
Cross-Layer Fault Tolerance in
Networks-on-Chip

Von der Fakultät Informatik, Elektrotechnik und
Informationstechnik der Universität Stuttgart zur Erlangung

der Würde eines Doktors der Naturwissenschaften
(Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Gert Schley
aus Karlsruhe

Hauptberichter: Prof. Dr.-Ing. Martin Radetzki
Mitberichter: Prof. Dr. Oliver Bringmann

Tag der mündlichen Prüfung: 11. Juni 2018

Institut für Technische Informatik der Universität Stuttgart

2018

iii

Erklärung

Hiermit versichere ich, diese Arbeit selbstständig verfasst und nur die
angegebenen Quellen benutzt zu haben.

Stuttgart, 01. Juni 2017

Gert Schley

To my mom & dad and to my friends

vii

Acknowledgements

This thesis would not have been possible without the support of many people
over the years. I am so thankful to every single one of you.

I am deeply grateful for the unconditional support and love of my parents
and for their trust in me and my work. I thank you for everything from the
bottom of my heart.

I would like to thank Prof. Dr.-Ing. Martin Radetzki for giving me the
opportunity to work at Embedded Systems department and for his honest
and constructive feedback concerning my work. I also thank Prof. Dr. Oliver
Bringmann for evaluating my thesis.

A big thank you to Laura for her friendship and her positive attitude that
always motivated me to continue with my dissertation. ¡Muchas gracias! An-
other big thank you to Marcus for reading chapters of my thesis and for giving
priceless feedback. ¡Oiner geht noch, my friend!

For being such great colleagues and friends I thank Weiyun, Adan, Rauf,
Manuel, Leandro, Sabine, Mirjam, Helmut, Lothar, Eric, and Chang. When
thinking of you I remember all the funny discussions and the absolutely great
time we had.

Thank you to my dear friends Markus, Natalie V., Natalie R., Silvia, Katrin,
Judith, Alex, Christoph and Inge for always being there for me. I am so glad
to got to know all of you. CU.

For supporting me and my work I like to thank my former master students
Dana, Ibrahim, Muhammad, and Nikolaos. You guys rock!

Speaking of Rock: last but not least I want to thank Blaze Bayley and Ab-
solva for their great music and powerful gigs that helped me to take the One
More Step to complete this work.

Stuttgart, June 2018
Gert Schley

ix

Contents

1 Introduction and Motivation . 1
1.1 Contribution . 3
1.2 Dissertation Outline . 4

2 Preliminaries . 5
2.1 Networks-on-Chip . 5

2.1.1 Software Layer . 6
2.1.2 Transport Layer . 6
2.1.3 Network Layer . 7
2.1.4 Data Link Layer . 10
2.1.5 Physical Layer . 11
2.1.6 Definition Cross-Layer . 11
2.1.7 Hierarchical Networks-on-Chip 12

2.2 Routing . 12
2.2.1 Classification . 12
2.2.2 Deadlocks . 13
2.2.3 Virtual Channels . 14
2.2.4 Dimension-order Routing . 15
2.2.5 Up/Down Routing . 15
2.2.6 Determination of Shortest Path . 16

2.3 Faults and Fault Models . 16
2.3.1 Fault Types . 16
2.3.2 Fault Models . 18

2.4 Fault Tolerant Networks-on-Chip . 20

3 Background and Related Work . 23
3.1 Fault Localization . 23

3.1.1 Structural Diagnosis . 23
3.1.2 Functional Diagnosis . 25
3.1.3 Protocol-based Diagnosis . 27
3.1.4 Cross-Layer Diagnosis . 29

3.2 Fault Tolerance Methods . 30
3.2.1 Single-Layer Fault Tolerance Methods 31
3.2.2 Cross-Layer Fault Tolerance Methods 33

x Contents

4 Cross-layer Fault Localization . 37
4.1 Interaction of Diagnosis Techniques . 37
4.2 Protocol-based Fault Localization . 40

4.2.1 Base Protocol . 41
4.2.2 Protocol Timeout Adaptation . 42
4.2.3 Localization Principle . 44
4.2.4 Diagnosis Protocol . 45

4.2.4.1 Fundamentals . 45
4.2.4.2 Localization Logic . 47

4.2.5 Evaluation . 49
4.2.5.1 Diagnosis Capability . 49
4.2.5.2 Implementation Costs 51

4.3 Combination of Diagnosis Techniques . 52
4.3.1 Functional Diagnosis . 52
4.3.2 Structural Diagnosis . 54

4.4 Evaluation . 54
4.4.1 Definitions . 54
4.4.2 Diagnosis Quality . 55

4.4.2.1 Standalone Diagnosis Techniques 55
4.4.2.2 Combined Techniques 56

4.4.3 Fault Localization Latency . 57
4.5 Summary . 58

5 Cross-Layer Fault Tolerance . 61
5.1 Management of Communication Resources 62

5.1.1 Availability Status Communication 63
5.1.2 Data Flow Management . 64

5.2 Software-Based Packet Rerouting . 66
5.2.1 Rerouting Principle . 67

5.2.1.1 Required Rerouting Information 68
5.2.1.2 Packet Format . 69

5.2.2 Software Rerouting . 70
5.2.2.1 Rerouting Logic Overview 70
5.2.2.2 DOR XY Software Routing 73

5.2.3 Evaluation . 75
5.2.3.1 Packet Redirection Rate 76
5.2.3.2 Implementation Costs 78

5.3 Reconfigurable Hierarchical Routing . 78
5.3.1 Hierarchical Organization of NoC Topologies 79

Contents xi

5.3.2 Fault Tolerant Hierarchical Routing 80
5.3.2.1 Hierarchical Routing Principles and

Representation . 82
5.3.2.2 Deadlock-Freedom . 84
5.3.2.3 Enhanced Topology Graph 85
5.3.2.4 Routing Calculation . 87

5.3.3 Cross-Layer Routing Reconfiguration 91
5.3.3.1 Requirements of Reconfiguration Process . . . 93
5.3.3.2 Information Phase . 94
5.3.3.3 Recalculation Phase . 95
5.3.3.4 Reconfiguration Phase 97

5.3.4 Evaluation . 99
5.3.4.1 Routing Performance . 100
5.3.4.2 Performance of Cross-Layer Reconfiguration 101
5.3.4.3 Implementation Costs 103

5.4 Summary . 106

6 Combination of Cross-Layer Diagnosis and Fault Tolerance
Methods . 107
6.1 Evaluation . 108

6.1.1 Cross-Layer Communication Overhead of Fault
Tolerance Methods . 109

6.1.2 Performance of Cross-Layer Diagnosis 112
6.1.2.1 Data Throughput . 112
6.1.2.2 Pareto Analysis . 115

6.2 Summary . 117

7 Conclusion and Future Work . 119

References . 123

A Appendix . 135
A.1 Proof of Deadlock Freedom for Hierarchical Routing 135

A.1.1 Channel Order . 136
A.1.2 Proof of Deadlock Freedom . 138

Index . 141

xiii

List of Figures

2.1 OSI network stack. 5
2.2 Input-buffered five-port switch. 8
2.3 3x3 NoC with mesh topology. 9
2.4 Diagnosis techniques. 21

4.1 Diagnosis techniques of different layers. 38
4.2 Input parameters of localization algorithm. 45
4.3 Localization logic of the diagnosis protocol. 46
4.4 Average number of false positives. 50
4.5 Diagnosis schedule FD. 53

5.1 Information flow to and originating from the software layer. . . 61
5.2 Communication of availability status across network layers. . . 63
5.3 Architecture of Availability Communication Unit. 65
5.4 Information flow of Data Flow Management. 66
5.5 Information employed by software routing algorithm. 68
5.6 Average packet redirection rate. 76
5.7 Graph representations of aggregations. 80
5.8 Hierarchical mesh topology with hmax = 3. 81
5.9 Hierarchical routing principle. 83
5.10 Dependency graph of VC allocation scheme. 84
5.11 Enhanced Topology Graph for U1,5. 86
5.12 Cross-layer reconfiguration process. 92
5.13 Update of Enhanced Topology Graph ET G1,5 after link

shutdown. 96
5.14 Throughput of hierarchical routing. 100
5.15 Traffic distribution for flat and (4x2,4x4) HNC. 101
5.16 Required time for routing reconfiguration. 103

6.1 Communication flow between diagnosis techniques and fault
tolerance methods. 107

6.2 Impact of cross-layer overhead on data communication. 110
6.3 Average data throughput for the different diagnosis

techniques in combination with SBR. 113

xiv List of Figures

6.4 Average data throughput for the different diagnosis
techniques in combination with RHR. 115

6.5 Diagnosis quality vs. data throughput SBR. 116
6.6 Diagnosis quality vs. data throughput RHR. 117

A.1 Enumeration of channels. 137

xv

List of Tables

2.1 Failure Examples . 18

4.1 Simulation Model Setup . 49
4.2 Number of Erroneously Identified Permanent Faults 50
4.3 Protocol Code Size [KiB] . 52
4.4 Quality Levels of Techniques . 57
4.5 Average Localization Latency [cycles] . 58

5.1 Fault Tolerance Methods . 62
5.2 Simulation Model Setup for Software Rerouting 75
5.3 Packet Redirection Rate . 77
5.4 Routing Table of Node U0,23 . 83
5.5 Simulation Model Setup for Software Rerouting 99
5.6 ET G Communication Time [kcycles] . 102
5.7 Code Size of Recalculation Algorithms [KiB] 104
5.8 Synthesis Results . 105
5.9 Number of Routing Table Entries . 105

6.1 Simulation Model Setup . 108
6.2 Average Cross-Layer Overhead SBR [flits] 109
6.3 Average Cross-Layer Overhead RHR [flits] 112

xvii

Abbreviations

ACU Availability Communication Unit
API Application Programming Interface
BER Bit Error Rate
CRM Communication Resource Management
DFM Data Flow Management
DOR Dimension-Order Routing
ECC Error Correction Code
EDC Error Detection Code
ETG Enhanced Topology Graph
FD Functional Diagnosis
HNC Hierarchical Network Configuration
IF Interface
NI Network Interface
NoC Network-on-Chip
OSI Open Systems Interconnection Model
P Diagnosis Protocol
PE Processing Element
RHR Reconfigurable Hierarchical Routing
RCU Reconfiguration Unit
SAT Satisfiability
SBR Software-based Packet Rerouting
SD Structural Diagnosis
SER Soft Error Rate
SW Switch
TAM Test Access Mechanism
VC Virtual Channel

xix

Abstract

The design of Networks-on-Chip follows the Open Systems Interconnection
(OSI) reference model. The OSI model defines strictly separated network ab-
straction layers and specifies their functionality. Each layer has layer-specific
information about the network that can be exclusively accessed by the methods
of the layer. Adhering to the strict layer boundaries, however, leads to meth-
ods of the individual layers working in isolation from each other. This lack of
interaction between methods is disadvantageous for fault diagnosis and fault
tolerance in Networks-on-Chip as it results in solutions that have a high effort
in terms of the time and implementation costs required to deal with faults.

For Networks-on-Chip cross-layer design is considered as a promising
method to remedy these shortcomings. It removes the strict layer boundaries
by the exchange of information between layers. This interaction enables meth-
ods of different layers to cooperate, and thus, deal with faults more efficiently.
Furthermore, providing lower layer information to the software allows hard-
ware methods to be implemented as software tasks resulting in a reduction of
the hardware complexity.

The goal of this dissertation is the investigation of cross-layer design for
fault diagnosis and fault tolerance in Networks-on-Chip. For fault diagnosis a
scheme is proposed that allows the interaction of protocol-based diagnosis of
the transport layer with functional diagnosis of the network layer and struc-
tural diagnosis of the physical layer by exchanging diagnostic information.
The techniques use this information for optimizing their own diagnosis pro-
cess. For protocol-based diagnosis on the transport layer, a diagnosis protocol
is proposed that is able to locate faulty links, switches, and crossbar connec-
tions. For this purpose, the technique utilizes available information of lower
layers. As proof of concept for the proposed interaction scheme, the diagno-
sis protocol is combined with a functional and a structural diagnosis approach
and the performance and diagnosis quality of the resulting combinations is
investigated. The results show that the combinations of the diagnosis proto-
col with one of the lower layer techniques have a considerably reduced fault
localization latency compared to the functional and the structural standalone
techniques. This reduction, however, comes at the expense of a reduced diag-
nosis quality.

xx Abstract

In terms of fault tolerance, the focus of this dissertation is on the design and
implementation of cross-layer approaches utilizing software methods to pro-
vide fault tolerance for network layer routings. Two approaches for different
routings are presented.

The requirements to provide information of lower layers to the software
using the available Network-on-Chip resources and interfaces for data com-
munication are discussed. The concepts of two mechanisms of the data link
layer are presented for converting status information into communicable units
and for preventing communication resources from being blocked. In the first
approach, software-based packet rerouting is proposed. By incorporating in-
formation from different layers, this approach provides fault tolerance for de-
terministic network layer routings. As specialization of software-based rerout-
ing, dimension-order XY rerouting is presented. In the second approach, a re-
configurable routing for Networks-on-Chip with logical hierarchy is proposed
in which cross-layer interaction is used to enable hierarchical units to manage
themselves autonomously and to reconfigure the routing. Both approaches are
evaluated regarding their performance as well as their implementation costs.

In a final study, the cross-layer diagnosis technique and cross-layer fault
tolerance approaches are combined. The information obtained by the diagno-
sis technique is used by the fault tolerance approaches for packet rerouting
or for routing reconfiguration. The combinations are evaluated regarding their
impact on Networks-on-Chip performance. The results show that the cross-
layer information exchange with software has a considerable impact on per-
formance when the amount of information becomes too large. In case of cross-
layer diagnosis, however, the impact on Networks-on-Chip performance is sig-
nificantly lower compared to functional and structural diagnosis.

xxi

Zusammenfassung

Das Design von Networks-on-Chip orientiert sich am Open Systems Intercon-
nection (OSI) Referenzmodell. Dieses definiert strikt voneinander abgegrenzte
Netzwerkabstraktionsschichten und spezifiziert deren Funktionalität. Jede der
Schichten besitzt Informationen über das Netzwerk, welche exklusiv durch
die Methoden dieser Schicht genutzt werden können. Das Einhalten der strik-
ten Schichtgrenzen bedingt jedoch, dass Methoden der einzelnen Schichten
isoliert voneinander arbeiten. Dieser Interaktionsmangel zwischen den Me-
thoden stellt einen Nachteil im Hinblick auf die Diagnose und die Tolerierung
von Fehlern in einem Network-on-Chip dar und resultiert in Lösungen, welche
einen erhöhten Aufwand bezüglich der Durchführungszeit sowie der Imple-
mentierungskosten für die Behandlung von Fehlern besitzen.

Schichtenübergreifendes Design dagegen wird im Bereich der Networks-
on-Chip als ein erfolgversprechendes Mittel angesehen, um diesen Defiziten
zu begegnen. Es hebt die strikten Schichtgrenzen durch den Austausch von
Informationen zwischen den Schichten auf. Diese Interaktion ermöglicht Me-
thoden unterschiedlicher Schichten, Fehler kooperativ zu behandeln und bietet
dadurch die Möglichkeit, Fehler effizienter zu behandeln. Ferner ermöglicht
es durch das Bereitstellen von Informationen niedrigerer Schichten an die
Software, Hardware-Methoden als Software-Tasks zu implementieren und
dadurch die Hardware-Komplexität von Networks-on-Chip zu reduzieren.

Das Ziel dieser Dissertation ist die Untersuchung von schichten-
übergreifendem Design für Fehlerdiagnose und Fehlertoleranz in Networks-
on-Chip. Für die Fehlerdiagnose wird ein Schema vorgeschlagen, welches die
Interaktion von protokoll-basierter Diagnose der Transportschicht (transport
layer) mit funktionaler und struktureller Diagnose der Vermittlungs- (network
layer) beziehungsweise der Bitübertragungsschicht (physical layer) durch den
Austausch von Diagnoseinformationen ermöglicht. Die Diagnosetechniken
setzen dabei die erhaltenen Informationen für die Optimierung des eige-
nen Diagnoseprozesses ein. Als Technik der Transportschicht wird ein Di-
agnoseprotokoll vorgestellt, welches durch die Zuhilfenahme von Informa-
tionen niedrigerer Schichten in der Lage ist, fehlerhafte Links, Switches
und Crossbar-Verbindungen zu lokalisieren. Als Machbarkeitsnachweis für
das vorgeschlagene Interaktionsschema wird das Diagnoseprotokoll mit einer
funktionalen und einer strukturellen Diagnosetechnik kombiniert und die

xxii Zusammenfassung

Kombinationen hinsichtlich ihrer Performanz und Diagnosequalität unter-
sucht. Die Ergebnisse der Untersuchung zeigen, dass die kombinierten Tech-
niken im Vergleich zu der funktionalen und der strukturellen Einzeltechnik
eine deutlich reduzierte Fehlerlokalisierungslatenz besitzen. Dies geschieht je-
doch auf Kosten der Diagnosequalität.

Der Fokus dieser Dissertation bezüglich Fehlertoleranz liegt auf dem Ent-
wurf und der Umsetzung von schichtenübergreifenden Ansätzen, welche
Software-Methoden einsetzen, um Fehlertoleranz für Routings der Ver-
mittlungsschicht zu gewährleisten. Hierzu werden zwei Ansätze für unter-
schiedliche Routings vorgestellt.

Zunächst werden die Anforderungen an ein Network-on-Chip diskutiert,
welche die Kommunikation von Informationen der unteren Schichten zu der
Software mittels der vorhandenen Ressourcen und Schnittstellen erlauben.
Hierfür werden die Konzepte zweier Mechanismen der Sicherungsschicht
(data link layer) präsentiert, die die Umsetzung von Statusinformationen in
kommunizierbare Einheiten sowie die Vermeidung der Blockierung von Kom-
munikationsressourcen gewährleisten. Im ersten Ansatz wird eine Software
Rerouting-Methode vorgestellt, welche mittels der schichtenübergreifenden
Interaktion Fehlertoleranz für ansonsten nicht-fehlertolerante, determinis-
tische Routings der Vermittlungsschicht bietet. Als Spezialisierung der
Rerouting-Methode kommt eine beispielhafte Umsetzung für Dimension-
Order XY Routing zum Einsatz. Im zweiten Ansatz wird ein fehlerto-
lerantes Routing für hierarchisch organisierte Network-on-Chip Topolo-
gien vorgeschlagen, bei welchem schichtenübergreifende Interaktion dazu
eingesetzt wird, die autonome Verwaltung von hierarchischen Einheiten zu
ermöglichen und das Routing zu rekonfigurieren. Die Ansätze werden hin-
sichtlich ihrer Performanz sowie ihrer Implementierungskosten evaluiert.

In einer abschließenden Betrachtung werden die schichtenübergreifenden
Diagnosetechniken und Fehlertoleranz-Ansätze miteinander kombiniert und
bezüglich ihres Einflusses auf die Performanz von Networks-on-Chip
evaluiert. Hierfür dienen die Diagnoseinformationen als Grundlage für
Rerouting und Routing-Rekonfiguration. Die Ergebnisse zeigen, dass bei
übermäßigem schichtenübergreifenden Informationsaustausch Teile des Netz-
werks überlastet werden können, was zu einer Reduktion der Performanz
führt. Bei schichtenübergreifender Diagnose fällt jedoch der negative Einfluss
auf die Performanz im Vergleich zu funktionaler und struktureller Diagnose
deutlich geringer aus.

1

Chapter 1
Introduction and Motivation

Over the last decades, the integration density of chips has continuously in-
creased as a result of the ongoing technology scaling. As a consequence, more
and more complex on-chip systems have become feasible. Today’s available
manycore architectures feature up to one hundred cores [66]. It is predicted
that until the year 2030 the feature size will come below 10 nm [67]. This en-
ables future manycore systems with hundreds or even thousands of cores [94]
[104] [108].

The strongly increasing number of cores on a chip, however, imposes new
requirements on the communication architecture. From the design perspective,
reusability and scalability of the communication infrastructure are of major
concern [69] [94]. Additionally, a fast data communication between cores is
required to gain a high system performance. For smaller systems classical bus-
based communication works well, however, for future systems busses can no
longer satisfy these requirements. Even for a small number of cores, the bus
becomes the limiting factor of the system performance [69] [145]. Further-
more, in case of a bus failure, system components can no longer communicate
with each other. This in turn may lead to a complete failure of the system.

To satisfy the requirements of future manycore systems, Networks-on-Chip
(NoC) have been proposed as new design paradigm for on-chip communica-
tion [12] [31] [57]. NoCs enable parallel inter-core communication by ap-
plying the concept of macroscopic networks to on-chip systems. Similar to
macroscopic networks, NoCs have a layered architecture as proposed by the
OSI reference model [100]. Each of the layers represents a different abstrac-
tion level of a NoC.

While technology scaling is beneficial regarding the integration density, it
also imposes new challenges for future on-chip systems. With the decreasing
feature size, on-chip systems become more and more susceptible to hardware
defects. These defects are introduced during chip manufacturing [13] or may
be the result of wearout effects such as electromigration [85] during chip op-
eration and are modeled by permanent faults [141].

Permanent faults compromise the functionality of a NoC. For instance,
faults can lead to distortion of individual signals or may cause the functional
misbehavior of NoC switches. This, in turn, results in an incorrect system
behavior or, in worst case, in a complete system failure. To continue system

2 1 Introduction and Motivation

operation correctly, it is crucial for NoCs to be able to locate permanent faults
and to deal with them.

In the area of NoCs, a variety of fault diagnosis and fault tolerance ap-
proaches exists in literature. These approaches are associated with individual
network layers and make use of the information available on the corresponding
layer to deal with the fault. A permanent fault, however, may affect function-
alities of different layers at the same time. Thus, it becomes necessary to deal
with the fault’s impact on more than just a single network layer. In general, it is
possible to implement methods on various layers to cope with faults. However,
without any interaction between the methods, actions performed on different
layers may contradict each other. In addition, there is the necessity to repeat
the same computations for the different methods, e.g. to localize the fault. For
this purpose, it may also be required to replicate the corresponding hardware
logic [18]. This results in a reduced performance and in an increased hardware
overhead.

Because of these disadvantages, the demand for cross-layer interaction for
fault diagnosis and fault tolerance has been made in literature for various ar-
eas of embedded systems [18] [37] [79] [105] [141]. Applying the concept of
cross-layer interaction to the network abstraction layer model defined by OSI
relaxes the strict separation of network layers by allowing the exchange of
information across layer boundaries. This information exchange is expected
to help to handle a fault with less effort than single layer approaches. More-
over, providing information of lower layers to higher ones allows methods to
be shifted to the higher layers. Some methods may even be relocated from
hardware to software resulting in a reduction of the hardware implementation
costs.

Research on cross-layer design for fault diagnosis and fault tolerance in
NoCs is in the early stages. Despite its expected advantages, only few ap-
proaches in literature exist so far that consider cross-layer design. Compared
to single layer approaches, cross-layer design has additional challenges. In
order to work cooperatively, the methods distributed over different network
layers require coordination [105]. To this end, it is necessary to investigate
possible cross-layer interactions and to specify the information flow across
the layers. Moreover, the tradeoff between different parameters (e.g. hardware
implementation costs or the latency to locate or deal with a fault) emerging
from cross-layer design for fault diagnosis and fault tolerance have to be con-
sidered [141].

1.1 Contribution 3

1.1 Contribution

This dissertation investigates cross-layer design for fault diagnosis and fault
tolerance in NoCs with the focus on performance-related and quality-related
parameters. The tradeoff between these parameters is studied.

This dissertation contributes to the state-of-the-art by the following:

1. A generic interaction scheme is proposed that combines protocol-based di-
agnosis on the transport layer with functional diagnosis and structural diag-
nosis techniques. This interaction scheme can be used to increase the over-
all performance of diagnosis by efficiently determining the faulty switch
on the transport layer before applying fine grained diagnosis of the lower
layer techniques [121].

2. For diagnosis on the transport layer a diagnosis protocol is proposed that
is able to narrow down a fault on a communication path to a single link,
switch, or crossbar connection [118].

3. The performance and diagnosis quality of cross-layer diagnosis is inves-
tigated for combinations of protocol-based diagnosis with functional and
structural diagnosis and the results are compared to the corresponding stan-
dalone techniques [121].

4. The need for lower layer mechanisms to manage communication resources
is discussed. Concepts for two hardware mechanisms of the data link layer
are presented to avoid communication resources from being blocked and to
provide information about the availability of communication resources to
higher network layers.

5. A software-based rerouting approach is proposed that, with the help of in-
formation of lower network layers, is able to offer fault tolerance for oth-
erwise non fault tolerant, deterministic network layer routings [118]. An
exemplary implementation of the method for dimension-order XY routing
is presented.

6. A reconfigurable routing approach for hierarchically organized NoCs [119]
with a cross-layer reconfiguration process [117] is proposed that allows the
routing within individual hierarchical units to be adapted while the rest of
the NoC remains operative.

4 1 Introduction and Motivation

1.2 Dissertation Outline

This thesis is organized as follows: Chapter 2 introduces the basics of NoCs
relevant for this work. An overview of state-of-the-art and related work cover-
ing diagnosis and fault tolerance methods is given in Chapter 3. In Chapter 4,
cross-layer localization of permanent faults is discussed. First, the interac-
tion scheme to combine protocol-based diagnosis of the transport layer with
functional and structural diagnosis of lower layers is presented. Then, the di-
agnosis protocol to locate faulty communication resources in a NoC is intro-
duced. The protocol is combined with a functional and a structural diagnosis
technique according to the proposed interaction scheme and all combinations
as well as the corresponding standalone diagnosis techniques are evaluated
with respect to the diagnosis quality and localization latency. Chapter 5 covers
cross-layer fault tolerance. First, the two data link layer mechanisms for flow
control management and for providing availability information of communica-
tion resources to the software are discussed. Following this, the software-based
rerouting and the reconfigurable routing for hierarchically organized NoCs are
presented and are evaluated. The combinations of diagnosis techniques and
fault tolerance methods are evaluated in Chapter 6. Chapter 7 summarizes this
dissertation and proposes possible future work.

5

Chapter 2
Preliminaries

2.1 Networks-on-Chip

Networks-on-Chip (NoC) have been proposed by various research groups [12]
[31] [57] around the year 2000 as new communication architecture for future
manycore systems. NoCs are scalable on-chip communication networks in-
spired by macroscopic networks. They allow the parallel exchange of infor-
mation between cores using a predominantly packet-based communication.
Because of their inherent redundancy provided by multiple alternative paths
between two cores, NoCs have the potential to tolerate faults on a communica-
tion path. Similar to macroscopic networks, the architecture of NoCs follows
the concept of network layers [38] [86] [91] as defined by the Open Systems
Interconnection model (OSI) [100]. The OSI network stack comprises seven
network abstraction layers as shown in Figure 2.1. Because of their general

Physical Layer

Data Link Layer

Network Layer

Transport Layer

Session Layer

Presentation Layer

Application Layer

Software Layer

Layer 1 !

Layer 2!

Layer 3!

Layer 4!

Layer 5!

Layer 6!

Layer 7!

Fig. 2.1: OSI network stack.

character, the layers five to seven, i.e. session layer, presentation layer, and
application layer, are not NoC specific. These three layers are subsumed as
software layer in this thesis. The implementation of the functionality and the
communication mechanisms of the network layers two to four are NoC spe-
cific and are subject to NoC specific requirements such as minimizing imple-
mentation costs. The transmission of information on the physical layer again
is general for all kinds of on-chip systems. However, there also exists NoC-

6 2 Preliminaries

related research focusing on the physical layer, e.g. the wireless interface in
the area of wireless NoCs [35] [36]. In the following, a layer-wise overview is
given about significant NoC components and the functionality of each network
layer.

2.1.1 Software Layer

The software layer is an application-oriented layer. It provides services and
protocols to the application for the data exchange via the underlying commu-
nication architecture. In the network stack with strictly separated layers as de-
fined by OSI, the communication architecture type, e.g. point-to-point bus or
NoC architecture, as well as the functionality used for the communication on
lower layers is hidden from the software layer. Software layer related research
for NoCs covers optimized application programming interfaces (API) [75] as
well as optimal task scheduling [143] and mapping [53] [113] of applications
to cores.

Cores are computational components of the software layer executing the
applications and implementing the aforementioned services and protocols. Be-
sides e.g. arithmetical hardware units, cores belong to the class of processing
elements (PE).

In this thesis, the term PE refers to a core in combination with local mem-
ory. PEs are used as sources and sinks of communication. Neither APIs nor
application mapping is part of this thesis.

2.1.2 Transport Layer

The transport layer constitutes the interface between the PE and the network
switch (cf. Subsection 2.1.3). For this purpose, NoCs are equipped with net-
work interfaces (NI) that provide communication protocol services and net-
work services [34] allowing data to be passed from software layer to the net-
work and vice versa. As mentioned previously, the data communication in
NoCs is typically packet-based. Packetization and depacketization of data are
important services offered by the NI. As the size of packets normally exceeds
the width of communication resources in the NoC, i.e. the width of buffers
and communication channels, packets are further subdivided into flow control

2.1 Networks-on-Chip 7

units (flits). Each packet is composed of a head flit containing the routing in-
formation and a tail flit defining the end of a packet. Between head flit and tail
flit an arbitrary number of body flits exist that contain the payload data.

Further important tasks of the transport layer are end-to-end flow control
[20] and error recovery [95]. Flow control regulates the communication flow
between two PEs and is responsible to allocate enough memory to store a
packet. End-to-end error recovery ensures reliable communication between
two communication endpoints. If a packet is corrupted or lost the correspond-
ing packet is retransmitted by its source. In order to detect packet corruption,
all packets are commonly equipped with error detection or error correction
codes and are checked at the receiver.

2.1.3 Network Layer

The network layer’s task is the transport of packets from their source NI to
their destination NI. The required functionality for transportation comprises:

• the routing,
• the arbitration, and
• the switching of packets [34].

This functionality is encapsulated in network switches (SW). A switch has in-
put ports i and output ports o to receive and forward packets. In the following,
the term port refers to an input/output port pair. The local port of a switch
is connected to the NI. To be able to store flits or entire packets temporarily,
switches may implement input or output buffers at each port. Figure 2.2 shows
an exemplary five-port switch with input buffers.

Routing defines the path of data through the network from its source to its
destination. At every switch, the flits of a packet received on an input port
have to be forwarded to an output port. The set of possible output ports is de-
termined by the routing. As routing input parameter, the destination address
stored in the head flit of a packet is used. To provide routing functionality, ev-
ery switch implements a router component. The complexity of this component
depends on the routing type used (cf. Subsection 2.2).

As several packets at different input ports may request for the same output
port o at a time, a switch implements arbitration functionality for each output
port. From the set of all requests, arbitration selects one of the requests and
gives the grant for the output port to the corresponding input according to the

8 2 Preliminaries

Crossbar

Router Arbiter

Input Buffer

Routing

information

i

o i

o

i
o

i o

Data

Request

Grant input

Data from

other inputs

Data to

other outputs

Flow

Control

Data

Flow control

signals

Fig. 2.2: Input-buffered five-port switch.

arbitration policy, e.g. round robin arbitration. The flits of a granted input tra-
verse the switch-internal crossbar towards the output. A crossbar connection
connects an input port i to an output port o of a switch. In the following, a
crossbar connection is denoted as i→ o.

Switching defines how data is transferred through a NoC. Circuit switching
and packet switching methods exist, packet switching being the more com-
mon for NoCs [34]. The circuit switching method first reserves the whole path
between source and destination before data is sent. Packet switching, on the
other hand, does not reserve a path in advance and each packet may use an-
other path through the network. Packet switching methods differ with regard
to the granularity of how data is forwarded and how buffer space is allocated.
Data can either be forwarded in packet or flit granularity. Packet granularity
requires that the entire packet can be stored at the next switch before the packet
is forwarded. Buffer space is allocated based on the packet size. In case of flit
granularity, buffer space is allocated based on the flit size.

A packet switching method with flit granularity is wormhole switching [28].
In wormhole switching, the head flit reserves an output port at each switch it
passes, and thus, it reserves the path of a packet. Body and tail flits just follow
the head flit and the tail flit cancels the reservations. A flit is forwarded as soon
as the input buffer of the next receiving switch has a free buffer slot to store it.
This allows the capacity of input buffers to be reduced to only one buffer slot.
Compared to other packet switching methods, i.e. store and forward (SAF) or
virtual cut through (VCT), wormhole switching has the benefit of a smaller
packet latency at each switch (SAF) and a smaller overall buffer implementa-

2.1 Networks-on-Chip 9

tion overhead (VCT) [34] [97]. This makes wormhole switching attractive to
NoCs [16] [87] and, as a consequence, it is used as switching method in this
thesis.

For the communication of data packets, bidirectional communication links
are used that connect two switches to each other through their ports. A link
consists of two unidirectional channels leading in opposite directions. In this
thesis, in addition to links, the crossbar connections from the input ports of
a switch to its output ports are considered to be part of the network layer as
well.

The topology of a NoC results from the interconnection structure of the
network switches. Because of its regular and planar structure, the mesh is the
most common topology for NoCs found in literature. An exemplary 3x3 NoC
with mesh topology is shown in Figure 2.3.

SW

(0/0)

PE

NI

SW

(1/0)

PE

NI

SW

(2/0)

PE

NI

SW

(0/1)

PE

NI

SW

(1/1)

PE

NI

SW

(1/2)

PE

NI

SW

(0/2)

PE

NI

SW

(1/2)

PE

NI

SW

(2/2)

PE

NI

Link

X

Y

Fig. 2.3: 3x3 NoC with mesh topology.

NoCs can be classified as direct or indirect networks. In contrast to indirect
networks that contain switches without connection to a PE, in direct networks
each switch is connected to a PE (cf. Figure 2.3) [28]. A NoC is homogeneous
if all PEs are of the same kind. Otherwise it is heterogeneous [73].

In this thesis, NoCs with a direct and homogeneous topology are considered
and each PE corresponds to a core. The combination of switch, NI, and PE is
called a network node. To distinguish between the different nodes, each one
has a unique identifier (ID) used to address it.

10 2 Preliminaries

2.1.4 Data Link Layer

The data link layer is responsible for the reliable communication of packets
via links. While on the network layer links are abstracted as a logical inter-
connection component between switches, on the data link layer the individual
wires of a link are considered. Reliable communication comprises the protec-
tion of data against faults as well as the allocation of switch resources. Both
are tasks of flow control (cf. Figure 2.2).

Reliable communication can be ensured on the data link layer by means of
switch-to-switch error recovery (s2s). In contrast to end-to-end error recovery
(e2e) of the transport layer, s2s requires at least one additional packet checking
hardware unit in each switch. The receipt of packets is positively or negatively
acknowledged by the receiving switch. If a packet is faulty, it is retransmitted
on a switch-to-switch basis. This implies, however, that each switch has to
store packets until they are correctly forwarded to the next switch. Although,
s2s typically results in a smaller average packet latency than e2e, it has a higher
power consumption and a higher hardware implementation cost for buffers
[95]. For this reason, in this thesis e2e recovery is used.

Packets traversing the NoC occupy resources of a switch such as buffer
slots. A packet or a single flit may only be forwarded via a link if the receiv-
ing switch has enough free resources to accept it. If not enough resources are
available at the receiving switch, the flow control mechanism stalls the com-
munication until enough resources are free again. While some flow control
mechanisms such as ACK/NACK inherently support error recovery (s2s), for
credit-based flow control error recovery has to be additionally provided on the
transport layer (e2e) [34]. In this thesis, credit-based flow control is used in
combination with Selective Repeat ARQ [137] error recovery on the transport
layer.

Switches with credit-based flow control keep track of the free buffer slots of
the corresponding neighbor switches by means of counters. For this purpose,
at every output port of a switch, a counter is implemented whose initial value
equals to the number of available buffer slots at the neighbor’s input port. The
counter is decreased each time data is forwarded to the neighbor switch and is
stored there in the buffer. If the neighbor switch further forwards the data, i.e.
the corresponding buffer slot becomes free again, this is signaled back to the
sending switch which increases its respective counter.

In this thesis, the control signals, e.g. grant signals, used to implement
higher layer functionality such as switching are considered to be part of the
data link layer as well.

2.1 Networks-on-Chip 11

2.1.5 Physical Layer

The lowest of the layers defined by OSI is the physical layer. It deals with
the physical implementation and electrical characteristics of communication
channels as well as the physical transfer of data via communication channels.
To match with the width of physical channels, flits are further divided into
physical digits (phits). For the transfer of phits, issues such as the signal in-
tegrity, low-power signaling, and the synchronization of signals are of concern
[34]. These issues, however, are not specific to NoCs but are of general impor-
tance for on-chip systems.

The physical layer, as defined by the OSI model, only considers the above
issues for interconnects. In this thesis, however, the wires and digital logic
gates of switch logic are attributed to the physical layer as well.

2.1.6 Definition Cross-Layer

In the network stack defined by the OSI model, the layers are strictly sep-
arated from each other and each layer implements communication services,
e.g. transfer of data between two network switches, together with the respec-
tive functions, e.g. routing [100]. A layer only accesses the services of next
lower layer. For this purpose, each layer offers service interfaces to the next
higher layer. The services are used for the exchange of data between the two
endpoints of a communication. The access to services of a non adjacent layer
or the access to layer-specific information, e.g. which routing algorithm is used
on the network layer, is not provided by the OSI model.

In the cross-layer design the strict layer boundaries are dissolved, allowing
layers to exchange information [128]. The information exchange can be either
top-down or bottom-up . In a top-down flow, information of a higher layer is
provided to one or more lower layers whereas in the bottom-up flow it is the
other way around.

Cross-layer design constitutes the base for multi-layer diagnosis and fault
tolerance approaches where different mechanisms or parts of one mechanism
are implemented on different network layers. Thanks to the exchange of in-
formation between layers the time required for fault localization [105] or re-
configuration [42] is reduced. Furthermore, by making use of information of
different layers the implementation overhead can be decreased [18] [79].

12 2 Preliminaries

In this thesis, the cross-layer information exchange is used to combine di-
agnosis techniques of different network layers and to enable fault tolerance to
be performed in software.

