
Stable and Mass-Conserving
High-Dimensional Simulations

with the Sparse Grid Combination Technique
for Full HPC Systems and Beyond

Vom Stuttgarter Zentrum für Simulationswissenschaften (SC SimTech) und der
Fakultät für Informatik, Elektrotechnik und Informationstechnik der Universität
Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften

(Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von
Theresa Pollinger
aus Eichstätt

Hauptberichter*in: Prof. Dr. Dirk Pflüger
Mitberichter*in: Prof. Dr. Philipp Neumann

Tag der mündlichen Prüfung: 26. Januar 2024

Institut für Parallele und Verteilte Systeme

2024

Contents

1. Motivation and Introduction: Importance and Challenges of High-
Fidelity Plasma Simulations 11
1.1. Solving the Vlasov–Poisson and Vlasov–Maxwell Partial Differential

Equations . 12
1.2. Contributions in this Thesis . 15

2. The Combination Technique: A Curse-Breaking Multiscale Method
for Grid-Based Simulations 19
2.1. Nodal and Hierarchical Function Space Bases 20

2.1.1. Biorthogonal Wavelets as Hierarchical Bases (and Vice Versa) 21
2.1.2. Comparison of Mass-Conserving and Standard Hat Functions’

Theoretical Properties . 26
2.2. Sparse Grids . 27
2.3. Sparse Grid Combination Technique . 29

2.3.1. Error Cancellation in the Combination Technique 31
2.3.2. Combination Technique for Time-Dependent Problems 32

2.4. Summary . 36

3. Multiscale Bases for Accuracy, Conservation, and Numerical Stability 37
3.1. Related Work: Multiscale Methods, Conservation, and Sparse Grids 38
3.2. Prelude: Quantities of Interest and Error Measures 40
3.3. 2D Examples: Tricks With Hierarchical Hat Basis Functions 41

3.3.1. The Vanish Trick, or Making All Mass Disappear 42
3.3.2. The Explosion Trick, or Amplifying Mass and Gradients 44

3.4. Conservation of Mass and Increased Accuracy for Advection in 2− 6D 47
3.4.1. Finite Volume / Finite Difference Discretization 48

3

3.4.2. Conservation of Mass on Component Grids 49
3.4.3. Improved Accuracy with Mass-Conserving Functions 50
3.4.4. Influence of Recombination Time Step Lengths 51

3.5. Stabilizing Plasma Simulations: Vlasov–Poisson with SeLaLib 53
3.5.1. Semi-Lagrangian Method for Vlasov–Poisson Equations 53
3.5.2. Landau Damping with DisCoTec + SeLaLib 54
3.5.3. Two-Stream Instability with DisCoTec + SeLaLib 56

3.6. Practical Assessment of Standard andMass-Conserving Basis Functions 61

4. High Performance Computing and the DisCoTec Code 65
4.1. When Will We Achieve Exascale Computing? 65
4.2. Related Work: High Performance Computing for Multiscale PDE

Solvers and on Multiple Systems . 66
4.3. DisCoTec Software Architecture and Parallelism 68
4.4. Communication Schemes and Communication Volumes 70

4.4.1. Sparse Grid Reduce . 75
4.4.2. Subspace Reduce . 76
4.4.3. Outgroup Sparse Grid Reduce . 77
4.4.4. Chunked Outgroup Sparse Grid Reduce 78

4.5. Connecting Two high performance computing (HPC) Systems 80
4.5.1. Added Technical Challenges on Large-Scale Systems 81
4.5.2. Serial Sparse Grid Data Exchange (Through TCP) 81
4.5.3. File-Based Sparse Grid Data Exchange (Through UFTP) 83

4.6. Distributing Combination Schemes for Minimal Data Volume 84
4.6.1. Symmetric Splitting by the Level-Sum Criterion 85
4.6.2. Heuristic Splitting with the METIS Graph Partitioner 86

4.7. New Contributions to DisCoTec . 87

5. Scaling DisCoTec Up to Full HPC Systems and Beyond 91
5.1. Comparison of HPC Systems Used for Experiments 92
5.2. Challenges for Scaling Up DisCoTec . 94
5.3. DisCoTec And The Gyrokinetic Solver GENE 98

5.3.1. Scaling DisCoTec with GENE . 99
5.3.2. GENE and DisCoTec: The Right Setup for Exascale? 104

5.4. DisCoTec with the Advection Solver: Comparing Four Systems 105
5.4.1. Strong Scaling with a Small Combination Scheme 106
5.4.2. Weak Scaling Along the Memory Limits 116

4 Contents

5.4.3. Load Imbalance Through Communication-Optimized Grid
Assignment . 125

5.4.4. I/O Timings for File-Based Combination 128
5.5. Towards Widely-Distributed Simulations at Extreme Scales 131

6. Conclusion and Outlook: Towards Exascale Computations for Net-
Positive Fusion Energy 139
6.1. Stable and Moment-Conserving Simulations at the Memory Limit of

More than Entire HPC Systems . 140
6.2. Future Research Directions . 141

Bibliography 147

A. Appendix 167
A.1. Comparison: DisCoTec and SeLaLib Run Times ‘Old’ and Revisited . 167
A.2. Why Not to Use MPI_Iallreduce at Scale 169

Glossary and Abbreviations 173

List of Symbols 175

Contents 5

Zusammenfassung

Angesichts der fortschreitenden Klimakrise hat die kontrollierte Plasmafusion das
Potenzial, eine der entscheidenden wissenschaftlichen Errungenschaften des 21.
Jahrhunderts zu werden. Um die turbulenten Felder in magnetisch einschließenden
Fusionsreaktoren zu verstehen, war und ist Computersimulation sowohl eine Berei-
cherung als auch eine Herausforderung. Der einschränkendste Faktor für groß ange-
legte, hochgenaue prädiktive Simulationen liegt im Fluch der Dimensionalität, der
alle gitterbasierten Beschreibungen von Plasma auf Grundlage der Vlasov–Poisson-
und Vlasov–Maxwell-Gleichungen prägt. In der vollständigen Formulierung ergeben
sich sechsdimensionale Gitter und feine Skalen, die aufgelöst werden müssen, was zu
nicht-bewältigbaren Anzahlen an Freiheitsgraden führen kann. Typische Ansätze für
dieses Problem – Koordinatentransformationen wie Gyrokinetik, Gitteranpassung,
Beschränkung auf begrenzte Auflösungen – gehen den Fluch der Dimensionalität
nicht direkt an, sondern umgehen ihn.
Die Dünngitter-Kombinationstechnik, die den Kern dieser Arbeit bildet, ist ein

Multiskalen-Ansatz, der den Fluch der Dimensionalität für zeitschrittbasierte Simula-
tionen lindert: Es werden mehrere reguläre gitterbasierte Simulationen ausgeführt,
die im Laufe der Simulation gegenseitig Informationen austauschen. Die vorliegende
Arbeit verbessert den bisherigen Stand der Kombinationstechnik auf drei Arten: Die
Einführung von Massenerhaltung und numerischer Stabilität durch die Verwendung
besser geeigneter Multiskalen-Basisfunktionen, Optimierung des Codes für große
HPC-Systeme und Erweiterung der Kombinationstechnik auf den weitverteilten Fall
mit mehreren HPC-Systemen.
Diese Arbeit analysiert zunächst die häufig verwendete hierarchische Hutfunk-

tion aus der Sicht biorthogonaler Wavelets, was es ermöglicht, die hierarchische
Hutfunktion auf einfache Weise durch andere Multiskalenfunktionen (wie die mas-
senerhaltenden CDF-Wavelets) zu ersetzen. Die in der Dissertation vorgestellten

7

numerischen Studien zeigen, dass dies nicht nur zur Erhaltung führt, sondern auch
die Genauigkeit erhöht und numerische Instabilitäten vermeidet—die zuvor ein gro-
ßes Hindernis für groß angelegte Vlasov-Simulationen mit der Kombinationstechnik
darstellten.
Zweitens wurde das Open-Source-Framework DisCoTec erweitert, um die Kom-

binationstechnik auf den verfügbaren Speicher ganzer Supercomputing-Systeme
zu skalieren. DisCoTec ist so konzipiert, dass die Kombinationstechnik um bereits
bestehende gitterbasierte Löser gelegt werden kann und nutzt die inhärente Par-
allelität der Kombinationstechnik. Neben mehreren anderen Beiträgen wurden
im Rahmen dieser Arbeit verschiedene kommunikationsvermeidende Multiskalen-
Reduktionsschemata entwickelt und in DisCoTec implementiert. Die Skalierbarkeit
des Ansatzes wird durch eine umfangreiche Reihe von Messungen in dieser Ar-
beit bestätigt: DisCoTec lässt sich nachweislich auf die volle Systemgröße von vier
deutschen Supercomputern skalieren, einschließlich der drei CPU-basierten Tier-
0/Tier-1-Systeme.
Drittens wurde die Kombinationstechnik auf den weitverteilten Fall erweitert, bei

dem zwei HPC-Systeme synchron eine gemeinsame Simulation durchführen. Dies
wird durch Übertragen von Dateien sowie ausgefeilte Algorithmen zur Aufteilung
der verschiedenen Simulationsinstanzen auf die Systeme ermöglicht. Zwei solche
Algorithmen wurden im Rahmen dieser Arbeit entwickelt. Durch die drastische
Reduzierung des Kommunikationsvolumens, die sich daraus ergibt, wurden erst-
mals tolerierbare Übertragungszeiten für Kombinationstechnik-Simulationen auf
mehreren verschiedenen HPC-Systemen gleichzeitig erreicht.
Diese drei Fortschritte—verbesserte numerische Eigenschaften, effiziente Skalie-

rung auf volle Systemgrößen und die Möglichkeit, die Simulation über ein einzelnes
System hinaus auszudehnen—zeigen, dass die Dünngitter-Kombinationstechnik
einen vielversprechender Ansatz aufzeigt, um zukünftige hochgenaue Simulationen
von höherdimensionalen Problemen, wie Plasmaturbulenz, durchzuführen.

8

Abstract

In the light of the ongoing climate crisis, mastering controlled plasma fusion has
the potential to be one of the pivotal scientific achievements of the 21st century. To
understand the turbulent fields in confined fusion devices, simulation has been and
continues to be both an asset and a challenge. The main limiting factor to large-
scale high-fidelity predictive simulations lies in the Curse of Dimensionality, which
dominates all grid-based discretizations of plasmas based on the Vlasov–Poisson and
Vlasov–Maxwell equations. In the full formulation, they result in six-dimensional
grids and fine scales that need to be resolved, leading to a potentially untractable
number of degrees of freedom. Typical approaches to this problem—coordinate
transformations such as gyrokinetics, grid adaptation, restricting oneself to limited
resolutions—do not directly address the Curse of Dimensionality, but rather work
around it.
The sparse grid combination technique, which forms the center of this work, is a

multiscale approach that alleviates the curse of dimensionality for time-stepping
simulations: Multiple regular grid-based simulations are run and update each
other’s information throughout the course of simulation time. The present thesis
improves upon the former state-of-the-art of the combination technique in three
ways: introducing conservation of mass and numerical stability through the use of
better-suited multiscale basis functions, optimizing the code for large-scale HPC
systems, and extending the combination technique to the widely-distributed setting.
Firstly, this thesis analyzes the often-used hierarchical hat function from the

viewpoint of biorthogonal wavelets, which allows to replace the hierarchical hat
function by other multiscale functions (such as the mass-conserving CDF wavelets)
in a straightforward manner. Numerical studies presented in the thesis show that

9

this not only introduces conservation but also increases accuracy and avoids numer-
ical instabilities—which previously were a major roadblock for large-scale Vlasov
simulations with the combination technique.
Secondly, the open-source framework DisCoTec was extended to scale the com-

bination technique up to the available memory of entire supercomputing systems.
DisCoTec is designed to wrap the combination technique around existing grid-based
solvers and draws on the inherent parallelism of the combination technique. Among
several other contributions, different communication-avoiding multiscale reduc-
tion schemes were developed and implemented into DisCoTec as part of this work.
The scalability of the approach is asserted by an extensive set of measurements in
this thesis: DisCoTec is shown to scale up to the full system size of four German
supercomputers, including the three CPU-based Tier-0/Tier-1 systems.
Thirdly, the combination technique was further extended to the widely-distributed

setting, where two HPC systems synchronously run a joint simulation. This is
enabled by file transfer as well as sophisticated algorithms for assigning the different
simulation instances to the systems, two of which were developed as part of this
work. By the resulting drastic reductions in the communication volume, tolerable
transfer times for combination technique simulations on different HPC systems have
been achieved for the first time.
These three advances—improved numerical properties, scaling efficiently up

to full system sizes, and the possibility to extend the simulation beyond a single
system—show the sparse grid combination technique to be a promising approach
for future high-fidelity simulations of higher-dimensional problems, such as plasma
turbulence.

10

Ch
ap
te
r 1

Motivation and Introduction:
Importance and Challenges of

High-Fidelity Plasma Simulations

Generating low-carbon energy from plasma fusion has been one of the big visions
of the 20th century. Virtually unlimited energy by controlled plasma fusion is a
promise that was first formulated in the 1950s, culminating in statements that may
seem overly optimistic from today’s perspective [139]:

‘It is the firm belief of many of the physicists actively engaged in con-
trolled fusion research in this country that all of the scientific and tech-
nological problems of controlled fusion will be mastered–perhaps in the
next few years.’

Although the 1970s and 1980s did see a surge in controlled fusion research funding,
most notably in the U.S. [109], the overall public investment was dwarved by
research funding in the areas of nuclear fission and fossil energy sources [23]. There
is an old joke that states that net positive controlled fusion energy is always n years
ahead, where n typically ranges from 10 to 50 (examples in [5, 37, 148]). Still,
while we have not reached sustained net-positive fusion energy in 2023, progress
with the reactors JET [43] and ITER [24] makes it seem realistic that this goal will
eventually be achieved.
Predictive simulation of plasma microturbulence was and continues to be one of

the assets—and challenges—for these experiments. After all, one generally doesn’t
want to build an entire reactor just to see it destroyed due to a plasma disruption,

11

but rather wants the reactor to work as efficiently as possible [150, 161]. This is
enabled by high-fidelity simulations of the plasma turbulence in confined fusion
reactors.

1.1. Solving the Vlasov–Poisson and Vlasov–Maxwell Systems of
Partial Differential Equations

In modeling plasma turbulence, the Vlasov equation [164, 165] is a partial differ-
ential equation (PDE) that describes the kinetic motion of the plasma through the
phase space of position and velocity, equivalently to the collisionless Boltzmann
equation [78]1.
There are several approaches to simulating plasma turbulence, which all solve the

Vlasov equation with varying model assumptions and corresponding simplifications.
The most ‘coarsely-resolved’ approach is given by the magnetohydrodynamic model,
which describes the plasma as a fluid in a state of quasi-equilibrium by a few
macroscopic quantities [167]. However, these model assumptions are not applicable
to the high field intensities of hot fusion plasmas in the center of a reactor. Another
approach are the particle-in-cell (PIC) or Lagrangian particle methods, where plasma
particles are treated like in an n-body simulation, and the macro-quantities of the
simulation are represented on a grid. While PIC simulations live in 3D position
space, they inherit the challenges from both particle- and continuum-based methods,
such as their inherent numerical noise [117]. (Sparse grid methodology has been
shown to appropriately deal with some of these challenges as well [115, 145].)
This thesis focuses on the most finely-resolved approach: high-fidelity grid-based

direct Vlasov simulations, which are ‘haunted’ by the Curse of Dimensionality.
In its most general form, the Vlasov (collisionless) equation reads

∂ f
∂ t
+∇ x⃗ f · d x⃗

dt
+∇v⃗ f · dv⃗

dt
= 0. (1.1)

The unknown particle density f denotes the probability of finding a particle at
position x⃗ with velocity v⃗ at time t. This particle density changes depending on the
magnetic and electric fields, and can also influence them.

1Henon [78] also lists a variety of other names under which the equation is and had already
been known when Vlasov first published his work in 1967.

12 1.1. Solving the Vlasov–Poisson and Vlasov–Maxwell Partial Differential Equations

Vlasov equation
�d f
dt =
�
∂ f (x⃗ ,v⃗,t)
∂ t + v⃗·∇x f (x⃗ , v⃗, t) + dv⃗

dt ·∇v f (x⃗ , v⃗, t) = 0

Lorentz equation
dv⃗
dt =

q
m(E⃗(x⃗ , t) + v⃗ × B⃗(x⃗ , t))

Potential equation
E⃗(x⃗ , t) = −∇xφ(x⃗ , t)

Poisson equation
−∆ x⃗φ(x⃗ , t) = 1− ∫ f (x⃗ , v⃗, t)dv⃗

Initial condition
f (x⃗ , v⃗, 0) = f0(x⃗ , v⃗)

Constant background
B⃗(x⃗ , t) = 0

dv⃗
dt

x⃗ × v⃗ × t → R3

implicit

E⃗
x⃗ × t → R3

?

φ

x⃗ × t → R

?

f
x⃗ × v⃗ × t → R

?

B⃗
x⃗ × t → R3

m
R

q
R

Domain Ω
v⃗
⊆ R3

x⃗
⊆ R3

t
⊂ R

Figure 1.1.: ExtendedModel Pathway Diagram (MPD) of the Vlasov–Poisson system
of equations [165]: Quantities are given in circles, the orange boxes
denote the types of the quantities. Double circles denote the variables
of the computational domain. Dashed black lines indicate constants
and boundary conditions. Purple circles with question marks denote
the unknown quantities that need to be solved for. The graph’s cycle
in the graph indicates that the unknown quantities are coupled and
need to be solved for self-consistently.

This means that the electric and magnetic fields E⃗ and B⃗ need to be modeled
self-consistently, for instance by the Maxwell or Poisson equations with the Vlasov
equation. The Vlasov–Poisson system dependencies are illustrated in Figure 1.1
by an Extended Model Pathway Diagram (MPD)—a model visualization method
developed in [93]. The distribution function f , the electric field E⃗ and the potential
φ are the unknowns that the simulation needs to solve for. The cycle in the graph

1. Motivation and Introduction 13

illustrates the property of self-consistency. To extend Figure 1.1 to the Vlasov–
Maxwell system, one would additionally need to solve for B⃗ by adding the Maxwell
equations to the MPD. As a consequence, great challenges lie in the modeling and
numerical solution of the Vlasov system of equations.
This work is going to focus on resolving the Vlasov equation’s distribution function

on a phase-space grid, either in the full six-dimensional phase space, or on an
appropriately dimensionally reduced phase space, such as with the gyrokinetic
transform [14]. Later, we will look at two codes implementing full Vlasov with
a Semi-Lagrangian approach (SeLaLib, cf. Section 3.5) and gyrokinetics with an
Eulerian approach (GENE, cf. Section 5.3).

The Curse of Dimensionality

The main challenge of the grid-based simulation approach is the Curse of Dimen-
sionality. If each of the d dimensions is resolved by N points, the number of degrees
of freedom (DOF) is given by

#DOF= N d (1.2)

The phase-space resolution N should generally be high, to allow for the representa-
tion of filamentation phenomena of the Vlasov equation [54]. The resulting rapid
growth of DOF through increasing the resolution at high dimensionalities d is known
as the Curse of Dimensionality.
With dimensionalities d of four to six, the memory and compute requirements

quickly become intractable for even today’s most powerful supercomputers. For
instance, storing the 6D distribution function f in double precision with 32 points
per dimension already requires 8GiB of main memory, which is currently a typical
figure for laptops and workstation PCs. If the simulation needs to be run at twice the
resolution, it will require at least 64 times the number of operations, and consume
at least 64 times the memory: Then, at 512GiB, the data is only going to fit onto
the main memory of custom high-performance workstations (if one wants to use a
single-node workstation system for the purpose). Doubling the resolution again, to
128 points per dimension, will already require at least 32 TiB, only for holding the
distribution function in main memory. This is more than what quite a few of the
current German Tier-3 HPC systems provide [81]. Thus, it is easy to see how the
memory requirements for direct Vlasov simulations can quickly exhaust even the
largest systems’ resources.

14 1.1. Solving the Vlasov–Poisson and Vlasov–Maxwell Partial Differential Equations

1.2. Contributions in this Thesis

This work focuses on three key challenges for large-scale grid-based computations:
ensuring numerical stability and conservation (Chapter 3), developing algorithms for
scaling the simulation along the memory limit (Chapter 4), and making simulations
on entire and multiple compute systems feasible (Chapter 5). Within a broader
scope, the thesis attempts to advance some aspects related to different Priority
Research Directions and Cross-Cutting Research Directions for Fusion Energy Research
formulated by the US Department of Energy in its Exascale Requirements Review in
2017 [20]:

• Turbulence and Transport Simulations: High-resolution, high-fidelity sim-
ulations for ‘Multiscale turbulence effects in plasma transport’ [20, section
3.1.1].

• High-Energy-Density Laboratory Plasmas: ‘High-dimensional partial differen-
tial equation (PDE) solvers (6D Vlasov)’ [20, section 3.3.2].

• Radio-Frequent Heating and Current Drive: Predict how much power is cou-
pled to the core plasma with ‘full 6D linear delta-f type particle or continuum
approach’ [20, section 3.1.3].

The main method in this work is the sparse grid combination technique [61]: It
allows re-using existing grid-based solvers by running multiple instances of the solver,
each at a relatively low resolution. After certain time intervals, the combination
step exchanges the information between the solvers, such that a drastic reduction of
compute complexity can be achieved at a moderate cost in accuracy. As a foundation,
an overview of sparse grid (SG) theory and the combination technique (CT) will be
given in Chapter 2.
The numerical, algorithmic, and technical aspects are manifold and often con-

nected: Basis functions need to be chosen, such that the stability and conservation
of the sparse grid combination technique is ensured for the given partial differential
equation (PDE) model. The CT code needs to be coupled to the simulation code,
where both use shared and distributed memory parallelism. Since compute time
and main memory are limited even on the biggest HPC systems, efficient algorithms
and implementations are necessary to scale up to the desired problem sizes. At the
same time, the code needs to be flexible enough to allow the comparison of different
variants, for instance to compare different numerical solvers or basis functions. And

1. Motivation and Introduction 15

finally, in order to connect HPC systems, it is necessary to explore the best ways of
making them talk to each other despite the differences in hardware, software, and
network security standards.
Addressing these questions comprises the core contributions of this thesis, which

are summarized as follows:

1. A novel approach to the combination technique, which allows to replace
the hierarchical hat function by other multiscale functions such as the mass-
conserving CDF wavelets in a straightforward manner: This is particularly
interesting, as numerical instability was a major roadblock for large-scale
Vlasov simulations with the CT. The thesis shows in Chapter 3 that the standard
hierarchical hat functions are the cause for the numerical instability, and that
the mass-conserving CDF wavelets can be used to avoid it, while also obtaining
better solution accuracy.

2. The extension of the open-source framework DisCoTec to scale up to the mem-
ory of entire supercomputing systems: Previous work had focused on strong
scaling scenarios. Considering memory overheads of the parallelization, it is a
challenge to scale up to the memory of an entire system by weak scaling, while
a substantial fraction of the memory is still used for the simulations on the
component grids. The thesis introduces various algorithmic and implementa-
tion improvements to DisCoTec in Chapter 4, that allow to scale up to the full
system size of four German supercomputers, including the three CPU-based
Tier-0/Tier-1 systems. The corresponding measurements are presented in
Chapter 5.

3. Widely-distributed simulations, where two HPC systems synchronously run a
single simulation: At extremely fine resolution scales, the memory of a single
system can become insufficient to run a higher-dimensional CT simulation. In
such cases, the inherent parallelism of the CT can be used to run the simulation
on multiple systems at the same time. This is enabled by file transfer as well
as sophisticated algorithms for assigning the different simulation instances to
the systems, two of which are introduced in Chapter 4. The resulting drastic
reduction in the communication volume was used to run joint simulations on
different HPC systems synchronously, as evaluated in Chapter 5.

16 1.2. Contributions in this Thesis

Parts of the work have already been published in:

• T. Pollinger et al. ‘Leveraging the Compute Power of Two HPC Systems
for Higher-Dimensional Grid-Based Simulations with the Widely-Distributed
Sparse Grid Combination Technique’. In: SC ’23. Association for Computing
Machinery, Nov. 11, 2023. url: https://dl.acm.org/doi/10.1145/
3581784.3607036 (visited on 11/15/2023) (Sections 4.5, 4.5.1, 4.5.3, 4.6
and 5.5)

• T. Pollinger et al. ‘A Stable andMass-Conserving Sparse Grid Combination Tech-
nique with Biorthogonal Hierarchical Basis Functions for Kinetic Simulations’.
In: Journal of Computational Physics (July 7, 2023), p. 112338. url: https://
www.sciencedirect.com/science/article/pii/S0021999123004333
(visited on 07/17/2023) (preprint at [136], Sections 2.1, 3.1, 3.2, 3.4 and 3.5)

• T. Pollinger et al. ‘Distributing Higher-Dimensional Simulations Across Com-
pute Systems: A Widely Distributed Combination Technique’. In: 2021
IEEE/ACM International Workshop on Hierarchical Parallelism for Exascale
Computing (HiPar). 2021 IEEE/ACM International Workshop on Hierarchical
Parallelism for Exascale Computing (HiPar). Nov. 2021, pp. 1–9 (Sections 4.5.1
and 4.5.2)

In addition to the aforementioned, the author contributed to the following pub-
lished works, which could not be covered in this thesis:

• T. Pollinger, K. Kormann, and D. Pflüger. Scaling the Plasma Simulation while
Conserving the Mass: A Massively-Parallel Semi-Lagrangian Solver with the
Sparse Grid Combination Technique. Was awarded the Best Poster Award at
PASC’22. PASC22, June 25, 2022. url: https://pasc22.pasc-conferen
ce.org/program/schedule/presentation/?id=pos109&sess=sess181
(visited on 07/19/2022)

• G. Daiß et al. ‘Beyond Fork-Join: Integration of Performance Portable Kokkos
Kernels with HPX’. in: 2021 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW). 2021 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW). June 2021,
pp. 377–386

1. Motivation and Introduction 17

https://dl.acm.org/doi/10.1145/3581784.3607036
https://dl.acm.org/doi/10.1145/3581784.3607036
https://www.sciencedirect.com/science/article/pii/S0021999123004333
https://www.sciencedirect.com/science/article/pii/S0021999123004333
https://pasc22.pasc-conference.org/program/schedule/presentation/?id=pos109&sess=sess181
https://pasc22.pasc-conference.org/program/schedule/presentation/?id=pos109&sess=sess181

• T. Pollinger and D. Pflüger. ‘Learning-Based Load Balancing for Massively
Parallel Simulations of Hot Fusion Plasmas’. In: Advances in Parallel Computing
36 (Parallel Computing: Technology Trends 2020), pp. 137–146. url: http:
//doi.org/10.3233/APC200034

• R. Lago et al. ‘EXAHD: AMassively Parallel Fault Tolerant Sparse Grid Approach
for High-Dimensional Turbulent Plasma Simulations’. In: Software for Exascale
Computing - SPPEXA 2016-2019. Lecture Notes in Computational Science
and Engineering. Cham: Springer International Publishing, Jan. 1, 2020,
pp. 301–329

18 1.2. Contributions in this Thesis

http://doi.org/10.3233/APC200034
http://doi.org/10.3233/APC200034

Ch
ap
te
r 2

The Combination Technique: A
Curse-Breaking Multiscale Method

for Grid-Based Simulations

This chapter introduces the sparse grid (SG) combination technique (CT) and the
concepts it is based on: Multiscale basis functions, and the SG subspace cut-off. The
standard hierarchical hat functions will first be sketched from the ‘usual’ perspective
taken in the SG literature (Section 2.1), and then viewed in higher detail, from the
more general perspective of biorthogonal and lifting wavelets (Section 2.1.1). This
general perspective allows one to use other basis functions, such as the biorthogonal
basis functions and full weighting basis functions. Based on different multiscale basis
functions, sparse grids and the combination technique are introduced in Sections 2.2
and 2.3. Some important extensions of the CT for time stepping are laid out in
Section 2.3.2.
It is noted that the content of Sections 2.1.1 and 2.1.2 was developed for [137], in

close collaboration with Johannes Rentrop, who fully contributed the formal analysis.
The author of this thesis contributed to the conceptualization and visualization of the
mass-conserving basis transformations, and carried out the pertaining experiments
presented in Chapter 3.

19

2.1. Nodal and Hierarchical Function Space Bases

One of the most straightforward ways of numerically representing a one-dimensional
function f on a closed interval Ω = [0,1] is the discretization on evenly-spaced
collocation points, and linear interpolation in between.
On this space of piecewise linear functions V , a function can be expressed as the

weighted sum of linear basis functions φhat (a.k.a. triangular, triangle, hat, or tent
functions), cf. Figure 2.1a. The weight coefficients that the φhat are multiplied by
will generally be proportional to the function values.

0 0.2 0.4 0.6 0.8 1

0

2

4
f

f̂

(a) with nodal hat functions φhat

0 0.2 0.4 0.6 0.8 1

0

2

4
f

f̂

(b) with hierarchical hat functions ψhat

Figure 2.1.: Linear interpolation f̂ of a Gaussian function f =𝒩 (µ = 1
2 +

1
3π ,σ =

0.15) at resolution level ℓ= 3: The length of the vertical lines denotes
the value of the basis function coefficients. Note that the resulting
interpolant f̂ is the same in both the nodal and hierarchical/multiscale
representations.

As we go finer and finer in resolution—say we insert collocation points in between
the existing ones for each refinement level ℓ—we get a hierarchy of nested ‘nodal’
function spaces

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vℓ ⊂ · · · ⊂ L2(R). (2.1)

Then, the number of collocation points at locations i · h, i = 0, 1, . . . ,h = 2−ℓ is
given by N ≈ 2ℓ. With collocation points on both sides of the interval, N = 2ℓ + 1,
and for one-sided boundaries, such as with periodic boundary conditions, N = 2ℓ.
Accordingly, the basis functions can be explicitly given as

φhat
i/ℓ (x) =max
�
1−
��x − i · 2−ℓ
�� , 0
�

, i = 0, 1, . . . , N . (2.2)

A function f will be approximated in Vℓ with a resolution of h.

20 2.1. Nodal and Hierarchical Function Space Bases

As an alternative to the nodal function space Vℓ on level ℓ, one can use a union of
‘hierarchical increment spaces’ Wℓ, which are the complement of Vℓ−1 in Vℓ

Vℓ = Vℓ−1 ⊕Wℓ , Vℓ−1 ∩Wℓ = {0} (2.3)

(with W0 = V0 for simplicity). The standard choice of basis functions ψ for repre-
senting W is to use hat functions as well [15], see Figure 2.1b. This time, they are
understood as a hierarchical basis function ψhat: The nodal and hierarchical bases
contain the same information—piecewise linear functions:

f̂ =
N−1∑
i=0

ciφ
hat
i =

N−1∑
i=0

αiψ
hat
i . (2.4)

In contrast to the nodal representation, the hierarchical representation is a multiscale
representation: As Figure 2.1b shows, the support of the hierarchical hat functions
starts with all of Ω on levels 0 and 1 and gets smaller as the level ℓ increases.
While the basis coefficients ci will be proportional to the function value of f at the
respective position, the αi denote how much the fine resolution features deviate
from the larger-resolution features. This comes at the cost of losing some locality
of the multiscale basis functions’ support on the coarser levels, where the coarser
scales reside. For this reason, the hierarchical basis coefficients are often termed
‘hierarchical surplusses’. The transformation from the nodal to hierarchical basis
representation (and corresponding coefficients) is called hierarchization, the inverse
transformation is called dehierarchization [63].

2.1.1. Biorthogonal Wavelets as Hierarchical Bases (and Vice Versa)

The concept of nested nodal function spaces V and their increment spaces W
outlined with Equations (2.1) and (2.3) is exactly the same in the broader scope of
(biorthogonal) wavelet theory—although the function space does not necessarily
consist of piecewise linear functions. What changes, however, is that both nodal
functions φ and multiscale functions ψ are entirely free to choose: They are not
required to be interpolating or have the same shape, nor do they even need to be
continuous.
Instead, the functions need to fulfill a set of conditions:
1. Dilates and translates of φ form a basis for Vℓ:

φℓ,s(x) := φ(2ℓx − s) , Vℓ = span{φℓ,s}s∈Z . (2.5)

2. The Sparse Grid Combination Technique 21

2. φ fulfills the two-scale equation with coefficients hs ∈ R:

φ(x) =
∑
s∈Z

hsφ(2x − s). (2.6)

The two-scale equation gives φ its name as the scaling function.

3. Dilates and translates of ψ form a basis for the complement space on each
level ℓ

ψℓ,s(x) :=ψ(2ℓ−1 x − s) , Wℓ = span{ψℓ,s}s∈Z, (2.7)

in particular ψ1,0 =ψ.

These requirements have two implications.
First, by Equation (2.3), every function f ∈ L2 can be represented by both sets of

basis functions:

f =
∞∑
ℓ=0

∑
s∈Z

cℓ,sφℓ,s ,=
∞∑
ℓ=0

∑
s∈Z
αℓ,sψℓ,s. (2.8)

(Note that this is a generalization of Equation (2.3).) These hierarchical functions
ψℓ,s are called wavelets, where ψ is the mother wavelet, and the α are wavelet coeffi-
cients. Hybrid representations with both wavelet and scaling function coefficients
are possible [137].
Second, there are coefficients gs ∈ R to construct the mother wavelet ψ from the

scaling function:

ψ(x) =
∑
s∈Z

gsφ(2x − s) . (2.9)

Choosing the complement space Wℓ to be exactly the orthogonal complement of
Vℓ−1 leads to orthonormal wavelet bases [30]. Biorthogonal wavelets, by contrast,
require a set of dual scaling functions φ̃ and dual wavelets ψ̃, as well as coefficients
h̃s, g̃s that fulfill

φ̃(x) = 2
∑
s∈Z

h̃sφ̃(2x − s) , ψ̃(x) =
∑
s∈Z

g̃sφ̃(2x − s) . (2.10)

22 2.1. Nodal and Hierarchical Function Space Bases

If
∫
φ(x)φ̃(x − s)dx = δs0, then the following biorthogonality relations (using the

L2 scalar product 〈·, ·〉) hold [25]:

〈φℓ,s, φ̃ℓ,s′〉= 2−ℓδss′ , 〈ψℓ,s, ψ̃ℓ′,s′〉= 2−ℓδl l ′δss′ ,

〈φ(ℓ−1)s, ψ̃ℓ,s′〉= 0 , 〈ψℓ,s, φ̃(ℓ−1)s′〉= 0 .
(2.11)

Finite numbers of nonzero coefficients hs, h̃s, gs, g̃s can be obtained [25] by setting
them as

gs := (−1)1−sh̃1−s , g̃s := (−1)1−sh1−s (2.12)

for a choice of hs and h̃s that also fulfill Equations (2.5) to (2.7). (The original paper
by Cohen, Daubechies, and Feauveau [25] lists a variety of suitable coefficients for
B-spline wavelets.)
Then, the wavelet coefficients (or hierarchical surplusses) α for the original wavelet

ψ are given by the scalar product with the dual wavelet ψ̃, and vice versa:

f =
∞∑
ℓ=0

∑
s∈Z

2ℓ〈ψ̃ℓ,s, f 〉ψℓ,s =
∞∑
ℓ=0

∑
s∈Z

2ℓ〈ψℓ,s, f 〉ψ̃ℓ,s . (2.13)

Luckily, one does not need to explicitly compute integrals to perform the hierar-
chization or wavelet transform. In fact, one does not even need to know the scaling
function φ or the wavelet ψ explicitly, it suffices to know the coefficients hs and h̃s.
Suppose a function fℓ ∈ Vℓ is given in the scaling function representation fℓ =∑
s∈Z cℓ,sφℓ,s. Then, the wavelet coefficients αℓ,k on level ℓ are determined by

αℓ,k = 2ℓ〈ψ̃ℓ,k, fl〉= 2ℓ
∑
s∈Z

cℓ,s〈ψ̃ℓ,k,φℓ,s〉=
∑
s∈Z

∑
s′∈Z

cℓ,s g̃s′2
ℓ〈φ̃ℓ,(s′+2k),φℓ,s〉

=
∑
s∈Z

∑
s′∈Z

cℓ,s g̃s′δ(s′+2k)s =
∑
s∈Z

cℓ,s g̃(s−2k),
(2.14)

and the coarser scaling function coefficients c(ℓ−1)k can be computed as

c(ℓ−1)k = 2ℓ−1〈φ̃(ℓ−1)k, fl〉= 2ℓ−1
∑
s∈Z

cℓ,s〈φ̃(ℓ−1)k,φℓ,s〉

=
∑
s∈Z

∑
s′∈Z

cℓ,sh̃s′2
ℓ〈φ̃ℓ(s′+2k),φℓ,s〉=

∑
s∈Z

cℓ,sh̃(s−2k) .
(2.15)

This hierarchization procedure can be performed recursively for decreasing ℓ.

2. The Sparse Grid Combination Technique 23

Conversely, the dehierarchization–now called inverse wavelet transform–recovers
the original scaling function coefficients

cℓ,k = 2ℓ〈φ̃ℓ,k, fl〉=
∑
s∈Z

c(ℓ−1)s2
ℓ〈φ̃ℓ,k,φ(ℓ−1),s〉+

∑
s∈Z
αℓ,s2

ℓ〈φ̃ℓ,k,ψℓ,s〉

=
∑
s∈Z

c(ℓ−1)shk−2s +
∑
s∈Z
αℓ,s gk−2s ,

(2.16)

again recursively for increasing ℓ.
All of these observations are also entirely valid for higher-order continuous

biorthogonal wavelets [25] and by allowing discontinuities, it is even possible
to recover the orthogonality for compactly supported (multi)wavelets [3]. Further-
more, different nesting sequences of the piecewise linear functions in V can be
beneficial for numerical approximations of functions with certain properties. Exam-
ples include the Clenshaw-Curtis/Chebychev [118], Gauss-Lobatto, and Leja [116]
points. However, for the purposes of this thesis we always assume spaces of equidis-
tant piecewise linear continuous functions V and W on a periodic domain Ω. In
particular, three possible choices for the hierarchical multiscale basis are considered.
It is noted that the lifting scheme [154, p. 14.3] can be used to transform these
equidistant discretizations to other nested function representations.

Hierarchical Hat Function in the Biorthogonal Framework

For most of the sparse grid literature, the hierarchical hat function serves as the
standard choice for the multiscale basis function. Its scaling function φhat is
also a hat function, which means that function values and scaling function coeffi-
cients are equivalent, and it is an example of a generalized hierarchical basis [97].
Sweldens [154] noted that ψhat denotes a special case of biorthogonal wavelets, as
its ‘dual wavelet’ is the Dirac delta distribution. This leads to beneficial properties in
the hierarchical hat function, which hold for all generalized hierarchical bases [97]:
First, the basis transforms are extremely efficient (‘lazy wavelets’ [154]). Second,
due to the interpolating property of the hierarchical hat function, the finer-scale
wavelet coefficients do not influence function values / scaling function coefficients on
coarser scales. As a consequence, the wavelet transform can not only be computed
from the finest to the coarsest level, but each wavelet coefficient can be immediately
computed for any point if the function values of its two coarser-scale neighbors are
known (the ‘aunt’ property [154]). This is a particularly valuable feature for adaptive

24 2.1. Nodal and Hierarchical Function Space Bases

methods, such as optimization [162] and uncertainty quantification [143]—when
more and more points should be added without affecting values at the previous
points—and also for collocation-based solvers [4].
The hierarchical hat function is defined by the filter coefficients

(hs)
hat
−1≤s≤1 = (

1
2 , 1, 1

2) , (gs)
hat
0≤s≤2 = (0, 1,0) ,

(h̃s)
hat
−1≤s≤1 = (0, 1,0) , (g̃s)

hat
0≤s≤2 = (−1

2 , 1,−1
2) .

(2.17)

It is a special case of hierarchical B-spline bases [162] (first order), and of the
interpolet basis [33, 97] (also first order). In the context of geometric multigrid
methods, the level-wise wavelet transform corresponds to the injection restriction
operator [67] for the scaling function coefficients. Both the hierarchical hat function
ψhat and the ‘hat’ scaling function φhat are depicted in Figure 2.2a. Recall also the
illustration of the two different ways of interpolating a function given in Figure 2.1.

−1 0 1 2
0

0.5

1 φhat

ψhat

(a) hierarchical hat ψhat

−1 0 1 2

0

0.5

ψbo

(b) biorthogonal ψbo

−1 0 1 2
−5

0

5
ψfw

(c) full weighting ψfw

Figure 2.2.: Different hierarchical / multiscale functions ψ to span the linear incre-
ment spaces Wℓ′ . Note that ψbo was defined in the same way in [15, p.
64], but plotted wrongly in Figure 4.12 therein.

Mass-Conserving Hierarchical Basis Functions:
The ‘Biorthogonal’ and ‘Full Weighting’ Functions

One of the initial motivations to viewing sparse grids from the perspective of biorthog-
onal wavelets was the possibility of introducing conservation of mass, which can be
a desirable property as will be detailed in Chapter 3. To achieve conservation of
mass, one needs to allow for a slightly higher number of nonzero coefficients in hs

and h̃s (see also Section 2.1.2). The next possible choice for a linear ansatz space
V ℓ are the dual functions 2,2ψ and 2,2ψ̃ in [25], which are termed biorthogonal ψbo

and full weighting ψfw functions in this thesis. ‘Full weighting’ refers to the fact that
the wavelet transform modifies the scaling function coefficients exactly the same

2. The Sparse Grid Combination Technique 25

way as the full weighting restriction operator in geometric multigrid methods [67].
Furthermore, it is used for lossless compression in the JPEG 2000 standard, where
it is referred to as the ‘CDF 5/3’ wavelet.
The biorthogonal basis function ψbo is defined by

(hs)
bo
−1≤s≤1 = (

1
2 , 1, 1

2) , (gs)
bo
−1≤s≤3 = (−1

8 ,−1
4 , 3

4 ,−1
4 ,−1

8) ,

(h̃s)
bo
−2≤s≤2 = (−1

8 , 1
4 , 3

4 , 1
4 ,−1

8) , (g̃s)
bo
0≤s≤2 = (−1

2 , 1,−1
2) ,

(2.18)

and the full weighting basis function ψfw by

(hs)
fw
−2≤s≤2 = (−1

4 , 1
2 , 3

2 , 1
2 ,−1

4) , (gs)
fw
0≤s≤2 = (−1

2 , 1,−1
2) ,

(h̃s)
fw
−1≤s≤1 = (

1
4 , 1

2 , 1
4) , (g̃s)

fw
−1≤s≤3 = (−1

8 ,−1
4 , 3

4 ,−1
4 ,−1

8) .
(2.19)

From the shape of the multiscale functions in Figures 2.2b and 2.2c, one can see
why they conserve mass: The integral over ψ is equal to 0, which means that during
dehierarchization, anything that is added on the finer scales will not contribute any
new mass, but ‘shift around’ the mass that was already present on the coarser level.
This is equivalent to the observation that the sum of the filter coefficients g and g̃ is
equal to 0.
Another desirable property of both these functions is that they can be considered

lifting wavelets [154], and can therefore be computed in-place with two data
sweeps per level—it is not necessary to copy the data to apply the hierarchization
and dehierarchization operations (which holds also true for ψhat if the transforms
are recursed in the ‘usual’ directions).
Note that different normalization factors compared to Cohen, Daubechies, and

Feauveau [25] were chosen, which avoids unnecessary arithmetic operations in the
basis transforms.

2.1.2. Comparison of Mass-Conserving and Standard Hat Functions’ Theoretical
Properties

All multiscale basis functions—ψhat, ψbo, and ψfw—allow for representing the hier-
archical increment spacesWℓ′ . The hierarchization and dehierarchization operations
can be performed in-place and in linear complexity on each level [137]. In fact, the
wider-supported basis functions ψbo and ψfw can be constructed from ψhat by a
lifting scheme [154].

26 2.1. Nodal and Hierarchical Function Space Bases

The benefits of ψhat were briefly discussed in Section 2.1.1 and unfortunately,
the interpolating property is lost for the mass-conserving two functions. For the
purposes of solving PDEs however, the crucial difference between ψhat, ψbo, and
ψfw is that the latter two provide stability as well as conservation of mass, while
the former does not. The reason is that the dual ‘wavelet’ for the hierarchical hat
function is the Dirac delta function, which has poor regularity (it is not even in
L2) [154]. For biorthogonal wavelets, the regularity, stability, and conservation
properties are closely connected [25, 26, 97].
Two implications, which are justified in more detail in [137], are as follows:

1. The number of vanishing moments of the primal wavelet is equal to the
polynomial exactness of the dual scaling function and vice versa [25]. Since
the Dirac delta distribution has no degree of polynomial exactness, there
is no conservation of moments (in particular, mass) between the different
hierarchization levels of ψhat. By contrast, ψbo and ψfw conserve the mass
and momentum but no higher-order moments, as the polynomial exactness of
the respective dual scaling functions is two.

2. The decay of the wavelet coefficients characterizes the Sobolev regularity of a
function. If the Sobolev norm is finite, then the wavelet coefficients necessarily
decay. In particular, the Sobolev regularity of the hierarchical hat function
is too low to assert L2 or even H1 stability of the multiscale basis. For the
biorthogonal and full weighting functions, L2 stability can be proven, which
leads to H r stability in the multivariate functions [137].

2.2. Sparse Grids

Sparse grids (SGs) [15, 173] are constructed from multivariate multiscale functions.
To this end, one can represent a d-dimensional function in V ℓ⃗ with either nodal or
increment spaces through tensor products of the respective one-dimensional spaces:

V ℓ⃗ = V ℓ1
⊗ V ℓ2

⊗ . . .⊗ V ℓd
(2.20)

W
ℓ⃗
′ =Wℓ′1

⊗Wℓ′2
⊗ . . .⊗Wℓ′d

(2.21)

V ℓ⃗ =
ℓ⃗⊕

ℓ⃗
′
=0⃗

W
ℓ⃗
′ . (2.22)

2. The Sparse Grid Combination Technique 27

W[0,0]W[0,0]W[0,0]W[0,0]W[0,0]W[0,0]W[0,0]W[0,0]W[0,0]W[0,0]W[0,0]W[0,0]W[0,0]W[0,0]W[0,0]W[0,0]W[0,0]

W[0,1]W[0,1]W[0,1]W[0,1]W[0,1]W[0,1]W[0,1]W[0,1]W[0,1]W[0,1]W[0,1]W[0,1]W[0,1]W[0,1]W[0,1]W[0,1]W[0,1]

W[0,2]W[0,2]W[0,2]W[0,2]W[0,2]W[0,2]W[0,2]W[0,2]W[0,2]W[0,2]W[0,2]W[0,2]W[0,2]W[0,2]W[0,2]W[0,2]W[0,2]

W[0,3]W[0,3]W[0,3]W[0,3]W[0,3]W[0,3]W[0,3]W[0,3]W[0,3]W[0,3]W[0,3]W[0,3]W[0,3]W[0,3]W[0,3]W[0,3]W[0,3]

W[1,0]W[1,0]W[1,0]W[1,0]W[1,0]W[1,0]W[1,0]W[1,0]W[1,0]W[1,0]W[1,0]W[1,0]W[1,0]W[1,0]W[1,0]W[1,0]W[1,0]

W[1,1]W[1,1]W[1,1]W[1,1]W[1,1]W[1,1]W[1,1]W[1,1]W[1,1]W[1,1]W[1,1]W[1,1]W[1,1]W[1,1]W[1,1]W[1,1]W[1,1]

W[1,2]W[1,2]W[1,2]W[1,2]W[1,2]W[1,2]W[1,2]W[1,2]W[1,2]W[1,2]W[1,2]W[1,2]W[1,2]W[1,2]W[1,2]W[1,2]W[1,2]

W[1,3]W[1,3]W[1,3]W[1,3]W[1,3]W[1,3]W[1,3]W[1,3]W[1,3]W[1,3]W[1,3]W[1,3]W[1,3]W[1,3]W[1,3]W[1,3]W[1,3]

W[2,0]W[2,0]W[2,0]W[2,0]W[2,0]W[2,0]W[2,0]W[2,0]W[2,0]W[2,0]W[2,0]W[2,0]W[2,0]W[2,0]W[2,0]W[2,0]W[2,0]

W[2,1]W[2,1]W[2,1]W[2,1]W[2,1]W[2,1]W[2,1]W[2,1]W[2,1]W[2,1]W[2,1]W[2,1]W[2,1]W[2,1]W[2,1]W[2,1]W[2,1]

W[2,2]W[2,2]W[2,2]W[2,2]W[2,2]W[2,2]W[2,2]W[2,2]W[2,2]W[2,2]W[2,2]W[2,2]W[2,2]W[2,2]W[2,2]W[2,2]W[2,2]

W[2,3]W[2,3]W[2,3]W[2,3]W[2,3]W[2,3]W[2,3]W[2,3]W[2,3]W[2,3]W[2,3]W[2,3]W[2,3]W[2,3]W[2,3]W[2,3]W[2,3]

W[3,0]W[3,0]W[3,0]W[3,0]W[3,0]W[3,0]W[3,0]W[3,0]W[3,0]W[3,0]W[3,0]W[3,0]W[3,0]W[3,0]W[3,0]W[3,0]W[3,0]

W[3,1]W[3,1]W[3,1]W[3,1]W[3,1]W[3,1]W[3,1]W[3,1]W[3,1]W[3,1]W[3,1]W[3,1]W[3,1]W[3,1]W[3,1]W[3,1]W[3,1]

W[3,2]W[3,2]W[3,2]W[3,2]W[3,2]W[3,2]W[3,2]W[3,2]W[3,2]W[3,2]W[3,2]W[3,2]W[3,2]W[3,2]W[3,2]W[3,2]W[3,2]

W[3,3]W[3,3]W[3,3]W[3,3]W[3,3]W[3,3]W[3,3]W[3,3]W[3,3]W[3,3]W[3,3]W[3,3]W[3,3]W[3,3]W[3,3]W[3,3]W[3,3]

V[0,0]V[0,0]V[0,0]V[0,0]V[0,0]V[0,0]V[0,0]V[0,0]V[0,0]V[0,0]V[0,0]V[0,0]V[0,0]V[0,0]V[0,0]V[0,0]V[0,0]

V[0,1]V[0,1]V[0,1]V[0,1]V[0,1]V[0,1]V[0,1]V[0,1]V[0,1]V[0,1]V[0,1]V[0,1]V[0,1]V[0,1]V[0,1]V[0,1]V[0,1]

V[0,2]V[0,2]V[0,2]V[0,2]V[0,2]V[0,2]V[0,2]V[0,2]V[0,2]V[0,2]V[0,2]V[0,2]V[0,2]V[0,2]V[0,2]V[0,2]V[0,2]

V[0,3]V[0,3]V[0,3]V[0,3]V[0,3]V[0,3]V[0,3]V[0,3]V[0,3]V[0,3]V[0,3]V[0,3]V[0,3]V[0,3]V[0,3]V[0,3]V[0,3]

V[1,0]V[1,0]V[1,0]V[1,0]V[1,0]V[1,0]V[1,0]V[1,0]V[1,0]V[1,0]V[1,0]V[1,0]V[1,0]V[1,0]V[1,0]V[1,0]V[1,0]

V[1,1]V[1,1]V[1,1]V[1,1]V[1,1]V[1,1]V[1,1]V[1,1]V[1,1]V[1,1]V[1,1]V[1,1]V[1,1]V[1,1]V[1,1]V[1,1]V[1,1]

V[1,2]V[1,2]V[1,2]V[1,2]V[1,2]V[1,2]V[1,2]V[1,2]V[1,2]V[1,2]V[1,2]V[1,2]V[1,2]V[1,2]V[1,2]V[1,2]V[1,2]

V[1,3]V[1,3]V[1,3]V[1,3]V[1,3]V[1,3]V[1,3]V[1,3]V[1,3]V[1,3]V[1,3]V[1,3]V[1,3]V[1,3]V[1,3]V[1,3]V[1,3]

V[2,0]V[2,0]V[2,0]V[2,0]V[2,0]V[2,0]V[2,0]V[2,0]V[2,0]V[2,0]V[2,0]V[2,0]V[2,0]V[2,0]V[2,0]V[2,0]V[2,0]

V[2,1]V[2,1]V[2,1]V[2,1]V[2,1]V[2,1]V[2,1]V[2,1]V[2,1]V[2,1]V[2,1]V[2,1]V[2,1]V[2,1]V[2,1]V[2,1]V[2,1]

V[2,2]V[2,2]V[2,2]V[2,2]V[2,2]V[2,2]V[2,2]V[2,2]V[2,2]V[2,2]V[2,2]V[2,2]V[2,2]V[2,2]V[2,2]V[2,2]V[2,2]

V[2,3]V[2,3]V[2,3]V[2,3]V[2,3]V[2,3]V[2,3]V[2,3]V[2,3]V[2,3]V[2,3]V[2,3]V[2,3]V[2,3]V[2,3]V[2,3]V[2,3]

V[3,0]V[3,0]V[3,0]V[3,0]V[3,0]V[3,0]V[3,0]V[3,0]V[3,0]V[3,0]V[3,0]V[3,0]V[3,0]V[3,0]V[3,0]V[3,0]V[3,0]

V[3,1]V[3,1]V[3,1]V[3,1]V[3,1]V[3,1]V[3,1]V[3,1]V[3,1]V[3,1]V[3,1]V[3,1]V[3,1]V[3,1]V[3,1]V[3,1]V[3,1]

V[3,2]V[3,2]V[3,2]V[3,2]V[3,2]V[3,2]V[3,2]V[3,2]V[3,2]V[3,2]V[3,2]V[3,2]V[3,2]V[3,2]V[3,2]V[3,2]V[3,2]

V[3,3]V[3,3]V[3,3]V[3,3]V[3,3]V[3,3]V[3,3]V[3,3]V[3,3]V[3,3]V[3,3]V[3,3]V[3,3]V[3,3]V[3,3]V[3,3]V[3,3]

·1

·−1
·1

Figure 2.3.: SGs with hierarchical increment spaces vs. the combination technique
(CT)—the dots denote the location of collocation points / DOF in the
case of (hierarchical) hat functions with boundaries on both sides.
Graphics based on scripts adapted from [162, 163], Copyright © 2019 Julian Valentin,
licensed under CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/).

The central sparse grid idea states that not all possible d-dimensional tensor
productsW

ℓ⃗
′ of the hierarchical spacesWℓ′ are necessary for the good approximation

of a function. Instead, only those W
ℓ⃗
′ that contribute most to the function (typically

measured in the L2 norm) are used within the sparse grid. For all selected W
ℓ⃗
′ , the

set of level vectors {ℓ⃗′i} is termed the index set ℐSG of the sparse grid.
The ‘standard’ approach selects ℐSG to be a simplex subset in the level space of

W
ℓ⃗
′ to form the sparse grid of target resolution ℓ⃗= (L, . . . , L), L ∈ N0:

ℐSG =
n
ℓ⃗
′ ∈ Nd

0 :
���ℓ⃗′
���
1
≤ L
o

. (2.23)

As displayed left in Figure 2.3, this means that ℐSG is a (light blue) triangle in the
level space for d = 2, and results in the typical sparse-grid structure (middle of the
figure).
However, the choice of ℐSG is only restricted by the requirement that it should be

downward closed, or

∀ℓ⃗ ∈ ℐSG : ℓ⃗
′ ≤ ℓ⃗ =⇒ ℓ⃗

′ ∈ ℐSG, (2.24)

28 2.2. Sparse Grids

https://creativecommons.org/licenses/by-sa/4.0/

which allows for different types of adaptivity [53, 125]. In particular, one can
introduce a minimum level ℓ⃗min, up to which the full grid is contained in the sparse
grid, similar to ‘sparse grids with coarser boundaries’ [162, Sec. 2.4.1]. This leads
to the generalized hybrid sparse grid representation of f

f SG
ℓ⃗min
(x⃗) =
∑
s⃗∈Zd

cℓ⃗min,s⃗φℓ⃗min,s⃗(x⃗) +
∑

ℓ⃗
′∈ℐSG

∑
s⃗∈Zd

α
ℓ⃗
′
,s⃗ψℓ⃗′,s⃗(x⃗) . (2.25)

If the level range L is chosen uniformly, f is approximated on a target level ℓ⃗max :=
ℓ⃗min + 1⃗ · L.
With the standard choice of ℐSG (2.23), i. e., ℓ⃗min = 0⃗ in Equation (2.25), one can

show that the number of DOF of the sparse grid is of order 𝒪(2L(log 2L)d−1) [15,
51], which is dramatically less than the 𝒪(2Ld) DOF of the full tensor product grid
on ℓ⃗max.
At the same time, the sparse grid interpolation error increases only slightly (if the

function f (x⃗) is smooth enough), by a factor of 𝒪(log(2L)d−1) for the hierarchical
hat function [92, Eq. (3.16) with T = 0]. For the mass-conserving basis functions,
the interpolation error can be of the same order as in the full grid case, if f (x⃗) is
less regular [137].

2.3. Sparse Grid Combination Technique

The sparse grid combination technique [61] is another way of getting in to the
sparse grid space and is closely connected to Smolyak quadrature [152] (if dyadic
refinement is assumed). In the combination technique (CT), many anisotropically
resolved full grid functions f FG,ℓ⃗ living in the nodal spaces Vℓ⃗ are added up with
different combination coefficients cc

ℓ⃗

f CT(x⃗) =
∑

ℓ⃗∈ℐCT
cc
ℓ⃗
· f FG,ℓ⃗(x⃗) (2.26)

to form a sparse grid, cf. the right side of Figure 2.3. These individual full grids are
called component grids.
For a general index set ℐ, the combination coefficients are given by

cc
ℓ⃗
=

1⃗∑

z⃗=0⃗

(−1)|z⃗|1χℐSG(ℓ⃗+ z⃗) . (2.27)

2. The Sparse Grid Combination Technique 29

Here, χ denotes the indicator function of the sparse grid index set ℐSG [71], and
the levels where the coefficients are nonzero are part of the combination technique
index set ℐCT. They are the levels of the component grids living in V ℓ⃗, on which f
needs to be evaluated. Equation (2.27) can be interpreted as a multidimensional
inclusion-exclusion principle, if one considers that each of the full grid functions
f FG,ℓ⃗ lives in the nodal tensor product space Vℓ⃗ = ⊕ℓ⃗ℓ⃗′=0⃗

W
ℓ⃗
′ , cf. Equation (2.3). Thus,

by building a sparse grid from full grids, one has to account for those hierarchical
increment spaces W

ℓ⃗
′ that were ‘counted’ multiple times, by subtracting lower-

resolved full grids that contain them. For the ‘standard’ sparse grid index set (2.23),
the combination formula simplifies to

f CT(x⃗) =
d−1∑
q=0

(−1)q
�

d − 1
q

�
·
∑

|ℓ⃗|1=L−q

f FG,ℓ⃗(x⃗). (2.28)

In this case, the combination technique index set ℐCT is a d-layered simplex in the
level vector space, where the ‘highest’ layer with level sum

��ℓ⃗��1 = L is called the
main diagonal. The blue expression denotes cc

q [51], the coefficient pertaining to
the qth diagonal in ℐCT. In two dimensions, the cc

q are 1 and -1, see also Figure 2.3.

cc
ℓ⃗
= 1

cc
ℓ⃗
= −1

ℓx

ℓminx = 1 ℓmaxx = 3

ℓy

ℓminy = 1

ℓmaxy = 3

(a) with ℓ⃗min = (1, 1), ℓ⃗max = (3,3)

cc
ℓ⃗
= 1

cc
ℓ⃗
= −1

ℓx

ℓminx = 2 ℓmaxx = 5

ℓy

ℓminy = 1

ℓmaxy = 4

(b) with ℓ⃗min = (2, 1), ℓ⃗max = (5, 4)

Figure 2.4.: Two different two-dimensional combination schemes with the regular
truncated sparse grid combination technique, using periodic bound-
aries.

30 2.3. Sparse Grid Combination Technique

If a minimum level ℓ⃗min ̸= 0⃗ is introduced like in Equation (2.25), this results in
the truncated CT [10], where the combination technique index set is offset by ℓ⃗min
compared to Equation (2.28), cf. Figure 2.4.
When solving a PDE, an obvious advantage of the CT over the SG discretization

is that the differential operators need not be represented in the multiscale basis.
Instead, existing solvers that operate on (full) structured grids can be readily used on
each component grid, and the solver steps can be executed embarrassingly parallel
between the component grids. Such solvers may require a minimum resolution for
appropriate parallelization or to ensure stability in their solutions, which motivates
the use of a minimum level.
Note that, compared to the sparse grid discretization (2.25), the CT duplicates

DOF between component grids, such that the number of DOF is given by 𝒪((d ·
2L(log2L)d−1)) [59]. The interpolation error estimates are the same as for the sparse
grid discretization, as CT and SG can represent the same function space. However,
different operations like solving a PDE may result in very different functions between
the (hierarchical) sparse grid and (nodal) CT discretizations [61] and exact error
bounds can only be derived if the solver’s errors are taken into account.

2.3.1. Error Cancellation in the Combination Technique

A quite intuitive concept of the errors in the CT is offered by the error cancellation
property, based on an error splitting assumption [119]. The assumption states that
the decomposition coefficients C of the pointwise error

��uexact(x⃗)− uCT(x⃗)
��=

d∑
k=1

Ck(hℓk
) f1(hℓk

)

+
d∑

k=1

d∑
j=1
j ̸=k

Ck, j(hℓk
, hℓ j
) f2(hℓk

, hℓ j
)

+ . . .

+ C1,...,d(hℓ1
, . . . , hℓd

) fd(hℓ1
, . . . , hℓd

)

(2.29)

can be bounded by a positive constant κ for the method at hand (interpolation,
measurement, PDE solver, . . .) for a given x⃗ . The mesh width is hℓk

= 2−ℓk in
dimension k, and the functions fi denote the respective error decay / convergence
rate. It should approach zero as the hℓk

→ 0. This poses a relatively weak assumption,
which typical PDE solver schemes will strive to fulfill by default.

2. The Sparse Grid Combination Technique 31

If the assumption holds, then the multidimensional telescoping sum of the CT
formula (2.27) leads to a cancellation of ‘under-resolution’ errors on the different
component grids. The remaining error depends on how fast the mixed discretization
errors decay, but the axis-aligned errors will always be cancelled [119, Section
2.3.1]. A quick decay is beneficial to obtain low errors in the combined solution,
very similar to dimensionality reduction methods based on ANOVA [147]. This
property is the reason why it can be sensible to rotate the coordinate axes within
the domain [145] in a way that most of the variance is captured along the main
axes.
One can conclude that the CT is aptly suited to break the curse of dimensionality

for grid-based solvers. It provides beneficial practical properties compared to SG
solvers, most notably that any existing solver operating on structured grids can be
used to solve the PDE problem.

2.3.2. Combination Technique for Time-Dependent Problems

There are various modifications of the CT, some of which are utilized in this work.
The most important variations to this work are shortly reviewed: The time-stepping
CT that synchronizes the individual component grids, the adaptive CT that fits
combination schemes to the problem at hand, and lastly the asynchronous time-
stepping CT that allows to overlap the combination with the solver times.

Time Stepping: Recombination and Decombination

For time-dependent problems such as Equation (1.1), an arbitrary structured-grid
solver can update the solution on each component grid for a given simulation time
interval, after which the solutions are synchronized (‘combined’). This interval
is called the combination interval, and it may contain multiple solver time steps.
Algorithm 2.1 gives a high-level overview of the entire simulation with the CT.
Typically, the combination step contains two basis changes, the hierarchization

and the dehierarchization, i. e., from the nodal representation to the hierarchical
representation and back. While the full grid data is in the hierarchical representation,
the coefficients need to be reduced to the sparse grid, and then scattered back to the
component grids. Section 4.4 is going to discuss different variants of this reduction
operation in more detail.

32 2.3. Sparse Grid Combination Technique

Algorithm 2.1 Time-Stepping CT
1: procedure TimeSteppingCT(ℐCT, ℐSG)
2: for t ← 0, Nsteps do

3: for all ℓ⃗ ∈ ℐCT do
4: solve ℓ⃗ ▷ Update component grids from time step t to t + 1
5: end for

run

6: for all ℓ⃗ ∈ ℐCT do
7: hierarchize ℓ⃗ ▷ Basis transform: nodal→ hierarchical
8: end for
9: Reduce(ℐCT, ℐSG)

▷ Reduce hierarchical coefficients to sparse grid with Equation (2.26)

Recombination

10: Scatter(ℐCT, ℐSG) ▷ Scatter hierarchical coefficients to component grids
11: for all ℓ⃗ ∈ ℐCT do
12: dehierarchize ℓ⃗ ▷ Basis transform: hierarchical→ nodal
13: end for

Decombination

combine

14: end for
15: end procedure

This thesis calls the first part, consisting of hierarchization and reduction, the
(re)combination step, and the second part, consisting of scatter and dehierarchization,
the decombination step. The existing literature typically summarizes everything as
‘recombination’.

2. The Sparse Grid Combination Technique 33

t

. . .

. . .

. . .

run combine

Figure 2.5.: Schematic process time of a CT time-stepping scheme: The solver
update as well as the basis transforms are embarrassingly parallel
between the component grids. Synchronization happens for the com-
bination step, when data is gathered from the component grids and
scattered back for the next solver update.

Figure 2.5 subsumes the recombination as one set of arrows, and the decombina-
tion as another set of arrows. It also illustrates the advantage of the embarrassing
parallelism between the solver steps on the component grids: Solver time steps are
entirely data-independent between component grids. The DisCoTec code used for
this work, cf. Chapter 4, is designed to perform exactly these types of time stepping
simulations.
An in-depth analysis on various error terms introduced by the time-dependent CT

for finite-difference advection solvers can be found in [104, 144]. In particular, the
leading error term that is introduced by the CT can be dampened out by choosing a
sufficiently small combination interval length (which is validated in Section 3.4.4).
However, this damping effect only works if the advection direction only changes
very little within the combination interval [104].

Asynchronous Combination Technique

The asynchronous CT [119, section 3.5] is a promising extension, which overlaps
computation of the solver update with communication of the combined solution.

34 2.3. Sparse Grid Combination Technique

Instead of waiting for the combination operation after time step T to finish, the
combination operation is started on a copy of the current data, and the actual
data structure containing an inexact solution ũT

ℓ⃗
(without correction by the other

component grids) can already be used for the next solver time step. The (inexact)
solution of this time step is denoted ˜vT+1. Only after the time step has finished, the
groups use the received combined data uℓ⃗

T to correct the data for the next time
step:

uℓ⃗
T+1 ≈ ṽT+1 +∆with∆= uℓ⃗

T − ũT+1
ℓ⃗

. (2.30)

Since three copies of the full grid data uℓ⃗ are required, this method has a consid-
erable total memory overhead. At the same time, the data copies allow ‘rolling back’
the solver time step update in case the correction term ∆ is too large, which adds
resilience to the scheme. The asynchronous CT was not used for this thesis, but could
provide a particularly interesting extension in the context of the widely-distributed
CT, cf. Section 4.5, which is characterized by very long communication latencies.

Dimensionally-Adaptive and Spatially-Adaptive Combination Technique

With the dimensionally-adaptive CT, the index set ℐCT is specifically constructed for
the function f that should be integrated/interpolated/represented with the CT. In
this context, ‘adaptivity’ can mean automatic adaptation of ℐSG by way of different
error indicators [53], but also entails manual selection of the index set according
to domain knowledge—for instance to make sure that the CT contains resolution
ranges of interest for the Vlasov code at hand. This way of adapting in the CT means
that one is still working on regular structured grids, with combination coefficients
determined by Equation (2.27).
Although it was not used for the simulations presented in this thesis, the spatially-

adaptive CT [121] is another—very promising—extension. It allows combining
component grids with octree-like refinement structures in the subdomains of interest,
per component grid. As a result, the combination is performed on block-structured
grids of different base resolutions, and the refinement is chosen such that the
combination coefficients cc

ℓ⃗
per component grid need not be changed.

2. The Sparse Grid Combination Technique 35

2.4. Summary

This chapter introduced the mathematical background of the CT. It allows solvers
to be oblivious to any multi-scale operations, providing a separation of concerns
between solver and data exchange between the grids Two features of the CT will be
pivotal to the rest of the thesis: Firstly, the intermediate hierarchical representation
allows for some flexibility, and the already mentioned benefits of the mass-conserving
variant will be explored in Chapter 3. Secondly, the embarrassing parallelism in the
solver update allows for an added level of parallelism, which will be analyzed in
Chapter 4 and experimentally validated in Chapter 5.

36 2.4. Summary

Ch
ap
te
r 3

Multiscale Bases for Accuracy,
Conservation, and Numerical

Stability

The hierarchical hat basis functions described in Section 2.1.1 can be transformed to
the nodal basis at low computational and communication cost, due to the interpolat-
ing property (‘interpolets’) [97]. However, there can be problems when using them
for time-stepping computations: Even though the recombination—the transforma-
tion from the individual component grids to a common sparse grid representation—is
mass-conserving, the same does not necessarily hold for the decombination step.
This chapter shows—by three different setups—that a choice of different hierarchical
bases can provide conservation and accuracy in combination technique (CT) partial
differential equation (PDE) solutions, and even enables simulations that would
become unstable when using the hierarchical hat basis.
This chapter starts with a discussion of the conservation of mass in the context of

sparse grids and the CT as well as other multiscale methods. It goes on to define
terminology and error measures, and illustrates the mass conservation and stability
properties by two-dimensional examples. The accuracy of the different variants
of basis functions is evaluated with a two- to six-dimensional advection scenario.
Improved numerical stability can be observed for the Vlasov–Poisson equations in
two different six-dimensional benchmark scenarios. The chapter concludes with a
practical assessment of the new basis functions.

37

The simulations in Sections 3.4 and 3.5 were conceptualized and performed by
the author of this work and first published in [137]. For Section 3.5, Katharina
Kormann contributed the modeling and code of SeLaLib as well as the concrete
scenarios and validation to [137]. The results presented here are a summary of the
aforementioned publication, with additional context and discussion.

3.1. Related Work: Multiscale Methods, Conservation, and Sparse
Grids

The conservation of mass and higher-order moments is a critical question for higher-
dimensional high-fidelity numerical solvers. In the context of sparse grids, the typical
approach is to account for conservation in the hierarchical sparse grid solver, like
in [60, 64, 97, 157, 166]. Koster, whose work is cited extensively in Chapter 2, uses
the biorthogonal basis function to simulate turbulent flow problems on a spatially
adaptive sparse grid [60, 97]. Kormann and Sonnendrücker [95] used ψhat basis
operators in the SeLaLib code, while employing higher-order polynomials for the
Vlasov–Poisson equations with a multiplicative δf ansatz. The work did not (yet)
consider conservation in the sparse grid solution. This holds also true for the work
by Deriaz and Peirani [32], who used hierarchical hat functions as a basis for a finite-
difference Vlasov–Poisson sparse grid solver. Of the aforementioned, Guo and Cheng
in particular use adaptive Alpert multiwavelets [3] to achieve conservation of mass
and higher-order moments for Vlasov solvers, at the cost of dropping the continuity
requirement on the solution—which also enables them to use discontinuous Galerkin
methods. Using multiwavelets as basis functions appears promising for the CT as
well [96].
Previous CT plasma simulations were able to successfully extrapolate eigenvalues

for the linear part of the simulation [100]. The CT also worked nicely for gyrokinetic
GENE simulations with some adaptation in the (de)hierarchization operators, when
simulating the linear growth phase of the instability scenario [101]. However,
nonlinear simulations with GENE would often become numerically unstable when
using the CT [102, p. 319].
To the author’s best knowledge, the only works that address conservation in

the context of time-stepping sparse grid combination technique simulations are
by Huber [83] and Zeiser [172]. Huber [83] custom-tailors geometry- and problem-
dependent stencil operators in a staggered-grid fluid solver to conserve the solution’s
divergence to first order and to stabilize the simulation. Zeiser [172], on the other

38 3.1. Related Work: Multiscale Methods, Conservation, and Sparse Grids

hand, stabilizes a discontinuous-Galerkin simulation with streamline diffusion for
the transport equation. The paper further describes the application of a GPU-
accelerated FEM library for relatively flexible geometries, with implicit higher-order
time evolution in the solver. By this approach, different invariants of a Vlasov–
Poisson scenario (mass, total energy, entropy) can be conserved.

Are Adaptive Biorthogonal Wavelets and Adaptive Sparse Grids the Same?

There is an enormous amount of literature on adaptive and/or conserving wavelet
solvers that is potentially relevant to this chapter once the equivalence of hierarchi-
cal basis functions and lifting wavelets is established. This paragraph focuses on
approaches that either address high-fidelity plasma applications or the intersection
of conservation and adaptivity in wavelet methods, or all of these factors.
A group around Alam, Kevlahan, and Vasilyev extensively researched adaptive

collocation methods with biorthogonal wavelets for different application PDEs [1,
38, 141]. Recent work on climate modelling stresses both the importance and the
tractability of solving conservative large-scale two- and three-dimensional problems
with adaptive biorthogonal wavelets [91].
Strains of work by Haefele, Latu, and Gutnic [65, 66, 68] and Besse et al. [12]

focus on adaptive wavelet methods for the Vlasov–Poisson system. They are partic-
ularly interesting in comparison to the results in Section 3.5 since they too use a
semi-Lagrangian scheme as a solver. Both lines of work started with a construction
based on interpolets (hat functions ψhat), but only one of them considered ψbo in
a later paper [65]. Also, joint work by Besse, Deriaz, and Madaule considers an
adaptive Alpert multiwavelet solver for the solution of the Vlasov equations [11],
similarly to Guo and Cheng [64].
In the works listed here, all solvers operate in the hierarchical basis, but none

explicitly uses a sparse grid construction—and the exact nature of the adaptive
refinement is seldom discussed. So there remains a question if only uniform adaptive
refinement (per cell) is allowed, or if directional refinement (‘semicoarsening’) is
permitted as well. If the latter was the case, then the resulting data structures
should be very similar to spatially adaptive sparse grids [125]. So another way to
pose this question is:

Does it have octrees or does it have sparse grids?

3. Multiscale Bases for Accuracy, Conservation, and Numerical Stability 39

Potentially, both would be possible from most of the textual descriptions. But the
overwhelming presence of octree-type refinement figures rather suggests that if a
paper does not mention sparse grids, it uses octrees.
If this proposition is true, this could be unfortunate, since the main complexity

of hierarchical sparse grid PDE methods lies in the adaptive hierarchical operators,
which these authors have already successfully implemented and tested. At the
same time, much could be gained from the missing part—by allowing semicoars-
ened (sparse grid) spaces in the refinement process—since the sparse grid benefits
discussed in Section 2.2 still hold when only considering a small sub-cell of the
domain. This would result in similar methodologies to the one pursued by Guo and
Cheng [64].
So for these existing solvers that are likely based on octrees, an easier adaptable

alternative would be to use them in conjunction with the spatially adaptive CT [119],
which operates on block-structured octree-like component grids. The adaptive
CT enables using the existing adaptive solvers with minimal changes, while still
benefitting from the sparse grid structure. And since the solvers already operate
on hierarchical bases, no intermediate transformations would be necessary for
recombination and decombination.

3.2. Prelude: Quantities of Interest and Error Measures

When dealing with higher-dimensional simulations, it is inherently hard to visualize
the solution. Thus, in order to draw meaning from these simulations, one often uses
lower-dimensional quantities of interest Q that are derived from the solution. For
example in Vlasov equations, these quantities often include the potential energy or
the radial heat flux. This chapter typically uses the combined quantities of interest

Qct(f) :=
∑

ℓ⃗∈ℐCT
cc
ℓ⃗
·Q(fℓ⃗), (3.1)

which are only the same as the sparse grid quantities of interest

Qsg(f) :=Q

� ∑

ℓ⃗∈ℐCT
cc
ℓ⃗
· fℓ⃗
�

(3.2)

40 3.2. Prelude: Quantities of Interest and Error Measures

for linear operators such as the mass

m(f) := ∥ f ∥1 =

∫

Ω

f (x⃗)d x⃗ . (3.3)

This last definition assumes the positivity of f , which is typically given for the
simulations considered here (apart from the times when numerical instabilities
arise).
For SeLaLib’s potential energy—a non-linear quantity—Equation (3.1) and Equa-

tion (3.2) are not the same. Yet, it could be validated that they closely match
in the numerically stable regions of the simulation by small combination scheme
simulations, where one can interpolate the solution onto a ‘fine’ grid of level ℓ⃗max
and use SeLaLib to compute the energy there.
If an exact solution fexact is known, it is possible to measure the function error

norms ∥ fexact− f ∥. In our setting, it is important to not only consider the sparse grid
points, but to also consider the error ‘in between’ them. After all, there is a lot of
space between sparse grid points in higher dimensions for high function errors to
occur. The approach of this chapter is to use relative Monte Carlo error integrals

∥ f CT − fexact∥2

∥ fexact∥2
(t)≈
∑M

j=1

�� f CT(x⃗ j, t)− fexact(x⃗ j, t)
��2

∑M
j=1

�� fexact(x⃗ j, t)
��2 , (3.4)

to get a (relatively dimension-independent) measure of the error. Through the com-
bination formula (2.27), this error can be directly related to multilevel Monte Carlo
error measures. The number of samples M was set to 105 and the pseudorandom
coordinates x⃗ j were obtained with the Mersenne Prime Twister algorithm. Since
the interpolation of f CT(x⃗ j, t) is a linear operation, the CT Monte Carlo errors in
Equation (3.4) and their sparse grid equivalents are the same.

3.3. 2D Examples: Tricks With Hierarchical Hat Basis Functions

Suppose that a mass-conserving PDE solver is used with the CT. It has periodic
boundary conditions on the two-dimensional domain [0, 1)2, and the initial solution
is constant f0(x1, x2) = 1, so the integral / L1 norm / mass of f0 is 1, compare
Equation (3.3). This function can be represented on any linear component grid.
The following—very simple—two-dimensional combination scheme ℐCT is used:

3. Multiscale Bases for Accuracy, Conservation, and Numerical Stability 41

Combination scheme for 2D examples
ℓ⃗min (1,1) # grids 5
ℓ⃗max (3,3) # finest grids 3
total FG #DOF 6.40 × 101 mem. finest grids 128B
total FG memory 512B #DOF FG at ℓ⃗max 6.40 × 101

A few words about this representation of combination schemes, since it will be used
throughout the thesis:

• The two-dimensional scheme contains five component grids, three of which
are on the main diagonal and thus have the finest resolution, cf. Figure 2.4a.

• The grids on the main diagonal have a memory footprint of 16DOF or 128B.
The other grids have half of these figures.

• This means that the full grids in the scheme have a total of 64DOF, which
leads a total full grid memory of 512B, since each double-precision DOF has
eight bytes.

• If we were to use only the full grid at resolution level ℓ⃗max, it would also have
64DOF. This shows us that the CT is not necessarily more efficient than using
the full grid. In this example the memory footprint is the same, but the CT’s
memory requirement would already be smaller for a slightly higher difference
between ℓ⃗min and ℓ⃗max, or for more than three dimensions.

Now we look at two carefully constructed examples of possible analytical solutions
at a later time t and how the solver tries to represent them on each component
grid. Each illustrates a potential problem for a PDE solver that arises from using
hierarchical hat functions, which can be solved by using the mass-conserving variants
introduced in Section 2.1.1.

3.3.1. The Vanish Trick, or Making All Mass Disappear

Say that after one time step, the exact solution would be the piecewise bi-linear
function

f1(x1, x2) = 16 ·φhat
1/2 (x1) ·φhat

1/2 (x2); (3.5)

recall the notation for nodal basis functions in Equation (2.2). The function has an
integral of 1—so a mass-conserving solver should conserve a mass of 1.

42 3.3. 2D Examples: Tricks With Hierarchical Hat Basis Functions

We employ a CT with ℓ⃗min = (1,1) and ℓ⃗max = (3, 3). This means that out of the
five full grids used, only one can exactly represent the solution, see the grid with
ℓ⃗= (2, 2) in Figure 3.1.

cℓ = 1

cℓ = −1

ℓx

ℓmin
x = 1 ℓmax

x = 3

ℓy

ℓmin
y = 1

ℓmax
y = 3

(a) Recombination step

(b) Decombination step with ψhat

(c) Decombination step with ψbo (d) Decombination step with ψfw

Figure 3.1.: Two-dimensional example of recombination with ℓ⃗min = (1,1) and
ℓ⃗max = (3, 3). The exact solution is given by Equation (3.5).

The other four grids just do not contain the solution’s maximum point at
(0.25, 0.25). Instead, we assume for those grids that the solver does the next
best thing—it places the available mass as close as possible to the true maximum
point. Then, due to the low resolution and periodic boundaries, the solution on
those grids will be constant in one dimension, either f (x1, x2)1 = 4 ·φhat

1/2 (x1), or
f (x1, x2)1 = 4 ·φhat

1/2 (x2). Now, the combined solution is exactly equal to the true
solution, since the ‘under-resolution’ errors are cancelled pairwise (see the left
and lower grids in Figure 3.1a respectively). This is an example of the CT’s error

3. Multiscale Bases for Accuracy, Conservation, and Numerical Stability 43

cancellation, cf. Section 2.3.1. And indeed, the combined sparse grid solution is
the ‘true’ solution. Note that the recombination step is always mass-conserving for
a mass-conserving solver due to the linearity of the mass. But a problem arises
when we use the injection operation associated with ψhat, cf. Section 2.1.1, to
populate the component grids again (decombination): Since only one sparse grid
point contributes mass, cf. Figure 3.1b, the four grids that do not contain it will be
empty. Notably, the combined sparse grid still holds the true solution. But for the
next time step, four out of five grids will not contribute to the sparse grid solution
anymore, it will effectively be a computation on the grid (2, 2) only.
Thus, the example illustrates that the decombination step is not mass-conserving

for the component grids when using the hierarchical hat basis, and this is clearly
something to avoid for mass-conserving PDE solvers. The biorthogonal basis function
and full weighting basis function, by comparison, accurately conserve the mass on
the component grids.

3.3.2. The Explosion Trick, or Amplifying Mass and Gradients

For the second example, one needs to consider two combination time steps. Again,
the solver tries to represent the exact solution, which is now given by

f2(x1, x2, t1) = 4 · (φhat
0/3 (x2) +φ

hat
4/3 (x2)) (3.6)

after the first time step.

cℓ = 1

cℓ = −1

at end of time step 1 at end of time step 2

Figure 3.2.: The ideal ‘true’ solutions after the first and second time step

44 3.3. 2D Examples: Tricks With Hierarchical Hat Basis Functions

The second time step introduces a high-frequent (mass-conserving) mode in the
transversal x1 direction, such that the updated solution is

f (x1, x2, t2) = 4 · (φhat
0/3 (x2) +φ

hat
4/3 (x2)) (3.7)

+ 1 · (φhat
1/3 (x1) +φ

hat
3/3 (x1) +φ

hat
5/3 (x1) +φ

hat
7/3 (x1)) (3.8)

− 1 · (φhat
0/3 (x1) +φ

hat
2/3 (x1) +φ

hat
4/3 (x1) +φ

hat
6/3 (x1)), (3.9)

which most grids cannot resolve, and thus they stay unchanged to conserve the
mass. Only the grid (3,1) can resolve the new mode, as can be seen in the right
of Figure 3.2, which allows the mode to occur in the combined sparse grid. This
would be the ideal case, in which the true solution can be replicated.
Figure 3.3a shows what happens for ψhat: Due to the lack in mass conservation,

the decombination after the first time step amplifies the mass in some component
grids, to obtain up to four times the mass (cf. the constant orange functions). In
fact, for arbitrary level differences ℓ⃗max − ℓ⃗min, the mass in the component grids can
be multiplied by up to a factor of 2ℓ

max
j −ℓminj in dimension j. As the second time step

introduces its high-frequent mode on just one of these amplified grids, very high and
low absolute values ensue in the combined solution, along with gradients that are up
to 2ℓ⃗

max
2−ℓ⃗min2 times higher than in the original solution Equation (3.7). Figures 3.3b

and 3.3c shows that ψbo and ψfw do not suffer from this effect, because the mass is
conserved in the decombination step. The combined solution for themass-conserving
basis functions is the exact solution (3.7), and for ψfw, even the component grid
solutions look exactly like the ‘desired’ solutions. There is a symmetry between this
example and the previous one: Here, ψfw can capture the desired solution exactly
and conserves positivity on the component grids, while ψbo leads to some negative
function values on the component grids—and vice versa for Section 3.3.1. Note
that the overall mass, being a linear quantity of interest, is still conserved in every
combined solution. For ψhat it diverges on the component grids only—in a way,
the error cancellation (Section 2.3.1) still applies to the combined solution. But
this example shows that, for arbitrarily high level differences, unbounded mass and
gradients can occur if ψhat is used for recombination; In fact, the instability of the
basis and the lack of conservation of mass can be considered two sides of the same
coin, as they are both a consequence of the lack of regularity in the hierarchical
hat’s dual ‘function’, the delta distribution (cf. Section 2.1.2).

3. Multiscale Bases for Accuracy, Conservation, and Numerical Stability 45

time step 2

(a) second time step with ψhat

time step 2

(b) second time step with ψbo

time step 2

(c) second time step with ψfw

Figure 3.3.: Two-dimensional example of recombination with ℓ⃗min = (1, 1) and
ℓ⃗max = (3,3). The exact solutions are given by Equation (3.6).

46 3.3. 2D Examples: Tricks With Hierarchical Hat Basis Functions

Incompressible advection equation
∂ u(x⃗ ,t)
∂ t + v⃗·∇ x⃗ u(x⃗ , t) = 0

Constant advection velocity
v⃗(x⃗ , t) = 1⃗

Initial condition
u(x⃗ , 0) = exp
�
−∑di=1

�
x i − 1

2

�2 · 1
σ2

�

v⃗
x⃗ × t → R6

u
x⃗ × t → R

?Domain Ω
x⃗
⊆ R6

t
⊂ R

Figure 3.4.: Extended Model Pathway Diagram [93] of the constant incompressible
advection equation: Quantities are given in circles. The orange boxes
denote the types of the quantities. Double circles denote the variables
of the computational domain. Dashed black lines indicate constants
and boundary conditions. Purple circles with question marks denote
the unknown quantities that need to be solved for. In comparison to
Figure 1.1, it becomes apparent that the model is simpler to solve
than the Vlasov–Poisson system, as there is no cycle in the advection
diagram.

3.4. Conservation of Mass and Increased Accuracy for Advection in
2− 6D

Let us consider the incompressible advection problem

∂ u(x⃗ , t)
∂ t

+ v⃗ · ∇ x⃗u(x⃗ , t) = 0 (3.10)

on the d-dimensional unit hypercube Ω = [0,1]d . Some initial concentration
u(x⃗ , 0) = u0(x⃗) is advected with a constant velocity v⃗ ∈ Rd . Assuming periodic
boundary conditions, the analytical solution can be obtained by translating the
initial profile u0.
The model pathway diagram of the incompressible advection model is shown

in Figure 3.4. By comparing to Figure 1.1, one can already see that an advection
problem in two to six dimensions is significantly simpler to model (and solve) than
the Vlasov–Poisson system. Yet, it can serve as a good proxy for higher-dimensional
Vlasov simulations, since both are kinetic transport models. Furthermore, periodic

3. Multiscale Bases for Accuracy, Conservation, and Numerical Stability 47

boundary conditions are used for grid-based Vlasov solvers like GENE [99] and
SeLaLib [94]. And choosing a Gaussian function as initial condition

u0(x⃗) = exp

�
−

d∑
i=1

�
x i −

1
2

�2
· 1
σ2

�
, (3.11)

is also close to Vlasov benchmark problems, where sums of Gaussians are the typical
initial conditions, and also the typical steady state solutions. Gaussian functions have
proven to be particularly challenging to represent on sparse grids with piecewise
linear basis functions [125].
The advection problem has an analytical solution, such that the numerical errors

can be evaluated—in contrast to turbulent Vlasov simulations, where the exact
analytical solution is typically unknown.

3.4.1. Finite Volume / Finite Difference Discretization

For simplicity, we use a constant uniform velocity v⃗ = (1, 1, . . . , 1). This allows us to
discretize the advection equation with first order accuracy by

∇iu=
∂ u
∂ x i
≈ u(x⃗ , t −∆t)− u(x⃗ −∆x i, t −∆t)

∆x i

∂ u
∂ t
≈ u(x⃗ , t)− u(x⃗ , t −∆t)

∆t

⇒ u(x⃗ , t) = u(x⃗ , t−∆t)−∇u· v⃗ ·∆t.

(3.12)

The discretization can be understood both as first-order finite difference scheme
with backward differences, or as finite volume discretization with upwinding—both
result in the same stencil values. The last line denotes an explicit Euler time stepping
approach. The accuracy will depend linearly on the resolutions both in space x⃗ and
time t. Finite volume upwinding conserves the mass m, cf. Equation (3.3), up to
machine precision. The solver time step size∆t is selected as 1 × 10−4 in order fulfill
the CFL condition for all resolutions considered; The CFL condition [28] relates the
maximum time step length to the spatial resolution for explicit schemes—the finer
the resolution, the shorter the time step needs to be. The numerical mass at t = 0

will vary slightly depending on the resolution, due to the numerical interpolation of
the solution (3.11) during initialization.

48 3.4. Conservation of Mass and Increased Accuracy for Advection in 2− 6D

3.4.2. Conservation of Mass on Component Grids

As illustrated in Section 3.3, the combined mass in the simulation will be conserved
by the CT, even if the mass is not conserved on the individual component grids.
The same is true for the advection problem: If we consider the three-dimensional
combination scheme ℓ⃗min = (2, 2, 2), ℓ⃗max = (11, 11, 11) with recombination after
every time step, then the combined mass will fluctuate only by about 2 × 10−14
around the initial value for all three hierarchical basis functions [137]. But the mass
on the component grids behaves very differently.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−4 · 10−3
−2 · 10−3

0
2 · 10−3

M
as
sD
iff
er
en
ce
∆

m

CT Hat

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4 · 10−15
−2 · 10−15

0
2 · 10−15
4 · 10−15

−5.422,716,02 × 10−8

Simulation time t

M
as
sD
iff
er
en
ce
∆

m

CT Biorthogonal
CT Full weighting

Figure 3.5.: Mass difference ∆m between the simulated and analytical mass∫
uexact(x⃗ , ·) d x⃗ ≈ 0.186 for a single component grid. The entire CT
advection scenario with ℓ⃗min = (2, 2, 2), ℓ⃗max = (11, 11, 11) contains
136 component grids. The graphs show the mass on the component
grid with ℓ⃗= (9, 2,2), one of the coarsest resolved in the scheme. Using
hierarchical hat functions leads to fluctuations of up to 2.7% of the
analytical mass. By comparison, the biorthogonal and full weighting
bases conserve the mass in the grid up to an accuracy of 1 × 10−14.
(Figure first published in [137])

Figure 3.5 shows the mass if evaluated only on the component grid with ℓ⃗ =
(9, 2,2). While the mass stays well within the expected machine precision for
combination with ψbo and ψfw, it changes by more than 103 with ψhat. This shows

3. Multiscale Bases for Accuracy, Conservation, and Numerical Stability 49

that the idealized result from Section 3.3 is transferrable to the advection problem
and that mass-conserving hierarchical functions are indeed necessary to achieve
mass conservation on the component grids.

3.4.3. Improved Accuracy with Mass-Conserving Functions

Furthermore, the mass-conserving functions also improve the numerical accuracy.
Figure 3.6 compares the decay of the relative Monte Carlo L2 error (3.4) for different
dimensionalities d, resolutions, and hierarchical basis functions. While the full grid
reference simulations are each run on a single grid of isotropic resolution ℓ⃗max, all
the CT simulations have a minimum level ℓ⃗min of (2)d , resulting in an increasing
number of component grids as ℓ⃗max increases.

101 102 103 104 105 106 107 108

10−2

10−1

100

Number of Degrees of Freedom #DOF

∥u
CT
−u
ex
ac
t ∥ 2

∥u
ex
ac
t ∥ 2
(t
=

1)

(single) full grid
CT end only
CT Hat

CT Biorthogonal
CT Full weighting

2D
4D
6D

Figure 3.6.: Relative Monte Carlo error norms, cf. Equation (3.4), for the advected
Gaussian profile over the number of DOF used. Results for full grid
and different CT schemes are shown for dimensionalities of d = 2, 4,6.
The circled data points highlight the different simulations with the
(maximum) resolution of ℓ⃗max, which will be further compared in
Section 3.4.4. (Figure first published in [137])

50 3.4. Conservation of Mass and Increased Accuracy for Advection in 2− 6D

The ‘largest’ combination scenarios considered in two and six dimensions, respec-
tively, are given by:

Combination scheme largest 2D advection setup
ℓ⃗min (2,2) # grids 19
ℓ⃗max (11, 11) # finest grids 10
total FG #DOF 1.19 × 105 mem. finest grids 64KiB
total FG memory 928KiB #DOF FG at ℓ⃗max 4.19 × 106

Combination scheme largest 6D advection setup
ℓ⃗min (2,2, 2,2, 2,2) # grids 462
ℓ⃗max (7,7, 7,7, 7,7) # finest grids 252
total FG #DOF 4.35 × 107 mem. finest grids 1MiB
total FG memory 332MiB #DOF FG at ℓ⃗max 4.40 × 1012

From the latter, one can see why the full grid simulations at ℓ⃗max were not performed
for all setups up to level (11)d: for a simulation at ℓ⃗= (7, 7,7, 7,7, 7), the full grid
solution would require ≈ 32TiB of memory, which was far beyond the capabilities
of the single-node system used for the simulations.
Mainly, Figure 3.6 shows that the benefit through the CT (higher accuracy per

DOF) is already substantial for the 2D case and even more so as one goes to higher
dimensionalities. Furthermore, achieving the same (low) error as the full grid
solution with level ℓ⃗max is the best one could hope for in a CT simulation.
When comparing for a single maximum level ℓ⃗max—for instance, consider the

‘largest 2D advection setup’, which belongs to the set of the lowest blue points in
Figure 3.6—we observe that the error gap between the combined and full solution
can be reduced by a factor of ≈ 3 when using the mass-conserving functions in place
of the hierarchical hat function. This effect is observable across dimensionalities
and also holds for the Monte Carlo L1 and Lmax errors.
As predicted by theory, see Section 2.3, one can also observe that the higher

regularity of ψbo and ψhat lands the mass-conserving CT’s accuracy somewhere
between the standard hat function CT and the ideal case of the full grid [92, 137].

3.4.4. Influence of Recombination Time Step Lengths

In the previous subsection, Figure 3.6 also showed the resulting errors if there
are no intermediate recombinations (labelled ‘CT end only’). If no intermediate
recombinations are performed, then the asymptotic order of accuracy degrades

3. Multiscale Bases for Accuracy, Conservation, and Numerical Stability 51

approximately to the full grid solutions’ order of accuracy. Naturally, this poses
the question if there is any middle ground between combining only at the end and
combining after every single solver time step.

0.00010.0010.010.11

0.00631

0.01

0.0158

0.0251

0.0398

Combination Interval Length

∥u
CT
−u
ex
ac
t ∥ 2

∥u
ex
ac
t ∥ 2
(t
=

1)

Full Grid
CT end only
CT ψhat

CT ψfw

CT ψbo

𝒪(
p
length)

Figure 3.7.: Relative L2 error for different recombination interval lengths to reach
time t = 1. The time step in the advection solver is 1 × 10−4. ℓ⃗min is
(2, 2) and ℓ⃗max is (11, 11) for the CT solutions. The full grid solution is
computed at ℓ⃗max. The leftmost point here corresponds to the rightmost
point of ‘CT end only’ / ‘2D’ in Figure 3.6. The rightmost points here
correspond to the circled data points in Figure 3.6. (Figure first published
in [137])

Figure 3.7 investigates this question for the ‘largest’ 2d set-up with ℓ⃗min =
(2, 2), ℓ⃗max = (11, 11) (circled red in Figure 3.6). A significant error decrease can
be observed starting from 1 (no intermediate combination) to 0.1. Then, the error
approaches a constant level until at 1 × 10−4, recombination happens after every
solver step. This means that for this relatively smooth analytical solution with
constant advection, one could choose the recombination interval considerably larger
than the solver time step at a small increase in errors.
This—and also the square root behavior of the error—aligns with the numerical

analysis by Lastdrager [104] as discussed in [137].
It is important to note that Lastdrager [104] observed this quick error decay

only for regions of constant advection directions. Thus, the next sections cautiously
recombine after every solver time step to accommodate for the potentially turbulent
nature of Vlasov–Poisson solutions.

52 3.4. Conservation of Mass and Increased Accuracy for Advection in 2− 6D

3.5. Stabilizing Plasma Simulations: Vlasov–Poisson with SeLaLib

This section introduces the basic Semi-Lagrangian idea to solving the Vlasov–Poisson
equation on a grid—as implemented in the SeLaLib code, which proved to be well-
suited for CT simulations. Then, the results are evaluated for CT simulations of
two common plasma simulation benchmark problems: Landau damping and the
two-stream instability, both with electrons in a neutralizing background. To provide
a fair comparison between CT and full grid simulations, the setups are designed to
occupy a similar amount of main memory for the distribution function f for both.

3.5.1. Semi-Lagrangian Method for Vlasov–Poisson Equations

The Vlasov–Poisson system of equations for a single particle species—in our case,
electrons—reads

∂t f (x⃗ , v⃗, t)+ v⃗ ·∇ x⃗ f (x⃗ , v⃗, t)+
q
m

�
E⃗(x⃗ , t) + v⃗ × B⃗(x⃗ , t)

� ·∇v⃗ f (x⃗ , v⃗, t) = 0, (3.13)

and

−∆ x⃗φ(x⃗ , t) = 1−
∫

f (x⃗ , v⃗, t)dv⃗, E⃗(x⃗ , t) = −∇ x⃗φ(x⃗ , t), (3.14)

where q and m are the particle’s charge and mass. The electric and magnetic fields
are denoted by E⃗ and B⃗, respectively, and both x⃗ and v⃗ are three-dimensional.
Poisson’s equation describes the self-consistent fields for low-frequency phenomena.
Recall from the corresponding model pathway diagram in Figure 1.1: Self-consistent
means that there is a loop in the diagram and the equations depend on each other
at all times t.
The general semi-Lagrangian idea denotes that one ‘follows’ the characteristic

curves X , V along which the distribution function is constant:

f (x⃗ , v⃗, t) = f0(X⃗ (0; x⃗ , v⃗, t), V⃗ (0; x⃗ , v⃗, t)). (3.15)

f0 is the initial solution at time τ= 0. The solution of the characteristic curve starting
at (x⃗ , v⃗) at time τ is denoted by (X⃗ (τ; x⃗ , v⃗, t), V⃗ (τ; x⃗ , v⃗, t)) at some later time t. X
and V can be computed with the characteristic ordinary differential equations

dX⃗
dt
= V⃗ ,

dV⃗
dt
=

q
m

�
E⃗ + V⃗ × B⃗
�

. (3.16)

3. Multiscale Bases for Accuracy, Conservation, and Numerical Stability 53

Since the fields need to change self-consistently with the distribution function, the
difference t −τ cannot be arbitrarily long for the same constant values of B⃗ and E⃗.
Thus, there is an alternating iteration of solving the characteristic equations for the
current coordinates (x⃗ , v⃗, t) and then ‘looking into the past’ what the (interpolated)
value of f was at the location where the characteristic curve started at time τ. Here,
we use Lagrangian interpolation due to its data locality, but other interpolation
schemes are possible.
When using Cheng–Knorr splitting [21], the spatial and velocity advection steps

alternate, such that the advection coefficients are constant within each update and
the solution of the characteristic equations can be computed analytically.
The semi-Lagrangian method allows for time steps that are significantly larger

than in Eulerian methods, and, by design, it conserves the probability ‘mass’ of f
up to machine precision.
Details on the modeling, numerics, and scaling of the Vlasov–Poisson equation

with SeLaLib can be found in [94]. SeLaLib’s six-dimensional discretization is nested
in a suitable way for the CT. This makes SeLaLib a good solver for application within
the DisCoTec framework, which will be described in more detail in Chapter 4. For
here, we content ourselves with a thorough assessment of the numerical simulation
results, where a three-point Lagrange interpolation is used for the semi-Lagrangian
method.

3.5.2. Landau Damping with DisCoTec + SeLaLib

Landau damping describes the exponential damping of longitudinal waves in plas-
mas [103]. To study it, the Vlasov–Poisson system was initialized with

f0(x⃗ , v⃗) =

�
1+ ϵ

3∑
i=1

cos(kx i)

�
1

(2π)3/2
exp

�
−∥v⃗∥

2
2

2

�
(3.17)

on the domain [0, 2π
k]

3 ×R3 for k = 0.5.
The damping rate and the oscillation frequency in time can be approximated

by linear dispersion analysis. For the mode k = 0.5, the resulting damping rate is
ω≈ −0.1533. For small ϵ, e. g., ϵ = 0.01, the prediction matches the observations
well from the second oscillation onwards. Grid-based simulations incur the so-called
numerical recurrence after a certain time depending on the resolution of the velocity
grid [108]: A sudden growth in potential energy occurs at the recurrence time
T = 2π

k∆v with ∆v as the (minimal) resolution in velocity space.

54 3.5. Stabilizing Plasma Simulations: Vlasov–Poisson with SeLaLib

0 10 20 30 40 50 60 70 80

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

Simulation time t

Po
te
nt
ial
En
er
gy

1 2
∥φ
∥2

Full Grid
CT Hat

CT Biorthogonal
CT Full weighting

analytical damping rate:
exp (−t · 2 · 0.1533) · 6.5 × 10−4

Figure 3.8.: Landau Damping: Comparison between CT and full grid solution,
where the CT is allotted 5.4GiB and the full grid 5.5GiB for the distri-
bution function data structures. In the CT simulations, combination
takes place after every time step of ∆t = 0.01. The numerical recur-
rence for the full grid solution occurs at t ≈ 59.7, where it would be
expected. (Figure first published in [137])

It was possible to validate the quick decay of the hierarchical coefficients α for
finer-resolved spatial resolutions, such that the x⃗ levels are set to a relatively coarse
uniform resolution of ℓ x⃗ = 4, or 16 grid points, for this experiment.

Combination scheme for SeLaLib Landau damping
ℓ⃗min (4,4, 4,2, 2,2) # grids 64
ℓ⃗max (4,4, 4,8, 8,8) # finest grids 28
total FG #DOF 7.09 × 108 mem. finest grids 128MiB
total FG memory 5GiB #DOF FG at ℓ⃗max 6.87 × 1010

3. Multiscale Bases for Accuracy, Conservation, and Numerical Stability 55

Conclusively, the CT is effectively restricted to the three velocity components only,
where each of the levels ranges from 2 to 8 (alternatively, 4 to 256 grid points),
leading to 64 component grids in the CT. The pertaining data structures for the
sixty-four different f would take up a total of 5.28GiB. The CT is compared to a
single full grid simulation, which shares the same spatial resolution and has 57
points in each of the velocity directions. Its distribution function data structure
takes up 5.65GiB, providing a relatively fair comparison.
Figure 3.8 shows some clear deviations from the analytical damping rate for

all tested variants, which is likely due to the relatively low-order interpolation.
One would expect the numerical recurrence in the full grid solution at around
2π·57
0.5·12 ≈ 59.7, which can be observed in the figure. While no clear recurrence occurs
for the CT solutions, smaller jumps can be observed. This happens already very early
at around time 30 for the standard ψhat, which also displays negative energy values
and numerical instability quickly. However, the mass-conserving basis functions in
the CT exhibit the jumps at a time similar to the recurrence on the full grid solution.
One can conclude that the mass-conserving CT can capture the Landau damping
phenomenon accurately: The numerical recurrence effect is not at all determined by
the lowest velocity resolutions in the combination scheme, but the sparse grid points
appear to be sufficiently well-placed to capture the phenomenon almost as well as
the single full grid. Possibly, there could be an advantage for the CT if dimensional
adaptivity was used to better resolve the most important velocity directions, cf.
Section 2.3.2.

3.5.3. Two-Stream Instability with DisCoTec + SeLaLib

The two-stream plasma instability was excited in the DisCoTec + SeLaLib simulation
by setting the initial distribution function to

f0(x⃗ , v⃗) =

�
1+ ϵ

3∑
i=1

cos(0.2x i)

�
1

2(2π)3/2
·

�
exp

�
−(v1 − 2.4)2

2

�
+ exp

�
−(v1 + 2.4)2

2

��
exp

�
− v2

2 + v2
3

2

� (3.18)

on Ω =
�
0, 2π

0.2

�3 ×R3. The perturbation is set to ϵ = 0.001, and the potential energy
is expected to show an exponential increase with a given growth rate of 0.2258 (the
‘linear phase’ of the simulation) after some initial oscillations. After some simulation
time, nonlinear effects are bound to dominate and the electric energy will start to

56 3.5. Stabilizing Plasma Simulations: Vlasov–Poisson with SeLaLib

oscillate around a certain energy level, which denotes the nonlinear phase of the
simulation. The oscillations are an effect of plasma particles getting trapped in the
fields B⃗ and E⃗. The nonlinear phase of the instability simulation ideally displays
turbulent but quasi-stationary behavior and is of particular interest for simulating
controlled fusion plasmas, also for other types of plasma instabilities.
The initial condition (3.18) causes the two-stream instability to occur along the

first dimension while the other dimensions should be characterized by Landau
damping. When simulating the nonlinear phase, some commonly encountered
numerical errors would be too high oscillations or damping of the electric energy,
which was in fact a challenge in previous sparse grid approaches [95].
All simulations considered were run from t = 0 to t = 200 with a time step

of ∆t = 0.01. We consider a six-dimensional combination scheme with ℓ⃗min =
(3, 3, 3, 3, 3, 3) and ℓ⃗max = (6, 6, 6, 6, 6, 6) (84 component grids).

Combination scheme for SeLaLib two-stream instability
ℓ⃗min (3,3, 3,3, 3,3) # grids 84
ℓ⃗max (6,6, 6,6, 6,6) # finest grids 56
total FG #DOF 1.43 × 108 mem. finest grids 16MiB
total FG memory 1GiB #DOF FG at ℓ⃗max 6.87 × 1010

It has approximately 1.1GiB for the distribution function—the same amount of
memory is required by the full grid solution with N⃗ = (22, 22, 22, 24, 24, 24). Ad-
ditionally, we compare to a (rather expensive) finely-resolved full grid reference
simulation of level ℓ⃗max, which takes up 512GiB in memory for the plain f data.
Since no analytical solution can be given for the turbulent nonlinear phase, this
reference solution is considered as close to the ‘truth’. The CT simulations perform
the combination after each solver time step.
The resulting (combined) energy curves are displayed in Figure 3.9. While all

approaches capture the linear phase as expected, the ψhat CT simulation displays
deviating peaks early on and aborts at around t = 106 due to numerical instability.
This does not at all happen for the other simulations considered, which oscillate
around the reference energy level up to the end of the simulation. The finely-
resolved reference solution needs 512GiB and shows relatively low oscillations in
the electric energy. The low amplitude of oscillations is slightly better matched by
the mass-conserving CT solutions than by the full grid solution (green curve).

3. Multiscale Bases for Accuracy, Conservation, and Numerical Stability 57

40 60 80 100 120 140 160 180 200
10−1

100

101

Simulation time t

Po
te
nt
ial
En
er
gy

1 2
∥φ
∥2

CT Hat Full Grid
CT Biorthogonal Reference
CT Full weighting

Figure 3.9.: The electric energy in the (combined) two-stream instability simula-
tions. The CT simulations and the (green) full grid solution use up
≈ 1.1GiB for the distribution function.

40 60 80 100 120 140 160 180 200
10−1

100

101

Simulation time t

Po
te
nt
ial
En
er
gy

1 2
∥φ
∥2

Reference CT Hat
CT Biorthogonal CT Full weighting

Figure 3.10.: Potential energies on the coarsest component grid with ℓ⃗ = ℓ⃗min in
the two-stream instability scenario. (Figure first published in [137])

Looking at a single grid’s energy curves in Figure 3.10, it makes sense why the
ψhat CT simulation becomes unstable: The coarsest component grid’s energy curve
already shows large deviations from the reference solution during the linear phase
of the simulation, resulting in high oscillations right away. This component grid
never captures the behavior of the combined solution, in stark contrast to the mass-
conserving CT. Knowing this, it is not at all surprising to see the simulation with

58 3.5. Stabilizing Plasma Simulations: Vlasov–Poisson with SeLaLib

hierarchical hat functions become unstable; What appears more surprising is that
the combined energy in Figure 3.9 nicely matches the prediction up until t ≈ 70.
This, again, is the result of the CT’s error cancellation, cf. Section 2.3.1.
With the mass-conserving CT, the component grid solutions follow the reference

solution reasonably well and display energy levels close to their respective combined
solutions. One can observe a rather uniform oscillation of similar frequency with
a larger amplitude in the medium-resolution full grid solution compared to the
mass-conserving combination solutions. One may therefore evaluate it slightly
inferior to the ones obtained with a full weighting or a biorthogonal CT, at the same
amount of main memory spent.
From these figures, it can be inferred that the two expectable pitfalls—too high

oscillations and (artificial) damping of the electric energy—do not impede the
mass-conserving CT’s accuracy. However, when performing multiple solver steps
per combination step, even the mass-conserving CT would become unstable some
time into the nonlinear phase for a range of setups tested (different solver and
combination time steps). This matches the limitations discussed in Section 3.4.4, as
multiple solver time steps allow the advection direction to be changed within the
same combination time step. The problem may potentially be alleviated by adapting
the combination interval to the changes in the advection terms on the component
grids.
Coming back to the topic of conservation of mass in the (per-se conserving)

SeLaLib simulations, Figure 3.11 shows the mass trajectories of the combined
solutions. The largest deviation to the expected result (≈ 1 × 10−9) is introduced
by the initial interpolation. Otherwise, the mass for the combination with ψhat is
conserved up to a level of less than 1 × 10−9 prior to the instability occurring. For
ψbo and ψfw, the combined mass is conserved at least up to the output accuracy of
1 × 10−11. This is in close agreement with the result seen in Section 3.4.2.
Figure 3.12 shows the evolution of mass on the coarsest component grid, whose

electric energy was plotted in Figure 3.10. Like for the advection experiment, the
mass-conservation property ofψbo andψhat can be observed, whileψhat shows large
changes in mass on the coarsest component grid (more than 0.1 even at simulation
times t < 60 when the combined energy still looks reasonable and the combined
mass is still conserved up to 2 × 10−9). The oscillations for ψhat in Figure 3.11 in
the order of 1 × 10−10 can be attributed to numerical error accumulation as the
mass is ‘shifted’ between the 84 component grids. The combined mass remains at
this value until after time ≈ 94 where the values of the potential energy start to

3. Multiscale Bases for Accuracy, Conservation, and Numerical Stability 59

0 20 40 60 80 100 120 140 160 180 200

1.20 · 10−9

1.5 · 10−9

Simulation time t

Ab
so
lu
te
M
as
sD
iff
er
en
ce
|∆

m
|

(co
m
pa
re
d
to
an
aly
tic
al
m
as
s1
)

CT Hat
CT Biorthogonal
CT Full weighting

Figure 3.11.: Difference between the combined mass mct(t) =
∑
ℓ⃗∈ℐCT λℓ⃗ ·∫

fℓ⃗(x , t) d x and the analytical mass m = 1 over time in the two-
stream instability scenario. The curves of the two mass-conservig
functions exactly ovelap. The largest difference (≈ 1 × 10−9) is in-
troduced by the initial interpolation. Note the logarithmic scale for
the vertical axis. (Figure first published in [137])

0 20 40 60 80 100 120 140 160 180 200

1 · 10−1

1 · 10−5

1 · 10−9

Simulation time t

Ab
so
lu
te
M
as
sD
iff
er
en
ce
|∆

m
|

(co
m
pa
re
d
to
an
aly
tic
al
m
as
s1
)

CT Hat
CT Biorthogonal
CT Full weighting

Figure 3.12.: Difference between the mass on a single component grid mℓ⃗(t) with
ℓ⃗ = ℓ⃗min = (3, 3, 3, 3, 3, 3) and the analytical mass m = 1 over time
in the two-stream instability scenario. Note the logarithmic scale for
the vertical axis. (Figure first published in [137])

oscillate strongly. This matches the expectation that the error cancellation should
work better for a linear quantity such as mass than for the nonlinear quantity of the
potential energy (quadratic in f).

60 3.5. Stabilizing Plasma Simulations: Vlasov–Poisson with SeLaLib

This numerical plasma two-stream instability experiment hints that the ‘small
scale’ observation from Section 3.3.2 holds: The conservation of mass and the
stability of the simulation are two sides of the same coin. Both can be considered a
consequence of the regularity of the dual scaling function, cf. Section 2.1.2.

3.6. Practical Assessment of Standard and Mass-Conserving Basis
Functions

While the theoretical properties of the hierarchical hat basis were discussed in
Section 2.1.2, this section addresses the observations and the technical details in
the simulation experiments.

Conservation, Accuracy, Stability

The function spaces are the same for all considered basis representations—piecewise
linear functions—and all transforms are unique and lead to perfect reconstruction
(up to machine precision) if inverted. In fact, the combined sparse grid repre-
sentation f CT will be exactly the same after a single time step, regardless of the
hierarchical basis functions used. It was illustrated in Section 3.3 that the decom-
bination into the component grids is the critical point where the different basis
functions show their differences.
In particular, while the combined mass is conserved also for ψhat, cf. Figure 3.11,

mass conservation on the component grids is only asserted for ψbo and ψfw, cf.
Figures 3.5 and 3.12.
Furthermore, if the ‘true’ solution to a problem is not very regular, then the

mass-conserving basis functions can be expected to be more accurate than the
standard hat functions, cf. Section 2.1.2. This was observed in practice for the
advection experiment in Figure 3.6, where the approximated function is only in C0.
In this case, the sparse grid projection error of the final simulation solution could
be reduced by a factor of ≈ 3.
Finally, the stability of the simulation is directly related to the stability of the

multiscale bases. Like mentioned in Section 2.1.2, the lacking regularity of the dual
wavelet of ψhat—the Dirac delta distribution—leads to an unstable basis. This is
reflected in the DisCoTec + SeLaLib simulations becoming unstable with ψhat, cf.
Figures 3.8 and 3.9. Interestingly, the numerical instability is hinted at much earlier
from the quantities of interest on single component grids, cf. Figure 3.10, but due

3. Multiscale Bases for Accuracy, Conservation, and Numerical Stability 61

to the CT’s error cancellation property, the individual grids correct for each other
over long stretches of simulation time in the combined solution. Conversely, the
regularity of ψbo and ψfw, which are each other’s dual wavelets, leads to a stable
basis. Accordingly, the same simulations that became unstable with ψhat remain
stable with ψbo and ψfw.
This is an important observation, since numerical instability is a commonly

encountered problem in standard combination technique simulations, cf. [102,
172].

Computational Cost

The complexity of computing the basis transforms is 𝒪(N) in all cases, and no
extra memory needs to be allocated for the transform, as all computation can be
performed in-place. This can be seen from the coefficients in Section 2.1.1. The
coefficients result in (one or two) data sweeps per level along the hierarchization
dimension, illustrated by Figure 3.13.
However, the true computational cost of using the mass-conserving basis functions

in place of the standard hat functions depends on the parallelization: If the data
along the considered dimension is local to a process, then the mass-conserving basis
transforms can be expected to take approximately twice as long as the standard
hat function transforms—potentially much less if cache blocking [70] is used. But
if the data needs to be communicated between processes, ψhat has a significant
performance benefit: Due to its interpolating property, only 𝒪(log N) data needs to
be communicated between neighboring processes prior to computation [74]. For
ψbo and ψfw, the entire data may have to be communicated (in the case that the
minimum hierarchization level is 0), which poses a significant overhead. Maybe
even worse, this communication has to take place with all processors that hold
data along this particular data axis. (A run-time comparison for the different basis
functions is given in Appendix A.1, which reflects this behavior.)
An alternative would be to interlace computation with communication by ex-

changing the coefficients required from other processes after every level update
(i. e., after every loop iteration in Figures 3.13a to 3.13f respectively). While this
would reduce the overall communication volume to 𝒪(log2 N), the expected run
time due to the communication latencies would still be significant.
Overall, through these considerations one of the strengths of the CT approach

becomes apparent: There is a clear separation between the CT and the solver,
which means that the solver can be developed independently of any multiscale

62 3.6. Practical Assessment of Standard and Mass-Conserving Basis Functions

considerations. Vice versa, as long as the solver supports nested discretizations, the
CT can be used without any changes to the solver, and basis functions different from
ψhat can be used in a straightforward manner, such as to improve the conservation,
accuracy, and stability properties of the scheme.

3. Multiscale Bases for Accuracy, Conservation, and Numerical Stability 63

, i oddf ℓi−2 f ℓi−1 f ℓi f ℓi+1 f ℓi+2

f ℓi−1 f ℓi+1

= f ℓ−1
j = f ℓ−1

j+1αℓi−2 αℓi αℓi+2

+

·91
2 ·91

2·1g̃hat continue on
coarser level
ℓ← ℓ−1

i← j

(a) Hierarchical hat basis: For the hierar-
chization, new values on the coarser level
are identical to the previous ones.

f ℓ−1
j f ℓ−1

j+1αℓi−2 αℓi αℓi+2

f ℓi−2 f ℓi−1 f ℓi f ℓi+1 f ℓi+2 , i odd

+

·12 ·12·1

continue on
finer level
ℓ← ℓ+1

j← i

(b) Hierarchical hat basis: Coarser values are
kept, finer values are obtained by the sum
of interpolation and hierarchical surplus.

, i oddf ℓi−2 f ℓi−1 f ℓi f ℓi+1 f ℓi+2

f ℓi−1 f ℓi+1αℓi−2 αℓi αℓi+2

+

·91
2 ·91

2·1g̃bo

f ℓ−1
j f ℓ−1

j+1αℓi−2 αℓi αℓi+2

+

·14 ·14·1
+

·14 ·14·1

continue on
coarser level
ℓ← ℓ−1

i← j

(c) Biorthogonal basis: Hierarchical coeffi-
cients are calculated as before, but then
the scaling function coefficients are up-
dated, too.

f ℓ−1
j f ℓ−1

j+1αℓi−2 αℓi αℓi+2

f ℓi−2 f ℓi−1 f ℓi f ℓi+1 f ℓi+2 , i odd

+

·91
4 ·91

4·1
+

·91
4 ·91

4·1

+

·12 ·12·1 continue on
finer level
ℓ← ℓ+1

j← i

(d) Biorthogonal basis: The pattern of in-
verse signs for odd-numbered stencil po-
sitions compared to the hierarchization
is visible.

, i oddf ℓi−2 f ℓi−1 f ℓi f ℓi+1 f ℓi+2

f ℓ−1
j f ℓ−1

j+1f ℓi−2 f ℓi f ℓi+2

+

·14 ·14·12
+

·14 ·14·12h̃fw

f ℓ−1
j f ℓ−1

j+1αℓi−2 αℓi αℓi+2

+

·91
2 ·91

2·1

continue on
coarser level
ℓ← ℓ−1

i← j

(e) Full weighting basis: The filters are virtu-
ally the same as in the biorthogonal case,
but applied in reverse order.

f ℓ−1
j f ℓ−1

j+1αℓi−2 αℓi αℓi+2

f ℓi−2 f ℓi−1 f ℓi f ℓi+1 f ℓi+2 , i odd

+

·12 ·12·1

+

·91
2 ·91

2·2
+

·91
2 ·91

2·2 continue on
finer level
ℓ← ℓ+1

j← i

(f) Full weighting basis: One can observe the
‘lifting’ property, allowing to greedily com-
pute the transform in-place.

Figure 3.13.: Filters for the hierarchization and dehierarchization operations for
the different multiscale bases. The hierarchization (left column)
is described by Equations (2.14) and (2.15), the dehierarchization
(right column) is described by Equation (2.16). In Figures (c) to
(f), filters from Equations (2.18) and (2.19) that are not explicitly
depicted arise from the subsequent execution of the two lifting steps.
(Figure first published in [137])

64 3.6. Practical Assessment of Standard and Mass-Conserving Basis Functions

Ch
ap
te
r 4

High Performance Computing and
the DisCoTec Code

It is a well-established fact that the computational requirements for high-fidelity
controlled fusion simulations are enormous. High performance computing (HPC)
on massively parallel systems is currently the only way to deal with the necessary
memory and run time effort. For instance, both the DOE [20] and the ITER consor-
tium [107] intend to coordinate HPC efforts for controlled fusion energy generation.
And conversely, plasma simulations are one of the featured applications in the HPC
community’s ‘exascale roadmap’ [35].
The challenging memory requirements were already discussed in Chapter 1; This

chapter will investigate how they translate to the current HPC challenges and how
they are addressed in the DisCoTec framework, which is the basis for the simulations
presented in this thesis.

4.1. When Will We Achieve Exascale Computing?

For more than ten years, the high performance computing (HPC) community has
been working towards ‘exascale computing’ [16, 17, 35]. But as of yet, no single
simulation application code has publicly reported exascale performance. What
makes exascale and, more generally, HPC so notoriously difficult?
Typical modern HPC architectures consist of many compute nodes, each of which

contains several processors with shared memory, and may contain accelerators such
as GPUs [153]. In analogy to the analysis by Matsuoka et al. [110], one can define
‘exascale’ in three different ways, listed by increasing difficulty to attain:

65

1. exaop system refers to any computer theoretically capable of performing 1018

operations per second,

2. exaflop system refers to any computer capable of achieving over 1018 double-
precision floating-point operations (‘FP64’) per second (‘flop/s’) on the Linpack
benchmark, and

3. exascale system denotes any computer executing a scientific application with a
sustained performance of over 1 exaflop/s in FP64.

The Frontier system is a publicly funded machine that is reportedly the first exaflop
system as of 2022 [110]. But looking at the question of an exascale system, current
figures with the (more realistic than Linpack) HPCG benchmark are only in the one-
to two-digit petaflop range [153].
One of the reasons for this discrepancy is that the architectures are very complex,

making it a challenging task to develop efficient codes. After all, the benefits of
parallelization, vectorization, cache hierarchies, and other optimizations [70] are
only reaped if they can be applied to the algorithm at hand, and even then very
specialized skills are required to develop and maintain an efficient program.
The other main reason for the discrepancy between exaflop and exascale is that

for real-world applications, the run time of the program will be dominated by
memory access and data communication times, not by floating-point operations [9].
Currently, the largest machines rely heavily on GPU accelerators [153]. This makes
the imbalance between communication and computation even more severe, because
GPUs provide a lot of compute, but the memory link to the node’s main CPU memory
is relatively slow. As a consequence, in programming for these systems, it is vital
to develop algorithms and codes with a special focus on data flow [174], avoiding
unnecessary data movement and communication wherever possible.

4.2. Related Work: High Performance Computing for Multiscale PDE
Solvers and on Multiple Systems

Besides DisCoTec and its predecessor versions [74, 75, 77, 122], there are only
few codes dedicated to the sparse grid combination technique. In particular, while
the SG++ suite [124, 158] that DisCoTec originated from does provide func-
tionality for combination technique methods, it has a stronger focus on adaptive
optimization [162], uncertainty quantification [142], and machine learning appli-
cations [146] with the hierarchical sparse grid representation.

66
4.2. Related Work: High Performance Computing for Multiscale PDE Solvers and on Multiple

Systems

The Sparse Grids Matlab Kit [126, 127] by Piazzola and Tamellini is targeted
towards teaching and uncertainty quantification with the CT. It provides a user-
friendly MATLAB interface for the CT, and also dimensional adaptivity [53] for
nested and non-nested sequences of component grid collocation points. The code’s
parallelism is limited to shared memory only, as it does not target HPC applications.
The same holds true for the sparseSpACE code [120], which provides an implemen-
tation for automatic spatial adaptivity in the CT for integration [121], interpolation,
uncertainty quantification, machine learning methods, and PDE solvers.
Both the hierarchical construction and the combination technique have been

successfully used for denoising massively parallel Particle-In-Cell solvers [31, 115,
145].
To encounter PDE solvers with similarity to DisCoTec’s application, one has to look

at the wider scope of multiscale methods. In this realm, there are two approaches
that should be highlighted: Multigrid and wavelet solvers. As a multigrid example,
the solver HyTeG is used in the TerraNeo project [7, 88, 159] for earth mantle
convection problems, and uses adaptively refined three-dimensional tetrahedral
meshes for discretization. To the author’s best knowledge, TerraNeo also holds the
record for the mesh-based simulation with the highest number of DOF to date with
1.1 × 1013 DOF [7, 159].
For solvers directly based on (lifting) wavelets, the binary black hole merger

simulations using Dendro-GR by Fernando et al. [45, 46] are a good HPC example.
Notably, Dendro-GR uses interpolets of orders up to eight for a finite-difference
solution to the Einstein equations. These interpolets live on octree structures (which
is somewhat contradictory to the fact that ‘sparse grid’ is mentioned [46, p.4].
Supposedly, the authors of Dendro-GR were not aware of sparse grid terminology).
Using this approach, Dendro-GR was demonstrated to scale simulations to up to
229,376 cores, and also employ GPGPU performance [44].
The wavelet solvers mentioned in Section 3.1 exhibit only limited parallelism,

and are therefore not considered here.
In a spirit similar to the widely-distributed CT, which is discussed in Section 4.5,

the HPC community has been exploring various approaches for coupling multiple
systems into a single meta-system (‘metacomputing’ or ‘grid computing’) [48].
These approaches typically require a tight coupling between systems. However, this
has nowadays become impossible to provide for publicly funded HPC infrastructure

4. High Performance Computing and the DisCoTec Code 67

because of (justified!) security concerns. But many of the approaches developed for
grid computing have found their way into modern—typically proprietary—cloud
infrastructures after all.
In 2014, the terabit demonstrator project [13] showcased that high bandwidths

between publicly funded systems are achievable, if sufficient investment is provided
by compute centers and infrastructure providers.
One metacomputing approach particularly related to the widely-distributed CT

is PACX-MPI [8]. Its aim was to provide a ‘normal’ MPI interface for applications
that are distributed across multiple systems. Within the run time, communication
daemons manage application startup, MPI communication, and, if necessary, data
conversion between the different systems. Operations within the same system would
be mapped to the native MPI library at little to no overhead. Operations across
systems would be translated into PACX-MPI requests, which are then transferred
over the external network to the receiving daemon on the target system, where
they are translated back into native MPI operations. This is very similar to the
TCP variant of the widely-distributed CT. However, PACX-MPI requires direct access
via open network ports between the systems, which is typically blocked nowadays
because of the aforementioned increased security requirements—the same ones
that also pose a challenge for the widely-distributed CT.

4.3. DisCoTec Software Architecture and Parallelism

The framework DisCoTec [151] was originally derived by Heene [74, 75] from
the sparse grid toolbox SG++ [124, 158]. Since then, it has grown into its own
MPI-based [113] highly parallel framework for combination technique simulations.
It was open-sourced in 2019 under the GNU Lesser General Public License [49].
The acronym DisCoTec for the open-source code stands for distributed combination
technique1. To use a PDE solver with DisCoTec, the solver needs to expose an
interface to pass the MPI communicator to the solver (to allow for multiple solver
instances running at the same time); Additionally, it has to provide functions to
trigger initialization and time stepping of the respective instance. All data exchange
between the component simulation instances is handled by DisCoTec. DisCoTec
assigns ranks to be worker processes, and (optionally) one rank to be the manager
process. For the workers, DisCoTec employs two modes of parallelization: first, the

1Naming credit goes to Michael Obersteiner.

68 4.3. DisCoTec Software Architecture and Parallelism

domain-decomposition based Cartesian parallelism provided by the solver itself,
and second, the additional parallelism enabled by the CT’s independent grid time
steps.

. . .

pg2

. . .

pg1
. . .

manager

more
pgs

larger
pgs

Figure 4.1.: DisCoTec’s MPI communication set-up: Each black square denotes an
MPI rank. Ranks are bundled into process groups pgi and process
groups are collectively assigned tasks, i. e., component grids and the
pertaining solver operators. We have traditional parallelism based on
Cartesian domain decomposition within the process groups, and the
CT’s added parallelism between the process groups. The manager rank
is optional.

Each component grid is typically distributed among many processes by Cartesian
domain decomposition, which together form a process group pgi. And vice versa,
every process group will typically have multiple component grids to work on, which
allows for load balancing on the level of component grids [76, 135], as illustrated
by Figure 4.2. Thus, the number of processes in a given simulation can be increased
either by making the process groups larger, or by adding more process groups (cf.
extending to the bottom or right in Figure 4.1). In the following, the number of
process groups is denoted ng , and the number of processes per group is denoted np.

4. High Performance Computing and the DisCoTec Code 69

t

pg1

pg2

pg3

. . .

. . .

. . .

run combine

Figure 4.2.: Schematic timeline of DisCoTec time-stepping: The component grids
assigned to the process groups perform their solver time steps in paral-
lel, but may take varying amounts of time to complete their time step.
This can lead to load imbalance, since the subsequent combination
step implicitly synchronizes between the process groups.

Over the course of the presented research, DisCoTec was developed further.
A representative list of contributions is given towards the end of this chapter in
Section 4.7.

4.4. Communication Schemes and Communication Volumes

Figure 4.1 shows the distribution of MPI ranks in DisCoTec. Each process group
shares a set of component grids, together with functions and data structures to
perform the time step updates. These tasks typically link to the (Vlasov) solver im-
plementation. All of the solver’s MPI communication—such as ghost layer exchange
and computation of quantities of interest—happens within the process group only
(vertically in Figure 4.1).
Within the process group, the same ‘traditional’ Cartesian domain decomposition

is used as in the structured grid solver. The sparse grid data present within an MPI
rank also covers the same Cartesian subdomain of Ω. This can pose a load-balancing
problem: Note that the j-direction coordinates present on ℓminj will be far ‘heavier’
in terms of DOF than those only present in higher levels. This is a consequence of
the sparse grid construction [162, p. 2.4.1]. If one-sided boundaries are used (as
is suitable for periodic boundary conditions), one can achieve balanced numbers
of DOF between the ranks of the process group by using powers of two as the
process group size np. Then, the maximum process count in each dimension j is
given by 2ℓ

min
j (the minimum number of grid points in that dimension), and the total

70 4.4. Communication Schemes and Communication Volumes

rank count per group may be up to np
max = 2|ℓ⃗min|1. If no boundary points or both

boundary points are used per dimension, the load balancing within the process
group becomes severely more challenging, which is another reason why one-sided
boundary points are used in Sections 5.4.1, 5.4.2 and 5.5.
For the remainder of this section, it will be discussed how exactly the DisCoTec

implementation uses MPI communication for the different steps in the time-stepping
combination, as outlined in Algorithm 2.1.
Initialization and solver time step updates can be performed embarrassingly

parallel between the process groups; If a manager rank is present, it can be used
to achieve dynamic load balancing based on the run time of the first solver time
step [76, 135].
The default rank placement is designed to put ranks of the process groups close to

each other, to minimize the communication times for the (typically more run-time
intense) within-group vertical communication. This means that the first np ranks,
which form the first process group, are placed close to each other by starting to fill
the first, second,. . . allocated node, then the second process group starts, and so on.
Since the combination needs to take place in the hierarchical basis representation,

all full grids are hierarchized individually, still through vertical communication
in Figure 4.1, within the process group. After hierarchization and collection of
weighted values according to Equation (2.26) in the sparse grid data structure,
the data needs to be communicated horizontally to be all-reduced between the
process groups. After this, the sparse grid data can be scattered back to the tasks
that depend on the respective subspace, and dehierarchization takes place, before
the next time step continues the progression of simulation time. Algorithm 4.1
illustrates this by expanding upon Algorithm 2.1 and adding arrows (↔ and ↕) to
denote horizontal and vertical communication, respectively.
Process groups are the main tool how DisCoTec avoids global communication

and synchronization: All communication has to take place in either of the direc-
tions, vertical or horizontal, but never through MPI_COMM_WORLD. In addition to
MPI’s distributed-memory parallelism [113], DisCoTec can employ shared-memory
parallelism with OpenMP [123], where the number of OpenMP threads per rank
is denoted nt . This parallelism can be leveraged if the structured grid solver uses
OpenMP as well. Note that trading MPI ranks for higher numbers of OpenMP threads
is not necessarily more performant and can lead to undesired cache effects, as will
be discussed in Section 5.4.

4. High Performance Computing and the DisCoTec Code 71

Algorithm 4.1 Time-Stepping CT
1: procedure TimeSteppingCT(ℐCT, ℐSG)
2: for t ← 0, Nsteps do

3: for all ℓ⃗ ∈ ℐCT do
4: solve ℓ⃗ ▷ Update component grids from time step t to t + 1 ↕
5: end for

run

6: for all ℓ⃗ ∈ ℐCT do
7: hierarchize ℓ⃗ ▷ Basis transform: nodal→ hierarchical ↕
8: end for

9: Reduce(ℐCT, ℐSG)
▷ Reduce hierarchical coefficients to sparse grid with Equation (2.26) ↔

10: Scatter(ℐCT, ℐSG)
▷ Scatter hierarchical coefficients to component grids ↔

11: for all ℓ⃗ ∈ ℐCT do
12: dehierarchize ℓ⃗ ▷ Basis transform: hierarchical→ nodal ↕
13: end for

combine

14: end for
15: end procedure

The DisCoTec communication for the vertical (de)hierarchization steps for hier-
archical hat functions was extensively discussed by Heene [74, section 3.3]. For
the horizontal reduction operations between the process groups, Hupp et al. [85,
87] investigated data sizes and scaling behavior. They, however, assumed that the
component grids in the combination scheme are not distributed, but are held by a
single node only, and conversely, that each node would only hold a single component
grid. Still, the analysis is useful for the current, more distributed setting, and this
thesis uses the same or similar notation as Hupp et al. [85] to discuss the data
volumes in the reduction step:

• Hℓ⃗: the (subspace) grid data structure corresponding to the hierarchical incre-
ment space Wℓ⃗. Typically, this means a vector of hierarchical coefficients α.

72 4.4. Communication Schemes and Communication Volumes

• Cℓ⃗: the (component) full grid data structure used to represent the anisotropic
full grid space V ℓ⃗. If only a subset of the data corresponding to a hierarchical
subspace ℓ⃗′ is meant, it is denoted by the index notation Cℓ⃗[ℓ⃗

′
].

• SGℐSG: the grid corresponding to the sparse grid space defined by the hierar-
chical index set ℐSG.

Then,
��Cℓ⃗
�� is the number of grid points in the component grid,

��Hℓ⃗
�� is the number

of grid points in the hierarchical grid, and the respective number of component grids
and subspaces in the combination scheme is given by

��ℐCT
�� and
��ℐSG
��, respectively

(see Sections 2.2 and 2.3 for the definitions of the index sets). The set of component
grids CG(Hℓ⃗) that contain the hierarchical space Wℓ⃗ is given by all component grids
with equal or higher level [85]:

CG(Hℓ⃗) :=
¦

C
ℓ⃗
′∀ℓ⃗′ ∈ ℐCT : Hℓ⃗ ⊆ Cℓ⃗

©
=
¦

C
ℓ⃗
′∀ℓ⃗′ ∈ ℐCT : ℓ⃗

′ ≥ ℓ⃗
©

. (4.1)

The notation generally assumes the vector comparisons to be true iff they are true
for each element, for instance

ℓ⃗
′ ≥ ℓ⃗ := ∀ j = 1 . . . d : ℓ′j ≥ ℓ j. (4.2)

The sparse grid, on the other hand, consists of the union of all occurring hierar-
chical spaces

SGℐSG =
⋃
ℓ⃗∈ℐSG

Hℓ⃗, with ℐSG :=
¦
ℓ⃗
′ ∈ ℐCT : H

ℓ⃗
′ ̸= ;
©

. (4.3)

The sparse grid index set will be downward closed by construction, i. e.,

∀ℓ⃗ ∈ ℐSG : ℓ⃗
′ ≤ ℓ⃗ =⇒ ℓ⃗

′ ∈ ℐSG, (4.4)

and one can denote the number of DOF in the sparse grid by |SGℐSG |.

4. High Performance Computing and the DisCoTec Code 73

For a set of component grid levels A⊆ ℐCT, the grid points shared with all other
levels in the combination scheme ℐCT \A can be computed by finding all hierarchical
spaces that are present in A, but not A alone:

sharedG(A) :=
⋃

ℓ⃗
′∈A

C
ℓ⃗
′ ∩
⋃

ℓ⃗
′∈(ℐCT\A)

C
ℓ⃗
′ =
⋃

Hℓ⃗∈ℐSG:

CG(Hℓ⃗)∩{Cℓ⃗′∀ℓ⃗
′∈A}̸=;,

CG(Hℓ⃗)⊈{Cℓ⃗′∀ℓ⃗′∈A}

Hℓ⃗. (4.5)

For across-group parallelism, this is the minimum amount of data that has to be
communicated for a process group holding a subset A of the combination scheme.
The minimum data volume in bytes is generally proportional to |sharedG(A)|, and
depends on the exact assignment of the component grids to process groups. What
exactly constitutes a ‘good’ or ‘bad’ assignment will be discussed in Section 4.6.
There are four reduction schemes currently implemented in DisCoTec, the first

two of which closely resemble the ones in [85, 87]. However, there are differences:
Since DisCoTec uses distributed-memory parallelism, the implementation needs to
differ from the original description, and MPI as well as main memory limitations
come into play. For instance, Hupp et al. [85] assume a subspace-wise reduction,
in which the reduce buffer is allocated, filled, and reduced for each subspace
separately. This becomes unfeasible as the number of subspaces becomes very
high, as it would imply too many calls to MPI library functions. Attempting to
address this with concurrent reductions leads to erroneous behavior, since for
MPI_Allreduce or MPI_Iallreduce, the ordering of messages is not guaranteed
for the same communicator (the—even more unfeasible—alternative would be to
provide separate communicators for every subspace). Conclusively, DisCoTec stores
the sparse grid data as a sequential vector of accumulated hierarchical values α,
which is indexed by the level ℓ⃗ that each sequence represents. A practical feature
is that the allreduce operations can be chunked to lower the memory footprint—
without chunking, the memory allocated for the buffer may have to be at least
doubled in size for the reduction operation. DisCoTec further avoids the use of
the non-blocking MPI_Iallreduce operation, since unnecessarily large temporary
allocations were observed for various MPI implementations, cf. Appendix A.2.
However, it will make sense to revisit this decision once the commonly-used MPI
implementations have improved in this regard, or for settings where memory usage
is not a concern.

74 4.4. Communication Schemes and Communication Volumes

One optimization mentioned in [85] is also commonly used in DisCoTec: The
highest diagonal of the sparse grid, i. e., the set of finest-resolved hierarchical spaces,
can always be omitted from the reduction operation, since they are relevant for a
single full grid only (|CG(Hℓ⃗)|= 1) and need not be reduced at all.
The four reduction schemes currently available in DisCoTec are briefly reviewed

in the following.

4.4.1. Sparse Grid Reduce

The sparse grid reduce algorithm performs a maximum reduction at the beginning
of the program to determine the sizes of the different subspaces Hℓ⃗. Each process
group then allocates those space sizes, regardless of whether they are actually
needed by the group. This (potentially very long) indexed vector of hierarchical
coefficients is allreduced in every combination step, in a parameterizable chunk size.
Algorithm 4.2 gives an overview of the algorithm in pseudocode.
Algorithm 4.2 Sparse Grid Reduce Algorithm
1: procedure SGReduce(ℐCT, ℐSG)

2: for all ℓ⃗′ ∈ ℐSG do
3: H

ℓ⃗
′ = 0⃗

4: end for
5: for all ℓ⃗ ∈ ℐCT do
6: for all ℓ⃗′ ∈ ℐSG do
7: if Cℓ⃗ ∈ CG(H

ℓ⃗
′) then

8: H
ℓ⃗
′ += cc

ℓ⃗
· Cℓ⃗[ℓ⃗

′
] ▷ Locally reduce hierarchical coefficients

9: end if
10: end for
11: end for

LocalReduce

12: AllReduceng
(SGℐSG) ▷ Reduce all hierarchical coefficients across all groups

13: for all ℓ⃗ ∈ ℐCT do
14: for all ℓ⃗′ ∈ ℐSG do
15: if Cℓ⃗ ∈ CG(H

ℓ⃗
′) then

16: Cℓ⃗[ℓ⃗
′
] = H

ℓ⃗
′ ▷ Scatter hierarchical coefficients

17: end if
18: end for
19: end for

LocalScatter

20: end procedure

4. High Performance Computing and the DisCoTec Code 75

Of all the algorithms presented here, this is the most straightforward one to model,
as the communication volume is given by |SGℐSG |

np
, independent of which component

grid is computed by which group. The transfer time in a latency-dominated setting
(assuming infinite bandwidth) is in the order of 𝒪(⌈ |SGℐSG |

npsc
⌉ · log ng), where sc is the

chunk size and ng is the number of process groups.

4.4.2. Subspace Reduce

The subspace reduce algorithm is in some ways the opposite of the sparse grid reduce
algorithm: Only the subspaces Hℓ⃗ that are actually used by the group are allocated.
To organize the transfer, the group needs to know which subspaces are needed by
which other groups. Therefore, a binary-or reduction is performed on an auxiliary
vector to determine the ownership of the subspaces, where each group—with group
number i—sets the i-th bit of entry k to 1 if it needs the subspace k, and to 0
otherwise. Accordingly, the numbers in the resulting vector can be used to create
communicators for the groups that need the same subspaces; The same number in
the vector denotes that it is the same subset of groups 𝒮. These communicators are
then used to perform the allreduce operations in the combination step, as stated in
Algorithm 4.3.
Algorithm 4.3 Subspace Reduce Algorithm
1: procedure SubspaceReduce(ℐCT, ℐSG)
2: LocalReduce(ℐCT,ℐSG)
3: for all 𝒮 do
4: for all ℓ⃗′ shared by the groups in 𝒮 do
5: H

ℓ⃗
′ += cc

ℓ⃗
·Cℓ⃗[ℓ⃗

′
] ▷ Reduce hierarchical coefficients across groups in 𝒮

6: end for
7: end for
8: LocalScatter(ℐCT,ℐSG)
9: end procedure

The communication volume will be optimal for each group, equal to |sharedG(A)|
np

,
but the resulting communication time depends heavily on the assignment of com-
ponent grids to process groups. It can potentially be reduced by reordering the
communicators such that disjoint subsets of the process groups can communicate
concurrently [86].

76 4.4. Communication Schemes and Communication Volumes

At this stage, the inherent drawback of this algorithm becomes apparent: The
potential number of communicators is in the order of 𝒪(np ·2ng), which is infeasible
for large numbers of groups, since each communicator will require some main
memory. As of 2011, this memory footprint could be as high as 20% of the system
memory for 32 communicators, and at the same time, the number of communicators
per program was limited to 8192 [6]. Although modern MPI implementations
allow for more communicators and also may require less memory per communicator,
the impact on the memory footprint of the program is still significant. It becomes
a limiting factor for the number of groups, even with very ‘good’ assignments
of component grids to process groups. As a consequence, this algorithm is not
employed for the experiments in this thesis, but it may be of interest for settings
with lower rank counts, and in particular with lower group counts.

4.4.3. Outgroup Sparse Grid Reduce

The outgroup sparse grid reduce algorithm was designed to strike a balance between
the two previous algorithms: using only one reduction communicator while avoiding
the unnecessary communication of subspaces. Its name is loosely inspired by the
sociological concept of outgrouping [155]: Each group tries to keep outwards
communication to a minimum, but if data must be communicated, the other groups
are not distinguished and the data is shared with all other groups equally.
To achieve this, the subspace ownership is determined with the same bitwise-or

reduction as in subspace reduce. But instead of creating a communicator for each
subset of groups, each process only determines if a subspace is present on more
than one group. If it is, the subspace needs to be allocated on all groups. In addition,
each group allocates the data that is only needed by itself (the ‘ingroup’ data). The
set of ‘outgroup’ hierarchical grids is denoted outgroupG, and can be more formally
defined as

outgroupG :=
⋃

i∈1,...,ng

sharedG(Ai), (4.6)

where the set of component grid levels Ai is assigned to group number i.
The resulting reduction procedure is summarized as Algorithm 4.4.
The ‘ingroup’ part of the data SGℐSG\outgroupG does not need to be communicated

to the other groups, but it is still allocated on the single group to allow for reductions
of data on hierarchical subspaces relevant to this group alone.

4. High Performance Computing and the DisCoTec Code 77

Algorithm 4.4 Outgroup Sparse Grid Reduce Algorithm
1: procedure OutgroupSGReduce(ℐCT, ℐSG)
2: LocalReduceOSGR(ℐCT,ℐSG)
3: for all H

ℓ⃗
′ ∈ outgroupG do

4: H
ℓ⃗
′ += cc

ℓ⃗
· Cℓ⃗[ℓ⃗

′
]

▷ Reduce hierarchical coefficients across all groups, some may still be 0
5: end for
6: LocalScatter(ℐCT,ℐSG)
7: end procedure

The allocated and communicated data sizes, again, depend heavily on the assign-
ment of component grids to process groups, but will be somewhere between the
sizes of the sparse grid reduce and the subspace reduce algorithm. This is illustrated
by two notable corner cases. First, in the case of two process groups, outgroup
sparse grid reduce will be equivalent to subspace reduce for the same component
grid assignment. Second, if the assignment of component grids to process groups
is so ‘bad’ that no group has ingroup subspaces—for instance because the main
diagonal component grids are distributed in a round-robin fashion—outgroup sparse
grid reduce will be equivalent to sparse grid reduce.

4.4.4. Chunked Outgroup Sparse Grid Reduce

When using DisCoTec, some previous publications [119, 138] assumed the necessity
of allocating the whole sparse grid at once for the reduction operation, which
imposed a considerable memory requirement for larger-scale scenarios. However,
looking closely at the data dependencies, this is not strictly necessary. Instead of
allocating all the hierarchical subspace data H ∈ SGℐSG at once, it is possible to work
on partitions ℋ of the sparse grid SGℐSG. Only a subset ℋk of subspaces Hℓ⃗ needs
to be allocated at a given time. In DisCoTec, the maximum size sccan be passed
as a parameter (in MiB per thread): |ℋk| ≤ sc · nt (nt is the number of OpenMP
threads per MPI rank). Although it is possible to use smaller chunk sizes for the
across-group allreduce than for partitioning into {ℋ}, one can assume the same
chunk size for both.
When using outgroup sparse grid reduce, the subspace partitions ℋ are sorted

into either outgroup or ingroup subsets. For the ingroup subsets {ℋ}ingroup, the
allreduce operation is omitted, as indicated in Algorithm 4.5.

78 4.4. Communication Schemes and Communication Volumes

Algorithm 4.5 Chunked Outgroup Sparse Grid Reduce Algorithm
1: procedure ChunkedOutgroupSGReduce(ℐCT, ℐSG)
2: for all ℋk do
3: for all H

ℓ⃗
′ ∈ℋk do

4: H
ℓ⃗
′ = 0⃗

5: end for
6: for all ℓ⃗ ∈ ℐCT do
7: for all H

ℓ⃗
′ ∈ℋk do

8: if Cℓ⃗ ∈ CG(H
ℓ⃗
′) then

9: H
ℓ⃗
′ += cc

ℓ⃗
· Cℓ⃗[ℓ⃗

′
]

10: end if
11: end for
12: end for
13: if ℋk /∈ {ℋ}ingroup then
14: AllReduceng

(ℋk) ▷ Reduce hierarchical coefficients across groups
15: end if
16: for all ℓ⃗ ∈ ℐCT do
17: for all H

ℓ⃗
′ ∈ℋk do

18: if Cℓ⃗ ∈ CG(H
ℓ⃗
′) then

19: Cℓ⃗[ℓ⃗
′
] = H

ℓ⃗
′

20: end if
21: end for
22: end for
23: end for
24: end procedure

Sometimes, (some of) the hierarchical coefficients α need to be aggregated on
some ranks, for instance for file-based combination (cf. Section 4.5.3), or to analyze
the hierarchical surplusses in the context of adaptivity [119]. This is possible by
aggregating the data in a separate sparse grid data structure (the ‘extra’ sparse
grid), which of course comes at a certain cost in memory consumption on these MPI
ranks.
Conclusively, chunked outgroup sparse grid reduce allows for a parameterizable

memory overhead in the whole reduction operation. For this reason, it was used for
the experiments in Section 5.4.

4. High Performance Computing and the DisCoTec Code 79

4.5. Connecting Two HPC Systems

As mentioned in the previous sections, the ‘embarrassing’ parallelism of the sparse
grid combination technique’s PDE solver steps [59] can be used well for process
group parallelism, which is added to the traditional parallelism based on domain
decomposition. The concept can be taken one step further, as it allows us to distribute
the process groups even across different HPC compute systems. This can enable
simulations at scales that would otherwise be impossible to perform in the memory
of a single HPC system.
One may then call it a ‘widely-distributed’ sparse grid combination technique sim-

ulation, first introduced in [132], with two machines computing a subset of the
combination scheme ℐCT at the same, synchronous, time. Then, the reduction oper-
ations outlined in Section 4.4 can be applied in a two-stage process: first to process
groups, and then to the different systems. This means that first, a system-local
reduction will take place, after which the results are exchanged between the systems.
The remote and local sparse grid coefficients are further reduced, and scattered
back to the process groups to complete the reduction operation. Due to the CT’s
multiscale approach, the data volume that needs to be exchanged between systems
is always relatively low compared to the number of (full-grid) DOF that are held
in memory on the systems. Depending on the size of the combination scheme
and the assignment to systems, the SubspaceReduce and OutgroupSGReduce
variants (which are the same for the case of two systems) will lead to even lower
transfer volumes, to the point where the cost of transfer can become tolerable for
synchronous widely-distributed simulations.
The more recent, file-exchange based approach was presented in [138], which

along with [132] forms the basis for this section. While the author of this thesis
contributed most to the papers, she would like to highlight the contributions by
Marcel Hurler and Alexander Van Craen in the design and implementation of the
TCP- and UFTP-based protocols, respectively.
It is worth noting that the loose coupling enabled by the sparse grid representation

is dramatically cheaper than a traditional domain-decomposition based approach: If
all the ghost layer information for a finely-resolved partitioned higher-dimensional
simulation had to be communicated across the internet, the exchange would take
prohibitively long. The single-system CT alternative—writing all intermediate full
grid data to file after every solver update and reading it back in for combination—
would also be too slow to be practical.

80 4.5. Connecting Two HPC Systems

4.5.1. Added Technical Challenges on Large-Scale Systems

The DisCoTec approach to widely-distributed simulations tries to be as platform-
agnostic as possible, and to use the same code base for all systems—even if different
MPI implementations, file systems, and libraries are used on the different systems.
DisCoTec is started on each HPC system separately, which means that the job start
synchronization and remote data connection need to be organized independently
of the program. However, vice versa, if the batch job synchronization and data
transfer can be established for a pair of HPC systems, then it is possible to use the
widely-distributed CT with DisCoTec.
In terms of the data transfer, HPC systems are particularly challenging due to high

security standards. Typically, the command line access via ssh is limited to some
specific IP addresses, and may require additional steps such as passwords or two-
factor authentication. Often times, the compute nodes themselves will have either
a low-bandwidth connection to the outside world (like HAWK), or no connection at
all (like SuperMUC-NG). Then, they can only be accessed through the login nodes.
For ssh tunnels through the login nodes, the systems’ firewalls may restrict the
direction in which tunnels can be opened and connections can be set up. Fortunately,
there are established methods of file transfer between some systems, which avoids
talking to the compute nodes directly.
The main challenge, however, remains the joint availability of two HPC systems.

For the tests presented in [138] and Section 5.5, queue reservations were used which
the HPC centers granted specifically for the experiments. This poses a substantial
overhead, but may be worthwhile nonetheless for extreme-scale simulations (which
are more likely to be granted during low-occupancy times, such as winter holidays).
One can also think of setups with lower organizational effort, such as computing a big
part of the combination scenario on a publicly funded machine and complementing
the missing part on a commercial cloud system as soon as the larger job starts.

4.5.2. Serial Sparse Grid Data Exchange (Through TCP)

The initial approach to connecting two DisCoTec instances was to use a TCP con-
nection between the two systems. To this end, a chain of ssh tunnels needs to
be established from a trusted machine (typically with registered IP address) to
connect a broker process to the two DisCoTec manager processes [132]. For the
widely-distributed reduction part, we select one of the process groups, pgt l , which
will be responsible for collecting the local data, sending it to the manager rank,

4. High Performance Computing and the DisCoTec Code 81

System A System Bpg1pg2

. . .

pg1 pg2

. . .manager
A

manager
Bbroker

InternetInternal Network Internal Network

Figure 4.3.: Rank placement, cf. Figure 4.1, and TCP communication set up with
two DisCoTec instances distributed over two HPC systems: Each part
of the sparse grid is sequentially exchanged both ways through the
broker process and the two manager ranks. In this figure, the first
group is selected as the communicating group, or pgt l = pg1. Within
the systems regular MPI communication is used, and between the
systems the data is sent through TCP sockets.

receiving and broadcasting the result back to the process groups. The manager rank
on each system will receive the domain-decomposed sparse grid chunk from one
of the ranks in pgt l at a time, and either send it to the other system through the
broker, or perform the reduction and send the result back to the other system (again,
through the broker). The reduced results are then given back to the respective
rank of pgt l , and the reduction can continue for the next rank in the process group.
Figure 4.3 illustrates the communication pattern for one of the sparse grid chunks.
This algorithm ensures that no rank will ever have to hold more than twice the size
of a sparse grid chunk in memory.
There are some drawbacks to this approach. Like all connections through the

internet, the connection may be of varying quality, since the resources are shared
with all other internet users. More specifically, the setup of chained ssh tunnels
is tedious and results in relatively volatile connections. Also, the data transfer is
sequential—the parallelism in the code cannot be used to speed up the transfer of
data. Furthermore, wrapping a TCP protocol in an ssh tunnel may lead to adverse
effects on the transfer speed, as the inner and outer connection will have mismatched
parameters [111]. All these factors contribute to transfer speeds below what one
would wish for in an HPC setting.

82 4.5. Connecting Two HPC Systems

4.5.3. File-Based Sparse Grid Data Exchange (Through UFTP)

Another possible data exchange mode is file transfer. To realize it, it is necessary
for DisCoTec to write the sparse grid data to and read it from file in parallel. This
is achieved by assigning some I/O ranks to aggregate the necessary data and to
perform the writing and reading through MPI-IO [113]. Theoretically, the I/O ranks
could be one process group, like in the TCP case, but in practice it is more efficient
to distribute the I/O ranks across as many nodes as possible, especially if the link
from node racks to the file system poses a bottleneck (e. g., on HAWK). For this
reason, the I/O ranks {r}io are distributed diagonally across the process groups of
a DisCoTec instance, i. e.,r ∈ {r}ioiff(r mod np)mod ng = ⌊ r

np
⌋, as illustrated by the

green ranks in Figure 4.4.

System 1 System 2pg1pg2

. . .
. . .

. . . pg1 pg2

. . .
. . .

. . .

Sparse
Grid
A

Sparse
Grid
B

Sparse
Grid
B

Sparse
Grid
A

UFTP
Copy

InternetInternal Network Internal Network

Figure 4.4.: DisCoTec ranks if extended to two systems with the file-based approach,
cf. Figure 4.1. On either system, there is a DisCoTec instance with
ranks ordered into process groups (pgi), and green highlights indicate
I/O ranks. MPI communication is denoted by solid black arrows, file
I/O by dashed green arrows, and the widely-distributed file transfer
by jagged black arrows. The UFTP file transfer is handled by separate
dedicated processes on gateway nodes. (Figure adapted from [138])

Every I/O rank allocates an extra sparse grid to hold the conjoint data of its spatial
domain. In the overall reduce operation with sparse grid reduce, this means that it
is sufficient to perform a reduction towards the I/O ranks only, because the entire
sparse grid will be updated on the I/O ranks, and broadcast to the other ranks
after updating with the other system’s data. For ChunkedOutgroupSGReduce,
it is necessary to have a horizontal allreduce, such that the sparse grid data not
present in the conjoint sparse grid is fully exchanged within the system. The file
I/O operations can be performed in parallel—each I/O rank writes out its part of
the sparse grid domain as a slice of the file in a collective function call—and the

4. High Performance Computing and the DisCoTec Code 83

resulting files can be exchanged through separate UFTP processes, illustrated by
the jagged black arrows in Figure 4.4. In contrast to the TCP variant, the transfer
can take place in parallel if a multi-connection file transfer tool is used, and even
overlap the two transfer directions. This is possible since each DisCoTec instance
can perform the reduction operation of local and remote sparse grid data on the
I/O ranks, and then broadcast the result horizontally to the other ranks.
This idea, as well as the implementation, is entirely independent of the file transfer

mode. For [138] as well as the results in Section 5.5, the UFTP tool [149] was
used, since it is an established file transfer set up between the systems of the Gauss
Center for Supercomputing (GCS), cf. Section 5.1. The parallelization and tuning
of UFTP was done by Alexander Van Craen, resulting in transfer speeds of up to
3.8GB/s between HAWK and SuperMUC-NG [138]. The main drawback of this
approach compared to TCP is the additional time needed for writing and reading
the sparse grid data to and from file, which can vary significantly between systems,
cf. Section 5.5. However, UFTP resolves the issues of parallelization and suitable
protocols, and is therefore the preferred method for widely-distributed simulations
with DisCoTec on the GCS systems.

4.6. Distributing Combination Schemes for Minimal Data Volume

If a combination scheme is distributed to multiple process groups, a sophisticated
distribution algorithm can substantially reduce the amount of data that needs to
be communicated. Recall that if A⊆ ℐCT is assigned to a certain process group, its
outward communication volume is given by sharedG(A), cf. Equation (4.5). This
applies even more when the combination scheme is distributed across different
HPC systems. In this case, A denotes the subset of the combination scheme that
is assigned to one of the systems. Reducing the costly transfer volume across the
network is of utmost importance in this case, as too long transfer times can lead
to long waiting times of entire systems. In this widely-distributed setting, we call
sharedG(A) the conjoint sparse grid. For the special case of two HPC systems 1 and
2, the conjoint sparse grid can be written analogously to Equation (4.5) as

ℐcj := {ℓ⃗′ ∈ Nd ∀s ∈ {1,2} ∃ ℓ⃗ ∈ ℐC T,s : ℓ⃗
′ ≤ ℓ⃗} , (4.7)

84 4.6. Distributing Combination Schemes for Minimal Data Volume

and the communication volume for grids with one-sided (periodic) boundaries is
given by

#DOFconjoint =
∑

ℓ⃗
′∈ℐcj

2
���ℓ⃗′
���
1 . (4.8)

The author of this thesis developed two different approaches to distributing the
scheme, which were published in [138]: A greedy, but less flexible approach, and
a more flexible, but more expensive heuristic approach. Both assign the grids on
the main diagonal of the combination scheme, cf. Section 2.3, to either system; The
lower diagonals are then assigned in a fashion that does not increase #DOFconjoint.
While the two methods were developed for the widely-distributed setting, they also
apply to distribution across multiple process groups on the same system, within the
specified limitations. The implementations are openly available at [128].

4.6.1. Symmetric Splitting by the Level-Sum Criterion

The level-sum criterion applies to symmetric splits, i. e., where the number of
dimensions is a multiple of the number of systems, and each system is assigned
the same share of work. In particular, this means that the number of scheme
partitions cannot be higher than the number of dimensions. Then, each system
can be assigned preferred dimensions j ∈ {1, . . . , d}. One may assign system one
to the odd and system two to the even dimensions through a preference list ps:
p1 = 1,3, . . ., p2 = 2, 4, The mixed level vectors belonging to the systems

ℓmixj =




ℓmaxj if j ∈ ps

ℓminj else
(4.9)

are corners of the hypercube in the level space that contains the index set ℐCT.
One may imagine the process as ‘starting’ at the corners of the main diagonal

of the combination scheme index set ℐCT, which is a simplex. Each corner’s level
vector is assigned to the system that ‘prefers’ the dimension arg max j ℓ j in which the
corner is located. Assuming a large combination scheme, the corner’s neighboring
elements on the main diagonal are then cheapest assigned to the same system as
the corner itself. Iterating this procedure, one can derive a greedy assignment of

4. High Performance Computing and the DisCoTec Code 85

the entire main diagonal of the combination scheme, which is termed the level-sum
criterion:

s(ℓ⃗) =





1 if
���ℓ⃗− ℓ⃗mix,1
���
1
<
���ℓ⃗− ℓ⃗mix,2
���
1

2 if
���ℓ⃗− ℓ⃗mix,1
���
1
>
���ℓ⃗− ℓ⃗mix,2
���
1

. (4.10)

In those cases where the norms
���ℓ⃗− ℓ⃗mix,s
���
1
are equal, either systemwill be assigned

in a round-robin fashion. This ambiguity, i. e., the number of grids where the norms
in Equation (4.10) are equal, can be reduced if a value slightly smaller than 1 is
used for the vector norm; The current implementation uses |·|0.99.
In fact, Equation (4.10) can also be applied to the lower diagonals of the com-

bination scheme. This greedy assignment is deterministic and can be computed
quickly enough to be used in-situ during the program’s run time on an HPC system,
but it is restricted to the symmetric case, which is often not sufficient as we are
going to see in Section 5.5.

4.6.2. Heuristic Splitting with the METIS Graph Partitioner

Attempts to extend the level-sum criterion to arbitrary dimensionalities and varying
shares of work resulted in suboptimal assignments. Thus, the second approach is
designed to provide this flexibility. It uses the heuristic graph-partitioning algorithm
METIS [90] to assign the main diagonal to the systems.
The graph is built up with the levels ℓ⃗ on the main diagonal as nodes. Edges

between nodes are introduced if the corresponding levels are neighbors in the main
diagonal simplex. All levels on the simplex have the same level sum, which means
that ℓ⃗i and ℓ⃗ j are neighbors iff

��ℓ⃗i − ℓ⃗ j

��
1
= 2. Accordingly, the possible number of

neighbors is bounded by
�d

2

�
per node. The number of parts and their respective

relative sizes are free parameters of the METIS algorithm. The communication-
volume based METIS multi-level graph partitioning [90] is applied to the graph, and
the returned partitions are required to be contiguous. Then, the lower diagonals
can, again, be assigned in a way that does not increase the communication volume.
Unfortunately, the run time of the METIS algorithm is not known in advance and

may become excessively long, depending on the specified parameters. Accordingly,
the grid assignments (and the pertaining sparse grid sizes) have to be computed as
part of the combination scheme preprocessing. But this heuristic approach appro-
priately deals with two important use cases: First, the combination scheme can be

86 4.6. Distributing Combination Schemes for Minimal Data Volume

distributed between two different systems, even if one of the systems should get
a much larger share of work. And second, it can be used to distribute the combi-
nation scheme between multiple process groups on the same system, because the
number of process groups typically exceeds the number of dimensions. Conclusively,
this algorithm was also used to optimize the process group assignment for the
ChunkedOutgroupSGReduce algorithm in Sections 5.4.2 and 5.5.

4.7. New Contributions to DisCoTec

In addition to the algorithms and optimizations described above, the author of this
thesis contributed to other aspects of the DisCoTec framework1. The following list
of contributions is not exhaustive, but showcases the different areas in which the
code has improved over the course of the presented work.

Refined Numerics

• Monte-Carlo error measurement functions, based on point-wise interpolation
at arbitrary coordinates

• ghost layer and boundary exchange functions on DistributedFullGrid
(necessary to implement the advection solver from Section 3.4 directly in
DisCoTec)

• Discontinuous Galerkin-compatible full grid implementation: DFGEnsemble

• mass-conserving basis transformations / hierarchization and dehierarchization
according to Section 2.1.1 (joint work with Katharina Kormann and Johannes
Rentrop)

• minimum level in basis transformations according to [137]

• Kahan summation within process group in LocalReduce operation (main
driver for increased accuracy from [136] to [137])

1Most of the development progress is documented as pull requests at
https://github.com/SGpp/DisCoTec/pulls?q=

4. High Performance Computing and the DisCoTec Code 87

https://github.com/SGpp/DisCoTec/pulls?q=

Solvers in the Framework

• further developed and performance-engineered advection FDM/FVM solver,
cf. Sections 3.4 and 5.4 (joint work with Alexander Van Craen and Marcel
Breyer)

• DisCoTec interface for hyper.deal (a deal.ii based Vlasov code [114]) (joint
work with Peter Münch and Marius Göhring)

• DisCoTec interface for SeLaLib, cf. Section 3.5 (joint work with Katharina
Kormann and Michael Obersteiner)

Combination Technique Features

• dynamic rescheduling of tasks during run time, for solvers that change in load
(joint work with Marvin Dostal [36])

• allow reading combination schemes from .json file and the (conjoint)
sparse grid sizes from binary .sizes files, along with the corresponding
tools to generate these files: combischeme utilities [128] and DisCoTec’s
subspace_writer.

• ‘worker-only’ mode without manager rank, cf. Figure 4.1, with static grid
assignment to process groups: either round-robin, statically load balanced
based on the number of DOF, or from file

• combination / reduction variants SubspaceReduce, OutgroupSGReduce,
ChunkedOutgroupSGReduce, cf. Algorithms 4.3 to 4.5

• write and read sparse grid data as binary files with MPI-IO [113], and file-
based combination algorithm based on this feature

• widely-distributed combination protocols (joint work with Marcel Hurler for
the TCP variant [132] and with Alexander Van Craen for the UFTP vari-
ant [138])

Savings in Allocated Memory

• avoid allocations of communicators and temporary data structures

• shared-memory parallelism (OpenMP), which allows to have less memory
overhead in communicators and data structures per node

88 4.7. New Contributions to DisCoTec

• memory overhead measurement for DistributedFullGrid as part of con-
tinuous integration tests

• optimized DistributedFullGrid data structures to avoid growing memory
overhead with growing np

• savingmemory in data copies between the Task, DistributedFullGrid, and
DistributedSparseGrid structures (partly joint work with Marcel Hurler)

• one-sided boundary for DistributedFullGrid, which is natural for periodic
boundary conditions, and allows for better grid point load balancing

4. High Performance Computing and the DisCoTec Code 89

Ch
ap
te
r 5

Scaling DisCoTec Up to Full HPC
Systems and Beyond

This chapter presents and discusses run timemeasurements for DisCoTec on different
HPC systems.
The first set of measurements, in Section 5.3.1, presents the run time measure-

ments of simulations with DisCoTec and the gyrokinetic Vlasov solver GENE [56,
89, 160] on HAWK and SuperMUC-NG as part of the EXAHD project, in which
the presented research originated. While the measurements were already taken
in 2021, with now-outdated versions of the codes, they motivated much of the
further progress in DisCoTec and are therefore presented here. Also, the measure-
ments allowed to discover the mismatched memory expectations between DisCoTec
and GENE at scale. Additionally, the different scaling setups in the measurements
helped to refine the general methodology for scaling measurements with different
combination schemes as described in Section 5.2.
The second set of measurements, in Section 5.4, presents the results of scaling

advection simulations with recent versions of DisCoTec up to full system sizes on
four different HPC systems—Fritz, HAWK, JUWELS Cluster, SuperMUC-NG—which
are introduced in Section 5.1. These measurements contain both a strong scaling
scenario with a very low memory footprint (less than 40GiB of component grid
data to be distributed among thousands of cores), and a weak scaling scenario.
The weak scaling scenario aims to approach the memory limits of the considered
systems with a memory footprint of more than 1.1GB of component grid data per

91

core. The measurements show that it is possible to scale DisCoTec up to full system
sizes on all considered systems, and use a substantial amount of memory for the
higher-dimensional solver while doing so.
The third set of measurements, in Section 5.5, evaluate the simulation perfor-

mance of a widely-distributed scenario on SuperMUC-NG and JUWELS, and compare
them to a recently published setup connecting the SuperMUC-NG and HAWK sys-
tems. The target scenario is so large that it cannot be placed on SuperMUC-NG alone,
but requires the combination of SuperMUC-NG and JUWELS. The measurements
present the run times measured for 1

15 of the scenario, and discusses challenges
encountered at this scale. It gives an outlook on potential solutions to performing
the target simulation, which itself is left for future work.
All experiments consider the hierarchical hat basis functions. While for the GENE

simulations, the mass-conserving basis functions had not yet been sufficiently re-
searched, for the advection simulations, the hierarchical hat basis functions were
chosen because they provide the most efficient and well optimized transforma-
tions [74, section 3.3] in DisCoTec. Also, Chapter 3 showed that the hierarchical hat
functions lead to stable and relatively accurate solutions for the considered advection
scenario well up to hundreds of advection solver timesteps per combination step.

5.1. Comparison of HPC Systems Used for Experiments

DisCoTec was benchmarked on all three CPU-based Tier-0 / Tier-1 HPC systems
currently managed through the Gauss Centre for Supercomputing (GCS) [81], which
are JUWELS Cluster [27] at the Jülich Supercomputing Center (JSC), HAWK [80] at
the High Performance Computing Center Stuttgart (HLRS), and SuperMUC-NG [72]
at the Leibniz Supercomputing Centre (LRZ). (‘JUWELS Cluster’ will subsequently be
called only ‘JUWELS’). Furthermore, DisCoTec was tested on the Tier-2 / Tier-3 HPC
system Fritz [50], which is operated by the Erlangen National High Performance
Computing Center (NHR@FAU).
Although GPGPUs are becoming increasingly important for scientific computing,

the current TOP500 list [153] of HPC systems still contains 315 CPU-only systems,
without accelerators. Of these, 258 are based on Intel Xeon processors and 46 on
AMD EPYC processors. Thus, by looking at results on Fritz, JUWELS, and SuperMUC-
NG with different Intel Xeon processor generations, and Hawk with its AMD EPYC
Rome CPUs, the measurements should still be fairly representative of the current
HPC landscape.

92 5.1. Comparison of HPC Systems Used for Experiments

Fritz [50] HAWK [80, 82] JUWELS Cluster [27] SuperMUC-NG [72]
nodes 992 5632 2271 6336
core/node 72 128 48 48
cores total 71,424 722,176 109,008 304,128
base frequency 2.4GHz 2.25GHz 2.7GHz 2.3GHz (w/o

EAR [42])
main memory per core 3.56GiB/core 2GiB/core 2GiB/core 2GiB/core
main memory spec.
(channels per node)

DDR4,
16 × 3200MHz

DDR4,
?? × 3200MHz [73]

DDR4,
12 × 2666MHz

DDR4,
12 × 2666MHz

(assumed) memory
bandwidth per node

409.6GiB/s 380GiB/s [34] 255.9GiB/s 256GiB/s

processor model Intel Xeon Platinum
8360Y ‘Ice Lake’

AMD EPYC 7742
‘Rome’

Intel Xeon Platinum
8168

Intel Xeon Platinum
8174 ‘Skylake’

(highest) vectorization AVX512 AVX2 [34] AVX512 AVX512
interconnect Blocking HDR100 In-

finiband
InfiniBand HDR InfiniBand EDR

(Connect-X4)
Intel Omni-Path

file system Lustre Lustre GPFS GPFS
TOP500 position [153] 178 32 102 31
MPI version used
for Section 5.4

Intel MPI 2021.7 MPT 2.26 OpenMPI 4.1.4 Intel MPI 2019.12

MPI_Allreduce
implementation used

binomial
gather + scatter

2 (not documented) nonoverlapping binomial
gather + scatter

Table 5.1.: Hardware properties of the ‘standard’ nodes of the machines used, in alphabetical order.

5.
S

caling
D

isC
oTec

U
p

to
FullH

P
C

S
ystem

s
and

B
eyond

93

The parallelism and hardware terminology used in the chapter is going to be as
follows: Processes are the same as MPI ranks, where each DisCoTec instance has
either ng · np or ng · np + 1 processes, depending on whether a manager rank is used
or not. ng denotes the number and np the size of the groups. For Section 5.3, this
is going to be the same as cores, since no OpenMP threading was used. For the
advection simulations, however, cores will be equivalent to OpenMP threads. Then,
the total number of cores used by DisCoTec can be computed as ng · np · nt (without
manager rank), where the number of threads per rank nt was uniformly set to 4
throughout Sections 5.4 and 5.5.

5.2. Challenges for Scaling Up DisCoTec

Section 5.3’s extensive tests with DisCoTec and GENE, also in the light of main
memory consumption, helped to develop a simulation setup that allows to scale
DisCoTec experiments up to full HPC system sizes in a well-interpretable manner. As
mentioned previously, there are two ways of scaling up DisCoTec, either with more or
larger process groups. Larger groups (expanding vertically in Figure 4.1) correspond
to a higher level of ‘traditional’ parallelism based on domain decomposition, where
slices of the data need to be communicated to the Cartesian neighbors (or along
Cartesian poles). Conversely, more groups (expanding horizontally in Figure 4.1)
add the parallelism specific to the CT, which is embarrassingly parallel for the solver
update and basis transformation steps. (See also the arrows in Algorithm 4.1 for the
communication directions.) Both types of parallelism are necessary to effectively
scale up to full HPC system sizes. When scaling up, it is important to carefully
construct the communication volume, since some aspects of the CT can be counter-
intuitive.

Strong Scaling

For a strong scaling scenario, the amount of work, in our case the combination
scheme defined by ℐCT, stays exactly the same. It is going to be distributed among
more and more processes, either larger or more process groups. The time to solution
for p processes is denoted by Tp. One can then define the speedup as

S(p) :=
T1

Tp
. (5.1)

94 5.2. Challenges for Scaling Up DisCoTec

Ideally, the speedup would be equal to the number of processes, which of course
will not be the case due to serial and parallel overheads. For every program, the
communication will at some point dominate the computation (unless it is trivially
parallelizable), but the question is when that happens. The success of strong scaling
can be measured by the strong scaling efficiency, which is defined as the ratio of the
ideal speedup and the actual speedup, i. e.,

εs(p) :=
Sp

p
=

T1

pTp
. (5.2)

The ideal efficiency would be close to 1, but the value is bound to decrease for
larger numbers of processes. For the combination step in particular, adding more
and more groups can lead to the dominance of the 𝒪(log ng)-complexity allreduce
operation. Depending on the problem size and reduction algorithm, it may also
become necessary to perform more intermediate allreduce operations per step as
the number of groups increases. On the other hand, enlarging the groups will lead
to a dominance of full-grid data communication over the solver and basis transform
computation.

Weak Scaling

For the weak scaling scenario, the amount of work, in our case the combination
scheme, is increased proportionally to the number of processes. This in turn can be
achieved in two different ways: Either the resolution levels of the grids are increased,
or more grids are added. The experiments in Section 5.4.2 use increased resolution
levels for larger groups, and added grids for added groups. This is beneficial for run
time analyses, since the number of assigned component grids and their number of
DOF per process will remain approximately constant, which best fits the spirit of
a weak scaling setup. If the Cartesian processes in the process groups are added
in the same direction in which one refines the combination scheme, then also the
anisotropic resolutions are kept constant.
The—numerically more interesting—approach of increasing the distance between

ℓ⃗min and ℓ⃗max in the truncated combination scheme was used for the experiments
in Section 3.4. However, it is not considered in the timing measurements, since it
changes a range of parameters at once, which makes it very hard to distinguish
different effects on the run time.

5. Scaling DisCoTec Up to Full HPC Systems and Beyond 95

Ideally, if everything was perfectly parallelizable, the timing of the simulation
would stay approximately the same. Now, the success of weak scaling can be
measured with the weak scaling efficiency

εw(p) :=
T1

Tp
(5.3)

Again, the ideal efficiency would be close to 1, but the value is bound to decrease as
the process count goes up.

Load Imbalance

Which type of parallelization works better—larger or more process groups—will
depend on the assignment of grids to groups. Since the aim of this work is to
approach the memory limits of full HPC systems, grid assignments are mainly
based on the number of degrees of freedom. This means that large process groups
which are assigned a (relatively) high number of (relatively) coarse/small grids
will have a higher (relative) communication overhead, and thus display a lower
parallel efficiency in the process group size np. The effect leads to a divergence of
memory footprint and run time for the different process groups. The experiments in
Section 5.4 use ChunkedOutgroupSGReduce, which means that the assignment
of grids to groups will also influence the allreduce’s communication volume: For
a good assignment (with much ingroup data), the communication volume will be
very low for two process groups and increase with the number of groups. The
reduce operation’s division into chunks will then lead to discrete increases in the
communication times. For the more careless approach of assigning the grids to
groups only based on the number of DOF and not on neighborhood in ℐCT, which is
used for the strong scaling setup in Section 5.4.1, the communication volume will
be relatively high for two process groups already, and remain on a similar level as
process groups are added.
This work uses the same definition as [79] for the load imbalance L: Load

imbalance is the maximum load of any rank divided by the average load of all ranks,
or

L :=
max

r∈{0,...,(ng ·np−1)}
Tr

1
ng ·np

∑
r∈{0,...,(ng ·np−1)}

Tr

. (5.4)

96 5.2. Challenges for Scaling Up DisCoTec

Here, Tr , the time spent in the solver update step for rank r, serves as a proxy for
load on the rank. The ideal value for the load imbalance would, again, be 1.
Load imbalance poses a problem for both strong and weak scaling. The main

effect was hinted at in Figure 4.2: Run time differences between process groups will
lead to idle time for the faster groups, which is wasted time for those. In addition,
across the whole MPI program, the typical effects of OS jitter and random variations
in the node hardware will lead to load imbalances. (These will typically be more
severe within the process group, since more implicit synchronization happens in
the process groups.)
With DisCoTec, one can influence the load imbalance between the process groups

by component grid assignments to groups, but the load imbalance within the process
groups can only be influenced to a limited extent, since all component grids have to
share the exact same domain decomposition.

5. Scaling DisCoTec Up to Full HPC Systems and Beyond 97

5.3. DisCoTec And The Gyrokinetic Solver GENE

The aim of the EXAHD project in which this research originated was the application
of the sparse grid combination technique to the gyrokinetic Vlasov solver GENE for
time-stepping simulations.
GENE [160] is a plasma turbulence solver that is used to model state-of-the-art

fusion experiments [52, 89, 168]. An important feature of GENE is that it uses the
gyrokinetic approximation [14], which effectively reduces the number of physical
space dimensions from six to five. The collisionless Vlasov Equation then reads

∂ F
∂ t
+∇ x⃗ F · d x⃗

dt
+
∂ F
∂ v∥
· dv∥
dt
+
∂ F
∂ µ
· dµdt

= 0 , (5.5)

where v∥ and µ are new, transformed velocity variables. GENE employs a fourth-
order finite difference scheme to solve the Vlasov–Maxwell equations in the five-
dimensional phase space, and also fourth-order explicit time stepping. Special
treatment is applied to the x2 direction, where the solution is represented in Fourier
space. If high velocities occur, e. g., due to high electric field gradients, the time step
is adaptively shortened. For use with DisCoTec, this means that the combination
interval is set as a parameter in time units, but in each combination step, any of
the full grid solver instances may need different amounts of time steps to reach the
given combination interval. Furthermore, each of the dimensions needs a minimum
resolution per process, which is why the truncated CT (cf. Section 2.3) was used
for the experiments. GENE uses complex double precision floating point numbers
to represent f , which can be interesting in terms of the memory footprint of the
simulations (⇒ 16B per DOF).
This approach had shown promising first results for linear, local simulations [100],

but the nonlinear simulations had three challenges remaining, namely the load
balancing, the memory footprint and the stability of the simulation. As mentioned
previously in Section 3.1, the simulation would become unstable for longer sim-
ulations (and this could potentially be addressed with the mass-conserving basis
functions as discussed in Chapter 3). This section focuses on the more technical as-
pects, which are related to scalability and memory consumption of GENE+DisCoTec
simulations.

98 5.3. DisCoTec And The Gyrokinetic Solver GENE

5.3.1. Scaling DisCoTec with GENE

The goal of these experiments is to extend the existing run-time analysis with
DisCoTec to adiabatic electron non-linear global [89] GENE simulations (i. e., those
that use one kind of particle, display turbulent plasma movement, and model the
whole tokamak torus), while comparing the two systems HAWK and SuperMUC-NG,
cf. Table 5.1, for their run time behavior. By contrast, Heene [74] compared CT run
times with the linear GENE solver based on run time estimates [74, Figure 3.26] or
on relatively small scenarios [74, Figure 5.17].
The measurements were taken in November 2021 with commit 57dceaa2 of

DisCoTec and commit d19569eb of GENE1. For this reason, some features were not
yet developed for DisCoTec, such that the experiments were performed with an addi-
tional manager rank (which indeed makes sense for dynamic load balancing [135]),
with boundary points on all sides, and with the sparse grid reduce algorithm, cf.
Algorithm 4.2, but without both OpenMP shared-memory parallelism and minimum
hierarchization levels. Combination is performed after every 0.1 GENE time units.
Three setups are considered: ‘More Process Groups for the Same Problem’ (i. e.,

strong scaling in ng), ‘Larger Process Groups for Larger Problems’ (i. e., weak scaling
in np), and ‘More Process Groups for Larger Problems’ (i. e., weak scaling in ng).
Together, they help understand why scaling up GENE and DisCoTec jointly can be
challenging.

More Process Groups for the Same Problem

The strong scaling in the number of process groups ng—horizontally in Figure 4.1—
uses the following combination scheme for groups of 512 processes (np = 512).

Combination scheme for GENE strong scaling, ng groups of 512
ℓ⃗min (4,5, 3,4, 2) # grids 121
ℓ⃗max (9,5, 8,9, 7) # finest grids 56
total FG #DOF 6.69 × 108 mem. finest grids 128MiB
total FG memory 9.97GiB #DOF FG at ℓ⃗max 2.75 × 1011

1to be found in fork
https://gitlab.mpcdf.mpg.de/g-michaelobersteiner/gene-dev.git

5. Scaling DisCoTec Up to Full HPC Systems and Beyond 99

https://gitlab.mpcdf.mpg.de/g-michaelobersteiner/gene-dev.git

The five dimensions denote x1, x2, x3, v∥,µ (or (x, y, z, v, w) in GENE’s internal
notation), respectively. x1 denotes the radial direction, for which fine resolutions are
particularly interesting in GENE—and unfortunately, also relatively expensive in run
time. The CT is applied only to the x1, x3, v∥,µ directions, as the Fourier-transformed
x2 direction has its own pitfalls [99].

20 21 22 23 24 24.95 25.9810−1

100

101

102

Number of Process Groups

Ru
n
Ti
m
ep
er

Co
m
bi
na
tio
n
Ti
m
eS
te
p
[s] Solver Combination

Total Ideal

(a) Strong scaling on HAWK
Due to HAWK’s topology-aware scheduling, higher node counts cannot be

freely chosen, resulting in slightly-less-than-power-of-two worker counts to

accomodate the manager rank.

20 21 22 23 24 25 26
10−1

100

101

102

Number of Process Groups

Solver Combination
Total Ideal

(b) Strong scaling on SuperMUC-NG

Figure 5.1.: Strong scaling timings for process groups of size 512: Times are shown
as means over all time steps and worker processes, the error bars
denote the standard deviations. Since the total time is dominated by
the solver time, the lines almost overlap.

Looking at the results in Figure 5.1, it appears that the solver time step does
not get any faster for more than 16 process groups. This can be explained by the
run time imbalance between the tasks—up to ng = 16 groups, there were enough
component tasks to distribute such that the load could be balanced between process
groups. But once the one instance that operates on a grid with very fine x1 resolution
takes longer than the other instances together, divided by the number of remaining
process groups, all other process groups have to wait for that instance to finish [135].
For this particular scenario, the run time imbalance between the tasks puts a

virtual end to scalability for more than 16 process groups. But prior to that, adding
process groups scales nicely, and the behavior between the two machines is very
similar.

100 5.3. DisCoTec And The Gyrokinetic Solver GENE

Larger Process Groups for Larger Problems

Performing weak scaling requires the design of a set of combination schemes to
be distributed among more and more processes. To this end, the smallest com-
bination scheme is distributed among 64 processes with a parallelization vector
p = (2,1, 2,4, 4), i. e., the number of MPI processes in each direction. x1 is the
direction in which ℓ⃗min and ℓ⃗max as well as p are increased first: We then iterate the
combination directions starting from x1, increasing the minimum and maximum
level and doubling the number of ranks in that direction:

Combination scheme for GENE weak scaling, one group of np = 64

ℓ⃗min (3,5, 2,3, 2) # grids 121
ℓ⃗max (8,5, 7,8, 7) # finest grids 56
total FG #DOF 8.36 × 107 mem. finest grids 16MiB
total FG memory 1.25GiB #DOF FG at ℓ⃗max 3.44 × 1010

. . .

Combination scheme for GENE weak scaling, one group of np = 512

ℓ⃗min (4,5, 3,4, 2) # grids 121
ℓ⃗max (9,5, 8,9, 7) # finest grids 56
total FG #DOF 6.69 × 108 mem. finest grids 128MiB
total FG memory 9.97GiB #DOF FG at ℓ⃗max 2.75 × 1011

Combination scheme for GENE weak scaling, one group of np = 1024
ℓ⃗min (4,5, 3,4, 3) # grids 121
ℓ⃗max (9,5, 8,9, 8) # finest grids 56
total FG #DOF 1.34 × 109 mem. finest grids 256MiB
total FG memory 19.94GiB #DOF FG at ℓ⃗max 5.50 × 1011

. . .

Combination scheme for GENE weak scaling, one group of np = 8192
ℓ⃗min (5,5, 4,5, 3) # grids 121
ℓ⃗max (10, 5, 9,10, 8) # finest grids 56
total FG #DOF 1.07 × 1010 mem. finest grids 2048MiB
total FG memory 4.98TiB #DOF FG at ℓ⃗max 4.12 × 1012

5. Scaling DisCoTec Up to Full HPC Systems and Beyond 101

Note that this set contains the scenario used for the strong scaling setup above.
The next larger set of scenarios (with

��ℓ⃗min
��
1 and
��ℓ⃗max
��
1 higher by one) would

not have fit onto the main memory of the process group for the whole range of
parallelizations; The memory requirements listed above are based on the calculated
size for storing f and not on the entire GENEmemory footprint. In fact, for GENE one
has to take special care as the memory and run time overhead increases superlinearly
(approximately quadratically) depending on x1 resolution. This is mainly attributed
to the so-called gyro matrix in the gyrokinetic solver. In order to still deal with
a fair weak scaling scenario, the methodology mentioned in [52] was employed:
The described approach increases the x1 ‘box size’ of the GENE simulation domain
along with the number of points, such that the spatial resolution in x1 direction
is kept constant. This results in a gyro matrix of approximately the same size per
component task as the scenario is scaled up (but it will have different sizes within
the component tasks of a single scenario).
The combination interval is again 0.1, and from GENE’s solver output, it can be

observed that for each scenario the number of solver time steps varies between grids
and even combination time steps, yet it is similarly distributed among the different
runs.

26 27 28 29 210 211 212 213100

101

102

Process Group Size

Ru
n
Ti
m
ep
er

Co
m
bi
na
tio
n
Ti
m
eS
te
p
[s] Solver Combination

Total Ideal

(a) Weak scaling on HAWK

26 27 28 29 210 211 212 213100

101

102

Process Group Size

Solver Combination
Total Ideal

(b) Weak scaling on SuperMUC-NG

Figure 5.2.: Weak scaling timings with a single process group: Times are shown
as means over all time steps and worker processes, the error bars
denote the standard deviations. As each level index ℓ j is increased in
round-robin fashion, the parallelization vector p j in that dimension is
doubled.

102 5.3. DisCoTec And The Gyrokinetic Solver GENE

Figure 5.2 shows that the domain-decomposition approach to weak scaling does
not work particularly well towards higher process group sizes. The similarity
between Figure 5.2b and Figure 5.2a hints that the run time increase for higher
degrees of parallelism is not machine-dependent.
There are several reasons to this: Each of the 121 individual GENE tasks has only

few points in most of the directions—contrary to most of GENE’s optimizations
which assume good exploitation of the available memory for each monolithic solver
instance. It may even occur that there are so few points per process that it is necessary
for GENE not only to communicate to the direct Cartesian neighbors in the MPI
communicator, but even to the next neighbors. The same holds true for the basis
transformations in the combination step, especially the dehierarchization: Since no
minimum level was used for the hybrid representation of f , cf. Equation (2.25), the
hierarchization in dimension j will have to communicate with most of the Cartesian
neighbors in j direction. Profiling with the help of Martin Ohlerich at LRZ provided
the additional insight that the power-of-two domain decompositions, together with
boundary points on both sides, leads to significant load imbalances within the
process groups. The effect is due to the component grids having to have a resolution
of 2ℓ⃗+ 1⃗, so the ‘middle point’ always is an additional burden. This insight motivated
the adaptation of DisCoTec to true periodic boundary conditions, cf. Section 4.7.

More Process Groups for Larger Problems: Severely Limited

20 21 22100

101

102

Number of Process Groups

Ru
n
Ti
m
ep
er

Co
m
bi
na
tio
n
Ti
m
eS
te
p
[s] Solver Combination

Total Ideal

(a) Weak scaling on HAWK

20 21100

101

102

Number of Process Groups

Solver Combination
Total Ideal

(b) Weak scaling on SuperMUC-NG

Figure 5.3.: Weak scaling timings when adding process groups: Times are shown
as means over all time steps and worker processes, the error bars
denote the standard deviations. The process group size is 512, and
the scenarios are the same as for the same total number of processes
in Figure 5.2.

5. Scaling DisCoTec Up to Full HPC Systems and Beyond 103

Considering the weak and strong scaling measurements, it may appear sensible
to perform weak scaling experiments (which operate on the memory limit) with
process-group number scaling (because it scales well as long as the run time is not
dominated by one task). To this end, we employ the same scenarios as above for
groups of np = 512 and more, but distribute them among increasing numbers of
groups with np = 512, instead of larger groups.
Figure 5.3 shows that, indeed, this leads to excellent scaling; Essentially, no

increase in run time can be observed. But the experiments failed for more than two
process groups on SuperMUC-NG and more than four process groups on HAWK.
The reason lies in the measured memory footprints for the different tasks displayed
in Figure 5.4a: GENE’s memory scaling, which is quadratic in the x1 resolution,
leads to an enormous memory imbalance between the tasks for higher numbers of
points in x1 direction.
For the scenario which can easily be run on one process group of np = 4096, there is

no possible assignment to eight process groups of 512, although this maps to the same
amount of resources used. The largest of the scenario’s tasks requires 1061.9GB of
main memory, while on the machines tested, there are only 2GB available per core,
and each process group would have 1024GB available at maximum. The sketch in
Figure 5.4b illustrates why this is going to be even more of a problem when going to
finer and finer resolutions, i. e., to higher ℓmaxx values: The anisotropy will become
more and more dominant.

5.3.2. GENE and DisCoTec: The Right Setup for Exascale?

The series of experiments detailed in Section 5.3.1 can lead us to two possible
conclusions: First, the optimal parallelization strategy for a given GENE CT scenario
can be obtained by choosing the process group size as small as possible (to still fit
the task with the largest memory footprint), and then adding more process groups
until load imbalance arises between process groups (and the run time is dominated
by the most ‘expensive’ component grid). This approach is practical as long as the
combination time is negligible compared to the solver update steps, which was the
case for these measurements.
Second, the algorithmic approach of having a uniform domain decomposition

on all component grids in DisCoTec is not optimal for use with GENE. The most
expensive grids in run time and memory consumption—which will typically be
the same ones—had better be distributed among more processes, and the ‘smaller’
grids should be distributed among fewer processes. However, the ramifications of

104 5.3. DisCoTec And The Gyrokinetic Solver GENE

0 50 100

0

500

1,000

Task No.

M
em
or
yR
eq
ui
re
d

by
Ta
sk
[G
B]

(a) Measured: Memory of component tasks in
the ℓ⃗min = (5,5, 4,4, 3), ℓ⃗max = (10,5, 9,9, 8)
scenario on one process group of 4096 on
HAWK. Due to the imbalance in memory—
depending on ℓx of every component grid—
the scenario cannot be run on groups of 512.
The largest task consumes 1061.9GB, and
the systems tested only have 2GB per core.

ℓx

M
em
or
yF
oo
tp
rin
t

ℓ⃗minx ℓ⃗maxx

(b) Model: Memory of component tasks
over the x resolution level if the
dominating x direction has quadratic
scaling. For a typical combination
scheme, there will bemany grids with
ℓminx and just a single one with ℓmaxx .

Figure 5.4.: Measured and modeled memory requirements for GENE component
tasks.

non-uniform domain decomposition have been explored in detail in [112], and it
was shown that non-uniform decomposition for DisCoTec can lead to even more
problems on the memory limit, when ranks need to collect data from a larger domain
than they can store.
Knowing the results from Section 3.5, it is well possible that the mass-conserving

basis functions could be used to introduce stability to CT simulations with GENE. But
even if that were the case, GENE and DisCoTec would still not be the perfect match
at exascale, since through the mismatched memory requirements, it is impossible to
fulfill this chapter’s promise of ‘scaling up to full HPC systems’.
Conclusively, one can note that Vlasov solvers at fine resolution levels (and there-

fore, high processor counts) are best used with DisCoTec when their memory re-
quirements scale approximately linearly with the number of DOF in the distribution
function f , such as is the case with SeLaLib.

5.4. DisCoTec with the Advection Solver: Comparing Four Systems

In contrast to the last section, the experiments in this section are performed with the
advection solver as introduced in Section 3.4, which takes some of the algorithmic
complexity of Vlasov simulations away, yet still serves as a suitable proxy for Vlasov

5. Scaling DisCoTec Up to Full HPC Systems and Beyond 105

solvers in many aspects. In particular, typical Vlasov solvers will be bandwidth-
limited on most machines, since the structure of the PDE makes it very similar to
an advection problem (or rather, two coupled advection steps, which for instance
the Cheng–Knorr splitting makes use of [21]). At the same time, the advection
solver is significantly easier to performance-model than Vlasov solvers, as it treats
all dimensions (numerically) equal.
The measurements in this section were performed in July-Sept 2023 with fairly

recent versions of DisCoTec, and thus makes use of the new algorithms and improve-
ments described in Section 4.7. This includes the support for OpenMP-threaded
applications, where each DisCoTec rank / process uses four threads to parallelize
the computation in shared memory. The uniform setting of four threads was chosen
because it is a denominator of the number of cores per node on all machines con-
sidered, cf. Table 5.1, and also because of the particular architecture of the AMD
Zen2 architecture chip on HAWK: Even within a socket, the access to the L3 cache
is non-uniform, and only four cores share the same (relatively small, 16MB) L3
cache [34] (they form a ‘core complex’ in AMD’s terminology).
All the measurements use ChunkedOutgroupSGReduce, where the strong

scaling was measured entirely without I/O and the weak scaling was performed with
intermediate write/read operations for (conjoint) file-based combination. Significant
differences were found for different implementations of MPI_Allreduce of the
respective MPI versions. The implementations used on the different systems are
listed in Table 5.1; They were selected by the lowest timings attained for the (ng =
64, np = 1) strong scaling scenario on each system. For the basis transformations,
the minimum hierarchization level was set to the minimum level of the respective
combination scheme, and no manager rank was used. The exact commit hashes
and data repositories are summarized in Section 6.2 as Reproducibility References.

5.4.1. Strong Scaling with a Small Combination Scheme

For the strong scaling case, some amount of ‘work’, i. e., a combination scheme
defined by ℐCT, is distributed among increasing numbers of processes. We are
particularly interested in the parallel efficiency and the balance between the solver
and combination times for the different parallelization methods. The combination
scenario was selected according to the following criteria:

1. the total required data should still fit on the memory of a single socket for all
machines considered, i. e., a maximum of 48GB

106 5.4. DisCoTec with the Advection Solver: Comparing Four Systems

2. the number of component grids should be large enough to allow to distribute
them to a significant number of process groups,

3. the minimum level should be sufficiently high to allow for meaningful domain
decompositions even on the smallest grids.

These three goals can be in conflict, as criterion 2 calls for a big difference L⃗ between
ℓ⃗min and ℓ⃗max, while criterion 3 calls for both to contain high values and criterion 1
needs both to contain low values (which can be alleviated by a larger difference).
Fortunately, a suitable combination scheme could be identified in this search

space:

Combination scheme for strong scaling
ℓ⃗min (2,3, 3,3, 3,3) # grids 923
ℓ⃗max (8,9, 9,9, 9,9) # finest grids 462
total FG #DOF 5.27 × 109 mem. finest grids 64MiB
total FG memory 39GiB #DOF FG at ℓ⃗max 9.01 × 1015

To distribute the scheme among process groups—in the absence of a manager
rank—a static load balancing based on a balanced number of DOF per process
group was used. This means, that for higher numbers of process groups, it becomes
very unlikely for a process group to hold a cluster of main diagonal grids, and
the ChunkedOutgroupSGReduce effectively becomes a chunked SGReduce, cf.
Sections 4.4.3 and 4.4.4. The chunk size of 128MiB per thread was chosen such that
the communication buffers still fit into the socket’s main memory for all machines
and parallelizations considered. Of course, selecting this relatively small scheme
that fits into 48GB of memory means that the number of DOF per process becomes
very small for the higher degrees of parallelism. For instance, on HAWK’s up to
219 cores, each thread has to compute only ≈ 10,048DOF. In this limit, it becomes
apparent that overheads and synchronization will dominate the run time, and one
can expect the parallel efficiency to drop significantly.
For the measurements, each scenario was run once and 11 solver ‘runs’ of 10 solver

time steps each were performed, and 10 intermediate combinations in between these
solver updates. As shown in [137], more time steps per combination are possible
for the advection solver at very little loss of accuracy. There were MPI_Barriers
introduced after the run and combine steps, such that potential load imbalances in
one of the steps would not affect the measurements of the other. Also, since no I/O
is included in the measurements, the best measure of success is the maximum run

5. Scaling DisCoTec Up to Full HPC Systems and Beyond 107

time of any process. The experiments were performed in July-September 2023 with
commit ba519e39 of DisCoTec, except for the simulations with ng > 256, which
used commit e5cffee2.
The approach to data point selection was to scale up in both ways, starting

from one rank: One single process groups that gets larger and larger (vertically
in Figure 4.1), as well as process groups of one that get more and more numer-
ous (horizontally). For the higher process counts, ng = 64 groups and np = 256

were selected for further scaling up, respectively—the motivation being that the
combination’s parallel efficiency had dropped to a similar extent on Fritz, JUWELS,
and SuperMUC-NG for (ng , np) = (64, 1) and (1, 256). This approach results in a
‘rectangle’ of measurements in the space of parallelizations (ng , np), where the lines
meet again at (64, 256) and may be extended ‘upwards’.
Figures 5.5 to 5.8 show the maximum time of any rank for the solver and combi-

nation steps, respectively, and Figures 5.9 to 5.12 show the respective strong scaling
efficiencies. To give a sense of the ‘height’ of each data point, the point markers are
encoded by color values, while the line and area colors as well as the marker shapes
represent the respective system. The scales and color bars are set uniformly on all
of Figures 5.5 to 5.8 as well as Figures 5.9 to 5.12, respectively (an exception to
this is the z axis of HAWK’s interesting combination efficiency). One can observe
that—across all systems—the time spent on the solver step drastically decreases
for higher parallelizations, just as expected. For the combine step, the behavior is
similar for larger process groups, but for more process groups, the time spent on
the combine step stagnates and may even increase again for higher group counts
ng . This is where the allreduce’s complexity of 𝒪(log(ng)) starts to dominate the
combination time.

108 5.4. DisCoTec with the Advection Solver: Comparing Four Systems

1
16

256
1 4 16 64

0.1

1

10

100

processes
per group np

groups ng

so
lve
rt
im
e

1
16

256
1 4 16 64

0.1

1

10

100

processes
per group np

groups ng

co
m
bi
na
tio
n
tim
e

10−1

100

101

102

Figure 5.5.: Strong scaling timings on Fritz: Maximum time required on any rank.

1
16

256
4096

1 4 16 64
0.1

1

10

100

processes
per group np

groups ng

so
lve
rt
im
e

1
16

256
4096

1 4 16 64
0.1

1

10

100

processes
per group np

groups ng

co
m
bi
na
tio
n
tim
e

10−1

100

101

102

Figure 5.6.: Strong scaling timings on HAWK: Maximum time required on any rank.

5.
S

caling
D

isC
oTec

U
p

to
FullH

P
C

S
ystem

s
and

B
eyond

109

1
16

256
4096

1 4 16 64

0.1

1

10

100

processes
per group np

groups ng

so
lve
rt
im
e

1
16

256
4096

1 4 16 64

0.1

1

10

100

processes
per group np

groups ng

co
m
bi
na
tio
n
tim
e

10−1

100

101

102

Figure 5.7.: Strong scaling timings on JUWELS: Maximum time required on any rank.

1
16

256
4096

1 4 16 64

0.1

1

10

100

processes
per group np

groups ng

so
lve
rt
im
e

1
16

256
4096

1 4 16 64

0.1

1

10

100

processes
per group np

groups ng

co
m
bi
na
tio
n
tim
e

10−1

100

101

102

Figure 5.8.: Strong scaling timings on SuperMUC-NG: Maximum time required on any rank.

110
5.4.

D
isC

oTec
w

ith
the

A
dvection

S
olver:

C
om

paring
FourS

ystem
s

For the JUWELS system, one can observe that the timings decrease less than
for the other systems, which is particularly unexpected for the lower degrees of
parallelization (that still operate on a single node). The effect is more clearly visible
from the strong scaling efficiencies in Figure 5.11, which immediately drop below
70%. This effect could be attributed to wrong process placement and pinning
through SLURM on JUWELS [140], which led to imbalanced assignments of ranks
to sockets and threads to cores. The error could only be resolved, thanks to help
from Thomas Breuer at the JSC, for the two highest-parallelized data points: 64
and 106 process groups of np = 256 ranks. Unfortunately, there was not enough
leftover compute time in the JUWELS allocation to recreate the other measurements
with the corrected pinning. Note that the 106 groups occupy (almost) the entire
JUWELS system.
Another system with peculiar scaling behavior is the HAWK system: From Fig-

ure 5.10, one can see an enormous increase in combination efficiency for larger
process groups, with efficiencies higher than 2. The reason for these unexpect-
edly high efficiencies is rooted in the highly strided memory accesses for the basis
transformations, as well as the architecture of HAWK’s AMD EPYC Zen2 CPUs: As
mentioned in the context of OpenMP threads, only four cores (here, one DisCoTec
rank) shares a L3 cache of 16MiB. However, the largest grids occurring in the
combination scheme are of size 64MiB, the second-largest are of size 32MiB, and
so on. Introducing a finer domain decomposition, which is equivalent to larger
process groups, leads to implicit cache blocking [70] in the combination step: Since
the six-dimensional full grid tensor is not the only data required in memory, one
can assume that for a single process, only the 8MiB grids may fit entirely into the
L3 cache for the repeated basis transforms into the different dimensions. Only at
sixteen ranks, the largest grids in the combination scheme start to comfortably sit
in the L3 cache, where the maximum efficiency εs of > 2.3 is reached, and the
efficiency starts to decrease again. The tremendous influence of caching on the basis
transformations was discussed by several previous works [74, 84], and DisCoTec
currently only addresses it with distributed-memory parallelism. Looking at the
scaling behavior on HAWK, it could be worth considering how the shared-memory
cache optimizations [84] can be integrated with the current approach. Another
way to re-use the caches in the basis transformation step could be to use tempo-
ral blocking by reversing the iteration direction between the different dimensions,
cf. [169].

5. Scaling DisCoTec Up to Full HPC Systems and Beyond 111

1
16

256
1 4 16 64
0

0.5

1

processes
per group np

groups ng

str
on
gs
ca
lin
ge
ffi
cie
nc
y

so
lve
r

1
16

256
1 4 16 64
0

0.5

1

processes
per group np

groups ng

str
on
gs
ca
lin
ge
ffi
cie
nc
y

co
m
bi
na
tio
n

0.2

0.4

0.6

0.8

1

Figure 5.9.: Strong scaling efficiencies on Fritz

1
16

256
4096

1 4 16 64
0

0.5

1

processes
per group np

groups ng

str
on
gs
ca
lin
ge
ffi
cie
nc
y

so
lve
r

1
16

256
4096

1 4 16 64
0

1

2

processes
per group np

groups ng

str
on
gs
ca
lin
ge
ffi
cie
nc
y

co
m
bi
na
tio
n

0.2

0.4

0.6

0.8

1

Figure 5.10.: Strong scaling efficiencies on HAWK

112
5.4.

D
isC

oTec
w

ith
the

A
dvection

S
olver:

C
om

paring
FourS

ystem
s

1
16

256
4096

1 4 16 64
0

0.5

1

processes
per group np

groups ng

str
on
gs
ca
lin
ge
ffi
cie
nc
y

so
lve
r

1
16

256
4096

1 4 16 64
0

0.5

1

processes
per group np

groups ng

str
on
gs
ca
lin
ge
ffi
cie
nc
y

co
m
bi
na
tio
n

0.2

0.4

0.6

0.8

1

Figure 5.11.: Strong scaling efficiencies on JUWELS

1
16

256
4096

1 4 16 64
0

0.5

1

processes
per group np

groups ng

str
on
gs
ca
lin
ge
ffi
cie
nc
y

so
lve
r

1
16

256
4096

1 4 16 64
0

0.5

1

processes
per group np

groups ng

str
on
gs
ca
lin
ge
ffi
cie
nc
y

co
m
bi
na
tio
n

0.2

0.4

0.6

0.8

1

Figure 5.12.: Strong scaling efficiencies on SuperMUC-NG

5.
S

caling
D

isC
oTec

U
p

to
FullH

P
C

S
ystem

s
and

B
eyond

113

Lastly, of course, there is a trivial way to achieve finer cache blocking in DisCoTec:
Instead of using OpenMP threading, one could use a higher number of MPI ranks in
the simulation again, to achieve the implicit cache blocking effect.
A similar, but much smaller hump is visible for the efficiency of the combination

step for the Fritz system, cf. Figure 5.9, which has L3 caches of 54MiB per socket,
the same as SuperMUC-NG. Likely, the effect would also be visible for SuperMUC-NG
in Figure 5.12 if the total time required for the combination was not as high for low
degrees of parallelism.
This is better illustrated by the direct comparison: Figure 5.13 shows the linear-

scale timings for the solver update and combination steps on all systems—the same
data as in Figures 5.5 to 5.8—in a single plot.
One can see that, for the lower degrees of parallelism, the time spent on the solver

update step is significantly higher than for the combination step (apart from HAWK,
as already discussed). From the plotted timings and the corresponding parallel
efficiencies however, we can extrapolate that this will not be sustained through the
higher degrees of parallelism, as the combination is not entirely as embarrassingly
parallel between the process groups as the solver step.
While the relatively high time measurements for HAWK at low degrees of par-

allelism can be explained by the aforementioned cache effects, and for JUWELS
by the incorrect pinning—which apparently affected the solver step more than
the combination step—there is no substantial explanation why the run time on
SuperMUC-NG is visibly high for low degrees of parallelization: In the case of a sin-
gle rank (ng = 1, np = 1), both the solver and combination steps on SuperMUC-NG
take approximately 1.5 times as long as on Fritz and JUWELS, and not only in the
maximum, but also in the mean and median statistics.
Comparing the timings of the different parts of the combination step in Algo-

rithm 4.4, the overhead of ≈ 1.5 for SuperMUC-NG is evenly distributed between
the basis transformations and the reduction.1 Looking at Table 5.1, the only notable
differences between SuperMUC-NG and the other systems are the clock rate and
the type of interconnect. The interconnect, however, is going to play a role for
simulations running on more than one node, which is only the case for > 12 ranks
on SuperMUC-NG. The marginally lower CPU clock frequency (2.3GHz without
EAR for SuperMUC-NG compared to 2.4GHz on JUWELS and 2.7GHz on Fritz) is

1Quite different for HAWK, where the reduction virtually behaves the same way as for the other
systems, and only the basis transforms introduce overheads of factors > 7 compared to Fritz and
JUWELS.

114 5.4. DisCoTec with the Advection Solver: Comparing Four Systems

1
16

256
4096

1 4 16 64

0

200

400

600

processes
per group np

groups ng

ru
n

Fritz
JUWELS
HAWK

SuperMUC-NG

0

100

200

300

400

500

1
16

256
4096

1 4 16 64

0

100

200

300

400

processes
per group np

groups ng

sy
ste
m
Co
m
bi
ne

Fritz
JUWELS
HAWK

SuperMUC-NG

50

100

150

200

250

300

350

400

Figure 5.13.: Strong scaling timings on all four machines, linear scale, for compari-
son: Maximum time required on any rank. Colors and markers are
set the same way as in Figures 5.5 to 5.12.

5. Scaling DisCoTec Up to Full HPC Systems and Beyond 115

also not enough to account for this difference; In fact, since the solver step should be
bandwidth-limited for the lower degrees of parallelization, the clock rate is expected
to be even less relevant.
However, if we also consider the higher parallelizations—which are not well

distinguishable on a linear scale [69]—we can observe that SuperMUC-NG performs
its computations quicker than the other machines. At the parallelization (ng =
64, np = 256), which is where the two lines of higher parallelizations meet, the
situation is quite different, and the maximum time measured for the solver update
is 0.19 s on JUWELS, 0.17 s on HAWK, and only 0.12 s on SuperMUC-NG. This is
also reflected in the substantially higher parallel efficiencies for SuperMUC-NG at
higher process counts. One can hypothesize that SuperMUC-NG’s hardware and/or
software stack are better geared towards higher degrees of parallelism, at the cost
of slight losses for low-parallelized jobs. But the exact reason for the higher run
times on SuperMUC-NG for all measured parts of the simulation for lower degrees
of parallelism, as well as the lower run times for higher degrees of parallelism still
remains an open question.
Overall, it is possible to execute DisCoTec simulations on up to full CPU-based HPC

system sizes, while the run time-to-solution generally decreases for higher process
counts. Still, the strong scaling efficiency deteriorates for higher parallelizations,
just as expected for this relatively small combination scheme.

5.4.2. Weak Scaling Along the Memory Limits

The aim of this section is to analyze DisCoTec’s scaling behavior on the memory limit
through weak scaling, to complement the strong scaling measurements. Accordingly,
the design criteria for the weak scaling setup were different from the strong scaling:

• The memory allotted to component grid data structures (for holding the
distribution function f) should be approximately 1GiB per core when the
entire scheme is distributed to 64 process groups.

• The scheme should have a high and uniform level difference L⃗ = ℓ⃗max − ℓ⃗min.

• The minimum level should be sufficiently high to allow for meaningful domain
decompositions, even on the smallest grids. In particular, the advection solver
needs at least two points (=̂ ℓ j ≥ 1) in each dimension j to compute its
derivatives.

116 5.4. DisCoTec with the Advection Solver: Comparing Four Systems

This resulted in the following sequence of scenarios, which can be run on paral-
lelizations (ng , np) of (1, 4) to (64, 2048).

Combination scheme for weak scaling, groups of np = 4

ℓ⃗min (1,1, 1,1, 1,1) # grids 66,605
ℓ⃗max (17, 17, 17,17, 17,17) # finest grids 20,349
total FG #DOF 1.37 × 1011 mem. finest grids 32MiB
total FG memory 1018.82GiB #DOF FG at ℓ⃗max 5.07 × 1030

. . .

Combination scheme for weak scaling, groups of np = 2048

ℓ⃗min (3,3, 3,2, 2,2) # grids 66,605
ℓ⃗max (19, 19, 19,18, 18,18) # finest grids 20,349
total FG #DOF 7.00 × 1013 mem. finest grids 16GiB
total FG memory 509.41TiB #DOF FG at ℓ⃗max 2.60 × 1033

Furthermore, the file-based combination should be tested and its impact on the
run time measured; At the same time, the assignment to process groups should be
optimized for low data transfer volumes with ChunkedOutgroupSGReduce (cf.
Algorithm 4.5). To achieve these two effects, the scheme ℐCT was first split with
the level-sum criterion Equation (4.10) into two (almost) equal partitions. Then,
each of these partitions was assigned to 32 groups with the METIS-based heuristic
partitioning, cf. Section 4.6.2, and the 64 resulting subsets were assigned to the
(up to) 64 groups. This means that, as part of each combination, the conjoint data
between the two initial partitions is written out and read back in, for measurement
of the I/O timings. (As part of a widely-distributed simulation with these partitions,
a reduction operation would take place at this stage of the algorithm.) The resulting
sizes of the conjoint sparse grid for this case can already be considerable: For the
np = 4 scenario, the conjoint sparse grid contains 500,037,632DOF or 3.73GiB, and
by the increase of resolution up to np = 2048, one obtains 256,019,267,584DOF or
1.86 TiB of conjoint data. (Note that the conjoint size required on ranks of the I/O
group will always be 125,009,408DOF or 953.75MiB per rank, or 238.44MiB per
core). Since the scenario design limits us to 64 groups, the higher process group
size np was selected differently on each of the systems, such that 64 groups of this
size would just fit if run on the system. This means that the higher np will be 256
for Fritz and JUWELS, 1024 for SuperMUC-NG, and 2048 for HAWK.

5. Scaling DisCoTec Up to Full HPC Systems and Beyond 117

The ChunkedOutgroupSGReduce algorithm used chunks of 64MiB per core,
or 256MiB per rank (nt = 4). Like in the strong scaling scenario, there were ten
solver time steps per combination step. This time, five intermediate combinations
were performed to save on core-hours, which are otherwise quickly used up at the
higher degrees of parallelization with weak scaling. Some further exceptions apply
to the measurements with the highest degrees of parallelism on JUWELS and HAWK:
The simulation for (ng = 64, np = 256) on JUWELS performed three combinations
with one solver time step (figures extrapolated for the plots), and the simulation
with (ng = 64, np = 2048) on HAWK could only complete two solver updates—and
one full combination in between—within the allotted time frame.
The graphs in Figures 5.14 to 5.17 show the timings measured for the solver

update and combination parts on each system, respectively. The marker color scale is
the same for all plots, and the linear range is constant within each of the parts (solver
and combination). The plots show the mean times with standard deviations across
the steps and all ranks. High variances in the solver timings can therefore already
indicate some load imbalance. To obtain the time for the combination without I/O,
only the basis transformation and the Reduce/Scatter parts of Algorithm 4.1 (i. e.,
the combination without file system interactions and the following broadcast as
described in Section 4.5.3) were considered. The weak scaling efficiencies displayed
in Figures 5.18 to 5.21 are computed as in Equation (5.3), dividing the mean time
required on ng · np ranks by the mean time required on (ng = 1, np = 4) ranks.
It can be seen from Figures 5.16 and 5.20 that some data points are missing for

JUWELS. These jobs were not able to execute as they ran out of memory on some
nodes, which can be attributed to the wrong pinning discussed in Section 5.4.1.
Again, the JUWELS measurements should generally be taken with a grain of salt
because of the pinning error, which was only corrected for the highest measured
degree of parallelism at (ng = 64, np = 256).
Overall, one can observe that the parallel efficiencies are now significantly higher

than in the strong scaling case, since the ‘work’ to be done per rank now stays
approximately constant.

118 5.4. DisCoTec with the Advection Solver: Comparing Four Systems

16
2561 4 16 64

0

100

200

processes
per group np

groups ng

so
lve
rt
im
e

16
2561 4 16 64

0

200

400

processes
per group np

groups ng

co
m
bi
na
tio
n
tim
e

50

100

150

200

Figure 5.14.: Weak scaling timings on Fritz: Mean times with standard deviations across ranks and steps.

16
2561 4 16 64

0

100

200

processes
per group np

groups ng

so
lve
rt
im
e

16
2561 4 16 64

0

200

400

processes
per group np

groups ng

co
m
bi
na
tio
n
tim
e

50

100

150

200

Figure 5.15.: Weak scaling timings on HAWK: Mean times with standard deviations across ranks and steps.

5.
S

caling
D

isC
oTec

U
p

to
FullH

P
C

S
ystem

s
and

B
eyond

119

16
256

1 4 16 64

0

100

200

processes
per group np

groups ng

so
lve
rt
im
e

16
256

1 4 16 64

0

200

400

processes
per group np

groups ng

co
m
bi
na
tio
n
tim
e

50

100

150

200

Figure 5.16.: Weak scaling timings on JUWELS: Mean times with standard deviations across ranks and steps.

16
2561 4 16 64

0

100

200

processes
per group np

groups ng

so
lve
rt
im
e

16
2561 4 16 64

0

200

400

processes
per group np

groups ng

co
m
bi
na
tio
n
tim
e

50

100

150

200

Figure 5.17.: Weak scaling timings on SuperMUC-NG: Mean times with standard deviations across ranks and steps.

120
5.4.

D
isC

oTec
w

ith
the

A
dvection

S
olver:

C
om

paring
FourS

ystem
s

16
2561 4 16 64

0

0.5

1

processes
per group np

groups ng

we
ak
sc
ali
ng
effi
cie
nc
y

so
lve
r

16
2561 4 16 64

0

0.5

1

processes
per group np

groups ng

we
ak
sc
ali
ng
effi
cie
nc
y

co
m
bi
na
tio
n
(w
ith
ou
tI
/O
)

0.2

0.4

0.6

0.8

1

Figure 5.18.: Weak scaling efficiencies on Fritz

16
2561 4 16 64

0

0.5

1

processes
per group np

groups ng

we
ak
sc
ali
ng
effi
cie
nc
y

so
lve
r

16
2561 4 16 64

0

0.5

1

processes
per group np

groups ng

we
ak
sc
ali
ng
effi
cie
nc
y

co
m
bi
na
tio
n
(w
ith
ou
tI
/O
)

0.2

0.4

0.6

0.8

1

Figure 5.19.: Weak scaling efficiencies on HAWK

5.
S

caling
D

isC
oTec

U
p

to
FullH

P
C

S
ystem

s
and

B
eyond

121

16
256

1 4 16 64

0

0.5

1

processes
per group np

groups ng

we
ak
sc
ali
ng
effi
cie
nc
y

so
lve
r

16
256

1 4 16 64

0

0.5

1

processes
per group np

groups ng

we
ak
sc
ali
ng
effi
cie
nc
y

co
m
bi
na
tio
n
(w
ith
ou
tI
/O
)

0.2

0.4

0.6

0.8

1

Figure 5.20.: Weak scaling efficiencies on JUWELS

16
2561 4 16 64

0

0.5

1

processes
per group np

groups ng

we
ak
sc
ali
ng
effi
cie
nc
y

so
lve
r

16
2561 4 16 64

0

0.5

1

processes
per group np

groups ng

we
ak
sc
ali
ng
effi
cie
nc
y

co
m
bi
na
tio
n
(w
ith
ou
tI
/O
)

0.2

0.4

0.6

0.8

1

Figure 5.21.: Weak scaling efficiencies on SuperMUC-NG

122
5.4.

D
isC

oTec
w

ith
the

A
dvection

S
olver:

C
om

paring
FourS

ystem
s

In particular, the solver update step tends to have a higher parallel efficiency than
the combination step. For the solver update step, the JUWELS system retains parallel
efficiencies as high as 60%, HAWK can retain 48% or more, and SuperMUC-NG still
has 45% of parallel efficiency.
Fritz’s relatively low 24% of parallel efficiency in the solver step can be explained

by the fact that the solver is comparably fast on a single rank already (possibly due
to the high clock rate, high memory bandwidth, and/or relatively large L3 cache per
socket). Consequently, the MPI communication overhead hits hard by comparison.
Still, the solver update step on Fritz at a parallelization of (ng = 64, np = 64) takes
only 119.14 s, which is less than on the other systems considered. Looking at the
‘highest parallelized’ data point common to all systems, (ng = 64, np = 256), the
solver update step is performed fastest on the JUWELS system (with corrected
pinning) at 92.30 s.
The minimum parallel efficiency for the combination step on the considered

systems is obtained for the highest-parallelized problems and approaches values of
≈ 12−19%. This observation comes of course with the qualifier that the combination
timings on HAWK are relatively long, due to the already observed effect of the L3
cache misses. The cache miss effect actually hits HAWK twice as hard in the
weak scaling scenario: Again, the strided accesses in the basis transformation step
require that cache lines have to be loaded again for the different dimensions of
basis transforms according to the unidirectional principle [162]. But added to this,
the horizontal reduction between the process groups uses chunks of 256MiB per
core complex, where the available L3 cache for the addition operation has only
16MiB. (The second effect was not yet visible in the strong scaling scenario as the
communication volume between groups would decrease for higher process counts.)
Excluding HAWK, the minimum parallel efficiencies for the combination step range
from ≈ 15− 19%.
Note that the 𝒪(log ng) scaling of the allreduce operation, which was a limiting

factor for the parallel efficiency in the strong scaling scenario, is generally not
significant in the weak scaling scenario, since the actual time spent on the allreduce
is low compared to the other parts of the combination step—as long as each core
has sufficient work to do in the hierarchization and dehierarchization as well as
data gathering and scattering between the SG and the component grids.
For a direct comparison between systems, Figure 5.22 shows the timings for the

solver update and combination steps—the same data as in Figures 5.14 to 5.17—on
all systems in a single plot. Most notably, the mean solver timings are relatively

5. Scaling DisCoTec Up to Full HPC Systems and Beyond 123

16
256

1
4

16
64

0

50

100

150

200

processes
per group np

groups ng

ru
n

Fritz
JUWELS
HAWK

SuperMUC-NG

40

60

80

100

120

140

160

16
256

1
4

16
64

0

200

400

600

processes
per group np

groups ng

co
m
bi
ne
No
IO

Fritz
JUWELS
HAWK

SuperMUC-NG

50

100

150

200

250

300

350

400

450

500

Figure 5.22.: Weak scaling timings on all four machines, linear scale, for compar-
ison: Mean times with standard deviations across ranks and steps.
Area colors and marker shapes are set the same way as in Figures 5.14
to 5.21.

124 5.4. DisCoTec with the Advection Solver: Comparing Four Systems

similar between the systems and stay rather constant between the different degrees
of parallelism.
The lower parallel efficiencies of the combination step should be tolerable, espe-

cially if we consider that in some scenarios, it is possible to run many run steps per
combination step without a loss in accuracy, and also that typical Vlasov solvers will
have a higher computational complexity and run times than the advection solver
used here, cf. GENE in Section 5.3.1. For this setting already, with a relatively
simple solver and ten solver steps per combination, the timings of the combination
part are lower than the solver updates (with HAWK forming an exception here for
the higher core counts, and SuperMUC-NG only for the three highest parallelized
runs).

5.4.3. Load Imbalance Through Communication-Optimized Grid Assignment

On the ‘right’ of the solver timing plots (the respective first plot in Figures 5.14
to 5.17 and 5.22), which corresponds to 64 groups, one can observe relatively
high standard deviations (as indicated by the error bars) in both the solver and
combination steps. This is due to a load imbalance between the process groups,
which can be seen from Figure 5.23, where the load imbalances for each measured
scenario are computed according to Equation (5.4).
By contrast, on a single process group, the load appears perfectly balanced. This

is expected: Even if one of the cores would, by random chance, take very long
to compute its part of the solver update, the imbalance would be hidden by the
necessary implicit synchronization within each component grid’s solver step, which
‘drags’ all the other ranks in the group to take the same time.
One can observe that the load imbalance worsens significantly when going from

four to eight process groups, and further increases for 16 process groups, with load
imbalances of 1.6 and higher. This is an indication that the group assigned the
highest load is somewhere between group numbers 9 and 16. For the right side of
the plot, the load imbalance tends to increase, which is due to the tendency of the
mean solver update time to increase, as can be seen in Figure 5.22.
However, these effects were not observed for the strong scaling scenario (cf.

Figures 5.5 to 5.8 and 5.13), where the load imbalance was significantly lower—
although, in theory, the scarcity of work could actually worsen the load imbalance.
A significant difference between the two scenarios was the ‘naive’ DOF-only assign-
ment of tasks to process groups for the strong scaling versus the METIS-optimized
assignment for the weak scaling. As discussed in Algorithm 4.4, the optimized

5. Scaling DisCoTec Up to Full HPC Systems and Beyond 125

16
256

1
4

16
64

1

1.2

1.4

1.6

1.8

2

2.2

processes
per group np

groups ng

loa
d
im
ba
lan
ce

L

Fritz
JUWELS
HAWK

SuperMUC-NG

1

1.2

1.4

1.6

1.8

2

Figure 5.23.: Load imbalance, cf. Equation (5.4), for the same data points as
present in Figure 5.22.

assignment can lead to significant reductions in the communication volume of the
allreduce between process groups in the combination. But evidently, the same
optimization can lead to imbalances for the solver update step.
To validate this proposition, one of the simulations was re-run with the naive

assignment. Figure 5.24 shows a comparison of the run times for the two different
assignment strategies. In fact, the variance is visibly reduced, while the mean time
stays approximately the same for the solver update scheme. This difference can be
explained by the contiguous patches of the component grids in the combination
scheme that is generated by the METIS-based assignment: The group that is as-
signed a corner of the simplex will also be assigned the adjacent grids and further
neighbors—and the corners as well as their neighbors have the highest anisotropies
of all the grids in the combination scheme ℐCT. High anisotropies in the grid lead
to higher communication costs in the solver (this assumption was also used for the
run time modelling in [76]). Overall, this leads to an accumulation of long-running
grids in only a few groups, which is the reason for the higher load imbalance.

126 5.4. DisCoTec with the Advection Solver: Comparing Four Systems

So
lve
r

Hi
era
rch
ize

Re
du
ce/
Sc
att
er

De
hie
rar
ch
ize

0

50

100

150

ru
n
tim
e[
s]

(a) . . .with the METIS-optimized as-
signment, cf. Section 4.6.2

So
lve
r

Hi
era
rch
ize

Re
du
ce/
Sc
att
er

De
hie
rar
ch
ize

0

50

100

150

ru
n
tim
e[
s]

(b) . . .with round-robin assignment
(and balanced DOF for the lower
diagonals)

Figure 5.24.: The scenario (ng = 64, np = 256) run on SuperMUC-NG with different
assignments of component grids to process groups. The bars denote
the mean times required for different parts of Algorithm 2.1, the error
bars denote the respective standard deviations.

Of course, this change also affects the communication volume of the combina-
tion step: For the naive assignment, the size of the sparse grid that needs to be
allocated increases, from formerly 0.99GB per core to 1.46GB per core. In the
ChunkedOutgroupSGReduce variant with a chunk size of 64MiB per core, this
corresponds to 22 chunks (and consecutive calls to MPI_Allreduce) as opposed
to 15 chunks for the METIS-optimized assignment. The overall time required for
ChunkedOutgroupSGReduce is labelled ‘Reduce/Scatter’ in Figure 5.24, and
the time required changes only within the standard deviation—which is less than
anticipated.
Conclusively, since the transfer between the groups is relatively cheap at this

level of parallelization, the naive assignment is preferable for balancing the load
in the (significantly more expensive) solver update step. This naive assignment
effectively transforms the ChunkedOutgroupSGReduce algorithm into a chunked
sparse grid reduce algorithm, since the main diagonal of the scheme is distributed
in round-robin manner, and it becomes impossible for one group to get assigned
an entire patch of neighboring grids in the main diagonal (a d − 1 dimensional
simplex).

5. Scaling DisCoTec Up to Full HPC Systems and Beyond 127

Of course, the situation is going to be different when the combination takes places
across low-bandwidth networks where communication volumes are very important,
such as for the widely-distributed setup in Section 5.5.

5.4.4. I/O Timings for File-Based Combination

As previously mentioned, one of the goals of the experiments was the evaluation of
the I/O timings on the different systems for the different degrees of parallelization.
Figures 5.25 to 5.28 show themean timings required to write and read the conjoint

sparse grid file as part of the file-based combination. Recall that the conjoint file
size is going to depend linearly on the process group size np, with sizes ranging
from about one GiB to two TiB. Fritz and HAWK operate on Lustre file systems,
while the other two systems use the proprietary IBM GPFS, compare Table 5.1.
The most striking fact about the measurements can be seen from the value ranges,

which are adjusted to each plot: Writing and reading on HAWK can take a lot longer
than on the other systems. Admittedly, the data points in front of the plots mean
an I/O volume of ≈ 2TiB for HAWK, while it is 1 TiB for SuperMUC-NG and only
0.25 TiB for Fritz and JUWELS. On the other hand, one could argue that file systems
on larger machines should correspondingly have higher parallel performance. In
particular, even for these data points where we know all systems’ timings, such as
(ng = 1, np = 64) ranks, the difference is obvious.
Like mentioned in Section 4.5.3, the placement of I/O ranks was specifically

optimized for HAWK, where the link from the compute racks to the file system is
a known bottleneck. Potentially, the effect of ‘spreading out’ the I/O ranks can be
observed in the HAWK reading times for the larger process groups, which almost
linearly decrease for more than two groups, as more and more racks / file system
connections are used. Despite this optimization, the achieved read and write rates
are not satisfactory for HAWK in comparison to the other machines, which all
operate on relatively similar value ranges.

128 5.4. DisCoTec with the Advection Solver: Comparing Four Systems

16
2561 4 16 64

0

20

processes
per group np

groups ng

wr
ite
SG
tim
e

5

10

15

20

16
2561 4 16 64

0

10

processes
per group np

groups ng

re
ad
SG
tim
e

5

10

Figure 5.25.: I/O timings on Fritz: Mean times with standard deviations across combination steps and I/O ranks.

16
2561 4 16 64

0

200

processes
per group np

groups ng

wr
ite
SG
tim
e

100

200

16
2561 4 16 64

0

100

200

processes
per group np

groups ng

re
ad
SG
tim
e

50

100

Figure 5.26.: I/O timings on HAWK: Mean times with standard deviations across combination steps and I/O ranks.

5.
S

caling
D

isC
oTec

U
p

to
FullH

P
C

S
ystem

s
and

B
eyond

129

16
256

1 4 16 64

0

20

40

processes
per group np

groups ng

wr
ite
SG
tim
e

10

20

30

16
256

1 4 16 64

0

5

10

processes
per group np

groups ng

re
ad
SG
tim
e

5

10

Figure 5.27.: I/O timings on JUWELS: Mean times with standard deviations across combination steps and I/O ranks.

16
2561 4 16 64

0

20

40

60

processes
per group np

groups ng

wr
ite
SG
tim
e

10

20

30

16
2561 4 16 64

0

5

10

processes
per group np

groups ng

re
ad
SG
tim
e

5

10

Figure 5.28.: I/O timings on SuperMUC-NG: Mean times with standard deviations across combination steps and I/O ranks.

130
5.4.

D
isC

oTec
w

ith
the

A
dvection

S
olver:

C
om

paring
FourS

ystem
s

5.5. Towards Widely-Distributed Simulations at Extreme Scales

Section 4.5 discussed the possibility of connecting two HPC systems to run a widely-
distributed simulation. In [138], the author of this thesis and co-authors presented
the results of distributing a—comparably small—combination scheme between
the two systems HAWK and SuperMUC-NG. The scheme was designed to yield
(relatively few) component grids of large size:

Combination scheme for widely distributed [138], 8 groups of np = 8192

ℓ⃗min (4, 4, 4,3, 3,3) # grids 2975
ℓ⃗max (12, 12, 12,11, 11,11) # finest grids 1287
total FG #DOF 9.88 × 1011 mem. finest grids 4GiB
total FG memory 7.19TiB #DOF FG at ℓ⃗max 5.90 × 1020

The paper showcases that the distribution not only works, but also that tolerable
transfer rates are going to be achievable for large-scale scenarios. Within a system,
sparse grid reduce with the static balanced round-robin approach was used to
assign component grids to process groups. The simulations were performed using
only MPI, i. e., without hybrid OpenMP parallelization. The two approaches of
splitting the combination scheme between the systems discussed in Section 4.6
were evaluated and found to give very similar results for the symmetric case, and
only the METIS-based splitting can be used for the asymmetric case, which results
in lower transfer volumes. The bandwidth and stability of the (UFTP or other file
exchange) connection were identified as pivotal to the performance of the widely-
distributed simulation. Also, it became apparent that a good load balance between
the systems has to be achieved, and that transfer speeds have to be optimized, to
avoid unnecessary idle times.
However, since HAWK was found to lack in I/O performance for large file sizes

and high process counts, cf. Section 5.4.4, the results of the experiments between
HAWK and SuperMUC-NG are not presented here in detail, but only in comparison
to a more recently run setup, and the interested reader is referred to the original
publication [138].
This section explores the possibility of connecting a different pair of systems,

SuperMUC-NG and JUWELS, to perform a widely-distributed simulation. Since the
two systems have a very similar processor architecture and the same file system
type, load balance should be easier to achieve. Also, the OpenMP hybrid parallelism
is employed, with nt = 4 cores per rank, to save on MPI memory overheads, which

5. Scaling DisCoTec Up to Full HPC Systems and Beyond 131

otherwise were especially limiting on the SuperMUC-NG system. Since the size
of the systems is rather unsymmetrical—SuperMUC-NG has approximately three
times as many cores/nodes/GB of main memory as JUWELS—the METIS-based
assignment of the component grids to the systems is used again.
The target scenario for groups of 512 ranks or 2048 cores

Combination scheme for widely distributed, 163 groups of np = 512

ℓ⃗min (3,2, 2,2, 2, 2) # grids 88,571
ℓ⃗max (20, 19, 19,19, 19, 19) # finest grids 26,334
total FG #DOF 4.57 × 1013 mem. finest grids 8GiB
total FG memory 332.55TiB #DOF FG at ℓ⃗max 4.15 × 1034

requires 163 process groups, if we want to approach the (experimentally validated)
limit of fitting ≈ 1.1GB of component grid data per core. Of these 163 groups, a
maximum of 148 can be placed on SuperMUC-NG, and up to 53 on JUWELS, when
the systems are used almost entirely at the same time. By assigning the full 148
groups to SuperMUC-NG and the remaining 15 groups to JUWELS, a conjoint sparse
grid transfer volume of only 612GB can be achieved.
Recall that when using METIS-based assignments of grids to groups, only little

effect was found for the run time of the combination step as opposed to random
assignment, cf. Section 5.4.3. This is different here, as the limited bandwidth of
the widely-distributed combination calls for reduced combination volumes. With
the naive assignment of the scheme’s component grids to HPC systems, the transfer
volume would be 6.82TiB for the target scenario, which would translate to more
than 12 times higher UFTP transfer times. This illustrates the necessity of optimizing
the splitting of the combination scheme ℐCT between the systems.
To summarize the data sizes: For running the entire target scenario, a total of

332.55TiB of full grid data is required to even store the necessary data for the
six-dimensional unknown field uCT. Of this data, only 612GB is required to be
transferred between the systems as conjoint data in a widely-distributed simulation.
If instead, one wanted to perform amonolithic simulation at the maximum resolution
level of ℓ⃗max, one would have to work on 256 · 2110B, or 332,307 quettabyte which
is the largest currently defined binary unit. This size is too much to be stored on
any media currently available and by far too much for the main memory of all the
Top500 [153] combined.

132 5.5. Towards Widely-Distributed Simulations at Extreme Scales

To prepare DisCoTec for such extreme simulation scales, one fifteenth of the
scheme was run on 10th August 2023, with ten process groups on SuperMUC-NG
and one process group on JUWELS, and the results are evaluated in the remainder
of the section. Although only a part of the simulation was run, the conjoint sparse
grid was written out at the full file size of 612GB to test the performance of the I/O
operations and the UFTP transfer, in particular for potentially concurrent accesses
to the GPFS file systems. Conclusively, the transfer timings can be considered
representative of the target scenario; Furthermore, the feasibility of scaling up to
the full system sizes of both machines was already demonstrated in Section 5.4.2.

Overheads of Widely Distributed Weak Scaling

This paragraph analyzes the results of the new scenario in the light of the previous
results, and assesses the changes and likely causes.
For the previous experiment [138], the DisCoTec simulations on HAWK and

SuperMUC-NG were run on groups of 8192 ranks (equal to cores, since OpenMP
was not used). Up to eight groups were used, with proportionally sized partitions
of the combination scheme. As the new experiment used ChunkedOutgroupS-
GReduce, more main memory per core could be used for the component grid
data—independent of the group size, which was set to 512 ranks (or 2048 cores)
per group. Ten groups were used for SuperMUC-NG and one group for JUWELS. The
difference in the component grid memory per core—1047MiB per core as opposed
to previously 115MiB per core—meant that many more tasks could be assigned to
a single group: Up to 588 tasks were now assigned per group (out of 81680 in the
target scenario) as opposed to previously up to 376 tasks per group. At the same
time, the grid part held by each core would be eight times as large (factor 2 from
the combination scheme itself, factor 4 from the smaller group size). To account for
this, the number of advection solver time steps per combination step was reduced
from 300 to 36.
For both experiments, the transfers were triggered from the UFTP client programs

installed on SuperMUC-NG’s gateway nodes. The size of the conjoint sparse grid
files was 76GB and 612GB, respectively.
Figure 5.29 shows the time line of the different parts in the resulting algorithm.

5. Scaling DisCoTec Up to Full HPC Systems and Beyond 133

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

SuperMUC-NG

HAWK

UFTP

UFTP

UFTP

UFTP

t [s]

Solver Update System-local Combine Write Conjoint UFTP Read Conjoint

(a) Symmetrical partitioning of the combination scheme between HAWK and SuperMUC-NG, with 4 groups on SuperMUC-NG
and 4 groups on HAWK.

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0
1,

10
0

1,
20

0
1,

30
0

1,
40

0
1,

50
0

1,
60

0
1,

70
0

1,
80

0
1,

90
0

2,
00

0
2,

10
0

SuperMUC-NG

JUWELS

UFTP

UFTP

t [s]

Solver Update System-local Combine Write Conjoint UFTP Read Conjoint

(b) First two (and only) solver steps in the widely-distributed scenario between SuperMUC-NG and JUWELS. The bar lengths
are obtained by extracting the maximum time taken by any rank.

Figure 5.29.: Timelines of the first few time steps in the widely-distributed simulations.

134
5.5.

Tow
ards

W
idely-D

istributed
S

im
ulations

atE
xtrem

e
S

cales

If one wants to directly compare the widely-distributed to the system-local setting,
anything that is not part of the ‘Solver Update’ or ‘System-local Combine’ steps
(the red and blue fields in the figure) can be considered an overhead of the widely-
distributed approach. In particular, these are the times required for writing the
conjoint sparse grid, and for waiting for the UFTP-transferred file to arrive, for
reading, and for reducing the received with the system-local data. When comparing
the two scenarios, it is important to keep in mind that the newer simulation operated
on approximately nine times as many DOF per core, and the UFTP transfer volume
was approximately eight times as high.
As one can see from Figure 5.29b, the challenges with the new scenario are the

same ones as already identified in [138]: load imbalance between the systems and
low transfer rates.
For the recent experiment, the load imbalance between the system can be ex-

plained by load imbalance within the SuperMUC-NG system: Unfortunately, the
imbalance introduced by the METIS-based assignment on the process-group level,
cf. Section 5.4.3, had not yet been identified and was also used in this simulation.
While the maximum solver update time on SuperMUC-NG was 936 s—resulting in
a load imbalance of ≈ 1.55—the mean time was only 605 second, very similar to
JUWELS’ mean time of 582 on SuperMUC-NG. As discussed in Section 5.4.3, this
issue can be resolved (in a statistical sense) by a more naive assignment of tasks to
process groups. This had in fact been used for the previous experiment, which led
to negligible load imbalance within the systems.
The timings in Figure 5.29b can be used to derive an upper-bound estimate on the

DisCoTec timings for the whole target scenario: When using the naive assignment,
the solver update time should be close to the mean time of 605 s on SuperMUC-NG
for both machines, as this part is going to stay embarrassingly parallel as more groups
are added. (The mean time on SuperMUC-NG can be considered more expressive
than the JUWELS result, which was not averaged over several process groups and
therefore likely has a higher bias). The same considerations hold for the basis change
operations with 12 s for the hierarchization and 21 s for the dehierarchization.
The remaining part of the system-local combination step, the reduce and scatter

operations, took 32 s on SuperMUC-NG, and can be expected to take four times as
long per chunk for the full target scheme, as the number of groups is increased by a
factor of ≈ 15 and the scaling in the chunked reduction operation can be expected
to be approximately logarithmic. However, there is a catch: By considering the
full combination scheme with round-robin assignment, the number of chunks that

5. Scaling DisCoTec Up to Full HPC Systems and Beyond 135

need to be communicated is going to significantly increase—after all, the current
measurements were optimized to keep as many subspaces as possible ‘ingroup’,
which will necessarily become ‘outgroup’ through the naive assignment. Conclusively,
the current number—7 chunks per combination step—can get as high as 52 chunks
per combination step. The effects of this are hard to predict, since the horizontal
reduction patterns may lead to a certain degree of balancing on the interconnect,
which could alleviate the increase in communication volume. Still, an upper-bound
estimate would be a factor of ≈ 7.5 increase in the time required for the reduce and
scatter operations. Considering the I/O figures for SuperMUC-NG and JUWELS in
Section 5.4.4, one can assume that the write and read times for a file of the same
size and groups of the same size will be in the same order of magnitude, with a
potential for decreasing read times for more than one group on JUWELS. Overall,
this leads to a (DisCoTec-only) time of 27min per time step in the worst case for
the target scenario—and likely less—where at least 37% of the time can be spent
on the solver update itself.
The latencies induced by the UFTP transfers are amore difficult problem to address.

Particularly for transfers going out of JUWELS, high variances were observed, with
some UFTP threads dragging the entire file transfer. These are at least partly
amplified by the underlying TCP protocol: As soon as any packet loss occurs, the
transfer rate is reduced significantly, and the respective thread can take a long time
(several minutes) to recover its initial bandwidth. Additional challenges are posed
by the shared nature of the media, in particular the UFTP client and server nodes
which can be used by other users at the same time.
Of course, there are potential technical solutions to this, namely

1. Compression of the conjoint sparse grid file before transfer could reduce the
transfer volume and thus the transfer time.

2. GridFTP would be another file exchange tool which can use the UDT protocol in
place of TCP, where packet loss should not lead to the same massive bandwidth
cuts.

3. Investigating the firewall and network settings and optimizing the transfer
trigger sites accordingly may also help to improve the transfer rates.

136 5.5. Towards Widely-Distributed Simulations at Extreme Scales

Furthermore, at an organizational level, the prioritization of production transfers
over storage transfers could be an answer to the issue of low transfer rates resulting
from competing transfers on the same infrastructure. Conclusively, faster transfers
are possible, and the timings plotted in Figure 5.29 should be considered mere
snapshots of the current state of widely-distributed simulations.
These measurements allow for a positive assessment of future widely-distributed

simulations at scale.

5. Scaling DisCoTec Up to Full HPC Systems and Beyond 137

Ch
ap
te
r 6

Conclusion and Outlook: Towards
Exascale Computations for
Net-Positive Fusion Energy

Although a great tool for plasma fusion science, the numerical simulation of confined
plasmas poses a challenge. This is an undisputed fact in both the controlled fusion
research [20, 107] and the HPC [35] communities. The reason for this is the Curse
of Dimensionality, which is a result of the high dimensionality of the Vlasov equation
and the fine scales that need to be resolved for high-fidelity plasma simulations.
The sparse grid combination technique is one potential solution to this problem:

It adds a multiscale approach with embarrassing parallelism to existing grid-based
solvers. The CT can achieve similar accuracy as the solver when run on the full
grid at a fraction of the cost, in both compute time and main memory. This holds
especially true for higher-dimensional problems, of which the Vlasov equation is
one example.
Some numerical and computational aspects in the sparse grid combination tech-

nique were further developed as part of this work, and the results are promising:
The accuracy was increased and numerical stability as well as conservation of mass
were introduced to turbulent plasma simulations with the CT. Due to the loose
coupling, the CT allows one to scale up to full HPC systems, and even beyond that,
to two HPC systems. At the same time, however, there is a plethora of scientific and
technical questions that remain to be answered.
This chapter looks at both the contributions of and the open challenges arising

from this work.

139

6.1. Stable and Moment-Conserving Simulations at the Memory
Limit of More than Entire HPC Systems

Chapter 2 introduced the hierarchical hat basis from the perspective of biorthogonal
wavelets, which is relatively uncommon in the sparse grid literature. However, this
viewpoint helps to understand the nodal spaces and increment spaces of the multi-
scale construction in a more generalized way: In wavelet terms, the nodal functions
become scaling functions, hierarchical increments become wavelet coefficients etc.
And, importantly, the hat function can be replaced for instance by mass conserving
basis functions. This trades the hierarchical hat function’s interpolating property
for other desirable properties: accuracy, conservation, and stability of the basis
functions. Based on these multiscale functions, one can construct sparse grid spaces,
which can very efficiently represent higher-dimensional functions by allowing for
very anisotropic function spaces, while omitting function spaces that are very finely
resolved in each dimension. The sparse grid combination technique is introduced as
a method that can bridge the gap between the ‘ordinary’ world of full grid spaces
and the multiscale world of sparse grid spaces. Very closely connected to Smolyak
quadrature, it achieves this by combining multiple coarsely resolved full grids—the
component grids—into a sparse grid with a combination formula derived for mutual
error cancellation of the full grids. For PDE solvers, the time-stepping CT is of
particular interest.
Chapter 3 shows the effects of using the mass-conserving basis functions for the

CT in the context of three different setups: Some simple two-dimensional examples
that illustrate mass loss and instability with the hat basis, the advection equation
in two to six dimensions (where the accuracy of the results improves significantly)
and the Vlasov solver SeLaLib. The SeLaLib simulations in particular showcase
that the numerical instabilities encountered with Vlasov solvers in the CT can be
overcome by using mass-conserving basis functions. Although the resolutions in the
combination schemes for these simulations were not particularly adapted to the
specific problem, the accuracy of the results is already comparable to the isotropic
full grid solution at the same memory footprint.
The algorithms and code enabling the simulations in this thesis are presented in

Chapter 4: The DisCoTec framework adds another level of (distributed-memory)
parallelism on top of existing solvers’ parallelism, which is particularly useful for
achieving scalability when considering dataflow. Over the course of the presented
research, DisCoTec was open-sourced and further developed. The most notable

140
6.1. Stable and Moment-Conserving Simulations at the Memory Limit of More than Entire

HPC Systems

additions are the mass-conserving basis transforms, three additional distributed
reduction operators, optimizations for low memory overhead at scale, and highly ef-
ficient parallel sparse grid I/O, which can be used for widely-distributed simulations
that synchronously span more than one HPC systems.
Chapter 5 assesses DisCoTec’s scalability. The gyrokinetic code GENE was iden-

tified to not be the best choice for the CT with DisCoTec, due to the very high
memory requirements of only a few of the GENE instances. However, the lessons
learned from GENE helped to design comprehensive strong and weak scaling sce-
narios for DisCoTec applied to the six-dimensional advection problem. A variety
of new features were used to scale the program up to four full German supercom-
puting systems. In particular, weak scaling showcased that this can be achieved
while scratching the memory limits of the supercomputers, and using more than
half of the available memory for the full grid simulation instances. And even be-
yond full systems, DisCoTec was put to practical use in performing synchronous
simulations on two sets of two supercomputers together (the widely-distributed
CT). This approach is particularly interesting for federated infrastructure such as
the German national Tier-0/1 systems, since only a small fraction of simulation
data needs to be exchanged between systems. Two algorithms to derive especially
communication-avoiding partitionings of the combination schemes were presented
as part of this work in Section 4.6. Pairings of the HAWK and SuperMUC-NG as well
as the JUWELS and SuperMUC-NG systems were used to perform these simulations
and to extrapolate run times for extreme scale scenarios surpassing the memory
available on a single system.
Accordingly, the challenges of conservation and stability as well as scalability up

to and beyond full system sizes at the memory limit were addressed in this work.

6.2. Future Research Directions

Some insights in this work were eased through the realization that the hierarchical
hat functions are only one possible basis function to construct a sparse grid space, and
that all compactly supported wavelets may be used to construct sparse grids. To allow
this, one has to accept that the resulting transformations do not necessarily have
the interpolating property, which e. g., allows one to look at piecewise polynomial
functions as sparse grid spaces through Alpert multiwavelets [3, 157]. Further
exploring possible multiscale functions for sparse grids and the CT, starting with the
original CDF wavelets [25] and (possibly problem-tailored) lifting wavelets [154]

6. Towards Exascale Computations for Net-Positive Fusion Energy 141

as well as Alpert multiwavelets, is a very promising direction for future research.
An example of a problem-tailored transformation could be the adaptation of the
mass-conserving basis functions to the gyrokinetic coordinate system, to conserve
the mass in gyrokinetic solvers used with the CT. Also, the full-weighting basis
function hints at how intricately biorthogonal wavelets and well-known geometric
multigrid methods could be connected. Using wavelet transforms for multigrid
restriction and prolongation operators could lead to improved stability, accuracy,
and conservation for these methods as well.
Another important aspect that could not be explored in this work is adaptation in

the time-stepping CT. Particularly for Vlasov solvers, dynamic adaptation of the grid
discretization (based on spatially-adaptive CT with block-structured grids) could
give a vital boost in simulation accuracy for a given amount of compute time and
memory. Considering the error characteristics of the CT, it could also make sense to
detect how much the advection directions in the simulation change, and to adapt
the combination frequency accordingly. This would mean that during the initial
linear phase of a turbulence simulation, only few combinations would have to be
performed, while during the turbulent nonlinear phase, more combinations would
be performed, saving time on these parts of the simulation that tend to be of low
interest to domain scientists.
Developing the necessary data structures for arbitrary wavelets and adaptivity

in a distributed setting poses a challenge, yet at the same time, once such a piece
of code exists it would have a great potential to boost plasma simulation research.
Quite unfortunately, great open source tools this implementation could build upon,
such as preCICE [22] and p4est [18], are currently limited to only two or three
spatial dimensions. At the same time, some interesting advances on adaptive domain
decompositions for the CT are already being developed [62].
A promising recent research direction, which evolved parallel in time to the work

presented in this thesis, is spanned by low-rank methods [2, 40, 41]. Low-rank
methods decompose the distribution function as well as the operations into low-rank
representations for the space and velocity dimensions, respectively. It would be
interesting to investigate the use of hierarchical basis constructions in the low-rank
discretizations, which could lead to straightforward sparsification and adaptivity in
the low-rank setting.
The approaches presented in the thesis can (and should) be applied to other

Vlasov solvers, such as Gysela [57, 58], hyper.deal [114], or SLDG [39, 106], the
latter two of which use Discontinuous Galerkin methods and could make use of

142 6.2. Future Research Directions

Alpert multiwavelets as multiscale functions. To use existing codes with DisCoTec,
it needs to be made sure that the main memory scaling of the solver is not too
anisotropic—as was the case with GENE, cf. Section 5.3.2.
Lastly, the widely-distributed CT is a tool that is now available to perform Vlasov

simulations at scales that are larger than the memory of a single supercomputer, to
achieve resolutions that are currently unheard of.

Reproducibility References

The full specifications and outputs for the results presented in Sections 3.4 and 3.5.1
are published in [130].
The GENE experiments described in Section 5.3 were conducted on Dis-

CoTec57dceaa2 with GENEd19569eb (to be found in fork https://gitlab.
mpcdf.mpg.de/g-michaelobersteiner/gene-dev.git). The scripts to gener-
ate these scenarios along with the GENE parameter specification can be found
in [129], in the folder gene_distributed_scaling. Some of the raw output data
is also available in this thesis’ reproducibility data repository [131].
The advection’s strong scaling, evaluated in Section 5.4.1 was run with Dis-

CoTec, commit ba519e39, executable combi_workers_only. The weak scaling,
Section 5.4.2, was run with commit 4b4cea5f, executable
distributed_third_level_worker_only. The widely-distributed simulations
from Section 5.5 were performed with commit 385e7230 of DisCoTec, executable
distributed_third_level_worker_only. The assignments of component grids
to process groups were generated with commit dcf6d76d of [128].
The full input and output data for the measurements in Sections 5.4 and 5.5 is

available in the data repository [131] for reproducibility.
The data to reproduce the scaling measurements for DisCoTec + SeLaLib pre-

sented in Appendix A.1 is available in [133].

6. Towards Exascale Computations for Net-Positive Fusion Energy 143

https://gitlab.mpcdf.mpg.de/g-michaelobersteiner/gene-dev.git
https://gitlab.mpcdf.mpg.de/g-michaelobersteiner/gene-dev.git

Acknowledgements

This work was supported by the German Research Foundation (DFG) through the
Priority Programme 1648 Software for Exascale Computing (SPPEXA).
We acknowledge the support by the Stuttgart Center for Simulation Science

(SimTech).

HPC Systems

The authors gratefully acknowledge the scientific support and HPC resources pro-
vided by the Erlangen National High Performance Computing Center (NHR@FAU)
of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) under the NHR
project a105cb. NHR funding is provided by federal and Bavarian state authorities.
NHR@FAU hardware is partially funded by the German Research Foundation (DFG)
— 440719683.
The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V.

(www.gauss-centre.eu) for funding this project by providing computing time
on the GCS Supercomputer HAWK at Höchstleistungsrechenzentrum Stuttgart
(www.hlrs.de). The simulations were performed on the national supercomputer
HPE Apollo Hawk at the High Performance Computing Center Stuttgart (HLRS)
under the grant number 42247.
The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V.

(www.gauss-centre.eu) for funding this project by providing computing time on
the GCS Supercomputer JUWELS at Jülich Supercomputing Centre (JSC).
The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V.

(www.gauss-centre.eu) for funding this project by providing computing time
on the GCS Supercomputer SuperMUC-NG at Leibniz Supercomputing Centre
(www.lrz.de).

145

www.gauss-centre.eu
www.hlrs.de
www.gauss-centre.eu
www.gauss-centre.eu
www.lrz.de

Tooling

This thesis was typeset with LATEX/pdfLATEX and is based on the excellent scientific
thesis template [105]. GitHub Copilot [55] was used for text and LATEX assistance.
The author would like to highlight some particularly instrumental LATEX packages

for this work: The siunitx package [171] allowed using binary units as well as
pseudo-units such as ‘%’ or ‘DOF’ in a way very suitable for this topic. Most of
the graphics are based on TikZ [156]. In particular, all plots were generated with
pgfplots [47]. The plots Figures 3.1 to 3.3, 5.5 to 5.21, 5.23 and 5.25 to 5.28
further employ the perceptually uniform CET-R3 color map [19, 98]. For single
images, sources and tools may further be given in the captions.

People

Thanks to Stefan Zimmer, Julian Valentin, Gregor Daiß, Raphael Leiteritz, Mar-
cel Breyer, Alexander Van Craen, Peter Münch, Katharina Kormann, Alejandro
Banon Navarro, Felix Wilms, Tilman Dannert, Hans-Joachim Bungartz, Frank Jenko,
Michael Griebel, Mikael Simberg, John Biddiscombe, Christoph Niethammer, Philipp
Offenhäuser, Michael Obersteiner, and Johannes Rentrop for fruitful discussion and
collaboration.
I had great fun co-organizing two SPPEXA women’s workshops, which I attribute

to my partners in this endeavor, Sarah Huber and Neda EbrahimiPour. I would also
like to thank Marcel Hurler, Marvin Dostal, Marius Göhring, Benjamin Castellaz
and Maureen Kosiol for doing neat student research under my supervision. Also,
thanks to Maureen Kosiol for coining the term ‘decombination’.
I am utterly grateful for the support received at the various HPC sites, and I

would like to highlight in particular our projects’ main contact persons: Martin
Bernreuther (HLRS), Martin Ohlerich (LRZ), Bernd Schuller (JSC), and Thomas
Zeiser (NHR@FAU).
Special thanks to my advisor Dirk Pflüger, who taught me so many things I did

not even know I should know, and who mentored me through the toughest times.
And of course to my family and friends for their kindness and support.

146 6.2. Future Research Directions

Bibliography

[1] J.M. Alam, N. K. .-. Kevlahan, O. V. Vasilyev. ‘Simultaneous space–time adaptive
wavelet solution of nonlinear parabolic differential equations’. In: Journal of Com-
putational Physics 214.2 (May 20, 2006), pp. 829–857. url: https://www.
sciencedirect.com/science/article/pii/S0021999105004754 (visited
on 06/16/2023) (cit. on p. 39).

[2] F. Allmann-Rahn, R. Grauer, K. Kormann. ‘A Parallel Low-Rank Solver for the Six-
Dimensional Vlasov–Maxwell Equations’. In: Journal of Computational Physics 469
(Nov. 15, 2022), p. 111562. url: https://www.sciencedirect.com/science/
article/pii/S0021999122006246 (visited on 09/25/2023) (cit. on p. 142).

[3] B. K. Alpert. ‘A class of bases in Lˆ2 for the sparse representation of integral opera-
tors’. In: SIAM journal on Mathematical Analysis 24.1 (1993), pp. 246–262 (cit. on
pp. 24, 38, 141).

[4] G. Avila, T. Carrington Jr. ‘A multi-dimensional Smolyak collocation method in
curvilinear coordinates for computing vibrational spectra’. In: The Journal of Chem-
ical Physics 143.21 (Dec. 2, 2015), p. 214108. url: https://doi.org/10.1063/
1.4936294 (visited on 05/08/2023) (cit. on p. 25).

[5] A. Baker. Nuclear Fusion Finally Finds Its Place in the Sun. Time. Nov. 24, 2021.
url: https://time.com/6123622/nuclear-fusion-viability/ (visited on
05/02/2023) (cit. on p. 11).

[6] P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler, S. Kumar, E. Lusk, R. Thakur,
J. Träff. ‘MPI on Millions of Cores’. In: Parallel Processing Letters 21 (Mar. 1, 2011),
pp. 45–60 (cit. on p. 77).

[7] S. Bauer, H.-P. Bunge, D. Drzisga, S. Ghelichkhan, M. Huber, N. Kohl, M. Mohr,
U. Rüde, D. Thönnes, B. Wohlmuth. ‘TerraNeo—Mantle Convection Beyond a Trillion
Degrees of Freedom’. In: Software for Exascale Computing - SPPEXA 2016-2019.
Ed. by H.-J. Bungartz, S. Reiz, B. Uekermann, P. Neumann, W. E. Nagel. Lecture
Notes in Computational Science and Engineering. Cham: Springer International
Publishing, 2020, pp. 569–610 (cit. on p. 67).

147

https://www.sciencedirect.com/science/article/pii/S0021999105004754
https://www.sciencedirect.com/science/article/pii/S0021999105004754
https://www.sciencedirect.com/science/article/pii/S0021999122006246
https://www.sciencedirect.com/science/article/pii/S0021999122006246
https://doi.org/10.1063/1.4936294
https://doi.org/10.1063/1.4936294
https://time.com/6123622/nuclear-fusion-viability/

[8] T. Beisel, E. Gabriel, M. Resch. ‘An extension to MPI for distributed computing on
MPPs’. In: Recent Advances in Parallel Virtual Machine and Message Passing Interface.
Ed. by M. Bubak, J. Dongarra, J. Waśniewski. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1997, pp. 75–82 (cit. on p. 68).

[9] T. Ben-Nun, J. de Fine Licht, A. N. Ziogas, T. Schneider, T. Hoefler. ‘Stateful Dataflow
Multigraphs: A Data-Centric Model for Performance Portability on Heterogeneous
Architectures’. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. SC ’19. New York, NY, USA: Associa-
tion for Computing Machinery, Nov. 17, 2019, pp. 1–14. url: https://dl.acm.
org/doi/10.1145/3295500.3356173 (visited on 05/08/2023) (cit. on p. 66).

[10] J. Benk, D. Pflüger. ‘Hybrid parallel solutions of the Black-Scholes PDE with the
truncated combination technique’. In: 2012 International Conference on High Per-
formance Computing Simulation (HPCS). 2012 International Conference on High
Performance Computing Simulation (HPCS). July 2012, pp. 678–683 (cit. on p. 31).

[11] N. Besse, E. Deriaz, É. Madaule. ‘Adaptive multiresolution semi-Lagrangian discon-
tinuous Galerkin methods for the Vlasov equations’. In: Journal of Computational
Physics 332 (Mar. 1, 2017), pp. 376–417. url: https://www.sciencedirect.
com/science/article/pii/S0021999116306441 (visited on 06/16/2023) (cit.
on p. 39).

[12] N. Besse, G. Latu, A. Ghizzo, E. Sonnendrücker, P. Bertrand. ‘A wavelet-MRA-based
adaptive semi-Lagrangian method for the relativistic Vlasov–Maxwell system’. In:
Journal of Computational Physics 227.16 (Aug. 10, 2008), pp. 7889–7916. url: http
s://www.sciencedirect.com/science/article/pii/S0021999108002672
(visited on 05/13/2022) (cit. on p. 39).

[13] R.-P. Braun, A. Schippel, O. Andryushchenko, J. Weingart, S. Neidlinger, M. Eiselt,
M. Alfiad, T. William, S. Höhlig, N. Schäfer, S. Tibuleac, W. Weiershausen, E. Beier.
‘Tbit/s 1000 Km field trial, achieving increased spectral efficiency, SDN enabled
application traffic, and passive wavelength switching’. In: 2015 Opto-Electronics and
Communications Conference (OECC). 2015 Opto-Electronics and Communications
Conference (OECC). ISSN: 2166-8892. June 2015, pp. 1–3 (cit. on p. 68).

[14] A. J. Brizard, T. S. Hahm. ‘Foundations of Nonlinear Gyrokinetic Theory’. In: Reviews
of modern physics 79.2 (2007), p. 421 (cit. on pp. 14, 98).

[15] H.-J. Bungartz, M. Griebel. ‘Sparse grids’. In: Acta Numerica 13 (May 2004).
Publisher: Cambridge University Press, pp. 147–269. url: https : / / www .
cambridge.org/core/journals/acta-numerica/article/sparse-grids/
47EA2993DB84C9D231BB96ECB26F615C (visited on 05/04/2023) (cit. on pp. 21,
25, 27, 29).

148 Bibliography

https://dl.acm.org/doi/10.1145/3295500.3356173
https://dl.acm.org/doi/10.1145/3295500.3356173
https://www.sciencedirect.com/science/article/pii/S0021999116306441
https://www.sciencedirect.com/science/article/pii/S0021999116306441
https://www.sciencedirect.com/science/article/pii/S0021999108002672
https://www.sciencedirect.com/science/article/pii/S0021999108002672
https://www.cambridge.org/core/journals/acta-numerica/article/sparse-grids/47EA2993DB84C9D231BB96ECB26F615C
https://www.cambridge.org/core/journals/acta-numerica/article/sparse-grids/47EA2993DB84C9D231BB96ECB26F615C
https://www.cambridge.org/core/journals/acta-numerica/article/sparse-grids/47EA2993DB84C9D231BB96ECB26F615C

[16] H.-J. Bungartz, P. Neumann, W. E. Nagel. Software for Exascale Computing - SPPEXA
2013-2015. 1st ed. Springer Publishing Company, Incorporated, May 2018. 565 pp.
(cit. on p. 65).

[17] H.-J. Bungartz, S. Reiz, B. Uekermann, P. Neumann, W. E. Nagel, eds. Software
for Exascale Computing - SPPEXA 2016-2019. Springer Nature, 2020. url: https:
//library.oapen.org/handle/20.500.12657/41289 (visited on 01/19/2022)
(cit. on p. 65).

[18] C. Burstedde, L. C. Wilcox, O. Ghattas. ‘p4est: Scalable Algorithms for Parallel
Adaptive Mesh Refinement on Forests of Octrees’. In: SIAM Journal on Scientific
Computing 33.3 (2011), pp. 1103–1133 (cit. on p. 142).

[19] CET Perceptually Uniform Colour Maps. url: https://colorcet.com/index.
html (visited on 08/09/2023) (cit. on p. 146).

[20] C.-S. Chang, M. Greenwald, K. Riley, K. Antypas, R. Coffey, E. Dart, S. Dosanjh,
R. Gerber, J. Hack, I. Monga, M. E. Papka, L. Rotman, T. Straatsma, J. Wells, R. Andre,
D. Bernholdt, A. Bhattacharjee, P. Bonoli, I. Boyd, S. Bulanov, J. R. Cary, Y. Chen,
D. Curreli, D. R. Ernst, S. Ethier, D. Green, R. Hager, A. Hakim, A. Hassanein,
D. Hatch, E. D. Held, N. Howard, V. A. Izzo, S. Jardin, T. G. Jenkins, F. Jenko,
A. Kemp, J. King, A. Kritz, P. Krstic, S. E. Kruger, R. Kurtz, Z. Lin, B. Loring,
G. Nandipati, A. Y. Pankin, S. Parker, D. Perez, A. Y. Pigarov, F. Poli, M. J. Pueschel,
T. Rafiq, O. Rübel, W. Setyawan, V. A. Sizyuk, D. N. Smithe, C. R. Sovinec, M. Turner,
M. Umansky, J.-L. Vay, J. Verboncoeur, H. Vincenti, A. Voter, W. Wang, B. Wirth,
J. Wright, X. Yuan. Fusion Energy Sciences Exascale Requirements Review. An Of-
fice of Science review sponsored jointly by Advanced Scientific Computing Research
and Fusion Energy Sciences, January 27-29, 2016, Gaithersburg, Maryland. US-
DOE Office of Science (SC), Washington, DC (United States). Offices of Advanced
Scientific Computing Research and Fusion Energy Sciences, Feb. 1, 2017. url:
https://www.osti.gov/biblio/1375639 (visited on 05/08/2023) (cit. on
pp. 15, 65, 139).

[21] C. Z. Cheng, G. Knorr. ‘The integration of the Vlasov equation in configuration space’.
In: Journal of Computational Physics 22.3 (Nov. 1, 1976), pp. 330–351. url: ht
tp://www.sciencedirect.com/science/article/pii/002199917690053X
(visited on 08/14/2019) (cit. on pp. 54, 106).

[22] G. Chourdakis, K. Davis, B. Rodenberg, M. Schulte, F. Simonis, B. Uekermann,
G. Abrams, H. Bungartz, L. Cheung Yau, I. Desai, K. Eder, R. Hertrich, F. Lind-
ner, A. Rusch, D. Sashko, D. Schneider, A. Totounferoush, D. Volland, P. Vollmer,

Bibliography 149

https://library.oapen.org/handle/20.500.12657/41289
https://library.oapen.org/handle/20.500.12657/41289
https://colorcet.com/index.html
https://colorcet.com/index.html
https://www.osti.gov/biblio/1375639
http://www.sciencedirect.com/science/article/pii/002199917690053X
http://www.sciencedirect.com/science/article/pii/002199917690053X

O. Koseomur. ‘preCICE v2: A sustainable and user-friendly coupling library [ver-
sion 2; peer review: 2 approved]’. In: Open Research Europe 2.51 (2022). url:
https://doi.org/10.12688/openreseurope.14445.2 (cit. on p. 142).

[23] C. E. Clark. ‘Renewable energy R&D funding history: A comparison with funding
for nuclear energy, fossil energy, energy efficiency, and electric systems R&D’. In:
Congressional Research Service. Source: https://sgp.fas.org/crs/misc/{RS}
22858.pdf (2018) (cit. on p. 11).

[24] L. Coblentz. 29 th ITER Council: Steady progress despite challenges including COVID-
19. Nov. 18, 2021. url: https://www.iter.org/doc/www/content/com/
Lists/list_items/Attachments/972/2021_11_IC- 29.pdf (visited on
04/01/2022) (cit. on p. 11).

[25] A. Cohen, I. Daubechies, J.-C. Feauveau. ‘Biorthogonal bases of compactly sup-
ported wavelets’. In: Communications on Pure and Applied Mathematics 45.5 (1992),
pp. 485–560. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/
cpa.3160450502 (visited on 12/08/2021) (cit. on pp. 23–27, 141).

[26] A. Cohen. Numerical Analysis of Wavelet Methods. ISSN. Elsevier Science, 2003. url:
https://books.google.at/books?id=Dz9RnDItrAYC (cit. on p. 27).

[27] Configuration — JUWELS User Documentation Documentation. url: https://
apps.fz-juelich.de/jsc/hps/juwels/configuration.html (visited on
06/30/2023) (cit. on pp. 92, 93).

[28] R. Courant, K.O. Friedrichs, H. Lewy. ‘Über die partiellen Differenzengleichun-
gen der mathematischen Physik’. In: Mathematische Annalen 100.1 (Dec. 1,
1928), pp. 32–74. url: https://doi.org/10.1007/BF01448839 (visited on
08/30/2023) (cit. on p. 48).

[29] G. Daiß, M. Simberg, A. Reverdell, J. Biddiscombe, T. Pollinger, H. Kaiser, D. Pflüger.
‘Beyond Fork-Join: Integration of Performance Portable Kokkos Kernels with HPX’.
In: 2021 IEEE International Parallel and Distributed Processing SymposiumWorkshops
(IPDPSW). 2021 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). June 2021, pp. 377–386 (cit. on p. 17).

[30] I. Daubechies. ‘Orthonormal bases of compactly supported wavelets’. In: Communi-
cations on Pure and Applied Mathematics 41.7 (1988), pp. 909–996. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160410705 (cit. on
p. 22).

150 Bibliography

https://doi.org/10.12688/openreseurope.14445.2
https://sgp.fas.org/crs/misc/{RS}22858.pdf
https://sgp.fas.org/crs/misc/{RS}22858.pdf
https://www.iter.org/doc/www/content/com/Lists/list_items/Attachments/972/2021_11_IC-29.pdf
https://www.iter.org/doc/www/content/com/Lists/list_items/Attachments/972/2021_11_IC-29.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160450502
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160450502
https://books.google.at/books?id=Dz9RnDItrAYC
https://apps.fz-juelich.de/jsc/hps/juwels/configuration.html
https://apps.fz-juelich.de/jsc/hps/juwels/configuration.html
https://doi.org/10.1007/BF01448839
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160410705
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160410705

[31] F. Deluzet, G. Fubiani, L. Garrigues, C. Guillet, J. Narski. ‘Sparse Grid Reconstructions
for Particle-In-Cell Methods’. In: ESAIM: Mathematical Modelling and Numerical
Analysis 56.5 (5 Sept. 1, 2022), pp. 1809–1841. url: https://www.esaim-
m2an.org/articles/m2an/abs/2022/05/m2an220004/m2an220004.html
(visited on 07/05/2023) (cit. on p. 67).

[32] E. Deriaz, S. Peirani. ‘Six-Dimensional Adaptive Simulation of the Vlasov Equations
Using a Hierarchical Basis’. In: Multiscale Modeling & Simulation 16.2 (Jan. 2018).
Publisher: Society for Industrial and AppliedMathematics, pp. 583–614. url: https
://epubs.siam.org/doi/abs/10.1137/16M1108649 (visited on 05/18/2022)
(cit. on p. 38).

[33] G. Deslauriers, S. Dubuc. ‘Symmetric Iterative Interpolation Processes’. In: Con-
structive Approximation: Special Issue: Fractal Approximation. Ed. by R. A. DeVore,
E. B. Saff. Constructive Approximation. Boston, MA: Springer US, 1989, pp. 49–
68. url: https://doi.org/10.1007/978-1-4899-6886-9_3 (visited on
03/09/2022) (cit. on p. 25).

[34] B. Dick, T. Bönisch. ‘The AMD EPYC Rome Processor’ (HLRS). archived in https://
web.archive.org/web/20221226131932/https://kb.hlrs.de/platforms/
upload/Processor.pdf. May 3, 2020. url: https://kb.hlrs.de/platforms/
upload/Processor.pdf (cit. on pp. 93, 106).

[35] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. Andre, D. Barkai,
J.-Y. Berthou, T. Boku, B. Braunschweig, F. Cappello, B. Chapman, X. Chi, A. Choud-
hary, S. Dosanjh, T. Dunning, S. Fiore, A. Geist, B. Gropp, R. Harrison, M. Hereld,
M. Heroux, A. Hoisie, K. Hotta, Z. Jin, Y. Ishikawa, F. Johnson, S. Kale, R. Ken-
way, D. Keyes, B. Kramer, J. Labarta, A. Lichnewsky, T. Lippert, B. Lucas, B. Mac-
cabe, S. Matsuoka, P. Messina, P. Michielse, B. Mohr, M. S. Mueller, W. E. Nagel,
H. Nakashima, M. E. Papka, D. Reed, M. Sato, E. Seidel, J. Shalf, D. Skinner,
M. Snir, T. Sterling, R. Stevens, F. Streitz, B. Sugar, S. Sumimoto, W. Tang, J. Tay-
lor, R. Thakur, A. Trefethen, M. Valero, A. van der Steen, J. Vetter, P. Williams,
R. Wisniewski, K. Yelick. ‘The International Exascale Software Project Roadmap’. In:
The International Journal of High Performance Computing Applications 25.1 (Feb. 1,
2011), pp. 3–60. url: https://doi.org/10.1177/1094342010391989 (visited
on 05/08/2023) (cit. on pp. 65, 139).

[36] M. Dostal. ‘Lastbalancierung durch dynamische Aufgaben-Umverteilung mit der
Dünngitter-Kombinationstechnik’. Publisher: Universität Stuttgart. BSc Thesis. 2020.
url: http://elib.uni-stuttgart.de/handle/11682/10956 (cit. on p. 88).

Bibliography 151

https://www.esaim-m2an.org/articles/m2an/abs/2022/05/m2an220004/m2an220004.html
https://www.esaim-m2an.org/articles/m2an/abs/2022/05/m2an220004/m2an220004.html
https://epubs.siam.org/doi/abs/10.1137/16M1108649
https://epubs.siam.org/doi/abs/10.1137/16M1108649
https://doi.org/10.1007/978-1-4899-6886-9_3
https://web.archive.org/web/20221226131932/https://kb.hlrs.de/platforms/upload/Processor.pdf
https://web.archive.org/web/20221226131932/https://kb.hlrs.de/platforms/upload/Processor.pdf
https://web.archive.org/web/20221226131932/https://kb.hlrs.de/platforms/upload/Processor.pdf
https://kb.hlrs.de/platforms/upload/Processor.pdf
https://kb.hlrs.de/platforms/upload/Processor.pdf
https://doi.org/10.1177/1094342010391989
http://elib.uni-stuttgart.de/handle/11682/10956

[37] S. Dowling. Could this be the first nuclear-powered airliner? July 14, 2016. url:
https://www.bbc.com/future/article/20160713-could-this-be-the-
first-nuclear-powered-airliner (visited on 05/02/2023) (cit. on p. 11).

[38] T. Dubos, N. K.-R. Kevlahan. ‘A conservative adaptive wavelet method for the shallow-
water equations on staggered grids’. In: Quarterly Journal of the Royal Meteorological
Society 139.677 (2013), pp. 1997–2020. url: https://onlinelibrary.wiley.
com/doi/abs/10.1002/qj.2097 (visited on 06/15/2023) (cit. on p. 39).

[39] L. Einkemmer. ‘A Performance Comparison of Semi-Lagrangian Discontinuous
Galerkin and Spline Based Vlasov Solvers in Four Dimensions’. In: Journal of
Computational Physics 376 (Jan. 1, 2019), pp. 937–951. url: https://www.
sciencedirect.com/science/article/pii/S0021999118306697 (visited on
08/31/2022) (cit. on p. 142).

[40] L. Einkemmer, I. Joseph. ‘A Mass, Momentum, and Energy Conservative Dynamical
Low-Rank Scheme for the Vlasov Equation’. In: Journal of Computational Physics 443
(Oct. 15, 2021), p. 110495. url: https://www.sciencedirect.com/science/
article/pii/S0021999121003909 (visited on 09/25/2023) (cit. on p. 142).

[41] L. Einkemmer, C. Lubich. ‘A Low-Rank Projector-Splitting Integrator for the Vlasov–
Poisson Equation’. In: SIAM Journal on Scientific Computing 40.5 (Jan. 2018), B1330–
B1360. url: https://epubs.siam.org/doi/abs/10.1137/18M116383X
(visited on 09/13/2023) (cit. on p. 142).

[42] Energy Aware Runtime. Leibniz-Rechenzentrum (LRZ). url: https://doku.lr
z.de/energy-aware-runtime-10746191.html#EnergyAwareRuntime-Cha
ngingcpuaffinitywithinyourapplication (visited on 07/07/2023) (cit. on
p. 93).

[43] EUROfusion. European researchers achieve fusion energy record. url: https://www.
euro-fusion.org/news/2022/european-researchers-achieve-fusion-
energy-record/ (visited on 04/01/2022) (cit. on p. 11).

[44] M. Fernando, D. Neilsen, E. Hirschmann, Y. Zlochower, H. Sundar, O. Ghattas,
G. Biros. ‘A GPU-Accelerated AMR Solver for Gravitational Wave Propagation’. In:
SC22: International Conference for High Performance Computing, Networking, Storage
and Analysis. SC22: International Conference for High Performance Computing,
Networking, Storage and Analysis. Nov. 2022, pp. 1–15 (cit. on p. 67).

[45] M. Fernando, D. Neilsen, E.W. Hirschmann, H. Sundar. ‘A Scalable Framework
for Adaptive Computational General Relativity on Heterogeneous Clusters’. In:
Proceedings of the ACM International Conference on Supercomputing. ICS ’19. New

152 Bibliography

https://www.bbc.com/future/article/20160713-could-this-be-the-first-nuclear-powered-airliner
https://www.bbc.com/future/article/20160713-could-this-be-the-first-nuclear-powered-airliner
https://onlinelibrary.wiley.com/doi/abs/10.1002/qj.2097
https://onlinelibrary.wiley.com/doi/abs/10.1002/qj.2097
https://www.sciencedirect.com/science/article/pii/S0021999118306697
https://www.sciencedirect.com/science/article/pii/S0021999118306697
https://www.sciencedirect.com/science/article/pii/S0021999121003909
https://www.sciencedirect.com/science/article/pii/S0021999121003909
https://epubs.siam.org/doi/abs/10.1137/18M116383X
https://doku.lrz.de/energy-aware-runtime-10746191.html#EnergyAwareRuntime-Changingcpuaffinitywithinyourapplication
https://doku.lrz.de/energy-aware-runtime-10746191.html#EnergyAwareRuntime-Changingcpuaffinitywithinyourapplication
https://doku.lrz.de/energy-aware-runtime-10746191.html#EnergyAwareRuntime-Changingcpuaffinitywithinyourapplication
https://www.euro-fusion.org/news/2022/european-researchers-achieve-fusion-energy-record/
https://www.euro-fusion.org/news/2022/european-researchers-achieve-fusion-energy-record/
https://www.euro-fusion.org/news/2022/european-researchers-achieve-fusion-energy-record/

York, NY, USA: Association for Computing Machinery, June 26, 2019, pp. 1–12.
url: https://dl.acm.org/doi/10.1145/3330345.3330346 (visited on
08/01/2023) (cit. on p. 67).

[46] M. Fernando, D. Neilsen, Y. Zlochower, E.W. Hirschmann, H. Sundar. ‘Massively
Parallel Simulations of Binary Black Holes with Adaptive Wavelet Multiresolution’.
In: Physical Review D 107.6 (Mar. 17, 2023), p. 064035. url: https://link.aps.
org/doi/10.1103/PhysRevD.107.064035 (visited on 07/05/2023) (cit. on
p. 67).

[47] C. Feuersänger. Pgfplots. url: https://ctan.org/pkg/pgfplots (visited on
08/31/2023) (cit. on p. 146).

[48] I. Foster, Y. Zhao, I. Raicu, S. Lu. ‘Cloud Computing and Grid Computing 360-Degree
Compared’. In: 2008 Grid Computing Environments Workshop. 2008 Grid Computing
Environments Workshop. ISSN: 2152-1093. Nov. 2008, pp. 1–10 (cit. on p. 67).

[49] F. S. Foundation. GNU Lesser General Public License v3.0. GNU Project. url: https:
//www.gnu.org/licenses/lgpl-3.0.html (visited on 08/01/2023) (cit. on
p. 68).

[50] Fritz Parallel Cluster (NHR+Tier3). url: https://hpc.fau.de/systems-serv
ices/documentation-instructions/clusters/fritz-cluster/ (visited on
06/30/2023) (cit. on pp. 92, 93).

[51] J. Garcke. ‘Sparse Grids in a Nutshell’. In: Sparse Grids and Applications. Ed. by
J. Garcke, M. Griebel. Lecture Notes in Computational Science and Engineering.
Berlin, Heidelberg: Springer, 2013, pp. 57–80 (cit. on pp. 29, 30).

[52] K. Germaschewski, B. Allen, T. Dannert, M. Hrywniak, J. Donaghy, G. Merlo, S. Ethier,
E. D’Azevedo, F. Jenko, A. Bhattacharjee. ‘Toward exascale whole-device modeling
of fusion devices: Porting the GENE gyrokinetic microturbulence code to GPU’. In:
Physics of Plasmas 28.6 (June 1, 2021). Publisher: American Institute of Physics,
p. 062501. url: https://aip.scitation.org/doi/abs/10.1063/5.0046327
(visited on 12/14/2021) (cit. on pp. 98, 102).

[53] T. Gerstner, M. Griebel. ‘Dimension–adaptive tensor–product quadrature’. In: Com-
puting 71.1 (2003), pp. 65–87 (cit. on pp. 29, 35, 67).

[54] A. Ghizzo, D. Del Sarto, M. Sarrat. ‘Low- and high-frequency nature of oblique
filamentation modes. I. Linear theory’. In: Physics of Plasmas 27.7 (July 21,
2020), p. 072103. url: https://doi.org/10.1063/5.0003697 (visited on
04/26/2023) (cit. on p. 14).

[55] GitHub Copilot · Your AI Pair Programmer. GitHub. url: https://github.com/
features/copilot/ (visited on 08/31/2023) (cit. on p. 146).

Bibliography 153

https://dl.acm.org/doi/10.1145/3330345.3330346
https://link.aps.org/doi/10.1103/PhysRevD.107.064035
https://link.aps.org/doi/10.1103/PhysRevD.107.064035
https://ctan.org/pkg/pgfplots
https://www.gnu.org/licenses/lgpl-3.0.html
https://www.gnu.org/licenses/lgpl-3.0.html
https://hpc.fau.de/systems-services/documentation-instructions/clusters/fritz-cluster/
https://hpc.fau.de/systems-services/documentation-instructions/clusters/fritz-cluster/
https://aip.scitation.org/doi/abs/10.1063/5.0046327
https://doi.org/10.1063/5.0003697
https://github.com/features/copilot/
https://github.com/features/copilot/

[56] T. Görler, X. Lapillonne, S. Brunner, T. Dannert, F. Jenko, F. Merz, D. Told. ‘The
Global Version of the Gyrokinetic Turbulence Code GENE’. In: Journal of Com-
putational Physics 230.18 (Aug. 1, 2011), pp. 7053–7071. url: https://www.
sciencedirect.com/science/article/pii/S0021999111003457 (visited on
08/31/2023) (cit. on p. 91).

[57] V. Grandgirard, J. Abiteboul, J. Bigot, T. Cartier-Michaud, N. Crouseilles, G. Dif-
Pradalier, C. Ehrlacher, D. Esteve, X. Garbet, P. Ghendrih. ‘A 5D Gyrokinetic Full-f
Global Semi-Lagrangian Code for Flux-Driven Ion Turbulence Simulations’. In:
Computer physics communications 207 (2016), pp. 35–68 (cit. on p. 142).

[58] V. Grandgirard, Y. Sarazin, X. Garbet, G. Dif-Pradalier, P. Ghendrih, N. Crouseilles,
G. Latu, E. Sonnendrücker, N. Besse, P. Bertrand. ‘GYSELA, a Full-f Global Gyroki-
netic Semi-Lagrangian Code for ITG Turbulence Simulations’. In: Aip Conference
Proceedings. Vol. 871. 1. American Institute of Physics, 2006, pp. 100–111 (cit. on
p. 142).

[59] M. Griebel, W. Huber, U. Rüde, T. Störtkuhl. ‘The combination technique for parallel
sparse-grid-preconditioning or -solution of PDEs on workstation networks’. In:
Parallel Processing: CONPAR 92 VAPP V. Ed. by L. Bougé, M. Cosnard, Y. Robert,
D. Trystram. Vol. 634. LNCS. 1992 (cit. on pp. 31, 80).

[60] M. Griebel, F. Koster. ‘Multiscale Methods for the Simulation of Turbulent Flows’.
In: Numerical Flow Simulation III. Ed. by E.H. Hirschel. Notes on Numerical Fluid
Mechanics and Multidisciplinary Design (NNFM). Berlin, Heidelberg: Springer,
2003, pp. 203–214 (cit. on p. 38).

[61] M. Griebel, M. Schneider, C. Zenger. ‘A combination technique for the solution
of sparse grid problems’. In: Proceedings of the IMACS International Symposium
on Iterative Methods in Linear Algebra: Brussels, Belgium, 2 - 4 April, 1991. Ed. by
P. de Groen, R. Beauwens. Auch als SFB Bericht 342/19/90 A, Institut für Informatik,
TU München, 1990. IMACS. North Holland, 1992 (cit. on pp. 15, 29, 31).

[62] M. Griebel, M. A. Schweitzer, L. Troska. ‘A Dimension-Oblivious Domain Decom-
position Method Based on Space-Filling Curves’. In: SIAM Journal on Scientific
Computing 45.2 (Apr. 30, 2023), A369–A396. url: https://epubs.siam.org/
doi/full/10.1137/21M1454481 (visited on 09/26/2023) (cit. on p. 142).

[63] M. Griebel, V. Thurner. ‘The Efficient Solution of Fluid Dynamics Problems by the
Combination Technique’. In: International Journal of Numerical Methods for Heat &
Fluid Flow 5.3 (Jan. 1, 1995), pp. 251–269. url: https://doi.org/10.1108/
EUM0000000004119 (visited on 04/04/2023) (cit. on p. 21).

154 Bibliography

https://www.sciencedirect.com/science/article/pii/S0021999111003457
https://www.sciencedirect.com/science/article/pii/S0021999111003457
https://epubs.siam.org/doi/full/10.1137/21M1454481
https://epubs.siam.org/doi/full/10.1137/21M1454481
https://doi.org/10.1108/EUM0000000004119
https://doi.org/10.1108/EUM0000000004119

[64] W. Guo, Y. Cheng. ‘A Sparse Grid Discontinuous Galerkin Method for High-
Dimensional Transport Equations and Its Application to Kinetic Simulations’. In:
SIAM Journal on Scientific Computing 38.6 (Jan. 1, 2016), A3381–A3409. url:
https://epubs.siam.org/doi/10.1137/16M1060017 (visited on 08/08/2019)
(cit. on pp. 38–40).

[65] M. Gutnic, M. Haefele, E. Sonnendrücker. ‘Moments conservation in adaptive
Vlasov solver’. In: Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment. Proceedings of
the 8th International Computational Accelerator Physics Conference 558.1 (Mar. 1,
2006), pp. 159–162. url: https://www.sciencedirect.com/science/artic
le/pii/S0168900205021327 (visited on 06/15/2023) (cit. on p. 39).

[66] M. Gutnic, M. Haefele, I. Paun, E. Sonnendrücker. ‘Vlasov simulations on an adaptive
phase-space grid’. In: Computer Physics Communications. Proceedings of the 18th
International Conferene on the Numerical Simulation of Plasmas 164.1 (Dec. 1,
2004), pp. 214–219. url: https://www.sciencedirect.com/science/artic
le/pii/S0010465504002838 (visited on 07/18/2022) (cit. on p. 39).

[67] W. Hackbusch. Multi-Grid Methods and Applications. Vol. 4. Springer Series in
Computational Mathematics. Berlin, Heidelberg: Springer, 1985. url: http://
link.springer.com/10.1007/978-3-662-02427-0 (visited on 07/27/2023)
(cit. on pp. 25, 26).

[68] M. Haefele, G. Latu, M. Gutnic. ‘A parallel Vlasov solver using a wavelet based
adaptive mesh refinement’. In: 2005 International Conference on Parallel Process-
ing Workshops (ICPPW’05). 2005 International Conference on Parallel Processing
Workshops (ICPPW’05). ISSN: 2332-5690. June 2005, pp. 181–188 (cit. on p. 39).

[69] G. Hager. Georg Hager’s Blog | Fooling the Masses – Stunt 5: Instead of Performance,
Plot Absolute Runtime versus CPU Count! Sept. 24, 2010. url: http://blogs.fau.
de/hager/archives/6130 (visited on 08/10/2023) (cit. on p. 116).

[70] G. Hager, G. Wellein. Introduction to High Performance Computing for Scientists and
Engineers. Boca Raton: CRC Press, Aug. 17, 2010. 356 pp. (cit. on pp. 62, 66, 111).

[71] B. Harding. ‘Adaptive Sparse Grids and Extrapolation Techniques’. In: Sparse Grids
and Applications - Stuttgart 2014. Ed. by J. Garcke, D. Pflüger. Lecture Notes in
Computational Science and Engineering. Cham: Springer International Publishing,
2016, pp. 79–102 (cit. on p. 30).

[72] Hardware of SuperMUC-NG. Leibniz-Rechenzentrum (LRZ). url: https://doku.l
rz.de/display/PUBLIC/Hardware+of+SuperMUC-NG (visited on 04/05/2023)
(cit. on pp. 92, 93).

Bibliography 155

https://epubs.siam.org/doi/10.1137/16M1060017
https://www.sciencedirect.com/science/article/pii/S0168900205021327
https://www.sciencedirect.com/science/article/pii/S0168900205021327
https://www.sciencedirect.com/science/article/pii/S0010465504002838
https://www.sciencedirect.com/science/article/pii/S0010465504002838
http://link.springer.com/10.1007/978-3-662-02427-0
http://link.springer.com/10.1007/978-3-662-02427-0
http://blogs.fau.de/hager/archives/6130
http://blogs.fau.de/hager/archives/6130
https://doku.lrz.de/display/PUBLIC/Hardware+of+SuperMUC-NG
https://doku.lrz.de/display/PUBLIC/Hardware+of+SuperMUC-NG

[73] Hawk Hardware and Architecture - HLRS Platforms. url: https://kb.hlrs.
de/platforms/index.php/Hawk_Hardware_and_Architecture (visited on
07/05/2023) (cit. on p. 93).

[74] M. Heene. ‘A Massively Parallel Combination Technique for the Solution of High-
Dimensional PDEs’. PhD thesis. Institut für Parallele und Verteilte Systeme der
Universität Stuttgart, 2018 (cit. on pp. 62, 66, 68, 72, 92, 99, 111).

[75] M. Heene, A. P. Hinojosa, M. Obersteiner, H.-J. Bungartz, D. Pflüger. ‘EXAHD: An
Exa-Scalable Two-Level Sparse Grid Approach for Higher-Dimensional Problems
in Plasma Physics and Beyond’. In: High Performance Computing in Science and
Engineering ’17. Springer, 2018, pp. 513–529 (cit. on pp. 66, 68).

[76] M. Heene, C. Kowitz, D. Pflüger. ‘Load Balancing for Massively Parallel Computations
with the Sparse Grid Combination Technique.’ In: Parallel Computing: Accelerating
Computational Science and Engineering (CSE). Ed. by M. Bader, A. Bode, H.-J. Bun-
gartz, M. Gerndt, G. R. Joubert, F. Peters. Vol. 25. Advances in Parallel Computing.
2014, pp. 574–583 (cit. on pp. 69, 71, 126).

[77] M. Heene, D. Pflüger. ‘Scalable Algorithms for the Solution of Higher-Dimensional
PDEs’. In: Software for Exascale Computing - SPPEXA 2013-2015. Ed. by H.-J. Bun-
gartz, P. Neumann, W. E. Nagel. Lecture Notes in Computational Science and
Engineering. Springer International Publishing, 2016, pp. 165–186 (cit. on p. 66).

[78] M. Henon. ‘Vlasov Equation’. In: Astronomy and Astrophysics 114 (Oct. 1, 1982),
p. 211. url: https://ui.adsabs.harvard.edu/abs/1982A&A...114..211H
(visited on 08/08/2023) (cit. on p. 12).

[79] S. Hirschmann. ‘Load-Balancing for Scalable Simulations with Large Particle Num-
bers’. doctoralThesis. 2021. url: http://elib.uni-stuttgart.de/handle/
11682/11813 (visited on 07/28/2023) (cit. on p. 96).

[80] HLRS High Performance Computing Center Stuttgart: HPE Apollo (Hawk). url:
https://www.hlrs.de/solutions/systems/hpe-apollo-hawk (visited on
07/03/2023) (cit. on pp. 92, 93).

[81] HPC in Germany - Who? What? Where? - HPC in Germany - Gauß-Allianz. archived
in https://web.archive.org/web/20230228030921/https://gauss-all
ianz.de/en/hpc-ecosystem. url: https://gauss-allianz.de/en/hpc-
ecosystem (visited on 08/07/2023) (cit. on pp. 14, 92).

[82] HPE Hawk Hardware and Architecture - HLRS Platforms. url: https://kb.hlrs.
de/platforms/index.php/HPE_Hawk_Hardware_and_Architecture (visited
on 08/17/2021) (cit. on p. 93).

156 Bibliography

https://kb.hlrs.de/platforms/index.php/Hawk_Hardware_and_Architecture
https://kb.hlrs.de/platforms/index.php/Hawk_Hardware_and_Architecture
https://ui.adsabs.harvard.edu/abs/1982A&A...114..211H
http://elib.uni-stuttgart.de/handle/11682/11813
http://elib.uni-stuttgart.de/handle/11682/11813
https://www.hlrs.de/solutions/systems/hpe-apollo-hawk
https://web.archive.org/web/20230228030921/https://gauss-allianz.de/en/hpc-ecosystem
https://web.archive.org/web/20230228030921/https://gauss-allianz.de/en/hpc-ecosystem
https://gauss-allianz.de/en/hpc-ecosystem
https://gauss-allianz.de/en/hpc-ecosystem
https://kb.hlrs.de/platforms/index.php/HPE_Hawk_Hardware_and_Architecture
https://kb.hlrs.de/platforms/index.php/HPE_Hawk_Hardware_and_Architecture

[83] W. Huber. Turbulenzsimulation mit der Kombinationsmethode auf Workstation-Netzen
und Parallelrechnern. Herbert Utz Verlag, 1996. 164 pp. url: https://www5.in.
tum.de/publikat/diss/huberw.ps.gz (cit. on p. 38).

[84] P. Hupp, R. Jacob. ‘A Cache-Optimal Alternative to the Unidirectional Hierarchiza-
tion Algorithm’. In: Proceedings of the Workshop Sparse Grids and Algorithms 2014
(2015) (cit. on p. 111).

[85] P. Hupp, M. Heene, R. Jacob, D. Pflüger. ‘Global Communication Schemes for the
Numerical Solution of High-Dimensional PDEs’. In: Parallel Computing 52 (Feb. 1,
2016), pp. 78–105. url: https://www.sciencedirect.com/science/articl
e/pii/S0167819115001623 (visited on 06/19/2023) (cit. on pp. 72–75).

[86] P. Hupp, M. Heene, R. Jacob, D. Pflüger. ‘Global Communication Schemes for the
Numerical Solution of High-dimensional PDEs’. In: Parallel Computing 52.C (Feb.
2016), pp. 78–105. url: http://dx.doi.org/10.1016/j.parco.2015.12.006
(cit. on p. 76).

[87] P. Hupp, R. Jacob, M. Heene, D. Pflüger, M. Hegland. ‘Global Communication
Schemes for the Sparse Grid Combination Technique’. In: Parallel Computing: Ac-
celerating Computational Science and Engineering (CSE) (2014), pp. 564–573. url:
https://ebooks.iospress.nl/doi/10.3233/978-1-61499-381-0-564
(visited on 03/14/2023) (cit. on pp. 72, 74).

[88] Hyteg / Hyteg · GitLab. Aug. 1, 2023. url: https://i10git.cs.fau.de/hyteg/
hyteg (visited on 08/07/2023) (cit. on p. 67).

[89] F. Jenko, D. Told, T. Görler, J. Citrin, A. B. Navarro, C. Bourdelle, S. Brunner, G. Con-
way, T. Dannert, H. Doerk, D. R. Hatch, J.W. Haverkort, J. Hobirk, G.M.D. Hogeweij,
P. Mantica, M. J. Pueschel, O. Sauter, L. Villard, E. Wolfrum. ‘Global and local gy-
rokinetic simulations of high-performance discharges in view of ITER’. In: Nuclear
Fusion 53.7 (May 2013), p. 073003. url: https://doi.org/10.1088%2F0029-
5515%2F53%2F7%2F073003 (visited on 03/19/2019) (cit. on pp. 91, 98, 99).

[90] G. Karypis, V. Kumar. ‘A Fast and High Quality Multilevel Scheme for Partition-
ing Irregular Graphs’. In: SIAM Journal on Scientific Computing 20.1 (Jan. 1998).
Publisher: Society for Industrial and Applied Mathematics, pp. 359–392. url:
https://epubs.siam.org/doi/abs/10.1137/S1064827595287997 (visited
on 03/14/2023) (cit. on p. 86).

[91] N. K.-R. Kevlahan. ‘Adaptive Wavelet Methods for Earth Systems Modelling’. In:
Fluids 6.7 (July 2021). Number: 7 Publisher: Multidisciplinary Digital Publishing
Institute, p. 236. url: https://www.mdpi.com/2311-5521/6/7/236 (visited
on 06/15/2023) (cit. on p. 39).

Bibliography 157

https://www5.in.tum.de/publikat/diss/huberw.ps.gz
https://www5.in.tum.de/publikat/diss/huberw.ps.gz
https://www.sciencedirect.com/science/article/pii/S0167819115001623
https://www.sciencedirect.com/science/article/pii/S0167819115001623
http://dx.doi.org/10.1016/j.parco.2015.12.006
https://ebooks.iospress.nl/doi/10.3233/978-1-61499-381-0-564
https://i10git.cs.fau.de/hyteg/hyteg
https://i10git.cs.fau.de/hyteg/hyteg
https://doi.org/10.1088%2F0029-5515%2F53%2F7%2F073003
https://doi.org/10.1088%2F0029-5515%2F53%2F7%2F073003
https://epubs.siam.org/doi/abs/10.1137/S1064827595287997
https://www.mdpi.com/2311-5521/6/7/236

[92] S. Knapek. ‘Approximation und Kompressionmit Tensorprodukt-Multiskalenräumen’.
Dissertation. Universität Bonn, Apr. 2000 (cit. on pp. 29, 51).

[93] T. Koprucki, M. Kohlhase, K. Tabelow, D. Müller, F. Rabe. ‘Model pathway diagrams
for the representation of mathematical models’. In: Optical and Quantum Electronics
50.2 (Jan. 23, 2018), p. 70. url: https://doi.org/10.1007/s11082-018-
1321-7 (visited on 08/31/2022) (cit. on pp. 13, 47).

[94] K. Kormann, K. Reuter, M. Rampp. ‘A massively parallel semi-Lagrangian solver for
the six-dimensional Vlasov–Poisson equation’. In: The International Journal of High
Performance Computing Applications (Mar. 27, 2019). url: https://doi.org/10.
1177/1094342019834644 (cit. on pp. 48, 54, 169).

[95] K. Kormann, E. Sonnendrücker. ‘Sparse Grids for the Vlasov–Poisson Equation’. In:
Sparse Grids and Applications - Stuttgart 2014. Ed. by J. Garcke, D. Pflüger. Lecture
Notes in Computational Science and Engineering. Springer International Publishing,
2016, pp. 163–190 (cit. on pp. 38, 57).

[96] M. Kosiol. The Sparse Grid Combination Technique for PDE Solutions of Higher Order.
Projektarbeit SimTech. Universität Stuttgart, Oct. 14, 2022, p. 27 (cit. on p. 38).

[97] F. Koster. ‘Multiskalen-basierte Finite-Differenzen-Verfahren auf adaptiven dünnen
Gittern’. Thesis. 2002. url: https://bonndoc.ulb.uni-bonn.de/xmlui/
handle/20.500.11811/1696 (visited on 02/23/2022) (cit. on pp. 24, 25, 27, 37,
38).

[98] P. Kovesi. Good Colour Maps: How to Design Them. Sept. 11, 2015. arXiv:
1509.03700 [cs]. url: http://arxiv.org/abs/1509.03700 (visited on
08/09/2023). preprint (cit. on p. 146).

[99] C. Kowitz. ‘Applying the Sparse Grid Combination Technique in Linear Gyrokinetics’.
Dissertation. München: Technische Universität München, 2016 (cit. on pp. 48, 100).

[100] C. Kowitz, M. Hegland. ‘The Sparse Grid Combination Technique for Computing
Eigenvalues in Linear Gyrokinetics’. In: Procedia Computer Science 18.0 (2013).
2013 International Conference on Computational Science, pp. 449–458. url: http:
//www.sciencedirect.com/science/article/pii/S1877050913003517
(cit. on pp. 38, 98).

[101] C. Kowitz, D. Pflüger, F. Jenko, M. Hegland. ‘The Combination Technique for the
Initial Value Problem in Linear Gyrokinetics’. In: Sparse Grids and Applications. Ed.
by J. Garcke, M. Griebel. Lecture Notes in Computational Science and Engineering.
Berlin, Heidelberg: Springer, 2013, pp. 205–222 (cit. on p. 38).

158 Bibliography

https://doi.org/10.1007/s11082-018-1321-7
https://doi.org/10.1007/s11082-018-1321-7
https://doi.org/10.1177/1094342019834644
https://doi.org/10.1177/1094342019834644
https://bonndoc.ulb.uni-bonn.de/xmlui/handle/20.500.11811/1696
https://bonndoc.ulb.uni-bonn.de/xmlui/handle/20.500.11811/1696
https://arxiv.org/abs/1509.03700
http://arxiv.org/abs/1509.03700
http://www.sciencedirect.com/science/article/pii/S1877050913003517
http://www.sciencedirect.com/science/article/pii/S1877050913003517

[102] R. Lago, M. Obersteiner, T. Pollinger, J. Rentrop, H.-J. Bungartz, T. Dannert,
M. Griebel, F. Jenko, D. Pflüger. ‘EXAHD: A Massively Parallel Fault Tolerant Sparse
Grid Approach for High-Dimensional Turbulent Plasma Simulations’. In: Software for
Exascale Computing - SPPEXA 2016-2019. Lecture Notes in Computational Science
and Engineering. Cham: Springer International Publishing, Jan. 1, 2020, pp. 301–
329 (cit. on pp. 18, 38, 62).

[103] L. D. Landau. Oscillations of an Electron Plasma. Google-Books-ID: D0CSDInzokMC.
1946. 22 pp. (cit. on p. 54).

[104] B. Lastdrager. Numerical time integration on sparse grids. Universiteit van Amsterdam
[Host], 2002 (cit. on pp. 34, 52).

[105] LaTeX Template for Scientific Theses. latextemplates, Aug. 16, 2023. url: https:
//github.com/latextemplates/scientific-thesis-template (visited on
08/31/2023) (cit. on p. 146).

[106] Leinkemmer / Sldg — Bitbucket. url: https://bitbucket.org/leinkemmer/
sldg/src/master/ (visited on 06/28/2022) (cit. on p. 142).

[107] X. Litaudon, F. Jenko, D. Borba, D. V. Borodin, B. J. Braams, S. Brezinsek, I. Calvo,
R. Coelho, A. J. H. Donné, O. Embréus, D. Farina, T. Görler, J. P. Graves, R. Hatzky,
J. Hillesheim, F. Imbeaux, D. Kalupin, R. Kamendje, H.-T. Kim, H. Meyer, F. Militello,
K. Nordlund, C. Roach, F. Robin, M. Romanelli, F. Schluck, E. Serre, E. Sonnen-
drücker, P. Strand, P. Tamain, D. Tskhakaya, J. L. Velasco, L. Villard, S. Wiesen,
H. Wilson, F. Zonca. ‘EUROfusion-theory and advanced simulation coordination
(E-TASC): programme and the role of high performance computing’. In: Plasma
Physics and Controlled Fusion 64.3 (Feb. 2022), p. 034005. url: https://dx.doi.
org/10.1088/1361-6587/ac44e4 (visited on 05/08/2023) (cit. on pp. 65, 139).

[108] G. Manfredi. ‘Long-Time Behavior of Nonlinear Landau Damping’. In: Physical Review
Letters 79.15 (Oct. 13, 1997). Publisher: American Physical Society, pp. 2815–2818.
url: https://link.aps.org/doi/10.1103/PhysRevLett.79.2815 (visited
on 01/17/2022) (cit. on p. 54).

[109] R. Margraf. A Brief History of U.S. Funding of Fusion Energy. Mar. 27, 2021. url:
http://large.stanford.edu/courses/2021/ph241/margraf1/ (visited on
04/26/2023) (cit. on p. 11).

[110] S. Matsuoka, J. Domke, M. Wahib, A. Drozd, T. Hoefler. ‘Myths and Legends in
High-Performance Computing’. In: The International Journal of High Performance
Computing Applications (Apr. 24, 2023), p. 10943420231166608. url: https:
//doi.org/10.1177/10943420231166608 (visited on 06/19/2023) (cit. on
pp. 65, 66).

Bibliography 159

https://github.com/latextemplates/scientific-thesis-template
https://github.com/latextemplates/scientific-thesis-template
https://bitbucket.org/leinkemmer/sldg/src/master/
https://bitbucket.org/leinkemmer/sldg/src/master/
https://dx.doi.org/10.1088/1361-6587/ac44e4
https://dx.doi.org/10.1088/1361-6587/ac44e4
https://link.aps.org/doi/10.1103/PhysRevLett.79.2815
http://large.stanford.edu/courses/2021/ph241/margraf1/
https://doi.org/10.1177/10943420231166608
https://doi.org/10.1177/10943420231166608

[111] B. May. How It Works — Sshuttle 1.1.1 Documentation. archived in https://web.
archive.org/web/20230323092842/https://sshuttle.readthedocs.io/
en/stable/how-it-works.html. url: https://sshuttle.readthedocs.io/
en/stable/how-it-works.html (visited on 07/27/2023) (cit. on p. 82).

[112] M. Molzer. ‘Implementation of a Parallel Sparse Grid Combination Technique for
Variable Process Group Sizes’. Bachelor’s thesis. TU München, Jan. 2018 (cit. on
p. 105).

[113] MPI Forum. MPI: A Message-Passing Interface Standard. Version 3.1. 2015. url:
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf (cit. on
pp. 68, 71, 83, 88).

[114] P. Munch, K. Kormann, M. Kronbichler. ‘hyper.deal: An efficient, matrix-free
finite-element library for high-dimensional partial differential equations’. In:
arXiv:2002.08110 [cs, math] (Feb. 19, 2020). arXiv: 2002.08110. url: http:
//arxiv.org/abs/2002.08110 (visited on 08/19/2021) (cit. on pp. 88, 142).

[115] S. Muralikrishnan, A. J. Cerfon, M. Frey, L. F. Ricketson, A. Adelmann. ‘Sparse grid-
based adaptive noise reduction strategy for particle-in-cell schemes’. In: Journal
of Computational Physics: X 11 (June 1, 2021), p. 100094. url: https://www.
sciencedirect.com/science/article/pii/S2590055221000111 (visited on
03/18/2022) (cit. on pp. 12, 67).

[116] A. Narayan, J. D. Jakeman. ‘Adaptive Leja Sparse Grid Constructions for Stochastic
Collocation and High-Dimensional Approximation’. In: SIAM Journal on Scientific
Computing 36.6 (Jan. 2014), A2952–A2983. url: https://epubs.siam.org/
doi/abs/10.1137/140966368 (visited on 08/09/2023) (cit. on p. 24).

[117] W.M. Nevins, G.W. Hammett, A.M. Dimits, W. Dorland, D. E. Shumaker. ‘Discrete
particle noise in particle-in-cell simulations of plasma microturbulence’. In: Physics
of Plasmas 12.12 (Dec. 2005). Publisher: American Institute of Physics, p. 122305.
url: https://aip.scitation.org/doi/full/10.1063/1.2118729 (visited
on 04/06/2023) (cit. on p. 12).

[118] E. Novak, K. Ritter. ‘High Dimensional Integration of Smooth Functions over Cubes’.
In: Numerische Mathematik 75.1 (Nov. 1, 1996), pp. 79–97. url: https://doi.
org/10.1007/s002110050231 (visited on 08/09/2023) (cit. on p. 24).

[119] M. Obersteiner. ‘A spatially adaptive and massively parallel implementation of
the fault-tolerant combination technique’. Dissertation. Technische Universität
München, 2021. url: https://mediatum.ub.tum.de/doc/1613369/1613369.
pdf (visited on 04/01/2022) (cit. on pp. 31, 32, 34, 40, 78, 79).

160 Bibliography

https://web.archive.org/web/20230323092842/https://sshuttle.readthedocs.io/en/stable/how-it-works.html
https://web.archive.org/web/20230323092842/https://sshuttle.readthedocs.io/en/stable/how-it-works.html
https://web.archive.org/web/20230323092842/https://sshuttle.readthedocs.io/en/stable/how-it-works.html
https://sshuttle.readthedocs.io/en/stable/how-it-works.html
https://sshuttle.readthedocs.io/en/stable/how-it-works.html
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://arxiv.org/abs/2002.08110
http://arxiv.org/abs/2002.08110
http://arxiv.org/abs/2002.08110
https://www.sciencedirect.com/science/article/pii/S2590055221000111
https://www.sciencedirect.com/science/article/pii/S2590055221000111
https://epubs.siam.org/doi/abs/10.1137/140966368
https://epubs.siam.org/doi/abs/10.1137/140966368
https://aip.scitation.org/doi/full/10.1063/1.2118729
https://doi.org/10.1007/s002110050231
https://doi.org/10.1007/s002110050231
https://mediatum.ub.tum.de/doc/1613369/1613369.pdf
https://mediatum.ub.tum.de/doc/1613369/1613369.pdf

[120] M. Obersteiner. sparseSpACE - The Sparse Grid Spatially Adaptive Combination
Environment. May 9, 2023. url: https://github.com/obersteiner/sparse
SpACE (visited on 08/07/2023) (cit. on p. 67).

[121] M. Obersteiner, H.-J. Bungartz. ‘A Generalized Spatially Adaptive Sparse Grid
Combination Technique with Dimension-wise Refinement’. In: SIAM Journal on
Scientific Computing 43.4 (Jan. 2021). Publisher: Society for Industrial and Applied
Mathematics, A2381–A2403. url: https://epubs.siam.org/doi/abs/10.
1137/20M1325885 (visited on 04/13/2022) (cit. on pp. 35, 67).

[122] M. Obersteiner, A. P. Hinojosa, M. Heene, H.-J. Bungartz, D. Pflüger. ‘A Highly
Scalable, Algorithm-based Fault-tolerant Solver for Gyrokinetic Plasma Simulations’.
In: Proceedings of the 8th Workshop on Latest Advances in Scalable Algorithms for
Large-Scale Systems. ScalA ’17. New York, NY, USA: ACM, 2017, 2:1–2:8. url:
http://doi.acm.org/10.1145/3148226.3148229 (visited on 08/22/2018)
(cit. on p. 66).

[123] OpenMP Architecture Review Board. OpenMP Standard 4.5. 2015 (cit. on p. 71).
[124] D. Pflüger. SG++. archived in https : / / web . archive . org / web /

20230601152122/https://sgpp.sparsegrids.org/. url: https://sgpp.
sparsegrids.org/ (visited on 08/28/2023) (cit. on pp. 66, 68).

[125] D. Pflüger. Spatially Adaptive Sparse Grids for High-Dimensional Problems. Verlag Dr.
Hut, 2010 (cit. on pp. 29, 39, 48).

[126] C. Piazzola, L. Tamellini. Sparse Grids Matlab Kit. url: https://sites.google.
com/view/sparse-grids-kit (visited on 08/01/2023) (cit. on p. 67).

[127] C. Piazzola, L. Tamellini. The Sparse Grids Matlab Kit – a Matlab Implementation of
Sparse Grids for High-Dimensional Function Approximation and Uncertainty Quan-
tification. Mar. 17, 2022. arXiv: 2203.09314 [cs, math]. url: http://arxiv.
org/abs/2203.09314 (visited on 03/15/2023). preprint (cit. on p. 67).

[128] T. Pollinger. DisCoTec-combischeme-utilities. SG++ development team, Oct. 18,
2022. url: https://github.com/SGpp/DisCoTec-combischeme-utilities
(visited on 03/21/2023) (cit. on pp. 85, 88, 143).

[129] T. Pollinger. Freifrauvonbleifrei/Discotec-Scaling-Scripts. Mar. 25, 2022. url: https:
//github.com/freifrauvonbleifrei/discotec-scaling-scripts (visited
on 08/30/2023) (cit. on p. 143).

[130] T. Pollinger. Replication Data for: A mass-conserving sparse grid combination technique
with biorthogonal hierarchical basis functions for kinetic simulations. Type: dataset.
url: https://darus.uni-stuttgart.de/dataset.xhtml?persistentId=
doi:10.18419/darus-2790 (visited on 05/16/2022) (cit. on p. 143).

Bibliography 161

https://github.com/obersteiner/sparseSpACE
https://github.com/obersteiner/sparseSpACE
https://epubs.siam.org/doi/abs/10.1137/20M1325885
https://epubs.siam.org/doi/abs/10.1137/20M1325885
http://doi.acm.org/10.1145/3148226.3148229
https://web.archive.org/web/20230601152122/https://sgpp.sparsegrids.org/
https://web.archive.org/web/20230601152122/https://sgpp.sparsegrids.org/
https://sgpp.sparsegrids.org/
https://sgpp.sparsegrids.org/
https://sites.google.com/view/sparse-grids-kit
https://sites.google.com/view/sparse-grids-kit
https://arxiv.org/abs/2203.09314
http://arxiv.org/abs/2203.09314
http://arxiv.org/abs/2203.09314
https://github.com/SGpp/DisCoTec-combischeme-utilities
https://github.com/freifrauvonbleifrei/discotec-scaling-scripts
https://github.com/freifrauvonbleifrei/discotec-scaling-scripts
https://darus.uni-stuttgart.de/dataset.xhtml?persistentId=doi:10.18419/darus-2790
https://darus.uni-stuttgart.de/dataset.xhtml?persistentId=doi:10.18419/darus-2790

[131] T. Pollinger. Replication Data for: Stable and Mass-Conserving High-Dimensional
Simulations with the Sparse Grid Combination Technique for Full HPC Systems and
Beyond. unpublished data set, to be published with the thesis, access via https:
//darus.uni-stuttgart.de/privateurl.xhtml?token=38ee4d43-534b-
45b1-a886-046c18144d02. DaRUS. url: https://darus.uni-stuttgart.
de/dataset.xhtml?persistentId=doi:10.18419/darus-3580 (visited on
08/31/2023) (cit. on p. 143).

[132] T. Pollinger, M. Hurler, M. Obersteiner, D. Pflüger. ‘Distributing Higher-Dimensional
Simulations Across Compute Systems: AWidely Distributed Combination Technique’.
In: 2021 IEEE/ACM International Workshop on Hierarchical Parallelism for Exascale
Computing (HiPar). 2021 IEEE/ACM International Workshop on Hierarchical Paral-
lelism for Exascale Computing (HiPar). Nov. 2021, pp. 1–9 (cit. on pp. 17, 80, 81,
88).

[133] T. Pollinger, K. Kormann. Replication Data for: "Scaling the Plasma Simulation
While Conserving the Mass" - Poster at PASC ’22. DaRUS, June 28, 2022. url:
https://darus.uni-stuttgart.de/dataset.xhtml?persistentId=doi:
10.18419/darus-2784 (visited on 08/31/2023) (cit. on p. 143).

[134] T. Pollinger, K. Kormann, D. Pflüger. Scaling the Plasma Simulation while Conserving
the Mass: A Massively-Parallel Semi-Lagrangian Solver with the Sparse Grid Combina-
tion Technique. Was awarded the Best Poster Award at PASC’22. PASC22, June 25,
2022. url: https://pasc22.pasc-conference.org/program/schedule/
presentation/?id=pos109&sess=sess181 (visited on 07/19/2022) (cit. on
pp. 17, 167).

[135] T. Pollinger, D. Pflüger. ‘Learning-Based Load Balancing for Massively Parallel
Simulations of Hot Fusion Plasmas’. In: Advances in Parallel Computing 36 (Parallel
Computing: Technology Trends 2020), pp. 137–146. url: http://doi.org/10.
3233/APC200034 (cit. on pp. 18, 69, 71, 99, 100).

[136] T. Pollinger, J. Rentrop, D. Pflüger, K. Kormann. A mass-conserving sparse grid combi-
nation technique with biorthogonal hierarchical basis functions for kinetic simulations.
Sept. 23, 2022. arXiv: 2209.14064[physics]. url: http://arxiv.org/abs/
2209.14064 (visited on 11/11/2022) (cit. on pp. 17, 87).

[137] T. Pollinger, J. Rentrop, D. Pflüger, K. Kormann. ‘A Stable and Mass-Conserving
Sparse Grid Combination Technique with Biorthogonal Hierarchical Basis Func-
tions for Kinetic Simulations’. In: Journal of Computational Physics (July 7, 2023),
p. 112338. url: https://www.sciencedirect.com/science/article/pii/
S0021999123004333 (visited on 07/17/2023) (cit. on pp. 17, 19, 22, 26, 27, 29,
38, 49–52, 55, 58, 60, 64, 87, 107).

162 Bibliography

https://darus.uni-stuttgart.de/privateurl.xhtml?token=38ee4d43-534b-45b1-a886-046c18144d02
https://darus.uni-stuttgart.de/privateurl.xhtml?token=38ee4d43-534b-45b1-a886-046c18144d02
https://darus.uni-stuttgart.de/privateurl.xhtml?token=38ee4d43-534b-45b1-a886-046c18144d02
https://darus.uni-stuttgart.de/dataset.xhtml?persistentId=doi:10.18419/darus-3580
https://darus.uni-stuttgart.de/dataset.xhtml?persistentId=doi:10.18419/darus-3580
https://darus.uni-stuttgart.de/dataset.xhtml?persistentId=doi:10.18419/darus-2784
https://darus.uni-stuttgart.de/dataset.xhtml?persistentId=doi:10.18419/darus-2784
https://pasc22.pasc-conference.org/program/schedule/presentation/?id=pos109&sess=sess181
https://pasc22.pasc-conference.org/program/schedule/presentation/?id=pos109&sess=sess181
http://doi.org/10.3233/APC200034
http://doi.org/10.3233/APC200034
https://arxiv.org/abs/2209.14064 [physics]
http://arxiv.org/abs/2209.14064
http://arxiv.org/abs/2209.14064
https://www.sciencedirect.com/science/article/pii/S0021999123004333
https://www.sciencedirect.com/science/article/pii/S0021999123004333

[138] T. Pollinger, A. Van Craen, C. Niethammer, M. Breyer, D. Pflüger. ‘Leveraging the
Compute Power of Two HPC Systems for Higher-Dimensional Grid-Based Simula-
tions with the Widely-Distributed Sparse Grid Combination Technique’. In: SC ’23.
Association for Computing Machinery, Nov. 11, 2023. url: https://dl.acm.org/
doi/10.1145/3581784.3607036 (visited on 11/15/2023) (cit. on pp. 17, 78, 80,
81, 83–85, 88, 131, 133, 135).

[139] R. F. Post. ‘Controlled Fusion Research—An Application of the Physics of High
Temperature Plasmas’. In: Reviews of Modern Physics 28.3 (July 1, 1956). Publisher:
American Physical Society, pp. 338–362. url: https://link.aps.org/doi/10.
1103/RevModPhys.28.338 (visited on 04/26/2023) (cit. on p. 11).

[140] Processor Affinity — JUWELS User Documentation Documentation. archived in htt
ps://web.archive.org/web/20230811070412/https://apps.fz-juelich.
de/jsc/hps/juwels/affinity.html. url: https://apps.fz- juelich
.de/jsc/hps/juwels/affinity.html#processor- affinity (visited on
08/11/2023) (cit. on p. 111).

[141] J. D. Regele, O. V. Vasilyev. ‘An adaptive wavelet-collocation method for shock com-
putations’. In: International Journal of Computational Fluid Dynamics 23.7 (Aug. 1,
2009), pp. 503–518. url: https://doi.org/10.1080/10618560903117105
(visited on 06/15/2023) (cit. on p. 39).

[142] M. F. Rehme. ‘B-Splines on Sparse Grids for Uncertainty Quantification’. PhD thesis.
Universität Stuttgart, 2021. url: http://elib.uni-stuttgart.de/handle/
11682/11771 (visited on 09/30/2022) (cit. on p. 66).

[143] M. F. Rehme, F. Franzelin, D. Pflüger. ‘B-splines on sparse grids for surrogates in
uncertainty quantification’. In: Reliability Engineering & System Safety 209 (May 1,
2021), p. 107430. url: https://www.sciencedirect.com/science/article/
pii/S0951832021000016 (visited on 05/08/2023) (cit. on p. 25).

[144] C. Reisinger. ‘Analysis of linear difference schemes in the sparse grid combination
technique’. In: IMA Journal of Numerical Analysis 33.2 (Apr. 1, 2013), pp. 544–
581. url: https://academic.oup.com/imajna/article/33/2/544/653322
(visited on 08/26/2019) (cit. on p. 34).

[145] L. F. Ricketson, A. J. Cerfon. ‘Sparse grid techniques for particle-in-cell schemes’. In:
Plasma Physics and Controlled Fusion 59.2 (Dec. 2016). Publisher: IOP Publishing,
p. 024002. url: https://doi.org/10.1088/1361-6587/59/2/024002 (visited
on 03/18/2022) (cit. on pp. 12, 32, 67).

Bibliography 163

https://dl.acm.org/doi/10.1145/3581784.3607036
https://dl.acm.org/doi/10.1145/3581784.3607036
https://link.aps.org/doi/10.1103/RevModPhys.28.338
https://link.aps.org/doi/10.1103/RevModPhys.28.338
https://web.archive.org/web/20230811070412/https://apps.fz-juelich.de/jsc/hps/juwels/affinity.html
https://web.archive.org/web/20230811070412/https://apps.fz-juelich.de/jsc/hps/juwels/affinity.html
https://web.archive.org/web/20230811070412/https://apps.fz-juelich.de/jsc/hps/juwels/affinity.html
https://apps.fz-juelich.de/jsc/hps/juwels/affinity.html#processor-affinity
https://apps.fz-juelich.de/jsc/hps/juwels/affinity.html#processor-affinity
https://doi.org/10.1080/10618560903117105
http://elib.uni-stuttgart.de/handle/11682/11771
http://elib.uni-stuttgart.de/handle/11682/11771
https://www.sciencedirect.com/science/article/pii/S0951832021000016
https://www.sciencedirect.com/science/article/pii/S0951832021000016
https://academic.oup.com/imajna/article/33/2/544/653322
https://doi.org/10.1088/1361-6587/59/2/024002

[146] K.M. Röhner. ‘Learning from Data with Geometry-Aware Sparse Grids’. Technische
Universität München, 2020. url: https://mediatum.ub.tum.de/604993?
query=kilian+r%C3%B6hner&show_id=1554038&srcnodeid=604993 (visited
on 08/07/2023) (cit. on p. 66).

[147] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana,
S. Tarantola. Global Sensitivity Analysis: The Primer. John Wiley & Sons, 2008
(cit. on p. 32).

[148] N. Scharping. Why Nuclear Fusion Is Always 30 Years Away. Discover Magazine.
Mar. 23, 2016. url: https://www.discovermagazine.com/technology/why-
nuclear-fusion-is-always-30-years-away (visited on 05/02/2023) (cit. on
p. 11).

[149] B. Schuller, T. Pohlmann, K. Benedyczak, J. Rybicki. UFTP. Apr. 17, 2023. url:
https://zenodo.org/record/8043002 (visited on 06/16/2023) (cit. on p. 84).

[150] Science | Scientists and cloud computing push the boundaries of ITER plasma disruption
simulations. ITER. Apr. 4, 2022. url: http://www.iter.org/newsline/-/3739
(visited on 05/05/2023) (cit. on p. 12).

[151] SG++ development team. DisCoTec. SG++ development team, July 30, 2023. url:
https://github.com/SGpp/DisCoTec (visited on 10/11/2023) (cit. on p. 68).

[152] S. A. Smolyak. ‘Quadrature and interpolation formulas for tensor products of certain
class of functions’. In: Soviet Mathematics Doklady 4 (1963). Russian Original:
Doklady Akademii Nauk SSSR, 148 (5): 1042–1053, pp. 240–243 (cit. on p. 29).

[153] E. Strohmaier, J. Dongarra, H. Simon, M. Meuer. June 2023 | TOP500. url: https:
//www.top500.org/lists/top500/2023/06/ (visited on 07/03/2023) (cit. on
pp. 65, 66, 92, 93, 132).

[154] W. Sweldens. ‘The Lifting Scheme: A Construction of Second Generation Wavelets’.
In: SIAM Journal on Mathematical Analysis 29.2 (Mar. 1, 1998). Publisher: Society
for Industrial and Applied Mathematics, pp. 511–546. url: https://epubs.siam.
org/doi/abs/10.1137/S0036141095289051 (visited on 01/14/2022) (cit. on
pp. 24, 26, 27, 141).

[155] H. Tajfel, M. G. Billig, R. P. Bundy, C. Flament. ‘Social Categorization and Intergroup
Behaviour’. In: European Journal of Social Psychology 1.2 (1971), pp. 149–178. url:
https://onlinelibrary.wiley.com/doi/abs/10.1002/ejsp.2420010202
(visited on 07/14/2023) (cit. on p. 77).

[156] T. Tantau, et al. TikZ & PGF. 2010. url: https://ctan.org/pkg/pgf (visited on
08/31/2023) (cit. on p. 146).

164 Bibliography

https://mediatum.ub.tum.de/604993?query=kilian+r%C3%B6hner&show_id=1554038&srcnodeid=604993
https://mediatum.ub.tum.de/604993?query=kilian+r%C3%B6hner&show_id=1554038&srcnodeid=604993
https://www.discovermagazine.com/technology/why-nuclear-fusion-is-always-30-years-away
https://www.discovermagazine.com/technology/why-nuclear-fusion-is-always-30-years-away
https://zenodo.org/record/8043002
http://www.iter.org/newsline/-/3739
https://github.com/SGpp/DisCoTec
https://www.top500.org/lists/top500/2023/06/
https://www.top500.org/lists/top500/2023/06/
https://epubs.siam.org/doi/abs/10.1137/S0036141095289051
https://epubs.siam.org/doi/abs/10.1137/S0036141095289051
https://onlinelibrary.wiley.com/doi/abs/10.1002/ejsp.2420010202
https://ctan.org/pkg/pgf

[157] Z. Tao, W. Guo, Y. Cheng. ‘Sparse grid discontinuous Galerkin methods for the
Vlasov-Maxwell system’. In: Journal of Computational Physics: X 3 (2019), p. 100022
(cit. on pp. 38, 141).

[158] S. development team. Welcome to SG++. Aug. 22, 2022. url: https://github.
com/SGpp/SGpp (visited on 09/01/2022) (cit. on pp. 66, 68).

[159] TerraNeo. TerraNeo: Integrated Co-Design of an Exascale Earth Mantle Modeling
Framework. url: https://www.terraneo.fau.de/ (visited on 08/07/2023)
(cit. on p. 67).

[160] The GENE Development Team. The GENE Code. url: http://genecode.org/
(visited on 08/27/2019) (cit. on pp. 91, 98).

[161] Turbulence simulations reveal promising insight for fusion. ITER. Apr. 10, 2014. url:
http://www.iter.org/newsline/-/1888 (visited on 05/05/2023) (cit. on
p. 12).

[162] J. Valentin. ‘B-Splines for Sparse Grids: Algorithms and Application to Higher-
Dimensional Optimization’. PhD thesis. University of Stuttgart, 2019 (cit. on pp. 25,
28, 29, 66, 70, 123).

[163] J. Valentin. Original Repository of Julian Valentin’s PhD Thesis. original-date: 2022-
01-08T08:51:16Z. Jan. 15, 2022. url: https://github.com/valentjn/thesis
(visited on 03/02/2022) (cit. on p. 28).

[164] K. Vladimir. Anatoly Vlasov Heritage: 60-Year-Old Controversy. 2023. url: https:
//philpapers.org/rec/VLAAVH (visited on 08/08/2023) (cit. on p. 12).

[165] A. A. Vlasov. ‘The Vibrational Properties of an Electron Gas’. In: Soviet Physics Uspekhi
10.6 (June 30, 1968), p. 721. url: https://iopscience.iop.org/article/
10.1070/PU1968v010n06ABEH003709/meta (visited on 08/08/2023) (cit. on
pp. 12, 13).

[166] Z. Wang, Q. Tang, W. Guo, Y. Cheng. ‘Sparse grid discontinuous Galerkin methods
for high-dimensional elliptic equations’. In: Journal of Computational Physics 314
(2016), pp. 244–263 (cit. on p. 38).

[167] R. D. White, R. E. Robson, S. Dujko, P. Nicoletopoulos, B. Li. ‘Recent Advances in the
Application of Boltzmann Equation and Fluid Equation Methods to Charged Particle
Transport in Non-Equilibrium Plasmas’. In: Journal of Physics D: Applied Physics
42.19 (Sept. 2009), p. 194001. url: https://dx.doi.org/10.1088/0022-
3727/42/19/194001 (visited on 04/06/2023) (cit. on p. 12).

Bibliography 165

https://github.com/SGpp/SGpp
https://github.com/SGpp/SGpp
https://www.terraneo.fau.de/
http://genecode.org/
http://www.iter.org/newsline/-/1888
https://github.com/valentjn/thesis
https://philpapers.org/rec/VLAAVH
https://philpapers.org/rec/VLAAVH
https://iopscience.iop.org/article/10.1070/PU1968v010n06ABEH003709/meta
https://iopscience.iop.org/article/10.1070/PU1968v010n06ABEH003709/meta
https://dx.doi.org/10.1088/0022-3727/42/19/194001
https://dx.doi.org/10.1088/0022-3727/42/19/194001

[168] F. Wilms, A. B. Navarro, G. Merlo, L. Leppin, T. Görler, T. Dannert, F. Hindenlang,
F. Jenko. ‘Global electromagnetic turbulence simulations of W7-X-like plasmas with
GENE-3D’. In: Journal of Plasma Physics 87.6 (Dec. 2021). Publisher: Cambridge
University Press. url: https://www.cambridge.org/core/journals/jour
nal-of-plasma-physics/article/global-electromagnetic-turbulenc
e-simulations-of-w7xlike-plasmas-with-gene3d/AFF0F24A1A52D397D
7983BAB2E872E9F (visited on 03/29/2022) (cit. on p. 98).

[169] M. Wittmann, G. Hager, G. Wellein. ‘Multicore-Aware Parallel Temporal Blocking
of Stencil Codes for Shared and Distributed Memory’. In: 2010 IEEE International
Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW).
2010 IEEE International Symposium on Parallel & Distributed Processing, Work-
shops and Phd Forum (IPDPSW). Apr. 2010, pp. 1–7 (cit. on p. 111).

[170] M. Wolff. Heaptrack - A Heap Memory Profiler for Linux. Milian Wolff, Dec. 2, 2014.
url: https://milianw.de/blog/heaptrack-a-heap-memory-profiler-
for-linux.html (visited on 08/07/2023) (cit. on p. 169).

[171] J. Wright. Siunitx. url: https : / / ctan . org / pkg / siunitx (visited on
08/31/2023) (cit. on p. 146).

[172] A. Zeiser. ‘Sparse Grid Time-Discontinuous Galerkin Method with Streamline Diffu-
sion for Transport Equations’. In: Partial Differential Equations and Applications 4.4
(Aug. 1, 2023), p. 38. url: https://doi.org/10.1007/s42985-023-00250-2
(visited on 08/08/2023) (cit. on pp. 38, 62).

[173] C. Zenger. ‘Sparse Grids’. In: Notes on Numerical Fluid Mechanics 31 (1991), pp. 241–
251 (cit. on p. 27).

[174] A.N. Ziogas, T. Ben-Nun, G. I. Fernández, T. Schneider, M. Luisier, T. Hoefler. ‘A
Data-Centric Approach to Extreme-Scale Ab Initio Dissipative Quantum Transport
Simulations’. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. SC ’19. New York, NY, USA: Associa-
tion for Computing Machinery, Nov. 17, 2019, pp. 1–13. url: https://dl.acm.
org/doi/10.1145/3295500.3357156 (visited on 05/08/2023) (cit. on p. 66).

166 Bibliography

https://www.cambridge.org/core/journals/journal-of-plasma-physics/article/global-electromagnetic-turbulence-simulations-of-w7xlike-plasmas-with-gene3d/AFF0F24A1A52D397D7983BAB2E872E9F
https://www.cambridge.org/core/journals/journal-of-plasma-physics/article/global-electromagnetic-turbulence-simulations-of-w7xlike-plasmas-with-gene3d/AFF0F24A1A52D397D7983BAB2E872E9F
https://www.cambridge.org/core/journals/journal-of-plasma-physics/article/global-electromagnetic-turbulence-simulations-of-w7xlike-plasmas-with-gene3d/AFF0F24A1A52D397D7983BAB2E872E9F
https://www.cambridge.org/core/journals/journal-of-plasma-physics/article/global-electromagnetic-turbulence-simulations-of-w7xlike-plasmas-with-gene3d/AFF0F24A1A52D397D7983BAB2E872E9F
https://milianw.de/blog/heaptrack-a-heap-memory-profiler-for-linux.html
https://milianw.de/blog/heaptrack-a-heap-memory-profiler-for-linux.html
https://ctan.org/pkg/siunitx
https://doi.org/10.1007/s42985-023-00250-2
https://dl.acm.org/doi/10.1145/3295500.3357156
https://dl.acm.org/doi/10.1145/3295500.3357156

Ap
pe
nd
ix A

Appendix

A.1. Comparison: DisCoTec and SeLaLib Run Times ‘Old’ and
Revisited

To evaluate the joint scaling capabilities of DisCoTec and SeLaLib, strong scaling
measurements were taken for the two-stream instability problem on HAWK. As the
combination scheme considered in Section 3.5.3 is relatively small—only 1.1GiB
are used for the full grid functions in total—the problem was run on up to 8192
ranks (no OpenMP), i. e., 64 nodes. This was considered to be too small to be
interesting for Chapter 5. But since it was used as part of a poster [134] and re-run
in July 2023, with new DisCoTec features, it can be interesting to see how the run
times changed.
The changes included running without the manager rank (and thus round-robin

assignment instead of dynamic load balancing), ChunkedOutgroupSGReduce
instead of sparse grid reduce, avoiding copies between DisCoTec and SeLaLib, and
using Kahan summation instead of naive summation (which should increase the
accuracy of the results but incur some run time overhead). However, it goes beyond
the scope of this work to disseminate exactly which optimization played which part
in the improved scaling behavior.
The results are shown in Figure A.1.
First, we want to expand upon the discussion in Section 3.6, where the differences

in computational cost between the different basis functions were assessed. For both
the previous and new results, there is a tiny difference for the combination with
the different basis functions, where the time for the mass-conserving functions ψbo

and ψfw is typically the same. As the number of process groups is increased up to

167

20 21 22 23 24 25 26 27 28 29 210 211 212 213

10−2

10−1

100

101

102

Number of Processes

Ru
n
Ti
m
ep
er

Co
m
bi
na
tio
n
Ti
m
eS
te
p
[s]

CT hat (standard) CT biorthogonal
CT full weighting

Total Time Combination Time Solver Time Ideal Full grid reference

more process groups larger process groups
(a) ‘Old’ version of DisCoTec with SeLaLib

20 21 22 23 24 25 26 27 28 29 210 211 212 213
10−3

10−2

10−1

100

101

102

Number of Processes

Ru
n
Ti
m
ep
er

Co
m
bi
na
tio
n
Ti
m
eS
te
p
[s]

CT hat (standard) CT biorthogonal
CT full weighting

Total Time Combination Time Solver Time Ideal Full grid reference

more process groups larger process groups
(b) Revised version of DisCoTec with SeLaLib

Figure A.1.: Comparison of strong scaling timings for DisCoTec with SeLaLib on the
two-stream instability problem. Note that the grey ‘ideal’ scaling line
is the exact same between the two plots. The reference solution at a
resolution level of ℓ⃗max (black line) could only be computed starting at
1024 ranks, as before there was not sufficient main memory available.

168 A.1. Comparison: DisCoTec and SeLaLib Run Times ‘Old’ and Revisited

32, the times decrease symmetrically for both the standard hat functions and the
mass-conserving functions. In this left part of the graph, scaling losses for SeLaLib
are due to load imbalances between the process groups. Only when the size of
process groups increases, one starts to observe a widening gap for the combination
with the different basis transformation operators. This conforms to the expectation,
as larger process groups correspond to more spatial domain decomposition, and the
communication effects in Section 3.6 become more pronounced.
One can see that the changes in DisCoTec have a significant positive effect on the

run times, especially for larger numbers of processes, where the time required per
combination was reduced by a factor of approximately 6.8 for the hierarchical hat
functions and 9.2 for the mass-conserving basis functions. While the strong scaling
efficiency was previously 6% for the combination and 3% for the SeLaLib solver, it
is now 16% and 6%, respectively, for the basis transforms with ψhat.
To advance these measurements for larger-scale simulations, it would be particu-

larly interesting to see how using OpenMP shared-memory parallelism may speed
up the computation, since SeLaLib supports efficient OpenMP parallelization [94]
and DisCoTec now does too, cf. Section 4.7.

A.2. Why Not to Use MPI_Iallreduce at Scale

During the development of OutgroupSGReduce in DisCoTec, using non-blocking
collectives such as MPI_Iallreduce in Algorithm 4.4 was considered. However, this
led to unexpected failures of the simulations with both Intel-MPI and OpenMPI. The
reason for this were the large memory requirements of the non-blocking collectives.

This could be investigated with the heaptrack memory analyzer tool [170],
screenshots of which are shown in Figure A.2. Eight process groups were consid-
ered, and ChunkedOutgroupSGReduce was implemented with MPI_Allreduce
and MPI_Iallreduce (followed directly by MPI_Wait to obtain the semantics of
MPI_Allreduce). The size of the sparse grid to be reduced was 190MiB.
For MPI_Allreduce, the memory consumption behaves as expected: The memory

consumed prior to the reductions is approximately 1.1GiB per rank, and one can
observe small spikes as the reductions are performed. The magnitude of these spikes
is in proportion to the memory chunks granted (16MiB) for the reduce operation.

Bibliography 169

(a) . . .with MPI_Allreduce

(b) . . .with MPI_Iallreduce and immediate MPI_Wait

Figure A.2.: Heaptrack heap memory consumption screenshots for CT simulations
with OutgroupSGReduce, cf. Algorithm 4.4, for a setup with eight
process groups of 64 ranks on SuperMUC-NG.170 A.2. Why Not to Use MPI_Iallreduce at Scale

However, for MPI_Iallreduce, There are huge intermediate spikes due to tem-
porary allocations (the red lines). Their magnitude is much higher than any of
the reduction buffers’ size is supposed to be. The fact that they are ‘temporary’ in
heaptrack means that they are freed again immediately, and not used, which makes
it unlikely that the allocations happen for performance optimization reasons.
This made the current implementations of the non-blocking reduction unsuit-

able for use with simulations at severe memory constraints, such as the higher-
dimensional simulations considered here.

Bibliography 171

Glossary and Abbreviations

CT combination technique. 29

Curse of Dimensionality Exponential dependency of the number of DOF on the
dimensionality of the problem. 12

dehierarchization Basis transformation frommultiscale to nodal basis, also ‘inverse
wavelet transform’ in the wavelet context. 21

DOF degree(s) of freedom. 14

hierarchization Basis transformation from nodal to hierarchical/multiscale basis,
also ‘wavelet transform’ in the wavelet context. 21

HPC high performance computing. 4, 65

PDE partial differential equation. 4, 12, 15

reduction operation Associative operation on multiple data entries, well suited
for parallelization. In the context of this thesis, it usually denotes a summa-
tion. For distributed-memory reductions, there is the concept of ‘allreduce’ or
MPI_Allreduce, if all ranks require the valid result for further computation.
71

SG sparse grid. 27

173

List of Symbols

Symbol Name + Description
W hierarchical increment space The discrete function space required to get

from a smaller to a larger nodal function space, resulting in a hierarchy of
function spaces, cf. Equation (2.3).

ℐ index set Sparse grid description, a plain set of (multi-dimensional) refine-
ment levels for non-spatially-adaptive sparse grids.

ℐcj (hierarchical) conjoint index set The set of hierarchical subspaces that
two sparse grids have in common..

ℐCT combination technique index set The set of nodal function spaces used
to construct a sparse grid with the CT, equivalent to the set of component
grids, also: combination scheme.

ℐSG sparse grid index set The set of hierarchicacal increment spaces contained
in a sparse grid.

ℓ level (one-dimensional) refinement level.
ℓ⃗ level vector (multi-dimensional) refinement level.
ℓ⃗max maximum level The highest level vector / the finest resolutions in a

combination scheme, in each dimension, respectively.
ℓ⃗min minimum level The smallest level vector / the coarsest resolutions in a

combination scheme, in each dimension, respectively.
ψ multiscale basis function the set of functions that span W , also: wavelet

function.
ψbo biorthogonal basis function A choice of mass-conserving multiscale basis

function, defined by ψbo = −1
8ψ

hat(x + 1) − 1
4ψ

hat(x + 1
2) +

3
4ψ

hat(x) −
1
4ψ

hat(x − 1
2)− 1

8ψ
hat(x − 1); also: CDF 3/5 wavelet, dual wavelet to full

weighting basis function.

175

Symbol Name + Description
ψfw full weighting basis function A choice of mass-conserving multiscale

basis function, no closed form; also: CDF 5/3 wavelet, dual wavelet to
biorthogonal basis function.

ψhat hierarchical hat function ψhat(x) =max(1− 2
��x − 1

2

�� , 0); also: interpolet
of first order, lazy wavelet.

V nodal function space Discrete function space, often interpolating a func-
tion at varying refinement levels. In the context of this thesis, V is part of a
nested sequence of function spaces containing piecewise linear functions.

φ scaling function one of the functions that span V , also: nodal basis function.
φhat ‘hat’ scaling function also: linear basis function, nodal hat function.

176 List of Symbols

	1 Motivation and Introduction: Importance and Challenges of High-Fidelity Plasma Simulations
	1.1 Solving the Vlasov–Poisson and Vlasov–Maxwell partial differential equations
	1.2 Contributions in this Thesis

	2 The combination technique: A Curse-Breaking Multiscale Method for Grid-Based Simulations
	2.1 Nodal and Hierarchical Function Space Bases
	2.1.1 Biorthogonal Wavelets as Hierarchical Bases (and Vice Versa)
	2.1.2 Comparison of Mass-Conserving and Standard Hat Functions' Theoretical Properties

	2.2 Sparse Grids
	2.3 Sparse Grid Combination Technique
	2.3.1 Error Cancellation in the Combination Technique
	2.3.2 Combination Technique for Time-Dependent Problems

	2.4 Summary

	3 Multiscale Bases for Accuracy, Conservation, and Numerical Stability
	3.1 Related Work: Multiscale Methods, Conservation, and Sparse Grids
	3.2 Prelude: Quantities of Interest and Error Measures
	3.3 2D Examples: Tricks With Hierarchical Hat Basis Functions
	3.3.1 The Vanish Trick, or Making All Mass Disappear
	3.3.2 The Explosion Trick, or Amplifying Mass and Gradients

	3.4 Conservation of Mass and Increased Accuracy for Advection in 2-6D
	3.4.1 Finite Volume / Finite Difference Discretization
	3.4.2 Conservation of Mass on Component Grids
	3.4.3 Improved Accuracy with Mass-Conserving Functions
	3.4.4 Influence of Recombination Time Step Lengths

	3.5 Stabilizing Plasma Simulations: Vlasov–Poisson with SeLaLib
	3.5.1 Semi-Lagrangian Method for Vlasov–Poisson Equations
	3.5.2 Landau Damping with DisCoTec + SeLaLib
	3.5.3 Two-Stream Instability with DisCoTec + SeLaLib

	3.6 Practical Assessment of Standard and Mass-Conserving Basis Functions

	4 high performance computing and the DisCoTec Code
	4.1 When Will We Achieve Exascale Computing?
	4.2 Related Work: high performance computing for Multiscale pde Solvers and on Multiple Systems
	4.3 DisCoTec Software Architecture and Parallelism
	4.4 Communication Schemes and Communication Volumes
	4.4.1 Sparse Grid Reduce
	4.4.2 Subspace Reduce
	4.4.3 Outgroup Sparse Grid Reduce
	4.4.4 Chunked Outgroup Sparse Grid Reduce

	4.5 Connecting Two hpc Systems
	4.5.1 Added Technical Challenges on Large-Scale Systems
	4.5.2 Serial Sparse Grid Data Exchange (Through TCP)
	4.5.3 File-Based Sparse Grid Data Exchange (Through UFTP)

	4.6 Distributing Combination Schemes for Minimal Data Volume
	4.6.1 Symmetric Splitting by the Level-Sum Criterion
	4.6.2 Heuristic Splitting with the METIS Graph Partitioner

	4.7 New Contributions to DisCoTec

	5 Scaling DisCoTec Up to Full hpc Systems and Beyond
	5.1 Comparison of hpc Systems Used for Experiments
	5.2 Challenges for Scaling Up DisCoTec
	5.3 DisCoTec And The Gyrokinetic Solver GENE
	5.3.1 Scaling DisCoTec with GENE
	5.3.2 GENE and DisCoTec: The Right Setup for Exascale?

	5.4 DisCoTec with the Advection Solver: Comparing Four Systems
	5.4.1 Strong Scaling with a Small Combination Scheme
	5.4.2 Weak Scaling Along the Memory Limits
	5.4.3 Load Imbalance Through Communication-Optimized Grid Assignment
	5.4.4 I/O Timings for File-Based Combination

	5.5 Towards Widely-Distributed Simulations at Extreme Scales

	6 Conclusion and Outlook: Towards Exascale Computations for Net-Positive Fusion Energy
	6.1 Stable and Moment-Conserving Simulations at the Memory Limit of More than Entire HPC Systems
	6.2 Future Research Directions

	Bibliography
	A Appendix
	A.1 Comparison: DisCoTec and SeLaLib Run Times "Old" and Revisited
	A.2 Why Not to Use MPI_Iallreduce at Scale

	Glossary and Abbreviations
	List of Symbols

