Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14043
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorVikas Singh, Rajput-
dc.date.accessioned2024-03-12T15:15:59Z-
dc.date.available2024-03-12T15:15:59Z-
dc.date.issued2023de
dc.identifier.other1883346827-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-140629de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14062-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14043-
dc.description.abstractThis thesis presents a comprehensive investigation into the efficient utilization of Quantum Support Vector Machines (QSVMs) for image classification on high-dimensional data. The primary focus is on analyzing the standard MNIST dataset and the high-dimensional dataset provided by TRUMPF SE + Co. KG. To evaluate the performance of QSVMs against classical Support Vector Machines (SVMs) for high-dimensional data, a benchmarking framework is proposed. In the current Noisy Intermediate Scale Quantum (NISQ) era, classical preprocessing of the data is a crucial step to prepare the data for classification tasks using NISQ machines. Various dimensionality reduction techniques, such as principal component analysis (PCA), t-distributed stochastic neighbor embedding (tSNE), and convolutional autoencoders, are explored to preprocess the image datasets. Convolutional autoencoders are found to outperform other methods when calculating quantum kernels on a small dataset. Furthermore, the benchmarking framework systematically analyzes different quantum feature maps by varying hyperparameters, such as the number of qubits, the use of parameterized gates, the number of features encoded per qubit line, and the use of entanglement. Quantum feature maps demonstrate higher accuracy compared to classical feature maps for both TRUMPF and MNIST data. Among the feature maps, one using 𝑅𝑧 and 𝑅𝑦 gates with two features per qubit, without entanglement, achieves the highest accuracy. The study also reveals that increasing the number of qubits leads to improved accuracy for the real-world TRUMPF dataset. Additionally, the choice of the quantum kernel function significantly impacts classification results, with the projected type quantum kernel outperforming the fidelity type quantum kernel. Subsequently, the study examines the Kernel Target Alignment (KTA) optimization method to improve the pipeline. However, for the chosen feature map and dataset, KTA does not provide significant benefits. In summary, the results highlight the potential for achieving quantum advantage by optimizing all components of the quantum classifier framework. Selecting appropriate dimensionality reduction techniques, quantum feature maps, and quantum kernel methods is crucial for enhancing classification accuracy. Further research is needed to address challenges related to kernel optimization and fully leverage the capabilities of quantum computing in machine learning applications.en
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.subject.ddc510de
dc.subject.ddc530de
dc.titleQuantum support vector machines of high-dimensional data for image classification problemsen
dc.typemasterThesisde
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.fakultaetExterne wissenschaftliche Einrichtungende
ubs.institutInstitut fĂĽr Technische Informatikde
ubs.institutFraunhofer Institut fĂĽr Arbeitswirtschaft und Organisation (IAO)de
ubs.publikation.seiten107de
ubs.publikation.typAbschlussarbeit (Master)de
Enthalten in den Sammlungen:05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
vikas_singh_rajput_master_thesis.pdf78,27 MBAdobe PDFĂ–ffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschĂĽtzt.