Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14174
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorJahnke, Timotheus-
dc.contributor.authorRaafat, Leila-
dc.contributor.authorHotz, Daniel-
dc.contributor.authorKnöller, Andrea-
dc.contributor.authorDiem, Achim Max-
dc.contributor.authorBill, Joachim-
dc.contributor.authorBurghard, Zaklina-
dc.date.accessioned2024-04-04T14:13:06Z-
dc.date.available2024-04-04T14:13:06Z-
dc.date.issued2020de
dc.identifier.issn2079-4991-
dc.identifier.other1885373961-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-141938de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14193-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14174-
dc.description.abstractEstablishing energy storage systems beyond conventional lithium ion batteries requires the development of novel types of electrode materials. Such materials should be capable of accommodating ion species other than Li+, and ideally, these ion species should be of multivalent nature, such as Al3+. Along this line, we introduce a highly porous aerogel cathode composed of reduced graphene oxide, which is loaded with nanostructured SnO2. This binder-free hybrid not only exhibits an outstanding mechanical performance, but also unites the pseudocapacity of the reduced graphene oxide and the electrochemical storage capacity of the SnO2 nanoplatelets. Moreover, the combination of both materials gives rise to additional intercalation sites at their interface, further contributing to the total capacity of up to 16 mAh cm-3 at a charging rate of 2 C. The high porosity (99.9%) of the hybrid and the synergy of its components yield a cathode material for high-rate (up to 20 C) aluminum ion batteries, which exhibit an excellent cycling stability over 10,000 tested cycles. The electrode design proposed here has a great potential to meet future energy and power density demands for advanced energy storage devices.en
dc.language.isoende
dc.relation.uridoi:10.3390/nano10102024de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc540de
dc.subject.ddc620de
dc.titleHighly porous free-standing rGO/SnO2 pseudocapacitive cathodes for high-rate and long-cycling Al-ion batteriesen
dc.typearticlede
dc.date.updated2023-11-14T05:54:20Z-
ubs.fakultaetChemiede
ubs.fakultaetExterne wissenschaftliche Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Materialwissenschaftde
ubs.institutHahn-Schickardde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten17de
ubs.publikation.sourceNanomaterials 10 (2020), No. 2024de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:03 Fakultät Chemie

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
nanomaterials-10-02024.pdf3,97 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons