages for the automated acceptance tests as
well as integrations for different software platforms.

As an alternative to JBehave, it could also be used for this work, however, due to prior use
of JBehave in the EST 2017 agile experiment (section 6.1), JBehave will be prioritized.

3.3 BDD Security - Continuum

BDD-Security is an open source automated security testing framework that uses the BDD
Gherkin syntax to specify security requirements. It is developed by Continuum Security
[Conti18].

The goal is to make security testing part of the development cycle and ready to run on
continuous integration servers, as well as enabling the other advantages of BDD. This

21

3 Related Work

means security requirements are defined in one place, and can be tested and automated in
typical BDD manner.

BDD-Security runs tests against a deployed application over the network. It does not
require access to application source code. This means that an application under test can by
written in any language and framework, as long as it supports HTTP/S [Conti18].

BDD-Security supports integrated reporting, so for example reports can be displayed in
HTML format via the Jenkins Cucumber reporting plugin when running on a continuous
integration server [Conti18].

22

4 Concept

When testing safety requirements in safety critical systems, automated acceptance tests
are often desired. BDD is a suitable approach integrating and utilizing them during the
agile development and testing process (section 2.4). A safety critical system under test is
assumed to have the artifacts SPM, SPMVs, possible values as well as UCAs available. The
SPMVs correspond to real process variables in the system under test. These artifacts can be
created with the STAMP hazard analysis method, STPA (section 2.2) and they can be used
to write the BDD acceptance tests. The tests should find the occurrence of UCAs, by testing
SPMVs value combinations with the software system’s functions.

However, the speed of writing BDD acceptance tests is too slow, as per the results of a
student experiment conducted at the University of Stuttgart (section 6.1). Based on this,
the main goal of this work is to speed up writing BDD automated acceptance tests. The
BDD testing tool considered is JBehave.

4.1 Current Workflow: Writing Automated BDD Acceptance
Tests

Currently, when writing automated BDD acceptance tests, there are two major steps, Step 1
and Step 2.

In Step 1 the BDD scenarios are written, which can later be used to acceptance-test the real
software system. The scenarios are based on information of UCAs and SPMs.

In Step 2 the Java test cases that map to the scenarios written in Step 1 are created. For
this, step definitions stubs must be written that match the scenario steps. Then the actual
test code, which calls the software under test, is written into the stubs.

In an agile process, we repeat Step 1 and Step 2 for each iteration for a selection of UCAs.

The end goal is to produce a directory structure (for an example see figure 4.1) that
contains the BDD scenarios as stories, the Java test cases (step definitions) and the test
suites. Such a structure can then be directly used in a software system for testing with
JBehave.

Step 1 of the current workflow considers only a subset of all scenarios with the following
format:

• Given: A list of all SPMVs from the SPM, excluding one, set up the context.

23

4 Concept

src/test

java/jbehave

uca1

resources/stories

UCA packages

Step definitions

Stories

 map to
uca2

steps

Test suites

uca1

uca2

steps

Figure 4.1: Target Directory Structure

• When: A single excluded SPMV from the list, that could causes a UCA to happen, as
well as some related actions.

• Then: A UCA occurs.

Only scenarios of this type are considered in this work. By isolating a single SPMV for
every scenario, an attempt is made to find variable-value combinations that cause UCAs
to happen. This strategy and format of writing unsafe scenarios to discover UCAs was
originally introduced and used for the EST 2017 agile experiment (section 6.1).

Such a scenario is created for each UCA, excluded SPMV, as well as possible value for every
SPMV. The Step 1 process can be seen in figure 4.2, it produces BDD scenarios according
to the considered scheme. The information required for Step 1, UCAs and SPMVs, can be
manually supplied or exported from XSTAMPP (section 2.2).

In Step 2 the Java test cases with the step definitions are created and executed one after
another to detect conditions that would cause UCAs. The pool of BDD scenarios from Step
1 is used here. For each unsafe scenario a corresponding Java test case is created and
executed. Depending on the result, the process proceeds differently:

• The test case passes: A UCA was found, the process continues with the next unsafe
scenario.

• The test case fails: The test case is either rewritten until it passes or the unsafe
scenario is adjusted or removed.

The Step 2 process is illustrated in figure 4.3.

In more detail the workflow of Step 1 and Step 2 may look like this for a Maven project:

• Step 1 starts.

24

4.1 Current Workflow: Writing Automated BDD Acceptance Tests

Unsafe
control actions

Process model
variables

Write the “Then” step

Write the “Given” step

Write the “When” step

Find unsafe scenario

Choose the
variable that will
cause the UCA to
happen

Choose
the state
variables to
set up the
context

Choose one unsafe
control action

Create a .story file

BDD scenarios

Figure 4.2: Step 1 in the Current Workflow

• Creating a folder for each UCA, for example uca1, in the src/test/resources/stories
folder.

• Writing one or more scenarios, in a new file, for example the_uca_that_occurs.story,
into the folder uca1, according to the scheme described for Step 1.

• Writing more scenarios in separate .story files.

• Step 2 starts.

• Creating a new test suite for executing the Java test cases with JUnit for each .story
in the src/test/java/jbehav/ folder.
A sample test suite could be named TheUcaThatOccurs.java, derived by removing ’_’
from the .story file’s name, camel casing it and capitalizing the first letter.

25

4 Concept

BDD scenarios

Choose an
unsafe scenario

Create test suite and steps
file

Write Java automated test case

Write the test code in the step
definitions

Write step definitions
matching the chosen scenario

Execute the test as JUnit test

fail

pass

Java test cases

Figure 4.3: Step 2 in the Current Workflow

26

4.2 Improvements to the BDD Testing Process

• Writing a new Java test case for a .story file into the folder src/test/-
java/.../jbehave/steps, for example Uca1Steps.java.

– The Java file name is derived by capitalizing the first letter of the folder name of
the UCA’s .story files, then adding ’Steps’ as suffix to it.

– The location is in the package or a subpackage of the test suites.

– The Java test cases contain the step definitions that map to the scenario’s steps.

– The actual test code is in the step definitions.

• The test is executed with JUnit and the test outcome is observed.

• If the test passes, the next Java test case for the next scenario is written.

• If the test fails, the code is modified until the test passes or the scenario dropped.

All the files are created manually or copied from existing files and adjusted accordingly.
They are named in line with a defined scheme and placed at locations, also conforming
to a defined scheme. This is for test management primarily due to the large quantity of
possible scenarios. There are also some technicalities involved, such as that steps written
in the .story files must be globally unique and directly match the step tags in the Java step
definitions.

Looking at all the substeps involved, it is clear, that writing these types of scenarios and
test cases, as well as manually naming and placing them, is a tedious process.

This workflow was used in the the EST 17 lecture agile experiment (section 6.1).

4.2 Improvements to the BDD Testing Process

Looking at Step 1, there is potential for automation. As the type of BDD scenarios considered
in this work depends directly on a set of UCAs, SPMVs and their values, it is possible to
automate scenario generation. This eliminates large parts of Step 1. Step 1 can be
reduced:

• Select some UCAs.

• Generate unsafe scenarios for the selected UCAs with tests4jbehave, a conceived tool
for this purpose.

• Remove unsafe scenarios that are not required or do not make sense.

Step 2 can be partially automated by automatically generating the Java test cases and their
step definition stubs, as this information is available. It is however not possible to automate
Step 2 entirely, as the actual test code, that calls the software system under test must still
be manually written.

27

4 Concept

For the identified areas of improvement, the tool tests4jbehave is written. It automates
as much as possible of the workflow, thereby improving the speed of the largely manual
process of writing BDD safety requirements tests. tests4jbehave is designed as command
line tool.

In detail for the current manual workflow, the following parts will be automated:

Directory structure A directory structure of stories, Java step definitions and test suites
is automatically generated and it can be used directly by JBehave and the tested software.
All generated files are automatically named according to a sensible scheme and placed at
appropriate places in an output directory structure.

Scenarios Scenarios are automatically generated according to the format:

• Given: a list of SPMVs excluding one.

• When: the excluded SPMV from the list that might cause a UCA to occur.

• Then: a UCA occurs.

All possible scenarios of this format are generated, given a list of UCAs and a list of
SPMVs. The scenario format attempts to find what combinations of SPMVs values and what
SPMV causes a UCA to happen. This set of scenarios was also used in the EST 2017 agile
experiment (section 6.1). Scenarios are written to one .story file each, where each .story
file’s name is unique and also describes the contained scenario. The file names contain
the stories’ then UCA and when SPMV as well as a unique identifier. Naming and location
conventions are followed (chapter 5).

Examples For different combinations of possible SPMV values, a scenario according to
(paragraph 4.2) could be tested, to discover which value combinations trigger a UCA. This
is where the BDD technique specification-by-example is applied. With JBehave, the Examples
Table [Sma14c] feature is utilized to hold the possible value combinations for the SPMVs
for a scenario.

tests4jbehave can generate examples for each scenario according to some strategy. One
strategy for generating examples is to generate all possible combinations of values.

As alternative to this, the pairwise strategy is available. Pairwise values, or ’all-pairs’ are
guaranteed to be a set of value combinations where every single value is paired with every
other single value. The total number of tests generated in this way is a lot less compared
to exhaustive testing. Pairwise testing can be a relatively effective alternative in certain
situations, due to the observation that most faults are caused by the interaction of a small
number of variables [PWT17].

28

4.2 Improvements to the BDD Testing Process

Other than that, it should be possible to choose not to generate any examples by setting
them manually or forgoing this option. The strategy to generate examples can be set with
the -e command line option (chapter 5).

Java step definitions and test suites The Java step definition stubs corresponding to
each scenario are automatically generated. It is possible to include additional data such
as imports and some declarations in the Java test cases. While nothing can be done to
generate Java method bodies, at least the parameters in the step definition’s declaration
can be generated, according to a sensible variable type. Such a SPMV type mapping can be
supplied as .csv file with the appropriate command line option (chapter 5).

The Java test suites necessary for execution as JUnit test by JBehave are generated as
well.

All generated files follow naming and location conventions for consistent use with JBehave.
Package names and subdirectories to place all these generated Java files can be further
specified with the appropriate command line options (chapter 5).

Usage of tests4jbehave in the Improved Workflow The Java command line tool
tests4jbehave’s intended usage is depicted in figure 4.4.

The required inputs, the list of UCAs and the list of SPMVs, can be either manually created
and supplied by the user or exported from existing XSTAMPP projects. Their input formats
are specified in section 5.2.

First, the tests4jbehave Java sources are built with Maven.

Then the resulting .jar artifact with included dependencies is called from the command
line with the desired arguments. The arguments are the required inputs of UCA list, SPMV
and possible values list as well as SPMV to Java data type mapping. They are the minimum
arguments for scenario generation and immediate usable output. If the variable types
mapping is not supplied, a sensible default is chosen. The other arguments shown in
figure 4.4 are optional and specify what the output directory structure should look like.
tests4jbehave offers a number of other options. If they are not specified, sensible defaults
are chosen. The available options are listed in chapter 5.

The output is a directory structure with generated stories, Java step definitions and test
suite, ready to be used in an existing Java project and executed with JBehave.

The workflow is now changed. We consider for one iteration in an agile development
process:

• The directory structure for JBehave is generated for a chosen subset of UCA for that
iteration.
It contains the unsafe scenarios, Java step definition stubs and test suites.

• An unsafe scenario is chosen and the step definitions are written.

29

4 Concept

Xstampp export

Unsafe
control actions

Process model
variables + values

Variable types

-z variable-values.csv

tests4jbehave-1.0-jar-with-dependencies.jar

src/test

java/jbehave

uca1

resources/stories

UCA packages

Step definitions

Stories

Output

 map to

Prerequisites: Java + Maven

-x xstampp-all.csv -v variable-types.csv

Maven install “tests4jbehave”

java -jar

-r src/test -s java/jbehave -i resources/stories

uca2

steps

Test suites

uca1

uca2

steps

Figure 4.4: tests4jbehave Setup and Usage

30

4.2 Improvements to the BDD Testing Process

• The test case is executed as JUnit test. If the test

– passes: An unsafe scenario is found. The process continues by writing more step
definitions for other test cases and potential unsafe scenarios.

– fails: The goal is to make the test case pass by rewriting step definitions or
removing undesired examples to find unsafe scenarios for this test case.
Alternatively, the test case and scenario is deemed unsuitable and is deleted.

• The next unsafe scenario is chosen and the corresponding test case is written and
tested with JUnit.
This is repeated for all required unsafe scenarios.

This process is illustrated in figure 4.5.

A more detailed sample application can be found in section 5.4.

31

4 Concept

Choose a
scenario & test

Complete Java test for scenario

Fill out the Java step
definitions

Execute the test with JUnit

fail

pass

Java test cases
for unsafe scenarios

Remove undesired
examples / scenarios

Figure 4.5: New Workflow

32

5 Implementation

The improvements discussed in chapter 4 are implemented as the tests4jbehave command
line tool, written in Java. The source code written and build instructions are supplied in
the implementation folder alongside the .pdf version of this document.

The main functionality is the generation and output of a directory structure containing
.story files with the generated test scenarios and value combinations (examples), the
corresponding Java step definition stubs, as well as the Java test suites to launch all tests.

The resulting artifacts are intended for usage with the BDD test automation tool JBehave
and Thucydides [Thucy17], now known as Serenity [Seren17] for reporting. JBehave
features, such as Examples tables are relied on by the generated test cases.

A number of configuration options are available for tests4jbehave as command line op-
tions:

Option Description
-c The format the generated scenarios should have.

Currently only the default one (section 4.2) is available.
-d The .csv delimiter to assume for the input .csv files.
-e The type of examples that should be generated.

Either all possible combinations, pairwise combinations or no examples.
-f The file encoding assumed for all files used.
-g The default variable type to use in Java step definitions,

if no appropriate type can be found.
-h Show a help text describing all options.
-i The subdirectory for .story files.
-j The path to a file for imports to include in generated tests.

Will be copied as-is into each Java file.
-k The path to a file for declarations to include in generated tests.

Will be copied as-is into each Java file.
-l The line separator to use for all files.
-m Manually specify the initial scenario id in case of conflicts when resources

are reused unchanged in subsequent executions.
-n Manually specify the initial step id in case of conflicts when resources are

reused unchanged in subsequent executions.
-p The package name for the generated test suites.

33

5 Implementation

-r The root directory of the output directory structure.
-s The test suite subdirectory in the output directory structure.
-u List of UCA ids to specify the subset of ucas to use with

matching ids (alphanumeric) as .csv file.
-v The list of UCAs as .csv file.
-x The SPMV to Java data type mapping as .csv file.
-z The SPMVs and possible values list as .csv file.

Table 5.1: tests4jbehave Command Line Options

These options and their default values can be viewed when calling tests4jbehave with the -h
argument.

Not all of these options are necessary though, as for useful output the required inputs
are:

• A list of UCAs as .csv file.

• A list of SPMVs and their possible values as .csv file.

• A SPMV to Java data type mapping as .csv file.

While the list of UCAs can be exported from XSTAMPP, the SPMV to Java data type mapping
must be manually created and supplied by the user, since XSTAMPP simply does not have
this information. If the mapping is not supplied, a sensible default value is chosen.

The list of SPMVs and their possible values is currently not available as XSTAMPP export.
However, XSTAMPP has access to this information. A possibility is to add an appropriate
export option to XSTAMPP.

5.1 Extending XSTAMPP

After examining the XSTAMPP source code, the necessary steps to implement the missing
export functionality become apparent:

• A new class "ProcessValuesWizard" is added to the "xstampp.astpa.wizards.stepData"
package.

• An entry for "ProcessValuesWizard" is added to the "xstampp.astpa/plugin.xml", so
that it is registered and available to the user.

• "StpaCSVExport" in the "xstampp.astpa.util.jobs" package is modified so that a new
method "writeProcessModelValues" is called when the "ProcessValuesWizard" is se-
lected according to "ICSVExportConstants" by the user for exporting data from XS-
TAMPP.

34

5.2 Input File Format

• "writeProcessModelValues" takes the "DataModelController" and leverages "getVal-
uesTOVariables" to retrieve the possible values for each SPMV and writes them in a
.csv file.

5.2 Input File Format

The larger inputs are .csv files. All .csv files must use the same .csv delimiter. The expected
file formats for the respective inputs are:

UCAs list The UCAs list can be potentially supplied from XSTAMPP or manually created.
It is supplied with the -v command line option. The only requirement to be understood by
tests4jbehave is that the .csv file must contain a section as follows:

• The section has a row where the second field has the contents "Unsafe Control
Actions".

• All second fields beneath this row are now taken as one UCA each. It is recommended
to use only alphanumeric characters.

• All first fields in the row have a globally unique lowercase alphanumeric identifier.

• The section is terminated by a row with only empty fields.

SPMV to Java data type mapping This .csv file is very simple and must be manually
created. It is supplied with the -x command line option. The format is:

• The first row has two fields: "column" and "type".

• All rows after the first row have two fields, one for the variable and one for the type.

• The mapping assigns one SPMV named "column" the type "type".

SPMV and possible values This .csv can be either manually created or exported from
XSTAMPP. It is supplied with the -z command line option. It has two rows at the beginning
that are reserved for XSTAMPP information. Their values are not considered in any way.
After that:

• In the third row each subsequent field is one SPMV. It is recommended to use
lowercase alphanumeric characters.

• In the following rows, each field’s content is a possible value for the SPMV above it in
the third row.

35

5 Implementation

UCA id list A list of unique lowercase identifiers separated with a .csv delimiter or line
break. If not supplied, tests4jbehave will generate test cases for all UCAs specified with the
-v command line option. If supplied, only test cases for the UCAs from the UCA list are
generated, of which the id matches one of the ids from this UCA id list.

5.3 Limitations

Due to constraints by Thucydides and JBehave for test suite to .story and step matching the
following limitations to inputs for tests4jbehave should be respected:

• SPMVs names must be lowercase.

• UCAs are lowercase and should be limited to alphanumeric characters.

• In any input there must not be an underscore followed by a number.

• There must not be underscores directly after an underscore.

• All UCA ids consist only of lowercase alphanumeric characters and should be globally
unique.

If tests4jbehave encounters such a violation, it is removed or replaced. Due to this, in certain
cases, name collisions between different UCAs, SPMVs or UCAs ids may occur. For example,
if UCAs are identical except for a violation of the limitations:
this uca is_fine and this uca is_1fine will both be converted to the .story file name
this_uca_is_fine. As such, only one of the two will be in the final output, as JBehave
will otherwise encounter a conflict. It is therefore best practice to stick to the limitations
described above.

5.4 Sample Usage Details

Examining the improvements (section 4.2), Step 1 (figure 4.2) was changed considerably.
For Step 2 (figure 4.3) only the actual test code must be written into the generated step
definition stubs in the Java test cases.

A sample usage scenario will serve to illustrate the potential viability of the implemented
improvements, using the improved workflow. The workflow is executed with the sample
system used in the EST 2017 agile experiment(section 6.1).

36

5.4 Sample Usage Details

Ensuring that the prerequisites are met An initial context is assumed:

• The current working directory is/ReplicationPackage.

• There is a res folder containing:

– A declarations.txt file containing the declarations for each of the test cases.

– An imports.txt file containing the imports for each of the test cases.

– An uca-id-list file containing the UCA ids to generate test cases for.

– A variables-values.csv file containing mapping of SPMVs and possible values to
use in test case generation.

– A variable-types.csv file mapping each SPMV to a Java type.

– A xstampp-all.csv file containing all UCAs.

• There is a tests4jbehave folder containing the executable .jar.

• There is a workspace folder containing a prepared Eclipse Maven workspace.

Step 1 tests4jbehave is used to generate test cases by executing it with the following
options:
java -jar tests4jbehave/tests4jbehave-1.0.0-SNAPSHOT-jar-with-dependencies.jar

-j res/imports.txt -k res/declarations.txt -r workspace/autonomous-parking-system/src/test/

-s java/com/bddexperiment/jbehave/ -p com.bddexperiment.jbehave -v res/variable-types.csv

-x res/xstampp-all.csv -z res/variables-values.csv -u res/uca-id-list.csv -e pairwise.

The resulting test cases are generated into the prepared Eclipse workspace.

For each UCA there is a package containing the Java test suites and a steps subpackage
containing Java test cases with the stub definitions.

In the resources folder all scenarios for each UCA are in the .story files in the corresponding
subdirectory.

With this, the considered scenarios for Step 1 are generated and Step 1 is completed. The
Eclipse workspace could look similar to the sample found in figure 5.1.

Step 2 In Step 2 all that needs to be done is to write the test code in the generated step
definitions in the Java test cases.

When a test case is written, the testing process in Step 2 should be applied (figure 4.3).
This means that a scenario and corresponding test case is examined for its viability and
either kept or discarded. If it is kept, examples must be either manually written, or if some
were generated, unfit ones must be removed to make the test case pass and thus discover
unsafe scenarios that cause a UCA to occur.

Step 2 is the more time consuming step, compared to Step 1.

37

5 Implementation

Figure 5.1: Sample Eclipse Workspace

Results The improved workflow has considerably less manual interaction than the old
workflow, leading to a faster output of test cases.

As an added benefit, different value combinations can be generated as examples by
tests4jbehave for each scenario, matching and assisting the BDD approach specification-by-
example.

JBehave will execute each scenario once for each value combination supplied for that
scenario. This can potentially lead to large numbers of test executions, depending on the
number of scenarios kept and number of examples supplied with each scenario.

The results look fairly promising:

• Step 1:

– Number of UCAs written into unsafe scenarios: 9.

– Number of unsafe scenarios: 72 (1944 with examples).

– Time used: 10 min.

• Step 2:

– Number of passed test cases: 13 test cases with a total of 137 passed scenarios.

– Line coverage: 59 / 167 (35%).

38

5.4 Sample Usage Details

– Mutation coverage: 6 / 157 (4%).

– Time used: 30 min.

An evaluation of the improved workflow in comparison to the old workflow can be found
in chapter 6.

39

6 Evaluation

The improved workflow from chapter 4 and its implementation are evaluated in comparison
to the old workflow of writing automated BDD acceptance tests.

For this, the EST 2017 agile experiment resources and results will be relied upon. The
sample system and testing process used in the EST 2017 agile experiment will also be used
when evaluating the effectiveness of the improvements to the old process.

6.1 EST 2017 Agile Experiment

To determine if automated acceptance testing with BDD and JBehave offers benefits in
terms of productivity over UAT and manual testing, an experiment comparing the two
approaches was conducted in the EST 2017 Summer lecture at the University of Stuttgart.

The strategy used for unsafe scenario creation, to isolate single SPMV to discover those that
cause UCAs, is also basis of this work.

The results indicate that automated acceptance testing with BDD and JBehave shows
promise, but improvements in productivity are desired.

6.2 Evaluation

The research objective is to determine if there is an increase in productivity with the
improvements made to the process of writing BDD acceptance tests for safety-critical
systems over the old process. Both processes are described in chapter 4.

For this, an evaluation is conducted with a group of students where the improved process
is used to BDD acceptance test a sample system under test.

The results are then compared to the results of the EST 2017 agile experiment (section
6.1), which used the old workflow as well as UAT, to check for changes in productivity.

The details of the improved workflow used here can be found in section 5.4.

This evaluation mostly follows the Steps in the Experiment Process described in Experimenta-
tion in Software Engineering [WRH+12].

41

6 Evaluation

Effectively the evaluation design should be, "one factor with two treatments". The factor is
the workflow choice and the treatments are either the old or improved workflow. Section
6.2.3 mentions some details regarding this.

6.2.1 Scoping

The goal of this evaluation is defined as follows:
Analyze the difference between the old process and the improved process of writing

BDD acceptance tests for safety critical systems

for the purpose of evaluation

with respect to productivity

from the point of view of the researcher

in the context of M.Sc. students writing BDD acceptance tests for a sample system.

In addition to productivity, fault detection capability is considered as well. This is for the
purpose of showing that a possible positive change in productivity does not negatively
impact the quality of the tests produced by the new workflow.

6.2.2 Hypotheses

For productivity the following hypotheses are considered:

• The null hypothesis, H0, is that there is no difference in productivity using the
improved process over using the old process.
The alternative hypothesis, H1, is that there is a positive difference in productivity
using the improved process over the old process.

For fault detection capability the following hypothesis are considered:

• The null hypothesis, H0, is that there is no difference in fault detection capability
using the improved process over the old process.
The alternative hypothesis, H1, is that there is a positive difference in fault detection
capability using the improved process over the old process.

• The above null and alternative hypotheses are repeated with a different variable for
improved confidence.

6.2.3 Independent Variable

The independent variable in this case is the use of tests4jbehave with the improved process.
During this evaluation the improved process is always used. The case where the old process
is used is covered by the results of the EST 2017 agile experiment (6.1), which are merged
with the results of this evaluation.

42

6.2 Evaluation

6.2.4 Dependent Variables

The dependent variables should measure the effects of the independent variables in terms
of productivity as well as fault detection capability. For this we measure the following
variables:

• Number of UCAs written into unsafe scenarios. (NIUS)
NIUS measures productivity.

• Line coverage of all tests written. (LC)
LC measures fault detection capability.

• Mutation coverage of all tests written. (MSI)
MSI also measures fault detection capability.

6.2.5 Subjects

The subjects are 11 students of the software technology course and chosen based on
convenience of availability.

6.2.6 Object

The object of the evaluation will be the sample system the subjects write BDD acceptance
tests for in their assigned workflow.

6.2.7 Operationalization

The evaluation follows the EST 2017 agile experiment (section 6.1) in its procedure. This
means that the evaluation is split into 2 phases, lasting 30 minutes each. A third phase as
used in EST 2017 agile experiment is irrelevant in this case. Phase 1 will mirror Step 1 in
the improved process and phase 2 will mirror Step 2.

Using tests4jbehave unsafe scenarios are generated and then sifted for suitable scenarios
during phase 1. After the participant is finished, or after 30 minutes, phase 2 begins.

The participant now writes the step definitions for the scenarios created in phase 1 and
writes test code in such a way that the acceptance tests pass, thereby discovering which
scenarios cause UCAs and are truly unsafe.

In general, the procedure from section 5.4 is followed.

43

6 Evaluation

Guidelines

For the evaluation the following guidelines are followed:

• The evaluation takes place in the same room under conditions that are as constant as
possible for every participant.

• The participants receive an explanation of the material to prepare for the evaluation:

– The sample system that is to be tested.

– Writing BDD scenarios and Java test cases.

– Using JBehave with Eclipse.

– The workflow that must be followed.

Printouts are supplied as well.

• The variables and time used are measured and the data collected by means of survey
sheets, which are filled out by hand after each phase in the evaluation and at the end.

• The evaluation will be conducted over the time period of 1 week.

• The participants are guaranteed anonymity.

• Each participant is awarded the same monetary compensation.

6.3 Evaluation Results

The results of the evaluation are viewed together with the earlier EST 2017 agile experiment
(section 6.1). In total, there are three experiments. The experiments "UAT" and "BDD 1"
are the previous experiments results, where "UAT" was a manual UAT testing process and
"BDD 1" was the old workflow. "BDD 2" is the repeat of the experiment with the improved
workflow, namely this evaluation.

Based on the results (figure 6.1 and figure 6.2) all three null hypotheses (section 6.2.2)
are rejected. This means there is an increase in productivity, measured by the variable
NIUS, and fault detection capability, measured by the variables LC and MSI, when using
the improved workflow for BDD automated acceptance testing over the more manual
alternatives. This is a positive result, that shows the improved workflow is effective without
obvious drawbacks in test quality.

44

6.4 Threats to Validity

Figure 6.1: Results - Descriptive Statistics

Figure 6.2: Results - Hypothesis Testing

6.4 Threats to Validity

The threats to validity considered are of the four types: conclusion, internal, construct and
external validity.

6.4.1 Conclusion Validity

• Reliability of measures: Data might be falsely recorded by the participants, as each
participant is responsible for recording his or her data. This is mitigated by dou-
ble checking results after the experiment and re-running the tests on the artifacts
produced by the participants.

• Reliability of treatment implementation: While the same explanation and conditions
are presented to each participant for this evaluation, this can not necessarily be said
about the EST 2017 agile experiment. As it was conducted months back, there are

45

6 Evaluation

surely some differences to this evaluation’s procedure. There is nothing that can
really be done about this, except sticking to known information as much as possible.

• Random heterogeneity of subjects: As 11 students from the software technology
course are selected, it is reasonable to assume that the impact of individual difference
in capabilities is limited. However, the group selected is rather specific and not
necessarily representative and this could pose problems for external validity.

6.4.2 Internal Validity

• History: The evaluation was carried out about 4 months after the EST 2017 agile
experiment. Although effort was expended to replicate conditions as much as possible,
it is not realistic to expect perfect replication, partly since some details will not be
documented. There is not really anything that can be done about this though.

• Maturation: As the tasks for the participants are somewhat repetitive, as in writing
tests in the same manner, the risk for negative effects is quite small, since the time
allotted for each phase is only 30 minutes. This is also not enough time for large
improvements through learning in this small time frame. Due to this the threat of
maturation is not deemed too large. Small improvements during phase 2 of the
evaluation are somewhat expected though, as immediate feedback by executing the
written test is gained.

• Instrumentation: The same survey and printouts for the material are supplied as
in the EST 2017 agile experiment for as close as possible condition replication. If
there are problems with the documents, they must have also existed in the EST 2017
agile experiment, and thus will not impact the comparison of results. This is why
instrumentation will not be considered a threat that can be countered.

• Selection: Only volunteers are selected for this evaluation. While it is true that
volunteers may not be representative and show above average motivation, there are
reasons to ignore this as a threat. Firstly, the EST 2017 agile experiment was also
conducted on volunteer basis, and to keep the conditions in this evaluation as close
as possible, volunteers based on availability are chosen. Secondly there is no other
way to gain participants in the first place in this case.

• Diffusion or imitation of treatments: This evaluation is carried out over the course of
one week, meaning theoretically participants could learn from each other. To combat
this, no participant is informed who else takes part in the evaluation. Participants are
not informed how good their results are in comparison. A small risk that participants
learn of each other remains though. Additionally participants could learn from the
EST 2017 agile experiment if they have acquaintances that took part there. This is
not something that can be controlled though and can therefore only be ignored.

46

6.4 Threats to Validity

6.4.3 Construct Validity

• Interaction of testing and treatment: This is a real risk, as subjects fill out the data
collection form themselves. They are aware of this form at all times and might
purposefully try to increase LC, MSI or NIUS, as they must fill out the form with their
results after each phase. Also, as the number of passed test cases is measured but not
considered for this evaluation. The subjects are not aware of this and might possibly
decrease natural results in considered variables in favor of artificially higher scores
in ignored ones. To try to counter this, no incentives for good results are offered or
implied. The explanation for the participants glosses over the data collection sheet,
in hopes that it is only considered by any given participant at the end of a phase.

• Restricted generalizability across constructs: This is a real risk, as the main focus is
productivity. However the variables LC and MSI are also considered to represent fault
detection capability. An increase in productivity that causes a decline in test quality
can therefore be detected.

• Hypothesis guessing: The participants are aware of the data collection form before
they begin. They may guess which of the recorded values are considered for which
hypothesis and what that hypothesis might be. However they are not informed what
the comparison standard is. The only information participants receive is that the
evaluation will determine the effectiveness of the workflow they follow. While it
is possible to purposefully maximize the values of NIUS by not following proper
procedure of deleting unchecked or unwanted test cases, the values of LC and MSI
require real testing code to be written. The requirement that each test must pass
for MSI to even be measurable means that manipulation of this type is a lot more
difficult, especially considering the short time frame participants are allotted. The risk
for manipulation is certainly present for NIUS. Aside from checking for abnormally
high values, not much can be done.

• Evaluation apprehension: This is a potential risk, especially as the subjects record the
values themselves. For this reason values are double checked by collecting the artifacts
produced by the subjects and executing the produced test cases again. Mitigation also
comes from the fact that participants are not informed against which group, method
or individual they compete.

6.4.4 External Validity

• Interaction of selection and treatment: Only students were selected, on the basis of
available volunteers, just as in the EST 2017 agile experiment. The participants might
not represent the entire spectrum, however, due to the conditions of EST 2017 agile
experiment being replicated this point is rendered mute.

• Interaction of setting and treatment: This could be the case, as the sample system
used is considered a toy system with limited size. As participants must be able to test

47

6 Evaluation

it in a short amount of time, the restricted size corresponds to the limitation of the
evaluation process.

48

7 Conclusion

BDD acceptance testing is a fitting method to test safety critical systems for safety re-
quirements. An existing BDD testing approach based on artifacts produced by STPA was
examined with the goal of finding inefficiencies and improving upon them. That approach
was used in the earlier EST 2017 agile experiment, showing its viability. It is based on a test
case scheme centered around isolating a process variable that would cause UCAs to occur
with the goal of discovering unsafe scenarios. Writing tests according to this scheme and
ready to use with JBehave as BDD acceptance tests is quite repetitive and tedious. During
the course of this work improvement potential was identified and the process partially
automated.

Improvements to the process were implemented in the form of a command line tool,
automating and thereby alleviating repetitive parts of the process. The command line
tool generates test cases according to a given scheme and respects naming and location
conventions, so that JBehave can directly be used with the generated test cases to BDD
acceptance test a system.

Finally, an evaluation of the command line tool was conducted that utilized the results
from the EST 2017 agile experiment for comparison. During the evaluation a sample
system was BDD acceptance tested, according to an improved workflow that relies on the
new command line tool. The effectiveness of the improvements was determined by the
evaluation, and the results show that the improved workflow has increased productivity
and fault detection capability over the processes used in the EST 2017 agile experiment.

7.1 Future Work

As for future work, the command line tool for automation could be improved. One
possibility is to support Cucumber in addition to JBehave. Also the limitations imposed by
JBehave are still present in the tool and it might be desirable to remove them and make
the tool more flexible. This is also an implicit requirement for an extension that would
add support for Cucumber. Additional improvements could also be capability for different
naming, location and generation schemes.

49

Bibliography

[Abdulkhaleq15] A. Abdulkhaleq, S. Wagner. “XSTAMPP: An eXtensible STAMP platform
as tool support for safety engineering.” eng. In: 2015 STAMP Workshop,
MIT, Boston, USA. Universität Stuttgart, 2015. URL: http://elib.uni-
stuttgart.de/opus/volltexte/2015/9987 (cit. on p. 18).

[AT17] Acceptance Test. 2017. URL: https://www.agilealliance.org/glossary/
acceptance/ (cit. on p. 18).

[ATDD17] Acceptance Test Driven Development. 2017. URL: https : / / www .
agilealliance.org/glossary/atdd/ (cit. on p. 18).

[BDD17] Behavior Driven Development. 2017. URL: https://www.agilealliance.
org/glossary/bdd/ (cit. on p. 19).

[CC17] Cucumber. 2017. URL: https://cucumber.io/ (cit. on p. 21).

[CG08] L. Crispin, J. Gregory. Agile Testing: A Practical Guide for Testers and
Agile Teams. Addison-Wesley Professional, 2008, pp. 12–14. ISBN:
9780321534460 (cit. on p. 18).

[Conti18] BDD Security - Continuum. 2018. URL: https://www.continuumsecurity.
net/bdd-security/ (cit. on pp. 21, 22).

[JBW17] JBehave. 2017. URL: http://jbehave.org (cit. on pp. 17, 19).

[LecQSW17] Qualitätssicherung und Wartung - Sommer 2017, University of Stuttgart.
2017. URL: http://www.iste .uni - stuttgart .de/se/lehre/fruehere-
semester/sommersemester-2017/qualitaetssicherung-und-wartung-
qsw.html (cit. on pp. 17, 21).

[PPG04] Y. Papadopoulos, D. Parker, C. Grante. “Automating the failure modes
and effects analysis of safety critical systems.” In: Eighth IEEE Interna-
tional Symposium on High Assurance Systems Engineering, 2004. Pro-
ceedings. Mar. 2004, pp. 310–311. DOI: 10.1109/HASE.2004.1281774
(cit. on p. 21).

[PWT17] Pairwise Testing. 2017. URL: http://pairwise.org (cit. on p. 28).

[Seren17] Serenity BDD. 2017. URL: http : / / thucydides . info / docs / serenity /
#introduction (cit. on p. 33).

[Sma14a] J. F. Smart. BDD in Action. Manning, 2014, p. 14. ISBN: 9781617291654
(cit. on p. 19).

[Sma14b] J. F. Smart. BDD in Action. Manning, 2014, p. 21. ISBN: 9781617291654
(cit. on p. 19).

51

http://elib.uni-stuttgart.de/opus/volltexte/2015/9987
http://elib.uni-stuttgart.de/opus/volltexte/2015/9987
https://www.agilealliance.org/glossary/acceptance/
https://www.agilealliance.org/glossary/acceptance/
https://www.agilealliance.org/glossary/atdd/
https://www.agilealliance.org/glossary/atdd/
https://www.agilealliance.org/glossary/bdd/
https://www.agilealliance.org/glossary/bdd/
https://cucumber.io/
https://www.continuumsecurity.net/bdd-security/
https://www.continuumsecurity.net/bdd-security/
http://jbehave.org
http://www.iste.uni-stuttgart.de/se/lehre/fruehere-semester/sommersemester-2017/qualitaetssicherung-und-wartung-qsw.html
http://www.iste.uni-stuttgart.de/se/lehre/fruehere-semester/sommersemester-2017/qualitaetssicherung-und-wartung-qsw.html
http://www.iste.uni-stuttgart.de/se/lehre/fruehere-semester/sommersemester-2017/qualitaetssicherung-und-wartung-qsw.html
https://doi.org/10.1109/HASE.2004.1281774
http://pairwise.org
http://thucydides.info/docs/serenity/#introduction
http://thucydides.info/docs/serenity/#introduction

[Sma14c] J. F. Smart. BDD in Action. Manning, 2014, p. 125. ISBN: 9781617291654
(cit. on p. 28).

[TDD17] Test Driven Development. 2017. URL: https://www.agilealliance.org/
glossary/tdd/ (cit. on p. 18).

[Thucy17] Thucydides. 2017. URL: https ://github.com/thucydides - webtests/
thucydides (cit. on p. 33).

[WRH+12] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wess-
lén. Experimentation in Software Engineering. Springer, 2012. ISBN:
9783642290442 (cit. on p. 41).

https://www.agilealliance.org/glossary/tdd/
https://www.agilealliance.org/glossary/tdd/
https://github.com/thucydides-webtests/thucydides
https://github.com/thucydides-webtests/thucydides

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Research Objective

	2 Background
	2.1 Safety-critical Systems
	2.2 STPA with STAMP and XSTAMPP
	2.3 Agile Testing
	2.4 BDD and JBehave

	3 Related Work
	3.1 FMEA
	3.2 Cucumber
	3.3 BDD Security - Continuum

	4 Concept
	4.1 Current Workflow: Writing Automated BDD Acceptance Tests
	4.2 Improvements to the BDD Testing Process

	5 Implementation
	5.1 Extending XSTAMPP
	5.2 Input File Format
	5.3 Limitations
	5.4 Sample Usage Details

	6 Evaluation
	6.1 EST 2017 Agile Experiment
	6.2 Evaluation
	6.3 Evaluation Results
	6.4 Threats to Validity

	7 Conclusion
	7.1 Future Work

	Bibliography

