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Zusammenfassung

Katalysatoren sind chemische Stoffe, welche die Aktivierungs-
energie einer chemischen Reaktion senken ohne bei der Reakti-
on selbst verbraucht zu werden. Obendrein ermöglicht die Re-
duktion der Aktivierungsenergie, dass viele Reaktionen über-
haupt stattfinden können. Aufgrund dieser Eigenschaften sind
Katalysatoren für die heutige Industrie essenziell. Schätzungs-
weise werden katalytische Prozesse bei der Herstellung von
mehr als 80 % aller chemischen Produkten verwendet [1]. Auf-
grund dieses Bedarfs an Katalysatoren sind Möglichkeiten um
eben jene Prozesse zu optimieren ein wichtiges Ziel der aktu-
ellen Katalyseforschung.

Ein vielversprechender Ansatz zur Verbesserung katalyti-
scher Eigenschaften ist der Einschluss eines molekularen Kata-
lysators in nanoporösen Medien. Die Idee hierfür ist die Nach-
ahmung von Biokatalysatoren, sogenannten Enzymen. Wäh-
rend der katalytischen Reaktion an einem Enzym, wird ein
Substratmolekül selektiv mittels des Schlüssel-Schloss Prinzips
an das Enzym gebunden. Dadurch findet die Reaktion im-
mer unter den gleichen Rahmenbedingungen statt, was dafür
sorgt, das keine unerwünschten Nebenreaktionen stattfinden.
Der Einschluss des molekularen Katalysators in nanoporösen
Medien sorgt zudem dafür, dass die Freiheitsgrade der Mole-
kulardynamik eingeschränkt werden und die Reaktion dadurch
selektiver wird. Um diese Einschlusseffekte zu erforschen und
nutzbar zu machen wurde der Sonderforschungsbereich (SFB)
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1333 ins Leben gerufen. Die hier vorliegende Dissertation ist
als Teilprojekt dieses SFBs entstanden.

In Rahmen dieses Projektes wurden Computersimulationen
angewandt um genauen Mechanismen zu verstehen, welche bei
Reaktionen von eingeschlossenen molekularen Katalysatoren
auftreten. Zunächst betrachteten wir diese Systeme im Allge-
meinen um dabei die Transporteigenschaften der Reaktanten
besser zu verstehen. Als Methode hierfür wurde ein Kontinu-
umsansatz gewählt. Anschließend wurden die Simulationen im-
mer weiter verfeinert um die Lücke zur atomistischen Größens-
kala zu schließen.

Mit den Simulationen auf der Kontinuumsskala sollte der
Substrattransport zum und weg vom Katalysator untersucht
werden, um damit die Porengeometrie und die Position des
Katalysators in der Pore optimieren zu können. Dazu wurde
ein finite Volumen Advektions-Diffusions-Reaktions Löser ver-
wendet. Da der Porendurchmesser im Bereich von wenigen Na-
nometern liegt, mussten bei dieser Methode auch thermische
Dichtefluktuationen Berücksichtigt werden. Nachdem die Me-
thode zusammengesetzt und getestet war, stellte sich jedoch
heraus, dass die Reaktionsprozesse für die Katalyse in nano-
porösen Medien viel langsamer ablaufen als die Diffusionspro-
zesse. Dadurch verteilen sich entstehende Reaktionsprodukte
praktisch gleichmäßig in der Simulationsbox, ohne dass sich
zur Untersuchung wichtige Dichtegradienten hätten ausbilden
könnten.

Nachdem sich dieser Kontinuumsansatz sich als nicht ziel-
führend herausstellte, wendeten wir uns eines detailreicheren
coarse-grained Simulationsmodell zu. Dazu betrachteten wir
die ringschließende Metathese Reaktion, bei der der Effekt des
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Einschlusses bereits experimentell gezeigt werden konnte [2, 3].
Bei dieser Reaktion geht es darum, das eine Oligomerkette mit
sich selbst einen Ringschluss bildet. Dabei kann es aber auch
passieren, dass das Oligomer mit anderen Oligomeren in sei-
ner Umgebung reagiert, was eine Polymerisation zur folge hat.
Grundsätzlich können immer beide dieser Reaktionswege auf-
treten. Der Effekt des Einschlusses wirkt sich bei dieser Reak-
tion so aus, dass Ringschließungen gefördert und Polymerisa-
tionen unterdrückt werden. Um die genauen Gründe für dieses
Verhalten zu erfahren wendeten wir zunächst Polymertheorie
an. Dazu betrachteten wir zunächst Random-Walk Modell ei-
nes Oligomers, welches in einem Abstand d zu einer flachen re-
flektierenden Wand startet. Dabei konnte gezeigt werden, dass
dieses Oligomer einen durchschnittlich kleineren Ende-zu-Ende
Abstand aufweist als ein freies Oligomer. Ebenso gilt für die-
sen Fall auch, dass die beiden Enden des Oligomers häufiger
in einem für eine ringschließende Reaktion relevanten Abstand
zu finden sind. Dabei konnte ein optimaler Abstand ermittelt
werden, in welchem das Oligomer zur Wand festgehalten wer-
den sollte, um die Wahrscheinlichkeit für einen Ringschluss zu
optimieren. Diese polymertheoretische Analyse wurde mittels
einer Molekulardynamik Simulation geprüft und reproduziert.

Das die bisherige Analyse immer nur ein Oligomer und eine
flache Wand in Betracht zog, wurde im Rahmen einer weite-
ren Forschung nun auch Porensystem in denen viele Oligome-
re in Lösung vorliegen untersucht. Dazu musste zunächst ein-
mal ein grobkörniges Molekulardynamik-Reaktionmodell ent-
wickelt werden. Dieses wurde dann auf verschiedene Systeme
angewendet um bei denen dann Wandeffekte, Einschlusseffekte
und Krümmungseffekte untersucht wurden. Dabei konnte ge-
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zeigt werden, dass all diese Effekte einen positiven Einfluss auf
die Bildung von Ringpolymeren haben. Zum Teil konnten diese
Effekte dadurch erklärt werden, dass die lokale Oligomerdichte
in der Nähe einer Wand oder in der Pore geringer ist, als im
Rest des Systems.

In einem realen Experiment kommen wesentlich mehr Effek-
te zum tragen als die hier untersuchten, wie zum Beispiel di-
polare Molekülwechselwirkungen. Jedoch ist das Resultat eine
Überlagerung aller möglichen Effekte, welche sich experimen-
tell nur nur schwer individuell untersuchen lassen. Wie in die-
ser Dissertation erneut gezeigt wird, bieten Simulationen eine
wichtiges Werkzeug, diese komplexen Systeme zu abstrahieren
und dabei wichtige Erkenntnisse zu gewinnen.
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1. Introduction

Catalytic reactions are an essential part of today’s industry.
It is estimated that more than 80% of all chemically manufac-
tured goods are produced using catalysis [1]. Examples include
everyday plastics, pharmaceuticals, cosmetics or ammonia for
use in fertilizers via the Haber process, which alone is respons-
ible for an estimated 1% of total global energy consumption [4].
The reason catalysis is so widely used in industry is because of
its ability to speed up a reaction and change the selectivity to
favor the desired products. This is what made many reactions
possible in the first place.

This heavy use of catalysis therefore requires a high level
of research to find new catalytic reactions or improve existing
ones. These improvements can be both economic and envir-
onmental. For example, the goal might be to make a reaction
faster, cheaper and easier to apply on an industrial scale. On
the other hand, it is also desirable to look for another reac-
tion pathway that produces less, possibly toxic, waste as by-
products.

Enzymes are a special type of catalyst. These biocatalysts
are large, complex proteins that are essential for many of life’s
processes such as metabolism. Over billions of years of evolu-
tion, each enzyme has been perfected to catalyze one partic-
ular reaction. This specialization makes enzymes the fastest
known catalysts in organic chemistry [5] and on top of that
they rarely produce waste products. The disadvantage is that
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1. Introduction

they can only catalyze reactions in a very narrow range of en-
vironmental parameters such as temperature or pH.

It is therefore only natural that research into improving cata-
lysts tries to imitate some of the properties of enzymes. One
of these properties is that the substrate binds to the enzyme
prior to the reaction, thereby reducing its molecular degrees of
freedom. The reaction can then only take place at a locally con-
fined reactive site of the enzyme. Inspired by these confinement
induced effects, scientists found different ways utilize them to
improve the catalytic properties [6, 7, 8, 9, 10]. This approach
of mimicking biocatalysis led to the founding of Collaborative
Research Center (CRC) 1333, within the framework of which
the research of this dissertation was carried out.

The title of CRC 1333 is: "Molecular Heterogeneous Cata-
lysis in Confined Geometries". A molecular catalyst is a single
molecule that drives a reaction without being consumed by it.
A catalytic reaction is called heterogeneous when the catalyst
and the reacting substrates are not in the same state of mat-
ter. This may be that liquid substances flow over a catalytic
surface or, in the case of molecular catalysis, that the catalysts
are bound to a surface. To reduce the degrees of freedom the
catalysts are confined in a porous medium with an inner dia-
meter of a few manometers. Therefore the aim of CRC 1333
is to research how molecular catalysis is influenced by confine-
ment and develop methods to utilize these confinement effects.
The scale of the nanoporous media was set to have a diameter
of 2nm < d < 50nm, which classifies them as meso pores.

The research of CRC 1333 was conducted from three differ-
ent fields of study: materials, catalysis and analysis/simulations.
The first field is concerned with porous materials in which the
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catalysts can be anchored. Research was done on many dif-
ferent materials, such as covalent organic frameworks (COFs)
[11, 12] or mesoporous silica [13]. Here it was investigated how
these different materials can be produced and provided with
“docking sites” in order to later anchor the catalyst to them.

For the catalysis research, as a central field of study of the
CRC, various reactions were tested to qualify and quantify the
effects of confinement. One reaction that showed a significant
molecular confinement effect was the ring-closing metathesis
reaction, in which an enhanced formation of cyclic oligomers
was observed [2, 3].

The field of simulation and analysis acts as a supporting
filed for the others disciplines. On the one hand, the analysis
approach used and improved methods to measure the pore
structure, such as atomic probe tomography [14, 15], or ob-
tained information on where exactly the catalysts are located
in the pore, using nuclear magnetic resonance spectroscopy
(NMR)[16]. On the other hand, simulations on different scales
were used to gain insights into the mechanisms involved. At
the quantum scale, density functional theory (DFT) simula-
tions were used to study the reaction mechanisms [17] or the
structuring process of COFs [18]. At the atomistic scale, ad-
sorption processes within the pore were analyzed by all-atom
molecular dynamics (AA-MD) simulations [19]. On the larger
scales, the simulations of this project took place.

The goal of this project was to investigate the substrate
transport processes in and within the pores. We decided to
take a top-down approach, starting with a continuum-level
simulation and later moving on to more refined methods, thus
closing the gap on the system scale with the other simulation
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1. Introduction

projects of CRC 1333.

When analyzing the catalytic porous system on the con-
tinuum scale, we are not dealing with a set of discrete substrate
particles, but with locally dependent particle densities within a
flow field. In the scale of this approximation, the density distri-
bution follows the dynamics of diffusion and advection. Thus,
any local density spreads out and also moves with the fluid in
which it is dissolved. These laws of MD are expressed by a set
of partial differential equations (PDEs). For the simulation
these equations are solved numerically. The PDEs also need
to be modified to account for reactions and catalytic boundary
conditions. However, due to the small size of the pores, we
arrive at a length scale where thermal density fluctuations can
be important, especially if observables of the system are non-
linearly dependent on the fluctuating density. This the case
for many reactions.

The investigation done with the continuum model is dis-
cussed in Chapter 3. The aim was test such a thermalized
advection-diffusion-reaction model to see if it could be used to
analyze transport through the nanopores containing the cata-
lysts. For the implementation we used two software packages:
ESPResSo [20] and pystencils [21]. Once the implementation
was complete, we were able to validate it against various ana-
lytically solvable systems. The code was also bench marked
to show its excellent scaling behavior. In the end, however,
it turned out that the molecular reactions are relatively slow
compared to the diffusion within the pore, so that the density
profile is essentially homogeneous and the system is in diffusive
equilibrium.

Since the continuum approach was unfit to model molecu-
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lar catalysis under confinement, we switched to mode detailed,
coarse-grained molecular dynamics simulations (CG-MD). The
reaction we modeled in this way was the ring-closing metathe-
sis reaction, because the confinement seemed to have a direct
influence on the polymer structure, which should be possible to
reproduce with CG-MD. To test whether this was true, a ran-
dom walk analysis was carried out beforehand. This study is
described in detail in Chapter 4, where we solved the problem
analytically to investigate the effects of a reflective flat wall on
a polymer random walk that arises near it. This study showed
that the probability of the random walk ending near its origin
increases when there is a wall nearby, which should also result
in an increase in the probability of the ring closing metathesis
reaction.

With this theoretical investigation as a basis, we continue
with the CG-MD simulation in Chapter 5. We have developed
a reaction model in which particle bonds are formed when cer-
tain particles collide and are broken at a given rate. The cata-
lyst to which the particles attach is placed in different geo-
metries to disentangle the various surface, confinement and
curvature effects that are all present simultaneously in the ex-
periments. With this approach, we have succeeded in meas-
uring effects of a similar magnitude to those observed in the
experiments, but with the addition of gaining insights into how
these effects are composed.

The work of this dissertation has been partially published in
these publications:

I. Tischler, F. Weik, R. Kaufmann, M. Kuron, R. Wee-
ber, C. Holm. “A thermalized electrokinetics model in-
cluding stochastic reactions suitable for multiscale sim-
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1. Introduction

ulations of reaction-advection-diffusion” In: Journal of
Computational Science, 63:101770, September (2022)
URL: https://doi.org/10.1016/j.jocs.2022.101770
Data repository: https://doi.org/10.18419/darus-2258

I. Tischler, A. Schlaich, C. Holm. “The presence of a
wall enhances the probability for ring-closing metathesis:
insights from classical polymer theory and atomistic sim-
ulations” In: Macromolecular Theory and Simulations,
30(2):2000076, March (2021)
URL: https://doi.org/10.1002/mats.202000076
Data repository: https://doi.org/10.18419/darus-1371

I. Tischler, A. Schlaich, C. Holm. “Disentanglement
of surface and confinement effects of the diene metathe-
sis reaction in mesoporous confinement” In: ACS Omega
(2023)
URL: http://doi.org/10.1021/acsomega.3c06195
Data repository: https://doi.org/10.18419/darus-3642

There were also contributions towards a chapter of a book:

R. Weeber, J.-N. Grad, D. Beyer, P. M. Blanco, P. Kre-
issl, A. Reinauer, I. Tischler, P. Košovan, and C. Holm.
“ESPResSo, a versatile open-source software package for
simulating soft matter systems” In Reference Module in
Chemistry, Molecular Sciences and Chemical Engineer-
ing Elsevier (2023).
ISBN: 978-0-12-409547-2
URL: https://doi.org/10.1016/B978-0-12-821978-2.00103-3
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2. Theoretical Background

In this chapter, the knowledge required for understanding the
further chapters will be recapitulated. First we give an over-
view of catalysis (Section 2.1) and deepen our understanding
using the ring-closing metathesis reaction. Because this reac-
tion depends on the properties of oligomers, an insight into
polymer physics is provided in Section 2.2. Lastly, the numer-
ical methods used in this work are described in Section 2.3,
which range from coarse-grained molecular dynamic to con-
tinuum simulations.

2.1. Catalysis

Chemical reactions are processes in which reactants are conver-
ted into products. These processes can be either endothermic,
meaning that they consume energy, or exothermic, meaning
that they produce energy. The change in energy in a reaction
system is called the Gibbs energy

∆G = ∆H − T∆S , (2.1)

consisting of the heat difference or enthalpy ∆H and an entropy-
related change T∆S. In order for a reaction to get started, an
energy barrier must usually be overcome. This activation en-
ergy Ea is energy needed to break-up of the internal structure
of the reactants, which then rearrange to form the product.
This activation energy is usually overcome by heating up the
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2. Theoretical Background
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Figure 2.1.: Energetic levels during the reaction process with
and without catalyst. The example reaction has
the form A + B → AB. The reaction pathway
with the catalyst has a smaller activation energy
Ecat

a < Ea, but the energy difference ∆G between
the reactants and the product remains the same.

reactants. To lower this activation energy, a catalyst can be
used. A catalyst is a substance that can chemically bind to
the reactants, facilitating the breaking of the bonds. Once the
reaction is complete, the catalyst returns to its initial state and
can catalyze the reaction again. The different energy levels of
a reaction with and without a catalyst are shown in Figure 2.1.

The reduction of the activation energy completely changes
the kinetics of a reaction. The speed of a reaction is defined by
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2.1. Catalysis

its reaction rate R, which describes the change in concentration
over time. The dependence of the reaction rate on the different
reactant concentrations is given by the rate equation:

R = k
∏︂
i

cαi
i , (2.2)

where k is the reaction rate constant, ci is the concentration of
the various reactants i and αi denotes the partial order of that
reactant. While it may be simple to say that a catalyst changes
the rate constant, in reality the matter is more complex [22].
In the various elementary reaction steps in which the reactants
react with the catalyst, the order may be partial, negative or
even dependent on other reaction steps. This complexity can
mean that catalytic reactions do not obey the power law of
the rate equation. However, in many cases this is still a good
approximation.

Apart from the fact that the reaction can be carried out
at a lower temperature, a catalyst also makes many reactions
possible in the first place. For the same group of reactants,
there can be several different reactions that can occur. These
different reactions also have different activation energies. So
when the lowest energy barrier is overcome during heating, this
reaction starts and consumes the reactants. This can be de-
naturation of the reactants or some other undesirable reaction.
A catalyst designed for a specific reaction sets the activation
energy of the desired reaction to the lowest and thus enables
the synthesis of the desired product.

Catalysts can be classified into homogeneous and heterogen-
eous catalysts [23], depending on whether the catalyst and the
reactants are in the same or in a different state of matter.
Heterogeneous catalysts are often metals that are processed to
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2. Theoretical Background

have a large surface area. The reactants come in contact with
them in liquid or gaseous form. Due to the stability of these
catalysts, heterogeneous catalysis can be carried out at very
high temperatures, resulting in a high reaction throughput. In
addition, they can be easily scaled up for industrial purposes.

Homogeneous catalysis, on the other hand, usually involves
organic molecules with a metal atom in their reactive center.
These organometallic complexes are dissolved in a solution
with the reactants. This means that the catalyst is always
in contact with the reactants, so that the reaction takes place
throughout the entire solution. After the reaction is complete,
the catalyst and the products must be separated again. The
thermal stability of the catalyst complex also determines the
maximum temperature at which the reaction can be carried
out. However, the benefit of the homogeneous catalysis is that
the catalyst molecules can be customised to perform one spe-
cific desired reaction.

Another classification of catalysts are biocatalysts or en-
zymes. They are made of amino acids and are much more
complex than normal molecular catalysts, but have enormous
advantages in terms of reaction selectivity and speed [5]. One
mechanism that makes them so superior is their binding site
and catalytic site. The binding site controls which molecules
can bind to it, and once a molecule is bound, the enzyme wraps
itself around the reactant. This restricts the conformations of
the molecule and forces the reactive site to act at the exact
location of the reactant. When the reaction is complete, the
enzyme opens up and releases the product. The problem with
using enzymes, however, is that they are too complex to model
them from scratch, which means that we can only use enzymes
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2.1. Catalysis

that are known from nature, or use gen manipulation to modify
existing ones [24].

When looking for the improvement of an existing catalytic
reaction, three properties have to be considered: Speed, sta-
bility and selectivity. The speed of a reaction is defined by
the reaction rate R, which indicates how much reactant can
be converted into a product over time. Stability indicates how
many reactions a single catalyst can undergo before it becomes
inactive. Even if catalysts are not consumed by the reactions,
they can still become inactive, e.g. through denaturation or
when a reaction molecule gets stuck on the catalyst. How-
ever, these events are unlikely. Stability is described by the
turnover number (TON), which indicates the average number
of reactions in a catalyst’s life cycle. An ideal catalyst does not
deactivate and therefore has a TON of infinity. For real mo-
lecular catalysts the TON are typically in the range between
102 and 104, but may also reach up to 106 [25]. Since undesir-
able side reactions occur in many reactions, the selectivity S
is a measure of how likely it is that the desired reaction will
occur. It can be quantified by the amount of desired and total
product produced:

Swanted =
Nwanted

Ntotal
. (2.3)

An important topic in the field of catalysis improvement are
confinement effects, which occur when the catalytic reaction
takes place in a very confined space. Confinement effects is a
very broad term, because they summarize a variety of differ-
ent effects that occur simultaneously when the catalytic pro-
cess takes place in confinement. There are also many ways
apply the confinement to a catalyst. One example are zeolites
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2. Theoretical Background

[26, 27], which are microporous, crystalline aluminosilicate ma-
terials with pore sizes of d < 1nm. In these zeolites, larger
molecules flowing through them are restricted in their move-
ment, forcing a structural change. This allows them to adsorb
onto the material, which releases heat. This heat of adsorption
is then sufficient to trigger the reaction on the molecule [28].
As we can see, there are many different effects at play, such as
surface structure, pore size or adsorption strength, which add
up to the confinement effect. It is also possible to use confine-
ment in homogeneous catalysis, e.g. by using self-assembled
container molecules [29, 30], which can be described as ring-
shaped or hollow molecules where the reaction takes place in
the center.

Within the research project of the collaborative research
center (CRC) 1333, we wanted to investigate the effects of con-
finement on molecular catalytic reactions. The confinement
itself is achieved by anchoring the catalyst in a mesoporous
medium with diameters of 2 nm < d < 50 nm. One of the
reactions selected for this purpose is described below.

2.1.1. Ring-Closing Metathesis

A particular group of catalytic reactions is known as olefin
metathesis, for which its discoverers Robert H. Grubbs, Yves
Chauvin and Richard R. Schrock were awarded the Nobel Prize
in Chemistry in 2005 [31]. The reaction applies to a pair of
carbon-carbon double bonds and swaps their bonding partners.
An example of this is shown in Figure 2.2. It is a fairly simple
reaction that also produces fewer hazardous by-products than
many other organic reactions. Because this reaction only tar-
gets double bonds, it finds its uses in research where it can
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2.1. Catalysis

C C

C C

R1 R2

R3 R4

C C

C C

R1 R2

R3 R4

cat.

Figure 2.2.: Schematic representation of the redistribution of
the double bond partners in the olefin metathesis
reaction. Note that only the double bonds are af-
fected and the remainder attached to each carbon
atom remains attached to the same atom. This is
an idealized example because the molecules are not
arranged in the same order, which means that the
products end up containing any two of the residues
R1 to R4.

be used to discover new candidates for pharmaceutical drugs
[32]. Other industrial application would be the synthesis of
substances like perfumes [33], or to refine products obtained
from natural coal, gas or oil [34].

A special case of metathesis occurs when the reaction mole-
cules have several olefin bonds in them. In the simplest case,
this is an alkene chain in which the double bonds are located
at both ends of the chain. When the reaction occurs between
two chains, they join together to form a polymer chain that
is twice as long and now has three double bonds, one at each
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2. Theoretical Background

Figure 2.3.: Illustration of the different reaction pathways of
diene metathesis. The polymerization is shown at
the top, the ring-closing metathesis at the bottom.

end and one in the middle. This polymerization process can
be repeated as long as a suitable substrate is available.

However, the reaction can also take a different path. Instead
of rearranging the double bonds of two different alkene chains,
two olefin bonds at the ends of the same molecule can fuse
together. The resulting product is then a cycloalkene, giving
this process the name ring-closing metathesis. An illustration
of the two reaction pathways can be seen in Figure 2.3. The
size of these cycloalkenes depends on the size of the substrate
molecules, and if the alkene chain was long to begin with, the
resulting ring-closed molecules are called macrocycles, which
have numerous applications in medicine or industry [35, 36,
37, 38, 39].

Both of these processes also produce some ethylene, which is
a free carbon atom pair connected by a double bond. Technic-
ally, it is possible for these ethylene molecules to again perform
the metathesis reaction with the other products, thus revers-
ing the reaction. However, due to their small size, the ethylene
molecules evaporate relatively quickly and their absence sup-
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back biting

ring opening

Figure 2.4.: Illustration of the backbiting reaction (left to
right) or the ring opening polymerization (right
to left).

presses this reverse reaction. Also, as long as the ring-closed
and polymerized products remain in the system, their olefin
bonds can again undergo metathesis reactions. Meaning that
rings may open up and polymerize together in a process called
ring opening metathesis polymerization. The end carbon pair
of one polymer may also react with a carbon pair within their
backbone, producing ring-closed products, as illustrated in Fig-
ure 2.4. This is then called back biting [40].

In diene metathesis, these pathways occur, but not with
equal probability. The selectivity depends on which reaction
events are more likely: that the ends of two different oligomers
combine, or that the substrate bends enough to allow its two
ends to react. This results in a so called ring-chain equilibrium
[41], for which the ring-closing selectivity can be quantified as:

SRC =
NRC

NRC +NP
, (2.4)

where NRC and NP is the amount of ring-closed or polymer-
ized products obtained during the reaction. This ring-chain-
equilibrium is depending on the enthalpy and entropy of the
system. Controlling which reactions take place is of interest for
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industrial purposes, since one usually wants to obtain a partic-
ular product from a reaction. While for short chains the ring
strain is the dominating energy contribution, for longer chains
this can be neglected due to their higher flexibility [42]. A shift
in selectivity toward polymerization can be achieved by a high
substrate concentration [43]. The more oligomers present in
the solution, the greater the likelihood that the ends of two
oligomers will fuse together. In contrast, optimizing the re-
action to promote ring closure is more complicated. Running
the reaction at low concentrations increases the ring-closing se-
lectivity, but is not feasible for large-scale production, because
low substrate densities lead to low product densities. Because
these macrocycle products can be used in many applications,
it is desired to find ways to increase the ring-closing selectivity
whilst running the catalysis at high substrate concentration.
One way to overcome this limitation is to develop more stable
catalysts, which live long enough to disassemble the product
polymers to ring via the back-biting process[44].

Another approach to increase the selectivity of ring closure is
to use confinement effects by placing the catalyst in mesopores
and performing the reaction there. The idea behind this is that
confinement restricts the configurations of the oligomers and
forces them to coil up more [45]. However, this confinement
introduces a multitude of different effects, like the interaction
of the substrates with the pore surface or the influence of the
curvature of the pore. These confinement effects are studied in
the scope of the CRC 1333, under which the work for this thesis
was carried out. In this work, simulation techniques are used
to understand the experimental results performed by Ziegler
et al. [2, 3] on this reaction and to find which confinement
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effects can occur under which circumstances.

2.2. Polymer Physics

The diene metathesis reaction is a reaction of several polymer
chains that can take place either inter- or intramolecularly,
depending on the configuration of the polymers. To understand
which of the two reactions takes place, a basic introduction to
polymer physics [46] is required.

The word polymer can be derived from the Greek words
“poly” and “mer”, meaning “many parts”, referring to mole-
cules made up of many monomers, meaning “one part”. When
a polymer consists of only a “few parts”, it is called an oligomer.
The word monomer has slightly different meanings depending
on the scientific background. Physicists use it to describe the
individual repeating units of a longer polymer chain. Chem-
ists, on the other hand, use it to describe a molecule that can
be polymerized. This means that the substrate olefin chain
of metathesis is called a monomer by chemists and a poly-
mer/oligomer by physicists. However, this dissertation will
continue to use the physics terminology.

A polymer can be considered as a set of N connected beads
forming a chain, where N is large and the behavior is often in
the limit of infinity. Technically, polymers can also have cross-
links and branching, but here we restrict ourselves to linear
polymers. While there are some properties that are trivial to
transfer from the monomer to the polymer, such as mass, there
are other properties that are not so intuitive. An example of
this is how the diffusion coefficient of a polymer is determined
from the diffusion coefficient of the monomers. Finally, there
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are properties that can only be used to describe polymers and
are not applicable to single monomers, such as how far apart
the ends of the polymer are.

There are various models of varying complexity for analyzing
polymers. The simplest model is the so-called random walk, in
which all interactions between the monomers are ignored and
the polymer is constructed step by step. With a discrete step
size of l in one dimension, the polymer can be expressed as a
sequence:

X0 = 0 (2.5a)
Xn = Xn−1 ± l with 0 < n ≤ N − 1 . (2.5b)

If the chances of moving in either direction are equal, then
the probability of the random walk ending at a position x is
given by the binomial distribution:

P(x,N) = l

(︃
N

x

)︃
0.5N . (2.6)

Calculating the different moments of XN yields:

⟨XN ⟩ = 0 and (2.7)⟨︂
(XN − ⟨XN ⟩)2

⟩︂
=

⟨︁
X2

N

⟩︁
− ⟨XN ⟩2 = l2N . (2.8)

This means that the random walk will most likely end at
the origin, however, the average distance between the two end
points is

de2e =
√︂⟨︁

X2
N

⟩︁
= l

√
N. (2.9)

Random walks in higher dimensions work similarly, where
the direction of the step is chosen along a random axis. Fig-
ure 2.5 (left) shows such a random walk in two dimensions.
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Origin

End

de2e

Origin
End

R⃗N

r⃗i

Figure 2.5.: Comparison of a 2D random walk (left) and a
freely jointed chain (right).

The moments and the final distance for the random walk in
higher dimensions remain the same as in one direction. This
can be explained by the independence of the different direc-
tions, with the effective number of steps in each direction de-
creasing with the number of dimensions D, since only one of D
moves on average occur in one particular dimension. The num-
ber of different dimensions and the effective number of steps
per dimension cancel each other out

⟨XN ⟩ = 0 , (2.10)⟨︁
X2

N

⟩︁
− ⟨XN ⟩2 =

N∑︂
i

⟨︁
X2

N

⟩︁
N

= l2N . (2.11)

If the direction of the steps is not restricted to the axis of one
particular dimension, then the model becomes a freely jointed
chain (Figure 2.5 right). With the directional step ri (|ri| = l),
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the end-to-end vector RN is given as the sum of all steps:

RN =

N∑︂
i=1

ri . (2.12)

Because of rotational symmetry the first moment and the
average ending position is again the origin:

⟨RN ⟩ = 0 . (2.13)

The variance requires some small calculations:

⟨︁
R2

N

⟩︁
=

⟨︄
N∑︂
i=1

ri ·
N∑︂
j=1

rj

⟩︄
=

∑︂
i

∑︂
j

⟨ri · rj⟩ =
N∑︂
i=1

l2 = l2N .

(2.14)
Here it was assumed that two different steps are completely
uncorrelated

⟨ri · rj⟩ = δijr
2
i . (2.15)

Comparing Equations (2.11) and (2.15), we find that the
variance for the freely jointed chain is the same as for the
random walk. Since the directions of the different steps are
independent and have uniform probability to point in any dir-
ection, the central limit theorem can be applied to obtain the
probability density for the end of the chain.

P(RN , N) =

(︃
D

2πl2N

)︃D
2

e−
DR2

N
2l2N . (2.16)

Given a subset V , the probability PV (N) of ending a random
walk in V after N steps can be calculated by

PV (N) =

∫︂
V

P (RN , N)dRN . (2.17)
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r⃗i

lp

b⃗j

θ

Figure 2.6.: Schematic of a freely rotating chain with the angle
θ between the steps. The segments of the chain are
joined to form a freely jointed chain with a larger
step size b. lp shows the persistence length, which
is about half a Kuhn length in the limit of small
angles.

This idea, of where a polymer is likely to end is built upon and
used for the analysis in Chapter 4.

The next step to increase the complexity of the model is
to assume fixed bond angles θ between the steps, while the
rotation remains random, hence the name freely rotating chain.
With the addition of bond angles, this model represents a more
realistic polymer.

This gives the polymer some of its stiffness, but also leads
to correlations between the individual steps, which invalidates
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the results of the earlier models. These correlations can be ex-
pressed by the occurring angle θij between the steps ri and rj .
This model is much more difficult to handle on the scale where
the steps are highly correlated. The correlation decays fast for
monomers that are far apart in the chain. The length scale
in the chain for which two steps are considered uncorrelated is
called the persistence length lp. Using lp we can rescale this
chain into a freely jointed chain with a larger step size. This
new larger step groups the small correlated steps together so
that these new steps are no longer significantly correlated. The
resulting chain also has fewer steps than the original. This new
step size is called the Kuhn length b and can be calculated as
follows:

b = l
1 + cos θ

1− cos θ

1

cos θ
2

, (2.18)

For the detailed derivation of the Kuhn-length we refer to Ru-
binsteins “Polymer Physics” [46]. The number of segments in
the rescaled chain Ñ is chosen so that the chains have the same
maximum end-to-end distance Rmax = Nl:

Ñ =
Rmax

b
=
Nl cos θ

b
. (2.19)

This approximation of short correlated steps to longer un-
correlated steps is shown in Figure 2.6. There are other models
that restrict the rotation of the steps, for example, but the idea
of how to deal with this is the same: we break down several
correlated steps into fewer uncorrelated ones and use the freely
rotating chain model to calculate other properties.

One such property would be a measure of the size of the
polymer and how much space it occupies. While for linear
polymers it is possible to use the average distance between the
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ends for this, for other types of polymers, such as ring-shaped
polymers, this property is undefined. Therefore, the gyration
radius Rg is introduced, which is calculated from the average
of the squared distances to the centre of mass rcom of each
position:

rcom =
1

N

N∑︂
i=1

ri , (2.20)

R2
g ≡ 1

N

N∑︂
i=1

(ri − rcom)2 . (2.21)

Rg represents the effective length scale of which many different
processes such as rotation take place. Rg gives some insight
into the structure of a polymer, because it describes how the
monomers are distributed in regards to the center of mass. For
that reason Rg can be determined via light scattering exper-
iments by measuring the angular dependence of the intensity
of the scattered light. On the other hand Rg also gives us in-
sights into the behavior of polymers near impenetrable walls.
If a polymer is near an impenetrable surface, it is restricted
in the possible number of configurations it can have. This re-
duction in the degrees of freedom also leads to a decrease in
entropy. For a polymer in solution that means, that due to en-
tropic reasons it is less likely that its center of mass is located
in a volume close to a impenetrable surface than in a volume
without any boundary present. While this is already the case
when one end of the polymer is Rmax from the boundary, it is
negligible until the distance is within the length scale of Rg.
For these and shorter distances, the number of configurations
decreases significantly, leading to lower and lower densities near
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Figure 2.7.: Illustration of the bead-spring model.

the wall. A more detailed impact of the changes imposed on
the configurations is discussed in Chapter 5.

We now move from the static description of polymers to the
dynamic one. On long time scales, a polymer can be seen as a
single large particle that is subject to diffusion and is entrained
by the solvent. How large this particle is and how much friction
it has is determined by the structure of the polymer. One
model for analyzing polymer behavior is the so-called Rouse
model [47]. This model assumes that the polymer is an ideal
chain of beads connected by springs, hence the name “bead-
spring model”. A schematic representation of this model can
be seen in Figure 2.7. The model is defined by the spring length
b and the number of beads Ñ . There are no excluded volume
effects of the beads and they interact with each other only
through the connecting springs with spring constant k. Each
bead is coupled independently to the surrounding medium via
the friction coefficient γ. This results in the following Langevin
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equation of motion of the individual beads:

γ
∂ri
∂t

= k (ri−1 − 2ri + ri+1) + fi , (2.22)

where fi is a thermal noise term. The acceleration term is miss-
ing because for the time scales of interest it becomes negligible.
The system is therefore overdamped. The thermal noise obeys
ther fluctuation dissipation theorem and is defined by

⟨fi(t)⟩ = 0 and (2.23a)⟨︁
fi(t)fj(t′)

⟩︁
= 6γkBTδ(t− t′)δij . (2.23b)

Because we are in a thermal system we can rewrite the spring
constant in terms of the thermal energy k = 3kBT

b2
. When being

in the limit for long times, the friction of each bead on average
acts separately on the polymer. This means that the effective
friction coefficient γeff that the polymer experiences, can be
expressed as the sum of the individual friction of the beads:

γeff = Ñγ . (2.24)

Within this limit of long times we can apply the Einstein-
Smoluchowski [48, 49] relation to translate the friction into a
diffusion coefficient:

Deff =
kBT

γeff
=
kBT

Ñγ
. (2.25)

However, this assumption of a single diffusion coefficient
only works on longer time scales. On short time scales, the
internal elasticity of the connected springs becomes relevant.
The time scale is defined by the Rouse time τ , which is the
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relaxation time of the movement of the beads perpendicular
to their spring axis. As long as these normal motions of the
beads are in equilibrium, Deff is a good approximation to the
diffusion coefficient.

For a good derivation of the relaxation time of the bead
spring model by solving the coupled differential equation of
the bead motion, I recommend Ref.[50]. In the end, τ turns
out to be:

τ =
b2Ñ

3π2Deff
=

γÑ
2
b2

3π2kBT
. (2.26)

While the Rouse model can predict the behavior of polymer
melts quite well, the deviation from the experiments for poly-
mers in solution is quite large. This is due to the neglect of
the hydrodynamic interaction. Therefore, Zimm [51, 52] im-
proved Rouse’s model to take into account the hydrodynamic
interaction between the beads. This interaction potential Hij

between different beads decreases with the reciprocal distance
of these beads. However, since this non-linear tensor function is
difficult to handle, it is usually used as the mean value around
which it fluctuates in the equilibrium state. There it reads:

⟨Hij⟩ =
1

6πη

⟨︃
1

|rj − rj |

⟩︃
, for i ̸= j (2.27)

with η being the viscosity of the solvent. Including this into
the Langevin equation (Equation (2.22)), leads to:

∂ri
∂t

=

Ñ∑︂
j

⟨Hij⟩ [k (rj−1 − 2rj + rj+1) + fj ] , (2.28)

Since the friction to which the beads are subjected comes
from the solvent, it can be shown that the coefficient of friction

34



2.2. Polymer Physics

of the Rouse model is translated into the viscosity of the Zimm
model via the following relationship:

η =
8γ

3b
√
N
√
6π3

. (2.29)

With this the relaxation time and the diffusion coefficient
turn out to be:

τ =
ηb3Ñ

3
2

√
3πkBT

≈ 0.325
ηR3

g

kBT
and (2.30)

D =
8kBT

3
√
6π3ηb

√
N

≈ 0.196
kBT

Rg
, (2.31)

where the approximation of the radius of gyration via the Flory
exponent ν [53] was used:

Rg = bÑ
ν

. (2.32)

The Flory exponent is a measure of how good or bad a solvent
is for a particular polymer. If it is a bad solvent, the polymer
tends to curl up to reduce its effective surface area with the
solvent (ν ≈ 1/3). The opposite is true for a good solvent,
where the surface area is increased by expansion (ν ≈ 3/5).
For the derivation, a θ solvent (ν = 0.5) was assumed, where
the polymer behaves similar to a random walk.

Experiments show that the Zimm model is a much better
model for describing polymers in solution and that the scaling
of D and τ with the number of beads is correct. To simplify
the hydrodynamic interactions of a polymer and a fluid, we can
define a hydrodynamic radius RH , which is the radius of a hy-
pothetical sphere that has the same hydrodynamic properties

35



2. Theoretical Background

as the dissolved polymer. Since this is how the polymer inter-
acts with the solvent on average, the ensemble average can be
obtained from dynamic light scattering measurements. The-
oretically, this can be calculated by averaging the reciprocal
of the distance between the beads, which is a measure of how
strongly these beads are connected by hydrodynamics:

1

RH
=

2

N (N − 1)

N∑︂
i=0

N∑︂
j>i

1

|ri − rj |
. (2.33)

This property can be used to validate polymer models from
molecular dynamic simulations by comparing them with ex-
perimental values.

From this we can conclude that the hydrodynamic radius
influences the diffusion coefficient:

Deff =
kBT

6πηRH
. (2.34)

The diffusion coefficient obtained from Equations (2.31) and
(2.34) are slightly different, where the difference between them
can usually neglected.

2.3. Numerical Methods

We use the language of mathematics to describe the world as
it is. However, due to the ever-changing nature of things, the
resulting equations usually turn out to be systems of differen-
tial equations. There is rarely a general analytical solution to
these equations, so simplifications are necessary. These can be
achieved by restricting the degrees of freedom of the system. In
such an ideal world, physicists can make analytic predictions.
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Reality, however, is usually not ideal. Instead of oversimpli-
fying the system and finding an analytical solution, it is also
possible to obtain a numerical solution by simulating a well-
defined system.

A simulation can be understand as a virtual representation
of a system, where the differential equations define the rules
of that system. To handle the infinitesimal changes in the
differential, they are approximated by small finite differences.
Thus, time differentials can be discretized into a time step
and space differentials into a grid. Then the system can be
integrated step by step.

However, this requires a huge amount of calculations to be
done. 100 years ago, such calculations were done by persons
who did the computations, so called (human) computers. This
was a slow and lengthy process. With the advent of digital
computers in the 1940s, these numerical calculations became
easier to perform. Since then, the technical complexity of
computers has increased in accordance with Moore’s Law [54],
which states that the number of transistors in integrated cir-
cuits doubles every one to two years. This exponential growth
in computing power has also made it possible to perform more
complex simulations.

Simulations are now an essential part of industry and science,
where they bridge the gap between theories and experiments.
On the one hand, they can be used to check whether a theory
is correct by replicating experimental results in a simulation.
If they match, one can also analyze which processes lead to
these results, which is not always possible experimentally. On
the other hand, simulation can also predict the results of ex-
periments. In this way, experiments can be better focused on
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interesting points in the parameter space and the number of
unnecessary experiments can be reduced.

Simulations can be applied on many different length and
time scales. On the smallest scale, they are used to study
quantum chemical problems by calculating the wave functions
of electrons for a given number of atoms. In this way, one can
gain insights into chemical reaction mechanisms or determine
the structure of molecules. A commonly used method is the
density functional theory (DFT) [55], which is used to find
the solutions of the Kohn-Sham equations [56] to determine
the electron wave functions. However, this leads to an eigen-
value problem that requires an enormous computational effort
that scales with the number of electrons cubed (O(N3)). This
method can therefore only be used for small systems (number
of atoms < 1000).

One step higher on the scale ladder are the molecular dy-
namics (MD) simulations, in which the atoms form the system
and the electronic structure is neglected. The motion of these
atoms is described by Newton’s equations of motion. Since
atoms are only affected by atoms that are nearby, the compu-
tational effort scales linearly with the number of atoms (O(N)).
The number of atoms that can be processed can therefore be
very large. It is also possible to combine several atoms into
a larger bead, which further reduces the computational costs.
This process is called coarse-graining (CG). MD simulations
are used to study solvating behavior or diffusion processes in
porous media.

For systems where the individual details of the atoms are ir-
relevant and only their collective properties become interesting,
a continuum model can be used. Here, explicit particles are ap-
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proximated by an implicit particle density that could be solved
numerically by the Poisson equation or the Navier-Stokes equa-
tions. These partial differential equations are discretized on a
grid, assuming that the local properties are homogeneously
distributed within each grid cell. This discretization then al-
lows the gradients to be calculated by the differential quotient
of neighboring cells. Depending on the differential equations,
there are different methods to solve them, e.g. the finite ele-
ment method or the finite volume method, we will discuss the
latter in more detail later. Since these methods can be applied
wherever the underlying properties can be considered continu-
ous, their range of application is very broad and extends from
microfluidics across aerodynamics up to global weather fore-
casting.

Many scientific problems, such as catalysis in confinement,
are usually too complex to simulate with just one of the above
methods. There are many different things happening on many
different scales: The reaction itself takes place on a quantum
scale, the diffusion of the reactants on an atomistic scale, and
the flow in and out of the confinement is large enough to be
described as a continuum. Since there have been other pro-
jects in the CRC that look at the problem from the quantum
and atomistic scales, a top-down approach was chosen for this
project. Thus, we start at the continuum scale and then move
on to coarse-grained MD simulations to capture all facets of
the problem. Continuing in this section we go into the details
of the simulation methods used.

39



2. Theoretical Background

2.3.1. Molecular Dynamic Simulations

The Integrator Scheme

Problems caused by the physical movements of atoms/particles
can be analyzed using MD simulations. The forces acting on
a particle determine its acceleration, velocity and position ac-
cording to Newton’s law of motion:

Fi = m · ai = m · v̇i = m · r̈i , (2.35)

where i denotes the index of the particle. The force Fi can
either arise from an external field, or stem from the interac-
tion of the particles (Fi(r1, ṙ1, . . . , rN , ṙN )), which couple the
equations of motion of the different particles. However, as
long as the interactions between the particles are defined, it
is possible to calculate the forces on each particle for a given
snapshot. By incrementing the time t with small single time
steps ∆t and using a Taylor expansion of the velocity vi(t+∆t)
and the position ri(t+∆t), the following update rules can be
determined:

vi(t+∆t) = vi(t) + ∆tai(t) +O(∆t2) and (2.36a)

ri(t+∆t) = ri(t) + ∆tvi(t) +O(∆t2) , (2.36b)

where the O notation indicates the order of the neglected
terms. The error scales with the highest term considered,
which is of first order with the time step. According to these
rules, the new particle positions and velocities are determined,
from which this process can be repeated by calculating the
forces at this new time. This simple method is called the
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Euler method. However, it is rarely used because the error
scales linearly with the time step. On top of that the Euler
method shows an energy drift for many kinds of systems. A
better method that is often used is the Leapfrog method, where
the velocity is shifted by half a time step so that the derivatives
are not one-sided but centralized:

vi(t+
∆t

2
) = vi(t−

∆t

2
) + ∆tai(t) and (2.37a)

ri(t+∆t) = ri(t) + ∆tvi(t+
∆t

2
) . (2.37b)

This small change leads to a second order error and its sym-
metry makes it symplectic. A symplectic integrator ensures
that the resulting trajectory is still described by Hamiltonian
mechanics. This suppresses energy drifts and makes them fa-
vorable for long-term chaotic systems, like MD. For analytical
purposes, the velocity and positions should be read out sim-
ultaneously, which can be achieved by doing the velocity in-
tegration in two steps. This then leads to the Velocity-Verlet
algorithm, which is mathematically equaivalent to the Leapfrog
method and hence also symplectic:

1. Calculate the half step velocities: vi(t +
∆t
2 ) = vi(t) +

1
2∆tai(t).

2. Determine the new positions (2.37b).

3. Compute the new forces Fi(t + ∆t) and accelerations
ai(t+∆t).

4. Update the second half step of the velocities: vi(t+∆t) =
vi(t+

∆t
2 ) + 1

2∆tai(t+∆t).
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Forces and Potentials

Once the integration rule has been established, we can move
to calculating the forces. The forces acting on a particle can
come from many different sources, for example external fields,
frictional forces or interactions with other particles. They are
usually independent and can simply be summed up. External
forces in MD simulations are either predefined, such as a con-
stant electric field in a capacitor, or arise from coupling with
other methods, such as the flow field of a fluid in which the
particles are dissolved. Frictional forces are discussed later in
this section. The interaction between particles at the molecu-
lar level is defined by the electrons. On the one hand there
are Coulomb and dipole interactions, which can be attractive
or repulsive depending on the parity of the ionic charge or the
orientation of the dipoles. But uncharged atoms also inter-
act via their electrons, through van der Waals forces [57, 58]
or the Pauli exclusion principle [59]. In the former, electron
density fluctuations cause a local dipole moment. This also po-
larizes the electron density of the neighboring atoms and leads
to an attractive force that rapidly decreases with distance. The
Pauli principle, on the other hand, produces a strong repulsive
force when the electron orbitals of two atoms collide. Elec-
trons are fermions, and multiple fermions cannot occupy the
same quantum state simultaneously. When two orbitals over-
lap, this principle is broken, so that the wave function of the
electrons in this region becomes zero. The wave functions are
thus pushed apart, which leads to a repulsive force.

A pair potential often used in simulations that combines the
Van der Waals and Pauli forces is the Lennard-Jones potential
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(LJ) [60]

ULJ(rij) = 4ϵ

[︄(︃
σ

rij

)︃12

−
(︃
σ

rij

)︃6
]︄

, (2.38)

where rij = |ri−rj | is the distance between the two interacting
particles. ϵ and σ define the energy and length scales of the
interaction. The term rij

−12 models the repulsion due to the
Pauli principle and the term −rij−6 models the van der Waals
attraction. The minimum of this potential is U(rij >

6
√
2σ) =

−ϵ. Technically, this potential has an infinite effective range,
but since it quickly drops to zero for distances rij > 6

√
2σ, it

is usually used in a truncated and shifted version, so that the
potential acts only within the cut-off distance rcut:

ULJ
trunk(rij) =

{︄
ULJ(rij)− ULJ(rcut), for rij ≤ rcut

0, for rij > rcut
.

(2.39)
For distances rij > rcut the potential is set to zero, and to
be continuous at this cut-off, the total potential is shifted by
ULJ(rcut). Common values for the cut-off are between 2.5σ <
rcut < 10σ. However, when dealing with particles that do
not attract each other, the limiting distance can be set to the
spatial minimum of the potential rcut = 6

√
2σ. This potential is

then called the Weeks-Chandler-Anderson (WCA) potential
[61]. A diagram showing these different potentials can be seen
in Figure 2.8.

While these potentials can be used to represent an inert gas
of individual atoms, to represent molecules we need a way to
describe the covalent bonds between the atoms. These chem-
ical bonds are created by a pair of electrons located in a com-
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Figure 2.8.: Comparison of the LJ potential with the truncated
and shifted LJ potential and the WCA potential.
The cut-off for the truncated potential is rcut =
2.0σ.
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mon orbital between two atoms. This system has its lowest en-
ergy at a certain distance, called the bond length rbond. If the
atoms are too far apart, the electrons pull them back together,
and if the atoms get too close, the overlap of the orbitals has a
repulsive effect. In simulations, these bonds are achieved by a
potential that only acts on the bonded particles. The simplest
model here uses a harmonic potential:

UH(r) =
1

2
KH (r − rbond)

2 , (2.40)

where r is the distance between the particles and KH is the
spring constant. This potential induces an harmonic oscillation
around the bond length rbond. However, in systems where
the energy of the particles can vary locally, the amplitude of
these fluctuations would also vary greatly. In reality, a large
amplitude can break these bonds, but in MD simulations one
wants to have static bonds. A more sophisticated potential
that limits these fluctuations is the FENE (f inite extension
non-linear elastic) potential [62]:

UFENE(r) =− 1

2
KFENE∆r2max

· ln

[︄
1−

(︃
r − rbond
∆rmax

)︃2
]︄

, (2.41)

where ∆rmax is the maximum amplitude of the oscillations
around the bond length before the potential diverges.

Another approach to modeling the bond interaction is the
Kremer-Grest model [63], which uses the FENE potentials to
represent the attractive part, while the repulsive part is taken
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over by the WCA potential. So for the above equations, set
rbond = 0 and the oscillations will be around the minimum
of UWCA(r) + UFENE(r). This location can be set by K and
∆rmax.

Molecules with three or more atoms are not only defined by
the bond pair potentials of their atoms, but also have a certain
internal structure. This results from the orbital arrangements
of the atoms that have multiple bonds. Basically there is a
preferred angle between two bonds. This bond angle ϕbond
depends on the type and number of bonds that the central
atom has. In simulations, harmonic potentials are often used
for these type of bonds:

Uangle(ϕ) =
1

2
Kangle (ϕ− ϕbond)

2 . (2.42)

In a full atomistic simulation, the torsion of the bonds can
also be modeled in a similar way, but this is not relevant for
the simulations used in this dissertation.

There are many different ways to parametrize the bonded
and non-bonded potentials. These parametrizations are com-
monly known as force fields, which define all possible interac-
tions of the particles within the system. The choice of force
field depends strongly on the system and the properties one
wants to analyze. For example, there are force fields such as
OPLS [64], which is optimized for simulating the properties of
liquids, or the AMBER force field [65], which is often used in
protein research.

Once the potentials are defined, the forces can be calculated
as derivatives of the potentials

Fi = −∇U total
i . (2.43)
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For the algebraic potentials described above, this can be done
analytically; for others where this is not possible, a numerical
derivative can also be used. The beauty of cut-off potentials is
that they are constant after the cut-off distance and therefore
do not introduce any force. This means that particles further
apart than this distance do not exert a force on each other.
Thus, the number of pairs of particles that must be considered
to calculate the total force on each particle can be drastically
reduced.

Periodic Boundary Conditions

Due to the limitation of computational hardware, an MD sim-
ulation takes place in a finite box. If the boundary of this
box were impenetrable, the surface interactions with this box
would have a significant influence on the dynamics of the sys-
tem. This effect weakens with increasing system size thanks
to the square-cube law. For example, in crystal lattices with
103 atoms, almost half of the atoms (488 out of 1000) are on
the surface. For 1003 atoms, the outer atoms make up only
5.9% and for 10003 it is 0.6%. However, it is not always pos-
sible to simulate larger systems just to reduce this effect. To
get around this, periodic boundary conditions (PBC) are used,
where, if a particle crosses the system boundary, its positions
are folded to the opposing side of the system. Mathematically,
the system behaves as if it were mapped onto a hyper-torus.
The system thus repeats itself, and from within the system it
appears to be infinite. This must also be taken into account
when calculating the distances between particles, as the dis-
tance to the repeating particles across PBCs also plays a role.
A common practice is that particles can only interact with the
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nearest image of another particle, which is called the minimum
image convention.

Thermalization

Microscopic physical systems are usually not completely isol-
ated, but coupled to a reservoir with which energy, particles
or volume are exchanged. Through this coupling, these ex-
tensive properties are transformed into their intensive coun-
terparts such as temperature, chemical potential or pressure,
which then define the ensemble.

Constant-energy MD simulations are rather uncommon be-
cause the integrator scheme used must be energy conserving
over a long period of time. However, due to the limited preci-
sion of floating point numbers in computer hardware, rounding
errors occur in the calculations, which can add up over time
and cause a small energy drift. By simulating a canonical en-
semble, where energy fluctuates and dissipates, this problem
is circumvented. There are several methods to achieve a con-
stant temperature. One of these is the Langevin thermostat
[66], which uses the Langevin dynamics [67] as an extension of
Newton’s equation to calculate the drag force FD(v, t):

FD(v, t) = −γv +
√︁
2γkBTηi(t) . (2.44)

Here γ is the friction coefficient and ηi(t) is a random noise
term acting on the particle i which satisfies α, β for all spatial
coordinates:

⟨ηαi (t)⟩ = 0 and (2.45a)⟨︂
ηαi (t)η

β
j (t

′)
⟩︂
= δαβδijδ(t− t′) . (2.45b)
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Each particle therefore experiences random, uncorrelated for-
ces. The acceleration due to these “kicks” and the deceleration
due to the drag force determine the velocities of the particles
and ensure that the average kinetic energy follows:

mv̄2

2
=

3

2
kBT . (2.46)

This thermostat controls the temperature of the system and
is also used as an implicit solvent. The particles in the solu-
tion are subject to Brownian motion due to collisions with the
solvent molecules. The forces resulting from the collisions are
already dealt with in the Langevin equation, so that even freely
moving particles move as if they were under the influence of
Brownian motion. This means that solvent particles are not
needed in the simulation, which frees up a lot of computing re-
sources. However, the hydrodynamic properties of the solvent
are neglected in the process, and it depends on the system
whether the solvent should be represented explicitly or impli-
citly.

Grand Canonical Ensemble

Another type of ensemble is the grand canonical ensemble
(µVT), in which a chemical potential µ defines the exchange
of particles of the system and the reservoir. Such exchanges
can be modeled by so-called Monte Carlo (MC) moves. These
MC trial moves attempt to apply random particle exchanges
to the system. Possible changes for which MC moves can be
used are:

• Displacement of particles inside of the system
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• Insertion of particles to the system

• Removal of particles from the system

Whether these trial moves are accepted or rejected is de-
pending on the change in energy that the move exerts on the
system. The acceptance probability follows the Boltzmann dis-
tribution:

Pacc ∼ e
− ∆E

kBT . (2.47)

This ensures that the system remains in thermal equilibrium.
In addition, any move performed has a non-zero probability
of being reversed. This principle is called detailed balance
and ensures that any thermodynamically possible state can be
reached.

In the grand canonical Monte-Carlo (GCMC) method, only
insertion and removal moves are considered, while the motion is
handled by MD. Either a new particle is inserted at a random
position or a randomly selected existing particle is removed.
The acceptance probability of any one of these moves depends
on the probability that this specific move was chosen relat-
ive to the probability that the corresponding reverse move can
be chosen. This is done to ensure detailed balance. Since an
insertion move requires the new particle to be placed within
a volume, the probability of selecting this move scales with
αin ∼ 1

V . For a particle distance, a certain particle must be
selected, so the probability scales with αout ∼ 1

N . Combining
this with the Boltzmann distribution we can obtain the prob-
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abilities of accepting the insertion Pin and removal Pin moves

Pin = min

[︃
1,
V Λ−3

N + 1
exp

(︃
µ−∆E

kBT

)︃]︃
and (2.48a)

Pout = min

[︃
1,

N

V Λ−3
exp

(︃
−µ−∆E

kBT

)︃]︃
. (2.48b)

Here V is the volume of the system, Λ is the thermal de Broglie
wavelength of the molecule, N is the number of molecules in the
system before the shift, µ is the desired chemical potential and
∆E is the energy difference caused by the insertion/removal of
the movement.

The procedure for GCMC is to alternate between a series
of MD steps and multiple MC moves. The number of MD
steps or MC moves should be large enough to ensure that the
system in in a relaxed state and uncorrelated to the state before
performing these moves or steps.

Coarse-Graining

The computational effort required to perform MD simulations
increases with the number of particles in the simulation box.
The exact scaling of the computational effort depends on the
methods used and the system properties. In the ideal case,
however, the scaling can only be linear. Often it is necessary
to reduce the computational cost, because the system in ques-
tion contains too many particles or has to be evaluated over a
long period of time. One way to speed up the simulations is
to use what is known as coarse graining (CG), in which sev-
eral interconnected particles are combined into a single larger
particle. Since these larger particles have different interaction
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properties, a different force field must be used. For example, in
a united-atom force field, a carbon atom of a polymer and the
hydrogen atoms attached to it are treated as a single particle,
rather than three or four particles. This coarse-graining can go
even further, as in the MARTINI force field [68], where four of
these one-atom carbon backbone particles are combined into
one large sphere.

Although the reduction in the number of particles leads to an
enormous acceleration of the simulation, it is also accompan-
ied by a loss of details. Therefore, it must be examined with
caution how and to what extent the missing details influence
the properties of the system one is interested in.

This concludes the introduction to MD simulations, which
are necessary for a better understanding of the later chapters.
There is much more to MD than could be explained in this
chapter, such as the treatment of long-range forces in electro-
statics [69, 70]. But the physics of these forces is not important
for this thesis, here we refer to standard references for the in-
terested reader

2.3.2. Diffusion-Advection Systems

MD simulations are based on knowledge about the pair inter-
actions of atoms and use this to analyze the emergent proper-
ties of a collection of many particles. Continuum simulations,
on the other hand, are defined by these emergent properties,
which are classified by underlying partial differential equations
(PDEs) of a system. The challenge is to find the solution of
these PDEs under the boundary conditions given by the real
system.

The advection-diffusion system of interest for this work con-
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sists of several different species in solution. A simple example
is an ink droplet in water. Initially, the ink is highly localized,
but then it starts to spread out by diffusion. However, the wa-
ter is also in motion and carries the ink with it, which is called
advection or convection. Other examples are dissolved ions in
the electric field of a capacitor or the transport of nutrients
through porous media.

The Diffusion-Advection Model

In this derivation of the model, only one dissolved particle spe-
cies is considered, which means that the subscript identifying
the species can be omitted. Later, when electrostatics and re-
actions are considered, they will be reintroduced. The density
ρ of a species can vary locally and is propagated by fluxes j
according to the continuity equation:

∂ρ

∂t
= −∇ · j . (2.49)

The fluxes can be separated into a diffusion and an advection
flux:

j = jdiff + jadv . (2.50)

According to Fick’s law [71], the diffusion flux can be de-
scribed by:

jdiff = −D∇ρ , (2.51)

where D is the diffusion coefficient. Technically, D can be
space-dependent, but the systems under investigation are rather
dilute and have no temperature gradient, so it can be assumed
to be constant.
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The advection flow, on the other hand, is determined by the
flow of the solvent, and the solutes move with it:

jadv = ρu . (2.52)

The velocity of the fluid u can be determined by the incom-
pressible Navier-Stokes equations:

ρ̃

(︃
∂u
∂t

+ u ·∇u
)︃

= −∇p+ η∇2u + f and (2.53a)

∂ρ̃

∂t
+∇ρ̃u = 0 . (2.53b)

Here ρ̃ is the density of the fluid, p is the pressure, η is the vis-
cosity and f is a force acting on the fluid. These Navier-Stokes
equations have been shown to describe the fluid behavior with
good accuracy for many length scales and even for turbulent
flow.

Not only does the fluid pull around the species, but the dif-
fusion of the species also causes a force on the fluid. So when
a species is pulled through the solvent, the solvent starts to
move with it. This drag force is described as:

f =
1

ν
jdiff , (2.54)

with the mobility ν. Via the Einstein-Smoluchowski relation
this mobility can be connected to the diffusion coefficient by

D = νkBT . (2.55)
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Flux Discretization

With the Equations (2.50) to (2.54) the advection-diffusion
system is completely determined. While it is possible to find
analytical solutions for some special cases (e.g. laminar flow
and 1D symmetry), a general solution is not known. There-
fore, numerics is used to solve these equations. The method
chosen for this work is a finite-volume method, that is density
preserving. The Lattice-Boltzmann (LB) is method used to
solve the Navier-Stokes equations. The method is inspired by
the work of Rempfer et al. [72], which builds on a model by
Capuani et al. [73].

The numerical approach relies on discretizeíng the space into
a grid of small cells. The properties within these cells are
treated as constant over the cell volume. The grid used here is
a regular Cartesian grid with grid constant ai, where i ∈ x, y, z
denotes the direction. Time is also discretized, which is then
incremented with the time step ∆t.

The density from one cell can only be transported to the
neighboring cells via the fluxes. This means that the flow dir-
ection is also discretized. However, there are different ways to
define what neighboring cells are, depending on whether they
have a common face, edge or corner. So in 2D the flows can
consider only 4 face neighbors or also the 4 corner neighbors.
This is commonly called a stencil. The notation for these sten-
cils is DXQY , where X is the dimension of the system and
Y is the number of cells a cell can interact with. Since the
cell can interact with itself, Y − 1 is the number of neighbors
considered. Typical stencils are shown in Figure 2.9. The dir-
ected discretized fluxes can only act between 2 cells and shift
the density between them. This means that the flux is at the
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D2Q5 D2Q9 D3Q7 D3Q19 D3Q27

Figure 2.9.: Illustration of the different neighboring cells con-
sidered for different stencils. Colored cells are re-
cognized by the stencils. Red marks the origin
cell (inside of the cube for 3D). Blue are the face
neighbors, green the edge neighbors and orange
the corner neighbors.

cell boundaries, which corresponds to an offset of half a grid
spacing. This is then called a staggered grid.

The essence of the finite-volume method is that you integrate
the time derivative of the density over a small volume and use
Gauss’ theorem to rewrite it as an integral of the fluxes through
the surface. The beauty of this is that the integrals are easy
to calculate, since the density in each cell and the fluxes over
each surface are constant, and the integral turns into a simple
sum. Evaluating these sums leads to an updating formula of
the density over the flows. An illustration of this finite volume
approach is shown in Figure 2.10.

With this the discretized form of the continuity equation (2.49)
is:

ρ(x, t+∆t)− ρ(x, t)
∆t

=
∑︂
i∈n.n.

ji(x+
ai, t

2
)

1

aiA0
, (2.56)
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n

∂VV

∫︁
V

∂ρ
∂t

dV =
Gauss’s theorem

−
∮︁

∂V

j · ndA

V
ρ(t+∆t)−ρ(t)

∆t
= −

∑︁
i

jiAi

Figure 2.10.: Illustration of the 2D finite volume scheme. n is
the normal vector on the surface of the cell and
Ai is the surface area in the i-th direction. Figure
adapted from [74]
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where the summation goes over all nearest neighbors and ai

is the direction to these cells. A0 represents the area of the
interface between the cells. However, this becomes ambiguous
if not only area neighbors but also edge or corner neighbors are
considered, because then this area does not exist. Therefore, it
is better to treat it simply as a renormalisation factor, so that
this summation does not overestimate the acting fluxes [73].
In the appendix A it is explained how A0 can be determined.

For the discretization of the diffusion flux (2.51), finite dif-
ferences are used to calculate the gradient of the density, and
since the fluxes are shifted by half a grid cell, this differential
is calculated in the correct place and does not require interpol-
ation:

ji(x +
ai

2
, t) = −Dρ(x + ai, t)− ρ(x, t)

|ai|
. (2.57)

The advection flow is handled somewhat differently. The ve-
locity used for this is calculated with the LB method, which
uses the same grid discretization. This means that the velocit-
ies obtained are evaluated at the correct location. The species
density within a cell is shifted by this fluid velocity. The ad-
vection flux is then determined by the overlap of the displaced
cell and the neighboring grid cells. This scheme is shown in
Figure 2.11.

With the discretization of the diffusion and advection fluxes,
the foundation of this model is ready. However, the simulation
of an empty box would be uninteresting and therefore bound-
ary conditions are needed. Apart from the periodic boundary
conditions discussed in the section on MD, one typically dis-
tinguishes between two types of boundary conditions, Dirichlet
and Neumann boundary conditions. Dirichlet boundary con-
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v⃗
vx

vy

ay

ax

vx
vy

ax − vx

ay − vy j0 jx

jy jxy

Figure 2.11.: Illustration of how the discretized advection
fluxes are determined. The overlap area is cal-
culated from the velocity and the grid spacing.
j0 describes the flux of the non-moving density,
while the others are the fluxes into the respective
cells.

ditions define a solution of the PDE at the location of the
boundary. Neumann boundary conditions, on the other hand,
enforce the value of the derivative of the property. To apply
these boundary conditions, a cell is marked as a boundary and
the properties are set accordingly. With this, the system can
now be specified. If one wants a diffusion channel with an in-
let and an outlet, then the channel walls can be realized by
setting the fluxes into the boundary to zero. The inlets and
outlets are constant then density boundary conditions and the
velocity can also be set there.

Electrostatics

Until now the dissolved species handled with this model had no
net charge. However, for many applications, like salt solutions,
these species are charged and interact which each other elec-
trostatically. This means that a species feels a force according
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to an electric field, but also that a density gradient of a charged
species creates an electric field in the first place. If there are
oppositely charged species present, they will also cause electro-
static screening effects, according to the Debye-Hückel theory
[75]. Because the species are are no longer independent from
each other, we introduce the index k to denote them. The
electrostatic forces lead to a drift velocity vk of the species:

vdrift
k = νkFk = νkqk∇Φ , (2.58)

where qk is the charge of the species k and Φ the electrostatic
potential given by the Poisson equation:

∇2Φ =
1

ϵ

∑︂
k∈species

qkρk =
ρcharge

ϵ
, (2.59)

where ρcharge is defined as the charge density over all species.
To decouple macroscopic and microscopic properties, the sus-
ceptibility ϵ is often written in terms of the Bjerrum length lB

ϵ =
e2

4πlBkBT
. (2.60)

With the drift velocity the resulting flux concludes to be :

jdiffk = −Dk∇ρk − νkqkρk∇Φ . (2.61)

The discretization of the updated diffusion flux is analogous
to the previous discretization:

jk,i(x +
ai

2
, t) =−Dk

ρk(x + ai, t)− ρk(x, t)
|ai|

(2.62)

− νkqkρk(x +
ai

2
, t)

Φ(x + ai, t)− Φ(x, t)
|ai|

,
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where the density value in between the cells is just the arith-
metic mean of both cells:

ρk(x +
ai

2
, t) =

ρk(x, t) + ρk(x + ai, t)

2
. (2.63)

Since the Poisson equation has no time dependence, it can be
discretized into a series of linear equations by applying finite
differences to the Laplace operator. For simplicity, only the
1D case is considered, and because of linear independence, the
other directions are analogous.

ρcharge(x, t) = ϵ
Φ(x− ax, t)− 2Φ(x, t) + Φ(x+ ax, t)

a2x
(2.64)

This results in a set of Nx linear equations, where Nx is the
number of cells in that direction. Many different methods can
be used to solve this trigonal system, such as Gauss elimina-
tion or successive over-relaxation. However, since the system
is periodically repeated, the discrete Poisson equation can be
easily transformed into Fourier space, resulting in:

ρ̂charge(k, t) = ϵ
e

−2πik
Nx Φ̂(k, t)− 2Φ̂(k, t) + e

2πik
Nx Φ̂(k, t)

a2x

= 2ϵ
cos

(︂
2πk
Nx

)︂
− 1

a2x
Φ̂(k, t)

= G(k)Φ̂(k, t) . (2.65)

This determines the Greens-function G(k), which relates the
Fourier transformed charge density and the transformed po-
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tential. In 3D this Greens-function turns out to be:

G(k) = 2ϵ
∑︂

j∈x,y,z

cos
(︂
2πkj
Nj

)︂
− 1

a2j
. (2.66)

After calculating the Φ̂ from ρ̂charge, an inverse Fourier trans-
form is applied to obtain the charge potential. This completes
the electrostatic part of the model, which can now be used for
salt solutions and, with the application of a boundary condition
to the charge potential, also for electrolyte flow within capacit-
ors. This also gives the method the name electrokinetic model
EK. Suitable applications for this model can be found in re-
search areas ranging from the transport of electrolytes through
porous media via biomolecules and colloids in ion-containing
solutions [76, 77, 78] to the study of microfluidic mechanisms
such as pumps [79] or selective particle traps [72, 80]. An ex-
tension of the electrokinetic model to moving colloids in binary
fluid flows has also recently been achieved [81].

Reactions

Another way in which different diffusive species can interact is
through reactions [82]. In this case, the species are converted
into each other depending on their local densities. The reaction
rate Rk̃ of the reaction k̃ in which this conversion occurs is
determined by the rate equation:

Rk̃ = Γk̃

∏︂
i∈reactants

ρ
αk̃,i

i , (2.67)

with Γk̃ as reaction rate constant and αk̃,i as the reaction order
of the different species i taking part in the reaction. The change
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in density due to the reaction is then given by:

∂ρk
∂t

= sk̃,kRk̃ , (2.68)

where sk̃,k are the stoichiometric coefficients of species k in the
reaction k̃. Here we use the notation that the stoichiometric
coefficients of the reactants are negative, while the products
are signed positive.

The discretization of the reactions is rather simple. The local
reaction rate can be calculated directly from the discretized
densities. Finite-differences are used for the density propaga-
tion:

ρk(x, t+∆t) = ρk(x, t+∆t) + ∆tsk̃,kRk̃(x, t) . (2.69)

There are two ways to represent these reactions. The first
way is to apply them as bulk reactions, so that the reaction
takes place everywhere in the system. A simple example of
this would be the autodissociation of water. The other way is
to represent them locally, for example at the boundaries where
they model, i.e. a catalytic reaction. In this way, one can
study substrate transport towards and away from a catalyst.
The use of bulk and surface reactions allows the study of the
self-chemistry of active colloids [83, 84], where H2O2 on a Pt-
coated side of the colloids is catalyzed

H2O2
Pt−−→ O2 + 2H+ + 2 e−. (2.70)

While the elections remain in the colloid, the hydrogen atoms
go in solution and diffuse around the colloid. On the other
Au-coated side of the colloid, these ions are reduced to water
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and hydrogen with the electrons inside the colloids

H2O2 +O2 + 6H+ + 6 e−
Au−−→ 4H2O. (2.71)

Since the ion cloud around the colloid is asymmetric, the charges
inside the colloid exert a force on the ions that moves the col-
loid. However, during this process, mass reactions also play
an important role, as the autodissociation of H2O2 into ions
enhances the ion gradients [85]

H2O2 −−⇀↽−− HO2
− +H+. (2.72)

An other possible application for this model is to analyze dif-
fusion or flow-driven reactions [86].

2.4. Summary

In this chapter, the basics of catalysis, polymer physics and
numerical simulation methods were discussed to provide the
background for a better understanding the following chapters.
In Chapter 3, the diffusion-advection reaction system is ex-
tended to include thermal fluctuations so that systems where
these cannot be neglected can be simulated with better accur-
acy. Subsequently, in Chapter 4, polymer theory is used to gain
insight into the influence of walls on the ring closure probab-
ility of the metathesis reaction. In Chapter 5, coarse-grained
MD simulations in a grand canonical ensemble are used to fur-
ther investigate the mechanism of ring-closing metathesis in
mesopores in different geometries.
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This chapter is based on the following publication. My con-
tribution waere implementation of the fluctuating reactions,
benchmarking and validation.

I. Tischler, F. Weik, R. Kaufmann, M. Kuron, R. Wee-
ber, C. Holm. “A thermalized electrokinetics model in-
cluding stochastic reactions suitable for multiscale sim-
ulations of reaction-advection-diffusion” In: Journal of
Computational Science, 63:101770, September (2022)
URL: https://doi.org/10.1016/j.jocs.2022.101770
Data repository: https://doi.org/10.18419/darus-2258

The collaborative research center (CRC) 1333’s simulation
projects span several length and time scales. While there are
projects that analyze the subject on quantum and all-atom
scales, in this project it has been studied on continuum and
coarse-grained scales. We began at the large scales utiliz-
ing continuum simulations. In this approach, we neglect the
individual reaction molecules within the pore and consider
them as densities of different species. These densities obey the
advection-diffusion-reaction equations solved on a discretized
grid.

The pore systems under investigation have a diameter of
d ∈ [5, 50] nm, so the resolution of the grid had to be chosen
accordingly. For the given substrate concentration, it turns
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3. Fluctuating Advection-Diffusion-Reaction Method

out that the number of molecules per cell that make up the
density is rather small (N < 100). With such a low number
of particles, thermal fluctuations of the density become signi-
ficant. Since the model is based on the assumption that the
molecules behave like an ideal gas, the density fluctuation also
scales with the square root of the number of particles per cell√
N . This means that for low number of particles, the relative

fluctuations become larger.

For many applications, these density fluctuations are irrel-
evant because the dependence on density is linear. In those
cases the density deviations from the average density cancel
out. However, on small scales many counterexamples can be
found including fluctuation-induced instabilities [87], pattern
formation [88, 89], stochastic processes in cell biology [90] and
transport properties [91, 92]. In our case the density scaling
of reactions is determined by the rate equation (2.67), which
can be linear or non-linear depending on the reaction order.
In the simulation, the amount of product produced over time
can therefore be different, regardless of whether fluctuations
are taken into account or not.

A small example of this is the reaction 2A → B. Any par-
ticle of type A can react with any other particle of the same
type. This means that for a box with N particles in it, there
are N(N − 1) possibilities for a reaction to take place. Even
though not all reactions can take place, this determines how
likely the reaction is. Therefore, the order for this reaction
is two. Now, if the number of particles changes due to ther-
mal fluctuations, the number of reactions that take place also
changes. Because of the non-linearity, the increase in the num-
ber of particles has a greater effect on the number of reactions
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than the decrease in the number of particles. This means that
the number of reactions is higher on average when fluctuations
are present, which is why the thermalization of the fluxes can-
not be neglected for the systems of interest. Since the im-
portance of fluctuations on the scales of the pores is known,
the first task of the project was to implement and test these
fluctuations. This includes the thermalization of the diffusion,
advection and reaction part, which all need to be thermalized,
so that none of these methods acts as an energy sink to the
other ones. The thermalization of the Lattice-Boltzmann (LB)
method has long been solved and implemented [93, 94].

3.1. Thermalization of the Advection-Diffusion
Method

The addition of thermal fluctuations to the diffusion advection
model is not a completely novel idea and has been done be-
fore [95, 96, 97, 98], however in those cases the incompressible
Navier-Stokes equation was solved via a finite volume scheme,
while we solve the compressible one with LB instead.

The derivation of the fluctuation term follows ref. [99]. We
begin with the over-damped Langevin equation for N particles
of the same species:

∂ri(t)
∂t

= ηi(t)−∇ψ(ri, t) , (3.1)

where i indicated the different particles, Ψ(ri, t) is a potential
field acting on the particles and ηi(t) is an uncorrelated random
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noise term, defined by:

⟨ηi(t)⟩ = 0 (3.2a)⟨︁
ηµi (t)η

ν
j (t

′)
⟩︁
= 2Dδijδµνδ(t− t′) , (3.2b)

where µ and ν index the different components of the vector.
The particle positions can also be described by a particle

density function via delta functions, where ρi(r, t) = δ(ri(t)−r)
defines the density of single particle. The density functions of
all particles then returns:

ρ(r, t) =
N∑︂
i=1

ρi(r, t) =
N∑︂
i=1

δ(ri(t)− r) . (3.3)

Let f be an arbitrary function, for which we can calculate its
value at any position ri via the integral over the single particle
density:

f(ri(t)) =
∫︂
R3

d3rf(r)ρi(r, t) . (3.4)

We will use this function f to compare its classical and
stochastic derivative, which will give us insights into the stochastic
process influencing the density. The classical derivative is straight-
forward:

df(ri(t))
dt

=

∫︂
R3

d3rf(r)
∂ρi(r, t)
∂t

. (3.5)

For the stochastic one the use of Itô calculus [100] is required,
which describes how integrals of stochastic processes can be
determined. The differential of a stochastic process dXt can
be described by the addition of a deterministic part with the
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drift velocity µt and a Brownian process Bt with a variance of
σt:

dXt = µtdt+ σtdBt . (3.6)

When a function undergoes this stochastic process we can
use Taylor-extension to obtain its time evolution:

df =
∂f

∂t
dt+

∂f

∂x
dx+

1

2

∂2f

∂x2
dx2 + . . .

=
∂f

∂t
dt+

∂f

∂x
(µtdt+ σtdBt)

+
1

2

∂2f

∂x2
dx2(µ2tdt

2 + 2µtσtdtdBt + σ2t dB
2
t ) . (3.7)

We are only interested in parts which are of first order in dt.
However, it turns out that the Brownian process dBt scales
with the square root of dt = dB2

t . Therefore this term also
needs to be considered:

df =

(︃
∂f

∂t
+ µt

∂f

∂x
+
σ2t
2

∂2f

∂x2

)︃
dt+ σt

∂f

∂x
dBt . (3.8)

Because the Brownian process for this case is resulting from
the over-damped Langevin equation (3.1), the drift velocity,
variance and time derivative are given as:

µt = −∇ψ(ri, t) , (3.9a)

σt =
√
2D and (3.9b)

dBt

dt
=

ηi(t)√
2D

. (3.9c)

Using this the time derivative of f results to be:
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df(ri)
dt

=

=0⏟ ⏞⏞ ⏟
∂f(ri)
∂t

+∇if(ri)
(︃
µt + σt

dBt

dt

)︃
+
σ2

2
∇2

i f(ri)

=

∫︂
R3

d3rf(r)
[︂
∇i ·

(︁
− ρi(r, t)∇iψ(r, t) + ρi(r, t)ηi(t)

)︁
+D∇2

i ρi(r, t)
]︂

. (3.10)

With the classical (3.5) and the stochastic time derivative
(3.10) now determined, the difference of these two then results
to be:

∂ρi(ri, t)
∂t

=∇i ·
(︁
− ρi(r, t)∇iψ(r, t) + ρi(r, t)ηi(t)

)︁
+D∇2

i ρi(r, t) . (3.11)

Summing up over all particles i returns:

∂ρ(r, t)
∂t

=∇ · (−ρ(r, t)∇ψ(r, t)) + ξ(r, t)

+D∇2ρ(r, t) , (3.12)

where the noise field ξ(r, t) is defined as:

ξ(r, t) =
N∑︂
i=1

∇ · (ρi(r, t)ηi(t)) . (3.13)
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This amplitude of noise is now dependent on the density and
has the correlation:⟨︁

ξ(r, t)ξ(r′, t′)
⟩︁
=2Dδ(t− t′)

·∇r ·∇r′
(︁
δ(r − r′)ρ(r, t)

)︁
. (3.14)

Since the sum in the definition of the noise field is hard to
come by, it is preferred to search for a different noise field,
which has the same statistical properties. It turns out that a
noise field which is statistically identical is:

ξ′(r, t) = ∇ ·
(︂
η(r, t)

√︁
ρ(r, t)

)︂
, (3.15)

where the global noise field η is defined by:

⟨η(r, t)⟩ = 0 and (3.16a)⟨︁
ηµ(r, t)ην(r′, t′)

⟩︁
= 2Dδµνδ(t− t′)δ(r − r′) . (3.16b)

Substituting ξ with ξ′ in Equation (3.12) and also reintro-
ducing the advective flux, results in:

∂ρ(r, t)
∂t

= ∇ · j and (3.17a)

j = ρ(r, t)∇ψ(r, t)⏞ ⏟⏟ ⏞
jpot

+D∇ρ(r, t)⏞ ⏟⏟ ⏞
jdiff

+
√︁
ρ(r, t)η(r, t)⏞ ⏟⏟ ⏞

jfluct

+ ρ(r, t)u(r, t)⏞ ⏟⏟ ⏞
jadv

. (3.17b)

With this we obtained a more general version of the Pois-
son equation (2.59), which now describes the density behavior
under the consideration of fluctuations.
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3. Fluctuating Advection-Diffusion-Reaction Method

With this done, the discretization of the fluctuation flux also
needs to be taken care of. Because the fluxes only exist on the
staggered grid the density and the fluxes needs to be determ-
ined in between the grid cells:

jflucti (x +
ai

2
, t) =

√︃
ρ(x +

ai

2
, t)η(x +

ai

2
)

≈
√︃
ρ(x, t) + ρ(x + a, t)

2
η(x +

ai

2
) , (3.18)

where a Gaussian white noise field W is used to define the
noise η:

η(x, t) =
√
2DW(t) . (3.19)

The important thing here is, that the time integral, which is
used to approximate properties in the next time step, doesn’t
scale linearly with the time step, but rather with its square
root:

t+∆t∫︂
t

dt′W(t′) =
√
∆tW(t) . (3.20)

Using this for the update rule results in:

ρ(x, t+∆t)) =ρ(x, t) + ∆t
∑︂
i∈n.n.

1

aiA0

·
[︂
jdiffi (x +

ai

2
, t) + jpoti (x +

ai

2
, t)

+ jadvi (x +
ai

2
, t)

+
1√
∆t

jflucti (x +
ai

2
, t)

]︂
. (3.21)
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This concludes the derivation of the thermalized density flux
fluctuation and how they are handled numerically. However,
the process of reactions, which also is highly fluctuating by
nature, still needs to be taken care of. The method for this
originated from Gillespie [101]. A chemical reaction during one
time step can be viewed as a Poisson process, as long as the
single reaction events are independent from each other. This
enforces the condition that the change in substrate density
throughout a single time step [t, t + ∆t] is small enough to
neglect any influence the reaction probability. One way to
ensure this is to choose a sufficiently small time step. With
the Poisson random variable P(Rk̃(r, t),∆t) it is defined how
many reaction processes occur within the time step ∆t. The
reaction rate Rk̃ for the reaction k̃ was defined in rate equation
(2.67):

Rk̃ = Γk̃

∏︂
i∈reactants

ρ
αk̃,i

i . (2.67)

Knowing the number of reactions per time step, the update
rule on the density is then changed to:

ρk(x, t+∆t) = ρk(x, t) + sk̃,kP(Rk̃(r, t),∆t) . (3.22)

The Poisson distribution is used as a distribution of discrete
events, however, for this application a description with floating
point values is needed. So to get there we transform the Poisson
distribution P into an normal distribution N , which is a good
approximation when many reaction events happen within the
same time step P(Rk̃(r, t),∆t) >> 1. The resulting normal
distribution N (m,σ2) is defined by the mean µ = Rk̃(r, t) and
the variance σ2 = Rk̃(r, t). This Gaussian distribution can
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furthermore be simplified by stretching and shifting into one
where the mean is µ = 0 and the variance σ2 = 1, which then
results into the update rule of:

ρk(x, t+∆t) =ρk(x, t) + sk̃,kRk̃(r, t)∆t

+ sk̃,k

√︂
Rk̃(r, t)∆tN (0, 1) . (3.23)

This change from Poisson to Gaussian distribution only works
when the time step is chosen to be large enough for many reac-
tions to occur. This means that for this model to work physic-
ally correct, two conditions on the time step have to be meet,
one for the small density changes within one time step and the
other for the transition to the normal distribution.

3.2. Implementation and Benchmarking

In practice, the model is implemented by coupling three solv-
ers: a finite-volume solver for the diffusion-advection equation
[73, 102], a Fourier-based solver for obtaining the electrostatic
potential from the charge distribution via the Poisson equa-
tion [102], and a LB hydrodynamic implementation [103]. The
employed LB utilizes a D3Q19 stencil and a two-relaxation-
time collision operator [104]. The thermalization of the LB
fluid was handled by adding fluctuations to the stress modes
as introduced by Dünweg et al. [93]. The simulation pack-
age ESPResSo [105, 20] contains all necessary components. As
they are largely based on regular grids and matrix-vector oper-
ations, all algorithms are well suited for deployment on graph-
ics processing units (GPUs). ESPResSo hence implements such
accelerated versions [106, 102].
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For the implementation of the fluctuations and reactions
we will be using pystencils[21], because for future releases of
ESPResSo (4.3 and onward) the manually written grid based
solver kernels will be replaced by ones generated using sympy,
pystencils and lbmpy[107]. sympy is a python module which
interprets mathematical equations. pystencils can then discret-
ize partial differential equations given to it onto a Cartesian
grid. With all the update rules defined, it compiles them into
a c++ kernel, which can be executed. The last module, lbmpy,
uses pystencils to generate kernels and solve the Navier-Stokes
equations by the LB method. During this code generation
process one can specify the target platform, i.e. whether the
code shall be executed on the CPU, GPU or via OpenMP. It
is also possible to change the floating point precision, which
one can use to optimize the balance between performance and
numerical accuracy. The Fourier-based Poisson solver is not
generated and is manually implemented into ESPResSo. The
pure pystencils implementation was used to test and validate
the method.

The full algorithm, including electrokinetics (EK), reactions
and LB involves the following steps:

1. Calculate total charge from per-species densities and valen-
cies

2. Obtain the electrostatic potential for the charge distri-
bution by solving the Poisson equation via the Fourier
solver

3. Calculate the fluxes, including thermal fluctuations, us-
ing Eq. (3.17b)
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4. Based on the fluxes, add external forces to the coupled
LB fluid (Eq. (2.54))

5. Add sources and sinks to the fluxes based on chemical
reactions (Eq. (3.23))

6. Apply any boundary conditions to the densities and fluxes

7. Solve the continuity equation (Eq. (2.49))

8. Propagate the LB fluid by one step

9. Advect the densities according to the LB fluid’s velo-
cities. This is done using a volume-of-fluid approach,
more formally known as corner-transport upwind scheme
[73, 108].

While the underlying equations are straightforward, there
are some details that need to be discussed. For the deriva-
tion of the advection-diffusion method, it is assumed that the
particle density per cell is large enough to be considered as a
continuum. However, for some examples, like the ion distri-
butions in mesoporous media, one would need a very fine grid
resolution to resolve the Debye layer and to reproduce the geo-
metry. This in turn would result in a small average density per
grid cell (≈ 10 − 20/a3), and it is possible that locally some
cells may reach a density below ρ(ri) < 1/a3. If one would
then calculate the amplitude of the fluctuations as stated in
Equation (3.18), the resulting fluctuation could be larger than
the density in the cell, which would mathematically lead to a
negative density. This is unphysical and also leads to a numer-
ical breakdown in the next time step. To circumvent this issue,
we scale down the amplitude of the fluctuations smoothly to
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be less than the local density. For that we define a smoothed
Heaviside function:

H(n) =

⎧⎪⎨⎪⎩
0 n < 0

n 0 < n < 1

1 1 < n

, (3.24)

which we use to rescale the average density of Equation (3.18):

j fluc
i (x +

ai

2
, t) =H(ρ(x + ai, t))H(ρ(x, t))η(x +

ai

2
, t)

·
√︃
ρ(x + ai, t) + ρ(x, t)

2
. (3.25)

The same is applied to the fluctuating reactions (3.23).
To generate the random noise, we choose the Philox pseudo-

random number generator, which has good performance on
both CPU and GPU [109]. The Philox generator is counter-
based, hence it does not have an internal state. Instead, pseudo-
random numbers are generated from a few deterministic num-
bers such as the time step counter and the coordinates of the
lattice cell for which a flux is to be calculated. It is of im-
portance that the random numbers used in a cell at a domain
border and in the corresponding ghost layer are the same, oth-
erwise the fluxes would not be equal, and the density would not
be conserved. Here, key-based generators are particularly use-
ful in parallel programming, as the same random numbers can
be generated at both sides of the periodic boundary without
the need for communication.

To benchmark the implementation, we measured the com-
putation time per time step for the D3Q19 and D3Q27 stencil
with single (4-byte) and double (8-byte) precision on a GPU.
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This benchmark can be seen in fig. 3.1, which also shows the
linear scaling with the number of cells for this method. For
this, we chose a system with only one species and no charges.
The test system is run on a NVIDIA Tesla V100. The times
are measured from the pystencils implementation and include
the time the Python script needs to start the kernels each time
step, and due the slow start-up of the kernels this computa-
tion time is roughly equal for small systems. Excluding the
kernel initiation time, one can confirm that this method scales
linearly with system size. The different stencils also show that
larger data processing results in slower simulation speeds. On
the other hand it is also evident that utilizing single-precision
floating point arithmetic speeds up the simulation by a factor
of 1.21, however we generally do not recommend running EK
in single precision. The D3Q19 kernel is also faster then the
D3Q27 by a factor of 1.57.

Let us now look at the memory bandwidth usage of the ker-
nels: there are three kernels that need to be run every time
step and for each of them the data of the cells needs to be
transported from the memory to the processing unit and back.
The three kernels do calculations of the fluxes, updating the
density based on the fluxes due to the continuity equation, and
synchronizing the density over the periodic boundary, respect-
ively. Summing up the data that needs to be transported for
each cell, we get 15 floating point numbers for the flux calcu-
lation kernel (1 for the density, 3 for the velocity, one for the
potential and 10 for the D3Q19 staggered fluxes), 11 for the
continuity kernel (1 for the density and 10 for the fluxes) and
1 for the synchronizing kernel. So for every cell on every time
step, we need a throughput of 54 floating point numbers. For
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Figure 3.1.: Computation time per time step on GPU for differ-
ent stencils and different floating point precisions.
The fits demonstrates that for large enough sys-
tem the method scales linearly with the number of
grid points.
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a system of 3203 cells running in double precision, this corres-
ponds to 14.2 GB of data that need to be transported each time
step. The NVIDIA Tesla V100 GPU used for this benchmark
provides a memory bandwidth of 900 GB/s. This should give
us around 64 time steps per second. This is a very optimistic
estimate because not all data needed for the calculations are
on the local cell, but also on its neighboring cells. If this data is
not present in the cache at that point, it needs to be transferred
again. For simplicity, let us assume that every time data from
a neighboring cell is being accessed, this data also needs to be
transported to the processor. For the flux calculation we need
the information of the density of the adjacent cells, which adds
nine floating point numbers to the data throughput per cell.
For the continuity equation we also need the nine fluxes that
are not stored in the local cell. So all in all with both transport
directions we need a throughput of 90 floating point numbers
per cell per time step. With this assumption, we arrive at a
maximum of 38 time steps per second. Our measured rate for
this test system is 33.0 Hz, which is 87 % of the theoretical
limit.

The implementation in pystencils is very instructive and easy
to use, as it is closer to the mathematical description of the al-
gorithm than a hand-written implementation. Moreover, it
will form the basis of diffusion-advection-reaction simulations
in the upcoming versions of ESPResSo. The integration with a
molecular dynamics (MD) package makes it possible to com-
bine EK simulations with, e.g., colloids and polymers represen-
ted as particles. There are mainly three options to choose from.
The first one is the direct coupling of point particles via inter-
polation of the forces it receives from the fluid and the species
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and vice versa. While this method is convenient and efficient,
the accuracy and the discretization artifacts strongly depend
on the interpolation scheme and the grid spacing used. The
second way is to use raspberry particles [110], which are basic-
ally a collection of point particles to represent a single larger
particle. Using the interpolation scheme with these raspber-
ries, the accuracy increases due to the better description of the
volume of the particle, however, this comes with an increase
in computational cost. The final method used in ESPResSo
is to represent the particles as a moving boundary condition.
While the principle behind this were developed by Ladd [111]
for a LB fluid, it was further enhanced by Kuron et al. [78] to
be applied to the EK method. This approach comes at even
more computational cost, but the reward is an accurate de-
scription of the near and the far field of the fluid around the
particles. This has been shown to be suitable for investigating
(self-)electrophoresis problems [83]. In future works we plan
to use these methods for coupling particles to our thermalized
EK model.

3.3. Validation

In this section, we demonstrate the correctness of our imple-
mentations using several scenarios for which the results are
either known analytically or where they can be obtained using
alternative methods.

81



3. Fluctuating Advection-Diffusion-Reaction Method

3.3.1. Density Distribution inside of a Reaction Slit Pore
System

Fig. 3.2 shows the concentration profile of two species in a slit
pore system. On one wall, the conversion of species A to species
B is being catalyzed, while the reverse happens on the other
side. Such a system can then be described as

RA(x) = δ

(︃
x+

d

2

)︃
kBρB(x)

− δ

(︃
x− d

2

)︃
kAρA(x) , (3.26a)

RB(x) = −RA(x) , (3.26b)
∂ρA(x, t)

∂t
= DA

∂2ρA(x, t)

∂x2
+RA(x) , (3.26c)

∂ρB(x, t)

∂t
= DB

∂2ρB(x, t)

∂x2
+RB(x) , (3.26d)

where Ri(x) is the local reaction rate of species i, and kA and
kB are the reaction rate constants at the different sides of the
slit pore. Because we are investigating this system in equilib-
rium, we can set the time derivatives to zero, which results
in

DA
∂2ρA(x)

∂x2
= −RA(x) and (3.27a)

DB
∂2ρB(x)

∂x2
= −RB(x). (3.27b)
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Solving this source-drain-diffusion system yields a linear dens-
ity profile for the steady-state solution:

ρA(x) = −
2 · ρ0

(︂
x− d

2 + DA
kA

)︂
DA ·

(︂
1
kA

+ 1
kB

+ d
2

(︂
1

DA
+ 1

DB

)︂)︂ , (3.28)

where ρ0 is the initial density, d the width of the slit pore,
Di the diffusion constant of species i, and kA and kB are the
reaction rates of the reaction A → B and B → A, respectively.

The simulated system shows that the fluctuations have a sig-
nificant impact on the density profile, but averaging the dens-
ity profile over 10000 uncorrelated time steps yields excellent
agreement with the predicted density profile.

3.3.2. Ideal Gas and Coulomb Gas Density Distribution

Let us now turn to situations where thermal fluctuations are
of importance. To determine whether the fluctuation model
results in the correct physical behavior, we calculate the dens-
ity distribution of an ideal gas. To this end we take a system
of N non-interacting particles contained in a volume V . The
probability that a sub-volume v ⊂ V encloses n particles is
given by

P (n) =

(︃
N

n

)︃(︂ v
V

)︂n
(︃
V − v

V

)︃N−n

. (3.29)

In the limit of N → ∞ and v ≪ V this equation turns into the
Poisson distribution

P (n) =
n̄ne−n̄

n!
, (3.30)
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Figure 3.2.: Density distribution of a slit pore system, where
on either side the opposite reaction takes place.
For the time average 10000 uncorrelated time steps
were used.
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where n̄ = N v
V . We compare the simulation data obtained

from the fluctuating EK model against this equation. Addi-
tionally, we also compare the data to the density histogram ob-
tained via a MD simulation of non-interacting particles based
on the Langevin equation. The results are displayed in Fig-
ure 3.3, which show that the MD simulation and the EK model
simulation are in good agreement with the theoretical predic-
tion.

Figure 3.3.: Comparison of the density histogram of an ideal
gas for a fluctuating EK simulation (green), a MD
simulation (blue), and the predicted theoretical
distribution (grey).

The measurement of the density histogram was performed
for different stencils to analyze the grid dependency. This yiel-
ded an average deviation from the theory for the D3Q19 stencil
of ∆PD3Q19 = 5.5 · 10−5. For the D3Q7 stencil this resulted
in ∆PD3Q7 = 5.1 · 10−5 and for the D3Q27 stencil we found

85



3. Fluctuating Advection-Diffusion-Reaction Method

∆PD3Q27 = 6.5 · 10−5. These deviations are three orders of
magnitude smaller then the maximum value, and the differ-
ences between these values result from statistical inaccuracies
and not from methodological discrepancies. A measurement
with twice the grid spacing was also performed which resulted
in ∆PD3Q19,2 = 1.5 · 10−4. While here the differences com-
pared to theory are significant larger then for the normal grid
spacing, the number of measurements which accumulate to the
histogram is also divided by a factor of 8. Therefore the error
of such a measurement should be larger by a factor of 2

√
2,

which matches the deviation we measure.

Next, we demonstrate that the electrostatic solver works in
conjunction with thermal fluctuations. To this end, we ex-
amine the density histogram of a Coulomb gas containing an
equal amount of positively and negatively charged ions. Since
an analytical prediction is not available, we compared the EK
simulation against a MD simulation of charged particles. In
the MD simulation, the charges have to be prevented from
coming too close to each other. This is accomplished using an
excluded-volume interaction like the Weeks-Chandler-Ander-
son (WCA) potential [61]. The results of those simulations can
be found in Figure 3.4. While the EK model provides a good
approximation of the MD simulation, is has a slightly larger
variance, which likely originates from the fact that the MD
simulation contains excluded volume interaction, whereas the
EK model does not.
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Figure 3.4.: Comparison of the density histogram for a Cou-
lomb gas for the fluctuating EK simulation (green)
and the MD simulation (blue).
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3.3.3. Effect of Thermal Fluctuations on the Rate of
Chemical Reactions

While the fluctuations do not change the equilibrium state of
a system, they can have an influence on the dynamics of suf-
ficiently complex systems. As an example, we consider the
case of a reactive system where the reaction rate depends non-
linearly on the concentration of the species. In other words,
the reaction order is not equal to one.

For example, let us look at the reaction of

2A → B . (3.31)

We can then define the rate equation as

dρB(t)

dt
= −1

2

dρA(t)

dt
= kρA(t)

2 , (3.32)

where k is the reaction rate constant. With the initial concen-
tration of ρA(0) = ρ0 and ρB(0) = 0, the product density is
obtained as

ρB(t) =
ρ0
2

(︃
1− 1

2ktρ0 + 1

)︃
. (3.33)

However, when fluctuations take place, the density-dependent
term ρA(t)

2 of Equation (3.32) needs to be replaced by its
expectation value

⟨︁
ρA(t)

2
⟩︁
. Under the assumption that at any

time during the reaction ρA follows an ideal gas distribution,
and approximating the Poisson distribution (Eq. (3.30)) by a
Gaussian distribution with mean ⟨ρA⟩ and variance

√︁
⟨ρa⟩, the

expectation value is given by

⟨ρ2A⟩ = ⟨ρa⟩2 + ⟨ρA⟩ . (3.34)
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3.3. Validation

Figure 3.5.: Reaction product density plotted over time. The
reaction is of the type 2A → B, where the reaction
rate was set to r ∝ [A]2. The initial density was
set to be ρA(0) = 8. The theory curves are from
Equations (3.33) and (3.35).
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Inserting this into Eq. (3.32) and solving the ordinary differential
equations (ODE) yields a product density of

˜︁ρB(t) = ρ0
2

(︃
1− 1

e2kt (ρ0 + 1)− ρ0

)︃
, (3.35)

which differs from eq. (3.32). A plot of those product densities
is displayed in Figure 3.5. It can be seen that with fluctu-
ations the amount of product B created over time is larger
than without the fluctuations. Both cases are in good agree-
ment with the theoretical predictions.

3.3.4. Reaction-Advection-Diffusion with Fluctuations

To demonstrate that all of the aforementioned algorithms can
be applied together, we have set up a model reaction-advection-
diffusion system. It consists of a channel system in which the
reaction 2A + B → C takes place. We divided the inlet of
the substrates into 3 equal parts. The upper and lower one
are used for injecting species A, and in the middle part of the
channel species B is injected.

The fluid advects the species through the channel, and the
diffusion leads to a broadening of the density profile while the
substrates move along the channel. In the growing area where
species A and B overlap, the reaction can take place and the
product C is created. The fluctuations add noise to all 3 dens-
ity profiles. An image of this system is displayed in Figure 3.6.
This shows a broadening of the density profiles of species A
and B along the flow direction due to diffusion. Species C can
only be created at the interfaces between species A and B,
however, due to the broadening of the density profiles in the
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Figure 3.6.: Reactant and product densities in a channel with
fluid driving them from left to right. The reaction
taking place has the form 2A+B → C. The upper
two images show the density of educt species A and
B and the bottom one is the product density C.
As inlet and outlet boundary conditions we used
constant density and velocity boundary condition.
The density is defined in simulation units.
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3. Fluctuating Advection-Diffusion-Reaction Method

later part of the channel, the intersection between those spe-
cies increases, which also leads to more product being created.
The fluctuations can be observed in all three species profiles.

The influence of fluctuations on such a system are shown
in Figure 3.7, where we show the amount of products that
leaves the channel. As theoretically expected, the fluctuations
have a significant impact on the turnover rate of this reaction,
where we obtain an increase of 11% over the simulation without
fluctuations.

Figure 3.7.: The amount of products that flows out of the chan-
nel over time. The channel system is described in
Figure 3.6. For comparison the system was meas-
ured with and without thermal fluctuations.
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3.4. Applicability on the catalytic mesopore system

Despite the success of the implementation, it turns out that
this model is not feasible to be applied to the catalytic reac-
tions in the mesopores. The reason for this is that the reaction
rate is rather slow compared to the diffusion driven transport.
With a grid resolution that is fine enough to model the meso-
pore, we will be at a scale, where one molecular catalyst needs
to be represented by one or even multiple grid cells. The num-
ber of substrate molecules a single catalyst can turn over per
second usually ranges from 10−2 s−1 to 102 s−1 [1]. Even with
a fast catalyst, we still need a long enough simulation to form
enough products for them to have an influence on the sys-
tem. However, the time scale we are working on is determ-
ined by the diffusion coefficients, which are in the ranges of
D ≈ 1 nm2ns−1 for the substrate molecules that we are in-
terested in [2]. This shows that the diffusion processes inside
of the pores are on the nanosecond time scale, while the reac-
tions take milliseconds to occur. This means that the system
is in a local diffusive equilibrium, where any products pro-
duces are transported away immediately. Applying the fluc-
tuating advection-diffusion-reaction method on such systems
would simply result in a constant density profile.

This means that a model like this needs to be applied on a
slightly larger scale, where transport and reactions are on sim-
ilar scales. For example, instead of looking inside of the pores,
where the catalysts are immobilized, we move one step outward
an investigate how the substrate moves towards and away from
the pores in the first place. Because one pore contains multiple
catalysts, the reaction is faster. Also, due the not being lim-
ited in the grid resolution to the mesopore anymore, bigger
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3. Fluctuating Advection-Diffusion-Reaction Method

time steps can also be applied. So these systems could look
like some sort of transport pores branching into the reaction
pores. This, however, will be subject of future research that
has not been pursued in this thesis.

3.5. Summary

Fluctuations play an important role in many dynamical pro-
cesses on the nanoscale, and depending on the system under
consideration, it may be necessary to include these fluctuation
to have consistent physical description of reaction-advection-
diffusion processes. We discussed in this chapter how to com-
bine mesh-based solvers for thermalized EK, chemical reac-
tions, and fluctuating hydrodynamics. Apart from the phys-
ical consistency, we demonstrated that thermal fluctuations
need to be added to the EK solver to correctly reproduce the
chemical reactions rates when the reaction order is not unity.
Furthermore, when using an unthermalized EK model coupled
to a thermalized LB solver, the thermal energy of the LB fluid
would be depleted by the unthermalized EK solver. A similar
depletion can be expected when a thermalized MD simulation
is coupled to an unthermalized EK or hydrodynamic solver.

We furthermore described two implementations of the re-
action-advection-diffusion algorithms. The implementation is
based on automatic code generation using pystencils and lbmpy,
and is provided as a jupyter notebook in the appendix B or at
the data repository [112].

However, it turned out that this model is not feasible to
be applied to the currently researched topic of the CRC 1333,
due to the slow reactions in comparison to the diffusion of
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the reactants. Therefore, in the next chapters we change to a
coarse-grained MD model.
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4. Random Walk Analysis of the
Ring-Closing Metathesis

This chapter is based on the following publication. My contri-
bution were the random walk analysis, simulations and data
analysis.

I. Tischler, A. Schlaich, C. Holm. “The presence of a
wall enhances the probability for ring-closing metathesis:
insights from classical polymer theory and atomistic sim-
ulations” In: Macromolecular Theory and Simulations,
30(2):2000076, March (2021)
URL: https://doi.org/10.1002/mats.202000076
Data repository: https://doi.org/10.18419/darus-1371

Since the continuum approach is not feasible for the analysis
of catalysis in confinement, we decided to go one step deeper
on the simulation scales and use a coarse-grained MD model.
This will then be applied to a specific reaction rather than a
general one. One promising reaction for this study was ring-
closing metathesis (Section 2.1.1), which has also been studied
experimentally by the Collaborative Research Center (CRC)
1333.

The idea of how confinement affects this reaction is quite
simple. Polymer chains near impenetrable walls have a smal-
ler number of possible configurations. On the premise that
ring closure can only occur when the ends of a polymer are
close together, we can assume that removing all configurations
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4. Random Walk Analysis of the Ring-Closing Metathesis

where the polymer ends are on different sides of a wall should
increase the likelihood that the ends are close together. Adding
curvature to this effect could lead to a focusing effect, like a
curved mirror.

Although this idea seems plausible, we wanted a more de-
tailed theoretical description. So before modeling this reac-
tion in a coarse-grained simulation, we used polymer theory
to gain some quantitative insights into the issue of end-to-end
distances of polymers near surfaces.

This investigation was carried out in two parts. First, we
used a random walk where the origin is at a fixed distance from
a reflecting flat wall. Here we can mathematically analyze how
the end-to-end distance and the probability of the free end
being near the origin is affected by the wall. In the second
part, we use an united atom molecular dynamics (MD) model
where one end is tethered at a distance from a wall. With this,
we wanted to see if the theory holds up and what the effects
of the excluded volumes are.

4.1. Random Walk Theory close to Reflecting
Surface

From the theory of a freely jointed chain 2.2 we know that the
probability to end such a chain at x in 3D space is given by:

P(x) =
(︃

3

2πR2

)︃ 3
2

e
−3x2
2R2 , (4.1)

where we have introduced the length of the random walk, R2 =
Nb2, with the Kuhn-length b.
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b

d
z

x

y

zw

Re

λ

Figure 4.1.: Illustration of the polymer model. The origin
of the chain (red) is held in place at a fixed
linker length d. Re marks the end-to-end distance
between the beginning and the end (green) of the
chain. The dashed circle indicates the reaction ra-
dius λ of the sphere over which Equation (4.6) is
integrated.
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Considering all random walks which have the same end-to-
end distance Re = |x| from the origin we obtain the probability
distribution Pe(Re) by integrating Eq. (4.1) over the surface of
a sphere of radius Re:

Pe(Re) = 4πR2
e

(︃
3

2πR2

)︃ 3
2

e
−3R2

e
2R2 . (4.2)

To investigate interfacial and confinement effects on a ran-
dom walk we introduce a reflecting wall at zw = −d (see Fig-
ure 4.1). A reflection occurs if in step i, a displacement is
selected that would end in zi − zw < 0. In this case, the z-
coordinate is mirrored at the wall such that zi = |zi − zw|.
While this approach does not conserve the step length b upon
a collision with the wall, it has the advantage of a well-defined
inert, and impenetrable wall, without any additional degrees
of freedom. The corresponding random walk now starts a dis-
tance d away from the surface, which corresponds to the dis-
tance of a stiff linker fixing polymer in space. The probability
distribution function to find the other end of the polymer at
position x, is then given by [113]:

P(x, d) =
{︃

P(x) + P(2dêz − x) z ≥ −d
0 z < −d . (4.3)

Integration over the surface of a sphere of size Re to obtain
the end-to-end distance yields:
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Pe(Re, d) =
Pe(Re)

2

⎡⎣ θe∫︂
0

sin(θe)

(︃
1 + e

−6d(d+Re cos(θe))

R2

)︃
dθe

⎤⎦
=

Pe(Re)

2

[︃
R2

6dRe

(︃
e

−6d(d+Re cos(θe))

R2 − e
−6d(d+Re)

R2

)︃
+ 1− cos(θe)

]︃
(4.4)

with θe =

{︄
π Re ≤ d

π − arccos
(︂

d
Re

)︂
Re > d

,

which describes the end-to-end distribution of a random walk
confined by a flat wall at distance d.

We now investigate the influence of the end-to-end prob-
ability distribution Eq. (4.4) on the ring-closing probability.
Whilst the latter depends on many variables including the
local environment, diffusion, and transport of the substrate
etc., here we assume that this scales linearly with polymer re-
turn probability Ppr(d, λ). This assumption holds to leading
order, as the ring-closing can only happen if the two polymer
ends meet at least a characteristic distance λ away from cata-
lytic center, as indicated in Figure 4.1. The reaction radius
λ thus describes a sphere around the origin encapsulating the
details of the catalytic reaction. The polymer return probab-
ility is correspondingly obtained by integrating the end-to-end
distribution up to λ by

Ppr(λ, d) =

λ∫︂
0

Pe(Re, d) dRe . (4.5)
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It is instructive to compare the polymer return probability
close to an interface to the case where the polymer is in bulk
(“free” case, i.e. the polymer does not interact with the surface
in the limit d → ∞). To this end, we define the excess return
probability due to the wall as

Pex(λ, d) =
Ppr(λ, d)

Ppr(λ,∞)
− 1 . (4.6)

Equation (4.6) directly yields the increase in return probability
— which we assume to be proportional to the selectivity in-
crease — for an ideal polymer attached to a surface at a linker
distance d.

To connect the ideal polymers that underlie a random walk
to chemically realistic alkane chains below, we rescale all lengths
in our model by the Kuhn length defined as [46]:

b =

⟨︁
R2

e

⟩︁
Rmax

=

⟨︁
R2

e

⟩︁
(n− 1)l cos

(︁
θ
2

)︁ . (4.7)

Here, Rmax is the maximal end-to-end distance of the poly-
mer in equilibrium, n is the number of monomers, l is the
bond length, and θ is the bond angle of the chemically realistic
chains. This allows the mapping of the end-to-end distance to
an equivalent freely jointed chain of segment length b, with the
corresponding number of Kuhn segments

N =
Rmax

b
. (4.8)

Using such a mapping, any polymer will display the same aver-
age and-to-end distance as a random walk, in the limit of long
polymers.
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4.2. Polymer Simulation

We model n-alkane chains using a chemically realistic united
atom force field, with potential energy functions summarized
in Table 4.1. The solvent was treated implicitly via Langevin
dynamics with the Verlet integration scheme. To match the
diffusion coefficient of methane, we chose a friction coefficient
of γ = 2.566/kBT . We set the temperature to T = 300 K, and
the timestep to ∆t = 8 fs. The total time over which each
simulation was sampled was t = 160 µs. In analogy to the
experiments performed by Ziegler et al.[2], simulations for two
sets of chain lengths n ∈ {18, 28} were performed using the
ESPResSo software package[20].

In line with the theoretical considerations above we get rid
of additional simulation parameters by employing a purely re-
flective wall. Particle positions which, after a position update
are within the wall, are reflected according to zi = |zi − zw|,
and their velocities in z-direction are reversed. The position of
the n = 1 monomer was fixed at a distance d from the reflect-
ing wall and the end-to-end distance distribution was sampled
for d ∈ [0 Å, 19 Å]. The sampling resolution was ∆d = 0.25 Å
for 4 Å < d < 14 Å, and ∆d = 1 Å in all other cases.

4.3. Comparison of Theory and Simulations

The resulting end-to-end distance probability distribution from
Equation (4.4), and the united atom MD simulations, are found
in Figure 4.2. For the random walk theory one can easily proof
that the random walk case for d/b = 0, i.e. the random walk
starts on the wall, is equal to the end-to-end distance probab-
ility distribution of an unconfined (free) random walk. This is
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Table 4.1.: United atom force field parameters taken from Ref.
[114]. The Lennard-Jones interactions have only
been accounted for if between the two particles of
the chain, there are at least 3 other particles (1-4
exclusion).

Pair bond potential
E(r) = kr

2 (r − r0)
2

Pair r0 [Å] k [kcal/mol/Å2]
CH2 - CH2 1.53 899
CH2 - CH3 1.53 899

Angle bond potential
E(θ) = kθ

2 (θ − θ0)
2

Pair θ0 [◦] kθ [kcal/mol/rad2]
CH2 - CH2 - CH2 112 120
CH2 - CH2 - CH3 112 120

Dihedral bond potential
E(ϕ) = 1

2

[︂
k1ϕ (1− cos(ϕ)) + k2ϕ (1− cos(2ϕ)) + k3ϕ (1− cos(3ϕ))

]︂
Pair k1ϕ [kcal/mol] k2ϕ [kcal/mol] k3ϕ [kcal/mol]

CH2 - CH2 - CH2 - CH2 1.6 -0.8 3.24
CH2 - CH2 - CH2 - CH3 1.6 -0.8 3.24

LJ-parameters
E(r) = 4ϵ

[︂(︁
σ
r

)︁12 − (︁
σ
r

)︁6]︂
Pair σ [Å] ϵ [kcal/mol]

CH2 · · · CH2 4.009 0.09344
CH2 · · · CH3 4.009 0.14546
CH3 · · · CH3 4.009 0.22644

104



4.3. Comparison of Theory and Simulations

Figure 4.2.: End-to-end probability distributions obtained via
random walk theory (top) using Equation (4.4)
and simulations (bottom) for the polymer chain
lengths 18 (left) and 28 (right). The theoret-
ical model used the Kuhn length b, and corres-
ponding Kuhn segments N , calculated from the
simulation data (Equation (4.7) and (4.8)). For
the shorter chain these parameters are b18 = 8.5 ,
and N18 = 1.71. For the longer chain, they are
b28 = 6.8 and N28 = 3.49.
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due to the symmetry of the system.

Moving the starting location slightly away from the wall res-
ults in a shift towards smaller end-to-end distances. If one
increases the distance d to values of about the average end-to-
end distance of the free random walk, the end-to-end distance
starts to approach the free case again. This time, however, the
peak of the distribution gets larger, while the longer end-to-end
distances appear less frequently. For even larger values of d,
the peak shifts back to larger end-to-end distances, where again
Pe lies above the free random walk. For even larger values of
d, the distribution will converge to that of a free random walk
which is an obvious result as the effects of the wall are rarely
noticed by the monomers. This behavior can be observed for
both chain lengths. The main difference is the observation that
the longer chain prefers longer end-to-end distances.

From our simulations using the united atom model, we ob-
serve that the n = 18 chain for d/b = 0 varies strongly from
the n = 28 chain. In both cases, it is important to note that
the particle is practically embedded in the wall, and the chain
starting from that point can only extend in the direction away
from the boundary. Therefore, excluded volume effects con-
tribute significantly to the end-to-end distribution, and corres-
pondingly, Pe(Re) is shifted to larger end-to-end distances. For
longer chain lengths, and large distances, the excluded volume
effects become less important, and the distribution functions
approach the analytical solution for the random walk (see Fig-
ures 4.3(b) and (d)). Notably, at a certain distances d, the
distribution functions for realistic polymer chains favor shorter
end-to-end distances when compared to the random walk. The
simulation of chain length n = 28 is long enough to behave as
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predicted from a random walk model, with the exception of the
excluded volume at short end-to-end distances. The shorter
chain, however, does not fit the model, and tends towards lar-
ger end-to-end distances.

Investigating the excess return probability (Figure 4.3), we
observe a maximum in all 4 cases considered. For the analyt-
ical solution, we observe a dependency on the reaction radius
λ, which is not present in the simulation data. This reaction
radius, however, is not of experimental significance, as it cor-
responds to details of the reaction. The maximum itself on the
other hand, tells us that we can have a significant increase in
the polymer return probability, which further translates into
a boost of the ring-closing probability. For our simulation we
therefore would have expanded the ring-closing probability by
18.5%, given the optimal distance to the wall.

As can be observed from our simulation results in Figure 4.3(c)
and (d), the simulation show a range where the excess re-
turn probability is negative. This is both due to the excluded
volume of the Lennard-Jones (LJ) particles, which repel each
other, and the stiffness of the polymer, and thus is expected to
also correspond to real polymers anchored close to a wall.

4.4. Summary

We have investigated how the probability distribution of end-
to-end distances for a single polymer chain changes when one
end of the polymer is fixed at a certain distance from a re-
flecting wall. For an ideal chain, this can be done analytically
via classical polymer theory. While we did not measure the
ring-closing probability directly, we assumed that it is linearly
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Figure 4.3.: Excess return probability as defined in Equa-
tion (4.6). In the top row plots a) and b), we
plot Pe of the analytical random walk solution,
for three values of λ/b, calculated via the corres-
ponding parameters of the equivalent freely join-
ted chain. The dotted line indicates the position
of maxima for other values of λ/b. In the bottom
plots c) and d), we display the corresponding Pe of
the simulation results for the united atom alkane
chains with n monomers.
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related to the probability that both polymer ends find each
other within a certain reaction radius λ. Under this assump-
tion, we examined the excess return probability, which shows
the corresponding change in said probability due to the wall
constraint.

From the theory of classical random walks, there is a non-
monotonic excess probability that is always positive and has a
maximum that depends on the chain length and varies mono-
tonically with d. Since the Gaussian chain lacks any molecu-
lar interactions, we also performed the same investigations by
performing molecular dynamics simulations of a united atom
alkane model. The comparison with the random walk model
was performed by mapping the conformational properties of
the united atom model, onto that of an equivalent freely jointed
chain. In both theory and simulation, we found an optimum
in the excess return probability, revealing a linker length that
maximizes the ring-closing probability. For the simulation of
a polymer with n = 18 monomer units, we could measure
an increase of up to 18.5 % in comparison to a free polymer
chain, whereas for the n = 28 chain, the increase was reduced
to about 14.5 %, albeit with a broader maximum. The op-
timal distances for the spacer length were for both cases about
7 Å, although the distribution is much broader for the longer
chain. Interestingly, the ring-closing probability depended only
weakly on λ for the interacting chain simulations.

The advantage of single chain simulations is that they run
very fast and allow for an easy change of the confining geo-
metry and chain parameters. However, in this study, we com-
pletely neglected the polymer-catalyst and polymer-polymer
interactions, which may play an important role during process
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of ring-closing metathesis.
Overall, we have achieved what we set out to do in this study,

namely to show that the geometric constraints imposed on a
polymer can improve the ring-closing probability. In the next
chapter, we build on these findings to further investigate the
ring-closing promoting properties of confinement.
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5. Coarse-grained metathesis reaction
analysis

This chapter is based on the following publication. My contri-
bution were the development of the metathesis model, system
modeling, simulations data analysis.

I. Tischler, A. Schlaich, C. Holm. “Disentanglement
of surface and confinement effects of the diene metathe-
sis reaction in mesoporous confinement” In: ACS Omega
(2023)
URL: http://doi.org/10.1021/acsomega.3c06195
Data repository: https://doi.org/10.18419/darus-3642

Knowing from polymer theory that even a flat wall can have
a significant effect on the ring-closing probability of the meta-
thesis reaction, we developed a model to emulate this reaction
in an MD simulation. However, modeling reactions with MD
is usually not an easy task. There are some reactive force fields
such as ReaxFF [115, 116, 117] that can model various chem-
ical reactions at the atomic level through the formation and
breaking of molecular bonds. With such an approach, one can
correctly determine the kinetics of a single reaction. Although
it would have been possible to perform a single metathesis re-
action with such a force field, we are more interested in the
statistics of many reactions. However, this again leads to the
problem that the reaction of a single molecular catalyst is very
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5. Coarse-grained metathesis reaction analysis

slow compared to the diffusion processes, and with one reac-
tion every 10 milliseconds on average, it is impossible to collect
enough data to do statistics at the atomistic level.

Since an atomistic simulation was out of the question, we
knew we needed a coarse-grained approach to model the reac-
tion. Such techniques have proved fruitful before, for example
in the Readdy simulation package [118, 119] or in the model of
Akkermans et al. [120], which uses specific cutoff lengths for
bond formation and breakage and is employed in the study of
polymerizations [121, 122, 123]. Since we are only interested
in the probabilities of ring closure and polymerization and not
the kinetics, we can lower the energy barrier of the reaction
so that it happens whenever the reactants are present. This
leads to an enormous acceleration, so that many more reac-
tions can take place. On the other hand, this should not affect
the selectivity significantly, as it should speed up both reac-
tion pathways in the same way. The model we came up with
is able to create bonds on collision of certain particles with the
catalyst. These bonds will then be broken at a predefined rate.

With this model, our aim was to investigate which geomet-
rical factors lead to an increase in the ring closure probabil-
ity of the metathesis reaction when the catalyst is located in
mesopores. The SBA15 materials of the experiments [2, 3] are
basically cylindrical pores and therefore induce curvature, in-
clusion and surface effects. Knowing that surface effects them-
selves increase the probability of ring closure, we wanted to
disentangle these three effects by simulating the reaction in
different geometries. To measure the surface effects, we chose
a flat wall as the system geometry with the catalyst tethered
to it. Secondly, we investigated a slit pore system with differ-
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ent widths, so that we can increase the confinement step wise
while keeping the surface effects constant. And finally, we re-
created the cylindrical pore, which produces curvature effects
in addition to the other effects.

5.1. Methods

In this section we describe the different models used within our
simulations, including the polymer model, the reaction mech-
anism and the coupling to the reservoir. The simulation frame-
work utilized for this is ESPResSo [20].

5.1.1. Polymer Model

In our simulations, the substrate oligomers are represented by
Kremer-Grest polymers [63], which repel via a WCA potential
(Equation (2.39)) and attract via a FENE potential (Equa-
tion (2.41)).

ULJ(r) = 4ϵ

[︃(︂σ
r

)︂12
−

(︂σ
r

)︂6
]︃

, (2.38)

UWCA(r) =

{︄
ULJ(r)− ULJ( 6

√
2σ) r < 6

√
2σ

0 else
, (2.39)

UFENE(r) = −1

2
KFENE∆r2max ln

[︄
1−

(︃
r

∆rmax

)︃2
]︄
. (2.41)

Here, ϵ and σ define the length and energy scales of the Weeks-
Chandler-Anderson (WCA) potential, rmax defines the dis-
tance where the bonded potential diverges andK is the strength
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Figure 5.1.: Reaction mechanism of the olefin metathesis. M
represents the metal atom at the center of the cata-
lyst.

of the FENE (f inite extension non-linear elastic) potential.
For simplicity, we considered only linear chains, consisting of
two different numbers of monomers Nm ∈ {22, 29}. The num-
ber of monomers of these oligomers were chosen to resemble
substrates 1 and 4 in the experiments by Ziegler et al. [3],
since these resemble reasonably well a linear polymer chain.
To include the rigidity of the molecule, we added a harmonic
angular potential between the individual beads that has an
equilibrium angle of ϕ0 = 180◦:

Uangle(ϕ) =
Kangle

2
(ϕ− ϕ0)

2 . (5.1)

The strength of this potential Kangle is a free parameter of the
model used to fit the selectivity of our homogeneous reaction
to the experimental values.

5.1.2. The Metathesis Model

The reaction mechanism [124, 17] of the olefin metathesis we
want to mimic is illustrated in Figure 5.1. A metal atom is
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located in the center of the catalyst complex. This metal atom
is the central part of the reaction and can form or break bonds
to the substrate molecules. We assume that initially, the metal
atom has already formed a double bond with a carbon atom
which we will call C0. Substrate carbon atoms that share a
double bond can attach to the catalyst and are denoted by
C1 and C2. When C1 binds to the catalyst, the double bond
between C1 and C2 is reduced to a single bond. The same
happens to the bond between the metal atom and C0. To keep
the total number of bonds constant, C0 and C2 also form a
bond. Thus, C0, C2, C1 and the metal atom have formed a
4-fold ring. Two carbon atoms can then split off from this ring,
so that the carbon pair C0 and C2 are freed and C1 remains
bonded to the metal atom. During this reaction the bonding
partners of the substrate double bonds have swapped. This
process does not interfere with any other chains attached to
the carbon atoms.

In our coarse-grained approach, we model the catalyst as a
large particle that has two active sites on its surface which can
form the two bonds that the metal atom can accept. If one
of the active sites already has a bond, it will be deactivated
until it releases the bond particle. The substrate molecules are
simple bead-spring chains in which each bead corresponds to
a carbon atom. The first two and last two monomers of each
chain are labeled as the carbon atoms that share a double bond.
These labeled carbon atoms can form a bond with the catalyst
once they collide with the active site. The probability that this
bond will be accepted is called Pbond. The carbon atom of a
pair that collides first obtains the bond, while the other forms
a bond with the particle that was bonded to the catalyst before
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the reaction. These bonds formed during the reaction process
are treated as harmonic bonds, because distance between the
particles when the bonds are created can vary strongly, which
can lead the FENE bonds to be over extended. The such cre-
ated a 4-fold ring can break open to release another pair of
labeled particles. This breakup is triggered at a predefined
rate τ−1

break. During the breaking process, if C0 and C2 remain
bonded together, the harmonic bond between them is replaced
by a FENE bond to be consistent with the rest of the oligomer.

Although this method technically allows for modeling a gen-
eric metathesis reaction, we applied it here to the specific case
of a α, ω-diene metathesis reaction. In that case there are two
opposite reaction paths of ring-closing and polymerization. In
both cases, a substrate molecule is already bound to the cata-
lyst, and the reaction pathway depends on whether the next
metathesis process starts with the olefin bond on the other
side of the molecule or from a completely different substrate
molecule. A schematic picture of how this diene metathesis
proceeds in the model can be seen in Figure 5.2. Technically,
it is also possible for the olefin bond to attach with C1 and C2

atoms being swapped, but this only leads to an unproductive
reaction cycle in which only the carbon atom bonded to the
catalyst is exchanged and the reaction continues as if this has
not happened.

While this simple model is subject to some limitations, many
of them can be overlooked as we are only interested in mod-
eling the selectivity of the reaction. First, we ignore the in-
consistencies in the binding energy of the different molecules
during the reaction. When a bond is formed, a pair potential
is created between two particles that may not be in equilib-
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rium, causing a change in local energy. However, due to the
thermalization of the entire system, this is quickly dissipated.
Additionally, the driving force of the reaction stems more from
the entropy of the created ethylene than from the enthalpy
change due to the negligible ring strain of macrocycles. Second,
since we are not interested in the kinetics of the reaction it-
self, we accelerate the reaction by increasing the breakage rate
of the 4-membered ring and also by increasing the probability
of accepting the bond upon collision to Pbond = 1. This is
done such that reaction and diffusion occur on the same times-
cale. This acceleration of the reaction should only affect the
throughput and not the selectivity. Contrary to the experi-
ments our catalyst is an ideal catalyst that is infinitely stable.
However, for our simulations we use a grand canonical Monte-
Carlo (GCMC) reservoir which controls the concentration of
the reactants to emulate a system state in which the reaction
is always in its early stages. Next, the catalyst is modeled
as a sphere and neglects the ligands that strongly affect the
reaction. While the ligands usually play an important role in
defining the catalytic properties, we have neglected these prop-
erties in the development of our model. And finally, due to our
coarse grained polymer model, we also avoid the topic of ste-
reoselectivity. These limitations have only a minor effect on
the selectivity and are overcome by the parametrization of the
bond angle potential mentioned earlier.

5.1.3. GCMC Reservoir

From the experiments there are two important conditions that
we would like to keep in our simulational approach: Firstly,
that the reaction takes place within the confinement of the pore
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(b) Ring-closing metathesis.
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Figure 5.2.: Scheme of different pathways for a diene metathe-
sis reaction. The catalyst is shown in red, the
green particles denote those carbon atoms that
share a double bond. Only these can attach to the
catalyst. The other backbone carbon atoms are
depicted in blue. In (a) we see the different path-
ways of an acyclic diene metathesis. In (b) we ob-
serve a ring-closing metathesis. In the center top,
and center bottom stages, the catalyst can accept
a bond from the the green particles. In the center
of the picture the bonds have been formed. The
reaction can either continue forward, (clockwise)
or backward (counter clockwise). This depends on
the order with which the bonds will break. The
right path for both reactions is the same up to the
point where either (a) a carbon chain is attached
to the catalyst, or (b) the two ends of the chain
close onto themselves to form a ring.
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and secondly that the diffusion processes into and out of the
pore are handled accordingly. As the reaction is addressed as
described above, we now mimic the diffusion of substrate and
product in and out of the pore. To model the diffusion process,
we consider a finite porous media (i.e., the interface, the slit or
the cylindrical pore) embedded in reservoir where the reactants
are dissolved in. This reservoir region is treated via the Grand
Canonical Monte Carlo (GCMC) technique [125]. Thus, sub-
strate can be introduced into the system and products can be
removed from it. GCMC is a simple technique to impose the
fixed chemical potential of a reservoir to the system of interest
i.e. the pore. It works by removing or inserting a molecule
via a trial move. The probability P for accepting this move is
given by the Boltzmann-coefficient, which results in:

Pin = min

[︃
1,
V Λ−3

N + 1
exp

(︃
µ−∆U

kBT

)︃]︃
and (5.2)

Pout = min

[︃
1,

N

V Λ−3
exp

(︃
−µ−∆U

kBT

)︃]︃
, (5.3)

where V is the volume of the system, Λ is a normalization
factor, N is the number of molecules in the system prior to
the move, µ is the desired chemical potential and ∆E is the
energy difference of the insertion/removal moves, which are
accepted according to a Metropolis scheme. For our simula-
tion, we remove the products from the reservoir region of the
system by setting their chemical potential to µproduct = −∞.
This circumvents the problem that one needs to specify the
composition of the products when handling them with a finite
chemical potential. To account for diffusion effects, we define
a specific region around the catalyst that is not coupled to
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the reservoir, which means that the molecules must diffuse to-
ward and away from the catalyst. The latter allows to count
the ratio of polymerized NP and ring-closed NP molecules to
determine the ring-closing selectivity SRC:

SRC =
NRC

NRC +NP
. (2.4)

Following this protocol, we simulate the reaction in a steady
state, mimicking the experimental situation at the beginning
of the reaction.

5.2. System Set-up

In order to study the various effects when confining a system,
we investigated a total of four different realizations, with vary-
ing levels of confinement: bulk, a flat wall, slit pores and cyl-
indrical pores (as seen in Figure 5.3). The bulk system repres-
ents the homogeneous catalysis without any confinement. A
flat wall with periodic boundary conditions is used to study
surface effects with an otherwise open system. The slit pore
goes further in the sense that it confines the catalyst from both
sides. By varying the slit width we can therefore control the
contribution of this confinement effect. Finally, using a cyl-
indrical pore with variable radius, we also add the effect of
curvature to our study.

The bulk system is depicted in Figure 5.3a. The positions of
the catalysts are fixed within the system box. This was done
to suppress possible catalyst-catalyst interactions. The spacial
region that couples to the reservoir has some distance from
the catalysts. This is similar to homogeneous reaction experi-
ments. In the experiments of Ziegler et al., a catalyst loading

121



5. Coarse-grained metathesis reaction analysis

GCMC

G C M C

ReservoirDiffusion

(a) Bulk system

GCMC

G C M C

ReservoirDiffusion

(b) Flat wall system

GCMC

G C M C

ReservoirDiffusion

Reaction in confinement

d

x

y

z

(c) Slit pore system

122



5.2. System Set-up
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Figure 5.3.: Illustration of the different systems. In all systems,
the catalysts are fixed in space, so the reactants
must diffuse to them. Only the areas highlighted
in yellow are coupled to the reservoir, which im-
poses a chemical potential on the system. Sub-
strates are introduced into this coupled volume
and products are withdrawn. The system itself
is periodic in all directions.
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of 1 mol % is used, meaning that the catalyst to substrate ratio
is 1:100. However, due to the influx of substrate particles from
the reservoir the catalyst loading cannot be rigorously defined
for our system. Therefore, we used the catalyst density as a
free parameter and after some testing it turned out not to have
a significant impact on the selectivity as long as the catalysts
are far enough apart such that the attached chains do not in-
teract with one another. The resulting catalyst density that we
chose was ρbulkcat = 0.0018 nm−3 at an average substrate density
of ρ = 0.015 nm−3.

In the other systems, the catalyst is placed near a wall. An
illustration of the catalysts near a wall can be seen in Fig-
ure 5.4. The catalyst consists of a central impenetrable sphere
to which two permeable active sites are attached. The posi-
tion and rotation of the catalysts are fixed. The centers of the
active sites are spaced dcat = 0.7 nm from the wall. According
to a previous study [126], this should maximize the probability
that the end of the molecule returns to its origin, increasing
the probability of ring closure. The catalyst model has many
parameters, which could potentially influence the selectivity.
For simplicity, we chose a size for the core that is similar to
the size of the actual catalyst. The active sites are large enough
such that the reaction event is triggered sufficiently frequent
to gather good statistics. The spacing between the active sites
was chosen such that the 4-fold ring that occurs during the
reaction is not overstretched. The reaction is calibrated by
parametrizing the angular binding potential of the substrate
oligomers as discussed above.

For the number of catalysts in the pore, in order to make
the different systems comparable, we chose a constant cata-
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Figure 5.4.: Illustration of the catalyst geometry. All length-
scales are given with respect to the diameter of our
carbon atoms, σ = 1.535 Å. The yellow sphere is
the impenetrable holder of the reactive sites (red).
The pale, dashed one resembles the inactive reac-
tion side, which already has a particle bond to it.
These reactive sites are permeable, but if the cen-
ter of a particle with an olefin bond passes into
this region, it will attach to the reactive site. Dur-
ing the reaction it is impossible that both reactive
sites are active at the same time.
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lyst surface density for all pore types at σcat = 0.036 nm−2.
Due to the curvature of the cylindrical pore, we chose not to
measure the surface density at the pore wall, but rather at the
place where all active sites are located. This corresponds to a
distance of dcat from the curved wall. This allows for a better
comparison between slit and cylindrical pores.

The flat wall system is depicted in Figure 5.3b. The volume
coupled to the reservoir starts at a distance of d = 9 nm per-
pendicular to the boundary. This system will provide insight
into the interfacial effects that occur in this and the two follow-
ing systems. All wall surfaces are treated as analytical walls,
meaning that there are no explicit wall atoms and the interac-
tion between the wall and the molecules is treated by a purely
repulsive WCA potential with the length scale σ = 1.535 Å
and the energy scale ϵ = 0.833 kBT . This is approach is also
the followed in the pore systems.

The slit pore system (Figure 5.3c) consists of a finite slit pore
with length l = 35.8 nm. The width of the pore in the periodic
direction is Ly = 10.21 nm. The catalysts are located at a
fixed location inside. We varied the distance between the two
walls between 2 nm ≤ dslit ≤ 6 nm. Due to the constant pore
surface area of these different runs, the number of catalysts in
the pore was kept constant at Nslit = 13.

The cylindrical pore system (Figure 5.3d) is the one most
similar to the experimental setup (by Ziegler et al.). Here, we
employ a finite cylindrical pore that is open at both ends. The
length of the pore itself is l = 35.8 nm. We varied the radius
between 1.15 nm ≤ r ≤ 3.15 nm. To extrapolate to the limit
of large pores, we also ran a simulation with r = 6.15 nm.

The simulation box also consists of a volume outside the
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pore that spans Lx = 34.2 nm in the longitudinal direction
and Ly = Lz = 10.21 nm in the other two directions. Within
this volume, GCMC moves can take place, however, we also
added a padding of Lpad = 5 nm away from the pore entry to
account for diffusional effects.

The substrate density in this reservoir in the simulations is
chosen to match the experiments by Ziegler et al. with 0.015
molecules per nm3. At this low density, molecules on aver-
age are not close enough to interact when molecules are ad-
ded or removed. This allows us to treat the substrate as if
it were an ideal gas. However, due to intramolecular interac-
tions, the internal energy of the inserted chains is non-zero.
Therefore, the inserted molecules must be in a configuration
that follows Boltzmann statistics. We obtained these config-
urations by sampling configurations of a single molecule. For
each inserted molecule, one of these configurations is randomly
selected.

Since the intramolecular energy is accounted for from the
collected samples and the intermolecular energy is negligible
due to the low density (∆U ≈ 0), we can assume that the
chemical excess potential µsubstrate = 0. The resulting equi-
librium substrate densities are ρbulk22 = 0.0145nm−3 and ρ29 =
0.0142nm−3, which is about 5% less than the concentration in
the experiments. This deviation is caused by an underestima-
tion of the chemical potential, by assuming that the interaction
energy of the substrate oligomers is zero.

Each system examined in this study was simulated using
N = 8 independent simulation runs and the average values
were used for analysis. The marked errors in the graphs are
the standard deviation over all runs. The run time of the simu-
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Figure 5.5.: Calibration simulation of the angle bond stiffness,
which has been determined to be K22 = 5.09kBT
and K29 = 4.32kBT .

lation was not predefined, but rather the simulation were inter-
rupted once the errorbars were considered small enough. The
system temperature was set to T = 300 K using a Langevin
thermostat.

5.3. Simulation Results

5.3.1. Bond Angle Calibration

For the bond angle potential of our polymer model, we determ-
ined Kangle

22 = 5.09 kBT and Kangle
29 = 4.32 kBT , to yield suf-

ficient agreement with the experimental data (see Figure 5.5).
With this stiffness the hydrodynamic radii of our substrate
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Figure 5.6.: Density dependence of the homogeneous reaction.
The fitting curve is an exponential function.

oligomers were calculated according to Doi and Edwards [52]:

1

RH
=

2

N(N − 1)

∑︂
i=1

∑︂
j<i

1

|ri − rj |
. (5.4)

For the longer chain we obtained RH29 = 0.59±0.01 nm, while
the experimental value is Rex

H29 = 0.53 nm. For the shorter
chain we compare the simulated value of RH22 = 0.51±0.01 nm
to the experimentally determined value of Rex

H22 = 0.44 nm.
With respect to the coarse-grained level of our simulations, we
found the agreement to be sufficient.

5.3.2. Homogeneous Reaction

We first investigated the concentration dependence of the sub-
strate on the ring-closing selectivity. A decrease in concen-
tration leads to a lower probability that a molecule from the
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Figure 5.7.: Selectivity against the inverse pore diameter/slit
width. The result of the bulk reaction at the same
reservoir substrate concentration is shown in the
dash dotted line. The fitting function is a second
degree polynomial.

solution will collide with a catalyst. This subsequently will
increase the residence time that a molecule is bound to a cata-
lyst which in turn increases the time a substrate has for ring
closure. The resulting data of the substrate concentration de-
pendence on the ring-closing selectivity is shown in Figure 5.6.
It clearly demonstrates that lower densities lead to a higher
ring-closing selectivity. Our results are in excellent agreement
with the experimental data by Ziegler et al. [3] and thus valid-
ate the calibration of the simulation model.
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5.3.3. Reaction inside of Different Pores

We now place the catalysts into systems which are bound by
a single flat interface, inside slit pores of different widths, and
cylindrical pores of different radii in order to investigate vary-
ing degrees of confinement: interfacial effects, the presence of
confining surfaces, and geometrical curvature effects. In Fig-
ure 5.7, we report the measured selectivities of our simulations.
In detail, we plot the selectivities against the inverse diameter
of the pores in order to highlight the convergence towards the
limiting case of a flat wall, which is reached in the limit d→ ∞.
The selectivity significantly increases with increasing degree of
confinement. Interestingly we note that the pure planar inter-
face effect emerging from a flat wall alone increases the ring-
closing selectivity already from 49% to 58%. Investigating a slit
pore, where we added a second surface at some distance away,
further enhances the selectivity depending on the width of the
pore. This way, we achieved selectivities ranging from 63% for
d = 6.0 nm up to 79% for d = 2 nm. Moving further from a slit
to a cylindrical pore, curvature effects come into play: The se-
lectivity changes from 70% for a diameter of d = 6.3 nm up to
97.7% for d = 2.3 nm. We additionally simulated a cylindrical
pore with d = 12.3 nm in order to bridge the gap to the case
of a flat wall. If we plot the simulated selectivity against the
inverse diameter, the selectivity increase is found to be almost
linear for the cylindrical pores (Figure 5.7). Importantly, both,
the cylindrical and the slit pore selectivities, converge towards
the flat planar interface result in the case of large diameters.

While the simulations slightly underestimate the experimental
values for the larger pore sizes (d ∈ {6.3 nm, 5.0 nm}), the se-
lectivity was overestimated for smaller pores. The main reason
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Figure 5.8.: Local end-monomer density of the substrates at
the region of the catalyst ρe(∆c) vs the inverse
pore diameter. The region of the catalyst is
defined as the position of the active centers with
an added margin. So measured from the wall the
region is: ∆c = (0.7±0.3)nm. The fitting function
is a second degree polynomial.

for this is that our model does not include any specific polymer-
wall interactions that occur between the ester compounds and
the silica pore. Since the goal of this study is not to investigate
chemistry specific effects we explicitly decided to not include
this kind of interactions in our approach, which might explain
some of the deviations between the simulated and experimental
values.

More in detail, in our model we have only steric, and there-
fore repulsive interactions included, thus there are only a few
factors that can cause confinement effects. To shed further
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light onto this, we investigated the local density profile of
the end-monomers, ρe(∆c), of the substrate as a function of
the distance to the wall. The end-monomer density instead
of e.g. the center of mass density was chosen since only the
ends can bind to the catalyst. The distance range away from
the surface, in which we measured was the position of the re-
active centers plus/minus the catalyst size, correspondingly is
∆c = (0.7 ± 0.3) nm. In Figure 5.8, this local density is plot-
ted against the inverse diameter. Classical polymer theory
predicts that the oligomer density decreases near an impenet-
rable wall for entropic reasons. This can be observed in our
simulations in the case of a flat wall, where the density near
the wall, ρflate = 0.0089nm−3, is much lower than far from the
wall, ρbulk = 0.0145nm−3. This effect is even more pronounced
inside a pore, where two interfaces or a curved boundary act
on the substrate. For decreasing pore size, the reduction in
the local density around the catalyst is increased. Addition-
ally, due to curvature effects, the cylindrical pores have a lower
local density than the slit pores with the same diameter.

The local end-monomer density for the slit pores (red data
in Figure 5.8) appears to saturate for small inverse pore width,
yet this saturating local density in the large pores is lower than
the local density near a single flat wall (green triangle in Fig-
ure 5.8). This can be explained by the fact that the system
is not in diffusive equilibrium, i.e., there is a substrate density
gradient along the longitudinal pore axis due to the drainage
of the substrate during the reaction. This gradient can be ob-
served in Figure 5.9. For a better comparison we simulated a
slit pore system, without catalysts or reactions. In that case,
the local density for large slit pores recovered the same value
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Figure 5.9.: Density distribution of the substrate along the axis
of a slit pore with a width of d = 4 nm. For
comparison, the system was simulated with and
without reactions. The density increase at the end
of the pore (|x| > 16 nm) indicates the transition
to the bulk outside the pore. Diffusion of sub-
strates into the pore and drainage of substrates
within the pore due to the reaction result in a
density gradient toward the center of the pore.
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Figure 5.10.: Selectivity vs the catalyst density inside the pore.
The difference in selectivity of the cylindrical and
the slit pore within this image allows for an in-
sight into the curvature effects. The fitting func-
tion is a second degree polynomial.

as in the flat wall case. Although the observed density gradient
along the pore axis in our simulations is partially due to the
increased reaction rate in the simulations compared to the ex-
perimental olefin metathesis, such effects are always appearing
in the case of fast reactions or in sufficiently long pores, which
depending on the material can easily extend to the micrometer
scale.

In general, comparing cylindrical and slit pores at the same
diameter can be misleading, since volume and surface area scale
differently for the two types of pores. For our simulations,
where we vary the pore size, we therefore used a constant cata-
lyst surface density to eliminate the different surface scaling.
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In order to elucidate the effect of the catalyst volume density
Ncat

V pore on the selectivity, we present the corresponding simula-
tion data in Figure 5.10. This representation allows comparing
confinement and surface effects at the same volume and sur-
face density of the catalyst. Our simulation results reveal – as
expected – a strong increase of the selectivity with increasing
catalyst volume density, however, the cylindrical pores at the
same values Ncat

V pore reveal selectivities that are about 10% higher
for the cylindrical pores. Since the simulations are performed
at fixed catalyst surface density, relating the pore volume to a
degree of confinement allows identifying this difference in the
selectivity with curvature effects.

Finally, our simulations allow for correlating the obtained
local end-monomer density and selectivity for the different sys-
tems examined. In the limit of large pores (right data in
Figure 5.11), the selectivity increase in pores perfectly coin-
cides with the change of the substrate density in bulk (yellow
data) and also with the selectivity increase at a planar inter-
face (green triangle). The vertical dashed line in Figure 5.11
indicates the limit where a direct proportionality to the dens-
ity change is observed, i.e. the transition to confinement ef-
fects. For the parameters investigated here this transition oc-
curs roughly at r ≈ 6 nm for cylindrical pores and d ≈ 3 nm
for the slit pores. For smaller pores, the measured selectivity
outperforms the bulk reaction at the same density, implying
that the local end-monomer density cannot be the only source
for the selectivity increase. Confinement must therefore dir-
ectly affect the ring closure process by reducing the number of
possible configurations for the substrate. Again, the increase
is more pronounced for cylindrical pores than for slit pores,
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5.3. Simulation Results

Figure 5.11.: Selectivity vs. local density of the substrate ends.
Smaller pores show lower local substrate densit-
ies. Bulk here refers to the homogeneous reac-
tion at the given substrate density. For small
pores the measured selectivity is larger than the
selectivity of a homogeneous reaction at the same
density and cylindrical pores reveal a higher se-
lectivity compared to slit pores. The vertical dot-
ted line marks the upper bound of the region,
where confinement effects are observed, i.e. data
for bulk, in the pores and at a planar interface
become indistinguishable.
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revealing that curvature amplifies this effect, i.e. the configur-
ational degrees of freedom of the substrate at a curved interface
are reduced much stronger than at a planar interface, and thus
enhancing the ring-closing probability.

5.4. Summary

We have developed a coarse-grained model for studying a gen-
eric catalytically activated ring-closing polymerization reaction
near an unstructured catalyst. Using particle-based grand-
canonical molecular dynamics simulations and a collision-based
reaction mechanism we parametrized our model to reproduce
the bulk ring closing selectivities of a diene metathesis reaction
studied in a recent work by Ziegler et al. [3]. This was done
for substrate polymers consisting of Nm = 22 and Nm = 29
monomers. For the homogeneous reaction we recovered the ex-
pected reduction of the ring-closing selectivity with increasing
substrate density. While this is a well-known fact, it demon-
strates the validity of our modeling approach.

Using this model we performed an extensive investigation of
the effects of the presence of a wall near the catalysts. In ac-
cordance with our previous analytical work [126], we also found
with our simulational approach that the presence of a wall
enhances the excess return probability of chain ends, which
leads to a corresponding change in the ring-closing probability
due the wall constraint. For all systems investigated in the
present work, we could measure an increase in the ring-closing
selectivity when compared to the selectivity measured in a ho-
mogeneous system at the same substrate reservoir density. We
quantified this wall-effect and demonstrated that it stems from
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the reduction of the density of substrate chain ends near the
catalysts.

We then continued to investigate slit pores and cylindrical
nanopores of various sizes to systematically disentangle con-
finement effects from wall induced effects. Interestingly enough,
there is a further increase in ring-closing selectivity if we geo-
metrically confine the catalysis. This stems from the fact that
the density of chain ends near the catalysts decrease further
due to a reduction in overall substrate density within the pore
and is therefore a pure confinement effect. Noteworthy, we
observed that for small pores the increase cannot be related
to the local density alone, but is rather due to two additional
effects: (i) if the pore size becomes comparable to the typical
length of the substrate, the conformational degrees of freedom
are restricted and thus, the return probability is further en-
hanced (this can be observed e.g. for slit pores < 3 nm). (ii)
the observed selectivity enhancement is much stronger for the
cylindrical pores studied, indicating that curvature further en-
hances the return probability and thus the selectivity. The
latter effect increases with the pore curvature, i.e. as 1/r in
perfect agreement with the observations from our simulations.
The experimental data of the metathesis reactions studied by
Ziegler et al. [3] show a good agreement with our observed
trends.

Summing up, we can always relate the increase of the ring-
closing selectivity to the reduction of substrate density close
to the catalyst which, however, varied for the different sys-
tems. In particular, the strong dependence on wall curvature
effects was unexpected and could likely be exploited with spe-
cially corrugated surfaces that have optimal shape for the em-
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5. Coarse-grained metathesis reaction analysis

ployed substrate particles. With our catalytic coarse-grained
model at hand, one could investigate confinement effects also
for other pore geometries and substrates to make a prediction
about which kind of geometry would be optimal for the cata-
lytic process.

140



6. Conclusion

In this work, we used computer simulations to investigate the
topic of molecular catalysis in confinement. We started from a
continuum scale with a fluctuating-advection-diffusion-reaction
system where the transport properties were of interest. To gain
a more detailed insight into the confinement-induced changes
in the internal polymer structure during the diene metathe-
sis reaction, we moved to a finer scale using particle based
models. Here random walk theory was applied to polymers
near boundaries and we compared them to particle based sim-
ulations modeled with a united atom force field. For the fi-
nal part, we scaled up this polymer reaction and developed a
model to study the different effects of surface, confinement and
curvature within a mesoporous system.

We have extended the electrokinetic method in ESPResSo
by adding flux thermalization and reactions. The thermal fluc-
tuations allowed us to study smaller systems where these fluc-
tuations become relevant. The reactions, on the other hand,
enable us to model the transformation of the different spe-
cies either locally at a defined catalyst or as a bulk reaction.
We discussed the implementation and were able to show the
excellent scaling with system size of this method. For valida-
tion, different systems were tested to show the correct behavior.
It was also demonstrated that the fluctuations are important
when studying reactions that have a reaction order not equal
to one. In the end, however, it turned out that this method
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was not applicable for the current study of molecular catalysis
in mesopores, as the reaction of individual catalysts is too slow
compared to the diffusion inside the pores. In the future, how-
ever, this method could be of use when transport pores are
considered.

Realizing that the scale of continuum simulations is too
coarse, we went a step down on the refinement scale and de-
cided to investigate the issue using particle-based simulations.
To this end, we studied the ring-closing metathesis reaction
to analyze how and to what extent confinement affects the
selectivity of this reaction. In the beginning polymer theory
was applied to a random walk originating at a fixed distance
from a flat reflecting wall. Under this constraint, it could be
shown that the end-to-end distance distribution is significantly
affected by the distance between the origin and the wall. The
maximum of this distribution can shift to smaller end-to-end
distances for small distances between the origin and the wall,
or be more pronounced for larger distances between the ori-
gin and the wall. For comparison, a simulation with united
atoms was also utilized, which showed similar behavior, but
due to the excluded volume of this model, these effects were
less pronounced.

In addition, we analyzed how likely it was that the random
walk/polymer would end near its origin. We defined the excess
return probability as the increase in return probability when
the origin is near a wall compared to the free polymer model.
This analysis yielded a maximum for both the random walk
and molecular dynamics (MD) simulations, suggesting that
there is an optimal linker length that maximizes the probability
of a polymer closing in on itself. This optimal linker length is
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longer for the MD simulation because the excluded volume
prevents the ends from being close together. At the optimal
linker length, which is about 7 Å for the MD simulation, the
probability of return increases by 14.5% to 18.5%, depending
on the chain length, compared to the unconstrained polymer.
Since the ends must be close together to cause ring closing,
this increase in return probability also leads to an increase in
ring closing probability.

We have also developed a coarse-grained model that can rep-
resent the ring-closing metathesis reaction. This was used to
investigate the possible causes of the increase in ring-closing se-
lectivity when the reaction takes place in confinement. We were
able to distinguish between surface, confinement and curvature
effects, all of which separately increase selectivity. The meas-
ured surface effect can be explained in part by the lower local
oligomer substrate density near a repulsive surface compared
to an unconfined reaction. This lower density leads to a lower
number of possible polymerizations and thus favors the ring-
closing reaction. While this density depletion due to confine-
ment and curvature effects is stronger than that of a single flat
surface, it is not sufficient on its own to explain the selectivity
increase for these cases. Thus, within the boundary of a slit
or cylindrical pore, the oligomers are restricted in their move-
ments such that the ring-closing process is directly favored.
This effect proved to be even more pronounced in curved cyl-
indrical pores than in flat slit pores.

The results obtained in this work are based on idealized as-
sumptions and only work for purely repulsive interactions. In
reality, however, these molecular catalytic processes in confine-
ment depend on several other parameters that were not taken
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into account. Nevertheless, the measured effects can play an
important role, as they complement the results of the other
Collaborative Research Center (CRC) 1333 projects and con-
tribute to a better understanding of the topic of ring-closing
metathesis. The presented topics in this thesis laid the found-
ation for more complex systems. Moreover, with the presen-
ted electrokinetic continuum solver, effective models including
ionic species can be modeled, such as electrochemical CO2 con-
version, which is a topic of the second funding period of the
CRC 1333.
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A. Calculation of the normalization factor

This appendix is reused from our publication [127]. The nor-
malization factor A0 was introduced to ensure that the sum
over all included neighbours does not depend on the stencil
used. When considering the case with only face neighbours,
we obtain ∑︂

i∈face

1

aiA0,DdQ(2d+1)
= 2d, (A.1)

where the distance to the face neighbours is always ai = 1.
Since we have 2d face neighbours there is no need for normal-
ization, and A0 = 1. However, when including edge and corner
neighbours for the D3Q27 stencils, the summation becomes∑︂
i∈face

1

aiA0,D3Q27
+

∑︂
i∈edge

1

aiA0,D3Q27
+

∑︂
i∈corner

1

aiA0,D3Q27
= 6.

(A.2)

Inserting the number of faces, edges, and corners and their
respective distances we get:

6
1

A0,D3Q27
+ 12

√
2

A0,D3Q27
+ 8

√
3

A0,D3Q27
= 6. (A.3)

This yields a normalization factor of A0,D3Q27 = 1+2
√
2+ 4

3

√
3.

The same procedure can be used to calculate the normalization
factor for any other stencil.
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B. Fluctuating
advection-diffusion-reaction pystencils
script

B.1. Introduction

This script should give an introduction of how to use the fluc-
tuating electrokinetics model in pystencils. For the sake of
simplicity we are not using lbmpy to generate the velocity field,
but rather set the velocity to be constant.

B.2. Set-Up

B.2.1. Imports

importing pystencils.sessions lets us use many pystencil
functions via the abbreviation ps and sympy functions via sp.
The also supplyied poisson.py will handle the electrostatic
interaction using numpys FFT.

[1]: from pystencils.session import *
from pystencils.rng import random_symbol
import poisson
import numpy as np
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B.2.2. Create the grid and needed fields and variables

We will be using the datahandling module of pystencils to
manage all the fields and communicaions.

[2]: L = (32, 32, 32)
stencil = 19
species = 2
dh = ps.create_data_handling(domain_size=L,

periodicity=True,
default_target=’cpu’)

# define the fields
c_fields = []
j_fields = []
r_flux_fields = []
for i in range(species):

c_fields.append(dh.add_array(f’c_{i}’,
values_per_cell=1))

j_fields.append(dh.add_array(f’j_{i}’,
values_per_cell=stencil // 2,
field_type=ps.FieldType.STAGGERED_FLUX))

r_flux_fields.append(dh.add_array(’r_’ + str(i),␣
↪→values_per_cell=1))
velocity_field = dh.add_array(’v’, values_per_cell=dh.dim)
pot_field = dh.add_array(’Phi’, values_per_cell=1)
charge_field = dh.add_array(’q’, values_per_cell=1)

#define the constants
kT = sp.Symbol("kT")
dt = sp.Symbol("dt")
r_rate_const = sp.Symbol("gamma")
D = sp.Matrix([ps.TypedSymbol(f’D_{i}’, np.float64) for i␣
↪→in range(species)])
z = sp.Matrix([ps.TypedSymbol(f’z_{i}’, np.float64) for i␣
↪→in range(species)])
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r_coefs = sp.Matrix([ps.TypedSymbol(f’n_{i}’, np.float64)␣
↪→for i in range(species)])
r_order = sp.Matrix([ps.TypedSymbol(f’O_{i}’, np.float64)␣
↪→for i in range(species)])

stencil_factor = 1.0
if dh.dim == 2:

if stencil == 9:
stencil_factor = np.sqrt(1/(1+np.sqrt(2)))

if dh.dim == 3:
if stencil == 19:

stencil_factor = np.sqrt(1/(1+2*np.sqrt(2)))
if stencil == 27:

stencil_factor = np.sqrt(1/(1+2*np.sqrt(2)+ 4.0/3.0␣
↪→* np.sqrt(3)))

B.2.3. Specify the diffusion-migration-advection equation
and use the automatic FVM discretizer

Here we define the basic advection diffusion equation and write
it in sympy. THen we use pystencils to create a finite volume
method out of it. Afterwards the velocity field gets applied and
everything is beeing put together.

[3]: def grad(f):
return sp.Matrix([ps.fd.diff(f, i) for i in range(dh.

↪→dim)])
def diffusion_equation(c_field, i):

return - D[i] * grad(c_field) - D[i] * z[i] * c_field.
↪→center * grad(pot_field)
def advection_diffusion_flux(c_field, j_field, index):

flux_eq = diffusion_equation(c_field, index)
fvm_eq = ps.fd.FVM1stOrder(c_field, flux=flux_eq)
vof_adv = ps.fd.VOF(j_field, velocity_field, c_field)
flux = []
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for adv, div in zip(vof_adv, fvm_eq.
↪→discrete_flux(j_field)):

assert adv.lhs == div.lhs
flux.append(ps.Assignment(adv.lhs, (adv.rhs + div.

↪→rhs)*dt))
return ps.AssignmentCollection(flux)

B.2.4. Add the fluctuations to the discrete flux

For the fluctuation we take the flux from the advection diffu-
sion equations, and loop over every direction. From the density
of the cells which are connected by the flux, we calculate the
amplitude of the fluctuations. This fluctuation term is then
added to the advection diffusion assignments.

[4]: def add_fluctuations(flux, c_field, j_field,
species_index, stencil_factor):

rng_symbol_gen = random_symbol(flux.subexpressions,
dim=dh.dim)

for i in range(len(flux.main_assignments)):
n = j_field.staggered_stencil[i]
assert flux.main_assignments[i].lhs == j_field.

↪→staggered_access(n)

# calculate mean density
dens = (c_field.neighbor_vector(n) + c_field.

↪→center_vector)[0]/2
# multyply by smoothed haviside function so that␣

↪→fluctuation will not get bigger that the density
dens *= sp.Max(0,sp.Min(1.0,c_field.

↪→neighbor_vector(n)[0]) * sp.Min(1.0,c_field.
↪→center_vector[0]))

# lenght of the vector
length = sp.sqrt(len(j_field.staggered_stencil[i]))
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# amplitude of the random fluctuations
fluct = sp.sqrt(2*dens*D[species_index]*dt) * sp.

↪→sqrt(1/length) * stencil_factor
# add fluctuations
fluct *= 2 * (next(rng_symbol_gen) - 0.5) * sp.

↪→sqrt(3)

flux.main_assignments[i] = ps.Assignment(flux.
↪→main_assignments[i].lhs, flux.main_assignments[i].rhs +␣
↪→fluct)

return flux

Because the random number on both side of the periodic
boundary need to be equal, we fold the system so that the
offsets of at the periodic boundary conditions are the same.
And with this the RNG will calculate identical numbers for
those cases.

[5]: def add_ghostlayer_folding(flux):
’’’ Add the folding to the flux, so that the random␣

↪→numbers persist through the ghostlayers.’’’
fold = {ps.astnodes.LoopOverCoordinate.

↪→get_loop_counter_symbol(i):
ps.astnodes.LoopOverCoordinate.

↪→get_loop_counter_symbol(i) % L[i] for i in range(len(L))}
flux.subs(fold)
return flux

B.2.5. Poisson solver via FFT

To solve the electrostatic Poisson equation, the charges are
transformed via numpy into the fourier space and are solved
there.
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[6]: def init_fft():
charge_field_rhs = 0
for i in range(species):

charge_field_rhs += z[i] * c_fields[i].center
gather_charges = ps.Assignment(charge_field.center,

charge_field_rhs)
fft = poisson.FFTReal(dh=dh,

phi_field=pot_field,
epsilon=sp.Number(1),
charge_access=charge_field.center,
prefactor=sp.Number(1),
opts=None)

return fft, ps.AssignmentCollection([gather_charges])

B.2.6. Add the reaction between the species

Adding the reactions is rather staight forward: loop over the
species to calculate the raction rate via the reaction order equa-
tion. Apply the stochastic fluctuations to the reaction term
and turn the into an pystencil assignment.

[7]: def reaction_description():
r_flux = ps.AssignmentCollection([ps.

↪→Assignment(r_flux_fields[i].center, 0) for i in␣
↪→range(species)])

r_cont = ps.AssignmentCollection(
[ps.Assignment(c_fields[i].center, c_fields[i].

↪→center + r_flux_fields[i].center) for i in␣
↪→range(species)])

rng_symbol_gen = random_symbol(r_flux.subexpressions,
dim=dh.dim)

rand_number = next(rng_symbol_gen)
reaction = r_rate_const * dt
for i in range(species):

reaction *= sp.Pow(c_fields[i].center, r_order[i])
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reaction_fluctuations = sp.sqrt(sp.Abs(reaction)) * 2 *␣
↪→(rand_number - 0.5) * sp.sqrt(3)

reaction_fluctuations *= sp.Min(1,sp.Abs(reaction)**2)
for i in range(species):

r_flux.main_assignments[i] = ps.
↪→Assignment(r_flux_fields[i].center, (reaction +␣
↪→reaction_fluctuations) * r_coefs[i])

return r_flux, r_cont

def reaction_description_no_fluctuations():
r_flux = ps.AssignmentCollection([ps.

↪→Assignment(r_flux_fields[i].center, 0) for i in␣
↪→range(species)])

r_cont = ps.AssignmentCollection(
[ps.Assignment(c_fields[i].center, c_fields[i].

↪→center + r_flux_fields[i].center) for i in␣
↪→range(species)])

reaction = r_rate_const * dt
for i in range(species):

reaction *= sp.Pow(c_fields[i].center, r_order[i])
for i in range(species):

r_flux.main_assignments[i] = ps.
↪→Assignment(r_flux_fields[i].center, reaction *␣
↪→r_coefs[i])

return r_flux, r_cont

B.2.7. Init Fields

As initiation we will set the species to a defined desnity and
the other field values to be zeros.

[8]: def init_fields(dens_init):
for i in range(species):

dh.fill(c_fields[i].name, np.nan,
ghost_layers=True, inner_ghost_layers=True)

dh.fill(j_fields[i].name, np.nan,
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ghost_layers=True, inner_ghost_layers=True)
dh.fill(c_fields[i].name, dens_init[i])

dh.fill(velocity_field.name, 0,
ghost_layers=True, inner_ghost_layers=True)

dh.fill(pot_field.name, 0,
ghost_layers=True, inner_ghost_layers=True)

dh.fill(charge_field.name, 0,
ghost_layers=True, inner_ghost_layers=True)

B.2.8. Create the method

Now we call the before defined functions to obtain the
pystencils desctription of the model.

[9]: fluxes = []
fluxes_no_fluctuations = []
for i in range(species):

flux = advection_diffusion_flux(c_fields[i],
j_fields[i], i)

fluxes_no_fluctuations.append(flux.copy())
flux = add_fluctuations(flux, c_fields[i], j_fields[i],

i, stencil_factor)
flux = add_ghostlayer_folding(flux)
fluxes.append(flux)

r_flux, r_cont = reaction_description()
r_flux_no_fluctuations, r_cont =␣
↪→reaction_description_no_fluctuations()

B.2.9. Compile the generated expressions and set up the
ghost-layer communication

The last thing that needs to be done is to compile the assign-
ments into runnable kernels. During this step we also create
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the synchronization function of the density so that the periodic
boundaries can be applied.

[10]: flux_kernels = []
flux_kernels_no_fluctuations = []
continuity_kernels = []
sync_fields = []
for i in range(species):

flux_kernels.append(ps.
↪→create_staggered_kernel(fluxes[i]).compile())

flux_kernels_no_fluctuations.append(ps.
↪→create_staggered_kernel(fluxes_no_fluctuations[i]).
↪→compile())

fvm_eq = ps.fd.FVM1stOrder(c_fields[i],␣
↪→flux=diffusion_equation(c_fields[i],i))

continuity_kernels.append(ps.create_kernel(fvm_eq.
↪→discrete_continuity(j_fields[i])).compile())

sync_fields.append(c_fields[i].name)

sync_conc = dh.synchronization_function(sync_fields)

fft, gather_charges = init_fft()

gather_charges_kernel = ps.create_kernel(gather_charges).
↪→compile()
reaction_kernel = ps.create_kernel(r_flux).compile()
reaction_kernel_no_fluctuations = ps.
↪→create_kernel(r_flux_no_fluctuations).compile()
reaction_continuity_kernel = ps.create_kernel(r_cont).
↪→compile()
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B.3. Checking the probability density distribution
without electrostatics

Now that the whole method is set up, we will have a look if it
functios properly. In ther first test we will analyse the density
distribution due to the fluctuation. For this we will set up
one species at a constant density and let the fluctuations do
their work. At fixed intervalls we will measure the density in
cell. Afterwards we plot a histogram of the local densites and
compair it with the density distribution of an ideal gas and
one obtained from an MD simulation. The data of the MD
simulation can be found in the file ideal_gas_md_hist.dat.

B.3.1. Set the parameters

[11]: time_end = 5000
save_time = 10
warm_up = 1000
seed = 42

dens_init = [27.0,0.0]
params = {’dt’: 0.001,

’kT’: 1.0,
’D_0’: 1, ’D_1’: 1,
’z_0’: 0, ’z_1’: 0}

B.3.2. Run the simulation

Right now we only need the kernels for the flux and the con-
tinuity equation of the first species. After these are handeld
the densities are syncronized to handel the parallel boundary
conditions.
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[12]: init_fields(dens_init)

sync_conc()
data=[]
for time in range(time_end+warm_up):

dh.run_kernel(flux_kernels[0], seed=seed+i,
time_step=time, **params)

dh.run_kernel(continuity_kernels[0])
sync_conc()
if(time%save_time==0 and time > warm_up):

data = np.append(data, dh.gather_array(c_fields[0].
↪→name).ravel(), 0)

B.3.3. Plot the density distribution

[13]: def P(rho, dens_init):
res=[]
for r in rho:

res.append(np.power(dens_init,r) * np.
↪→exp(-dens_init) / np.math.gamma(r+1))

return np.array(res)

[14]: md_data = np.loadtxt("ideal_gas_md_hist.dat",skiprows=1)

dens_value ,bins =np.histogram(data,density=True, bins=300)
bins_mean=bins[:-1] + (bins[1:]-bins[:-1])/2

plt.plot(bins,P(np.
↪→array(bins),dens_init[0]),label="Poisson")
plt.plot(md_data[:,0],md_data[:,1],’o’,label="MD")
plt.plot(bins_mean,dens_value,label="EK")
plt.legend()
plt.xlim(dens_init[0]-2*np.
↪→sqrt(dens_init[0]),dens_init[0]+2*np.sqrt(dens_init[0]))

[14]: (16.6076951545867, 37.3923048454133)
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B.4. Checking the probability density distribution
with electrostatics

Similar to the first test, we will check the density distribution,
however this time we have a coulomb gas of positivly and neg-
ativly charged species. The main difference when running this
simulation is that we need to loop over every species and that
the electeostatics kernels need to be called. To compair the
measured data with the MD simulation, the MD data is found
in coulomb_gas_md_hist.dat

B.4.1. Set the parameters

[15]: time_end = 5000
save_time = 10
warm_up = 1000
dens_init = [108.0,108.0]
seed = 42

params = {’dt’: 0.001,
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’kT’: 1.0,
’D_0’: 1, ’D_1’: 1,
’z_0’: 1, ’z_1’: -1}

B.4.2. Run the simulation

[16]: init_fields(dens_init)

sync_conc()
data=[]
for time in range(time_end+warm_up):

dh.run_kernel(gather_charges_kernel, **params)
fft(**params)
for i in range(species):

dh.run_kernel(flux_kernels[i], seed=seed+i,
time_step=time, **params)

dh.run_kernel(continuity_kernels[i])
sync_conc()
if(time%save_time==0 and time > warm_up):

data = np.append(data, dh.gather_array(c_fields[0].
↪→name).ravel(), 0)

B.4.3. Plot the density distribution

[17]: md_data = np.loadtxt("coulomb_gas_md_hist.dat",skiprows=1)

dens_value ,bins =np.histogram(data,density=True, bins=300)
bins_mean=bins[:-1] + (bins[1:]-bins[:-1])/2

plt.plot(md_data[:,0],md_data[:,1],’o’,label="MD")
plt.plot(bins_mean,dens_value,label="EK")
plt.legend()
plt.xlim(dens_init[0]-2*np.
↪→sqrt(dens_init[0]),dens_init[0]+2*np.sqrt(dens_init[0]))
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[17]: (87.2153903091735, 128.784609690827)

B.5. Influence of the fluctuations on the reaction
rate

For the last test we simulate a system of two species where they
are coupled via the reaction 2A &rightarrow B. At the begining
there will be no species B. During the Simulation at fixed time
intervalls we sum up the density of species by to measure how
much has been created up to this point. This simulation is run
with and without fluctuations for comparison.

B.5.1. Set the parameters

[18]: time_end = 5000
save_time = 10
warm_up = 0
dens_init = [8.0, 0.0]
seed = 42

params = {’dt’: 0.001,
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’kT’: 1.0,
’gamma’: 0.001,
’D_0’: 1, ’D_1’: 1,
’n_0’:-2, ’n_1’: 1,
’O_0’: 2, ’O_1’: 0,
’z_0’: 0, ’z_1’: 0}

B.5.2. Run the simulation with fluctuations

[19]: init_fields(dens_init)

sync_conc()
data=[]
for time in range(time_end):

dh.run_kernel(reaction_kernel, seed=seed+species,
time_step=time, **params)

for i in range(species):
dh.run_kernel(flux_kernels[i], seed=seed+i,

time_step=time, **params)
dh.run_kernel(continuity_kernels[i])

dh.run_kernel(reaction_continuity_kernel)
sync_conc()
if(time%save_time==0):

data = np.append(data, dh.gather_array(c_fields[1].
↪→name).mean())

B.5.3. Run the simulation without fluctuations

[20]: init_fields(dens_init)

sync_conc()
data_no_fluctuations=[]
for time in range(time_end):

dh.run_kernel(reaction_kernel_no_fluctuations, **params)
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for i in range(species):
dh.run_kernel(flux_kernels_no_fluctuations[i],

**params)
dh.run_kernel(continuity_kernels[i])

dh.run_kernel(reaction_continuity_kernel)
sync_conc()
if(time%save_time==0):

data_no_fluctuations = np.
↪→append(data_no_fluctuations, dh.gather_array(c_fields[1].
↪→name).mean())

B.5.4. Plot the average product density over time

[21]: def g(t,r,n0,fac=1):
return 1/fac*(n0- (1/(fac * r*t+(1/n0))))

def g2(t,r,n0, fac=1):
return 1/fac*(n0 + n0/(n0 - (n0 + 1)*np.exp(fac * r*t)))

x = np.linspace(0,time_end*params[’dt’],time_end//save_time)
y_with_fluct = g2(x, params[’gamma’], dens_init[0], 2.0)
y_without_fluct = g(x, params[’gamma’], dens_init[0], 2.0)
plt.plot(x,y_with_fluct,label="theory with fluctuations")
plt.plot(x,y_without_fluct,label="theory without␣
↪→fluctuations")
plt.plot(x[::20],data[::20],’o’,label="simulation with␣
↪→fluctuations")
plt.plot(x[::20],data_no_fluctuations[::
↪→20],’o’,label="simulation_without fluctuations")
plt.legend()

[21]: <matplotlib.legend.Legend at 0x7fd4b4df5cd0>
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