2.1.7 Hierarchical Networks-on-Chip

The increasing size of NoCs leads to scalability issues for mechanisms imple-
mented in the NoC such as table-based routing or fault diagnosis. A possibility
to cope with these scalability issues is to design NoCs hierarchically and to ap-
ply global mechanisms to smaller hierarchical units.

A hierarchical NoC can be designed by either constructing its topology
by means of physically separated subnetworks [17] [33] [62] [61] [107] or
by segmenting a given topology into logical units [106] [140]. To construct
a hierarchical topology using subnetworks, it is required that the they are in-
terconnected by at least one superordinated network. Logical grouping results
in a logical unit. It requires the segmentation of an existing topology. In con-
trast to subnetworks, in which a network node belongs to one physical subnet-
work, nodes can be part of multiple logical units. Typically, network nodes are
grouped into a logical unit if they are part of the same task and share a spatial
relation.

For the reconfigurable hierarchical routing presented in Section 5.3 the
NoC topology is segmented into logical hierarchical units.

2.2 Routing

2.2.1 Classification

Routing methods can either be implemented in a distributed or in a central-
ized manner. In the former case, the path of a packet evolves incrementally
per switch, and thus, every switch requires a router component implementing
the routing method either as combinational logic or by storing the routing de-
cisions in routing tables. In centralized routing methods, also referred to as
source-based routing methods, the packet’s path through the network is prede-
fined at sender side and all routing decisions are added to the packet header. In

2.2 Routing 13

this case, the functionality of the router component at each switch is reduced
to looking up the routing decision stored in the packets.

A routing method can be further categorized as deterministic or adaptive.
For a given source and destination pair, deterministic routing methods always
provide exactly the same path regardless of the network status. A typical ex-
ample for a deterministic routing method is dimension-order routing (cf. Sub-
section 2.2.4). Routing methods that do not consider the network state are also
called oblivious routing methods. Apart from the special case of deterministic
routing methods, other oblivious routing methods may support multiple paths
between a source and a destination, however, the path is randomly picked.

Adaptive routings methods take the network status into account allowing
them to react on network changes [28]. This, for instance, enables the rerout-
ing of packets to alternative paths in case of congestion of the original path.
Adaptivity is the essential requirement for routing methods in order to tol-
erate the failure of network components. Adaptive routing methods can be
further categorized as partially or fully adaptive. While partially adaptive rou-
ting methods can only tolerate the failure of components to some extent, fully
adaptive methods offer connectivity between all network nodes as long as the
topology is connected.

Routings can be further classified as reconfigurable routings. In contrast to
adaptive routings, reconfigurable routings are not necessarily able to automat-
ically tolerate a change of the network’s topology. However, reconfigurable
routings allow the recalculation of routing for the altered topology. Once the
recalculation process is finished, the routing is updated in the network. A re-
configurable routing for a hierarchically organized NoC topology is presented
in Section 5.3.

An important requirement to all routing methods is that they do not cause
a deadlock in a NoC.

2.2.2 Deadlocks

A deadlock describes the situation in which packets are stuck in the NoC and
cannot be forwarded further. The reason of a deadlock can either be message-
dependent or routing-dependent.

Message-dependent deadlocks emerge on the transport layer or higher lay-
ers. They are caused by dependencies of different message types, such as re-
quests and responses, sharing the same communication resources [96]. If the

14 2 Preliminaries

NoC is congested by request messages, no responses of already processed re-
quests can be injected to the network by PEs. A PE has a message buffer of
limited size. If this buffer is completely filled with requests and at the same
time no response can be injected, no further requests can be accepted by the
PE. When the response cannot be injected due to the network congestion, the
next request cannot be removed from the buffer. Thus, no buffer slot becomes
free and no further requests can be accepted by the PE. A way to cope with
this issue is to separate communication resources for each message type [96].

Routing-dependent deadlocks are a problem of the network layer. The
cause of deadlocks are cyclic dependencies between the communication re-
sources of a NoC. For instance, if a packet A, in order to move forward, re-
quires the communication resource held by a packet B and, at the same time,
B requires the resource held by A, both packets are stuck. Such cyclic de-
pendencies are commonly eliminated by routing restrictions, e.g. forbidden
turns a packet may take in a NoC, or by a routing policy. Routing methods
with no restrictions or no appropriate policy are not deadlock-free. If a routing
method is not inherently deadlock-free, virtual channels can be used to ensure
deadlock-freedom (cf. Subsection 2.2.3).

Deadlock-freedom is of great importance to fault tolerance where a routing
method has to be reconfigured to bypass faults. Deadlocks may also occur dur-
ing the reconfiguration process if the NoC is e.g. only partially reconfigured
and packets are communicated using the old and the new routing [92]. Thus,
it has to be ensured, that deadlock-freedom is guaranteed at any time of the
routing reconfiguration process.

2.2.3 Virtual Channels

Communication channels (cf. Subsection 2.1.3) may be further logically sub-
divided into virtual channels (VC). For this purpose, two or more VCs are
multiplexed on a channel. For each VC of a channel, a switch has to imple-
ment a VC buffer. Flits using a VC are stored in the corresponding VC buffer.

Originally, VCs have been proposed to avoid routing-dependent deadlocks
in multiprocessor interconnect networks [30]. By defining a total order on
the virtual channels and allowing them to be allocated in either ascending or
descending order only, cyclic channel dependencies are resolved. The concept
of VCs has been adopted to increase network performance by avoiding head
of line blocking [29].

2.2 Routing 15

In this thesis, VCs are used to ensure deadlock-freedom for the reconfig-
urable hierarchical routing (cf. Section 5.3).

2.2.4 Dimension-order Routing

A typical example for oblivious routing is dimension-order routing (DOR)
where coordinates are used as switch addresses. A well known DOR routing
used for the two dimensional mesh topology is XY routing, which is restricted
to allow x-to-y turns only. A packet is first sent into x-direction until the x-
address of the current switch equals the one of the destination switch. Then
the packet is forwarded into y-direction until the destination is reached. This
routing rule prevents any cyclic dependencies, and thus, XY routing is inher-
ently deadlock-free without the use of VCs.

For the proposed software-based packet rerouting approach in Subsec-
tion 5.2 an implementation for dimension-order XY routing is presented.

2.2.5 Up/Down Routing

Up/Down routing method, as originally proposed in [123], allows the calcu-
lation of an inherently deadlock-free routing for arbitrary network topologies.
It is assumed that each network node has a unique identification number (ID).
For the routing calculation for a given topology, first, the spanning tree of this
topology is created by a breadth-first search starting from an arbitrarily cho-
sen root node. Based on the spanning tree, Up or Down direction is assigned
to each communication channel c.

For two connected network nodes ni and n j, Up direction is assigned to
channel ci, j if the distance of node n j to the root node of the spanning tree
is less than the one of ni. If two network nodes have the same distance, the
channel leading to the node with the smaller ID becomes the Up channel. In
all other cases, Down direction is assigned.

To ensure deadlock-freedom of Up/Down routing, a valid path must consist
of zero or more channels in Up direction followed by zero or more channels
in Down direction [123]. The change in a path from an Up to a Down channel
is called an Up to Down turn. Down to Up turns are not allowed.

16 2 Preliminaries

In this thesis, Up/Down routing is used as the basis of the reconfigurable
hierarchical routing proposed in Subsection 5.3. Native Up/Down routing does
not require any VCs for deadlock-freedom. VCs are required, however, for the
reconfigurable hierarchical routing in order to allow routing calculation to be
performed independently for each hierarchical unit in the NoC.

2.2.6 Determination of Shortest Path

A common issue for the calculation of routings is the determination of the
shortest path between two communication endpoints. Three well-known al-
gorithms to determine shortest paths in graphs are the Bellmann-Ford [11],
Floyd-Warshall [46], and Dijkstra [40] algorithms. The latter one is used as
basis in this thesis for the calculation of the hierarchical routing (cf. Subsec-
tion 5.3).

The Dijkstra algorithm as described in [40] finds the shortest path between
a given start and destination vertex in a graph with non-negative edge weights
[89]. Beginning at the start vertex, at each visited vertex the algorithm discov-
ers all the reachable adjacent vertices and calculates the costs to reach them.
The cost of a discovered vertex is composed of the cost of the currently visited
vertex plus the weight of the edge. Out of the set of all discovered vertices
always the vertex with the least cost is visited next. The algorithm either ter-
minates as soon as the destination vertex is reached or when all vertices have
been visited. The second variant is used in this thesis.

2.3 Faults and Fault Models

2.3.1 Fault Types

Defects as well as external influences due to radiation physically affect tran-
sistors and wires on a chip causing them to operate outside their specification
or to fail. The failure or the malfunctioning of transistors and wires is mod-
eled by a fault [108]. The observable manifestation of a fault such as a signal
change is called an error [77] [136].

In general, faults are classified as the following three fault types:

2.3 Faults and Fault Models 17

• transient,
• intermittent, and
• permanent.

Transient faults only appear for a short period of time at random locations
before they disappear again. They are predominantly caused by neutrons from
cosmic rays and by alpha particles. When a particle hits the chip, it induces
a charge that can lead to soft errors such as a bit flip of a memory cell or an
incorrect value of a logic gate [108]. The typical occurrence frequency of soft
errors, i.e. soft error rate (SER), for a chip is 10−9 1/s [34]. However, inves-
tigations have shown that the SER, increases with decreasing feature sizes of
chips [10] [13] [93] [135].

If the same fault continuously appears and disappears in regular or irregu-
lar periods at the same location, this fault is called an intermittent fault. The
manifestation of errors induced by intermittent faults is similar to the one of
errors caused by transient faults [21]. In contrast to transient faults, however,
intermittent faults are not caused by external disturbances but by aging effects
and structural defects. Another cause for intermittent faults is crosstalk due to
coupling effects between adjacent wires [47] [135]. The occurrence of an error
and thus its observability depends on the operation condition of a chip. An er-
ror may become observable only for a particular supply voltage or temperature
or if the system is operated outside the specification [21] [138]. Eventually, an
intermittent fault may result in a permanent fault [108].

Permanent faults are caused by stationary structural chip defects, whose
impact, in contrast to the other two fault types, does not disappear again.
Structural defects may occur during chip manufacturing or during system op-
eration. Manufacturing inaccuracies, e.g. during lithography, may cause wires
to be broken or result in shorts between neighbored wires by additional ma-
terial [135]. Further challenges for chip manufacturing are process variations
and parameter variations [14]. Process variations can change the geometry of
wires and transistors and thus lead to changes in delays or the electrical char-
acteristic of these elements [13] [15] [135]. Variations can lead to a loss of
system performance or to a permanent malfunction of elements [101].

During system operation permanent faults are caused by aging effects such
as electromigration: the momentum of moving electrons in a wire induces a
force causing metal atoms to be released from their lattice and to be trans-
ported in the direction of the electron flux. The removing of metal atoms re-
sults in voids in a wire increasing the wire delay and resulting in a broken
wire eventually. Elsewhere, these atoms accumulate and the additional mate-
rial may result in shorts between neighboring wires [85] [124] .

18 2 Preliminaries

Each of the three fault types can lead to errors. In turn, these errors result
in different failures on the different network layers. An example of possible
failures for each network layer is given in Table 2.1. In the worst case, each

Table 2.1: Failure Examples

Layer Failure

Software Layer wrong computation
Transport Layer flow control failure
Network Layer packet misrouting

Data Link Layer misallocation of resources
Physical Layer logic circuit misbehavior

of these failures can result in a malfunction of the system. For this reason,
in order to continue system operation in the presence of faults, systems have
to be designed to tolerate faults on different network layers. For the design,
the impact of a fault on the NoC is captured by a so called fault model (cf.
Subsection 2.3.2).

The handling of transient faults as well as permanent faults is important for
NoCs. Because transient faults disappear after a short period of time, rather
simple methods such as retransmitting faulty data can be used to tolerate them.
In case of permanent faults, more complex methods are necessary in order to
locate their position in the NoC and to ensure NoC operation to be contin-
ued. Some methods presented in this thesis are capable of handling transient
faults (cf. Subsection 4.2.1 and Subsection 5.1.2). Because of their complex-
ity, however, the focus of the proposed cross-layer methods is on localizing
and tolerating permanent faults. Intermittent faults are not considered due to
their similarities to transient and permanent faults.

2.3.2 Fault Models

In order to design fault tolerant NoCs, fault models are used that represent
the impact of complex effects caused e.g. by neutron strikes or electromigra-
tion on a NoC by means of an abstracted model [34] (p. 81). These models
constitute the base for the design of fault detection, fault diagnosis, and fault
tolerance methods. Faults not considered in the model are not guaranteed to

2.3 Faults and Fault Models 19

be covered by a method. However, it is possible that unconsidered faults may
be covered by a model to some extend when they have similar characteristics
as the considered faults.

Due to the random occurrence of transient faults, they are commonly mod-
eled by means of a soft error rate (SER) or a bit error rate (BER) [5]. The
SER models the probability of occurrence of soft errors in the NoC in general.
Depending on the targeted granularity, fault models for transient faults model
the impact of soft errors on communication resources, packets, or switch func-
tions such as routing. In contrast to SER, BER is related to data only. It states
the rate at which data bits are corrupted during communication [135], and is
modeled by a bit flip.

Fault models for intermittent faults cover errors caused by wearout effects
as well as caused by noise such as crosstalk. To model wearout and manufac-
turing defect induced errors on communication interconnections, delay, open,
and short fault models are used [55]. Crosstalk is of great concern for NoCs
[108] and different fault models exist that represent crosstalk errors such as
delays, speed up, or glitches on links [56] [127].

Available fault models for permanent faults model the failure of compo-
nents at different levels of abstraction and granularity. The focus of fault mod-
els used for NoCs is on the data link, the network, and the transport layer. A
model widely used for permanent defects in single data or control signals of a
link or crossbar connection on the data link layer is the stuck-at model. In this
model, the value of a signal is permanently forced to either logic 0 or logic 1
[136]. In contrast to the fine granularity of data link layer fault models, fault
models related to the network layer assume the failure of network components
such as links, crossbar connections, or entire switches [5] [41]. Furthermore,
functional fault models exist that describe the misbehavior of a switch function
such as misrouting [27]. Transport layer related models consider the failure of
NIs [80] and the corruption or loss of packets [5].

In this thesis, fault models for transient and permanent faults are used. Sim-
ilar to what is described above, transient faults are modeled by a probability
for data corruption and loss. The models for permanent faults assumed for the
diagnosis and fault tolerance approaches comprise the failure of communica-
tion resources such as crossbar connections, links, and complete switches. In
addition to erroneous data, the corruption of signals related to flow control are
considered as well. Transient faults are modeled by means of a bit-flip, while
for permanent faults the stuck-at model is used.

The underlying fault model of each approach is presented at the beginning
of the corresponding section.

20 2 Preliminaries

2.4 Fault Tolerant Networks-on-Chip

A system that is able to continue correct system operation in the presence of
faults is called a fault tolerant system. In order to continue operation a fault
tolerant system in general requires the ability to:

• detect errors,
• to locate faults, and
• to cope with faults [28] (p. 516).

This applies to NoCs as well. Mechanisms to detect errors, to locate the un-
derlying faults, and to tolerate the faults can be implemented on the different
network layers. For instance, the detection of errors can be implemented on
the network layer as dedicated hardware checking units [74], on the transport
layer as software checks [5], or can be a combination of both [95]. While er-
ror detection and fault tolerance is of concern for all types of errors or faults,
respectively, the localization is only necessary for permanent faults.

A common method to detect errors caused by transient and permanent
faults in NoCs is to equip packets with error detecting codes (EDC) or er-
ror correcting codes (ECC) [34] [81] [112] [146]. Both, EDC and ECC, add
redundancy to packets by adding a checksum or by transforming the pay-
load into code words. If the checksum or code word of a received packet is
wrong or unknown, this indicates that the packet was altered by a fault. An-
other method to detect errors is testing NoC components by means of built-in
self-test (BIST) hardware units [22] [43] [56] or by applying dedicated test pat-
terns to the inputs of a component and analyzing the resulting test responses at
the outputs [26]. In order to apply test patterns to NoC switches, a test access
mechanism (TAM) is required [7] [63] such as additional scan chains [135]
[139]. For NoCs structural as well as functional test strategies are available to
detect errors in NI [130], switch [7] [70], and link components [59].

When an error is detected, the type of the underlying fault has to be deter-
mined and, in case of a permanent fault, its position in the network has to be
located to identify the affected NoC component or the affected part of a com-
ponent. Identifying the type of fault and localizing its position are the tasks
of fault diagnosis [108] [136]. For the localization of faults, fault diagnosis
analyzes the results of the preceding tests [141]. Similar to error detection,
fault diagnosis techniques can be employed on different network layers using
different network information as basis of their diagnosis process, as shown in
Figure 2.4.

2.4 Fault Tolerant Networks-on-Chip 21

Software-based

Diagnosis

Transport

Layer

Diagnosis

Information

Data Packets

Switch Functions
Functional

Diagnosis

Switch Logic
Structural

Diagnosis

Diagnosis

Technique

In
cr

ea
si

n
g
 d

ia
g

n
o

si
s

g
ra

n
u

la
ri

ty

Physical

Layer

Network

Layer

D
ec

re
a

si
n

g
 d

ia
g

n
o

si
s

ef
fo

rt

Diagnosis

Granularity and Effort

Fig. 2.4: Diagnosis techniques.

The diagnosis techniques considered in this thesis are:

• Protocol-based Diagnosis on the transport layer,
• Functional Diagnosis on the network layer, and
• Structural Diagnosis on the physical layer.

Each of the three techniques differs with regard to the used diagnosis informa-
tion, the diagnosis granularity, and the diagnosis effort.

After the localization of a fault, appropriate measures have to be initiated
to cope with the fault and to allow the NoC communication to be continued. In
literature a wide range of fault tolerant approaches of different network layers
exist. In general, these approaches can be divided into methods for transient
faults and methods for permanent faults. Due to the similarity of intermittent
faults and permanent faults regarding their manifestation, fault tolerance meth-
ods to cope with permanent faults can be applied for intermittent faults as well
[108]. As with diagnosis, the methods to tolerate faults can be classified ac-
cording to the network layers. The layer of a fault tolerance method is defined
by the layer on which the method’s measure is effective.

This thesis covers cross-layer fault localization and fault tolerance methods
for permanent faults. The detection of errors is out of scope. However, it is
assumed throughout the whole work, that packets are equipped with an EDC
to detect the corruption of data on an end-to-end basis.

23

Chapter 3
Background and Related Work

In this chapter an overview of state-of-the-art fault localization methods (cf.
Section 3.1) and fault tolerance methods (cf. Section 3.2) related to this thesis
is given. The focus is on permanent faults (cf. Subsection 2.3.1). Single layer
as well as cross-layer techniques / methods are included.

3.1 Fault Localization

For the localization of permanent faults in NoCs, diagnosis techniques on dif-
ferent network layers can be used. These techniques differ with regard to their
diagnosis granularity and the required effort to locate the fault’s position (cf.
Figure 2.4). The granularity of a technique defines the accuracy with which
a fault can be diagnosed. In general, the higher the network layer, the higher
the degree of abstraction of the underlying hardware and, as a consequence,
the less detailed information about the hardware is available, which can be
used by diagnosis techniques. Thus, the diagnosis granularity of techniques
of higher layers is less than the granularity of lower layer techniques. The in-
creased granularity, however, comes at the expense of an increased diagnosis
effort such as an implementation overhead due to additional hardware.

Details about the granularity and effort of structural diagnosis on the phys-
ical layer, functional diagnosis on the data link / network layer, and protocol-
based diagnosis on the transport layer are presented in the following subsec-
tions (cf. Subsection 3.1.1 to Subsection 3.1.3).

3.1.1 Structural Diagnosis

The diagnosis technique with the most fine-grained granularity is the structural
diagnosis on the physical layer. It is capable of determining faulty gate and
wire components in links and switches of a NoC. To locate a fault, first, the
entire NoC has to be tested to identify the faulty component. Subsequently,
the component has to be diagnosed.

24 3 Background and Related Work

In order to gain information about the fault state of components, additional
hardware test structures have to be provided in the NoC design. Scan design is
the methodology most widely used for structural testing. It allows test stimuli
to be externally applied to the sequential logic of e.g. switches via so called
scan chains [136] [139]. For this purpose, the switch has to be set to a special
test mode where the scan chains shift in the applied test stimuli [136]. As
test stimuli, test patterns are used to test NoC components e.g. for stuck-at
[43], crosstalk [56], or bridging faults [59]. Test patterns can be generated by
means of Automatic Test Pattern Generation (ATPG) algorithms [136]. With
an appropriate test pattern set, structural testing achieves a high fault coverage
from about 95% up to 100% [19] [22] [26] [43].

To transport test patterns to switches of a NoC and to transport the corre-
sponding test responses to their sink, e.g. a diagnosis unit, in addition to scan
chain further TAMs are used [7] [63] [135]. Depending on the test strategy,
their implementation can result in a significant area overhead [7]. To reduce
the overhead for NoCs, the reuse of the available communication architecture
as TAM is proposed as a cost effective solution to test switches [6] [23] [56]
[58] [59] [116]. To enable the reuse of the communication architecture for
testing, switches have either to be set to a dedicated test mode to accept test
patterns [116] or the test patterns have to correspond to the packet format used
in the NoC [26] [56] [59] [83]. In order to keep the overall test time minimal,
the available TAM approaches for NoCs allow several [63] [116] or all [7]
switches to be accessed in parallel.

After completion of structural test, the test responses give information
about the presence of a fault. At the physical layer, a common strategy to
deal with faults is to shut down the affected component [141]. A fault in a
NoC, however, does not necessarily affect the functionality of the entire link
or switch, and thus, the complete shutdown of the respective component is
inappropriate as it leads to unnecessary loss of NoC performance. Structural
diagnosis locates the faulty gates in switches in order to determine the af-
fected functionality of a component [25]. For the localization of faulty gates
structural diagnosis analyzes the test responses. Depending on the fault model,
structural diagnosis is able to localize between 60% and 85% of the faulty
gates and wires of a logic circuit [22].

Structural diagnosis for NoCs can either be performed by Automated Test
Equipment (ATE) or by Built-In Self-Test (BIST) [141]. ATE is an external
test equipment used to test and diagnose chips after production for structural
defects. For this purpose, ATE implements all the required test methods and
the diagnosis functionality. Faults emerging during NoC operation, however,

3.1 Fault Localization 25

cannot be diagnosed by ATE. In contrast to ATE, BIST allows test and di-
agnosis of links [19] [56] [59], buffers [54], and whole switches [43] to be
performed in-field. However, in-field fault localization requires the test pat-
tern generation and test response analysis functionality to be implemented in
the NoC, and thus, further increase the area overhead [19] [22] [43] [56]. This
overhead can be reduced, for instance, by sharing one test pattern generator for
the entire NoC [56] or by implementing test pattern generation and response
analysis as functionality of PEs [26].

The time required by structural diagnosis to localize a fault is composed
of the time for testing and the time for the actual diagnosis step. Besides the
NoC size, the required time depends on aspects like the underlying considered
fault model, the number of test patterns, if diagnosis is performed by BIST or
by ATE, and whether switches can be tested and diagnosed in parallel or not.
While the time for fault testing ranges from a few thousands of cycles [26] to
tens of thousands of cycles [7], the required time for test plus diagnosis can
increase to hundreds of thousands of cycles [43] [56].

In this thesis, the approach proposed by Dalirsani et al. [25] is used as
representative of structural diagnosis on the physical layer.

3.1.2 Functional Diagnosis

In contrast to the fault models used to represent the effects of structural defects
on the physical layer, the fault models of data link and network layer exhibit
a higher degree of abstraction. As a consequence, the localization accuracy of
diagnosis approaches of these layers decreases compared to structural diagno-
sis. For instance, available models for NoCs comprise the failure of links and
switches, e.g. [41] . However, the failure of an entire switch due to a structural
defect is a rather pessimistic assumption [108]. Functional fault models on the
data link layer (links) and the network layer (switches) consider the failure of
only a part of a link’s or switch’s functionality. These models provide the basis
for functional diagnosis.

For testing the functionality of NoC components, functional diagnosis
makes use of functional test patterns [27] [70]. In case of the presence of a
structural defect these patterns cause an observable functional misbehavior of
a component. For the generation of suitable patterns, the impact of structural
defects in the data or control path on the functionality of a link or switch has
to be characterized first. The impact is captured by functional failure modes

26 3 Background and Related Work

[141]. Common failure modes used in the field of NoCs for links and switches
are corruption, loss, or delay of flits or packets [27] [52] [70] [71] [109]. For
switches additional failure modes exist that comprise duplication of flits or
packets, misrouting, deadlock and livelocks, and starvation [1] [27] [52] [70]
[71]. Functional test patterns can be generated at design time [27] or online us-
ing test pattern generators [70]. Compared to structural diagnosis, functional
diagnosis typically has a reduced pattern set [23] [50]. Instead of test patterns,
some NoC approaches make use of normal data packets for testing [1] [52]
[71].

In contrast to structural diagnosis, functional diagnosis does not use ad-
ditional TAM or scan chains. Instead, test patterns are transported to com-
ponents using the NoC’s communication infrastructure and they are applied
to the components via their standard communication interfaces. Hence, func-
tional diagnosis has a smaller area overhead than structural diagnosis. Some
failure modes, however, require additional hardware in order to become ob-
servable, e.g. hardware timers to observe starvation of packets [52], or to col-
lect information necessary for diagnosis [1].

The smaller area overhead and reduced pattern set, however, come at the ex-
pense of a reduced structural fault coverage. In general, only faults are testable
that are covered by at least one of the failure modes [135]. However, by means
of satisfiability solver (SAT) based classification algorithm it is possible to
map structural faults to failure modes and to generate appropriate functional
test patterns to test switches [27]. As a result of this, a coverage of about 80%
of structural faults is achieved.

While in prior approaches the functional test and diagnosis is performed of-
fline employing external test equipment [109] [130], recent approaches allow
in-field functional testing and diagnosis during NoC operation at system speed
[1] [52] [70] [71]. For diagnosis, either all [1] or only particular switches [65]
[70] are set to test mode. A switch under test is excluded from normal data
communication and only accepts test data. While in case of the former option
this implies that NoC operation is preempted completely [1], the latter one
allows operation to be continued with a degraded performance [65] [70]. Ex-
cluding switches from data communication, however, may temporarily affect
connectivity in the NoC. For this reason, in order to maintain full connectivity,
additional connections can be added to each switch allowing data packets to
bypass a switch under test [65]. Another possibility to continue NoC opera-
tion is to perform diagnosis during normal operation of the switch [52] [71].
For the coordination of diagnosis of an entire NoC an additional scheduling
method is required that defines the order of switches being diagnosed. The

3.1 Fault Localization 27

switches can either be diagnosed successively [70] or multiple switches can
be diagnosed at the same time [65].

The diagnosis logic can be implemented as dedicated hardware unit [70],
as software algorithm [1] [52], or as a combination of both [71]. Diagnosis
in software requires the test responses to be communicated to a processing
element [1] [52]. In order not to affect the normal data traffic, a switch may
implement an additional link to the PE for communication of test responses.
Furthermore, the diagnosis logic can be implemented in the NoC either glob-
ally as a central diagnosis node [1] [52] or locally at each node [70] [71].

Compared to structural diagnosis, functional diagnosis normally has a
shorter diagnosis time resulting from the smaller test pattern set and the pos-
sibility to perform diagnosis during NoC operation [23] [27] [50] [135]. How-
ever, when diagnosis is performed during NoC operation, the diagnosis time
of functional diagnosis approaches depend on the network load [1] [52] [71].
Whereas a high load increases the diagnosis latency because test data and
normal data have to share NoC resources [52], in case of approaches using
data packets for functional diagnosis a low network load increases the time to
gather required test information for diagnosis [1] and observability of faults
is reduced [71]. The impact of the network load on the diagnosis time can be
reduced by switching components to test mode.

The functional diagnosis approach of Dalirsani et al. [27] is used in this
thesis as diagnosis technique of the network layer. With this approach test
patterns with a high fault coverage corresponding to the NoC’s packet format
can be generated. These patterns can be assigned to a switch under test from
the software layer, and thus, fit the cross-layer aspect.

3.1.3 Protocol-based Diagnosis

While the fault models of lower layers that consider structural faults or the
functionality of components, the fault models used for protocol-based diag-
nosis of the transport layer are related to communication and comprise the
reception of faulty data, delayed data reception, or the complete loss of data.
The aim of protocol-based diagnosis is to locate a faulty link or switch on a
communication path through the NoC. The localization of permanent faults
is based on the analysis of data packets or special test packets and is either
performed at NoC start-up [148] or during NoC operation [49] [125].

28 3 Background and Related Work

Packets are communicated on an end-to-end basis passing several links and
switches on their way to their destination node. When a packet arrives at its
destination node it is checked. The detection of packet corruption or packet
loss [125] [148] as well as the detection of packet latencies higher than a tol-
erated maximum [49] are used as an indication for a possible permanent fault
in the NoC. The detection of one of these errors, however, does not necessar-
ily imply that a permanent fault exists in the network because transient faults
or the temporary increase of the network load may lead to the same observ-
able errors. For this reason, on the detection of an error, the error first is either
stored in a centralized log [125] [148] or in distributed logs [49]. If the same
error is reported multiple times in a log, then, with a high probability, this error
is caused by a permanent fault in the NoC.

For determining the position of a fault, protocol-based diagnosis approaches
associate the observed errors with NoC components. For this purpose, infor-
mation about the routing used in the NoC is utilized to reconstruct the commu-
nication paths of the packets for which an error was detected [49] [125] [148].
In this way, the fault’s position is narrowed down to those components that
are situated on the respective path. By means of further analyzing the logged
information about the components on the path, the component being reported
most often is identified to be faulty [49] [125] [148]. This way, protocol-based
diagnosis is able to track down a fault’s position to a single link or switch [49]
[148]. A fault in a link can be further narrowed down to a link channel [103]
or even to a single wire [125]. The need to reconstruct the communication
paths of packets, however, limits the applicability of protocol-based diagno-
sis to NoCs with deterministically behaving routing algorithms [49] [148] or
routings with only a limited adaptivity [125].

In comparison to structural or functional diagnosis, protocol-based diagno-
sis does not require additional test structures in switches. However, the code
size of the diagnosis algorithm adds to the size of the local memory of a PE
(e.g. 2.5 kilobytes [148]). Whereas the time reported in [148] is in the range
of mega-cycles, in [125] it is reported that diagnosis is able to pinpoint a fault
with only a low effort that requires only 500 packets having passed an 8x8
NoC. Thus, in this case, protocol-based diagnosis is likely to have a smaller
diagnosis time than structural and functional diagnosis techniques.

As protocol-based diagnosis is based on the analysis of packets, it mainly
covers faults in the data path of links and switches that result in corruption or
loss of packets. Nevertheless, also faults in the control path may be observable
provided that they lead to corruption or loss as well. The diagnosis capability
of protocol-based diagnosis, however, depends on NoC-related aspects such

3.1 Fault Localization 29

as the underlying routing or network load [49] [125]. A reduced diagnosis
capability may even result in links and switches to be erroneously identified
as faulty. The occurrence of false positives constitutes the major drawback
of protocol-based diagnosis compared to structural diagnosis and functional
diagnosis. To minimize the risk of false positives, diagnosis capability can
be increased by a careful setup of diagnosis parameters, e.g. threshold value
for permanent fault identification, [125] or by minimizing the impact of the
network load by prioritizing test packets over normal data packets [49].

In this thesis, a protocol-based diagnosis protocol of the transport layer to
locate permanent faults is proposed. In contrast to the diagnosis approaches
[49], [125], and [148], the fault localization of the proposed protocol is not
based on the analysis of diagnosis logs. Furthermore, it does not use any addi-
tional test packets but it reuses those data packets for which the fault has been
observed earlier.

3.1.4 Cross-Layer Diagnosis

In contrast to diagnosis techniques on a single network layer, cross-layer di-
agnosis employs cooperative diagnosis mechanisms on different layers to lo-
calize permanent faults. For this purpose, a mechanism provides its available
diagnostic information gathered on the respective layer to a mechanism of an-
other layer in a bottom-up or top-down manner. Cross-layer diagnosis is con-
sidered as an opportunity to reduce the localization complexity [105] [141]
and to reduce the hardware overhead by moving parts of diagnosis to software
[18] [24].

Cross-layer diagnosis has been proposed for various kinds of systems such
as processors [24], communication networks [98] [105] [129], or general SoC
systems [18]. All of these approaches have in common that cross-layer infor-
mation flow is carried out in a bottom-up manner. The general idea of most
of the approaches can be summarized as gathering detailed diagnostic infor-
mation on lower layers by means of hardware monitoring or sensor units and
to provide this information to a diagnosis method in software for fault local-
ization [18] [24] [98]. By this means, diagnosis has access to a wider scope
of diagnostic information and thus may be able to locate faults otherwise not
locatable [18] [98]. The framework proposed in [105], however, does not con-
sider localization of faults in software. Instead, localization mechanisms are

30 3 Background and Related Work

provided on the physical, the data link, and the network layer. If a mechanism
is not able to locate the fault it triggers the mechanism on the next higher layer.

Existing NoC-related approaches follow the bottom-up information flow
concept as well [1] [52]. In [1], similar to the approaches mentioned above,
the information gathered on the network layer is forwarded to a software algo-
rithm for analysis. The diagnosis approach [52] implements hardware counter
for diagnosing misrouting or data loss. When such a fault is diagnosed, the
information is communicated to a software diagnosis algorithm. There the in-
formation together with information gathered on the transport layer is used to
locate a permanent fault in the NoC.

In non of the approaches presented in [52] and in [105], implementing di-
agnosis mechanisms on various layers, cross-layer communication is used for
cooperative diagnosis by reusing localization results of one mechanism as in-
put for another one on higher layer. Furthermore, so far, no specific top-down
cross-layer diagnosis approaches exist in literature.

This thesis proposes a cross-layer information flow to combine structural,
functional, and protocol-based diagnosis techniques. It is composed of a top-
down and a bottom-up information flow. While the top-down information flow
is used to narrow down the fault’s position, the bottom-up information flow
is used to provide diagnosis feedback from a lower layer technique to the
protocol-based diagnosis.

3.2 Fault Tolerance Methods

In literature a variety of fault tolerance methods exists to cope with transient
and permanent faults on different network layers [108]. Transient faults van-
ish after a short time. As a consequence, it is sufficient for a fault tolerance
method to correct the effect of the fault by e.g. requesting a retransmission of
corrupted data or by restoring the correct state of control logic. In the case of
permanent faults, however, the fault’s impact has to be tolerated permanently.
In that case, retransmitting data or restoring a state does not provide fault tol-
erance, as the permanent fault would alter the retransmitted data or the state
again immediately. In this subsection, first, an overview of methods used to
tolerate permanent faults on the different network layers together with their
limitations is given. Subsequently, state-of-the-art cross-layer fault tolerance
approaches are presented.

3.2 Fault Tolerance Methods 31

3.2.1 Single-Layer Fault Tolerance Methods

In general, a possibility to cope with permanent faults is to mask their effect by
means of ECC [81] or modular redundancy [51]. However, the fault remains
latent in the NoC and masking may not be possible under certain conditions,
e.g. in case of the occurrence of a second fault [108]. For this reason, many
fault tolerant approaches that deal with permanent faults either reconfigure the
NoC by e.g. replacing defective components by spare components or isolate
the faulty components from NoC operation. These approaches make use of the
diagnosis result that contains information about the location and the type of a
fault.

On physical layer, existing approaches for NoCs add spare wires to the
NoC design that are used to replace faulty ones [72] [82]. While a few spare
wires per link may be still a tolerable area overhead, the area constraints of
NoCs do not allow the implementation of spare for complete links or switches.
If the number of defective wires of a link exceeds the number of available spare
wires then fault tolerance can no longer be accomplished by replacement but
requires higher layer methods.

Data link layer methods consider the links or the crossbar of a switch to
be partially faulty. Instead of replacing faulty link wires, available methods for
NoCs exclude the faulty wires for data communication and only exploit the re-
maining fault free ones [76] [102]. For this purpose, these methods implement
additional hardware logic to split and reassemble flits and to assign the split
flits to the functioning wires. The failure of a crossbar connection or the entire
crossbar can e.g. be tolerated by means of a dual crossbar switch architecture
[147]. In case of a fault the second crossbar is used for forwarding packets
from input to output ports.

Another possibility to tolerate faults in links or crossbar connections is to
protect data by means of ECC. Available error correction approaches of the
data link layer are targeted to tolerate transient faults [112] [144] [146]. How-
ever, in principle, they can also be used to tolerate permanent faults [108].
Data is encoded on sender side and it is checked at each switch on the path
towards the receiver. This requires additional encoder and decoder hardware
units to be implemented in hardware [95]. Provided that received data is cor-
rupted, it is corrected at a switch if possible. Correction fails if the number of
corrupted data bits cannot be corrected by the employed ECC.

If a data link layer method is not able to cope with a faulty link or crossbar,
the corresponding component must no longer be used for communication but
has to be avoided.

32 3 Background and Related Work

The complete failure of links or switches results in a topology change of
the NoC. As a consequence, formerly used communication paths are no longer
available resulting in a loss of connectivity between network nodes. Typically,
NoC topologies provide an inherent redundancy by offering more than just one
path between two communication endpoints. A commonly used methodology
on the network layer taking advantage of these redundant paths to maintain
connectivity is fault tolerant routing. A fault tolerant routing may be designed
either to adapt to topological changes [41] [48] [74] [111] [122] or to support
reconfiguration [4] [44] [68] [110].

Adaptive routings are able to bypass faults by redirecting packets to an
alternative path. Their routing decision is based on the fault information lo-
cally available at a switch about the fault status of crossbar connections, links,
and neighbor switches [41] [48] [74] [111] [122]. To make the fault status of
neighbors available at a switch, dedicated signal lines can be utilized [41]. In
contrast, the actual representation of a reconfigurable routing behaves deter-
ministically and is not able to adapt to a topology change automatically but
the routing has to be recalculated. Routing recalculation on the network layer
makes use of a distributed path discovery mechanism where switches broad-
cast flags in the NoC in order to determine new communication paths [4] [44]
[68]. Another possibility is to construct the topology graph centrally, which is
then used as an input to a routing calculation algorithm [110].

Besides fault tolerant routing, fault tolerance on the network layer also con-
cerns the arbitration and allocation functionality of a switch. For instance, to
prevent grants from being given to wrong input ports of a switch [99], arbitra-
tion and allocation stages of a switch can be designed to tolerate faults.

Whereas NoC topologies such as mesh feature redundant paths between
two switches, the NIs connecting the PEs to their switch usually are single
points of failure. Thus, fault tolerant routing does not provide fault tolerance
in case of a faulty NI. Furthermore, methods of the network layer do not deal
with the corruption and loss of packets. This has to be provided either on the
data link layer or on the transport layer.

Fault tolerance methods on transport layer comprise the fault tolerant de-
sign of NIs [45] [80] as well as error-control methods for packets. The protec-
tion of important data in an NI can be achieved by a redundant design of status
registers and FIFOs and by means of encoding the data using ECCs [45]. To
prevent a PE from being disconnected from the network because of a failure of
the NI or of the link connecting the NI and the switch, a PE may be connected
to redundant NIs, which in turn are connected to different switches [80].

3.2 Fault Tolerance Methods 33

To deal with the corruption and loss of packets, a commonly used error-
control method in NoCs is requesting their retransmission at the sender by
means of end-to-end protocols [5] [133]. A packet is checked for faults at the
receiver and is positively acknowledged to the sender if it is received correctly.
In case of a faulty packet, a negative acknowledgement is sent triggering the
retransmission. For detecting packet loss, these protocols make use of a time-
out mechanism. If within the timeout period the receipt of a packet was not
positively acknowledged packet loss is assumed and the packet is automati-
cally retransmitted by the sender. While these protocols help in case of tran-
sient faults, the usage of such protocols as the only measure is not enough
to provide fault tolerance for permanent faults because packets being retrans-
mitted pass the faulty component again as they take the same path through
the network. Thus, retransmission error-control methods have to be used in
combination with a method of a lower network layer, e.g. routing adaptation
[5].

Similar to the data link layer, ECCs may be used to tolerate data corruption
of packets [125]. In contrast to the data link layer, packets are not check and
corrected on a switch-to-switch basis but on an end-to-end basis at the receiver.
Thus, the encoder as well as the decoder are implemented as part of the NI
[95]. If data cannot be restored, the receiver has to request end-to-end packet
retransmission at the sender.

In case of a complete failure of a switch, NI, or PE, the software layer
tasks performed by the respective PE are no longer available as the PE be-
comes unreachable. This issue is addressed by various online task migration
approaches where tasks are assigned to other PEs [39] [60] [90] [115]. Task
migration results in a new task mapping. However, this mapping is only valid
if the network layer routing can ensure that interdependent tasks can exchange
data through the NoC.

3.2.2 Cross-Layer Fault Tolerance Methods

Whereas single layer fault tolerance approaches are able to cope with faults
on their own layer, they do not necessarily resolve the fault’s impact on an-
other layer. Similar to cross-layer diagnosis, cross-layer fault tolerance is
achieved by interaction of methods implemented on different network layers
by exchanging information across layer boundaries. Providing information to
higher layers enables the relocation of methods from hardware-related layers

34 3 Background and Related Work

to the software layer. This reduces the hardware implementation overhead of
fault tolerance methods [18] [131].

Most available approaches for NoCs [78] [84] [132] [134] have in common
that they, on the one hand, utilize a reconfigurable routing and, on the other
hand, make use of software layer methods.

Two cross-layer approaches to calculate the routing in software are pre-
sented in [78] and [132]. In [78], in case of a fault, a pre-calculated emergency
routing is activated on the network layer. By providing topological informa-
tion as well as fault information to a software algorithm, an optimal routing is
calculated to replace the emergency routing once calculation is finished. In the
method for source-based routing proposed in [132], routing paths determined
by a hardware discovery mechanism are communicated to a software algo-
rithm. Under consideration of the initial network layer routing the algorithm
checks a path if it violates routing restrictions, and if so, VCs are assigned that
have to be used on the path in order to ensure deadlock-freedom.

A cross-layer approach for photonic NoCs is presented in [84] to cope with
an increasing error rate due to temperature variations. While small variations
can be directly handled on the physical layer by a temperature compensation
technique, for greater temperature variations this technique is inapplicable.
For this purpose, the physical layer technique is combined with two software
layer methods that consider temperature information gathered on the physical
layer to route around high temperature regions and to migrate tasks for better
temperature distribution in the NoC. By combining the methods, the error rate
is reduced considerably.

The approach in [134] proposes a layered fault tolerance architecture that
provides fault tolerance services on each network layer. The physical layer is
used for fault detection only. In case of a fault, it is reported to the data link
layer and the network layer methods. Fault recovery always takes place on the
lowest possible layer. In case of a faulty link channel, the method on the data
link layer redirects a packet to the remaining second channel. If this is not pos-
sible, the whole link is considered to be faulty and the network layer method
described in [132] is triggered. If an entire network node becomes unavailable,
a software layer service migrates the affected tasks to other nodes by assigning
them the corresponding object codes, which is stored in an external memory.

Proactive and reactive methods are presented in [9] that by means of in-
teraction increase the dependability of future MPSoC systems with a NoC
communication infrastructure. In order to reduce the impact of aging effects
that lead to permanent faults, software-controlled thermal management is used
to mitigate thermal stress. At the same time, test and diagnosis techniques of

3.2 Fault Tolerance Methods 35

lower layers are responsible to detect and locate permanent faults in the hard-
ware. Test and diagnosis results are provided to software methods that use this
information to perform online task migration and online reconfiguration in the
NoC or for individual processors.

All of the approaches presented above employ two or more methods of
different network layers to provide fault tolerance. However, non of the ap-
proaches investigates the cross-layer interaction between the individual meth-
ods. An overview of the interaction of layered services is given in [134], how-
ever, no details are provided about the information being exchanged between
the services.

In this thesis, the requirements for exchanging information between meth-
ods of different network layers using the standard communication resources of
a NoC are discussed and the concepts for two corresponding hardware mech-
anisms are presented. It is shown that by means of cross-layer interaction fault
tolerance for otherwise not fault tolerant deterministic network layer routings
can be created. It is further shown that thanks to cross-layer interaction au-
tonomous management of hierarchical units as well as the autonomous routing
reconfiguration within the units become possible.

37

Chapter 4
Cross-layer Fault Localization

As permanent faults negatively affect the NoC’s functionality or, in worst case,
may even result in its complete failure, it is required to exclude affected com-
ponents from further use. Because of the stationary characteristic of permanent
faults, it is possible to localize them, i.e. to identify the faulty NoC compo-
nent. As discussed in Section 3.1, state-of-the-art diagnosis techniques such
as structural diagnosis or functional diagnosis are suitable for a fine-grained
localization of permanent faults. However, both techniques have a high local-
ization effort as they require the entire network to be diagnosed. In this chapter,
a cross-layer fault localization approach is proposed capable to reduce the lo-
calization effort by means of a combination of protocol-based diagnosis of the
transport layer with functional diagnosis and structural diagnosis techniques
of the lower network layers. In case of the occurrence of a permanent fault in
crossbar connections or links, the affected switch is identified by a software
protocol and is reported to one of the lower layer techniques. Subsequently,
the lower layer technique performs a fine granular diagnosis for the switch
to further narrow down the position of the fault. The result of lower layer di-
agnosis is communicated back to the protocol which uses this information to
optimize its own diagnosis process.

The proposed interaction scheme for diagnosis techniques is presented in
Section 4.1. The protocol used for fault localization on the transport layer is
discussed in Section 4.2. Both lower layer techniques proposed by Dalirsani
et al., i.e. functional diagnosis [27] and structural diagnosis [25], are briefly
explained in Section 4.3. Section 4.4 evaluates the combinations of techniques
regarding their diagnosis quality and the fault localization latency and com-
pares them to the corresponding standalone diagnosis techniques.

4.1 Interaction of Diagnosis Techniques

Cross-layer fault localization implies that diagnosis techniques of different
layers have to interact with each other. For this reason, diagnosis results have
to be communicated across layer boundaries from one technique to another
[18] [105]. The proposed interaction scheme used to combine protocol-based

38 4 Cross-layer Fault Localization

diagnosis (P) of the transport layer with functional diagnosis (FD) or structural
diagnosis (SD) of lower network layers is shown in Figure 4.1.

FD

SD

Fault

Location

Diagnosis

Feedback

P
+

S
D

P
+

F
D

+
S

D

P
+

F
D

P
+

S
D

P
+

F
D

P
+

F
D

+
S

D

P
+

F
D

+
S

D

Path

Defective

Switch

False Positive

False Positive

Defective Switch

Sending Scheme

P

Diagnosis

Technique

Transport

Layer

Physical

Layer

Network

Layer

Fig. 4.1: Diagnosis techniques of different layers.

The interaction scheme comprises two information flows: the top-down
fault localization and the bottom-up diagnosis feedback. While the top-down
flow is used to localize the fault’s position within the network, the bottom-up
flow provides feedback to the diagnosis protocol P about the diagnosis result
of the lower layer techniques. As shown later in Subsection 4.2, operative net-
work components may be diagnosed as faulty (false positive) by protocol P
due to protocol-related timeouts. When a component reported by protocol P is
identified as a false positive by functional diagnosis FD or structural diagnosis
SD, this is reported back to P. Listing 1 shows the interaction scheme between
the diagnosis techniques as pseudo code.

If a permanent fault is detected in a NoC on an end-to-end basis, first, its
position is unknown. For that reason, all the switches S and links L of the
network have to be diagnosed to identify the faulty component. The potentially
faulty components that have to be diagnosed are represented by set Φ . Out of
set Φ , the faulty component is determined by diagnosis function dt : Φ →
Φ of a technique t ∈ {P,FD,SD}. The result of function dt is the set Φt of
components diagnosed as faulty by technique t (line 8, 18, and 25).

The diagnosis process of FD and SD is carried out for all network switches
in set Φ , and thus, if used in isolation, FD and SD are performed for the entire
network. For both techniques always an entire switch is diagnosed including

4.1 Interaction of Diagnosis Techniques 39

Listing 1 Flow of Diagnosis.
Φ : set of potentially faulty links and switches
Φt : set of faulty switches diagnosed by technique t
∆ : set of all false positives
Σ : set of all faulty switches reported by P

1: while true do
2: wait for fault detection
3:
4: Φ := (S,L) . initial set Φ of potentially faulty switches S and links L
5:
6: —Top-Down Communication—
7: if P then
8: ΦP := dP(Φ ∩Φpath) . where 0≤ |ΦP| ≤ 1
9: if combined with lower layer technique then

10: ΦP := mP(ΦP) . map crossbar or link fault to a switch
11: end if
12: Σ := Σ ∪ΦP . add component to list
13: Φ := ΦP . update set of faulty components
14: end if
15:
16: if FD then
17: Φ := Φ \L
18: ΦFD := dFD(Φ) . where ΦFD ⊆Φ

19: ∆ := Φ \ΦFD . determine false positives
20: Φ := ΦFD
21: end if
22:
23: if SD then
24: Φ := Φ \L
25: ΦSD := dSD(Φ) . where ΦSD ⊆Φ

26: ∆ := ∆ ∪ (Φ \ΦSD) . update false positives
27: Φ := ΦSD
28: end if
29:
30: —Bottom-Up Communication—
31: if P then
32: if ∆ 6= /0 then . false positive was reported
33: adaptation of P
34: Σ := Σ \∆ . remove false positive from list
35: end if
36: end if
37: end while

40 4 Cross-layer Fault Localization

all links L adjacent to a switch, and thus, Φ\L (line 17 and 24). Protocol P
has knowledge about the routing used in the network and can determine the
path a packet has taken from its source to its destination. For that reason, the
set of components to be diagnosed by P is reduced to those links and switches
that are located on the packet’s path (line 8). After diagnosis of P has finished,
the diagnosis result ΦP always contains only one faulty component at maxi-
mum. Multiple permanent faults on a path have to be located by consecutive
diagnosis runs.

When P is combined with a lower layer technique, the diagnosed faulty
component is mapped to the corresponding switch by function mP : ΦP → S
(line 10), i.e. that switch which contains the faulty crossbar connection or to
which the faulty link leads to. The mapping is necessary because FD and SD
always diagnose entire switches. The faulty switch is added to set Σ of all
faulty switches reported by P. Finally, set Φ is reduced to the one switch iden-
tified as faulty and is provided to one of the lower layer technique if available
(lines 12 - 13). From input set Φ , diagnosis function of FD and SD determines
all the switches with functional or structural faults. All those switches of Φ not
being part of ΦFD or ΦSD are fully functional, and thus, belong to the set ∆ of
false positives (line 19 - 26).

When a false positives is identified by FD or SD, it is reported back to
protocol P as a feedback. In that case, the protocol timeout of P is adapted and
the corresponding switch is no longer considered to be faulty (lines 29 - 31).

4.2 Protocol-based Fault Localization

Protocol-based diagnosis on the transport layer has the advantage that the
required diagnosis effort in terms of time or additionally required diagnosis
hardware is less compared to diagnosis on lower network layers. Furthermore,
as the underlying network is fully abstracted on the transport layer, diagnosis
techniques of that layer are almost independent of the network and its topol-
ogy. Thus, they can be easily adapted for arbitrary networks.

To localize a fault in the network, the switches and links on the path be-
tween a data packet’s source and destination have to be diagnosed. To recon-
struct the path, the diagnosis technique requires knowledge about the routing
used in the network. The reconstruction, however, is only possible if the path
can be calculated unambiguously. For instance, in case of fully adaptive rou-
tings this is not possible. For that reason, for protocol-based diagnosis on the

4.2 Protocol-based Fault Localization 41

transport layer routings that behave deterministically as long as the fault is not
diagnosed are advantageous.

In the following, an end-to-end protocol is presented that localizes perma-
nent faults in a NoC. It consists of two parts: the base protocol to ensure re-
liable end-to-end communication in case of transient faults and the diagnosis
protocol to locate permanent faults. It utilizes the number of retransmission
attempts of a packet to infer the presence of a permanent fault in the network.
If for a packet the allowed number of retransmission attempts is exceeded, the
diagnosis protocol is activated for that packet and it is forwarded to its desti-
nation by a dedicated transmission scheme to locate the fault. The localization
granularity of the protocol comprises faulty links and crossbar connections.
The failure of a complete switch is determined by the protocol by the failure
of all links incident to that switch or by the failure of all its crossbar connec-
tions.

4.2.1 Base Protocol

Transient and permanent faults can interfere with network communication by
causing corruption or loss of data packets. The base protocol implements the
Selective Repeat ARQ [137] to ensure the reliable end-to-end communica-
tion in the presence of faults. When a packet has reached its destination, it
is checked for faults and, according to the result, a positive or negative ac-
knowledgement is sent back to the sender of the packet. To temporarily store
acknowledgements each node implements a small software queue (acknowl-
edgement queue). If this queue is full, no further acknowledgement can be
stored and new acknowledgements have to be dropped until the queue has free
space again.

If a packet is not received correctly, the packet has to be retransmitted by
the sender. The sender stores a copy of each packet in a retransmission buffer.
When a negative acknowledgement is received for a packet, it is retransmitted.
On receipt of a positive acknowledgement, the corresponding copy is removed
from the buffer. However, faults may also lead to packet loss or the loss of an
acknowledgement. In both cases, the sender will not receive any acknowledge-
ment and the packet is neither retransmitted nor it is removed from the buffer.
This also happens if the acknowledgement is dropped due to a full acknowl-
edgement queue. For this reason, the base protocol implements an adaptable
timeout tδ to tolerate the loss of packets and acknowledgements. If within this

42 4 Cross-layer Fault Localization

timeout tδ no acknowledgement is received for a packet, the packet is consid-
ered to be lost and thus is retransmitted by the sender.

Timeout tδ depends on static parameters such as the network size. The the-
oretical minimum timeout tδmin is defined by the diameter D(T) of the NoC
topology T and the latency ψ of switches required to forward a packet from
an input port to an output port under zero load. Timeout tδmin is composed of
the time required for the data packet to arrive at its destination plus the time
for the acknowledgement to return to the sender [8]:

tδmin = 2 ·D(T) ·ψ. (4.1)

However, it has been shown in [8] and [118] that timeout tδ requires a much
higher value as the latency ψ at each switch strongly increases compared to
the one under zero load because of packets competing for same communica-
tion resources. Furthermore, Equation 4.1 does not take into account that the
network state changes over time. Such dynamically changing network param-
eters are e.g. the number of permanent faults, the injection rate, or the network
load. For this reason, a static timeout is not suitable but it has to be adapted
dynamically to the current network state [118].

4.2.2 Protocol Timeout Adaptation

For the adaptation of timeout tδ a distributed adaptation mechanism is used
where each network node calculates its own timeout separately. For this pur-
pose, each node measures the roundtrip time, i.e. the required time from send-
ing out a packet until receiving the acknowledgement. The roundtrip time im-
plicitly contains all interferences in the network that result in higher packet
latency, e.g. failure of a switch or an increased network load. The network
state may temporarily change for a short period of time before returning to
its normal state, e.g. because of network traffic with burst character. To avoid
considerable fluctuations of timeout tδ , for the measured roundtrip times, the
moving average tr is calculated. Additionally, the adaptation mechanism pro-
vides an interface that allows the timer to be increased by an external source.
When protocol P is combined with FD or SD, the external source is the diag-
nosis feedback. If no external source is used, the adaptation of tδ is only based
on the moving average tr.

4.2 Protocol-based Fault Localization 43

As it will be shown in Subsection 4.2.4, timeout tδ is an essential part for
the activation of the diagnosis protocol as well as the fault localization process.
The diagnosis protocol shall only be activated if the timeouts result from flit
loss due to faults, however, not because of timeouts caused by a temporarily
high network load. To avoid protocol activations due to load induced timeouts,
it is necessary that the value of tδ can be quickly adapted to the current load
situation in the NoC. Allowing an unlimited growth of timeout tδ , however,
impairs the localization process as tδ affects the required localization latency.
Thus, maximum value for tδ has to be defined.

The function t : N→ N used by the adaptation mechanism to increase and
decrease the timeout tδ is shown in Equation 4.2.

t(i) = tinit · (diimax ∗
1
i!
e) (4.2)

Starting from the initial value tinit where tinit ≥ tδmin , calculation of timeout
tδ depends on control parameter i. Parameter i is implemented as a simple
counter with a maximum value imax (0≤ i≤ imax) to avoid an unlimited growth
of tδ . While for smaller values of i the timeout increases exponentially, for
bigger values it increases almost linearly.

The pseudo code of the complete adaptation mechanism is shown in List-
ing 2. The adaptation process of timeout tδ is triggered when an acknowledge-
ment is received or if signaled by the external source. At first, the mechanism
calculates the average communication latency tr (line 5). The value of tδ has
to be increased if the process is triggered by an external source or if tr ex-
ceeds the current timeout value (line 7). In both cases, control parameter i is
increased by one. It is decreased by one if within the time period of 2tδ the
timeout is not further increased and decreasing i does not result in a timeout
smaller than the current average latency tr (lines 9 - 11). For i, the new timeout
value is calculated according to Equation 4.2 (line 15).

When a packet is sent, as timeout for that packet always the current value
of tδ is used except in one case. If sending and receiving nodes are direct
neighbors, the timeout for the packet is fixed to 1,000 cycles. This is done to
achieve a faster localization of a permanent fault by the protocol P in case of
packet loss. The rather high value of 1,000 cycles for a distance of one hop
was chosen to take high roundtrip times into account caused by high network
load.

44 4 Cross-layer Fault Localization

Listing 2 Timeout Adaptation Mechanism.
tr: round trip time (moving average)
tδ : timeout
i: control parameter (0≤ i≤ imax)

1: i := 0; tδ := t(i)
2: while true do
3: wait for external trigger or acknowledgement packet
4:
5: tr := calcRoundTrip()
6:
7: if external trigger or tr > tδ then
8: i++
9: else if last increase tδ ≤ now - 2tδ then

10: if t(i−1)> tr then
11: i−−
12: end if
13: end if
14:
15: tδ := t(i)
16: end while

4.2.3 Localization Principle

The fundamental idea of the protocol’s fault localization mechanism is to con-
tinuously narrow down the fault position on a path by means of additional test
nodes referred to as intermediate nodes in the following. Instead of sending
a packet directly to its receiver, the packet is sent to the intermediate nodes
and is checked there for faults. Checking packets and calculating intermediate
nodes is done in software by the processing element of a node. For the calcu-
lation, the protocol utilizes information of the transport layer and the network
layer as shown in Figure 4.2. On the transport layer no information about the
network and its topology is available. However, to select appropriate inter-
mediate nodes, the protocol requires the information which path a packet has
used. For reconstructing the packet’s path, the localization algorithm requires
the following information:

1. the source and the receiver of a communication and
2. the routing algorithm used in the network.

The information about the source and the receiver of a packet is inherently
available at every sender. The routing, however, is only available on the net-

4.2 Protocol-based Fault Localization 45

Localization

Algorithm
Source + Receiver

Routing Algorithm

Transport

Layer

Network

Layer

Acknowledgements

Timeouts

Fig. 4.2: Input parameters of localization algorithm.

work layer. To provide information about the routing to the protocol, the rou-
ting algorithm is also implemented in software. By means of both informa-
tion, the localization algorithm is able to reconstruct the packet’s path and to
select nodes situated on that path as intermediate nodes. Acknowledgement
and timeout information help the localization algorithm to specify the subpath
on which the intermediate node has to be located.

4.2.4 Diagnosis Protocol

4.2.4.1 Fundamentals

The corruption of packets or their loss can be caused by transient faults as well
as permanent faults. On the transport layer, both problems can be detected, but
the fault type causing them cannot be identified unambiguously. Diagnosis,
however, shall be performed in case of permanent faults only. At sender side,
the protocol keeps track of the retransmission attempts of every packet. If a
packet cannot be delivered successfully to its receiver after three attempts, the
probability is high that this is caused by a permanent fault on path p = S...R
between the sender S and the receiver R. In this case, the diagnosis protocol is
activated for the packet by sender S. When the diagnosis protocol is activated
for a packet, the packet is no longer directly sent to its receiver R, but it is
forwarded to intermediate nodes I in order to localize the fault. Every node on
path p, except S and R, may become an intermediate node. The localization
logic of the diagnosis protocol is shown in Figure 4.3.

46 4 Cross-layer Fault Localization

B
u

ff
er

 f
u

ll

in
fo

rm
a
ti

o
n

?

D
 =

 R
 ?

d
(N

,D
)

=
 1

 ?

L
in

k

a
tt

em
p

ts
 >

 3
 ?

D
 b

ec
o
m

es
 n

ew
 s

en
d

er

C
ro

ss
b

a
r

fa
u

lt

L
in

k
 f

a
u

lt

D
 :

=
 R

N
 :

=
 t

h
is

S
en

d
 p

a
ck

et
 t

o
 D

I
:=

f

d
(N
,D
)

2

! ""
$$

% &'
()*

D
 :

=
 I

C
ro

ss
b

a
r

a
tt

em
p

ts
 >

 3
 ?

N
 r

ec
ei

v
ed

N
A

C
K

 o
r

ti
m

eo
u

t
?

y
es

n

o

n
o

y
es

y
es

n
o

y
es

n
o

n

o

y
es

n
o

N
o

 p
er

m
a
n

en
t

fa
u

lt
 d

ia
g
n

o
se

d
.

P
a
ck

et
 s

u
cc

es
sf

u
ll

y

d
el

iv
er

ed
 t

o
 R

.

W
a
it

 f
o
r

ti
m

eo
u

t

y
es

C
ro

ss
b

a
r

a
tt

em
p

s+
+

L
in

k

a
tt

em
p

s+
+

N
 r

em
o
v
es

 p
a
ck

et

fr
o
m

 r
et

ra
n

sm
is

si
o
n

b
u

ff
er

.

Fig. 4.3: Localization logic of the diagnosis protocol.

4.2 Protocol-based Fault Localization 47

4.2.4.2 Localization Logic

The localization logic of the protocol is able to pinpoint a permanent fault to
a crossbar connection or to a link on path p. For the localization, intermediate
nodes are selected as new destination D used to check the packet. From all
network nodes on path p, S selects the node as intermediate node I that is situ-
ated at half distance from S to R and forwards the packet to I. On receipt of the
packet, I checks it for faults. If the packet is correctly received, this implies,
that the first half of path p, i.e. subpath p1 = S...I, between S and I is fault-free
and the fault has to be either located on the second half p2 = I...R or on the
crossbar connection of I that connects both subpaths. In this case, I sends a
positive acknowledgement (ACK) to S, stores the packet in its retransmission
buffer, and becomes the new sender N of the packet. When S receives the pos-
itive acknowledgement, it removes the packet from its retransmission buffer.
If I sends a negative acknowledgement (NACK) to S or in case of timeout tδ ,
the fault is located on subpath p1 and S remains the sender of the packet. In
the following, fault localization is continued for the affected subpath only.

To narrow down the fault’s location on a subpath, the current sender N of
the packet further bisects this subpath, e.g. p1,1 and p1,2, by selecting the next
intermediate node as destination D. The bisection process is controlled by the
responses from D and it is repeated as long as N either receives a NACK from
the corresponding destination D or a timeout occurs in case of no response. If
the distance between N and D becomes one hop (d(N,D) = 1), the fault has
to be located on the link between N and D. To rule out that the link fault was
caused by a transient fault, the packet is retransmitted for three more times
from N to D. After three failed retransmission attempts, the link is identified
as faulty by the localization logic.

The checking of packets is done at the processing element of an intermedi-
ate node. This implies, however, that at an intermediate node the packet does
not traverse the switch’s crossbar connection i→ o that connects the two sub-
paths N...I and I...D. The reason for this is that the packet is forwarded from
the switch’s input port i to the local port L using crossbar connection i→ L.
Later on, the packet is reinjected using the crossbar connection L→ o. As
a consequence, a potential permanent fault on i→ o is not identified by the
protocol as it is bridged.

To be able to identify a faulty crossbar connection, an intermediate node Ia
requires the information that the fault is located neither on subpath S...Ia nor
on the subpath Ia...R. As the packet was successfully sent to Ia, the fault can-
not be located on subpath S...Ia. To obtain the information about the subpath

48 4 Cross-layer Fault Localization

Ia...R, intermediate node Ia first sends the packet to receiver R before further
bisecting this subpath. If Ia would immediately start the bisection process for
subpath Ia...R by choosing intermediate node Ib as destination, the fault state
of crossbar connection i→ o could not be determined unambiguously in case
of an ACK from Ib. The reason for this is, although the ACK confirms that the
permanent fault is not located on subpath Ia...Ib, the fault still may be located
on the not checked subpath Ib...R. If Ia, however, sends the packet first to R,
in case of an ACK, this confirms that the whole path from Ia to R is fault-free.
With this information Ia is able to conclude an internal crossbar fault. The
conclusion is based on the following three statements:

1. Because the diagnosis protocol is activated for path p, a permanent fault
exists on that path with a high probability.

2. The node has become intermediate node Ia and has successfully received
the packet. Thus, the whole subpath S...Ia is fault-free.

3. The packet could be forwarded successfully to R. Thus, the subpath Ia...R
is also fault-free.

When Ia determines a possible internal crossbar fault, a counter for the cor-
responding connection i→ o is increased. If the same crossbar connection is
reported to be faulty more than three times, it is assumed to be faulty.

Retransmission buffers can only store a limit number of packets, and thus,
when the buffer is full, an intermediate node I cannot accept arriving packets
but has to drop them. If the distance between the sending node and I is one
hop, dropping packets may lead to a working link being diagnosed as faulty
by the protocol if the packet cannot be accepted three times. To prevent this, I
sends a buffer full information back to the sending node signaling that no fault
has occurred. The sender retransmits the packet to I after timeout tδ without
increasing the number of retransmission attempts.

When diagnosis process of the protocol is finished, a fault is either classi-
fied as link fault or as crossbar fault. If protocol P is combined with one of
the other techniques, the diagnosed fault is mapped to a particular switch (cf.
Listing 1 line 10). In case of a link fault between node N and its neighbor D,
D is reported as the faulty switch, i.e. mP(ΦP) = D. In case of a crossbar fault,
node N that has diagnosed the fault is reported, i.e. mP(ΦP) = N.

4.2 Protocol-based Fault Localization 49

4.2.5 Evaluation

In this subsection, the diagnosis capability of protocol P and its implementa-
tion costs are evaluated. The diagnosis capability is evaluated for an 8x8 mesh
NoC using uniform random traffic and different data injection rates. Table 4.1
summarizes the setup of the simulation model.

Table 4.1: Simulation Model Setup

Parameter Setup

Topology 8x8 Mesh
Routing XY

Arbitration Round Robin
Switching Wormhole

Packet Size 5 Flits
Traffic Pattern Uniform Random

Data Injection Rate
Moderate: 0.14 flits/cycle/node

High: 0.28 flits/cycle/node
Simulated Time 500,000 cycles

4.2.5.1 Diagnosis Capability

The occurrence of transient faults can activate the diagnosis protocol. For in-
stance, this may happen if a packet becomes corrupted by transient faults each
time it is retransmitted from sender to receiver. In a first evaluation, the proba-
bility of occurrence is studied at which transient faults are erroneously identi-
fied as permanent faults. For this purpose, transient faults are injected into the
NoC at random locations for different probabilities. The measured number of
erroneously identified permanent faults for moderate and high network load
are shown in Table 4.2. The results show that only in case of unrealistic high
probabilities per cycle (cf. Subsection 2.3.1), transient faults are reported as
permanent ones by the diagnosis protocol in both load situations. While for
moderate load this happens for a probability of 70% per cycle or higher, for
high load this can already be observed for a probability of 30% per cycle. The
reason why permanent faults are reported at lower probabilities for high load
can be attributed to the higher number of flits in the NoC. When a transient

50 4 Cross-layer Fault Localization

Table 4.2: Number of Erroneously Identified Permanent Faults

Probability per cycle 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Moderate load 0 0 0 0 0 0 4 13 35 60
High load 0 0 2 7 19 42 82 151 253 416

fault occurs, the probability that a flit is affected by the fault is higher than in
case of moderate load.

In a second evaluation permanent link and crossbar faults are injected into
the NoC. For different timeouts tδ it is investigated whether P can correctly
locate the faults or if functioning components are diagnosed as faulty (false
positives). For this purpose, five different fault sets with each containing five
different permanent faults are used. The position of each fault and its time of
occurrence are randomly chosen. During simulation tδ can be increased two
times, i.e. imax = 3 (cf. Equation 4.2). When a fault is diagnosed, the corre-
sponding component is shut down. In order to bypass shut down components,
software-based packet rerouting is used, which is described later in Chapter 5.
The average number of false positives for different timeouts tδ and different
network loads is shown in Figure 4.4.

 0

 10

 20

 30

 40

 50

 60

 70

1000
5000

10000
15000

20000
25000

30000
35000

40000

av
er

ag
e

nu
m

be
r f

al
se

 p
os

itiv
es

timeout t! [cycles]

high load
moderate load

Fig. 4.4: Average number of false positives.

4.2 Protocol-based Fault Localization 51

The results show that the diagnosis capability of P strongly depends on
timeout tδ . In principle, the protocol was able to find all the faults defined in
the fault sets for all timeouts. It can be observed, however, that for small time-
outs a high number of false positives is diagnosed. The reason for diagnosing
false positives originates from a high load in the NoC. In the case of faults,
the load increases because of the affected communication resources become
unavailable. For small values of tδ , the load increases even more because of
the more frequent packet retransmissions resulting in congestion of the NoC.
If an acknowledgement cannot be injected immediately, it has to be stored in
the acknowledgement queue of the receiver of a packet. In case of congestion,
this queue eventually reaches its limit and new acknowledgements have to be
dropped. As the absence of acknowledgements is considered by the protocol
as a loss due to a fault, the dropping can eventually activate the diagnosis pro-
tocol, and thus, can result in false positives being diagnosed. For higher values
for tδ , congestion in the NoC is avoided and only in few cases acknowledge-
ments have to be dropped. Thus, with the increase of the timeout, the number
of false positives decreases.

As indicated by the minimum and maximum values in Figure 4.4, the num-
ber of false positives varies for the different fault sets. For instance, while
for moderate load in case of one fault set no fault positives were reported for
tδ = 10,000 cycles, for another set 17 false positives were diagnosed by P. For
timeouts tδ > 20,000 cycles, only approximately one false positive in aver-
age is diagnosed. In case of high load, however, the measured minimum does
not fall below an average of approximately nine false positives (tδ = 40,000
cycles) for all considered timeout values.

4.2.5.2 Implementation Costs

The total code size of protocol P is approximately 28.4 KiB and is composed
of the code sizes of the base protocol (cf. Subsection 4.2.1) and the diagnosis
protocol (cf. Subsection 4.2.4). Compared to the base protocol, the code size
of the diagnosis protocol (3.3 KiB) is small and only corresponds to 11.6% of
the total size (cf. Table 4.3).

To store packets for retransmission at a sender, additionally a retransmis-
sion buffer is required. In this work, a retransmission buffer can store up to
10 packets. Each packet has a size of 160 bits, and thus, the buffer size is 200
bytes per network node.

52 4 Cross-layer Fault Localization

Table 4.3: Protocol Code Size [KiB]

Base Protocol Diagnosis Protocol Total

25.1 3.3 28.4

4.3 Combination of Diagnosis Techniques

For the combination with software protocol P, functional diagnosis (FD) [27]
and structural diagnosis (SD) [25] approaches proposed by Dalirsani et al. are
used. FD on the network layer and SD on the physical layer are both single
layer techniques used to diagnose single switches. Within the context of this
thesis, SD and FD are used to diagnose the entire NoC. While SD technique
can be applied to all network switches in parallel, not all switches can be di-
agnosed at the same time in case of FD. For this reason, a schedule for FD has
been proposed that allows a maximum number of switches to be diagnosed in
parallel [121]. The proposed schedule for FD is presented in Subsection 4.3.1.

4.3.1 Functional Diagnosis

On occurrence of a structural fault, functional diagnosis (FD) [27] determines
the affected functionality of a NoC switch. The supported functional failure
classes of FD are:

1. Data corruption: packet payload is altered.
2. Misrouting: packet is forwarded to a wrong switch output.
3. Packet loss: loss of a whole packet.
4. Flit loss: loss of one or more flits of a packet.
5. Packet duplication: duplication of a whole packet.
6. Flit duplication: duplication of at least one flit of a packet.

All structural faults that do not cause one of these functional failures belong
to the residue class. If FD diagnoses a fault that is associated with the residue
class, the whole switch has to be assumed as faulty.

The test patterns utilized by FD correspond to a valid packet format and
are referred to as test packets. Test packets are generated offline by means of
a satisfiability solver (SAT) based method. Using test packets allows the reuse

4.3 Combination of Diagnosis Techniques 53

of the communication structure of a NoC as test access mechanism (TAM).
During the diagnosis process, all the neighbors of a switch-under-diagnosis
(SUD) send test packets to the SUD’s input ports. Test packets for the local
input are sent by the SUD’s processing element. While being diagnosed, the
SUD has to remain idle and is not available for data communication. All neigh-
bors sending test packets to the SUD cannot be diagnosed in parallel, instead,
they remain operative and can accept and forward data packets.

When FD is used as standalone technique, set Φ (cf. Listing 1) contains all
switches, and thus, the entire NoC has to be diagnosed. The utilized diagnosis
schedule with a maximum of switches being diagnosed in parallel is shown
for an 8x8 NoC in Figure 4.5. The schedule consists of five diagnosis itera-

4

15

3

2

4

15

3

2

15

3

2 3

4

15

3

2

4

15

3

2

4

15

3

2

5

4

15

3

2

4

15

3

2

4

15

3

4

4

15 2

5

4

1

3

2

4

15 2

1

3

2 3

2

Fig. 4.5: Diagnosis schedule FD.

tions in total. The number shown for each switch represents the iteration the
switch is diagnosed in. For larger mesh networks the same number of itera-
tions is required. If FD is combined with protocol P, referred to as P+FD, FD
is performed only for the reduced set Φ containing one switch. In this case,
the schedule is not required.

When FD has finished, all faulty nodes from set Φ are identified. The re-
maining switches are considered as fully functional (set ∆), and thus, are false
positives.

54 4 Cross-layer Fault Localization

4.3.2 Structural Diagnosis

For diagnosis of structural faults in the logic of a switch, structural diagnosis
(SD) [25] based on scan design is used. The fine diagnosis granularity allows
the localization of faulty gates and wires. As TAM each switch implements
additional scan chains. During diagnosis test patterns are applied to these scan
chains.

If SD is used as standalone technique, from the set of all network switches
Φ , the faulty switches have to be identified first. For that purpose, the test pat-
tern set is applied to all the network switches in parallel and the test responses
of neighbored switches are compared. If the responses of a switch differ from
the others, the switch has to be diagnosed. In a second iteration the same test
patterns are applied to the faulty switches. The test responses are analyzed at
the diagnosis service point and the faulty gates and wires are determined. For
the combination of SD with P (P+SD), like in case of FD, diagnosis is per-
formed for the reported switch only. For this reason, identification of faulty
switches, as required for standalone SD, can be omitted.

During the identification of faulty switches as well as during diagnosis,
a switch is not available for data communication. If no faults are found, the
switch is classified as false positive.

4.4 Evaluation

The combinations of diagnosis techniques are evaluated with regard to the di-
agnosis quality and the fault localization latency. The results are compared to
those of the corresponding standalone techniques. For evaluating the localiza-
tion latency, the same simulation setup as in Subsection 4.2.5.1 is used.

4.4.1 Definitions

Diagnosis quality: The quality of a diagnosis technique states whether a fault
can be localized and how exact its position can be determined. The criteria
used to evaluate the quality of diagnosis techniques are:

4.4 Evaluation 55

1. Fault coverage: indicates the percentage of structural faults that can be de-
tected by a diagnosis technique [136].

2. Localization accuracy: defines the granularity in which a fault can be lo-
calized.

3. Number of false positives: states the number of fully functional components
erroneously being diagnosed as faulty by a diagnosis technique.

The diagnosis techniques P, FD, and SD are based on different fault models.
While P diagnoses faulty links and crossbar connections, FD determines func-
tional faults of a switch. SD, however, localizes faulty gates and wires. For
this reason, the direct comparison of the localization granularity of techniques
is not reasonable. In the following, the localization accuracy of a technique is
evaluated on the basis of whether the covered structural faults can be correctly
diagnosed with respect to the technique’s fault model.

Localization latency: The localization latency defines the total number of cy-
cles required from the detection of a permanent fault until it is localized by a
diagnosis technique.

4.4.2 Diagnosis Quality

In this section, at first, the quality of standalone techniques P, FD, and SD
is discussed in Subsection 4.4.2.1. The quality results for the combinations
P+FD, P+SD, and combination of all three diagnosis techniques (P+FD+SD)
are presented in Subsection 4.4.2.2.

4.4.2.1 Standalone Diagnosis Techniques

The diagnosis process of protocol P is based on the analysis of packets. Thus,
only those permanent faults can be diagnosed that either lead to a corruption of
packets or to a complete packet loss. For instance, a permanent fault resulting
in misrouting of a packet cannot be detected by P, if the packet eventually ar-
rives at the receiver within a tolerated time period. For that reason, P does not
cover all possible structural faults. All faults covered by P are either mapped
to a link or a crossbar connection. For example, a faulty input buffer slot is
diagnosed as link fault. Thus, some of the faults cannot be localized accu-
rately. Furthermore, the evaluation of protocol P (cf. Section 4.2.5.1) shows

56 4 Cross-layer Fault Localization

that, depending on the network load, false positives may be reported. While
for moderate network load less than one false positive is diagnosed on average,
for high network load, false positives are reported for all considered timeout
values. Because of its dependence on the network load, in the following, the
quality of P is evaluated for moderate load (Pmod) and for high load (Phigh).

For functional diagnosis FD and for structural diagnosis SD it is possible to
generate test patterns that cover almost 100% of all possible structural faults.
In contrast to P, the localization accuracy does not depend on the network load.
Evaluation in [27] shows that around 80% of structural faults can be mapped
to one of the functional failures defined by the six classes (cf. Section 4.3.1).
For all other faults the entire switch has to be assumed to be faulty. Because of
SD’s fine diagnosis granularity, the gate or wire affected by a structural fault
can be identified. For both techniques no false positives can occur if valid
patterns are used.

Because of the protocol’s smaller coverage and because of false positives,
diagnosis quality for both load situations is less than the one of FD and SD.
FD’s quality is less than the one of SD because in 20% of faults the complete
switch has to be considered as faulty. According to their diagnosis quality this
results in the following order of diagnosis techniques:

Phigh < Pmod < FD < SD (4.3)

4.4.2.2 Combined Techniques

The considered combined techniques are P+FD, P+SD, and P+FD+SD. For
each of these combinations, FD or SD is triggered when P diagnoses a fault.
This implies that the coverage of the combined techniques is defined by proto-
col P. If P does not cover a fault, the combined technique does not cover it as
well. For that reason, the coverage of all P+ techniques is less than the one of
FD and SD. The localization granularity of a combined technique is defined
by the technique utilized on lowest layer. As in the case of the corresponding
standalone techniques, the accuracy of P+FD is less than the one of P+SD
and P+FD+SD. It is still possible that P reports false positives, however, FD
and SD techniques are able to identify false positives due to their fine-grained
diagnosis and to provide feedback to P. The feedback is used to adapt its time-
out value and to reduce the number of diagnosed false positives. While the
quality of P+SD and P+FD+SD is the same, the quality of P+FD is less due
its reduced accuracy. Thus, the order on combined techniques regarding their

4.4 Evaluation 57

quality is as follows:

P+FD < P+SD = P+FD+SD (4.4)

Compared to P, all P+ techniques generally have a higher diagnosis qual-
ity because of the higher localization accuracy provided by the lower layer
technique. In best case Pmod is comparable to P+FD regarding its quality. This
is the case when Pmod does not diagnose false positives. However, in average
case, false positives are diagnosed, and thus, the quality level of Pmod is lower
than the one of P+FD. Taking into account the order of standalone techniques
(cf. Equation 4.3) and of combined techniques (cf. Equation 4.4), results in six
different quality levels. The assignment of diagnosis techniques to quality lev-
els is shown in Table 4.4, where level 1 represents the lowest diagnosis quality
and level 6 the highest one.

Table 4.4: Quality Levels of Techniques

Quality level
1 2 3 4 5 6

Phigh Pmod P+FD P+SD FD SDP+FD+SD

4.4.3 Fault Localization Latency

For investigating the fault localization latency of the different diagnosis tech-
niques, the NoC is simulated for 20,000 cycles without faults. Then a single
permanent link or crossbar fault is randomly injected and the time between the
detection of the fault and its localization is measured. The measured average
localization latency for the diagnosis techniques is shown in Table 4.5.

The results of standalone techniques reflect the diagnosis effort of each
technique. For FD and SD the pattern set consists of a few hundreds of test
patterns. In case of FD, 32,500 cycles are required to apply all patterns to every
switch in the network using the diagnosis schedule (cf. Subsection 4.3.1). For
SD, the total time for identification phase and actual diagnosis phase is 99,754
cycles. Compared to these two techniques, the effort of P is much lower. On
the one hand, diagnosis is only performed for the switches on a path and, on

58 4 Cross-layer Fault Localization

Table 4.5: Average Localization Latency [cycles]

Diagnosis technique moderate load high load
P 315 471

FD 32,500
SD 99,754

P+FD 6,751 6,922
P+SD 50,128 50,348

P+FD+SD 56,628 56,799

the other hand, during diagnosis only one packet is used to locate the fault.
While localization latency of FD and SD are independent of the network load,
for P the time increases slightly for high network load. The reason for this is
that latency of acknowledgement packets used during diagnosis increases.

The combination of FD or SD with software protocol P results in a faster
localization of faults compared to the standalone techniques. Due to the local-
ization of the faulty switch by protocol P, set Φ of faulty switches is reduced to
one switch. Thus, full network diagnosis by FD or SD is not required and diag-
nosis scheduling (for FD) and identification phase (for SD) are omitted. Com-
pared to FD, the localization latency of P+FD is reduced by approximately
79% and corresponds to the time required for one iteration of the diagnosis
schedule. As the identification phase is omitted, the localization latency of
P+SD is only 50% compared to SD. When all three techniques are combined,
the localization latency is comprised of the time required by P to locate the
faulty switch, the time for one iteration of the diagnosis schedule of FD, and
the time required for the diagnosis phase of SD. As P depends on the network
load, the time of all P+ techniques increase slightly for high network load.

4.5 Summary

The results show that cross-layer fault localization by means of the combina-
tion of the diagnosis protocol of the transport layer with functional diagnosis
or structural diagnosis of lower network layers show a good tradeoff between
diagnosis quality and diagnosis performance compared to the standalone tech-
niques. The combinations enable functional diagnosis and structural diagno-
sis to provide feedback to the protocol which is used to improve the proto-
col’s diagnosis capability resulting in a higher diagnosis quality compared to

4.5 Summary 59

protocol-based diagnosis used in isolation. Compared to functional diagnosis
and structural diagnosis, the quality, however, is reduced due to the smaller
coverage of the protocol. While the fault localization latency of the combina-
tions is increased compared to the protocol, it is considerably smaller than the
ones of the lower layer techniques. The reason for this is that the faulty switch
is identified by the protocol, and thus, the necessity to perform diagnosis in the
entire network is omitted. Results show a localization speedup of about factor
five compared to functional diagnosis and factor two compared to structural
diagnosis.

61

Chapter 5
Cross-Layer Fault Tolerance

In contrast to single layer approaches, cross-layer fault tolerance approaches
derive their benefit from incorporating information about the network and
faults from different layers. This allows methods of different layers to deal
with faults cooperatively in order to provide fault tolerance. By providing net-
work information to the software layer, cross-layer fault tolerance enables the
handling of lower layer faults to be performed by a software method omitting
the need to implement the respective functionality in hardware. Information
of lower layers is communicated to the software layer in a bottom-up manner
where the information has to cross one or more layers, as shown in Figure 5.1.
To provide information to the next higher layer, the information has to be con-

Software

Layer

Software

Method

Layer Specific

Information

Packet

Intermediate

Destination

Network

Layer

Layer Specific

Information

... ..
.

Fault Tolerance

Method

Software Method

Output

Network

Information

Information

Sink

Information

Sink

IF

IF

IF

IF

IF

IF

IF

IF

Physical

Layer

... ..
.

Fig. 5.1: Information flow to and originating from the software layer.

verted into an information unit processible by the next higher layer, e.g. an
analog value on the physical layer has to be converted into a digital signal
value on the data link layer and vice versa. For this purpose, layers must offer
each other an interface (IF). The output information of a software fault toler-
ance method has to be communicated in a top-down manner to the respective
layers where the information is used in order to provide fault tolerance.

62 5 Cross-Layer Fault Tolerance

For providing information to the software layer and back to lower layers
the methods presented in this chapter make use of the NoC resources and
interfaces of standard data communication. As these resources and interfaces
are not exclusively used for exchanging network information across layers, it
has to be ensured that cross-layer communication is not blocked by normal
data traffic.

In this chapter, first, two methods are discussed that, on the one hand, al-
low link state information to be exchanged between data link layer and higher
layers and, on the other hand, prevent communication resources from being
blocked by data flits. In the following, both methods are subsumed as com-
munication resource management method (CRM) (cf. Subsection 5.1). The
required information as well as the respective information flow is shown for
each of the methods. Subsequently, Software-based Packet Rerouting (SBR)
and Reconfigurable Hierarchical Routing (RHR) methods are presented (cf.
Subsection 5.2 and Subsection 5.3), that are able, by incorporating informa-
tion of different network layers, to redirect packets and to adapt network layer
routing, respectively, on the software layer. An overview of the three methods
presented in this chapter is given in Table 5.1.

Table 5.1: Fault Tolerance Methods

CRM SBR RHR

Supported Fault
Type

transient &
permanent permanent permanent

Implementation
Layer data link software network &

software

Fault Model crossbar & link
failure

crossbar, link,
& switch failure

link & switch
failure

5.1 Management of Communication Resources

In case of a failure of a communication resource, it becomes unavailable for
communication. The information about the availability of a resource is essen-
tial for fault tolerance methods. In this chapter, a method is presented that
enables the exchange of status information between data link layer and higher

5.1 Management of Communication Resources 63

layers (cf. Subsection 5.1.1). Furthermore, the failure of a resource may have
an impact on the data flow in the NoC by blocking communication. For this
purpose, a method for data flow management is proposed in this chapter that
prevents resources from being blocked by releasing reserved resources in case
of flit loss (cf. Subsection 5.1.2).

5.1.1 Availability Status Communication

In order to react to the failure of a communication resource, a fault tolerance
method has to have knowledge about its availability. The resource’s availabil-
ity is captured by its availability status. This status is determined by fault
diagnosis and it is utilized by fault tolerance methods. Thus, it is required that
the status is communicated to the fault tolerance methods.

On the data link layer, the availability status can be communicated by us-
ing dedicated hardware signals. This is reasonable if the status is only used
by local switch mechanisms or by mechanisms implemented in neighboring
switches. However, if the status is required globally in the NoC, the usage
of hardware signals would result in a huge wiring overhead. On the network
layer the availability status can be communicated as flits using the available
NoC communication infrastructure. Utilizing the NoC communication infras-
tructure allows the existing NIs to be used to provide the status to the software
layer. To enable the status to be communicated between data link layer and
network layer it is required that the status information is converted from flit
payload to signal states and vice versa. The status exchange between network
and data link layer is shown in Figure 5.2.

Network

Layer

Data Link

Layer

Availability

Signals
Fault Tolerance

Method
Diagnosis

Availability

Information
Availability

Information
Diagnosis

Fault Tolerance

Method

Availability Status

Communication Unit (ACU)

From higher layers To higher layers

Fig. 5.2: Communication of availability status across network layers.

64 5 Cross-Layer Fault Tolerance

The proposed method in this thesis enables the communication of the avail-
ability status of link channels and crossbar connections. An example for the
west port of a switch is shown in Figure 5.3. The availability of a switch is
represented by the availability status of all incident links, i.e. a switch is un-
available if all incident links are unavailable. The availability status of each
communication resource is represented by a one bit hardware register. To no-
tify a neighbor switch about the availability of a link channel, an availability
signal is used on the data link layer. The availability signal is reset if either the
channel becomes unavailable or if all crossbar connections originating from
the corresponding input port of a switch are unavailable.

To allow the exchange of the availability status between data link layer
and higher layers, a switch implements the addressable Availability Commu-
nication Unit (ACU). It implements one interface for status setting (SET) and
status communication (COM) to higher layers. From the point of view of the
switch’s router, the ACU is considered as an additional communication end-
point to which flits have to be forwarded to and which injects flits.

SET and COM interfaces enable diagnosis or fault tolerance methods to be
performed on higher layers. If a fault has been diagnosed, the diagnosis result
is communicated by means of a flit to the ACU where the availability status
is set accordingly. The COM interface to provide status information to higher
layers has been designed and implemented in the master thesis [2]. The ACU
monitors the availability status of all link channels and crossbar connections
of a switch and in case a status is set to ’unavailable’, a flit is generated with
the corresponding information. In SBR the flit is sent to the local PE. In RHR
it is send to all network nodes within a hierarchical unit.

If a communication resource becomes unavailable, in this thesis, it is as-
sumed that this resource is shut down.

5.1.2 Data Flow Management

Switching and flow control are essential mechanisms for enabling data flow
in the NoC. Common NoC switching methods make use of a special setup
flit or the head flit of a packet to reserve an output port at each switch the flit
passes. An output port is exclusively reserved for an input port, and thus, flits
from other input ports may not use this output port at the same time. The tail
flit of a packet is used to cancel the reservation. Flow control allocates buffer
resources to flits and stops a switch from sending further flits if a buffer cannot

5.1 Management of Communication Resources 65

OR

AND

Channel Status E!W

E W

Availability

Signal E!W

Availability

Signal W!E

Xbar Status

Register

...

Channel Status

Register

SET

(Flit to Bit)

COM

(Bit to Flit)

Xbar Status W!o

ACU

Router

Fig. 5.3: Architecture of Availability Communication Unit.

store them at the moment. The loss of head and tail flits has a negative impact
on both mechanisms.

The loss of a tail flit prevents output reservations to be canceled, and thus,
all flits at other input ports requiring this output port are blocked. Depending
on the used switching method a head is forwarded without waiting for the
tail to arrive at the same switch. Thus, output reservations at several switches
made by the head flit are not canceled. This situation also occurs if a link
or crossbar connection is shut down while being used for communicating a
packet. That is because the tail flit can only cancel reservations up to the shut
down resource. All reservations beyond this point are not canceled as the tail
flit cannot further be forwarded. If a head flit is lost, body and tail flits block a
buffer as they cannot be routed. When the buffer is full, flow control does not
accept any new flit to be stored in the buffer.

Uncanceled reservations and blocked buffers cause a backlog of flits in
the NoC resulting in a blockage of the complete NoC eventually. In turn, the
blockage prevents fault tolerance methods on higher layers such as adaptive
routings to take effect. Thus, it is mandatory to dissolve the blockage by can-
celing reservations and by dropping not routable flits.

A Data Flow Management (DFM) method that prevents buffers from being
blocked and that cancels reservations is presented in the master thesis [32]. It
is designed for input-buffered NoC switches with wormhole switching and
credit-based flow control. While the focus of the master thesis is on transient
faults, the proposed error recovery mechanisms can also be used in case of
permanent faults. The DFM is implemented as an additional hardware unit in

66 5 Cross-Layer Fault Tolerance

each NoC switch. As input information the DFM employs information about
the type of flits to reset grants given by the arbiter and to control write access
of input buffers, as shown in Figure 5.4.

Network

Layer

Data Link

Layer

Trigger Grant

Cancelation

Flit

Dropping

Give

Credit

Flit Type

Data Flow

Management

(DFM)

Fig. 5.4: Information flow of Data Flow Management.

The proposed method keeps track of the type of the incoming flits at an
input port of a switch and checks that the head and tail flit of a packet are
received. Tail flit loss of a packet is considered if before receiving the packet’s
tail flit either the head flit of the next packet arrives or if no further flit is
available in the input buffer. The latter guarantees that all reservations made
by the head flit are canceled even though no further packet is sent through the
NoC on the same path. If a tail is lost, the method simply resets the grant given
by the arbiter to cancel the output reservation of the corresponding input port.

Head loss is considered by the method if the flit following a tail flit is not a
valid head. In case of a head loss, all incoming flits at the corresponding input
port are dropped before they are stored in the buffer. This prevents buffers to
be blocked by not routable flits. To prevent a mismatch between the number
of available buffer slots and the credit counter of the sending switch, a credit
is passed back for each dropped flit. Dropping stops when the next head flit
arrives at the input port.

5.2 Software-Based Packet Rerouting

In case of failure and shutdown of a crossbar connection, a link, or a switch,
the component becomes unavailable for data communication. This implies that
all communication paths in the NoC passing this component are no longer
valid. Topologies such as mesh or torus have an inherent redundancy offering

5.2 Software-Based Packet Rerouting 67

several redundant paths between each source and destination pair. In general,
this allows packets to bypass a shut down component by using an alterna-
tive path. Deterministic and oblivious routings implemented on the network
layer, however, cannot exploit alternative paths, and thus, as a consequence of
component shutdown, connectivity in the NoC is no longer provided between
network nodes.

Providing network information to the software layer offers a solution to
this problem as it enables the rerouting of packets in software. Software-based
rerouting allows packets to use alternative paths which cannot be exploited by
the network layer routing. For the calculation of an alternative path knowledge
about:

• the routing used on the network layer,
• the NoC’s topology, and
• the availability of the communication resources

is required. In this section, Software-based Packet Rerouting method for NoCs
is presented to tolerate the failure of crossbar connections, the failure of a
link channel or the complete link, as well as switch failure. As rerouting is
performed in software, no additional hardware to calculate alternative paths is
required in a switch. It is assumed that packets that cannot be forwarded to an
output port due to an unavailable communication component are forwarded to
the local output port instead.

5.2.1 Rerouting Principle

The general idea of the Software-based Packet Rerouting method is to redirect
packets to some intermediate destination node to bypass a shut down com-
ponent. From the intermediate destination the packet then is sent to its actual
destination using the routing on the network layer again. The intermediate
destination is calculated by the software routing algorithm on the software
layer. The information employed by the algorithm to calculate an intermediate
destination and the required packet format for software-based rerouting are
described in the following subsections.

68 5 Cross-Layer Fault Tolerance

5.2.1.1 Required Rerouting Information

For the calculation of alternative paths the software routing algorithm uses in-
formation available on different network layers, as shown in Figure 5.5. From

Transport

Layer

Network

Layer

Software

Layer

Software

Routing

Routing

Algorithm

Topology

Information

Availability

Information

Node

Address

Packet

Intermediate

Destination

Intermediate

Destination

Input Output

Packet

Destination

Fig. 5.5: Information employed by software routing algorithm.

the network layer, software routing requires the information about the routing
algorithm and the NoC’s topology. The granularity of the topology informa-
tion depends on whether it is a regular or irregular topology. In case of an
irregular topology, detailed information about the interconnection of network
nodes is required, e.g. by means of an adjacency list. For regular topologies,
the size (ring) of the topology or its dimension (mesh, torus) is sufficient. Fur-
thermore, information about the availability of crossbar connections and links
of a switch (Availability Information) is required to determine which output
ports can be used for rerouting. This information is provided by the Availabil-
ity Status Communication Unit (ACU) (cf. Subsection 5.1.1). While routing
algorithm and topology is information that can be provided to the software
routing during design time, the availability information has to be commu-
nicated to the software layer online as availability of resources may change
during NoC operation.

To calculate a specific alternative path for a packet, software routing em-
ploys address-related information. This information is: the address of the node
performing software routing (node address) and the destination address of the
packet (packet destination), which define the start and end point of the alterna-
tive path. While the destination address is stored in the packet header available

5.2 Software-Based Packet Rerouting 69

on the transport layer, the node address is information available on the soft-
ware layer.

Using the above information software routing calculates an intermediate
destination for a packet. On the transport layer the packet is updated with this
information.

5.2.1.2 Packet Format

To reroute a packet pkt to an intermediate destination and from there to the
packet’s original destination it is required that the addresses of both network
nodes is stored in the packet header. For this purpose, the header must con-
tain two separate fields: the destination field (pkt.dest) and the backup field
(pkt.backup). The backup field contains the address of the original destination
node and may only be set by the original sender of a packet. The destination
field contains the address of the node to which the packet currently has to be
forwarded to. The information stored in this field is considered by the routing
implemented on the network layer. In case of a packet rerouting the destination
field is overwritten by the software routing. Initially, when a packet is injected
by its sender, both fields contain the destination address. By means of the two
address fields a node n that receives the packet can determine its role for the
packet, as shown in Listing 3.

Listing 3 Role of Network Node n.
1: if pkt.dest == pkt.backup then
2: if n.addr == pkt.dest then
3: node n is receiver of packet pkt
4: else
5: node n has to perform software routing
6: end if
7: else
8: if n.addr == pkt.dest then
9: node n is intermediate destination

10: else
11: node n has to perform software routing
12: end if
13: end if

If both addresses stored in the packet are identical, the packet is currently
forwarded towards it destination (line 1). If address pkt.dest matches with

70 5 Cross-Layer Fault Tolerance

the one of node n (n.addr), then n is the receiver of the packet (line 3). If
pkt.dest and n.addr are different, the packet has to be routed in software as
it could not proceed on its normal path due to an unavailable communication
component (line 5). If both address fields are not identical this implies that
the packet is currently redirected heading towards its intermediate destination.
If pkt.dest and n.addr are identical, node n is the intermediate destination
of packet pkt (line 9). If both addresses are not identical then the alternative
path is unavailable as well, and thus, node n has to redirect the packet again
(line 11).

In general, software routing allows packets to be sent back via their input
port in order to bypass shut down links. However, sending back a packet must
be avoided in case of a dead end situation as this would imply that the packet
is repeatedly sent into the dead end. For this purpose the packet header fea-
tures an additional bit (pkt.dead end) to signal that a packet may not be sent
back via the same port. To identify the input port of a packet in software, the
address of the sender (pkt.send) is used. The dead end handling is explained
in Subsection 5.2.2.1.

5.2.2 Software Rerouting

5.2.2.1 Rerouting Logic Overview

Every time a switch receives a packet pkt that cannot be forwarded by the rou-
ting implemented on the network layer, it is passed to the software rerouting
method of the PE. The pseudo code of the packet rerouting algorithm is shown
in Listing 4.

A packet pkt that has to be rerouted in software has to be stored in the PE’s
packet buffer until it is re-injected into the NoC again. For this reason, a packet
can only be accepted for rerouting if the buffer is not full and can store the
packet (line 2). If this is not the case, the packet has to be discarded and has to
be retransmitted by the sender at a later time. If the packet can be accepted for
rerouting, first, the set of all available ports Avail Ports of the current node’s
switch is determined not including the local port (line 11). For this purpose, the
Availability Information received from the Availability Status Communication
Unit is employed (cf. Subsection 5.1.1). Subsequently, the input port pkt i
via which packet pkt was received at the current switch and the output port
pkt o to which packet pkt has to be forwarded are calculated according to the

5.2 Software-Based Packet Rerouting 71

Listing 4 Software Rerouting Algorithm.
get avail ports(): returns all ports leading to an available link.
avail(): returns the availability status of a crossbar connection.
get input(): determines the input port pkt i where the packet was received.
get output(): determines the output port pkt o of the packet.
software routing(): determines the intermediate destination.

1: procedure SOFTWARE REROUTING LOGIC(pkt)
2: if packet buffer full then . check if packet can be accepted
3: drop packet pkt
4: return
5: end if
6:
7: if curr = intermediate destination then
8: pkt.dest := pkt.backup; . restore destination address
9: end if

10:
11: Avail Ports := get avail ports() \ L; . obtain all available ports
12: pkt i := get input(pkt.send); . determine input port pkt i and ...
13: pkt o := get output(pkt.dest); . output port pkt o of packet
14: pkt.send := curr; . set current node curr as new sender of packet
15:
16: if pkt.dead end then
17: Avail Ports := Avail Ports \ pkt i; . remove disallowed port
18: pkt.dead end := false;
19: end if
20:
21: if pkt o ∈ Avail Ports ∧ avail(L→ pkt o) then
22: bridging of shut down crossbar connection . no rerouting necessary
23: success := true;
24: else
25: success := software routing(pkt); . perform software routing for packet pkt
26: end if
27:
28: if ¬ success ∧ Avail Ports != ∅ then . dead end handling
29: out port := select(Avail Ports);
30: pkt.dest := neighbor of curr in direction out port;
31: pkt.dead end := true;
32: success := true;
33: end if
34:
35: if success then
36: re-inject packet pkt . rerouting possible
37: else
38: discard packet pkt . rerouting not possible
39: end if
40: end procedure

72 5 Cross-Layer Fault Tolerance

routing algorithm used on the network layer. This information is determined
by means of the sender address pkt.send (for pkt i) or destination address
pkt.dest (for pkt o) found in the packet (line 12 and 13). Further, the packet’s
sender address is replaced by the address of the current node curr (line 14).
This is required to determine the input port of the packet at another node in
case the packet has to be rerouted a second time. If the dead end field of the
packet is set, it must not be sent back to the port via which it was received,
and thus, port pkt i is removed from set Avail Ports (line 17). The dead end
situation is explained later.

If both the output port pkt o and the crossbar connection from local port
L to pkt o are available, this means that packet pkt could not be forwarded
because the crossbar connection from the input pkt i to output port pkt o is
shut down. In this case, packet pkt is not rerouted, since the shut down crossbar
connection is bridged when pkt is re-injected using L→ pkt o (line 21 - 23).
Once the packet is re-injected, it can be forwarded to its destination using the
original path.

If either connection L→ pkt o or port pkt o is not available, software rou-
ting has to calculate an alternative path for pkt (line 25). For this purpose,
a network node is determined to become the packet’s intermediate destina-
tion. A node may become an intermediate destination if from this node the
packet can reach its original destination using the routing on the network layer
without passing the shut down crossbar connection or link. If an appropriate
intermediate destination is found by the software routing, its address is stored
in the destination field of the packet.

Software routing may fail to redirect a packet. This is the case if the packet
has reached a dead end. A dead end is a situation where the packet neither
can be sent via the intended link towards its destination nor via one of the
redirect links because they are shut down as well. To avoid the packet being
stuck, the rerouting logic implements dead end handling (line 28 - 33). A
dead end situation is solved at node curr by sending the packet back to the
neighboring switch, from which it was received earlier. At the neighbor it has
to be ensured that the packet is not sent to the port that leads back to curr. For
example, when curr sends the packet back to its western neighbor, the usage
of the eastern port must be prohibited as this would return the packet to node
curr. To signal a packet must not be sent back, the header field dead end is set.

The packet pkt can be re-injected into the NoC if it either can bridge the
shut down crossbar connection or if an intermediate destination, i.e. an alter-
native path, was successfully determined. Software rerouting for packet pkt
fails when:

5.2 Software-Based Packet Rerouting 73

1. none but the local port is available because all other ports are shut down or
must not be used, i.e. Avail Ports == ∅, and when

2. software routing cannot determine an alternative path.

In both cases packet pkt has to be discarded (line 35 - 39).
Redirecting packets to an intermediate destination and from there to the

packet’s actual destination violates the routing rules of the routing imple-
mented on the network layer. Thus, this involves the risk of deadlocks. To
avoid deadlocks, a redirected packet is removed from and later re-injected
into the network at its intermediate destination. This splits the alternative path
into two subpaths:

1. from the rerouting node to the intermediate destination and
2. from the intermediate destination to the actual destination.

On each of the subpaths the packet is sent by using the network layer routing,
and thus, no routing rules are violated. However, as in the case of software
rerouting, a packet can only be accepted by an intermediate destination if the
packet can be stored in the PE’s packet buffer. Otherwise the packet has to be
discarded. When an intermediate destination can accept the packet, the origi-
nal destination is restored using the address in the backup field of the packet:
pkt.dest := pkt.backup (line 8). The packet then is re-injected into the net-
work and is sent to its destination using the routing on the network layer.

5.2.2.2 DOR XY Software Routing

The software routing method (software routing line 25) may implement any
routing algorithm. In this subsection DOR XY software routing is presented
as specialization of software routing is presented, applicable for NoCs with
mesh topology. The employed network layer information (cf. Figure 5.5) of
this specialization is:

• Routing Algorithm: the XY routing rule.
• Topology Information: the x- and y-dimension of the mesh topology, and
• Availability Information: the availability status of crossbar connections and

links of the local switch.

The pseudo code of DOR XY software routing is shown in Listing 5.
Generally, in mesh topology a packet can be blocked by an unavailable

communication resource while being forwarded either in x- or y-direction.
Thus, when a packet is blocked in one direction it has to be redirected in the

74 5 Cross-Layer Fault Tolerance

Listing 5 Software Routing.
avail(): returns availability status of a crossbar connection or a link.
exist dir neighbor(): returns true if neighbor in direction dir = N,E,S,W of a node
exists.

1: procedure SOFTWARE ROUTING(pkt)
2: success := true;
3: dest := pkt.dest
4: curr := this; . determine destination and current node
5:
6: if curr.x == dest.x then
7: if exist E neighbor(dest) ∧ avail(L→ E) ∧ E ∈ Avail Ports then
8: pkt.dest := east neighbor of dest;
9: else if exist W neighbor(dest) ∧ avail(L→W) ∧W ∈ Avail Ports then

10: pkt.dest := west neighbor of dest;
11: else
12: success := false; . Software routing failed
13: end if
14: else
15: if exist N neighbor(curr) ∧ avail(L→ N) ∧ N ∈ Avail Ports then
16: pkt.dest := north neighbor of curr;
17: else if exist S neighbor(curr) ∧ avail(L→ S) ∧ S ∈ Avail Ports then
18: pkt.dest := south neighbor of curr;
19: else
20: success := false; . Software routing failed
21: end if
22: end if
23:
24: return success;
25: end procedure

corresponding other direction, first, to bypass the resource. DOR XY software
routing uses the information about the forwarding direction of a packet to
determine an intermediate node. This information is obtained by comparing
the x-coordinate of the packet’s destination address dest with the one of the
current node’s address curr. If both addresses have the same x-coordinate the
packet was blocked due to an unavailable resource in y-direction, and thus,
the packet is redirected in x-direction (curr.x−1 or curr.x+1) (line 6). If both
x-coordinates differ, the packet is redirected in y-direction (line 14).

To meet the requirement that from an intermediate node the packet can
reach its destination using the network layer routing (cf. Subsection 5.2.2.1),
DOR XY software routing uses either the east or west neighbor node of dest as

5.2 Software-Based Packet Rerouting 75

the intermediate node when redirecting the packet in x-direction (line 7 - 10).
For redirecting the packet in y-direction the north or south neighbor node of
curr is used (line 15 - 17). The selection of a node as intermediate destination
is based on the employed topology and availability information. A node is
selected if:

• it exists,
• the crossbar connection at node curr from local port to the output port of

the switch is available required to reach the intermediate node, and
• if sending the packet to the corresponding output port is not permitted due

to a dead end situation (cf. Subsection 5.2.2.1).

If no intermediate destination can be determined, the DOR XY software
routing fails (line 12 and line 20).

5.2.3 Evaluation

The software rerouting method (cf. Listing 4) using DOR XY software routing
(cf. Listing 5) is evaluated for an 8x8 mesh. Simulations are carried out using
different injection rates and a different number of shut down links. The setup
of the NoC simulation model used is summarized in Table 5.2.

Table 5.2: Simulation Model Setup for Software Rerouting

Parameter Setup

Topology 8x8 Mesh
Routing XY

Arbitration Round Robin
Switching Wormhole

Packet Size 5 Flits
Traffic Pattern Uniform Random

For the evaluation of the software rerouting method the packet redirection
rate is determined. The packet redirection rate represents the ratio between the
number of packets being successfully redirected to their destinations and the
total number of packets requiring rerouting.

76 5 Cross-Layer Fault Tolerance

5.2.3.1 Packet Redirection Rate

Packets that are rerouted have to be consumed by at least two different net-
work nodes, i.e. the node performing software rerouting and the intermediate
destination. In both cases a packet may only be accepted if it can be stored in
the packet buffer of the corresponding PE. If the packet cannot be stored in
the buffer of one of the nodes then it has to be discarded and rerouting fails.
In the following, the software rerouting method is evaluated:

• for cases with one, five, and ten randomly shut down NoC links,
• for different software buffer sizes, and
• for different flit injection rates.

For each case one hundred different link shutdown scenarios are simulated
and for each scenario the packet redirection rate is determined. The average
packet redirection rate for different injection rates using a software buffer that
can store ten packets is shown in Figure 5.6.

 0

 0.2

 0.4

 0.6

 0.8

 1

0.05
0.14

0.24
0.26

0.28
saturation

av
er

ag
e

ra
tio

 o
f s

uc
cs

es
sf

ul
 p

ac
ke

t r
ed

ire
ct

io
n

injection rate [flits/cycle/node]

1 shutdown
5 shutdowns

10 shutdowns

Fig. 5.6: Average packet redirection rate.

The results show that the packet redirection rate changes with the injection
rate and the number of shut down links. For small (0.05 flits/cycle/node) and
moderate (0.14 flits/cycle/node) injection rates software rerouting method is
always able to successfully redirect packets to their destination in case of one

5.2 Software-Based Packet Rerouting 77

shut down link. For five shutdowns approximately 97% of the packets requir-
ing rerouting can be successfully redirected for both injection rates. While the
redirection rate for ten shutdowns is comparable to the one of five shutdowns
in case of the small injection rate, for the moderate injection rate it is reduced
to 0.88.

For high injection rates (≥ 0.24 flits/cycle/node) the number of success-
fully redirected packets strongly decreases for all shutdown scenarios. Due to
the high load in the network, packets cannot be injected immediately but have
to be stored in the packet buffer of the PEs for a longer time. As new packets
arrive over time that have to be stored, packet buffers reach their limit, and
thus, software rerouting and intermediate destination nodes can accept further
packets less frequent. For injection rates near to (0.28 flits/cycle/node) or at
saturation (∼ 0.30 flits/cycle/node) the average packet redirection rate is only
0.12 or 0.07, respectively. This implies that around 90% of the packets are dis-
carded while being redirected, and thus, those packets have to be retransmitted
at a later time.

To evaluate the impact of the packet buffer size on the packet redirec-
tion rate, the evaluation of software rerouting method is repeated for software
buffers that can store 25 and 100 packets, respectively. For this the same hun-
dred shutdown situations have been simulated. The corresponding redirection
rates are shown in Table 5.3. The results show that the increase of the packet

Table 5.3: Packet Redirection Rate

Injection rate buffer size 25 buffer size 100
[flits/cycle/node] 1 5 10 1 5 10

0.05 1 0.98 0.96 1 0.98 0.96
0.14 1 0.97 0.88 1 0.97 0.89
0.24 0.7 0.59 0.53 0.71 0.6 0.54
0.26 0.22 0.22 0.23 0.22 0.23 0.23
0.28 0.12 0.12 0.13 0.12 0.13 0.13

saturation 0.07 0.07 0.08 0.07 0.08 0.08

buffer does hardly improve the packet redirection rate. For 25 buffer slots the
measured rates are the same as in case of ten buffer slots. For very large packet
buffers with 100 slots the measured maximum rate increase is only about 0.01.
The reason for this very small increase is that the buffer slots are occupied by
packets waiting for their injection, and thus, the buffer slots are not available
for redirected packets.

78 5 Cross-Layer Fault Tolerance

In summary, the results show that software-based packet rerouting is only
of limited applicability for NoCs with high network load because of the large
number of packets that have to be discarded due to insufficient packet buffer
size. For small and moderate injection rates, however, the software-based
rerouting of packets is suitable to tolerate the shutdown of communication
resources on the network layer.

5.2.3.2 Implementation Costs

The code size of the software rerouting logic is only 5.7 KiB per network
node when using DOR XY software routing. However, as shown in Subsec-
tion 5.2.3.1, packet redirection may fail because the packet has to be dropped.
For this reason, an end-to-end flow control protocol is required that ensures re-
transmission of packets. e.g. the base protocol discussed in Subsection 4.2.1.
In case of the base protocol, another 25.1 KiB are required per node.

5.3 Reconfigurable Hierarchical Routing

Software-based rerouting of packets as presented in Section 5.2 tolerates
the shutdown of communication resources in the NoC without the need to
change the network layer routing. However, for NoCs with a high network
load software-based rerouting is no longer suitable because a large number of
packets have to be discarded due to full packet buffers at the PEs (cf. Subsec-
tion 5.2.3.1). Instead of redirecting packets at PEs, the communication paths
in the NoC have to be adapted to bypass shut down resources. This can be
achieved by reconfiguration of the network layer routing.

During the reconfiguration process new communication paths are calcu-
lated for the altered NoC topology. In contrast to software-based rerouting
that determines an alternative path for each packet individually, the newly cal-
culated paths are used by all packets to bypass shutdowns. Furthermore, while
software-based rerouting is always performed in situ when a packet cannot be
sent via the designated output port of a switch, routing reconfiguration is only
performed once when a component is shut down. A continuous execution, as
in case of software-based rerouting, is not required.

In general, routing reconfiguration in a NoC is a critical and time con-
suming task. In addition to the calculation of communication paths, this task

5.3 Reconfigurable Hierarchical Routing 79

comprises the exchange of network status information as well as the update
of the routing. During the reconfiguration process the NoC switches are either
not available or are only available to a limited extent for data communication.
Thus, the NoC’s performance is degraded. The reconfiguration of routing in
the whole NoC, however, is inappropriate if only a single link or switch is shut
down. With respect to network performance, it is advantageous to reconfigure
the routing only for switches in the surrounding of the shut down component
while the routing of all other switches is kept unchanged. A further challenge
for routing reconfiguration is its increasing complexity with increasing NoC
size with respect to the required time and communication overhead of status
information. A possibility to cope with these issues is to organize NoCs hi-
erarchically and to replace the global reconfiguration mechanism with local
ones applied to the smaller hierarchical units.

In the following, a reconfigurable routing for large scale NoCs organized
into logical hierarchical units is presented that makes use of routing tables. The
hierarchical units allow the routing to be reconfigured locally within each unit
individually in case of a link or switch shutdown while the connectivity and
deadlock-freedom is guaranteed in the entire network. The individual tasks
of the associated reconfiguration process are distributed over multiple layers
of the network. While on the network layer it is ensured that the status of
network resources is provided to all network nodes within a hierarchical unit,
the calculation process takes places in software. The update of the routing
tables is achieved by interaction of software and network layer mechanisms.

The hierarchical organization of a NoC’s topology is described in Sub-
section 5.3.1. The principles of the hierarchical routing as well as the data
structure and algorithm used to calculate the routing are presented in Subsec-
tion 5.3.2. In Subsection 5.3.3 the adaptation of the routing and reconfiguration
of the routing tables in case of a shutdown of a faulty component is presented.
Evaluation results are provided and discussed in Subsection 5.3.4.

5.3.1 Hierarchical Organization of NoC Topologies

The reconfigurable hierarchical routing makes use of a logical hierarchy. To
construct the hierarchy for a given NoC topology T with network nodes V and
links E, one or more neighbored network nodes are aggregated as hierarchical
units {U1,0, ...,U1,i} resulting in a partitioning of V (T). This partitioning is
represented by graph T ′ = (V ′,E ′) where V ′ = {U1,0, ...,U1,i}. Two vertices

80 5 Cross-Layer Fault Tolerance

U1, j and U1,k are connected by an edge in T ′ if in T at least one link exists
connecting one node vm of unit U1, j with node vn of unit U1,k:

E ′(T ′) =
{
{U1, j,U1,k}|∃vm ∈U1, j,∃vn ∈U1,k : {vm,vn} ∈ E(T)

}
(5.1)

The vertices of T ′ can be further aggregated, and thus, defining hierarchical
units of the next hierarchy level. This aggregation step can be repeated and
each step defines the units Uh,i of the next higher hierarchy level h. The ex-
emplary graphs for three aggregation steps for topology T (cf. Figure 5.8) are
shown in Figure 5.7.

U1,0

U1,3

U1,1

U1,4

U1,2

U1,5

U2,1

U2,2

U2,0 U3,0

T´ T´´ T´´´

U1,0

U1,3

U1,1

U1,4

U1,2

U1,5

U2,1

U2,2

U2,0 U3,0

T´ T´´ T´´´

Fig. 5.7: Graph representations of aggregations.

On the highest level hmax, one single unit Uhmax,0 exists that aggregates all
units of the lower levels. Thus, hmax = 1 corresponds to the flat hierarchy net-
work and the units on level h = 0 are the network nodes. The resulting hi-
erarchically organized NoC with hmax = 3 for the above graphs is shown in
Figure 5.8.

A unit Uh−1, j on level h−1 is called a subunit of Uh,i if Uh−1, j ∈Uh,i. Unit
Uh,i is then called the superunit of Uh−1, j. In accordance with the partitioning,
a hierarchical unit on level h < hmax has exactly one superunit on level h+1.

5.3.2 Fault Tolerant Hierarchical Routing

Faults and the associated shutdown of communication resources occur during
NoC operation and lead to a change of the NoC topology. In order to maintain
communication, a reconfigurable routing has to exhibit the property that it can
be adapted for arbitrary topologies. However, performing routing reconfigura-
tion globally is a time consuming task in large scale NoCs (cf. Section 5.3).

5.3 Reconfigurable Hierarchical Routing 81

Thus, to minimize the required time, reconfiguration has to be limited to the
switches in the local surrounding of a shut down resource. To enable local
reconfiguration in principle, it has to be ensured that the impact of routing re-
configuration on the connectivity and deadlock-freedom is contained within
the surrounding of the shut down resource.

In order that a new routing takes effect in the NoC, the routing in the
switches has to be updated. This requires a routing representation that allows
the routing of a switch to be changed in principle. Additionally, an appropriate
reconfiguration mechanism is required that replaces the old routing with the
new one.

The hierarchically organized topology with units presented in Subsec-
tion 5.3.1 constitutes the base for the implementation of the proposed recon-
figurable routing. To exploit the hierarchical NoC topology, the routing is hi-
erarchically structured as well. Every hierarchical unit on level h ≥ 1 defines
an internal routing used for communication between its subunits. The overall
hierarchical routing is composed of these internal routings.

To be able to calculate a routing for arbitrary topologies, Up/Down rou-
ting (cf. Subsection 2.2.5) is employed for all the internal routings. In case of
a shutdown of a faulty component, only the internal routing of the affected
hierarchical unit is reconfigured.

In each hierarchical unit on level h≥ 1 one of the network nodes is defined
as the unit manager. The task of a manager is to collect information about shut
down links and switches within its unit. By making use of this information, a
manager is responsible to recalculate the internal routing and to incorporate

U2,0 U2,1

U0,0 U0,1

U0,6 U0,7

U1,0

U0,12 U0,13

U0,18 U0,19

U1,3

U0,2 U0,3

U0,8 U0,9

U0,14 U0,15

U0,20 U0,21

U0,4 U0,5

U0,10 U0,11

U0,16 U0,17

U0,22 U0,23

U1,1 U1,2

U1,4 U1,5

U3,0

U2,2

Fig. 5.8: Hierarchical mesh topology with hmax = 3.

82 5 Cross-Layer Fault Tolerance

the result into a hierarchical graph representation of the topology referred to
as Enhanced Topology Graph (ETG) in the following. An ETG is used by the
nodes within a unit to calculate the hierarchical routing. The calculated routing
of a node is stored in a routing table of its switch.

Deadlock-freedom of the hierarchical routing is ensured by using virtual
channels.

The routing principles as well as the structure of routing tables are pre-
sented in Subsection 5.3.2.1. The necessity of using virtual channels to ensure
deadlock-freedom for the proposed hierarchical routing is discussed in Sub-
section 5.3.2.2. The generation of initial ETGs and the algorithm used to calcu-
late the table entries is explained in Subsection 5.3.2.3 and Subsection 5.3.2.4.

5.3.2.1 Hierarchical Routing Principles and Representation

Each hierarchical unit Uh,i on level h is identified by its unique ID i. The ad-
dress of network nodes is composed of the IDs of their hierarchical units in
descending order, i.e. (ihmax−1,...,i0). For instance, the address of node U0,23 is
(2,5,23) (cf. Figure 5.8).

The hierarchical routing works in a top-down manner selecting internal
routings r by descending hierarchy level. The hierarchical routing principle
is depicted in Figure 5.9. Beginning with the internal routing rhmax,0 of unit
Uhmax,0, a packet from sender s to destination d is forwarded passing zero
or more network nodes until it reaches a node m with the same address ID
jhmax−1 as destination node d. This implies that m and d are encapsulated by
the same hierarchical unit Uhmax−1, jhmax−1 on level hmax−1. From now on, the
packet is forwarded via zero or more nodes using the internal routing of unit
Uhmax−1, jhmax−1 . When reaching a node whose IDs of level hmax−1 and hmax−2
match the ones of node d the internal routing of the next lower level is used.
This is repeated until node n of the same unit U1, j1 as d is reached. From n
internal routing r1, j1 is used to deliver the packet to destination d.

For instance, if in Figure 5.8 U0,0 communicates with U0,23, the packet is
forwarded using the internal routing r3,0 until it enters U2,2. The packet then is
further forwarded using r2,2. When it reaches U1,5, the packet is delivered to
U0,23 by employing the internal routing r1,5.

The hierarchical routing is represented by routing tables implemented in
each switch on the network layer. In contrast to flat network tables that con-
tain one entry per network node, the hierarchical routing table Tm of node
U0,m only contains entries for those network nodes that share the same level 1

5.3 Reconfigurable Hierarchical Routing 83

ihmax-1

ihmax-2

i1

s

..
.

jhmax-1

jhmax-2

j1

d

..
.

jhmax-1

khmax-2

..
.

..
.

jhmax-1

jhmax-2

..
.

..
.

..
.

...

jhmax-1

jhmax-2

..
.

..
.

l1

jhmax-1

jhmax-2

..
.

j1

n

rhmax,0

rhmax-1, jhmax-1

r2, j2

r1, j1
m

Fig. 5.9: Hierarchical routing principle.

superunit including an entry for U0,m. All other entries refer to hierarchical
units. Let Uh,[m] denote the hierarchical unit on level h that encapsulates node
U0,m. Thus, routing table Tm contains entries for all hierarchical units in Uh,[m]

except unit Uh−1,[m].

Tm = {U0,m}∪
hmax⋃
h=1

Uh,[m] \{Uh−1,[m]} (5.2)

Table 5.4 shows the exemplary routing table for node U0,23 for the hierar-
chical organized topology depicted in Figure 5.8. For each destination the ta-
ble contains the output port and the VC that have to be used when forwarding
the packet. The necessity of the VC information is explained later in Subsec-
tion 5.3.2.2. A packet for a destination node not being listed in the table is

Table 5.4: Routing Table of Node U0,23

Destination Output port VC

U2,1 north vc2,up
U2,0 west vc2,down
U1,4 west vc1,up
U0,16 west vc1,down
U0,17 north vc1,down
U0,22 west vc1,down
U0,23 local vc1,down

forwarded to the unit that contains the node. The unit is identified by means of
the node’s hierarchical address.

In a flat hierarchy network all routing tables have the identical content offer-
ing the possibility to use the ID of a node as index to access the corresponding
table entry. In case of a hierarchical organized topology, however, only nodes

84 5 Cross-Layer Fault Tolerance

within the same level 1 unit have identical tables. Thus, in routing tables of
nodes situated in different units, different entries may be located at the same
index. For this reason, it is assumed that tables are implemented as content-
addressable memory.

5.3.2.2 Deadlock-Freedom

As mentioned in Section 5.3.2, the hierarchical routing is composed of the
internal routings of the hierarchical units. For the communication between two
network nodes being situated in different units at least two internal routings of
different levels are used (cf. Subsection 5.3.2.1)

All internal routings are calculated independently from each other. While
each internal routing on level h is deadlock-free, this is no longer the case
when internal routings of more than one level are used at the same time. The
reason for this is that packets using internal routings of different levels share
the same link channels during NoC operation. Thus, deadlock-freedom is no
longer guaranteed.

Deadlock-freedom of the hierarchical routing is achieved by the use of vir-
tual channels (VC). For each hierarchy level h ≥ 1 the hierarchical routing
makes use of VCs for Up and Down direction, i.e. vcup and vcdown. Each VC
has a rank. The rank of a VC depends of its level: the higher the level of a
VC the higher its rank. Within one level, the Up VC has a higher rank than the
Down VC. VCs have to be allocated by descending rank only. The dependency
graph for the used VC allocation scheme is shown in Figure 5.10.

vchmax-2,down

vchmax-2,up

vchmax-1,down

vchmax-1,up

vc1,down

vc1,up

…

…

Fig. 5.10: Dependency graph of VC allocation scheme.

As long as an internal routing of level h is used, the corresponding VCs
vch,up and vch,down of that level are used. When changing to an internal rou-

5.3 Reconfigurable Hierarchical Routing 85

ting of the next lower level, VCs of that level have to be used as well. For a
communication between two network nodes of the same level 1 unit always
the lowest rank VC vc1,down is used. The proof that the utilization of VCs to-
gether with the presented allocation scheme provides deadlock-freedom for
any number of hierarchical levels can be found in the Appendix A.1. Simula-
tions of the NoC model using the hierarchical routing have confirmed that the
routing is deadlock-free.

5.3.2.3 Enhanced Topology Graph

For calculating a hierarchical routing the hierarchy must be reflected by the
data structure of the Enhanced Topology Graph (ETG) used by the calculation
algorithm. An ETG is composed of vertices vh,i representing units of different
hierarchy levels and is created by merging the topologies of hierarchical units.

Let graph Gh,u be the representation of the abstract topology of unit Uh,u
whose vertices {vh−1,0, ...,vh−1,i} represent the subunits of Uh,u. Analogous to
the partitioning graphs in Subsection 5.3.1, two vertices in graph Gh,u are con-
nected by an edge if at least one link in topology T exists that connects nodes
of both corresponding subunits (cf. Equation 5.1). Further, let Gl,[u] denote the
graph that aggregates Gh,u on level l and vl−1,[u] ∈ V (Gl,[u]) be the represent-
ing vertex of the aggregation, where h < l ≤ hmax. The vertex set of ET Gh,u
of unit Uh,u then is defined by:

V (ET Gh,u)=

V (Gh,u) for h = hmax

V (Gh,u)∪
hmax⋃

l=h+1
V (Gl,[u])\{vl−1,[u]} for 0 < h < hmax

(5.3)

Analogous to Equation 5.1, vertices of an ETG are connected by an edge
if nodes within the corresponding units are connected by a link. Exemplary
ETGs are shown in Figure 5.11.

The creation of initial ETGs follows a top-down approach and is performed
by the unit managers. Starting with the creation of the ETG for the unit on
highest level hmax, the resulting ETG is provided to the managers of the sub-
units of the next lower level. This is repeated until the managers of all level 1
units have created their ETG. The level-wise construction of ET G1,5 for unit
U1,5 is shown in Figure 5.11. On highest level hmax, ET Ghmax,0 is equivalent to
graph G.

86 5 Cross-Layer Fault Tolerance

v2,1

0

v2,2

1

v2,0

2

ETG1,5

G3,0

v1,4

1

v2,1

0

v2,0

6

v0,16

2

v0,17

3

v0,22

4

v0,23

5

v0,16

0

v0,17

1

v0,22

2

v0,23

3

ETG2,2 G1,5

v1,5

2

v1,4

1

v2,1

0

v2,0

3

v2,1

0

v2,2

1

v2,0

2
 ETG3,0 G2,2

v1,5

1

v1,4

0

vh,i

ordinal

number

key

Fig. 5.11: Enhanced Topology Graph for U1,5.

5.3 Reconfigurable Hierarchical Routing 87

To create ET Gh,i of a unit Uh,i, the manager extends ET Gh+1, j received
from the manager of the superunit. For this purpose, the manager replaces the
vertex representing its own unit in ET Gh+1, j by the unit’s abstract topology
graph Gh,i and inserts the corresponding edges.

The initial graph G is provided to the manager at design time. During NoC
operation this graph is used to calculate the internal routing of a unit. For this
purpose, the manager creates the breadth-first spanning tree of G and assigns
ordinal numbers to the vertices. The ordinal numbers are used during routing
calculation to determine whether a corresponding unit can be reached via Up
or Down direction. In accordance to the routing rules of Up/Down routing (cf.
Subsection 2.2.5) unit vl is reached in Up direction from vk if it has a smaller
ordinal number. Otherwise, vl is reached in Down direction.

When replacing a vertex vr in an ETG by those vertices of graph G, the
order of vertices in the ETG has to be preserved. Otherwise, this would alter
the internal routing of the superunit. For this reason, the ordinal numbers in
the updated ETG have to be adapted. While all ordinal numbers being smaller
than the one of vr are kept unchanged, all other ordinal numbers are increased
by the number of vertices |G| in graph G. Beginning with the ordinal number
o(vr) of vertex vr the numbers from o(vr) to o(vr)+ |G|−1 are assigned to the
vertices from graph G according to their order. In Figure 5.11 the adaptation of
ordinal numbers can e.g. be observed for the resulting ET G2,2 after replacing
v2,2 of ET G3,0 with the vertices of G2,2.

To be able to insert the edges between the vertices of ET Gh+1, j and the
newly inserted vertices of graph Gh,i, the manager requires the adjacency in-
formation for all ports of each node within its unit. This information is ob-
tained by comparing the hierarchical addresses (cf. Subsection 5.3.2.1) of two
adjacent nodes beginning with ID ihmax−1. The first ID of the addresses of both
nodes which differs is the one relevant for the manager. For instance, the first
ID in which U0,16 and U0,10 differ is i2 (cf. Figure 5.8), and thus, the northern
port of U0,16 is connected to U2,1. Just as the initial graph G, the adjacency
information is provided to managers at design time.

5.3.2.4 Routing Calculation

For the calculation of the hierarchical routing, the ETGs of level 1 are em-
ployed whereas all network nodes within unit U1,i use ET G1,i.

To calculate the routing a modified Dijkstra algorithm is used that consid-
ers the Up/Down routing rules. The algorithm is shown in Listing 6. Bold line

88 5 Cross-Layer Fault Tolerance

numbers identify lines containing an extension compared to the original Dijk-
stra algorithm (cf. [89] p. 198). Input parameters to the algorithm are the ETG
and a starting vertex vstart . The starting vertex corresponds to the network
node for which the routing is computed, e.g. for ET G1,5 vstart can be v0,16,
v0,17, v0,22, or v0,23 (cf. Figure 5.11). As result the algorithm returns valid
paths from vstart to all other vertices of the ETG according to the Up/Down
routing rules.

For the calculation, the algorithm makes use of two vectors:

• cost: If a vertex v can be reached from the starting vertex vstart , the corre-
sponding element cost[v] contains a finite number. If v cannot be reached
cost[v] is infinite.

• pred: If a vertex v was reached by the modified Dijkstra algorithm, pred[v]
contains the ID of the adjacent vertex va via which v was reached; else no
ID is stated. Starting at element pred[v], the path between vstart and v can be
determined by backtracking. In the following, va is denoted as predecessor
of v.

Furthermore, a queue (sorted Q) is used in which vertices are sorted according
to ascending costs.

After initialization of vectors and the queue (line 2 - 8) breadth-first search
is performed on the ETG. In contrast to the original Dijkstra where a vertex
can be reached from another one if both nodes are connected by an edge, in
the presented modified Dijkstra algorithm for the hierarchical routing a vertex
is only reachable if this does not lead to a violation of the Down to Up turn
restriction.

For this reason, at the currently visited node u the algorithm determines the
direction via which u was reached (downpred ; line 12) and the directions to
the not yet visited neighbor vertices w of u (downnext ; line 14). To determine
the direction, the algorithm makes use of the ordinal number available for
each vertex in the ETG. In general, a vertex is reached in Down direction if
its predecessor has a smaller ordinal number; otherwise it is reached in UP
direction.

By comparing directions downpred and downnext , the algorithm is able to
identify the possible change in direction when visiting w. A neighbor vertex w
can only be reached from u if either:

• u and w are representing units of the same level and the Down to Up turn
restriction is not violated or

• if vertex w represents a unit of a higher level (line 15).

5.3 Reconfigurable Hierarchical Routing 89

Listing 6 Dijkstra Algorithm for Hierarchical Up/Down Routing
1: procedure DIJKSTRA Up/Down(ET G, vstart)

o(): returns the ordinal number of a vertex
lvl(): returns the level of a vertex

2: for all vertices v in ET G do . initialization of vectors
3: cost[v] := ∞; . cost to reach vertex
4: pred[v] :=⊥; . predecessor of vertex
5: end for
6: cost[vstart] := 0; . start vertex has no cost nor predecessor
7: pred[vstart] := vstart ;
8: sorted Q.insert(vstart); . insert start vertex to sorted queue
9:

10: while not all vertices visited do
11: u := sorted Q.pop f ront() . get first vertex in queue
12: downpred := (o(pred[u])< o(u))
13: for all neighbors w of u do
14: downnext := (o(u)< o(w))
15: if lvl(u) = lvl(w)∧ (¬(downpred ∧¬downnext))∨ (lvl(u)< lvl(w)) then
16: new cost := cost[u]+1+weight ∗ lvl(w)
17: if new cost < cost[w] then
18: cost[w] := new cost;
19: pred[w] := u;
20: sorted Q.insert(w)
21: end if
22: end if
23: end for
24: end while
25: return pred . return predecessor vector
26: end procedure

The Down to Up turn restriction applies only for vertices of the same level.
An edge connecting two vertices of different levels is defined to belong to the
higher of the two levels, and thus, in the latter case, turn violation check is
omitted.

The cost to reach vertex w is composed of the cost to reach u plus one and
the weighting factor weight multiplied by the level of w (line 16). The higher
the level of a vertex, the more network nodes are normally represented by this
vertex. Thus, a path containing many vertices of higher levels is longer than
one with vertices of lower levels. The weighting is done to constrain a path
to consist of vertices of the lowest possible levels as this usually results in
shorter paths. As the number of network nodes being represented by a vertex
of level 1 or above is unknown to the algorithm, a favorable value for weight

90 5 Cross-Layer Fault Tolerance

is the total number of available network nodes in the NoC as this corresponds
to the maximum possible number of network nodes within a hierarchical unit.

In compliance with the original Dijkstra algorithm, u becomes the prede-
cessor of w if the costs to reach w via u are smaller than the existing costs
cost(w). In this case, if not already stored, w is added to the queue (line 17 -
21). The algorithm is repeated until all vertices of the ETG are visited.

After routing calculation, the VCs have to be determined used by the start
node vstart for the communication with the possible destinations vdest . The
pseudo code of the algorithm is shown in Listing 7. As input parameters the

Listing 7 Algorithm to Determine VCs
1: procedure DETERMINEVCS(ET G, pred, vstart)

o(): returns the ordinal number of a vertex
lvl(): returns the level of a vertex

2: for all vertices v in ET G do
3: vdest := v
4: w := v
5: if lvl(w) = 0 then
6: vc vec[vdest] := vc1,down
7: else
8: while lvl(w) = lvl(vdest) do
9: if o(w)< o(vstart) then

10: vc vec[vdest] := vclvl(w),up
11: else
12: vc vec[vdest] := vclvl(w),down
13: end if
14: w := pred[w]
15: end while
16: end if
17: end for
18: return vc vec
19: end procedure

algorithm needs the ETG of level 1, the starting vertex vstart , and vector pred
of the modified Dijkstra algorithm. The VC used for communication is defined
by the level of the destination. If level h = 0 then always VC vc1,down is used
(line 6) as this is a communication between two nodes of the same level 1 unit,
i.e. vstart ∈U1,i∧ vdest ∈U1,i.

For a communication to a unit of level h > 0, either vch,up or vch,down has
to be chosen. The VC is defined by the first vertex on a path that has the same
level as destination vdest . To find this vertex, the algorithm searches a path

5.3 Reconfigurable Hierarchical Routing 91

in reverse direction starting with vdest . By comparing the ordinal number of
vertex v with the one of the starting vertex vstart the correct VC is determined
(line 8 - 15). After completion of the algorithm, the VCs of all destinations are
available (line 18).

The output port at vstart used to reach vdest is defined by the first vertex on
the path following vstart . The ports and VCs determined by the algorithm for
U0,23 using ET G1,5 (cf. Figure 5.11) are shown in Table 5.4.

5.3.3 Cross-Layer Routing Reconfiguration

So far, the generation of the initial ETG and the used algorithm used for
routing calculation has been described in Subsection 5.3.2.1 and Subsec-
tion 5.3.2.4. In the following, the reconfiguration process of the hierarchical
routing is described that is carried out when a faulty link or switch is shut
down.

The adaptation of routing requires that the routing’s reconfiguration pro-
cess is triggered in order to maintain NoC operation. In general, the routing
reconfiguration process can be split into three different phases:

1. Information phase: generation of required fault information for routing
adaptation, e.g. location or type of a fault, and communication of the infor-
mation to those NoC components that are involved in the routing adaptation
process.

2. Recalculation phase: adaptation of routing based on the received fault in-
formation.

3. Reconfiguration phase: replacement old routing with new routing and acti-
vation of the new one.

The effort and complexity of the last phase mainly depends on the design and
implementation of the routing. For instance, if the routing features precalcu-
lated alternative communication paths, the recalculation phase equals the ac-
tivation of these paths. For other routings, the alternative paths are calculated
in situ when a fault or shutdown is reported. Furthermore, the phases may not
be strictly separable but may interleave.

In general, the required mechanisms for each of the phases can be imple-
mented in hardware. Especially for the in situ routing calculation this, how-
ever, has the disadvantage that a hardware unit is required that implements the
calculation algorithm. In addition to the required implementation overhead for

92 5 Cross-Layer Fault Tolerance

the unit it is also prone to faults. The failure of this unit implies that the routing
can no longer be calculated.

The reconfiguration mechanism for the hierarchical routing presented in
this section implements the mechanisms of the three phases on different net-
work layers, as shown in Figure 5.12. While the mechanisms for generation
and communication of fault information as well as for reconfiguring the rou-
ting tables are implemented in hardware, the adaptation of the ETG and calcu-
lation of routing table entries are tasks performed in software. When a faulty

Network

Layer

Software

Layer

ETG

Update

Availability

Information

Internal Routing

Recalculation

Routing

Calculation

Manager
Network

Nodes

...

Data Link

Layer

Component

Shutdown

..
.

Hierarchical

Unit

Information phase Recalculation phase Reconfiguration phase

ETG

Communication

Reconfiguration

Protocol

Routing Table

Reconfiguration

Fig. 5.12: Cross-layer reconfiguration process.

component is shut down, during the information phase all network nodes
within the corresponding hierarchical unit are notified about it. This informa-
tion is used by the manager in the recalculation phase to recalculate the unit’s
internal routing using graph G. Subsequently, the manager updates the ETG
according to the routing changes. The updated ETG is provided to all nodes
within the unit and each one calculates its routing table entries in software.
In the last phase, the reconfiguration of routing tables on the network layer is
triggered by the software by sending the new table entries from a node’s PE to
a dedicated reconfiguration unit of its switch.

In Subsection 5.3.3.1, the requirements of the reconfiguration process of
the hierarchical routing are presented. The implementation of each phase is
described in the subsections 5.3.3.2 to 5.3.3.4.

5.3 Reconfigurable Hierarchical Routing 93

5.3.3.1 Requirements of Reconfiguration Process

The reconfiguration process as presented in Figure 5.12 imposes requirements
on the mechanisms used in the different phases to provide the interaction
across layers. These requirements concern the switch design as well as the
tasks performed in software.

Information phase: The shutdown of a communication resource alters the
topology of a hierarchical unit. As this topology change is not reflected by
the unit’s current internal routing, packets being forwarded to the shut down
resource can either not proceed, and thus, block the NoC or get lost. For this
reason, all network nodes within the unit have to be informed that the cur-
rent routing is no longer valid and that data communication temporarily is not
reliable. In addition, the information about the shutdown has to be provided
to the unit manager’s software task to enable the calculation of a new inter-
nal routing. On the one hand, this requires the generation of the appropriate
information about the shut down component. On the other hand, a communi-
cation mechanism is required that ensures that the information is provided to
all network nodes within a unit even though the current routing is invalid.

Recalculation phase: When a manager receives the shutdown information
it is required that the manager updates the unit’s topology graph accordingly
to be able to calculate the new internal routing for the unit. To enable the cal-
culation of the new global routing, the manager has to integrate the topology
change and the new internal routing to the ETG by removing vertices/edges
and by updating ordinal numbers (cf. Subsection 5.3.2.3).

The overall time of the reconfiguration process shall be as small as possi-
ble to restore normal NoC operation quickly. The calculation of routing table
entries by the manager for all network nodes within its unit, however, has a
high complexity of O(|V |3), and thus, results in a high calculation time. Dur-
ing this time all other nodes in the unit are idle as they have to wait for the
update of their routing tables. Homogeneous NoCs offer the possibility to re-
duce the work load of a single core by distributing it to multiple cores. The
proposed reconfiguration process makes use of the parallelism of a NoC in
such a way that each network node calculates its own table entries. By this
means, the complexity is reduced to O(|V |2). For this purpose, it is required
that the manager communicates the updated ETG to each node in its unit. For
the communication of the ETG to the nodes it has to be considered that still
the unit’s internal routing is invalid. Thus, like for the communication of the
shutdown information, a mechanism is required that ensures that the updated
ETG is provided to all nodes within the unit.

94 5 Cross-Layer Fault Tolerance

Reconfiguration phase: As the routing table entries are calculated on the
software layer, the entries have to be transported to the switch’s routing table
implemented on the network layer. Thus, the table entries have to be commu-
nicated by means of flits. On the network layer a reconfiguration mechanism
is required that receives those flits, extracts the entry information, and up-
dates the corresponding entry in the routing table. Transient and permanent
faults, however, may affect the communication of table entries from software
to network layer resulting in the corruption or loss of entries. This in turn
results in an incomplete or invalid reconfigured table. For that reason, the re-
configuration mechanism has to feature logic to analyze flits and to request a
retransmission of corrupted or missing table entries. A permanent fault in the
connection between PE and switch, e.g. in the NI, prevents a successful table
reconfiguration. The actual switch, however, may be fault free, and thus, its
shutdown would be inappropriate. To ensure that the switch can still be used
for communication, it is required that retransmissions of table entries can be
requested from other network nodes.

General requirement: In general, switching from the old routing to the new
routing is a critical task as this is prone to result in deadlocks in the network
[88]. This is the case if both the old and the new routing are active in different
switches at the same time. If the routing of a switch is only partially recon-
figured this can lead to deadlocks as well. For this reason, the reconfiguration
process has to consider this issue. This requires that a switch may only accept
and send data if its routing table is completely reconfigured and data commu-
nication is enabled again by the reconfiguration process. To indicate whether
a switch is completely reconfigured and may resume data communication a
reconfiguration status is required that signals the end of reconfiguration.

5.3.3.2 Information Phase

To generate the required availability information about the shut down com-
ponent in the information phase, the Availability Status Communication Unit
(ACU) presented in Subsection 5.1.1 is used. When a link becomes unavail-
able the ACU generates a single flit containing:

• the ID of the node incident to that link,
• the ID of the hierarchical unit to which the node belongs to, and
• the identification tag that identifies the shut down link.

5.3 Reconfigurable Hierarchical Routing 95

As availability signals are always reset in both directions of a link (cf. Sec-
tion 5.1.1), the ACU of both nodes incident to that link will generate a flit. On
the one hand, this ensures that the shutdown of an entire switch is reported by
the ACUs of the adjacent switches. On the other hand, both switches incident
to the shut down link may be situated in two different hierarchical units. In this
case, the generation of the availability information flit by both ACUs ensures
that the manager nodes of both units are informed.

To avoid availability information flits being blocked by other data flits, they
are communicated in a dedicated control VC. As the actual routing does no
longer guarantee full connectivity between the nodes of the corresponding
hierarchical unit, the router of a switch implements a flooding mechanism that
is used for all flits received via the control VC. This guarantees that all nodes
within a hierarchical unit receive the availability information.

Flooding, however, causes a large number of flit copies and thus leads to an
increase of the network load. To minimize the increase of network load, each
switch compares the unit ID found in the availability information flit with the
one in its address (cf. Subsection 5.3.2.1). If both IDs do not match, the flit is
dropped. Otherwise, a switch changes to the so-called maintenance mode and
forwards the flit to all neighbors. By this means, flooding is limited to the unit
affected by the shutdown and the boundary nodes of neighbored units.

While being in maintenance mode a switch neither accepts nor forwards
any data flits. Already stored flits in the input buffers of a switch are dropped
and all output port reservations are canceled. This ensures that all flits using
the old invalid internal routing are removed from the NoC. If the flits are not
dropped, this can lead to deadlocks as both, flits using the old routing and
flits using the new one, may be present in the NoC at the same time when the
routing is reconfigured. For dropping flits and canceling link reservations the
mechanism of [32] is reused (cf. Subsection 5.1.2).

An availability information flit received at the manager’s PE will trigger
the recalculation phase.

5.3.3.3 Recalculation Phase

The recalculation phase is composed of two parts. In the first part, the man-
ager of a unit recalculates the internal routing and adapts the ETG while all
other network nodes in the unit remain idle. In the second part, the ETG is
communicated to each node within the unit and each node calculates its rou-
ting table entries on base of the received ETG. Internal routing recalculation,

96 5 Cross-Layer Fault Tolerance

ETG adaptation, and calculation of routing table entries are tasks performed
in software (cf. Figure 5.12).

The shutdown information generated during the information phase is used
by the manager for recalculation of the internal routing if necessary and to
update the ETG. The manager distinguishes between the following two cases:

1. the shutdown of links connecting two nodes that are situated in different
units and

2. the shutdown of unit-internal links.

In the first case, the shutdown has no impact on the internal routing but on the
routing of a unit of higher level, and thus, the manager skips recalculation of
the internal routing of its unit and only removes the corresponding edge from
the ETG. In the second case, however, the topology of the unit changes, and
thus, recalculation of the internal routing is required.

For this purpose, the manager updates graph G, recalculates the Up/Down
routing, and assigns the ordinal numbers to the vertices (cf. Subsection 5.3.2.3).
The changes are then added to the ETG. Figure 5.13 shows an example for the
recalculation of the internal routing of unit U1,5 and the update of ET G1,5 as-
suming the shutdown of the internal link between the nodes 16 and 17. Com-
pared to the initial graph G1,5 (cf. Figure 5.11) the edge between v0,16 and v0,17
is removed and the ordinal numbers are adapted.

updated ETG1,5

v1,4

1

v2,1

0

v2,0

6

v0,16

2

v0,17

5

v0,22

3

v0,23

4

v0,16

0

v0,17

3

v0,22

1

v0,23

2

ETG2,2 updated G1,5

v1,5

2

v1,4

1

v2,1

0

v2,0

3

vh,i

ordinal

number

key

Fig. 5.13: Update of Enhanced Topology Graph ET G1,5 after link shutdown.

5.3 Reconfigurable Hierarchical Routing 97

The updated ETG is sent to the network nodes. Like availability informa-
tion flits, the flits containing ETG information are forwarded using the flood-
ing mechanism (cf. Subsection 5.3.3.2). When a network node has received all
ETG flits it starts to calculate its new routing table entries using the modified
Dijkstra algorithm presented in Subsection 5.3.2.4.

If at a network nodes the modified Dijkstra algorithm fails to find a path
to a unit U of higher level h > 0 in the ETG, the unit U cannot be reached
by the node. In that case, the internal routing of the superunit containing U
has to be adapted. For this reason, the node reports the connectivity problem
to its manager which in turn informs the corresponding superunit manager of
the next higher level. For this purpose, the manager creates the corresponding
availability information and floods this information in the superunit of its unit.
If required, the manager of the superunit again floods the information in the
superunit of the next higher level. This is repeated until the manager of the su-
perunit containing U has received the information. When the ETG is updated,
it is sent to the managers of the lower levels as in case of the initial ETG gen-
eration (cf. Subsection 5.3.2.3). Eventually, the updated ETG is provided to
the network nodes for calculating their routing table entries.

When a node has calculated all table entries, it triggers the reconfiguration
phase to update its routing table.

5.3.3.4 Reconfiguration Phase

In the reconfiguration phase the table entries available at the PE of a node
are written to the routing table of the node’s switch. For each table entry, a
separate reconfiguration flit is created on software side. These flits are sent
consecutively to the switch. Each switch has an additional Reconfiguration
Unit (RCU) to which the flits are forwarded. This unit extracts the information
from the flits and updates the corresponding routing table entries.

The communication of table entries using flits is susceptible to transient
and permanent faults. To avoid an invalid table reconfiguration due to flit cor-
ruption or loss, the communication between software and network layer is
protected against faults by a cross-layer reconfiguration protocol. The proto-
col enables the RCU to request a retransmission of table entries from the soft-
ware layer if the RCU cannot reconfigure the routing table successfully. The
protocol has been designed and implemented in [3] and features two different
reconfiguration modes:

98 5 Cross-Layer Fault Tolerance

1. local reconfiguration to control the reconfiguration between the RCU and
the local PE, and

2. remote reconfiguration to allow the RCU to request reconfiguration from
other network nodes.

Initially, the RCU is set to the local reconfiguration mode.
The protocol specifies that the start and the end of each reconfiguration flit

stream from software to network layer are identified by additional start and
end flits. To enable the RCU to detect flit corruption caused by transient or
permanent faults, the protocol specifies that the reconfiguration flits have to be
equipped with an error detection code on software side.

The network layer part of the protocol ensures the detection as well as the
handling of faulty or missing table entries. Furthermore, the network layer pro-
tocol provides logic to toggle the reconfiguration modes. All of these mecha-
nisms have been implemented in [3] as part of the RCU. To check reconfigu-
ration flits for faults, the RCU is able to reuse existing checking units imple-
mented at the input ports of the switch. If no checking unit is available, the
RCU has to implement one itself.

To detect flit loss, the protocol specifies two mechanisms, i.e. timeout and
the routing table reconfiguration status. For the timeout mechanism the RCU
implements a hardware timer that is started once the start flit from software
layer is received. If a timeout occurs before the end flit is received, at least one
reconfiguration flit is considered to be lost.

The table reconfiguration status is represented by one additional bit per ta-
ble entry. At the start of the reconfiguration phase all bits are reset. A status bit
is set again when the corresponding flit was successfully received by the RCU
and the entry is updated. If at the end of reconfiguration, i.e. the end flit was
received or a timeout has occurred, one or more entries are still not marked as
updated, the reconfiguration has failed and a retransmission of reconfiguration
flits is requested.

If local reconfiguration fails three times the RCU switches to remote re-
configuration. To request remote reconfiguration the RCU sends one request
to every neighbor of the node. The request, however, is only served by neigh-
bor nodes within the same hierarchical unit as the requester. The reason is that
only these nodes have the same ETG. From the set of remote reconfiguration
offers from the neighbors the RCU selects one. If again the reconfiguration is
not successful the RCU selects the next neighbor. Only in case the reconfigu-
ration is not successful after requesting reconfiguration from all the neighbors,
the RCU declares reconfiguration failure and shuts down the switch.

5.3 Reconfigurable Hierarchical Routing 99

When the RCU has successfully finished the reconfiguration of the routing
table, it sets the switch mode from maintenance to operative mode and the
network node continues data flit communication.

5.3.4 Evaluation

The evaluation of the proposed hierarchical routing is divided into the per-
formance evaluation of the actual routing on the network layer (Subsec-
tion 5.3.4.1) and the performance evaluation of the cross-layer reconfiguration
process (Subsection 5.3.4.2). For this purpose, different 16x16 mesh networks
with flat hierarchy as well as hmax = 3 hierarchy levels are considered. In this
work, all units of a level h have the same size. For hierarchical units on level
h = 1 unit sizes s1 from 2x2 to 8x8 are considered. The size s2 of level two
units is always a multiple of the level one units and refers to the number of
level one units that are encapsulated in x-dimension and y-dimension. The
unit size s3 always equals the network size (i.e. 16x16) and therefore is not
mentioned in the following. The unit size of level one and two form the tu-
ple (s1,s2), which is called the Hierarchical Network Configuration (HNC).
The setup of the NoC simulation model used for performance evaluation is
summarized in Table 5.5. Finally, in Subsection 5.3.4.3, the implementation
overhead required to implement the hierarchical routing is investigated.

Table 5.5: Simulation Model Setup for Software Rerouting

Parameter Setup

Topology 16x16 Mesh
Routing Hierarchical Routing

Arbitration Round Robin
Switching Wormhole

Packet Size 5 Flits
Traffic Pattern Uniform Random

100 5 Cross-Layer Fault Tolerance

5.3.4.1 Routing Performance

To investigate the impact of unit sizes on the performance, the NoC model
is simulated for 50 kcycles in saturation mode for different HNCs and the
maximum throughput (TP [received flits

nodes·cycles]) is measured. The measured TP results
are shown in Figure 5.14.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

(8x8,2x1)

(8x4,2x2)

(8x4,1x2)

(4x4,4x2)

(4x4,2x2)

(4x4,2x1)

(4x2,4x4)

(4x2,2x4)

(4x2,2x2)

(4x2,1x2)

(2x2,8x4)

(2x2,4x4)

(2x2,4x2)

(2x2,2x2)

(2x2,2x1)

th
ro

ug
hp

ut
 [f

lits
/c

yc
le

/n
od

e]

hierarchical network configuration (s1,s2)

flat

Fig. 5.14: Throughput of hierarchical routing.

The achievable throughput for the 16x16 flat hierarchy NoC is 0.027 flits
per node per cycle. The results show, that for all HNCs the throughput in-
creases except for (4x2,1x2). For (4x2,1x2), however, the throughput is com-
parable to the one of the flat hierarchy. The higher throughput of all other
HNCs, especially for (4x2,4x4) and (2x2, 8x4), can be attributed to the more
evenly distributed traffic of the hierarchical routing compared to Up/Down
routing used in the flat hierarchy. This is exemplarily shown in Figure 5.15
for flat hierarchy (left) and HNC (4x2,4x4) (right). Figure 5.15 depicts the
normalized values of communicated packets for each link for uniform random
traffic pattern.

In Up/Down routing, many communication paths from sender to destina-
tion lead towards or via the root node [114]. Thus, the links near to the root
node have a higher load than others. The high load at the links near to the
root node causes a back pressure in the NoC which in turn causes long waiting

5.3 Reconfigurable Hierarchical Routing 101

times for packets before they can be forwarded. This behavior can be observed
in Figure 5.14 for the flat hierarchy. Here the root node is situated in the up-
per left corner. The measured packet latency in case of the flat hierarchy is
approximately 370 cycles on average.

As it can be observed in Figure 5.15 on the right, the hierarchical routing
distributes the traffic more evenly in the NoC. On the one hand, this can be
attributed to the partitioning of routing calculation into many independently
unit-internal calculations. By using a different root node for calculation in
each unit, communication is no longer aligned to only one root node as in case
of the flat hierarchy. On the other hand, due to the additionally allowed Up to
Down turns the hierarchical routing is less restrictive than Up/Down routing.
Because of the better distributed traffic, the average packet latency is only 145
cycles. Compared to the flat hierarchy this corresponds to a latency reduction
by factor 2.5.

0-0,25 0,25-0,5 0,5-0,75 0,75-1 0-0,25 0,25-0,5 0,5-0,75 0,75-1 0-0,25 0,25-0,5 0,5-0,75 0,75-1 0.75-1 0.5-0.75 0-0,25 0,25-0,5 0,5-0,75 0,75-1 0.25-0.5 0-0,25 0,25-0,5 0,5-0,75 0,75-1 0-0.25 0-0,25 0,25-0,5 0,5-0,75 0,75-1

Fig. 5.15: Traffic distribution for flat and (4x2,4x4) HNC.

5.3.4.2 Performance of Cross-Layer Reconfiguration

For the performance evaluation of the reconfiguration mechanism of the hier-
archical routing single link faults are injected into the NoC and the required
reconfiguration time is measured for the flat network as well as for hmax = 3
levels. The measured times are compared to the distributed reconfiguration ap-
proach Ariadne [4] that reconfigures Up/Down routing for the flat hierarchy

102 5 Cross-Layer Fault Tolerance

on the network layer. Evaluation has shown that the required reconfiguration
time for the hierarchical routing is mainly composed of the time required for
the following software tasks:

1. routing recalculation and ET G update (cf. Subsection 5.3.3.3),
2. generation of routing table entries (cf. Subsection 5.3.2.4),

a. computation of valid paths using modified Dijkstra algorithm and
b. determining of VCs and output port.

3. level 2 reconfiguration.

Level 2 reconfiguration is omitted if only the routing within a unit on level 1
has to be adapted in order to restore connectivity. If the routing on level 2 has to
be changed, then the corresponding time for recalculation of the internal rou-
ting and updating the ET G adds to the total reconfiguration time. Compared
to the software tasks, the time required for communicating the ET G from the
manager to all nodes within a unit is negligible. At maximum approximately
550 cycles are required for ET G communication in the flat network.

To determine the time of a software task, the number of cycles is mea-
sured required by a 64 bit Linux computer system equipped with a 2.8 GHz
Intel Core 2 Quad-CPU to perform the task. The total required reconfiguration
time for the flat and hierarchical networks is shown in Figure 5.16. For bet-
ter readability the required ET G communication times for level 1 and level 2
reconfiguration are listed separately in Table 5.6.

Table 5.6: ET G Communication Time [kcycles]

HNC flat (8x8, (8x4, (8x4, (4x4, (4x4, (4x4, (4x2,
2x1) 2x2) 1x2) 4x2) 2x2) 2x1) 4x4)

Level 1 0.545 0.149 0.081 0.081 0.046 0.046 0.046 0.039
Level 2 - 0.337 0.337 0.149 0.337 0.149 0.081 0.337

Σ 0.545 0.486 0.418 0.230 0.383 0.195 0.127 0.376

HNC (4x2, (4x2, (4x2, (2x2, (2x2, (2x2, (2x2, (2x2,
2x4) 2x2) 1x2) 8x4) 4x4) 4x2) 2x2) 2x1)

Level 1 0.039 0.039 0.039 0.021 0.021 0.021 0.021 0.021
Level 2 0.149 0.081 0.046 0.337 0.149 0.081 0.046 0.039

Σ 0.188 0.120 0.085 0.358 0.170 0.102 0.067 0.060

5.3 Reconfigurable Hierarchical Routing 103

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

flat
(8x8,2x1)

(8x4,2x2)

(8x4,1x2)

(4x4,4x2)

(4x4,2x2)

(4x4,2x1)

(4x2,4x4)

(4x2,2x4)

(4x2,2x2)

(4x2,1x2)

(2x2,8x4)

(2x2,4x4)

(2x2,4x2)

(2x2,2x2)

(2x2,2x1)

re
co

nf
ig

ur
at

io
n

tim
e

[k
cy

cle
s]

hierarchical network configuration (s1,s2)

Ariadne

1) recalculation & ETG update
2a) Dijkstra algorithm
2b) VC and output port
3) level 2 reconfiguration

Fig. 5.16: Required time for routing reconfiguration.

For routing reconfiguration in the flat network, the cross-layer reconfigura-
tion requires more than 160 kcycles. According to [4], Ariadne requires |N|2
cycles for routing reconfiguration and thus approximately 65 kcycles are re-
quired for a 16x16 network (indicated by the horizontal line in Figure 5.16).
This implies that for the flat network the time required by cross-layer reconfig-
uration is about 2.5 times higher compared to Ariadne. This is mainly caused
by the time used for path computation on the software layer.

However, it can be observed in Figure 5.16 that in case of a hierarchical
organized NoC the required time for reconfiguration is less than for Ariadne.
This is even the case if the ET G has to be updated on level 2. The reason
for this reduction in time is the reduced number of vertices in the ET G com-
pared to the one of the flat hierarchy. The minimum reconfiguration time of
approximately 20 kcycles is obtained for (4x4,8x8). For (2x2,8x4) less than
11 kcycles are required if the routing has only to be adapted on level 1.

5.3.4.3 Implementation Costs

The total implementation costs of RHR mainly consists of the software over-
head for the routing recalculation and the hardware overhead for the Availabil-
ity Communication Unit (ACU) and Reconfiguration Unit (RCU).

104 5 Cross-Layer Fault Tolerance

The software overhead differs between normal network nodes and manager
nodes. While normal nodes only implement algorithms for routing calculation,
i.e. the modified Dijkstra algorithm and the algorithm to determine the VCs
(cf. Subsection 5.3.2.4), manager nodes additionally implement algorithms for
internal routing recalculation and updating the ETG (cf. Figure 5.12).

For normal nodes, the total software overhead is approximately 31.2 KiB
and the Dijkstra algorithm is about 65% of the total overhead. Compared to
normal nodes, the software overhead for managers is about twice as high (60.1
KiB). The code sizes are shown in Table 5.7.

Table 5.7: Code Size of Recalculation Algorithms [KiB]

Internal Routing
Recalculation ETG Update Routing

Calculation

18.6 10.3 31.2

The ACU and the RCU, required for the cross-layer reconfiguration mech-
anism, are synthesized using the 45nm Nangate library [126] to investigate the
hardware overhead compared to a 5-port baseline switch. The baseline switch
features five VCs in total: four VCs for deadlock-free data communication and
the control VC. For each VC the switch implements a VC buffer with three
buffer slots per input port. Each buffer slot can store one flit of 36 bits width.

For the hierarchical routing the switch implements one routing table. Under
the assumption that the node ID is used to access the routing table, a table
entry for the flat hierarchy 16x16 mesh NoC only consists of 4 bits per entry
representing the output port (3bits) and another bit for the RCU to determine
whether a entry is reconfigured or not. For a hierarchically organized NoC
with hmax = 3 hierarchy levels, each entry additionally requires 8 bits for the
destination, two bits to represent the level, and two bits for the VC. Thus, in
total one entry has 16 bits in this case. To obtain the area of routing tables for
45nm technology size, CACTI 5.3 from HP Labs [64] is used. The synthesis
results are shown in Table 5.8.

The baseline switch without routing table has a size of approximately
0.0420 mm2. The RAM size of the routing table varies between 0.0080 mm2

(with hierarchy; 36 entries with 16 bit per entry) and 0.0148 mm2 (flat hierar-
chy; 256 entries with 4 bits per entry) and depends on the number of entries.
No sizes could be obtained for less than 36 entries as this comes below the
minimum supported memory size of CACTI. In general, the number of table

5.3 Reconfigurable Hierarchical Routing 105

Table 5.8: Synthesis Results

Unit Area [mm2]
Baseline Switch 0.0420
Routing Table 0.0080 / 0.0148

Availability Communication Unit 0.0014
Reconfiguration Unit 0.0015 / 0.0021

entries corresponds to the number of vertices in the ETG for a given HNC.
The number of entries ε for a HNC can be calculated by Equation 5.4.

ε = s1 +
hmax−1

∑
h=1

sh+1

sh
−1 (5.4)

The number of table entries required for the different HNCs is shown in Ta-
ble 5.9.

Table 5.9: Number of Routing Table Entries

HNC flat (8x8, (8x4, (8x4, (4x4, (4x4, (4x4, (4x2,
2x1) 2x2) 1x2) 4x2) 2x2) 2x1) 4x4)

Entries ε 256 66 36 36 24 22 24 24

HNC (4x2, (4x2, (4x2, (2x2, (2x2, (2x2, (2x2, (2x2,
2x4) 2x2) 1x2) 8x4) 4x4) 4x2) 2x2) 2x1)

Entries ε 18 18 24 36 22 18 22 36

The size of the ACU is independent of the number of hierarchy levels or
table entries and has a fixed size of 0.0014 mm2. The size of the RCU, how-
ever, depends on the number of routing table entries due to the increasing
complexity of the logic used for updating table entries and for analyzing the
reconfiguration status of the table. For 36 table entries the size of the RCU is
about 0.0015 mm2 and increases to 0.0021 mm2 for 256 entries. For hmax = 3
hierarchy levels ACU and RCU account for about 6% of the total implemen-
tation costs.

106 5 Cross-Layer Fault Tolerance

5.4 Summary

The three different approaches presented in this chapter tolerate the impact
of faults on the NoC communication on different network layers. Cross-layer
fault tolerance is achieved by combining the management of communication
resources methods of the data link layer with one of the routing-related meth-
ods of higher layers. For this purpose, availability status information of com-
munication resources gathered on the data link layer is provided to the higher
layer methods for rerouting packets or to reconfigure the routing.

Providing availability information to the software layer enables the rerout-
ing and the reconfiguration task to be performed in software. Thus, no addi-
tional hardware component is required. Performing those tasks in software has
the additional benefit that they can be migrated to another processing element
in case of failure. When implemented in hardware, the migration is only pos-
sible if corresponding spare components exist. Spare components, however,
contribute to the NoC’s implementation costs.

The results of software-based rerouting and the reconfiguration of the hier-
archical routing show that the software layer support to tolerate faults in the
NoC has also drawbacks. In case of software-based rerouting, the success-
ful redirection of packets can only be ensured in case of moderate injection
rates. For higher injection rates, however, the rate of successful redirections
strongly decreases due to full software packet buffers. This issue originates
from the load information not being available on the software layer, and thus,
it is not considered for the calculation of alternative paths. As the load changes
dynamically, load information would have to be provided continuously to the
software layer. This would result in a high communication overhead in the
network.

The results for a flat hierarchy NoC show that cross-layer reconfiguration
requires more time than routing reconfiguration performed in hardware. The
reason for this is time overhead caused by the software routing recalculation
process. By means of a hierarchical organization of a NoC, however, it is pos-
sible to decrease the amount of data that has to be processed during recal-
culation. This in turn leads to a reduction of the required recalculation time.
Compared to the required time of the state of the art hardware reconfiguration
process in [4] for flat hierarchy NoCs, the time for the cross-layer reconfigu-
ration process of the proposed hierarchical routing is only about one-third.

107

Chapter 6
Combination of Cross-Layer Diagnosis and
Fault Tolerance Methods
So far, the methods for cross-layer diagnosis and fault tolerance presented
in Chapter 4 and Chapter 5 have been evaluated separately. In this chap-
ter, both are evaluated in combination with regard to the impact on the sys-
tem performance. For this purpose, each of the cross-layer (P+FD, P+SD,
P+FD+SD) and standalone (P, FD, SD) diagnosis techniques is combined with
Software-based Packet Rerouting (SBR) (cf. Subsection 5.2) as well as Re-
configurable Hierarchical Routing (RHR) (cf. Subsection 5.3). RHR is evalu-
ated for hmax = 3 hierarchy levels using the hierarchical network configuration
(4x2,4x4) (cf. Subsection 5.3.4.1). The resulting communication flow of the
combinations is shown in Figure 6.1.

Network

Layer

Data Link

Layer
Data Flow

Management (DFM)

Transport

Layer

Diagnosis

Technique

Availability Status

Communication Flow

Fault Tolerance

Method

Reconfigurable Hierarchical

Routing (RHR)

Software-based Packet

Rerouting (SBR) Software

Layer

Physical

Layer

Availability Status

Communication Unit (ACU)

Availability Status

A
v

ai
la

b
il

it
y
 I

n
fo

rm
at

io
n

P

FD

P+FD

SD

P+SD

P+FD+SD

Diagnosis Result

Diagnosis Result

Diagnosis Result

Reconfiguration Unit

(RCU)

R
o

u
ti

n
g

In
fo

rm
at

io
n

Fig. 6.1: Communication flow between diagnosis techniques and fault toler-
ance methods.

When diagnosis has located a faulty communication resource its availabil-
ity status is reset to unavailable. For this purpose, P, FD, and P+FD send a

108 6 Combination of Cross-Layer Diagnosis and Fault Tolerance Methods

flit with the diagnosis result to the Availability Status Communication Unit
(ACU) of a switch to reset the corresponding availability status register. Be-
cause SD is performed on the physical layer, it is assumed that the register
can be directly accessed, and thus, SD, P+SD, and P+FD+SD do not have to
send a flit. In case of a change, the content of the availability status register is
communicated to SBR or RHR using a flit. In combination with SBR the flit
is sent to the local PE of a switch, whereas with RHR the flit is flooded to all
PEs within a hierarchical unit. At the same time, the Data Flow Management
(DFM) method ensures that the NoC is not blocked by flits when communica-
tion resources become unavailable. After routing recalculation is finished, the
new routing information is sent to the Reconfiguration Unit (RCU) in case of
RHR.

6.1 Evaluation

For the performance evaluation, a 16x16 mesh NoC is simulated for 500,000
cycles using uniform random traffic pattern and a network load near to sat-
uration. The corresponding saturation injection rate is 0.138 flits/node/cycle
for SBR and 0.077 flits/node/cycle for RHR, respectively. The base protocol’s
timeout tδ is initialized to 40,000 cycles. The basic setup of the simulation
model used for the evaluation is summarized in Table 6.1.

Table 6.1: Simulation Model Setup

Parameter Setup

Topology 16x16 Mesh
Arbitration Round Robin
Switching Wormhole

Packet Size 5 flits
Traffic Pattern Uniform Random

Fault Tolerance Method SBR; RHR
Injection Rate SBR: 0.138; RHR: 0.077

The system performance is measured in terms of the achievable data
throughput. The data throughput corresponds to the number of received data
flits per node per cycle ([flits/node/cycle]). Acknowledgement flits are not
taken into account. In the fault-free case, the achievable data throughput of

6.1 Evaluation 109

SBR and RHR equals the respective saturation injection rate. When the base
protocol is activated, the data throughput is decreased to 0.115 flits/node/cycle
(SBR) and 0.065 flits/node/cycle (RHR) because of the additional positive ac-
knowledgements.

For the simulation of the NoC model with permanent faults, sets with one
to five faults have been created. The time of occurrence of a fault as well as its
location, i.e. either on a crossbar connection or on a link, are randomly chosen.

6.1.1 Cross-Layer Communication Overhead of Fault
Tolerance Methods

The cross-layer information exchange from network to software layer and vice
versa causes additional communication overhead between the switch and the
PE of a network node. In addition to the data packets, the cross-layer infor-
mation occupies communication resources of the NoC such as the NI packet
buffers. Thus, cross-layer information exchange reduces the number of data
packets that can be sent or received by a PE.

In a first simulation, the cross-layer communication overhead in case of
the occurrence of permanent faults is investigated for SBR and RHR. For this
purpose, the number of flits is measured for each method that have to be ex-
changed between network and software layer in order to sustain communica-
tion in the NoC. The measured average overhead for SBR for one to five shut
down links is shown in Table 6.2.

Table 6.2: Average Cross-Layer Overhead SBR [flits]

Shutdowns
1 2 3 4 5

Software Routing Node 402,389 430,290 523,318 620,089 662,015
Intermediate Destination Node 200,039 215,438 247,374 239,751 252,718
Total Overhead 602,428 645,728 770,692 859,840 914,734

The cross-layer communication overhead for SBR is mainly composed of
the flits of the:

• packets being routed in software and

110 6 Combination of Cross-Layer Diagnosis and Fault Tolerance Methods

• redirected packets that have to drained from and reinjected to the NoC to
guarantee deadlock-freedom.

During simulation, for normal data communication (data + acknowledge-
ments) about 21 million flits were exchanged between network and software
layer. As shown in Table 6.2, for one shutdown additionally about 600,000
flits were exchanged between layers. In case of five shutdowns this number
increases about factor 1.5 to more than 900,000 flits because more packets
have to be redirected. This is an overhead of 2.8% and 4.3%, respectively,
compared to the number of flits exchanged between layers for normal data
communication.

The simulation has shown that the cross-layer communication overhead is
not evenly distributed among all network nodes but mainly has to be handled
by the nodes next to a shutdown component. To investigate the impact of the
overhead on the data communication of these nodes, the number of data flits is
measured that each node can inject to the NoC. Figure 6.2 shows the number
of data flits for each node that are injected during an interval of 50,000 cycles
in case of five shutdowns. A shutdown link is always situated between two
nodes marked dark grey, i.e. software routing nodes. The results show that the

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 5360 5465 6025 6755 5480 5700 5635 5930 6550 5435 5950 5790 5850 6095 5355 5680

1 5465 5745 6015 6810 5775 5955 6155 6030 6625 5165 6035 5910 5740 6085 5305 5745

2 5320 5375 5345 6485 5425 6025 5540 185 250 4865 5970 5925 5655 5340 5345 5440

3 5965 5660 6085 6690 5855 6105 5830 40 10 5690 6145 5760 5965 6220 5955 5845

4 5660 5920 6010 7105 5430 6135 5960 5865 6315 5460 6010 6245 5495 6085 5195 5790

5 6050 5635 5885 7055 5560 5950 6320 6030 6610 5405 6025 6185 6045 6005 5135 5855

6 5310 5435 5505 70 6000 6325 5735 5795 70 5435 5895 5685 5940 6025 5475 6035

7 5265 5620 5820 75 5990 5680 6210 5820 65 4995 5870 6100 6015 5945 5405 5875

8 6010 5945 5940 6515 5790 5625 6050 5965 6455 5490 5800 6135 6140 6160 5490 6095

9 5800 5810 6250 6410 5660 5905 6095 5740 6520 5615 5720 6025 5975 5860 5640 6250

10 4790 5240 5405 6825 5720 5605 6280 85 70 5210 6050 5960 5825 195 4375 5135

11 5790 5660 5770 6420 5805 6100 5985 85 85 5665 5945 6020 5505 220 4715 6080

12 5395 5075 5980 6420 5570 5905 5820 5950 6480 5660 6060 5735 5815 6260 4505 5345

13 5485 5320 5680 5970 5590 5745 5905 5995 6470 5365 5630 5905 5690 6165 5200 5250

14 5430 5500 5315 5715 5465 5780 5830 6430 6630 5325 5785 5730 5470 5620 5230 5755

15 5340 5820 5575 6095 5620 5800 6040 5645 6285 5135 5865 5870 5610 5865 5200 5715

X

Y

Software routing node Intermediate destination node (X shutdown)

Intermediate destination node (Y shutdown)

Fig. 6.2: Impact of cross-layer overhead on data communication.

6.1 Evaluation 111

number of injected flits for most nodes is greater than 5,000. This number is
less by orders of magnitude for software routing nodes (dark grey). Because
of the large number of packets that have to be routed in software, these nodes
are overloaded and are not able to inject own data flits.

The same can be observed for the intermediate destination nodes used for
the shutdown of links in x-dimension, i.e.:

• nodes (7,2) & (8,2) for the link between nodes (7,3) & (8,3) and
• nodes (7,10) & (8,10) for the link between (7,11) & (8,11) (cf. intermediate

destination node (X) in Figure 6.2).

Each packet that is redirected because of an x-dimension link shutdown is
consumed and reinjected by one of the two corresponding intermediate desti-
nation nodes. Thus, these nodes are overloaded by cross-layer communication
overhead as well.

None of the intermediate destination nodes used for the shutdown of a link
in y-dimension, can be identified that has a considerably smaller number of in-
jected flits. The reason for this is a more evenly distribution of the load of redi-
rected packets, which is shared by all the nodes in a neighbored column (cf.
intermediate destination node (Y) in Figure 6.2). In contrast to an x-dimension
shutdown, the choice of selecting an intermediate destination node depends on
the packet’s destination. For instance, all packets for node (3,0) are redirected
at (3,7) to the intermediate destination node (4,0); packets for (3,1) are redi-
rected to (4,1) and so on. Thus, the cross-layer communication overhead for
an intermediate destination node for a y-dimension link shutdown is less than
for one of an x-dimension link shutdown.

In contrast to SBR, the cross-layer overhead of RHR does not include any
data flits but is composed of flits used to communicate

• the availability information to the nodes within a unit,
• the ETG from a unit manager to the nodes, and
• the routing table entries to the RCU.

The measured cross-layer overhead in level 1 units resulting from the shut-
down of communication resources is shown in Table 6.3 for RHR. If a link
connecting two level 1 units is shut down, the cross-layer overhead is induced
in both units.

The results show that RHR causes only a small cross-layer overhead of
2353 flits at maximum for five shutdowns. At the same time, approximately
10 million data flits are exchanged between layers for normal data commu-
nication. Thus, the overhead amounts to only 0.02%. Because of this small

112 6 Combination of Cross-Layer Diagnosis and Fault Tolerance Methods

Table 6.3: Average Cross-Layer Overhead RHR [flits]

Shutdowns
1 2 3 4 5

Availability Information 89 134 191 248 317
ETG 300 435 627 800 1018
Routing Table Entries 300 435 627 800 1018
Total Overhead 691 1004 1445 1848 2353

overhead, none of the nodes is overloaded as in case of SBR, and thus, the
data communication is not affected by the overhead.

During reconfiguration, data communication, however, is affected because
all switches of a unit being reconfigured are in maintenance mode and do not
inject data flits. (cf. Subsection 5.3.3.1). For the considered hierarchical net-
work configuration (4x2,4x4) the reconfiguration time of a level 1 unit is about
17,000 cycles (cf. Figure 5.16). For the injection rate of 0.065 flits/node/cycle
approximately every 16 cycles a flit is injected by every network node. This
implies that every node of a unit under reconfiguration cannot inject about
1062 flits while being in maintenance mode. In case of level 2 reconfiguration
(27,000 cycles), 1687 flits cannot be injected.

6.1.2 Performance of Cross-Layer Diagnosis

6.1.2.1 Data Throughput

During the localization process of a permanent fault, diagnosis techniques
introduce additional test data to the NoC, which occupy communication re-
sources. Additionally, switches may become temporarily unavailable for data
communication as in case of FD and SD techniques. Both result in a reduc-
tion in system performance of the NoC which is reflected by a decreased data
throughput.

In this evaluation, the system performance of the cross-layer and standalone
diagnosis techniques is investigated. For this purpose, the NoC is simulated
using sets with one to five permanent faults. When a permanent fault is di-
agnosed by a technique, the corresponding faulty component is shut down.

6.1 Evaluation 113

To sustain data communication in the NoC after the component’s shutdown,
either SBR or RHR method is used.

The measured data throughput of the diagnosis techniques in combination
with SBR is shown in Figure 6.3. The results show that the throughput de-

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

1 2 3 4 5

th
ro

ug
hp

ut
 [f

lits
/n

od
e/

cy
cle

]

number of permanent faults

P
FD
SD

P+FD
P+SD

P+FD+SD

Fig. 6.3: Average data throughput for the different diagnosis techniques in
combination with SBR.

creases for all diagnosis techniques with increasing number of faults. The rea-
son for this is the increasing number of initiated diagnoses and the resulting
communication resource shutdowns. It can also be observed that the achiev-
able data throughput in principle is related to the diagnosis quality of the tech-
niques (cf. Table 4.4): the higher the quality level of a technique, the lower the
throughput. The only exception to this principle is the higher throughput value
of P+FD compared to P. The reason is explained further below.

Comparing the standalone techniques P, FD, and SD, it can be observed that
the achievable data throughput of FD and SD is much smaller than the one of
P for every number of faults. While for five permanent faults the throughput
of P is about 76% compared to the throughput of the fault-free case (0.115
flits/node/cycle), for FD and SD the achievable throughput is already reduced
to 65% and 62% for one fault. For five permanent faults, the data throughput is
reduced to approximately 35% (FD) and 26% (SD). The higher throughput of
P compared to FD and SD can be attributed to P’s smaller localization latency

114 6 Combination of Cross-Layer Diagnosis and Fault Tolerance Methods

(cf. Table 4.5). Furthermore, while P only diagnoses those switches situated
on a path, in case of FD and SD all switches are diagnosed, and thus, the data
communication in the whole NoC is affected.

The results for the combined techniques (cf. Figure 6.3) show that all of
them have a higher data throughput compared to the standalone techniques
FD and SD. The reason for this is the reduction of set Φ of potentially faulty
switches (cf. Listing 1) to one single switch by P in the first place. Thus,
the subsequent FD or SD diagnosis has only to be carried out for the single
switch instead of all NoC switches. By this means, the negative impact of
diagnosis on the data communication is greatly reduced, as all other switches
continue normal data communication. Of all combined techniques, P+FD+SD
has the lowest throughput because of its higher localization latency compared
to P+FD and P+SD (cf. Table 4.5).

When comparing the results of P and P+FD, it can be observed that P+FD,
despite of its longer localization latency, has a higher data throughput than P.
This higher throughput can be attributed to FD’s capability to identify false
positives reported by P, and thus, to prevent the shutdown of the respective
communication resource. In case of P, a communication resource being erro-
neously diagnosed as faulty is always shut down. However, with the increasing
number of permanent faults the throughput of P+FD is reduced faster than in
case of P. Eventually, for five faults, the throughput of P+FD is less than the
one of P. The reason for this is the increasing number of FD activations be-
cause of false positives reported by P.

The simulations have been repeated with the identical fault sets for the com-
bination of diagnosis techniques with the RHR fault tolerance method. The
corresponding data throughput results are shown in Figure 6.4. The results of
the combination with RHR show a similar behavior as for the combination
with SBR. Again, the cross-layer diagnosis techniques outperform FD and SD
with respect to the data throughput. In contrast to the results for the combina-
tion with SBR, here, P has a comparable or higher throughput than P+FD. The
reason for this is a reduced number of diagnosed false positives compared to
the combination with SBR. On the one hand, this can be attributed to fact that
packets that cannot be forwarded because of reconfiguration are discarded, and
thus, the network load is reduced. On the other hand, most discarded packets
can be delivered to their destination after the first retransmission, and thus,
P is not activated for these packets, as the number of attempts to send these
packets does not exceed the maximum of three. The reason for this is that a
retransmission is triggered after a timeout tδ of 40 kcycles. The required time
for routing reconfiguration within a hierarchical unit on level h = 1 is about 28

6.1 Evaluation 115

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

1 2 3 4 5

th
ro

ug
hp

ut
 [f

lits
/n

od
e/

cy
cle

]

number of permanent faults

P
FD
SD

P+FD
P+SD

P+FD+SD

Fig. 6.4: Average data throughput for the different diagnosis techniques in
combination with RHR.

kcycles in case of (4x2,4x4) (cf. Table 5.16). Thus, reconfiguration is already
completed when a packet is retransmitted and for the communication of the
packet the new routing is used.

6.1.2.2 Pareto Analysis

As shown in the last subsection, all cross-layer diagnosis techniques have
a significantly higher data throughput than the lower layer standalone tech-
niques FD and SD. However, as shown by the results in Subsection 4.4.2.2
(cf. Table 4.4), FD and SD techniques have a higher diagnosis quality than
the cross-layer techniques. This shows that both design goals, performance
and quality, are in conflict with each other. Thus, a diagnosis technique cannot
offer best performance and best diagnosis quality at the same time but offers a
tradeoff between both.

To identify those diagnosis techniques that offer an optimal tradeoff be-
tween data throughput (t p) and diagnosis quality (dq), a pareto analysis is
performed for the techniques. A technique T1 offers an optimal tradeoff, i.e.
T1 is pareto-optimal, if there exists no other technique T2 that dominates T1
regarding throughput and quality:

116 6 Combination of Cross-Layer Diagnosis and Fault Tolerance Methods

!∃T2 : T2 6= T1∧ t pT2 ≥ t pT1 ∧dqT2 ≥ dqT1 (6.1)

The design space spanned by throughput and quality for the combination
of diagnosis techniques with SBR is shown in Figure 6.5. The unachievable
optimal solution, best performance and best quality, is situated in the upper
right corner of the design space. The arrow leading from a white to a black
symbol shows the throughput trend from one fault to five faults. For the sake of
a better differentiation between techniques with overlapping trendlines, square
and circle symbols are used.

 1

 2

 3

 4

 5

 6

 0

 0
.0

2

 0
.0

4

 0
.0

6

 0
.0

8

 0
.1

 0
.1

2

di
ag

no
sis

 q
ua

lity
 le

ve
l

data throughput

P

FD

SD

P+FD

P+SDP+FD+SD

Fig. 6.5: Diagnosis quality vs. data throughput SBR.

For one to five permanent faults, the two cross-layer techniques P+FD and
P+SD as well as the standalone techniques FD and SD are pareto-optimal.
Technique P+FD+SD has the same diagnosis quality as P+SD, however, its
throughput is less because of the higher time required to locate a fault. P is
not a pareto-optimal solution either. Although P has the smallest diagnosis
time required of all techniques (cf. Table 4.5), its throughput is less than the
one of P+FD. This is because of the shutdown of communication resources
erroneously diagnosed as faulty because of the missing feedback from one of
the lower-layer diagnosis techniques.

The same design space for the combination of diagnosis techniques with
RHR is shown in Figure 6.6. In contrast to the combination with SBR, for the

6.2 Summary 117

 1

 2

 3

 4

 5

 6

 0

 0
.0

1

 0
.0

2

 0
.0

3

 0
.0

4

 0
.0

5

 0
.0

6

 0
.0

7

 0
.0

8

di
ag

no
sis

 q
ua

lity
 le

ve
l

data throughput

P

FD

SD

P+FD

P+SDP+FD+SD

Fig. 6.6: Diagnosis quality vs. data throughput RHR.

combination with RHR, the number of diagnosed false positives is less and
P’s quality is comparable with Pmod in Table 4.4.

For one permanent fault the same techniques are pareto-optimal as in case
of SBR. For five permanent faults, however, FD is no longer pareto-optimal as
SD has the same throughput while having a higher quality. On the other hand,
P now belongs to the set of pareto-optimal solutions as it features the highest
throughput.

In both design spaces it can be observed that the combinations P+FD and
P+SD offer a good tradeoff between quality and performance. While both
techniques have a better performance than FD and SD because of the reduc-
tion of set Φ by P, the feedback provided from FD or SD to P results in an
increased diagnosis quality.

6.2 Summary

In summary, the results for the two fault tolerance methods SBR and RHR
show that the exchange of information and data between software layer and
other layers has an impact on system performance because of the additional
load on the local communication link between switch and PE. If this load

118 6 Combination of Cross-Layer Diagnosis and Fault Tolerance Methods

increases too much, as shown for SBR, the capability of a network node to
communicate its own data is negatively affected.

The diagnosis evaluation results show that, regardless of the fault tolerance
method used, all combinations of protocol P with FD or SD offer a smaller
performance impact than the standalone techniques FD and SD. Due to the
reduction of set Φ by P, the fault localization effort of the combined techniques
is less than for the standalone techniques. The results with SBR further show
that the increased diagnosis quality of the combined techniques compared to P
helps to avoid performance loss due to the shutdown of resources erroneously
diagnosed as faulty. The pareto analyses show that the cross-layer diagnosis
techniques P+FD and P+SD are pareto-optimal and constitute a good tradeoff
between performance and diagnosis quality.

119

Chapter 7
Conclusion and Future Work

In this dissertation, cross-layer interaction for fault diagnosis and fault toler-
ance was studied.

Cross-layer fault diagnosis was presented in Chapter 4. A general inter-
action scheme was proposed that enables the combination of protocol-based
diagnosis of the transport layer with functional diagnosis and structural diag-
nosis of the network layer and the physical layer. A top-down information flow
is used to locate faults, while a bottom-up flow provides information about di-
agnosis results of the lower layer techniques to the transport layer diagnosis.

For fault diagnosis on the transport layer, an end-to-end protocol was pro-
posed. It consists of a base protocol for controlling end-to-end communica-
tion and for handling transient faults and a diagnosis protocol for localizing a
faulty communication resource in a NoC. It was shown that by incorporating
information about the network layer routing and topological information, the
diagnosis protocol is able to narrow down a fault’s position on a communica-
tion path to a single link, switch, or crossbar connection.

The protocol was combined with existing functional [27] and structural
diagnosis [25] techniques according to the proposed interaction scheme. All
combinations were evaluated regarding their diagnosis quality and the re-
quired fault localization latency. The results have shown that the combinations
offer a tradeoff between quality and latency. Because the time-consuming step
to identify a faulty switch with functional diagnosis and structural diagnosis is
replaced by the much more efficient localization process of the protocol, the
combinations have a considerably reduced fault localization latency compared
to the standalone techniques. It was shown, however, that the latency reduction
comes at the expense of a reduced diagnosis quality compared to standalone
functional and structural diagnosis because of the less detailed information
available on the transport layer about the NoC’s underlying hardware. For
the protocol, the combination constitutes an improvement in diagnosis qual-
ity compared to the standalone technique. The reason for this is the feedback
from the lower layer techniques that prevents the shutdown of communication
resources erroneously diagnosed as faulty (false positives) by the protocol.

As possible future work for cross-layer fault diagnosis, it can be studied
how the diagnosis quality of the combined diagnosis techniques can be im-
proved. As a starting point, the quality of transport layer diagnosis can be

120 7 Conclusion and Future Work

increased. For this purpose, investigations can be carried out to identify addi-
tional lower layer hardware information that helps to increase the quality. It
must be taken into account, however, that the effort to gain the information
and to provide it to the transport layer does not impair the performance benefit
of the combined diagnosis techniques. Furthermore, the number of reported
false positives can be reduced using the existing information. As a side benefit
of reducing the number of false positives, the number of lower layer diagno-
sis executions is reduced as well, which in turn reduces the impact on NoC
performance.

Chapter 5 dealt with cross-layer fault tolerance. Two approaches were pre-
sented that make use of software methods to provide fault tolerance for net-
work layer routing. At first, the requirements for providing information of
lower layers to the software using standard data communication resources and
interfaces were discussed. The concepts of two data link layer mechanisms
were presented that, on the one hand, transform status information into com-
municable units and vice versa and, on the other hand, take care that the com-
munication resources are not blocked.

As the first of the two fault tolerance approaches, software-based packet
rerouting was proposed. Packets that cannot be forwarded by a node’s switch
are sent to the processing element instead. It was shown that by incorporating
information about the network layer routing and topological information, it is
possible to reroute packets to an alternative path via an intermediate destina-
tion in software, and thus, to create fault tolerance for otherwise not fault tol-
erant deterministic network layer routings. An implementation of the software
rerouting algorithm for dimension order XY routing was presented and was
used for evaluation. The evaluation results have shown that rerouting packets
in software is suitable for NoCs with small or moderate network load. For
high load, many rerouted packets had to be discarded and retransmitted at a
later point in time because of full software buffers of software routing and
intermediate destination nodes resulting in a performance loss of the NoC.

As future work, investigation can be made to relieve nodes of the load
caused by the rerouting of packets. One possibility is that the node rerouting
a packet destined for a receiver informs the packet’s sender about the unavail-
able link. With this information it will become possible for the sender to calcu-
late an intermediate destination node for all packets for the same receiver and
to redirect the packets directly to this node. This distributes calculation effort
and load in the network more evenly. One challenge, however, is to prevent
all informed senders from redirecting their packets via the same intermediate
destination node, since otherwise this node will become overloaded instead.

7 Conclusion and Future Work 121

As the second approach, a reconfigurable routing for hierarchically orga-
nized NoC topologies was proposed. It was shown that by means of cross-
layer interaction the autonomous management of hierarchical units as well
as the autonomous calculation of routing within the units become possible.
First, the hierarchical network concept was discussed and the basic routing
principles were presented. Following this, the abstract topology graph was in-
troduced and the algorithms used to calculate the routing using this graph were
shown. A cross-layer reconfiguration process for the hierarchical routing was
presented, consisting of a combination of software and hardware methods that
is divided into three phases.

Evaluation has shown that the cross-layer reconfiguration process requires
more time to finish compared to state-of-the-art reconfiguration on the net-
work layer in case of non-hierarchical topologies. This was mainly caused by
the time required by the software algorithm to recalculate the routing. How-
ever, by introducing a logical hierarchy and unit autonomy, it was shown that
the routing performance can be increased and that the reconfiguration time can
be reduced significantly compared to state-of-the-art network layer reconfigu-
ration.

The failure of a manager node implies the loss of the complete management
of a unit. System operation may continue unaffected as long as no permanent
fault occurs in this unit. However, in case of a permanent fault, routing recon-
figuration is no longer possible. In the worst case, this results in a complete
system failure. For this reason, investigations can be made to cope with the
failure of a manager, e.g. by migrating the manager’s functionality to other
nodes. As a starting point, the integer linear programming optimization pre-
sented in the works [120] and [142] can be used to determine spare managers.
As an alternative solution, the affected hierarchical unit can be dissolved and
its nodes can be reassigned to neighbored units.

Finally, in Chapter 6, the diagnosis techniques were combined with the
fault tolerance approaches and the combinations were evaluated. It was shown
that intense cross-layer information exchange with the software may cause a
considerable reduction of NoC performance. As a consequence, future cross-
layer designs have to pay attention to minimize the amount of information
communicated from lower layers to the software and vice versa in order not
to block resources required for data communication. The results have further
confirmed that cross-layer design is able to reduce the diagnosis effort and
the impact of diagnosis on NoC performance. The pareto analyses for packet
rerouting and for hierarchical routing have shown that the combinations of
protocol-based diagnosis with functional diagnosis and protocol-based diag-

122 7 Conclusion and Future Work

nosis with structural diagnosis are pareto-optimal and offer a good tradeoff
between performance and diagnosis quality in both cases.

In conclusion, the evaluations in this dissertation have shown that cross-
layer design always constitutes a tradeoff between different parameters. While
cross-layer interaction provides a wider scope of information that helps to deal
with faults, the effort to gather this information and the communication load
across layers increases. Future work on cross-layer design will have to further
investigate the interaction of layers and the tradeoffs emerging from cross-
layer interaction with respect to the given field of application to exploit the
full potential.

123

References

[1] Rawan Abdel-Khalek and Valeria Bertacco. “Post-silicon Platform for the Func-
tional Diagnosis and Debug of Networks-on-chip”. In: ACM Transactions on Em-
bedded Computing Systems (TECS) 13.3s (Mar. 2014), pp. 1–25. ISSN: 1539-9087.
DOI: 10.1145/2567936.

[2] Muhammad Afzal. “Design and Implementation of a Fault Tolerant VHDL Switch
with Reconfigurable Routing Tables”. Master Thesis (MSc). Germany: University
of Stuttgart, 2013.

[3] Ibrahim Ahmed. “Reliable Routing Table Reconfiguration for On-chip Network
Switches”. Master Thesis (MSc). Germany: University of Stuttgart, 2014.

[4] K. Aisopos, A. DeOrio, Li-Shiuan Peh, and V. Bertacco. “ARIADNE: Agnostic Re-
configuration in a Disconnected Network Environment”. In: Proc. of IEEE/ACM
Int’l Conf. on Parallel Architectures and Compilation Techniques (PACT). Oct.
2011, pp. 298–309. DOI: 10.1109/PACT.2011.61.

[5] Muhammad Ali, Michael Welzl, Sven Hessler, and Sybille Hellebrand. “An ef-
ficient fault tolerant mechanism to deal with permanent and transient failures in
a network on chip”. In: Int. J. High Performance System Architecture (IJHPSA)
1.2 (2007), pp. 113–123. ISSN: 1751-6528. DOI: 10.1504/IJHPSA.2007.
015397.

[6] Alexandre Amory, Frederico Ferlini, Marcelo Lubaszewski, and Fernando Moraes.
“DfT for the Reuse of Networks-on-Chip as Test Access Mechanism”. In: Proc. of
the 25th VLSI Test Symposium (VTS). June 2007, pp. 435–440. DOI: 10.1109/
VTS.2007.26.

[7] A.M. Amory et al. “A scalable test strategy for network-on-chip routers”. In: Proc.
of IEEE Int’l Test Conf. (ITC). Nov. 2005, pp. 590–599. DOI: 10.1109/TEST.
2005.1584020.

[8] Nikolaos Batzolis. “Fault Tolerant End-to-End Flow Control Protocol for Networks
on Chip”. Master Thesis (MSc). Germany: University of Stuttgart, 2011. URL:
ftp : / / ftp . informatik . uni - stuttgart . de / pub / library /
medoc.ustuttgart_fi/.MSTR-3197/MSTR-3197.pdf.

[9] L. Bauer et al. “Adaptive Multi-Layer Techniques for Increased System Depend-
ability”. In: it - Information Technology 57.3 (June 2015), pp. 149–158. ISSN: 2196-
7032. DOI: 10.1515/itit-2014-1082.

[10] Robert Baumann. “Soft errors in advanced computer systems”. In: Design Test of
Computers, IEEE 22.3 (May 2005), pp. 258–266. ISSN: 0740-7475. DOI: 10 .
1109/MDT.2005.69.

[11] Richard Bellman. “On a Routing Problem”. In: Quarterly of Applied Mathematics
16 (1958), pp. 87–90.

[12] Luca Benini and Giovanni De Micheli. “Networks on Chips: A New SoC Paradigm”.
In: Computer 35.1 (Jan. 2002), pp. 70–78. ISSN: 0018-9162. DOI: 10.1109/2.
976921.

http://dx.doi.org/10.1145/2567936
http://dx.doi.org/10.1109/PACT.2011.61
http://dx.doi.org/10.1504/IJHPSA.2007.015397
http://dx.doi.org/10.1504/IJHPSA.2007.015397
http://dx.doi.org/10.1109/VTS.2007.26
http://dx.doi.org/10.1109/VTS.2007.26
http://dx.doi.org/10.1109/TEST.2005.1584020
http://dx.doi.org/10.1109/TEST.2005.1584020
ftp://ftp.informatik.uni-stuttgart.de/pub/library/medoc.ustuttgart_fi/.MSTR-3197/MSTR-3197.pdf
ftp://ftp.informatik.uni-stuttgart.de/pub/library/medoc.ustuttgart_fi/.MSTR-3197/MSTR-3197.pdf
http://dx.doi.org/10.1515/itit-2014-1082
http://dx.doi.org/10.1109/MDT.2005.69
http://dx.doi.org/10.1109/MDT.2005.69
http://dx.doi.org/10.1109/2.976921
http://dx.doi.org/10.1109/2.976921

124 References

[13] S. Borkar. “Designing reliable systems from unreliable components: the challenges
of transistor variability and degradation”. In: IEEE Micro 25.6 (2005), pp. 10–16.
ISSN: 0272-1732. DOI: 10.1109/MM.2005.110.

[14] Shekhar Borkar. “Design Perspectives on 22nm CMOS and Beyond”. In: Proc. of
the 46th Annual Design Automation Conference (DAC). San Francisco, CA, USA:
ACM, 2009, pp. 93–94. ISBN: 978-1-60558-497-3.

[15] Shekhar Borkar et al. “Parameter Variations and Impact on Circuits and Microar-
chitecture”. In: Proc. of the 40th Annual Design Automation Conference (DAC).
Anaheim, CA, USA: ACM, 2003, pp. 338–342. ISBN: 1-58113-688-9. DOI: 10.
1145/775832.775920.

[16] A. Burns, J. Harbin, and L. S. Indrusiak. “A Wormhole NoC Protocol for Mixed
Criticality Systems”. In: IEEE Real-Time Systems Symposium (RTSS). Dec. 2014,
pp. 184–195. DOI: 10.1109/RTSS.2014.13.

[17] S. Carrillo et al. “Scalable Hierarchical Network-on-Chip Architecture for Spiking
Neural Network Hardware Implementations”. In: IEEE Transactions on Parallel
and Distributed Systems (TPDS) 24.12 (2013), pp. 2451–2461. ISSN: 1045-9219.
DOI: 10.1109/TPDS.2012.289.

[18] Nicholas P. Carter, Helia Naeimi, and Donald S. Gardner. “Design Techniques for
Cross-layer Resilience”. In: Proc of the Conf. on Design, Automation and Test in
Europe (DATE). Dresden, Germany, 2010, pp. 1023–1028. ISBN: 978-3-9810801-
6-2.

[19] N. Caselli, A. Strano, D. Ludovici, and D. Bertozzi. “Cooperative Built-in Self-
Testing and Self-Diagnosis of NoC Bisynchronous Channels”. In: Proc. of 6th IEEE
Int’l Symp. on Embedded Multicore Socs (MCSoC). Sept. 2012, pp. 159–166. DOI:
10.1109/MCSoC.2012.13.

[20] Nicola Concer et al. “CTC: An end-to-end flow control protocol for multi-core
systems-on-chip”. In: Los Alamitos, CA, USA: IEEE Computer Society, 2009,
pp. 193–202. ISBN: 978-1-4244-4142-6. DOI: 10.1109/NOCS.2009.5071467.

[21] Christian Constantinescu. “Intermittent faults and effects on reliability of integrated
circuits”. In: Proc. of Annual Reliability and Maintainability Symp. (RAMS). Jan.
2008, pp. 370–374. DOI: 10.1109/RAMS.2008.4925824.

[22] Alejandro Cook, Melanie Elm, Hans-Joachim Wunderlich, and Ulrich Abelein.
“Structural In-Field Diagnosis for Random Logic Circuits”. In: Proc. of the 16th
IEEE European Test Symp. (ETS). 2011, pp. 111–116. DOI: 10.1109/ETS.
2011.25.

[23] Erika Cota, Alexandre de Morais Amory, and Marcelo Soares Lubaszewski. Re-
liability, Availability and Serviceability of Networks-on-Chip. 1st. Springer, 2012.
ISBN: 9781461407904.

[24] M. Dadashi, L. Rashid, K. Pattabiraman, and S. Gopalakrishnan. “Hardware-
Software Integrated Diagnosis for Intermittent Hardware Faults”. In: Proc. of 44th
Annual IEEE/IFIP Int’l Conf. on Dependable Systems and Networks (DSN). June
2014, pp. 363–374. DOI: 10.1109/DSN.2014.1.

[25] A. Dalirsani, S. Holst, M. Elm, and H. Wunderlich. “Structural Test for Graceful
Degradation of NoC Switches”. In: Proc. of 16th IEEE European Test Symp. (ETS).
2011, pp. 183–188. DOI: 10.1109/ETS.2011.33.

http://dx.doi.org/10.1109/MM.2005.110
http://dx.doi.org/10.1145/775832.775920
http://dx.doi.org/10.1145/775832.775920
http://dx.doi.org/10.1109/RTSS.2014.13
http://dx.doi.org/10.1109/TPDS.2012.289
http://dx.doi.org/10.1109/MCSoC.2012.13
http://dx.doi.org/10.1109/NOCS.2009.5071467
http://dx.doi.org/10.1109/RAMS.2008.4925824
http://dx.doi.org/10.1109/ETS.2011.25
http://dx.doi.org/10.1109/ETS.2011.25
http://dx.doi.org/10.1109/DSN.2014.1
http://dx.doi.org/10.1109/ETS.2011.33

References 125

[26] A. Dalirsani, M.E. Imhof, and H.-J. Wunderlich. “Structural Software-Based Self-
Test of Network-on-Chip”. In: Proc. of 32nd IEEE VLSI Test Symp. (VTS). Apr.
2014, pp. 1–6. DOI: 10.1109/VTS.2014.6818754.

[27] A. Dalirsani et al. “On Covering Structural Defects in NoCs by Functional Tests”.
In: Proc. of 23rd IEEE Asian Test Symp. (ATS). Nov. 2014, pp. 87–92. DOI: 10.
1109/ATS.2014.27.

[28] William Dally and Brian Towles. Principles and Practices of Interconnection Net-
works. Morgan Kaufmann Publishers Inc., 2003. ISBN: 0122007514.

[29] W.J. Dally. “Virtual-channel flow control”. In: IEEE Transactions on Parallel and
Distributed Systems (TPDS) 3.2 (1992), pp. 194–205. ISSN: 1045-9219. DOI: 10.
1109/71.127260.

[30] W.J. Dally and C.L. Seitz. “Deadlock-Free Message Routing in Multiprocessor In-
terconnection Networks”. In: IEEE Transactions on Computers (TC) C-36.5 (1987),
pp. 547–553. ISSN: 0018-9340. DOI: 10.1109/TC.1987.1676939.

[31] W.J. Dally and B. Towles. “Route packets, not wires: on-chip interconnection net-
works”. In: Proc. of Design Automation Conf. (DAC). 2001, pp. 684–689. DOI:
10.1109/DAC.2001.156225.

[32] Dana-Elena Damaschin. “Fault Tolerant Management of Communication Channels
of a NoC Switch”. Master Thesis (MSc). Germany: University of Stuttgart, 2014.

[33] R. Das et al. “Design and evaluation of a hierarchical on-chip interconnect for next-
generation CMPs”. In: Proc. of 15th IEEE Int’l Symp. on High Performance Com-
puter Architecture (HPCA). 2009, pp. 175–186. DOI: 10.1109/HPCA.2009.
4798252.

[34] Giovanni De Micheli and Luca Benini. Network On Chips. 1st. Morgan Kaufmann,
2006. ISBN: 978-0-12-370521-1.

[35] Sujay Deb and Hemanta Kumar Mondal. “Wireless network-on-chip: a new era in
multi-core chip design”. In: Proc. of 25nd IEEE International Symposium on Rapid
System Prototyping (RSP). Oct. 2014, pp. 59–64. DOI: 10.1109/RSP.2014.
6966893.

[36] Sujay Deb et al. “Wireless NoC as Interconnection Backbone for Multicore Chips:
Promises and Challenges”. In: IEEE Journal on Emerging and Selected Topics in
Circuits and Systems (JETCAS) 2.2 (June 2012), pp. 228–239. DOI: 10.1109/
JETCAS.2012.2193835.

[37] A. DeHon, H. M. Quinn, and N. P. Carter. “Vision for Cross-Layer Optimization
to Address the Dual Challenges of Energy and Reliability”. In: Proc of Design,
Automation Test in Europe Conference Exhibition (DATE). Mar. 2010, pp. 1017–
1022. DOI: 10.1109/DATE.2010.5456959.

[38] M. Dehyadgari, M. Nickray, A. Afzali-Kusha, and Z. Navabi. “A New Protocol
Stack Model for Network on Chip”. In: Proc. of IEEE Computer Society Annual
Symp. on Emerging VLSI Technologies and Architectures (ISVLSI). Mar. 2006,
pp. 440–441. ISBN: 0-7695-2533-4. DOI: 10.1109/ISVLSI.2006.7.

[39] Onur Derin, Deniz Kabakci, and Leandro Fiorin. “Online Task Remapping Strate-
gies for Fault-tolerant Network-on-Chip Multiprocessors”. In: Proc. of the Fifth
ACM/IEEE Int’l Symp. on Networks-on-Chip (NOCS). Pittsburgh, Pennsylvania:
ACM, 2011, pp. 129–136. ISBN: 978-1-4503-0720-8. DOI: 10.1145/1999946.
1999967.

http://dx.doi.org/10.1109/VTS.2014.6818754
http://dx.doi.org/10.1109/ATS.2014.27
http://dx.doi.org/10.1109/ATS.2014.27
http://dx.doi.org/10.1109/71.127260
http://dx.doi.org/10.1109/71.127260
http://dx.doi.org/10.1109/TC.1987.1676939
http://dx.doi.org/10.1109/DAC.2001.156225
http://dx.doi.org/10.1109/HPCA.2009.4798252
http://dx.doi.org/10.1109/HPCA.2009.4798252
http://dx.doi.org/10.1109/RSP.2014.6966893
http://dx.doi.org/10.1109/RSP.2014.6966893
http://dx.doi.org/10.1109/JETCAS.2012.2193835
http://dx.doi.org/10.1109/JETCAS.2012.2193835
http://dx.doi.org/10.1109/DATE.2010.5456959
http://dx.doi.org/10.1109/ISVLSI.2006.7
http://dx.doi.org/10.1145/1999946.1999967
http://dx.doi.org/10.1145/1999946.1999967

126 References

[40] Edsger W. Dijkstra. “A Note on Two Problems in Connexion with Graphs”. In:
Numerische Mathematik 1.1 (Dec. 1959), pp. 269–271. ISSN: 0029-599X. DOI:
10.1007/BF01386390.

[41] Masoumeh Ebrahimi and Masoud Daneshtalab. “A Light-weight fault-tolerant rou-
ting algorithm tolerating faulty links and routers”. In: Computing 97.6 (2013),
pp. 631–648. ISSN: 1436-5057. DOI: 10.1007/s00607-013-0362-9.

[42] J.M. Emmert, C.E. Stroud, and M. Abramovici. “Online Fault Tolerance for FPGA
Logic Blocks”. In: IEEE Transactions on Very Large Scale Integration Systems
(VLSI) 15.2 (Feb. 2007), pp. 216–226. ISSN: 1063-8210. DOI: 10.1109/TVLSI.
2007.891102.

[43] David Fick et al. “Vicis: a reliable network for unreliable silicon”. In: DAC ’09:
Proceedings of the 46th Annual Design Automation Conference. San Francisco,
California: ACM, 2009, pp. 812–817. ISBN: 978-1-60558-497-3. DOI: 10.1145/
1629911.1630119.

[44] D. Fick et al. “A highly resilient routing algorithm for fault-tolerant NoCs”. In:
Proc of Design, Automation Test in Europe Conference Exhibition (DATE). Apr.
2009, pp. 21–26. DOI: 10.1109/DATE.2009.5090627.

[45] L. Fiorin and M. Sami. “Fault-Tolerant Network Interfaces for Networks-on-Chip”.
In: IEEE Transactions on Dependable and Secure Computing (TDSC) 11.1 (Jan.
2014), pp. 16–29. ISSN: 1545-5971. DOI: 10.1109/TDSC.2013.28.

[46] Robert W. Floyd. “Algorithm 97: Shortest Path”. In: Commun. ACM 5.6 (June
1962), pp. 345–. ISSN: 0001-0782. DOI: 10.1145/367766.368168.

[47] A.P. Frantz et al. “Crosstalk- and SEU-Aware Networks on Chips”. In: Design Test
of Computers, IEEE 24.4 (July 2007), pp. 340–350. ISSN: 0740-7475. DOI: 10.
1109/MDT.2007.128.

[48] Y. Fukushima, M. Fukushi, and S. Horiguchi. “Fault-Tolerant Routing Algorithm
for Network on Chip without Virtual Channels”. In: Proc. of 24th IEEE Int’l Symp.
on Defect and Fault Tolerance in VLSI Systems (DFT). Oct. 2009, pp. 313–321.
DOI: 10.1109/DFT.2009.41.

[49] A Garbade et al. “Fault Localization in NoCs Exploiting Periodic Heartbeat Mes-
sages in a Many-Core Environment”. In: Proc. of 27th IEEE Int’l Parallel and Dis-
tributed Processing Symp. Workshops & PhD Forum (IPDPSW). 2013, pp. 791–
795. DOI: 10.1109/IPDPSW.2013.150.

[50] Fayez Gebali, Haytham Elmiligi, and Mohamed Watheq El-Kharashi. Networks-
on-Chips Theory and Practice. 1st. CRC Press, 2009. ISBN: 9781420079784.

[51] Alberto Ghiribaldi, Alessandro Strano, Michele Favalli, and Davide Bertozzi. “Power
efficiency of switch architecture extensions for fault tolerant NoC design”. In: Proc.
of Int’l Green Computing Conference (IGCC). June 2012, pp. 1–6. DOI: 10.1109/
IGCC.2012.6322281.

[52] A. Ghofrani et al. “Comprehensive online defect diagnosis in on-chip networks”.
In: Proc. of 30th IEEE VLSI Test Symp. (VTS). 2012, pp. 44–49. DOI: 10.1109/
VTS.2012.6231078.

[53] P. Ghosh, A. Sen, and A. Hall. “Energy efficient application mapping to NoC pro-
cessing elements operating at multiple voltage levels”. In: Proc. of 3rd ACM/IEEE
Int’l Symp. on Networks-on-Chip (NoCS). May 2009, pp. 80–85. DOI: 10.1109/
NOCS.2009.5071448.

http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1007/s00607-013-0362-9
http://dx.doi.org/10.1109/TVLSI.2007.891102
http://dx.doi.org/10.1109/TVLSI.2007.891102
http://dx.doi.org/10.1145/1629911.1630119
http://dx.doi.org/10.1145/1629911.1630119
http://dx.doi.org/10.1109/DATE.2009.5090627
http://dx.doi.org/10.1109/TDSC.2013.28
http://dx.doi.org/10.1145/367766.368168
http://dx.doi.org/10.1109/MDT.2007.128
http://dx.doi.org/10.1109/MDT.2007.128
http://dx.doi.org/10.1109/DFT.2009.41
http://dx.doi.org/10.1109/IPDPSW.2013.150
http://dx.doi.org/10.1109/IGCC.2012.6322281
http://dx.doi.org/10.1109/IGCC.2012.6322281
http://dx.doi.org/10.1109/VTS.2012.6231078
http://dx.doi.org/10.1109/VTS.2012.6231078
http://dx.doi.org/10.1109/NOCS.2009.5071448
http://dx.doi.org/10.1109/NOCS.2009.5071448

References 127

[54] B. Ghoshal, K. Manna, S. Chattopadhyay, and I. Sengupta. “In-Field Test for Per-
manent Faults in FIFO Buffers of NoC Routers”. In: IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 24.1 (Jan. 2016), pp. 393–397. ISSN: 1063-
8210. DOI: 10.1109/TVLSI.2015.2393714.

[55] J. Gracia-Moran et al. “Defining a Representative and Low Cost Fault Model Set
for Intermittent Faults in Microprocessor Buses”. In: Proc. of Sixth Latin-American
Symp. on Dependable Computing (LADC). Apr. 2013, pp. 98–103. DOI: 10 .
1109/LADC.2013.19.

[56] C. Grecu, P. Pande, A. Ivanov, and R. Saleh. “BIST for network-on-chip intercon-
nect infrastructures”. In: Proc. of 24th IEEE VLSI Test Symp. (VTS). 2006, pages.
DOI: 10.1109/VTS.2006.22.

[57] Pierre Guerrier and Alain Greiner. “A Generic Architecture for On-chip Packet-
switched Interconnections”. In: Proceedings of the Conference on Design, Automa-
tion and Test in Europe. DATE ’00. Paris, France: ACM, 2000, pp. 250–256. ISBN:
1-58113-244-1. DOI: 10.1145/343647.343776.

[58] T. Han, I. Choi, H. Oh, and S. Kang. “A Scalable and Parallel Test Access Strategy
for NoC-Based Multicore System”. In: Proc. of IEEE 23rd Asian Test Symposium
(ATS). Nov. 2014, pp. 81–86. DOI: 10.1109/ATS.2014.26.

[59] Marcos Herve, Erika Cota, Fernanda Lima Kastensmidt, and Marcelo Lubaszewski.
“Diagnosis of interconnect shorts in mesh NoCs”. In: Networks-on-Chip, Inter-
national Symposium on (2009), pp. 256–265. DOI: 10.1109/NOCS.2009.
5071475.

[60] S. Holmbacka, W. Lund, S. Lafond, and J. Lilius. “Task Migration for Dynamic
Power and Performance Characteristics on Many-Core Distributed Operating Sys-
tems”. In: Proc. of 21st Euromicro Int’l Conf. on Parallel, Distributed, and Network-
Based Processing (PDP). Feb. 2013, pp. 310–317. DOI: 10.1109/PDP.2013.
52.

[61] R. Holsmark and S. Kumar. “An Abstraction to Support Design of Deadlock-free
Routing Algorithms for Large and Hierarchical NoCs”. In: Proc. of 11th IEEE Int’l
Conf. on Computer and Information Technology (CIT). 8. 2011, pp. 59–66. DOI:
10.1109/CIT.2011.32.

[62] R. Holsmark, S. Kumar, M. Palesi, and A. Mejia. “HiRA: A methodology for dead-
lock free routing in hierarchical networks on chip”. In: Proc. of 3rd ACM/IEEE Int’l
Symp. on Networks-on-Chip (NOCS). 2009, pp. 2–11. DOI: 10.1109/NOCS.
2009.5071439.

[63] M. Hosseinabady, A. Dalirsani, and Z. Navabi. “Using the Inter- and Intra-Switch
Regularity in NoC Switch Testing”. In: Proc. of Design, Automation & Test in Eu-
rope Conf. (DATE). 2007, pp. 1–6. DOI: 10.1109/DATE.2007.364618.

[64] HP Labs CACTI. visited May 2017. URL: http://www.hpl.hp.com/
research/cacti/.

[65] L. Huang et al. “Non-Blocking Testing for Network-on-Chip”. In: IEEE Transac-
tions on Computers (TC) 65.3 (Mar. 2016), pp. 679–692. ISSN: 0018-9340. DOI:
10.1109/TC.2015.2489216.

[66] Intel Xeon Phi Coprocessor. visited May 2017. URL: https://software.
intel.com/de-de/mic-developer.

[67] International Technology Roadmap For Semiconductors. visited May 2017. URL:
http://www.itrs2.net/itrs-reports.html.

http://dx.doi.org/10.1109/TVLSI.2015.2393714
http://dx.doi.org/10.1109/LADC.2013.19
http://dx.doi.org/10.1109/LADC.2013.19
http://dx.doi.org/10.1109/VTS.2006.22
http://dx.doi.org/10.1145/343647.343776
http://dx.doi.org/10.1109/ATS.2014.26
http://dx.doi.org/10.1109/NOCS.2009.5071475
http://dx.doi.org/10.1109/NOCS.2009.5071475
http://dx.doi.org/10.1109/PDP.2013.52
http://dx.doi.org/10.1109/PDP.2013.52
http://dx.doi.org/10.1109/CIT.2011.32
http://dx.doi.org/10.1109/NOCS.2009.5071439
http://dx.doi.org/10.1109/NOCS.2009.5071439
http://dx.doi.org/10.1109/DATE.2007.364618
http://www.hpl.hp.com/research/cacti/
http://www.hpl.hp.com/research/cacti/
http://dx.doi.org/10.1109/TC.2015.2489216
https://software.intel.com/de-de/mic-developer
https://software.intel.com/de-de/mic-developer
http://www.itrs2.net/itrs-reports.html

128 References

[68] C. Iordanou, V. Soteriou, and K. Aisopos. “Hermes: Architecting a top-performing
fault-tolerant routing algorithm for Networks-on-Chips”. In: Proc. of IEEE 32nd
Int’l Conf. on Computer Design (ICCD). Oct. 2014, pp. 424–431. DOI: 10.1109/
ICCD.2014.6974715.

[69] Axel Jantsch and Hannu Tenhunen. Network On Chips. 1st. Kluwer Academic,
2003. ISBN: 1402073925.

[70] M.R. Kakoee, V. Bertacco, and L. Benini. “At-Speed Distributed Functional Test-
ing to Detect Logic and Delay Faults in NoCs”. In: IEEE Transactions on Comput-
ers (TC) 63.3 (Mar. 2014), pp. 703–717. ISSN: 0018-9340. DOI: 10.1109/TC.
2013.202.

[71] N. Karimi, A. Alaghi, M. Sedghi, and Z. Navabi. “Online Network-on-Chip Switch
Fault Detection and Diagnosis Using Functional Switch Faults”. In: Journal of Uni-
versal Computer Science (UCS) 14.22 (2008), pp. 3716–3736.

[72] H. S. Kia and C. Ababei. “Improving Fault Tolerance of Network-on-Chip Links
via Minimal Redundancy and Reconfiguration”. In: Proc. of Int’l Conf. on Re-
configurable Computing and FPGAs (ReConFig). Nov. 2011, pp. 363–368. DOI:
10.1109/ReConFig.2011.52.

[73] Tim Kogel, Rainer Leupers, and Heinrich Meyr. Integrated System-Level Modeling
of Network-on-Chip enabled Multi-Processor Platforms. 1st. Springer, 2006. ISBN:
9781402048262.

[74] A. Kohler, G. Schley, and M. Radetzki. “Fault Tolerant Network on Chip Switch-
ing With Graceful Performance Degradation”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD) 29.6 (June 2010), pp. 883–
896. ISSN: 0278-0070. DOI: 10.1109/TCAD.2010.2048399.

[75] Adan Kohler, Juan Manuel Castillo-Sanchez, Joachim Gross, and Martin Radet-
zki. “Minimal MPI as Programming Interface for Multicore System-on-Chips”.
In: Proc. of IEEE Forum on Specification and Design Languages (FDL). 2012,
pp. 127–134. ISBN: 978-1-4673-1240-0.

[76] Anelise Kologeski, Caroline Concatto, Fernanda Lima Kastensmidt, and Luigi
Carro. “Fault-Tolerant Techniques to Manage Yield and Power Constraints in
Network-on-Chip Interconnections”. In: VLSI-SoC: From Algorithms to Circuits
and System-on-Chip Design: 20th IFIP WG 10.5/IEEE Int’l Conf. on Very Large
Scale Integration (VLSI-SoC), Revised Selected Papers. Ed. by Andreas Burg et al.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 144–161. ISBN: 978-3-
642-45073-0. DOI: 10.1007/978-3-642-45073-0_8.

[77] Israel Koren and Mani Krishna. Fault-Tolerant Systems. 1st. Morgan Kaufmann,
2007. ISBN: 9780120885251.

[78] Doowon Lee, Ritesh Parikh, and Valeria Bertacco. “Brisk and Limited-impact NoC
Routing Reconfiguration”. In: Proc. of the Conf. on Design, Automation & Test in
Europe (DATE). Dresden, Germany, 2014, pp. 306–306. ISBN: 978-3-9815370-2-4.

[79] L. Leem et al. “Cross-layer error resilience for robust systems”. In: Proc. of
IEEE/ACM Int’l Conf. on Computer-Aided Design (ICCAD). Nov. 2010, pp. 177–
180. DOI: 10.1109/ICCAD.2010.5654129.

[80] T. Lehtonen, P. Liljeberg, and J. Plosila. “Fault Tolerance Analysis of NoC Archi-
tectures”. In: Proc. on Int’l Symp. on Circuits and Systems (ISCAS). May 2007,
pp. 361–364. DOI: 10.1109/ISCAS.2007.378464.

http://dx.doi.org/10.1109/ICCD.2014.6974715
http://dx.doi.org/10.1109/ICCD.2014.6974715
http://dx.doi.org/10.1109/TC.2013.202
http://dx.doi.org/10.1109/TC.2013.202
http://dx.doi.org/10.1109/ReConFig.2011.52
http://dx.doi.org/10.1109/TCAD.2010.2048399
http://dx.doi.org/10.1007/978-3-642-45073-0_8
http://dx.doi.org/10.1109/ICCAD.2010.5654129
http://dx.doi.org/10.1109/ISCAS.2007.378464

References 129

[81] Teijo Lehtonen, Pasi Liljeberg, and Juha Plosila. “Analysis of Forward Error Cor-
rection Methods for Nanoscale Networks-on-chip”. In: Proc. of the 2nd Int’l Conf.
on Nano-Networks (Nano-Net). Catania, Italy: ICST (Institute for Computer Sci-
ences, Social-Informatics and Telecommunications Engineering), 2007, 3:1–3:5.
ISBN: 978-963-9799-10-3.

[82] T. Lehtonen et al. “Self-Adaptive System for Addressing Permanent Errors in On-
Chip Interconnects”. In: IEEE Transactions on Very Large Scale Integration Sys-
tems (VLSI) 18.4 (Apr. 2010), pp. 527–540. ISSN: 1063-8210. DOI: 10.1109/
TVLSI.2009.2013711.

[83] Ming Li, Wen-Ben Jone, and Qing-An Zeng. “An efficient wrapper scan chain con-
figuration method for network-on-chip testing”. In: in Proc. IEEE Computer Society
Annual Symp. on Emerging VLSI Technologies and Architectures (ISVLSI). 2006,
pp. 147–152. DOI: 10.1109/ISVLSI.2006.21.

[84] Z. Li et al. “Aurora: A Cross-Layer Solution for Thermally Resilient Photonic
Network-on-Chip”. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 23.1 (Jan. 2015), pp. 170–183. ISSN: 1063-8210. DOI: 10 . 1109 /
TVLSI.2014.2300477.

[85] Jens Lienig. “Electromigration and Its Impact on Physical Design in Future Tech-
nologies”. In: Proc. of ACM Int’l Symp. on Physical Design (ISPD). Stateline,
Nevada, USA, 2013, pp. 33–40. ISBN: 978-1-4503-1954-6. DOI: 10 . 1145 /
2451916.2451925.

[86] Yijun Liu, Zhenkun Li, Pinghua Chen, and Zhusong Liu. “A Stacked NoC Archi-
tecture for Quality-of-Service”. In: vol. 1. Los Alamitos, CA, USA: IEEE Computer
Society, 2008, pp. 609–612. ISBN: 978-0-7695-3494-7. DOI: 10.1109/ISISE.
2008.241.

[87] Zhonghai Lu, Bei Yin, and A. Jantsch. “Connection-oriented multicasting in wormhole-
switched networks on chip”. In: IEEE Computer Society Annual Symp. on Emerging
VLSI Technologies and Architectures (ISVLSI). Mar. 2006, pages. DOI: 10.1109/
ISVLSI.2006.31.

[88] O. Lysne, T.M. Pinkston, and J. Duato. “Part II: A Methodology for Developing
Deadlock-Free Dynamic Network Reconfiguration Processes”. In: IEEE Transac-
tions on Parallel and Distributed Systems (TPDS) 16.5 (2005), pp. 428–443.

[89] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures. 1st. Springer,
2008. ISBN: 9783642096822.

[90] P. Meloni et al. “System Adaptivity and Fault-Tolerance in NoC-based MPSoCs:
The MADNESS Project Approach”. In: Proc. of 15th Euromicro Conference on
Digital System Design (DSD). Sept. 2012, pp. 517–524. DOI: 10.1109/DSD.
2012.122.

[91] M. Millberg et al. “The Nostrum backbone-a communication protocol stack for
Networks on Chip”. In: VLSI Design, 2004. Proceedings. 17th Int’l Conference on.
2004, pp. 693–696. DOI: 10.1109/ICVD.2004.1261005.

[92] J.M. Montanana, J. Flich, and J. Duato. “Epoch-based reconfiguration: Fast, sim-
ple, and effective dynamic network reconfiguration”. In: Proc. of IEEE Int’l Symp.
on Parallel and Distributed Processing (IPDPS). Apr. 2008, pp. 1–12. DOI: 10.
1109/IPDPS.2008.4536298.

[93] Shubhendu S. Mukherjee, Joel Emer, and Steven K. Reinhardt. “The Soft Error
Problem: An ArchitecturalPerspective”. In: Proc. of the 11th Int’l Symp. on High-

http://dx.doi.org/10.1109/TVLSI.2009.2013711
http://dx.doi.org/10.1109/TVLSI.2009.2013711
http://dx.doi.org/10.1109/ISVLSI.2006.21
http://dx.doi.org/10.1109/TVLSI.2014.2300477
http://dx.doi.org/10.1109/TVLSI.2014.2300477
http://dx.doi.org/10.1145/2451916.2451925
http://dx.doi.org/10.1145/2451916.2451925
http://dx.doi.org/10.1109/ISISE.2008.241
http://dx.doi.org/10.1109/ISISE.2008.241
http://dx.doi.org/10.1109/ISVLSI.2006.31
http://dx.doi.org/10.1109/ISVLSI.2006.31
http://dx.doi.org/10.1109/DSD.2012.122
http://dx.doi.org/10.1109/DSD.2012.122
http://dx.doi.org/10.1109/ICVD.2004.1261005
http://dx.doi.org/10.1109/IPDPS.2008.4536298
http://dx.doi.org/10.1109/IPDPS.2008.4536298

130 References

Performance Computer Architecture (HPCA). Washington, DC, USA: IEEE Com-
puter Society, 2005, pp. 243–247. ISBN: 0-7695-2275-0. DOI: 10.1109/HPCA.
2005.37.

[94] Srinivasan Murali. Designing Reliable and Efficient Networks on Chips. 1st. Springer
Netherlands, 2009. ISBN: 9781402097560. DOI: 10.1007/978-4020-9757-
7.

[95] Srinivasan Murali et al. “Analysis of Error Recovery Schemes for Networks on
Chips”. In: IEEE Design and Test of Computers 22.5 (2005), pp. 434–442. ISSN:
0740-7475. DOI: 10.1109/MDT.2005.104.

[96] S. Murali et al. “Designing Message-Dependent Deadlock Free Networks on Chips
for Application-Specific Systems on Chips”. In: Proc. of Int’l Conf. on Very Large
Scale Integration (IFIP). Oct. 2006, pp. 158–163. DOI: 10.1109/VLSISOC.
2006.313226.

[97] L. M. Ni and P. K. McKinley. “A survey of wormhole routing techniques in direct
networks”. In: Computer 26.2 (Feb. 1993), pp. 62–76. ISSN: 0018-9162. DOI: 10.
1109/2.191995.

[98] A. Nickelsen, J. Gronbaek, T. Renier, and H. P. Schwefel. “Probabilistic Network
Fault-Diagnosis Using Cross-Layer Observations”. In: Proc. of Int’l Conf. on Ad-
vanced Information Networking and Applications (AINA). May 2009, pp. 225–232.
DOI: 10.1109/AINA.2009.66.

[99] C. Nicopoulos et al. “On the Effects of Process Variation in Network-on-Chip Ar-
chitectures”. In: IEEE Transactions on Dependable and Secure Computing (TDSC)
7.3 (July 2008), pp. 240–254. ISSN: 1545-5971. DOI: 10.1109/TDSC.2008.
59.

[100] Open Systems Interconnection Model (OSI). ISO/IEC 7498-1:1994. visited May
2017. URL: http://www.iso.org/.

[101] Michael Orshansky, Sani Nassif, and Duane Boning. Design for Manufacturability
and Statistical Design: A Constructive Approach. 1st. Springer Publishing Com-
pany, Incorporated, 2010. ISBN: 9781441940445.

[102] Maurizio Palesi, Shashi Kumar, and Vincenzo Catania. “Leveraging Partially Faulty
Links Usage for Enhancing Yield and Performance in Networks-on-Chip”. In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems (TCAD) 29.3 (Mar. 2010), pp. 426–440. DOI: 10.1109/TCAD.2010.
2041851.

[103] Ritesh Parikh and Valeria Bertacco. “Resource Conscious Diagnosis and Recon-
figuration for NoC Permanent Faults”. In: IEEE Transactions on Computers (TC)
65.7 (July 2016), pp. 2241–2256. ISSN: 0018-9340. DOI: 10.1109/TC.2015.
2479586.

[104] Sudeep Pasricha and Nikil Dutt. On-Chip Communication Architectures. 1st. Mor-
gan Kaufmann, 2008. ISBN: 9780123738929.

[105] C. Pinart. “A multilayer fault localization framework for IP over all-optical mul-
tilayer networks”. In: IEEE Network 23.3 (May 2009), pp. 4–9. ISSN: 0890-8044.
DOI: 10.1109/MNET.2009.4939257.

[106] M.K. Puthal, V. Singh, M.S. Gaur, and V. Laxmi. “C-Routing: An adaptive hierar-
chical NoC routing methodology”. In: Proc. of 19th IEEE/IFIP Int’l Conf. on VLSI
and System-on-Chip (VLSI-SoC). 2011, pp. 392–397. DOI: 10.1109/VLSISoC.
2011.6081616.

http://dx.doi.org/10.1109/HPCA.2005.37
http://dx.doi.org/10.1109/HPCA.2005.37
http://dx.doi.org/10.1007/978-4020-9757-7
http://dx.doi.org/10.1007/978-4020-9757-7
http://dx.doi.org/10.1109/MDT.2005.104
http://dx.doi.org/10.1109/VLSISOC.2006.313226
http://dx.doi.org/10.1109/VLSISOC.2006.313226
http://dx.doi.org/10.1109/2.191995
http://dx.doi.org/10.1109/2.191995
http://dx.doi.org/10.1109/AINA.2009.66
http://dx.doi.org/10.1109/TDSC.2008.59
http://dx.doi.org/10.1109/TDSC.2008.59
http://www.iso.org/
http://dx.doi.org/10.1109/TCAD.2010.2041851
http://dx.doi.org/10.1109/TCAD.2010.2041851
http://dx.doi.org/10.1109/TC.2015.2479586
http://dx.doi.org/10.1109/TC.2015.2479586
http://dx.doi.org/10.1109/MNET.2009.4939257
http://dx.doi.org/10.1109/VLSISoC.2011.6081616
http://dx.doi.org/10.1109/VLSISoC.2011.6081616

References 131

[107] C. Puttmann, J.-C. Niemann, M. Porrmann, and U. Ruckert. “GigaNoC - A Hierar-
chical Network-on-Chip for Scalable Chip-Multiprocessors”. In: Proc. of 10th Eu-
romicro Conf. on Digital System Design Architectures, Methods and Tools (DSD).
2007, pp. 495–502. DOI: 10.1109/DSD.2007.4341514.

[108] Martin Radetzki, Chaochao Feng, Xueqian Zhao, and Axel Jantsch. “Methods for
Fault Tolerance in Networks-on-chip”. In: ACM Comput. Surv. 46.1 (July 2013),
8:1–8:38. ISSN: 0360-0300. DOI: 10.1145/2522968.2522976.

[109] Jaan Raik, Raimund Ubar, and Vineeth Govind. “Test Configurations for Diagnos-
ing Faulty Links in NoC Switches”. In: Proc. of the 12th IEEE European Test Sym-
posium (ETS). May 2007, pp. 29–34. DOI: 10.1109/ETS.2007.41.

[110] P. Ren et al. “A Deadlock-Free and Connectivity-Guaranteed Methodology for
Achieving Fault-Tolerance in On-Chip Networks”. In: IEEE Transactions on Com-
puters (TC) 65.2 (Feb. 2016), pp. 353–366. ISSN: 0018-9340. DOI: 10.1109/TC.
2015.2425887.

[111] S. Rodrigo et al. “Cost-Efficient On-Chip Routing Implementations for CMP and
MPSoC Systems”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD) 30.4 (Apr. 2011), pp. 534–547. ISSN: 0278-0070.
DOI: 10.1109/TCAD.2011.2119150.

[112] D. Rossi, P. Angelini, and C. Metra. “Configurable Error Control Scheme for NoC
Signal Integrity”. In: Proc. of 13th IEEE Int’l On-Line Testing Symp. (IOLTS). July
2007, pp. 43–48. DOI: 10.1109/IOLTS.2007.24.

[113] Pradip Kumar Sahu and Santanu Chattopadhyay. “A Survey on Application Map-
ping Strategies for Network-on-Chip Design”. In: Journal of Systems Architecture
59.1 (Jan. 2013), pp. 60–76. ISSN: 1383-7621. DOI: 10.1016/j.sysarc.
2012.10.004.

[114] Jose C. Sancho, Antonio Robles, and Jose Duato. “An Effective Methodology to
Improve the Performance of the Up*/Down* Routing Algorithm”. In: IEEE Trans-
actions on Parallel and Distributed Systems (TPDS) 15.8 (2004), pp. 740–754.
ISSN: 1045-9219. DOI: 10.1109/TPDS.2004.28.

[115] Prabhat Kumar Saraswat, Paul Pop, and Jan Madsen. “Task Migration for Fault-
tolerance in Mixed-criticality Embedded Systems”. In: Special Issue on the 2nd
Int’l Workshop on Adaptive and Reconfigurable Embedded Systems (APRES) 6.3
(Oct. 2009), 6:1–6:5. ISSN: 1551-3688. DOI: 10.1145/1851340.1851348.

[116] Takieddine Sbiai and Kazuteru Namba. “NoC Dynamically Reconfigurable as
TAM”. In: Proc. of 21st IEEE Asian Test Symposium (ATS). Nov. 2012, pp. 326–
331. DOI: 10.1109/ATS.2012.18.

[117] G. Schley, I. Ahmed, M. Afzal, and M. Radetzki. “Reconfigurable Fault Toler-
ant Routing for Networks-on-Chip with Logical Hierarchy”. In: Comput. Electr.
Eng. 51.C (Apr. 2016), pp. 195–206. ISSN: 0045-7906. DOI: 10 . 1016 / j .
compeleceng.2016.02.013.

[118] G. Schley, N. Batzolis, and M. Radetzki. “Fault Localizing End-to-End Flow Con-
trol Protocol for Networks-on-Chip”. In: Proc. of 21st Euromicro Int’l Conf. on
Parallel, Distributed and Network-Based Processing (PDP). 2013, pp. 454–461.
DOI: 10.1109/PDP.2013.74.

[119] G. Schley and M. Radetzki. “Fault Tolerant Routing for Hierarchically Organized
Networks-on-Chip”. In: Proc. of 23rd Euromicro Int’l Conf. on Parallel, Dis-

http://dx.doi.org/10.1109/DSD.2007.4341514
http://dx.doi.org/10.1145/2522968.2522976
http://dx.doi.org/10.1109/ETS.2007.41
http://dx.doi.org/10.1109/TC.2015.2425887
http://dx.doi.org/10.1109/TC.2015.2425887
http://dx.doi.org/10.1109/TCAD.2011.2119150
http://dx.doi.org/10.1109/IOLTS.2007.24
http://dx.doi.org/10.1016/j.sysarc.2012.10.004
http://dx.doi.org/10.1016/j.sysarc.2012.10.004
http://dx.doi.org/10.1109/TPDS.2004.28
http://dx.doi.org/10.1145/1851340.1851348
http://dx.doi.org/10.1109/ATS.2012.18
http://dx.doi.org/10.1016/j.compeleceng.2016.02.013
http://dx.doi.org/10.1016/j.compeleceng.2016.02.013
http://dx.doi.org/10.1109/PDP.2013.74

132 References

tributed, and Network-based Processing (PDP). Mar. 2015, pp. 379–386. DOI: 10.
1109/PDP.2015.36.

[120] G. Schley and M. Radetzki. “Optimal distribution of privileged nodes in networks-
on-chip”. In: IEEE Proc. of the Ninth International Workshop on Intelligent Solu-
tions in Embedded Systems (WISES). July 2011, pp. 87–92.

[121] G. Schley et al. “Multi-Layer Diagnosis for Fault-Tolerant Networks-on-Chip”. In:
IEEE Transactions on Computers (TC) 66.5 (May 2017), pp. 848–861. ISSN: 0018-
9340. DOI: 10.1109/TC.2016.2628058.

[122] T. Schönwald, J. Zimmermann, O. Bringmann, and W. Rosenstiel. “Fully Adaptive
Fault-Tolerant Routing Algorithm for Network-on-Chip”. In: Proc of 10th Euromi-
cro Conf. on Digital System Design Architectures, Methods and Tools (DSD). Aug.
2007, pp. 527–534. DOI: 10.1109/DSD.2007.4341518.

[123] M.D. Schroeder et al. “Autonet: a high-speed, self-configuring local area network
using point-to-point links”. In: IEEE Journal on Selected Areas in Communications
9.8 (1991), pp. 1318–1335. ISSN: 0733-8716. DOI: 10.1109/49.105178.

[124] Jaume Segura and Charles Hawkins. CMOS Electronics: How it Works, How it
Fails. 1st. Wiley IEEE Press, 2004. ISBN: 0471476692.

[125] Saeed Shamshiri, Amirali Ghofrani, and Kwang-Ting Cheng. “End-to-end error
correction and online diagnosis for on-chip networks”. In: Proc. of IEEE Int’l Test
Conf. (ITC). 2011, pp. 1–10. DOI: 10.1109/TEST.2011.6139156.

[126] Si2 (Silicon Integration Initiative). visited May 2017. URL: http://www.si2.
org/openeda.si2.org/projects/nangatelib.

[127] W. Sirisaengtaksin and S.K. Gupta. “Enhanced crosstalk fault model and method-
ology to generate tests for arbitrary inter-core interconnect topology”. In: Proc. of
the 11th Asian Test Symp. (ATS). Nov. 2002, pp. 163–169. DOI: 10.1109/ATS.
2002.1181705.

[128] V. Srivastava and M. Motani. “Cross-layer Design: A Survey and the Road Ahead”.
In: Communications Magazine 43.12 (Dec. 2005), pp. 112–119. ISSN: 0163-6804.
DOI: 10.1109/MCOM.2005.1561928.

[129] Malgorzata Steinder and Adarshpal S. Sethi. “A survey of fault localization tech-
niques in computer networks”. In: Science of Computer Programming 53.2 (2004).
Topics in System Administration, pp. 165–194. ISSN: 0167-6423. DOI: 10.1016/
j.scico.2004.01.010.

[130] Khadija Stewart and Spyros Tragoudas. “Innterconnect Testing for Networks on
Chips”. In: Proc. of 24th IEEE VLSI Test Symp. (VTS). Apr. 2006, pp. 100–106.
DOI: 10.1109/VTS.2006.41.

[131] Tobias Stumpf, Hermann Härtig, Eberle A Rambo, and Rolf Ernst. “Cross-layer Re-
silience Mechanisms to Protect the Communication Path in Embedded Systems”.
In: Proc. of 1st Int’l Workshop on Resiliency in Embedded Electronic Systems
(REES). Amsterdam, Netherlands, Oct. 2015.

[132] Eduardo Wachter, Augusto Erichsen, Alexandre Amory, and Fernando Moraes.
“Topology-agnostic fault-tolerant NoC routing method”. In: Proc. of Design, Au-
tomation & Test in Europe Conf. (DATE). Mar. 2013, pp. 1595–1600. DOI: 10.
7873/DATE.2013.324.

[133] Eduardo Wachter et al. “Runtime fault recovery protocol for NoC-based MPSoCs”.
In: Proc. of Fifteenth Int’l Symp. on Quality Electronic Design (ISQED). Mar. 2014,
pp. 132–139. DOI: 10.1109/ISQED.2014.6783316.

http://dx.doi.org/10.1109/PDP.2015.36
http://dx.doi.org/10.1109/PDP.2015.36
http://dx.doi.org/10.1109/TC.2016.2628058
http://dx.doi.org/10.1109/DSD.2007.4341518
http://dx.doi.org/10.1109/49.105178
http://dx.doi.org/10.1109/TEST.2011.6139156
http://www.si2.org/openeda.si2.org/projects/nangatelib
http://www.si2.org/openeda.si2.org/projects/nangatelib
http://dx.doi.org/10.1109/ATS.2002.1181705
http://dx.doi.org/10.1109/ATS.2002.1181705
http://dx.doi.org/10.1109/MCOM.2005.1561928
http://dx.doi.org/10.1016/j.scico.2004.01.010
http://dx.doi.org/10.1016/j.scico.2004.01.010
http://dx.doi.org/10.1109/VTS.2006.41
http://dx.doi.org/10.7873/DATE.2013.324
http://dx.doi.org/10.7873/DATE.2013.324
http://dx.doi.org/10.1109/ISQED.2014.6783316

References 133

[134] E. Wachter et al. “A layered approach for fault tolerant NoC-based MPSoCs”. In:
Proc. of 17th Latin-American Test Symposium (LATS). Apr. 2016, pp. 189–194.
DOI: 10.1109/LATW.2016.7483367.

[135] Laung-Terng Wang, Charles E. Stroud, and Nur A. Touba. System-on-Chip Test
Architectures. 1st. Morgan Kaufmann, 2008, pp. 351–422. ISBN: 978-0-12-373973-
5.

[136] Laung-Terng Wang, Cheng-Wen Wu, and Xiaoqing Wen. VLSI Test Principles
and Architectures: Design for Testability. 1st. Morgan Kaufmann, 2006. ISBN:
9780123705976.

[137] E. Weldon. “An Improved Selective-Repeat ARQ Strategy”. In: IEEE Transactions
on Communications 30.3 (Mar. 1982), pp. 480–486. ISSN: 0090-6778. DOI: 10.
1109/TCOM.1982.1095497.

[138] P.M. Wells, K. Chakraborty, and G.S. Sohi. “Adapting to Intermittent Faults in
Future Multicore Systems”. In: Proc. of the 16th Int’l Conf. on Architecture and
Compilation Techniques (PACT). Sept. 2007, pp. 431–431. DOI: 10.1109/PACT.
2007.4336259.

[139] M.J.Y. Williams and J.B. Angell. “Enhancing Testability of Large-Scale Integrated
Circuits via Test Points and Additional Logic”. In: IEEE Transactions on Comput-
ers (TC) C-22.1 (Jan. 1973), pp. 46–60. ISSN: 0018-9340. DOI: 10.1109/T-
C.1973.223600.

[140] M. Winter, S. Prusseit, and P.F. Gerhard. “Hierarchical routing architectures in clus-
tered 2D-mesh Networks-on-Chip”. In: Proc. of Int’l SoC Design Conf. (ISOCC).
2010, pp. 388–391. DOI: 10.1109/SOCDC.2010.5682890.

[141] Hans-Joachim Wunderlich and Martin Radetzki. “Multi-Layer Test and Diagno-
sis for Dependable NoCs”. In: Proc. of the 9th Int’l Symp. on Networks-on-Chip
(NOCS). Vancouver, BC, Canada: ACM, 2015, 5:1–5:8. ISBN: 978-1-4503-3396-2.
DOI: 10.1145/2786572.2788708.

[142] Thomas Canhao Xu et al. “Optimal placement of vertical connections in 3D
Network-on-Chip”. In: Journal of Systems Architecture 59.7 (2013), pp. 441–454.

[143] Heng Yu, Yajun Ha, and B. Veeravalli. “Communication-aware application map-
ping and scheduling for NoC-based MPSoCs”. In: Proc. of IEEE Int’l Symp. on Cir-
cuits and Systems (ISCAS). May 2010, pp. 3232–3235. DOI: 10.1109/ISCAS.
2010.5537920.

[144] Qiaoyan Yu and P. Ampadu. “Adaptive Error Control for NoC Switch-to-Switch
Links in a Variable Noise Environment”. In: Proc. of IEEE Int’l Symp. on Defect
and Fault Tolerance of VLSI Systems (DFTVS). Oct. 2008, pp. 352–360. DOI: 10.
1109/DFT.2008.40.

[145] C.A. Zeferino, M.E. Kreutz, L. Carro, and A.A. Susin. “A study on communication
issues for systems-on-chip”. In: Proc. of 15th Symp. on Integrated Circuits and
Systems Design (SBCCI). 2002, pp. 121–126. DOI: 10.1109/SBCCI.2002.
1137647.

[146] Ying Zhang, Huawei Li, and Xiaowei Li. “Reliable Network-on-Chip Router for
Crosstalk and Soft Error Tolerance”. In: Proc. of 17th Asian Test Symp. (ATS). Nov.
2008, pp. 438–443. DOI: 10.1109/ATS.2008.35.

[147] Yixuan Zhang, Randy Morris, Dominic DiTomaso, and Avinash Karanth Kodi.
“Energy-Efficient and Fault-Tolerant Unified Buffer and Bufferless Crossbar Ar-
chitecture for NoCs”. In: Proc. of 26th IEEE Int’l Parallel and Distributed Pro-

http://dx.doi.org/10.1109/LATW.2016.7483367
http://dx.doi.org/10.1109/TCOM.1982.1095497
http://dx.doi.org/10.1109/TCOM.1982.1095497
http://dx.doi.org/10.1109/PACT.2007.4336259
http://dx.doi.org/10.1109/PACT.2007.4336259
http://dx.doi.org/10.1109/T-C.1973.223600
http://dx.doi.org/10.1109/T-C.1973.223600
http://dx.doi.org/10.1109/SOCDC.2010.5682890
http://dx.doi.org/10.1145/2786572.2788708
http://dx.doi.org/10.1109/ISCAS.2010.5537920
http://dx.doi.org/10.1109/ISCAS.2010.5537920
http://dx.doi.org/10.1109/DFT.2008.40
http://dx.doi.org/10.1109/DFT.2008.40
http://dx.doi.org/10.1109/SBCCI.2002.1137647
http://dx.doi.org/10.1109/SBCCI.2002.1137647
http://dx.doi.org/10.1109/ATS.2008.35

134 References

cessing Symposium Workshops & PhD Forum, IPDPS. 2012, pp. 972–981. DOI:
10.1109/IPDPSW.2012.119.

[148] Zhen Zhang et al. “Localization of damaged resources in NoC based shared-
memory MP2SOC, using a Distributed Cooperative Configuration Infrastructure”.
In: Proc. of 29th IEEE VLSI Test Symp. (VTS). May 2011, pp. 229–234. DOI: 10.
1109/VTS.2011.5783726.

http://dx.doi.org/10.1109/IPDPSW.2012.119
http://dx.doi.org/10.1109/VTS.2011.5783726
http://dx.doi.org/10.1109/VTS.2011.5783726

135

Appendix A
Appendix

A.1 Proof of Deadlock Freedom for Hierarchical Routing

This section contains the proof of deadlock freedom for the reconfigurable
hierarchical routing presented in Section 5.3. It is divided into two subsec-
tions. In Subsection A.1.1 the enumeration order of communication channels
is presented that forms the basis of the proof. In Subsection A.1.2, by means
of mathematical induction, the proof is given that the routing is deadlock-free
for any number of hierarchical levels when using two VCs per level and the
allocation scheme described in Subsection 5.3.2.2.

Listing 8 summarizes all the symbols and functions used in the following.
Note that for this section some of the symbols are reused and have a different
meaning compared to their original definition in the former chapters.

Listing 8 Summary of Symbols and Functions.
T : topology
Vh,i: set of vertices v representing the subunits of Uh,i
Ch,i set of channels c that connect vertices v
Gh,i = (Vh,i,Ch,i): graph that represents the abstract topology of unit Uh,i
Sh,i: breadth first search spanning tree of Gh,i
o: order of vertices
a: enumeration of vertices
Σ : enumeration of channels
I: interval of channel numbers
p: path; sequence of channels
Z: cycle; cyclic sequence of channels
dir = {up,down}: direction
id : V →N: returns ID i of a vertex v
dist : V →N: returns the distance of a vertex v to the root vertex of spanning tree S
lea f : V →{true, f alse}: returns true if vertex v is a leaf vertex in spanning tree S

136 A Appendix

A.1.1 Channel Order

Let graph Gh,i be the representation of the abstract topology of unit Uh,i with
the subunits as vertices Vh,i and the interconnection channels between the sub-
units as edges Ch,i. Further, let Sh,i be the breadth first search spanning tree of
Gh,i. Based on the distance dist of vertices v ∈Vh,i to the root vertex of Sh,i an
order oh,i can be constructed. According to oh,i, a vertex vk is less than a vertex
vl if the distance of vk is less than the one of vl . If both vertices have the same
distance, vk is less than vl either if vk is a leaf vertex while vl is not or if both
vertices are equivalent and vk has a lower ID than vl :

∀vk,vl ∈Vh,i : vk < vl ⇔(
dist(vk)< dist(vl)

)
∨((

dist(vk) = dist(vl)
)
∧((

¬lea f (vk)< lea f (vl)
)
∨((

lea f (vk)⇔ lea f (vl)
)
∧
(

id(vk)< id(vl)
))))

(A.1)

Let ah,i = v0v1...vy−1 be an enumeration of vertices v ∈Vh,i resulting from
order oh,i with y = |Vh,i| and ∀k, l ∈ [0,y−1],vk < vl⇔ k < l. The first element
v0 represents the root unit and vy−1 represents a leaf unit. In the following, if
vk < vl then for the corresponding subunits the expression Uh−1,k < Uh−1,l is
used.

To prove that the hierarchical routing is deadlock-free, it is necessary to
show that:

• the routing only uses channels with descending channel number and
• when VCs are only allocated in descending order it is not possible that in

the channel dependency graph (CDG) of Gh,i channels can be reached for
a second time.

This can be shown by means of an enumeration of channels which assigns a
unique number to each channel of every VC.

Let Σ be a channel enumeration that assigns a unique number to each chan-
nel of every VC. Consequently, an interval IΣ =

[
0,σmax

]
exists that contains

all numbers of Σ ranging from 0 to σmax. As shown in Figure A.1, Interval
IΣ is composed of the VC enumeration intervals of each hierarchical level h.
Starting with the lowest ranked VC vc1,down the VCs are enumerated with in-

A.1 Proof of Deadlock Freedom for Hierarchical Routing 137

I1,down

I1,up

I2,down

Ihmax-1,down

Ihmax-1,up

I2,up

…

0

I
!

I2, id(v0),up

I2, id(vy-1),up

I2, id(vy-1),down

I2, id(v0),down

…

…

I2, id(v0),up

I2, id(vy-1),up

…

I2, id(vy-1),down

I2, id(v0),down

…

…

…

"max

U
3
, 0

U

3
, i

…

U
3
, 0

…

U

3
, i

Fig. A.1: Enumeration of channels.

creasing rank up to vchmax−1,up. In this way, all channels of a VC vch,dir have
a number within the corresponding interval Ih,dir. In the following, if an in-
terval Ii contains lower numbers than an interval I j this is represented by the
expression Ii < I j:

Ii < I j⇔∀k ∈ Ii∀l ∈ I j : k < l (A.2)

Each interval Ih,dir, in turn, is composed of the intervals Ih,i,dir of subunits of
every superunit. In case of vch,down, enumeration order of superunits is by de-
creasing unit ID. For vch,up it is the other way around. The enumeration order
for the subunits of a superunit is defined by ah+1, j. In case of a Down-VC
vch,down channel enumeration begins at leaf unit Uh,id(vy−1). After enumeration
of all channels of Uh,id(vy−1), all interconnection channels connecting Uh,id(vy−1)

with other hierarchical units are enumerated. The numbers of these intercon-
nection channels belong to interval Ih,id(vy−1),down as well and correspond to the
highest numbers in this interval. Subsequently, channel enumeration is contin-
ued at unit Uh,id(vy−2) again followed by enumeration of all its interconnection
channels which have not already been enumerated. This enumeration scheme
is continued until all channels and interconnection channels of units Uh,id(vk)

with vk ∈ ah+1, j are enumerated. For Up-VC vch,up channel enumeration is
done in a similar way, however, in this case enumeration begins at the root
unit Uh,id(v0).

Basically it applies, if according to ah+1, j vk < vl then Ih,id(vk),up < Ih,id(vl),up
and Ih,id(vk),down > Ih,id(vl),down.

138 A Appendix

A.1.2 Proof of Deadlock Freedom

By means of mathematical induction it is now proven that the reconfigurable
hierarchical routing is deadlock-free.

Proposition: With the appropriate number of VCs and the used VC alloca-
tion scheme, no deadlocks can occur between hierarchical units of same and
different levels.

Base case
Let T be a network topology with hmax = 2 hierarchy levels and |Θ1| ≥ 2 hier-
archical units on level h = 1. Two VCs vc1,up and vc1,down are used, and thus,
the resulting enumeration Σ consists of two intervals I1,up and I1,down.

In such a network, a deadlock situation exists if the corresponding CDG
of T contains a cycle Z = c0...cm−1c0 of length m. The channels of cycle
Z can either belong to one single hierarchical unit U1,i or to different units.
Since within a hierarchical unit U1,i basic Up/Down routing is applied which
is deadlock-free, no cycle Z can exists that only consists of channels of U1,i.
For this reason, cycle Z has to span over two or more units of level h = 1.

Assume cycle Z = c0...cm−1c0 spans over the units U1,i and U1, j. Without
loss of generality U1,i <U1, j according to enumeration a2,0, i.e. U1,i is reached
in Up direction. The channels c0...cm−1 of cycle Z can be subdivided into two
paths p ji = c0...cm−1−x and pi j = cm−x...cm−1, i.e. Z = p ji + pi j +c0. In order
to form cycle Z, channel c0 and cm−1 have to be incident to the same node,
which is denoted U0,α ∈U1, j, with c0 originating from U0,α and cm−1 leading
to U0,α . The same applies for channels cm−x−1 and cm−x, which have to be
incident to a node denoted U0,β ∈U1,i.

Since U1, j > U1,i, unit U1, j is not the root unit U1,r of level h = 1. This
implies that at least one path p jr from node U0,α to a node U0,γ in root unit
U1,r exists that contains only channels c ∈ vc1,up. If unit U0,β can be reached
by p jr, this implies that path p ji is a subpath of p jr, and thus, p ji also contains
only channels of vc1,up. Path p ji must pass through zero or more hierarchical
units U1,k using channels of vc1,up. According to channel enumeration Σ for
intervals I1,k,up it applies I1, j,up > I1,k,up > I1,i,up.

In case p ji is not a subpath of p jr then there is at least one path pir that
leads from node U0,β to node U0,γ using only channels of vc1,up. There has
to be at least one unit U1,l that can be reached by p jr and pir. This for ex-
ample can be the root unit U1,r. Since U1,l can be reached by both paths us-

A.1 Proof of Deadlock Freedom for Hierarchical Routing 139

ing channels of vc1,up, according to enumeration a2,0 unit U1,l has to be less
than U1, j and U1,i. This implies that a path p jl exists that contains only chan-
nels of vc1,up and a path pli that contains only channels of vc1,down. Thus,
path p ji = p jl + pli contains an Up to Down turn at unit U1,l . The number
of the last channel of p jl is within I1,l,up while the number of first chan-
nel of pli has to be in interval I1,l,down. According to channel enumeration
Σ I1, j,up > I1,l,up > I1,l,down > I1,i,down.

In both cases, p ji being a subpath of p jr or not, path p ji does only consists
of channels with descending channel numbers and starts with a channel in Up
direction. Thus c0 ∈ vc1,up and its number cannot be lower than the numbers
of I1,l,up.

Path pi j leads in opposite direction from U0,β to U0,α . For this reason, pi j
can only consist of channels of vc1,down or may contain an Up to Down turn
like p ji. Because U1, j >U1,i, however, p ji has to contain at least one channel
in Down direction and therefore cm−1 ∈ vc1,down. The channel number of cm−1
has to be within interval I1, j,down.

However, since I1, j,down ∈ I1,down < I1,l,up ∈ I1,up channel cm−1 always has
a lower number than c0. Consequently, in the CDG c0 cannot be reached from
cm−1 since this would contradict the rule that VCs must be allocated in de-
scending order. For this reason, the CDG of T does not contain a cycle Z and
thus the routing is deadlock-free for hmax = 2.

Inductive step
Let Σ

′
be an enumeration of channels for hmax − 1 levels according to the

enumeration order described in Subsection A.1.1. The maximum value of Σ
′

is represented by σ
′
max. For the additional hierarchy level hmax, the two VCs

are vchmax−1,up and vchmax−1,down. Starting from σ
′
max + 1, first, the channels

of vchmax−1,down and subsequently the channels of vchmax−1,up are enumerated.
Thus Ihmax−1,up > Ihmax−1,down.

For hmax > 2 more than one hierarchy level exists and thus it has to
be ensured that no deadlock between different hierarchy level occurs. Let
Z = c0...cm−1c0 be a cycle of length m in the CDG that spans over different
hierarchy levels, i.e. it contains channels of different VCs vch,dir of different
levels h. Let c0 and cm−1 be incident to node U0,i whereas c0 originates from
U0,i while cm−1 leads to U0,i. According to the VC allocation rule, every chan-
nel of Z has to be of the same VC as its predecessor channel or of a lower
ranked VC, ∀i ∈ [1,m− 1] : ci−1 ∈ vcα ∧ ci ∈ vcβ with vcα ≥ vcβ . Without
loss of generality, let c0 ∈ vch,dir and the channel number of c0 within interval

140 A Appendix

Ih,dir. Because cycle Z spans over different hierarchy levels, there has to be
at least one channel cm−x that belongs to a VC vch−1,dir of level h− 1 with
vch−1,dir < vch,dir. The channel number of cm−x is within Ih−1,dir and conse-
quently, cm−x has a lower number than channel c0.

To form cycle Z in the CDG, channel c0 has to be reached from cm−1 which
requires that the channel number of cm−1 is bigger than that of c0. This is only
possible if cm−1 ∈ vcα is of the same VC as c0 or of a higher ranked VC and
thus vcα ≥ vch,dir. Because vch−1,dir < vch,dir and vcα ≥ vch,dir this implies
that from a lower ranked VC vch−1,dir a higher ranked VC vcα has to be allo-
cated. This however, is not possible since it contradicts the VC allocation rule,
and thus no cycle Z exist that leads to a deadlock between different hierarchy
levels.

Further, no deadlock situation may exist within a level h. This case, how-
ever, is equivalent to the base case for hmax = 2. Within a unit Uh,i of any
level h no cycle Z can form in the CDG because basic Up/Down routing is
used, which is deadlock-free. In case of a deadlock between hierarchical units
of level h, a cycle Z = c0...cm−1c0 exists that can be divided into two paths
p ji = c0...cm−1−x and pi j = cm−x...cm−1 between two nodes U0,α ∈Uh, j and
U0,β ∈Uh,i. The proof that no cycle Z can exist is equivalent to the proof given
for the base case for hmax = 2.

Provided by the VC allocation scheme that VCs may only be allocated by
descending rank, the CDG does not contain any cycles Z. Consequently, no
deadlock situations can occur between hierarchical units of different levels h
or between units of the same hierarchy level. For this reason, the reconfig-
urable hierarchical routing is deadlock-free for any number hmax of hierarchy
levels. �

141

Index

A

Arbitration 7
Availability Communication Unit 64, 108

B

Bottom-Up 11, 38, 61
Buffer 7

C

Channel 9
Cross-Layer 11
Crossbar 8

D

Data Flow Management 65
Deadlock 13
Defect 16
Diagnosis quality 54, 55

E

End-to-End 7
Enhanced Topology Graph 82, 85, 95,

98, 102
Error 16
Error Detection 20
Error Recovery 10

F

Failures 18
False Positives 38, 50, 56
Fault 16
Fault Diagnosis 20

functional diagnosis 25, 52
protocol-based diagnosis 27, 45
structural diagnosis 23, 54

Fault Localization 23, 37, 40, 44, 47, 57
Fault model

permanent faults 19
transient faults 19

Fault Tolerance 21, 61
Fault Tolerant System 20
Fault Types

intermittent 17
permanent 17
transient 17

Flow Control 10
Flow Control Units (Flits) 7, 64

availability information 63, 94, 97
reconfiguration 94, 97

G

Graph G 85, 96

H

Hierarchical Address 82, 87
Hierarchical Network Configuration 99
Hierarchical Units 12, 79, 83
Hierarchy 12, 79

I

Interaction Scheme 37
Intermediate Node 44, 45

L

Link 9

M

Manager 81, 85
Multi-Layer 11

N

Network Interface 6
Network Layers

142 Index

data link layer 10
network layer 7
physical layer 11
software layer 6
transport layer 6

Network Node 9
Networks-on-Chip 5

direct 9
heterogeneous 9
homogeneous 9
indirect 9

O

OSI Model 5

P

Physical Digits (Phits) 11
Port 7
Processing Element 6
Protocol

acknowledgement 41
base protocol 41, 51
diagnosis protocol 45, 51
timeout 41, 42

R

Reconfigurable Hierarchical Routing 78,
82, 107

Reconfiguration Unit 97, 108
Routing

adaptive 13
centralized 12
deterministic 13
dimension-order 15
distributed 12

oblivious 13
reconfigurable 13

Routing Table 12, 82, 83, 93, 94

S

Shortest Path 16
Dijkstra 16
Modified Dijkstra 87

Software-Based Packet Rerouting 68, 70,
73, 75, 107

Spanning Tree 15, 87
Switch 7
Switch-to-Switch 10
Switching 8

wormhole switching 8

T

Test 20
Built-In Self-Test 20
functional 20
structural 20

Test Access Mechanism 20
Top-Down 11, 38, 61, 82, 85
Topology 9, 79

U

Up/Down Routing 15, 87

V

Virtual Channel 14, 90, 95

X

XY Routing 15, 73

	Introduction and Motivation
	Contribution
	Dissertation Outline

	Preliminaries
	Networks-on-Chip
	Software Layer
	Transport Layer
	Network Layer
	Data Link Layer
	Physical Layer
	Definition Cross-Layer
	Hierarchical Networks-on-Chip

	Routing
	Classification
	Deadlocks
	Virtual Channels
	Dimension-order Routing
	Up/Down Routing
	Determination of Shortest Path

	Faults and Fault Models
	Fault Types
	Fault Models

	Fault Tolerant Networks-on-Chip

	Background and Related Work
	Fault Localization
	Structural Diagnosis
	Functional Diagnosis
	Protocol-based Diagnosis
	Cross-Layer Diagnosis

	Fault Tolerance Methods
	Single-Layer Fault Tolerance Methods
	Cross-Layer Fault Tolerance Methods

	Cross-layer Fault Localization
	Interaction of Diagnosis Techniques
	Protocol-based Fault Localization
	Base Protocol
	Protocol Timeout Adaptation
	Localization Principle
	Diagnosis Protocol
	Fundamentals
	Localization Logic

	Evaluation
	Diagnosis Capability
	Implementation Costs

	Combination of Diagnosis Techniques
	Functional Diagnosis
	Structural Diagnosis

	Evaluation
	Definitions
	Diagnosis Quality
	Standalone Diagnosis Techniques
	Combined Techniques

	Fault Localization Latency

	Summary

	Cross-Layer Fault Tolerance
	Management of Communication Resources
	Availability Status Communication
	Data Flow Management

	Software-Based Packet Rerouting
	Rerouting Principle
	Required Rerouting Information
	Packet Format

	Software Rerouting
	Rerouting Logic Overview
	DOR XY Software Routing

	Evaluation
	Packet Redirection Rate
	Implementation Costs

	Reconfigurable Hierarchical Routing
	Hierarchical Organization of NoC Topologies
	Fault Tolerant Hierarchical Routing
	Hierarchical Routing Principles and Representation
	Deadlock-Freedom
	Enhanced Topology Graph
	Routing Calculation

	Cross-Layer Routing Reconfiguration
	Requirements of Reconfiguration Process
	Information Phase
	Recalculation Phase
	Reconfiguration Phase

	Evaluation
	Routing Performance
	Performance of Cross-Layer Reconfiguration
	Implementation Costs

	Summary

	Combination of Cross-Layer Diagnosis and Fault Tolerance Methods
	Evaluation
	Cross-Layer Communication Overhead of Fault Tolerance Methods
	Performance of Cross-Layer Diagnosis
	Data Throughput
	Pareto Analysis

	Summary

	Conclusion and Future Work
	References
	Appendix
	Proof of Deadlock Freedom for Hierarchical Routing
	Channel Order
	Proof of Deadlock Freedom

	Index

