Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-11260
Autor(en): Hessenthaler, Andreas
Titel: Multilevel convergence analysis : parallel-in-time integration for fluid-structure interaction problems with applications in cardiac flow modeling
Erscheinungsdatum: 2020
Verlag: Stuttgart : Institute for Modelling and Simulation of Biomechanical Systems, Chair of Continuum Biomechanics and Mechanobiology, University of Stuttgart
Dokumentart: Dissertation
Seiten: xvi, 205
Serie/Report Nr.: CBM;4
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-112779
http://elib.uni-stuttgart.de/handle/11682/11277
http://dx.doi.org/10.18419/opus-11260
ISBN: 978-3-946412-03-8
Zusammenfassung: In this Ph.D. Thesis, multigrid-reduction-in-time (MGRIT) is considered as means to reduce the time-to-solution for numerical algorithms concerned with the solution of time-dependent partial differential equations (PDEs) arising in the field of fluid-structure interaction (FSI) modeling. As a parallel-in-time integration method, the MGRIT algorithm significantly increases the potential for parallel speedup by employing modern computer architectures, ranging from small-scale clusters to massively parallel high-performance computing platforms. In this work, the MGRIT algorithm is considered as a true multilevel method that can exhibit optimal scaling. Convergence of MGRIT is studied for the solution of linear and nonlinear (systems of) PDEs: from single- to multiphysics applications relevant to FSI problems in two and three dimensions. A multilevel convergence framework for MGRIT is derived that establishes a priori upper bounds and approximate convergence factors for a variety of cycling strategies (e.g., V- and F-cycles), relaxation schemes and parameter settings. The convergence framework is applied to a number of test problems relevant to FSI modeling, both linear and nonlinear as well as parabolic and hyperbolic in nature. An MGRIT variant is further proposed that exploits the time-periodicity that is present in many biomedical engineering applications, e.g., cyclic blood flow in the human heart. The time-periodic MGRIT algorithm proves capable of consistently reducing the time-to-solution of an existing simulation model with significant observed speedups.
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Hessenthaler2020_PhD.pdf35,54 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.