Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-4662
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorReichert, Michaelde
dc.date.accessioned2002-01-10de
dc.date.accessioned2016-03-31T08:35:02Z-
dc.date.available2002-01-10de
dc.date.available2016-03-31T08:35:02Z-
dc.date.issued2001de
dc.identifier.other097161810de
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-9767de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/4679-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-4662-
dc.description.abstractDie Bildung und Stabilität von Quasikristallen ist eines der Probleme, die immer noch sehr unvollständig verstanden sind. Im Experiment (z. B. unter dem Elektronenmikroskop) beobachtet man, dass viele quasikristalline Strukturen von überlappenden Kopien eines einzigen atomaren Clusters überdeckt werden.Daher werden Quasikristalle seit einigen Jahren zunehmend durch sogenannte Clustermodelle beschrieben. Bestimmte Forderungen an die Überlapps derCluster (die innere Struktur überlappender Cluster muss im Überlappbereich übereinstimmen) führen zu einer langreichweitigen Translationsordnung. Betrachtet man die Cluster als energetisch begünstigte Atomkonfigurationen, so wird das atomare System bestrebt sein, eine möglichst große Zahl an Clustern zu bilden. Das wohl prominenteste Beispiel für ein Clustermodell ist das aperiodische Dekagon von Petra Gummelt. Dieses Modell ist die Grundlage der vorliegenden Arbeit. Es beinhaltet Überlappregeln für dekagonale Cluster, die zu perfektquasiperiodischen dekagonalen Strukturen oder Tilings führen. Da allerdings viele experimentell beobachtete dekagonale Quasikristalle keine perfekte Ordnung aufweisen, müssen die Regeln für die Clusterüberlapps weniger strikt formuliert werden. Ausgehend vom Gummelt'schen Modell, werden in dieser Arbeit verschiedene Varianten von Überlappregeln diskutiert und die daraus resultierenden Strukturen und ihre Eigenschaften mit Monte-Carlo-Methoden (Metropolis-Algorithmus, Entropic Sampling) analysiert. In drei Dimensionen wird das System außerdem auf einen möglichen Ordnungs-Unordnungs-Phasenübergang hin untersucht.de
dc.language.isodede
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.classificationMonte-Carlo-Simulation , Clustermodell , Quasikristall , Ordnungs-Unordnungs-Umwandlungde
dc.subject.ddc530de
dc.subject.otherPenrose-Pentagon-Tiling , Random Tiling , Entropic Sampling , dekagonal , Gummelt-Dekagonde
dc.titleMonte-Carlo-Simulationen zum Clustermodell der Quasikristallede
dc.typemasterThesisde
dc.date.updated2013-08-07de
ubs.fakultaetFakultät Mathematik und Physikde
ubs.institutInstitut für Theoretische und Angewandte Physik (aufgelöst)de
ubs.opusid976de
ubs.publikation.typAbschlussarbeit (Diplom)de
Enthalten in den Sammlungen:08 Fakultät Mathematik und Physik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
diplomarbeit.pdf5,17 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.