Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-12942
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorOlesch, Darius-
dc.contributor.authorKuhn, Charlotte-
dc.contributor.authorSchlüter, Alexander-
dc.contributor.authorMüller, Ralf-
dc.date.accessioned2023-04-13T09:35:37Z-
dc.date.available2023-04-13T09:35:37Z-
dc.date.issued2021de
dc.identifier.issn0178-7675-
dc.identifier.issn1432-0924-
dc.identifier.other1843511061-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-129616de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12961-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12942-
dc.description.abstractPhase field models for fracture are energy-based and employ a continuous field variable, the phase field, to indicate cracks. The width of the transition zone of this field variable between damaged and intact regions is controlled by a regularization parameter. Narrow transition zones are required for a good approximation of the fracture energy which involves steep gradients of the phase field. This demands a high mesh density in finite element simulations if 4-node elements with standard bilinear shape functions are used. In order to improve the quality of the results with coarser meshes, exponential shape functions derived from the analytic solution of the 1D model are introduced for the discretization of the phase field variable. Compared to the bilinear shape functions these special shape functions allow for a better approximation of the fracture field. Unfortunately, lower-order Gauss-Legendre quadrature schemes, which are sufficiently accurate for the integration of bilinear shape functions, are not sufficient for an accurate integration of the exponential shape functions. Therefore in this work, the numerical accuracy of higher-order Gauss-Legendre formulas and a double exponential formula for numerical integration is analyzed.en
dc.description.sponsorshipProjekt DEALde
dc.language.isoende
dc.relation.uridoi:10.1007/s00466-020-01964-5de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc670de
dc.titleAdaptive numerical integration of exponential finite elements for a phase field fracture modelen
dc.typearticlede
dc.date.updated2023-03-24T16:08:26Z-
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutFakultät Konstruktions-, Produktions- und Fahrzeugtechnik (Institutsübergreifend)de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten811-821de
ubs.publikation.sourceComputational mechanics 67 (2021), S. 811-821de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s00466-020-01964-5.pdf3,32 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons