Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13065
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorRamirez-Diaz, Diego A.-
dc.contributor.authorMerino-Salomón, Adrián-
dc.contributor.authorMeyer, Fabian-
dc.contributor.authorHeymann, Michael-
dc.contributor.authorRivas, Germán-
dc.contributor.authorBramkamp, Marc-
dc.contributor.authorSchwille, Petra-
dc.date.accessioned2023-05-24T12:49:28Z-
dc.date.available2023-05-24T12:49:28Z-
dc.date.issued2021de
dc.identifier.issn2041-1723-
dc.identifier.other1846919185-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-130849de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13084-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13065-
dc.description.abstractFtsZ is a key component in bacterial cell division, being the primary protein of the presumably contractile Z ring. In vivo and in vitro, it shows two distinctive features that could so far, however, not be mechanistically linked: self-organization into directionally treadmilling vortices on solid supported membranes, and shape deformation of flexible liposomes. In cells, circumferential treadmilling of FtsZ was shown to recruit septum-building enzymes, but an active force production remains elusive. To gain mechanistic understanding of FtsZ dependent membrane deformations and constriction, we design an in vitro assay based on soft lipid tubes pulled from FtsZ decorated giant lipid vesicles (GUVs) by optical tweezers. FtsZ filaments actively transform these tubes into spring-like structures, where GTPase activity promotes spring compression. Operating the optical tweezers in lateral vibration mode and assigning spring constants to FtsZ coated tubes, the directional forces that FtsZ-YFP-mts rings exert upon GTP hydrolysis can be estimated to be in the pN range. They are sufficient to induce membrane budding with constricting necks on both, giant vesicles and E.coli cells devoid of their cell walls. We hypothesize that these forces result from torsional stress in a GTPase activity dependent manner.en
dc.description.sponsorshipProjekt DEALde
dc.description.sponsorshipFederal Ministry of Education and Research of Germanyde
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipMax-Planck-Gesellschaftde
dc.language.isoende
dc.relation.uridoi:10.1038/s41467-021-23387-3de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc570de
dc.titleFtsZ induces membrane deformations via torsional stress upon GTP hydrolysisen
dc.typearticlede
dc.date.updated2023-03-28T05:05:12Z-
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Biomaterialien und biomolekulare Systemede
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten11de
ubs.publikation.sourceNature communications 12 (2021), No. 3310de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:04 Fakultät Energie-, Verfahrens- und Biotechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s41467-021-23387-3.pdf6,21 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons