
Software Lab
Institute of Software Engineering

University of Stuttgart
Universitätsstraße 38, 70569 Stuttgart

Master Thesis

Wasm-R3: Creating

Executable Benchmarks

of WebAssembly Binaries

via

Record-Reduce-Replay

Jakob Getz

Course of study: Computer Science

Examiner: Prof. Dr. Michael Pradel

Supervisor: Sukyong Ryu, Ben L. Titzer, Daniel Lehmann,
Doehyun Baek, Yuesung Sim

Started: September 1, 2023

Completed: March 1, 2024

Abstract

WebAssembly is the newest language to arrive on the web and has now been implemented in all

major browsers for several years. It features a compact binary format, making it fast to be loaded,

decoded and run. To evaluate and improve the performance of WebAssembly engines, relevant

executable benchmarks are required. Existing benchmarks such as PolyBenchC and Spec CPU have

shortcomings in their relevancy, since they do not necessarily represent real-world WebAssembly

applications well. To make the creation of such benchmarks faster and simpler, we develop Wasm-

R3 an approach that has the capability of recording existing web applications and generate an

executable benchmark from it. Wasm-R3’s workflow can be described in three phases: record,

reduce and replay. In the record phase the instrumenter instruments the website’s WebAssembly

code, a user then interacts with the website, which causes traces of the execution to be recorded.

Since these traces are typically large, unnecessary information gets filtered out in the reduce phase.

In the replay phase a replay generator takes these traces along with the original web application’s

WebAssembly binary and generates a standalone executable benchmark from it. We evaluate

Wasm-R3 by implementing it in Typescript and Rust to show that the generated benchmarks

correctly mimic the behavior of the recorded application. We further demonstrate that replays

can be generated in reasonable time by measuring a mean wall time of 8.651 seconds and that our

benchmarks are portable across a variety of di↵erent WebAssembly engines.

iii

Zusammenfassung

WebAssembly ist die neueste Webtechnologie und ist seit mehreren Jahren in allen großen Browsern

integriert. WebAssembly ist ein kompaktes Bytecode Format, welches schnell geladen, decodiert

und ausgeführt werden kann. Um die Performance von WebAssembly Engines zu evaluieren und

zu verbessern, sind relevante und ausführbare Benchmarks notwendig. Existierende Benchmarks

wie PolyBenchC und Spec CPU haben Mängel in ihrer Relevanz, da sie nicht zwangsläufigerweise

Anwendungen der echten Welt repräsentieren. Um das Erstellen solcher Benchmarks einfacher

und schneller zu gestalten, entwickeln wir Wasm-R3, ein Werkzeug welches die Fähigkeit besitzt,

existierende Webanwendungen aufzunehmen und durch die Aufnahme eine ausführbare Benchmark

zu generieren. Wasm-R3s Arbeitsablauf kann in drei Phasen beschrieben werden: Record, Reduce

und Replay. In der Record Phase ist ein Instrumenter verantwortlich den WebAssembly Code der

Webseite zu instrumentieren. Ein Benutzer interagiert anschließend mit dieser Webseite was dazu

führt, dass Traces von dieser Ausführung aufgenommen werden. Da diese Traces typischerweise sehr

groß sind, werden unnötige Informationen in der Reduce Phase heraus gefiltert. In der Replay Phase

nimmt ein Replay Generator diese Traces zusammen mit der originalen WebAssembly Binary als

Eingabe und generiert daraus alleinstehende Benchmarks. Wir evaluieren unseren Ansatz indem

wir ihn in Typescript und Rust implementieren um zu zeigen, dass die generierten Benchmarks

das Verhalten der originalen Anwendung korrekt wiedergeben. Des Weiteren zeigen wir, dass das

ausführen von Wasm-R3 in einem vernünftigen Zeitrahmen von durchschnittlich 8,651 Sekunden

stattfindet und dass unsere Benchmarks von einer großen Vielfalt an verschiedenen WebAssembly

Engines ausgeführt werden können.

v

Contents

1 Introduction 1

2 Record and Replay 5

2.1 Classification of Record and Replay Systems . 6

2.2 A Basic Framework . 6

2.2.1 Environment and Application . 6

2.2.2 Structure of the Environment . 7

2.2.3 Store . 7

2.3 Collecting Runtime Information . 7

2.4 Generating Replays . 8

3 WebAssembly 9

3.1 Structure . 9

3.2 Computational Model . 10

3.3 Execution Semantics and Nondeterminism . 10

4 Approach 13

4.1 Architecture . 13

4.2 Record . 15

4.2.1 Required Data to Record . 15

4.2.2 Naive Approach . 16

4.2.3 Decoupled Recording . 16

4.2.4 Trace Structure . 17

4.2.5 Trace Implementation . 19

4.2.6 Instrumentation Implementation . 19

4.2.7 Trace Transfer Implementation . 21

4.2.8 Proxy Implementation . 22

4.3 Reduce . 23

4.3.1 Shadow Optimization . 23

4.3.2 Call Stack Optimization . 25

4.3.3 Implementation . 27

4.4 Replay . 27

4.4.1 Replay Intermediate Representation . 28

vii

viii Contents

4.4.2 Non Monotone Replay Generation . 29

4.4.3 Optimizations . 30

4.4.4 Backends and Output Formats . 30

5 Evaluation 35

5.1 Experimental Setup . 35

5.2 E↵ectiveness of Recording (RQ 1) . 37

5.3 E↵ectiveness of Reduction (RQ 2) . 37

5.4 Portability of Wasm-R3 (RQ 3) . 39

5.5 Correctness of Wasm-R3 (RQ 4) . 40

5.6 Performance of Wasm-R3 (RQ 4) . 40

5.6.1 Wall Time . 40

5.6.2 Recording Overhead . 41

5.6.3 Replay Generation . 42

5.6.4 Replay Execution Time . 43

6 Discussion 45

7 Future Work 47

8 Related Work 49

9 Conclusion 51

Bibliography 51

1 Introduction

WebAssembly is a safe, portable, low-level code format designed for e�cient execution and compact

representation [2]. It is intended mainly to be used as a compilation target, for di↵erent source

languages, including C, C++, Rust and Go, to make software written in those languages executable

in the browser. Its low-level instructions map close to hardware instructions with the goal to achieve

execution speeds close to native performance. Even though significantly faster then JavaScript and

runnable through browsers engines such as Webkit or V8 it is not intended to replace JavaScript

but instead augment it, which promises to speed up specific components of the broader application.

Since its introductory paper by Haas et al. [18] WebAssembly has been gaining traction and got

adopted by many major applications such as Figma1 and CapCut2.

Although WebAssembly is designed to be faster than JavaScript, real-world outcomes have

varied [4, 7]. For instance, eBay developers experienced a significant performance boost by up to

50 times when they utilized WebAssembly to develop a barcode scanner [29], compared to their

JavaScript implementation. Conversely, Samsung engineers found that on the Samsung Internet

browser (version 7.2.10.12), WebAssembly was slower than JavaScript when conducting matrix

multiplications of specific sizes [6]. To investigate similar ambiguous cases and support the devel-

opment and improvement of virtual machines multiple studies with di↵erent conclusions have been

conducted to analyze the performance of WebAssembly vs Javascript [37, 9, 10, 36], and native

code [22, 23].

All of the above studies rely on benchmarks to collect performance data, which get typically run

in an instrumented version of the virtual machine under investigation. In an experimental setup

this, a careful selection of benchmarks is crucial to obtain representative and reliable data. Unfor-

tunately, finding a su�ciently large set of representative WebAssembly benchmarks is challenging,

since due to its young age only a small number of benchmarks exists. Lehmann et al. contribute

a diverse suite of 8,461 real world wasm binaries, however these are not executable and thus not

of use for performance measurement [24, 20]. This deficiency on WebAssembly benchmarks forces

researchers to either write their own programs or use commonly used standard benchmark suites

such as PolyBenchC, CHStone [19] or Spec CPU which are written in C and compile them to We-

bAssembly. While suitable for collecting minimal data, these benchmarks might not necessarily be

representative of WebAssembly applications as they appear in the wild. More specifically the types

of actions performed in industry standard benchmarks can vary greatly from the real world [30].

These biased benchmarks can lead language developers astray by promoting optimizations that are

1www.figma.com
2www.capcut.com

1

2 1. Introduction

not actually significant in real-world usage and by overlooking areas where optimization could be

beneficial. In the past, inadequate benchmarks have had a detrimental e↵ect on the development

of language implementations. For instance, the SPECjvm98 benchmark suite was widely utilized

for assessing Java performance despite widespread acknowledgment within the community that it

didn’t accurately represent real world applications [11]. This dissatisfaction ultimately prompted

the development of the DaCapo benchmark suite, which features more realistic programs [3].

Creating benchmarks that are representative and exemplary of real-world applications is a di�cult

problem. A good strategy on solving this, is to use actual real-world applications as a starting point

for benchmarking. One such WebAssembly benchmark is the pspdf kit online benchmark, which

measures the runtime of di↵erent actions of a PDF library [17]. Despite being well crafted, it takes

a lot of engineering e↵ort to create and maintain these benchmarks, which is partially the reason

why there is just a limited number available for WebAssembly so far. In addition such benchmarks

are not portable and run only on the platforms they have been developed for.

To overcome these problems we develop Wasm-R3 an approach to record and replay WebAssem-

bly web applications to quickly and reliably create benchmarks that represent real-world scenarios.

We took conceptual inspiration from Richards et al. and their tool JSBench which applies a sim-

ilar idea to create JavaScript benchmarks [30]. Being similar in spirit, this work however has to

cope with very di↵erent challenges and uses very distinct principles and techniques from JSBench.

Using a record and replay approach has a variety of advantages. Replays may not only be used

as benchmarks but also as a mean to debug faulty applications, investigate security issues, or to

perform other kinds of dynamic analysis. A variety of previous work has used a record and replay

approach to implement di↵erent debugging tools [32, 27, 34]. Other papers investigate its potential

to improve the security of applications [14, 13].

This thesis is structured into 8 chapters. In Chapter 2 we will describe record and replay systems

in general, by introducing a conceptual framework featuring the concepts of application and en-

vironment. Knowledge we gather in this part will help to later understand the the structure of

Wasm-R3. Chapter 3 provides an background on WebAssembly and highlights its components that

influence the design of a corresponding record and replay system. Chapter 4 pictures our approach

by describing its three elemental components record, reduce, replay and providing details about

our implementation. We evaluate our approach in Chapter 5 and argue for its applicability in real

world scenarios. Later chapters will discuss our findings, present future work and conclude the

topic.

In summary this thesis contributes the following:

• We introduce the first record and replay system for WebAssembly web applications for cre-

ating benchmarks of real world applications with low e↵ort.

• We present techniques to address unique technical challenges not present in existent record

and replay systems, including reducing the recorded trace through shadow optimization and

call stack optimization, as well as non monotone replay generation.

1. Introduction 3

• We show that Wasm-R3 is e↵ective in-real world scenarios by applying it to 17 real world

web applications, verifying its correctness, as well as measuring a variety of di↵erent metrics

such as wall time, replay generation time, and record performance.

• We implement Wasm-R3 and make it available as open source.

2 Record and Replay

Software typically contains nonpure behavior. We call behavior nonpure when the execution and

output of a particular program depends on state and is independent of the running process. As

an example a program may call an API for retrieving current information about the weather. The

behavior of the program will depend on the data it retrieves from that API. In addition, a program’s

behavior often depends on user provided inputs, that can interrupt the usual execution and trigger

a di↵erent behavior. From an application perspective nonpurity and the ability for user input to

alter the program’s execution expresses itself as nondeterminism. A program is nondeterministic

when we cannot predict its behavior by just obtaining static information about the program and its

initial state. This property of most applications signifies that the execution of the same program

might yield di↵erent results for separate runs.

There are several applications where this trait leads to shortcomings and restrictions. Consider

for example a bug that only appears with a certain probability in a nondeterministic fashion. To

eliminate this bug one must locate it first by narrowing down to the possible locations it may appear.

This process is significantly complicated if a developer is not able to faithfully reproduce the bug

and instead relies on chance to observe it. Such problems motivated a category of techniques which

try to record and replay the execution of a program to execute it deterministically with arbitrary

repetitions. Record and replay techniques have been extensively studied in the past, mostly for

debugging purposes [28, 5] and security analysis [15]. However this is not the only scenario in which

such approaches could be applied to resolve a problem. The work of Richards et al. [30] represents

one of the rare exceptions in that record and replay techniques are used for a di↵erent objective,

namely the creation of javascript benchmarks, derived from real world browser applications. These

benchmarks are intended to be used by engine developers, to improve on the performance on

their implementation and not be reliant on artificially created benchmarks, that in many cases

do not accurately represent real world applications and thus may lead to the implementation of

optimizations that are not relevant or even harmful for most real world scenarios. Replay based

debuggers have been surveyed and categorized by Dionne et al. [12] and Cornelis et al [8]. In

this thesis we use especially the taxonomy of the latter to describe the underlying concepts and

constraints of replay systems.

This chapter introduces the basic concepts behind record and replay systems. In Section 2.1

we describe the approaches content-based and ordering-based. Section 2.2 introduces the concept

of environment and application, a framework for describing record and replay systems. Section 2.3

explains which information needs to be traced to create replays. The generation of these replays is

described in Section 2.4.

5

6 2. Record and Replay

2.1 Classification of Record and Replay Systems

All record and replay approaches rely on a trace which collects input and output values during the

initial runtime of a specific program and provides the necessary information during replay to repeat

the original execution. On the lowest level programs can be viewed as streams of instructions each

of which consumes input and produces output. To produce a faithful replay of such a program a

naive approach would trace the input and output of each instruction and provide these values to

the same instructions during replay. This content-based approach has the advantage that a replay

may be started and stopped at any program point while always preserving the original semantics.

Despite this feature this approach is not feasible in practice since tracing of all inputs and out-

puts of each instruction would result in enormous trace sizes. Another approach is based on the

idea of capturing the initial state of the recording execution as complete as possible and rerun the

program based on that starting point. As the program leaves its initial path during re-executing

due to nondeterminism, the process will be nudged to the desired path through information that

was additionally captured during the record phase. This approach is called ordering-based. While

implementable in practice this technique has the significant disadvantage over content-based ap-

proaches in that the replay can only be started at the initial state which was captured during the

first execution. Abstracting from the instruction level, record and replay can also be applied to

more high level programs using more procedural languages instead of machine instructions.

2.2 A Basic Framework

The following section introduces a basic framework to describe record and replay systems and

precisely define them.

2.2.1 Environment and Application

Nondeterminism gets introduced to a program by its surrounding. Interrupts such as commands

by peripheral input devices or dedicated input instructions that demand information from the

surrounding system may cause the program to diverge from its usual path. More formally we

can describe the execution of an application through the interaction between the deterministic

application A itself and the surrounding environment E. In A’s perspective E appears as a black

box that provides unpredictable values at unpredictable timings to which A reacts in a well defined

manner. Specifically, there are two types of interactions possible. 1. A may call E to receive

information that it can not compute by itself and 2. E might send signals or interrupts to A whose

parameters can be arbitrary.

As example we can concretize this concept by choosing A to be a user space application and E

an operating system. The application will request certain services from the operating system such

as reading a file from the filesystem via its system call interface and retrieve certain information

about the outcome of these actions to which it reacts accordingly. Similarly the operating system

can send interrupts to the application when the user uses the keyboard or mouse to issue certain

commands which also get handled by the application. To create a faithful replay for the execution of

2. Record and Replay 7

A, one must record the full information exchange between A and E that triggers certain behaviors

in A. This information can later be used to modify E in a way to behave deterministically at every

re-execution of the program.

2.2.2 Structure of the Environment

The nature of E is such that it is divided into layers. Each layer communicates via interfaces with

the layer directly above and below it. We call the highest level layer wich provides an interface

to A first order environment E0, the layer directly below it second order environment E00, and so

on. All E0, E00, ..., E(n) (where E(n) denotes E with n primes) make up the complete environment

E. To make this more clear we again consider the above example. Previously we have been

representing E through the operating system. In fact the operating system, which represents the

first order environment runs itself on the hardware, the second order environment with which it

communicates via the instruction set architecture. As another example we can consider a javascript

application which runs inside a web browser. The first order environment here is the browser itself

or the virtual machine that powers the execution of the application code which itself runs on the

operating system, which again runs on bare hardware.

2.2.3 Store

A factor that introduces further complication is the concept of a store. A store S hosts information

which A either reads or writes during runtime. In case certain parts of this store are shared between

application A and the environment E one must check, weither S changed during the execution of

E’s functions. Since the shared part of S can be quite large this in itself is a nontrivial task and

the question arises how to exactly trace S’s current state. Section 4.2 will evaluate on this problem

further and o↵er solutions for the tracing of S in WebAssembly applications.

2.3 Collecting Runtime Information

To create a faithful replay of a program execution one must record all information exchanged

between the application and the environment. The information typically gets collected in a trace

that contains an entry for each relevant event that happens during program execution and its

associated values. The system can then use this data during replay to provide the same information

to A as they where observed during record. Traces of this kind can grow to large sizes which

motivates its optimization and compression to keep the memory usage on a reasonable level.

To collect traces one must measure certain attributes of the program during runtime. In other

words we require a method that is able to observe and safe the for replay relevant events. This goal

can be achieved in two ways. Medicine distinguishes between measuring instruments that look inside

a patient vs those that do not. Similarly we can decide between instrumentation on the source code

level vs instrumentation inside of the environment. Some articles call these di↵erent approaches

invasive and non-invasive [21], while others call them intrusive and non-intrusive respectively [16].

In the following we will stick to the latter terminology. To instrument an application intrusively an

8 2. Record and Replay

instrumented adds additional instructions to its source or byte code which observes and transfers

the desired information ideally without altering the programs semantics.

2.4 Generating Replays

A replay generator will take the during recording of application A collected runtime information as

input. It may also need static information about A to connect the generated replay properly to A’s

interfaces. The replay will be generated code that mimics or modifies the first order environment E0

of E in a way that all of its interfaces are preserved and the original application A still performs the

same calls to E0 without being aware of the fact that E0 might have been changed. It is su�cient

to just change the first order environment E0 of E, however depending on the specific scenario it

can make sense to additionally or exclusively change E at one or multiple di↵erent layers. A replay

can mimic E0 by either modifying, poxing, replacing, or ignoring it.

Modifying: The replay generator will add additional logic to the already existing logic of the

environment to alter its behavior in a way that makes it deterministic and predictable and behave

in the same way as during recording. This approach requires access to E’s code.

Proxying: As an alternative the environment can be proxies to intercept any cross function

calls and making sure that these calls deliver the same information as the calls during record. An

advantage of this method is that one does not need to access and mutate the environment which

grands broader flexibility.

Replacing: By replacing the entire environments through a mock api that performs the desired

actions the replay is made portable across di↵erent lower order environments. Replays are no longer

restricted to be executed on the same architecture they have been recorded on.

Ignoring: A more intrusive approach lets the replay generator add additional code to A’s

original source code. This added code comes in the form of function definitions that replace the

functions provided by E. The calls to the environment will get redirected to call one of the

internally generated functions which implement the recorded behavior. This strategy follows a

similar underlying concept as replacing and also decouples the replay from the environment it was

recorded on.

3 WebAssembly

WebAssembly was first introduced to the scientific community 2017 by the conference paper Bring-

ing the Web up to Speed with WebAssembly [18]. The bytecode format was designed by collabo-

rating engineers of all major browser vendors google, microsoft, mozilla and apple. To this date

WebAssembly is stably implemented in their javascript engines and its specification is under con-

tinuous development [1]. WebAssembly is designed to be fast. Being a compact bytecode its size

is relatively small, which makes it fast to transfer over the wire. Furthermore the linear structure

makes validation in a single pass possible. Validation can be done while streaming the bytecode

from the internet. The instructions encoded in the bytecode map close to hardware instructions

and thus guarantee high execution speeds.

Engine developers rely on benchmarks to compare and classify execution speeds and improve

their engines performance. This chapter will describe the important properties of the WebAssembly

standard for Wasm-R3. Section 3.1 goes over particularities of WebAssembly’s structure. Section

3.2 talks about its computational model and what happens when WebAssembly code gets executed.

Section 3.3 builds on top and describes WebAssembly’s execution semantics and how nondetermin-

ism is introduced to the program.

3.1 Structure

A WebAssembly binary is structured as a module, encompassing various entities such as function

definitions, tables, linear memories, and global variables that can be either mutable or immutable.

These entities can also be imported from other sources, specifying a module and name pair along

with an appropriate type. Furthermore, each entities can be designated for export under one or

more names, allowing them to be accessed externally. Apart from these entities, modules can

include initialization data for their memories or tables. This data is represented as segments that

are copied to specified o↵sets within the memory or table. Additionally, modules can define a start

function, which is automatically executed when the module is loaded. In the following we present

two important entity types of a WebAssembly module. There are other types that need to be

considered by Wasm-R3, however we will omit their introduction for space reasons.

Functions: Every function in WebAssembly accepts a sequence of values as parameters and

produces a sequence of values as results. These functions have the capability to call one another, in-

cluding the ability to call themselves recursively. This recursive calling creates an implicit call stack,

which is not directly accessible to the programmer. Additionally, functions within WebAssembly

9

10 3. WebAssembly

can declare local variables. These variables behave like virtual registers within the function, allow-

ing for temporary storage and manipulation of data during the function’s execution. These local

variables are mutable, meaning their values can be changed as needed within the function’s scope.

Like other entities, functions may be imported from the host environment in which case a call to

the respective function is e↵ectively a call to the host environment. It may also be exported, which

enables it to be called by the host environment.

Memories: WebAssembly’s linear memory represents a continuous, changeable array of raw

bytes. This memory is initially created with a set size but can expand or grow dynamically as

needed during program execution. Within the program, it’s possible to load from and store values

into this linear memory at any byte address, even if the address is not aligned. When loading or

storing integers into the linear memory, the program can specify a storage size that is smaller than

the actual size of the integer type. However, if an access attempts to go beyond the bounds of the

current memory size, a trap occurs. This trap serves as an error mechanism, indicating that the

program has attempted an invalid memory access operation. When we apply the in Section 2.2

introduced framework on WebAssembly, entities such as memories, tables and globals are part of

the store S.

3.2 Computational Model

The WebAssembly computational model relies on a stack machine design. When code is executed,

it follows a sequence of instructions. These instructions work with values on a hidden operand stack

and are divided into two main types. The first type, simple instructions, carry out fundamental

operations on data. They take arguments from the operand stack, perform operations, and then

place the results back onto the stack. The second type, control instructions, manage the flow of

execution. This flow is organized, meaning it is represented using neatly nested structures such

as blocks, loops, and conditionals. Branches within the code can only target these structured

constructs, ensuring a clear and controlled program flow.

In addition to the operand stack there is the global store which a WebAssembly instruction may

modify. This store consists out of WebAssembly’s entities such as memories, tables and globals.

If any of these entities contained in the store are either imported or exported we refer to them as

public entities.

3.3 Execution Semantics and Nondeterminism

WebAssembly runs inside of an environment. If WebAssembly is part of a web application the

first order environment is the JavaScript context. WebAssembly can call into this environment by

calling functions imported from JavaScript, or being called by this environment by exposing its own

functions via exports. The o�cial WebAssembly specification defines the Wasm execution semantics

in terms of reduction rules between configurations. Simplified, configurations consist out of the

operand stack and the current state of the store. These reduction rules are strictly deterministic

3. WebAssembly 11

with the exception of the invocation of a host function. Such calls may either terminate with a trap

or return regularly. In the latter case, the instruction will consume a fixed amount of arguments

from the operand stack and push a fixed amount of results back. It may also modify the store in

a nondeterministic manner. However it cannot remove and can only modify public entities.

I record and replay system for WebAssembly applications thus has to cope with calls to imported

functions.

4 Approach

The following chapter introduces Wasm-R3, a record and replay system for WebAssembly web

applications. In summary we can describe the underlying abstract approach of Wasm-R3 in three

phases: record, reduce and replay. Figure 4.1 shows these three phases and their interactions. As

depicted we execute a given WebAssembly application and generate a raw trace. During reduce

unnecessary information gets filtered out of the raw trace to create an optimized trace for replay

generation. The final phase replay generates the replay code that can be run together with the

original target binary as an executable benchmark.

5HSOD\
&RGH5HFRUG 5HGXFH 5HSOD\

5DZ�7UDFH 2SWLPLVHG
7UDFH

8VHU
,QWHUDFWLRQ

Figure 4.1: The three phases of Wasm-R3.

To introduce Wasm-R3 we will start in Section 4.1 by describing its abstract architecture.

We continue by explaining the details behind its three phases. Record in Section 4.2, reduce in

Section 4.3, and replay in Section 4.4. This chapter will focus on the underlying concepts and

does not provide precise standards and definitions of the implemented datastructures, formats

and algorithms. The precise and most up to date definitions will be available in the source code

repository of this project.

4.1 Architecture

Instead of describing Wasm-R3 through its three phases, it can also be described through its

components and their composition. This provides a more fine grained view on the system.

Given a URL, Wasm-R3 will automatically start the respective application in the browser. As

a first step in the record phase, the instrumenter instruments all WebAssembly modules for the

recording purpose. Then, when the application is loaded and user interaction begins, the recorder

13

14 4. Approach

records the communication between WebAssembly and the host environment. The recorder pro-

duces traces, which hold the necessary information to precisely replay the interaction. In the replay

phase, the replay generator reads the produced trace as well as the original WebAssembly binary

and generates the replay IR. The replay IR is defined in terms of an intermediate representation

and can be outputted through a backend in multiple concrete representations such as JavaScript

or WebAssembly. We refer to these concrete representations as replay code. As a final step, the

replay code is packaged with the web application’s WebAssembly binary, being an executable and

portable benchmark that represents the execution of the original web application. Since traces can

get very large, they can be reduced in size through techniques which filter out a large chunk of

potentially recorded events, which do not provide necessary information to create a deterministic

and accurate replay of the original execution.

The concrete architecture for this design can be set up in a variety of di↵erent ways which

will greatly a↵ect performance and flexibility of the underlying tool. Common for all Wasm-R3

architectures is a proxy, which intercepts the web applications before being served to the browser

and adds a recording runtime, which is responsible for (1) intercepting the calls to WebAssembly

instantiation functions such as WebAssembly.instantiate to add intrusive instrumentation to the

module’s instructions and (2) provides a mean to represent the collected trace and the instantiated

WebAssembly modules in the JavaScript context to send it at appropriate time to the server for

further processing. The overview of this abstract architecture is depicted in Figure 4.2. The proxy

and the recording runtime refer to the phase record of the abstract approach. The server then

takes these traces as well as the original binaries to generate the final benchmarks. The work that

is done by the server to generate the replays refers to the replay phase of the abstract approach.

The phase reduce can happen at multiple di↵erent stages of the architecture. It can either happen

synchronously during record or asynchronously on the server right before replay generation. Further

sections will discuss di↵erent design decisions of this architecture and tradeo↵ between synchronous

and asynchronous reduction in more detail.

%URZVHU

:$60�5�

3UR[\ 6HUYHU

,QVWUXPHQWHU

,QVWU�
:HEVLWH

5XQWLPH

7UDFHV

5HSOD\
*HQHUDWRU %DFNHQG

5HSOD\
,5

%HQFKPDUN

:HEVLWH

Figure 4.2: Wasm-R3 System Architecture. A proxy intercepts the website and adds the
recording runtime to it. Traces and the original binaries get sent to the server which generates the
final benchmarks.

4. Approach 15

During development we approached each of the three phases record, reduce, and replay in

di↵erent ways. We implemented those di↵erent approaches in typescript and rust. Table 4.1

provides an overview on these implementations. The following sections will discuss their advantages

and disadvantages in more detail.

Phase Option 1 Option 2

Record Wasabi based instrumentation Custom instrumentation
Record Bulk trace transfer Streaming
Reduce On the fly optimization Asynchronous optimization
Replay JavaScript based Rust based

Table 4.1: An overview on the di↵erent implementation approaches to Wasm-R3’s three phases

4.2 Record

This Section will describe our approach to obtain all the necessary runtime information from a

WebAssembly program execution to create deterministic and accurate replays. Recording execution

traces imposes challenges on performance and memory consumption of the record process and if not

done thoughtful can lead to performance properties that disallow the usage of a specific recorder

for specific applications. It is thus crucial to minimize the instrumentation overhead as well as the

amount of data that is collected in a trace, since a rapidly growing trace will consume more memory

space as there might be available. In Section 4.2.1 we describe the information that is necessary to

collect in order to create a replay. Section 4.2.2 presents a naive approach that is able to collect this

data, but lacks some important optimization. Section 4.2.3 finally explains the technique we use

to generate the traces. Section 4.2.4 describes the structure of these traces. Its implementations

are described in Section 4.2.5. Moving on, Section 4.2.6 describes our concrete approaches we took

for implementing the instrumentation. Section 4.2.7 talks about the trace that lives inside of the

web browser and how it is transferred to the server. We also elaborate on memory problems we

face and how we solve them by using streaming. Finally, Section 4.2.8 discusses a critical part of

Wasm-R3s’s architecture that enables the recording of arbitrary applications in the web browser.

4.2.1 Required Data to Record

As described earlier in Section 3.3, nondeterminism gets introduced to WebAssembly applications

by its functions imported from the host environment, which in the case of web applications are

native JavaScript function calls. A recorder thus needs to capture information about these cross

function calls. This includes any values returned by the respective functions and the functions

e↵ect on the store S. Entities of this store that can be a↵ected by the host environment are

globals, tables or memories that are either exported or imported by the WebAssembly module. We

refer to these entities as public entities, as introduced in section 3.2. The recorder also needs to

capture information about exported functions being called by the environment. This information

contains provided parameters and the store configuration.

16 4. Approach

Listing 4.1: Example WebAssembly Module

1 (module

2 (import "env" "foo" (func $foo (param i32) (result i32)))

3 (func (export "entry") (param i32)

4 ;; instrumentation of function entry

5 ;; capturing of params and memory state

6 local.get 0

7 i32.load

8 call $foo
9 ;; instrumentation of call return

10 ;; capturing of results and memory state

11 drop

12)

13 (memory (export "mem") 1)

14)

Listing 4.1 instrumentation shows an example WebAssembly module. Line 3 shows the def-

inition of an exported function. Wasm-R3 needs to capture the input parameters and the store

configuration when this function is called. Line 8 shows the call to an exported function. Here the

store changes as well as the return values need to be captured. The store in this example consists

out of a memory, defined in Line 13. This memory is exported which makes it a public entity.

4.2.2 Naive Approach

Following a naive approach all information necessary can be collected by capturing the program

state at every JavaScript to WebAssembly call and at every JavaScript to WebAssembly return.

We refer to these locations in the code as function entry and call return. At these program points

all parameters and return values have to be traced. In addition this approach would capture the

complete state of all public entities, the store S. Listing 4.1 depicts this strategy. The instrumen-

tation instructions for the function entry need to be inserted at line 4 while the instructions for the

call return need to be inserted at line 9. While being simple, following this strategy comes with

ine�ciencies. Specifically, WebAssembly’s memory can grow up to multiple gigabytes depending

on the application, which recording of its full contents on each function entry and call return is

impractical. It is hence required to use a optimized strategy to obtain a trace.

4.2.3 Decoupled Recording

We can observe that even though the full store of the WebAssembly program is available at all

times, at most one unit of information inside of this store will be used per instruction. This means

that it is possible that only a chunk of the full store influences the runtime of the program during

its execution. As a consequence it is not mandatory to record the full store for generating a replay,

it is instead more e�cient to record only the parts of the store that are indeed read. In case

of the example depicted in Listing 4.1 there are no instructions related to the defined memory

which makes a tracing of the memory state redundant. This optimization can be implemented by

4. Approach 17

Listing 4.2: Type definition for the trace structure

1 Trace = Vec <Event >

2 Event = FuncEntry | FuncReturn | Call | CallReturn | Load

3 FuncEntry = { funcidx: I32 , params: Vec <ValType > }

4 Call = { funcidx: I32 }

5 CallReturn = { funcidx: I32 , results: Vec <ValType > }

6 Load = { memidx: I32 ,

7 address: I32 ,

8 value: ValType | I8 | i16 }

9 ValType = I32 | I64 | f32 | f64

recording only the values of the store when they are actually used by an instruction. We hence

instrument not the function entries and call returns for observing values of the store but instead

the respective instructions. If we want to, for example, record information about the state of the

memory we can instrument all load instructions. Doing so will give us information on which value

got loaded from which address. We call this technique decoupled recording.

This approach however has its challenge. So far we where recording all store information at

immediately after every potential change. This means that the replay generator could read the trace

linearly and map the trace entries succeedingly to the replay actions. No we record information

about the store only at places when this information gets read by the WebAssembly program. By

doing this we do not know at what specific point in time this piece of information as been modified

by the environment. This makes replay generation more complicated. Section 4.4.2 will further

discuss this newly introduced challenge, which we refer to as non monotone replay generation, and

its algorithmic solution. It will further explain the underlying principles in more detail with an

example.

4.2.4 Trace Structure

We define the trace structure, captured through decoupled recording, through a type definition.

This type can have multiple concrete representations which may be used for in-memory represen-

tation, file storage, and debugging purposes. Listing 4.2 provides a definition of the trace structure

type in pseudocode. For simplicity, we omit the definition of table get and global get events.

A trace is a sequence of events. The sequence might be empty in which case no execution of

the underlying WebAssembly program has been taking place. Next to the above introduced events

for function entry, call return and load we additionally add the events for function return which

occurs at the end of a local WebAssembly function and call which occurs before a call instruction.

These auxiliary events are used during replay generation to reorder the store related events such

as load to guarantee the respective replay actions happen at the initially observed time in the host

code. We describe its usages in Section 4.4.2. The function entry event holds next to the list

of parameters the function index of the function that has been entered during recording of this

event. A function index needs to be preserved also in the call and call return events to indicate

which function actually got called by that instruction. Load events need to encode the loaded

18 4. Approach

value in respect to the specific load instruction that WebAssembly provides. In WebAssembly, load

instructions come in di↵erent flavors and can load a single byte or up to 64 bits at once. The value

needs to be encoded depending on this instruction type. For example the event corresponding to

i32.load8_u only needs to save one byte while i64.load saves eight. The address needs to hold

the input address of the instruction summed up with the static o↵set that can be provided as an

immediate value.

To record all possible nondeterministic behavior of a module in the real world more instructions

than the ones listed in 4.2 are needed. Similar to recording loads, instructions related to public

tables and globals need to be instrumented. These include but are not limited to call_indirect

and global.get, which will record table get and global get events. Wasm-R3’s implementation

also handles these events.

The abstract syntax of the trace can have multiple concrete representations. For the purpose

of this report we will use a JSON like textual representation of the trace, which will be reused

throughout di↵erent figures. This representation will be only used to illustrate the discussed con-

cepts and thus will not be formally defined. To depict a event we will start with the entry type

followed by the related information as key-value pairs enclosed by curly braces. Vectors will be

enclosed by square brackets. Number types such as I32 will be written like this: I32(0), how-

ever these will be optional and can sometimes be inferred implicitly. Sometimes fields that are

not relevant to explain a concept may be omitted. Example on how to represent a Load event:

Load { address: 1000, value: I16(300) }

Figure 4.3 shows an example host code on the top, that interacts with the example WebAssembly

module shown in Listing 4.1. On the bottom the generated trace is depicted.

1 let imports = {

2 env: {

3 foo: () => 2

4 }

5 }

6 WebAssembly.instantiate(getBinary/(), imports)

7 .then(wasm => wasm.instance.exports.entry(1))

1 FuncEntry { funcidx: 1, params: [1] }

2 Load { memidx: 0, address: 1, value: 0}

3 Call { funcidx: 0 }

4 CallReturn { funcidx: 0, results: [2] }

Figure 4.3: Example trace generation

4. Approach 19

4.2.5 Trace Implementation

Wasm-R3’s custom instrumentation as listed in Table 4.1, implementation uses a binary format

as the in-memory and on-disk representation for storing the trace in a concise and easy to parse

manner. Each entry starts with a byte that indicates the type of event that is represented. With

the exception of the function entry and the call return event this byte also indicates the total

byte length of the entry, and can be used to correctly parse the trace for processing. Since the

number of parameters or results can di↵er between di↵erent function entries and call returns the

next four byte word after the classifying byte for these events encodes a reference to the type of the

respective function. During decoding this word can in combination with the original WebAssembly

be used to figure out the internal structure of the trace entry. After these indicating bytes the

actual information about the event is stored. Figure 4.4 shows the binary encoding of two trace

events.

�[�� � ���� ���

�[�� � �� ����

/RDG�^PLPLG[��,�������DGGUHVV��,����������YDOXH��,��������`���GHULYHG�IURP�WKH�LQVWUXFWLRQ�L���ORDG��BX�

)XQF(QWU\�^�IXQFLG[��,��������SDUDPV��>�I����������L���������@�`
�GHULYHG�IURP�D�IXQFWLRQ�ZLWK�LQGH[����RI�W\SH��IXQF��SDUDP�L�����ZLWK�LQGH[���

����

Figure 4.4: Two examples for concrete trace entries that are encoded in the binary trace format.

To enable the trace to be read and edited by humans, there is a textual representation of the

WebAssembly binary format. This is an intermediate form designed to be exposed in text editors or

the console. In the textual representation entries are separated by a newline symbol \n. Each line

starts with an indicator string followed by the event related information. Even though the textual

representation is mostly designed for humans it can makes sense that programs use it internally for

simplicity reason. In fact, the concrete Wasabi based implementation of Wasm-R3 relies only on

the textual trace form.

4.2.6 Instrumentation Implementation

In Section 2.3 we layed out the di↵erences between intrusive and non-intrusive instrumentation. In a

web application context the specific meaning of intrusive and non-intrusive need to be defined more

precisely. Since we regard only the WebAssembly module as the application and the JavaScript

host code as the environment, we define adding additional instructions to the JavaScript hostcode

as non-intrusive. To collect information about the WebAssembly execution we decide to use an

intrusive approach, since this allows us to potentially perform the record in a more performant way

and in addition makes the recording engine platform independent. This enables us to easily extend

Wasm-R3 to record applications that are not only run on Chromium but also in other browsers

or standalone runtimes such as NodeJs or Wasmtime. The intrusive collection works by extending

the original code of the WebAssembly module with additional instructions or even entities such

20 4. Approach

as additional functions or memories to collect and preserve the internal state of the program at

specific points in time.

Wasm-R3 would potentially also be possible by instrumenting only the JavaScript code, however

we decided for a WebAssembly only instrumentation, to keep the recording logic simpler.

The decision for an intrusive approach leaves us with two options: A) Using a third-party

library or framework to perform the instrumentation or B) conducting a custom instrumentation.

We decide to implement both.

As third-party instrumentation technology we use Wasabi, a framework for dynamically ana-

lyzing WebAssembly [25]. This technology works by calling into hooks at certain events during the

WebAssembly execution. These hooks are JavaScript functions defined by the user that provide

information about the occurred event as parameters. To make Wasabi runnable in the browser

during record we compile it to WebAssembly.

An advantage using Wasabi is that writing the recording logic is simple and high level which

makes it scalable and easy to reason about. A disadvantage is the performance overhead of crossing

the WebAssembly to JavaScript context. It is also not possible to skip the instrumentation of certain

events such as function entries of a non imported function which disallows many optimizations.

Using Wasabi we face major performance bottlenecks that make the recording of many computing

intensive web applications impractical.

Our custom instrumentation is, such as Wasabi, written in Rust and compiled to WebAssem-

bly. During instrumentation it performs two passes over the WebAssembly module. The first

pass collects information about the indices of entities, while the second adds the instrumentation

instructions. To collect and store the trace, a secondary memory gets added along with a trace

pointer global, initialized to 0 that points at the next free memory location to store the next trace

event.1 The instrumenter adds instructions in all relevant positions to collect runtime information,

such as each function entry and load instruction. Additionally it adds utility locals to each function

that hold critical values to prevent them from being consumed to early. The inserted instruction

sequence always follows a common pattern.

As an example we will consider the instrumentation of a i32.load instruction in Listing 4.3.

The custom instrumentation keeps the trace events as the in Section 4.2.4 introduced binary format

in memory. This format starts with a indicator byte which represents the type of event. The first

three instructions in Listing 4.3 are responsible for storing this indicator byte to the trace memory.

In case of an i32.load instruction its value is hexadecimal 28. In line 6 the actual instrumentation

logic starts. A load instruction pops one value from the operand stack, which is the load address.

It also pushes one value to the operand stack, which is the value actually loaded. Both of these

values need to be contained in the trace event. In order to prevent the address value from being

consumed, it first gets saved in an auxiliary local, followed by the original load in line 7. Like the

address the loaded value also gets saved in a auxiliary local. Lines 9-11 are responsible for first

1This approach is only applicable when the engine that hosts the recording implements the multi-memory proposal
of WebAssembly

4. Approach 21

Listing 4.3: Custom instrumentation of a i32.load instruction

1 ;; store event type to trace

2 global.get $trace_pointer
3 i32.const 0x28

4 i32.store8 $trace_mem
5 ;; load instruction and its instrumentation

6 local.tee $addr
7 i32.load

8 local.tee $i32
9 global.get $trace_pointer

10 local.get $addr
11 i32.store $trace_mem offset =1

12 global.get $trace_pointer
13 local.get $i32
14 i32.store $trace_mem offset =5

15 ;; increment trace pointer

16 global.get $trace_pointer
17 i32.const 9

18 i32.add

19 global.set $trace_pointer

appending the address to the trace event. It gets stored at the location of the trace pointer plus

an o↵set of 1 since the first byte is already populated by the event type. Lines 12-14 store the

loaded value following the address in the same manner. This concludes the storing of the trace

event and the trace pointer is ready to point to the next free address in the trace memory. Lines

16-19 perform the incrementation of the trace pointer. The value 9 in line 17 is the length of the

previously stored trace event.

4.2.7 Trace Transfer Implementation

Wasm-R3 executes code in two distinct contexts. As shown in Figure 4.2 one context is a server

which initiates the recording and takes the generated traces for replay generation, while the other

context is the browser, which runs the web application under record together with the recording

runtime. Due to security considerations processes running in the browser are not allowed to use

the system interfaces of the operating system to directly store the trace to the filesystem, where it

could be picked up by the server thread. For the server to obtain the traces, they have to be sent

via technologies such as http.

There are two concrete approaches we applied to transfer traces from the browser to the server

as shown in Table 4.1. A simple technique is bulk trace transfer. When applying this technique for

the duration of record the trace gets collected and kept in-memory. On stopping the recording, this

collected data gets sent in one go to the server, which starts consuming it for replay generation.

While being simple to implement this approach has its limitations. Traces can grow up to millions

of entries and thus can occupy multiple gigabytes of memory. When recording computing intensive

applications, traces will typically grow larger then the available memory space. This happens

22 4. Approach

Listing 4.4: Monkey patchin of WebAssembly instantation function

1 const originalInstantiate = WebAssembly.instantiate

2 WebAssembly.instantiate = function(binary , imports) {

3 binary = instrument(binary)

4 imports = extendImports(imports)

5 originalInstantiate(binary , imports)

6 }

quickly with the raw trace but also occurs when only keeping the optimized trace in memory. The

problem can be partially solved by applying compression algorithms on the trace data structure,

however this only works to a certain extend and damages the recording performance.

To prevent a process from running out of we replace bulk trace transfer by a streaming approach.

Streaming the traces to the server requires some additional logic in the recording runtime. This logic

needs to keep track of the trace size and if it passes a specific threshold trigger a send event to send

it to the server. Afterwards the memory space occupied by the trace has to be freed again. This

approach works very well with the custom instrumenter, but it can cause complications with the

Wasabi based instrumentation since the trace resides as a JavaScript object. In JavaScript freeing

of the memory is conducted by a garbage collector that will impose considerable performance

overhead on the recording runtime, if the recording code is not written in a way that it is easy for

the garbage collector to determine weither the memory occupied for the trace object can be freed

or not.

4.2.8 Proxy Implementation

One central problem Wasm-R3 needs to solve is attaching the recording runtime to the website

under record. Since it is a goal of Wasm-R3 to enable the recording of arbitrary web applications,

the implementation commonly needs to deal with websites of unknown structure. Html is a very

brought protocol, which makes reasoning about the production architecture of web applications

di�cult.

The most reliable way to intercept WebAssembly modules for instrumentation is through mon-

key patching the instantiation functions of the WebAssembly JavaScript Interface. We do that

by overwriting functions such as WebAssembly.instantiate to accept the binary, add the instru-

mentation, and call the original function. This method is inspired by Wasabi [25]. An example of

this monkey patching code is shown in Listing 4.4. Is is typically required to also add additional

functions to the imports object since the instrumented code interacts with the host environment

in a di↵erent way to exchange information.

Monkey patching in reality is a lot more complex. Some web applications call instantiation

functions multiple times to run multiple WebAssembly modules simultaneously. The mechanism

to support this behavior are complex and too space consuming to be explained in this thesis.

A further di�cult challenge are di↵erent browser contexts. JavaScript itself is single threaded,

however parallel processing is enabled through mechanisms such as workers and iframes. These

4. Approach 23

contexts can only communicate between each other via specific protocols. As a result, attaching the

recording runtime to only one of these contexts is not enough to capture any potential WebAssembly

execution, instead the record runtime needs to be attached to all of the di↵erent contexts. To

achieve this we choose to intercept every single file that gets sent to the browser as part of the

website and statically determine if it is a JavaScript file. If it is, we add our idempotent runtime

code to the beginning of the file. This solution works reasonably well, however it is not a universal

solution since a lot of edge cases are not covered as for example inline JavaScript code that is either

executed as a worker script or through eval. Up to this day, we were not able to solve this problem

in a universally applicable way, which, as a consequence makes Wasm-R3 not applicable to many

websites out there.

In addition to the described challenges above a whole set of di↵erent edge cases can occur that

complicate the attachment of the recording runtime. One such case are html security headers. We

solved this case by simply stripping security related headers of the main html file. There are still

many unsolved challenges left.

4.3 Reduce

Wasm-R3 produces large traces. To keep memory and storage consumption on a reasonable level

we optimize the trace by filtering out events that supply redundant information and are not needed

for replay generation. Through reduction which is a form of optimization we transform the raw

trace to the optimized trace. The replay generator will only need the optimized trace as an input.

In Sections 4.3.1, and 4.3.2 we introduce two separate optimization approaches. Later in Section

4.3.3 we explain di↵erent architectural strategies to implement reduction in Wasm-R3.

4.3.1 Shadow Optimization

By tracing all instructions that read from the applications store, we pollute our trace with a lot of

redundant events. Listing 4.5 shows an example.

Listing 4.5: Trace with redundant load events

1 Load { memidx: 0, addr: 0, value: 1 }

2 Load { memidx: 0, addr: 0, value: 1 }

3 Load { memidx: 0, addr: 0, value: 2 }

The load event at line 2 is redundant since it is already well known from the event at line 1

that the value of the memory at address 0 is 1. Similarly the event at line 3 is redundant since

there have been no calls to function of the first order environment, and the change of the memory

state happened due to WebAssembly’s internal computation.

Our optimization needs to keep track of these internal influences and detect trace events that

are redundant. Only if information that was created or changed by the host environment E is

read, a corresponding event needs to be part of the trace. We call this class of optimizations

shadow optimizations. As the part of the WebAssembly store that can be public can consist

24 4. Approach

out of memories, tables and globals, we call the optimization performed on these entities shadow

memory optimization, shadow table optimization and shadow global optimization respectively. The

underlying concepts will be explained by using shadow memory optimization, however the overall

strategies apply for all.

To perform the reduction of load instructions we add a new data structure that mimics the actual

corresponding memory in the applications store, but is not mutated by the host environment. This

data structure is called shadow memory. The algorithm is as follows

1. Initialize the shadow memory

2. On every store instruction, such as i32.store, update the shadow memory in the same way

as the actual memory

3. On every load instruction check if the value loaded from the shadow memory di↵ers from the

value loaded from the actual memory

4. If the value is not equal keep the event

5. If the value is equal discard the event

To initialize the shadow memory the data sections of the WebAssembly binary are used, the

initial memory content that is not explicitly defined is assumed to be zero. If the host environment

initializes the memory as well, this information will still be encoded within the trace. Figure

4.5 illustrates the optimization on an exemplary trace. To make this work we extend the trace

definition of Listing 4.2 by an additional event that holds information about store instructions:

Store := { memidx: I32, address: I32, value: ValType | I8 | I16 }. We omit the field

memidx and assume implicitly 0 to keep the example concise.

/RDG�^DGGU��������YDOXH��,���[$$�`

,QLW���GDWD��L���FRQVW��������$$�$$��
��� ���� ���� ���� ���� ���

7UDFH

6WRUH�^DGGU��������YDOXH��,���[���`

&DOO�^�����`

��� �[$$ �[$$ �[�� �[�� ���

0HPRU\

��� ���� ���� ���� ���� ���

��� �[$$ �[$$ �[�� �[�� ���

��� �[$$ �[$$ �[�� �[�� ���

��� �[$$ �[$$ �[�� �[�� ���

6KDGRZ�0HPRU\

��� �[$$ �[$$ �[�� �[�� ���

��� �[$$ �[$$ �[�� �[�� ���

��� �[$$ �[$$ �[�� �[�� ���

��� �[$$ �[$$ �[�� �[�� ���

&DOO5HWXUQ�^�����` ��� �[$$ �[$$ �[�� �[�� ������ �[$$ �[$$ �[�� �[%% ���

/RDG�^DGGU��������YDOXH��,���[���` ��� �[$$ �[$$ �[�� �[�� ������ �[$$ �[$$ �[�� �[%% ���

/RDG�^DGGU��������YDOXH��,���[%%�` ��� �[$$ �[$$ �[�� �[�� ������ �[$$ �[$$ �[�� �[%% ���

�

�

�

�

�

�

Figure 4.5: Shadow Memory Optimization

The example shows an initial memory configuration of the hexadecimal values 0xAA and 0xAA at

addresses 1000 and 1001. Depicted in column two is the current state of the stores actual memory

during record, while column two shows the shadow memory. If a certain value gets written at a

specific step, the corresponding cell is colored green. If a certain value gets read, the corresponding

4. Approach 25

cell is colored yellow. For every load both read values get compared with each other. A mismatch

is indicated by a red lightning. Trace event 1 indicates that a value of hexadecimal 0xAA has

been loaded from address 1000. Since the values in both memories match this event can be safely

discarded. Event 2 indicates that hexadecimal 0x01 has been stored at address 1002. This event

updates both, the actual memory and the shadow memory. Since the store event is not needed for

replay generation it can be discarded. Events 3 and 4 indicate that the WebAssembly process called

a host function. After the host function the state of the actual memory has changed. The byte at

address 1003 now holds the value 0xBB. Event 5 indicates a load from address 1002, similarly to

event 2 actual memory and shadow memory match so we discard it. Event 6 loads the value 0xBB

from address 1003. Actual memory and shadow memory do not match, which means this event

needs to be kept in the trace. After event 6 the byte at address 1003 of the shadow memory needs

to be updated to match the actual memory.

This algorithm is more complicated in reality since the matching needs to be performed not

only for instructions such as i32.load8_u but also for instructions that a↵ect multiple bits, which

imposes additional challenges in the comparison of values. Section 4.3.3 will go over a concrete

implementation of this reduction as on-the-fly optimization which does not require an extra Store

event. In chapter 5.3 we will evaluate the e↵ectiveness of the shadow optimization.

4.3.2 Call Stack Optimization

Shadow optimization filters out most of the execution store’s related events. There are events

related to function calls such as FuncEntry and CallReturn that are not a↵ected by it. However,

many events in this category are redundant as well. Listing 4.6 shows such an example trace. As

WebAssembly module, we assume a module without any imported functions.

Listing 4.6: Trace with redundant call and function entry events

1 Call { funcidx: 0}

2 FuncEntry { funcidx: 0, params: [] }

3 FuncReturn { funcidx: 0 }

4 CallReturn { funcidx: 0, results: [] }

All four events in the depicted trace are redundant since a internal function gets called and

no nondeterminism can be introduced. In fact most call instructions call WebAssembly internal

functions. We can further conclude that most function entries happen due to an internal calls.

Since these events do not involve any host interaction we can safely discard them.

As a central data structure this optimization uses a call stack. The elements of this call stack

are an enum with the variants Internal or External. The algorithm is as follows:

1. On every function entry push Internal on the stack. If the stack is either empty or the top

has been External keep the event

2. On every call check if the function index of the callee is of an imported function. If yes push

External on the stack and keep the event such as i32.store, update the shadow memory

26 4. Approach

in the same way as the actual memory

3. After every call check if the top of stack is of variant Internal. If no pop and keep the event

4. On every function return pop. If the stack is empty keep the event

Figure 4.6 illustrates this optimization by an example. Events that can be discarded are marked

with a red cross.

1 (module

2 (import "env" "foo" (func (;0;)))

3 (func (;1;) (export "entry ")

4 call 0

5)

6 (func (;2;) (export "bar")

7 call 3

8)

9 (func (;3;))

10)

7UDFH &DOO�6WDFN

,17

,17 (;7

,17 (;7 ,17

,17 (;7 ,17

,17 (;7 ,17 ,17

,17 (;7 ,17 ,17

,17 (;7 ,17

,17 (;7 ,17

,17 (;7

,17

)XQF(QWU\�^�IXQFLG[����`

&DOO�^�IXQFLG[����`

)XQF(QWU\�^�IXQFLG[����`

)XQF5HWXUQ�^�IXQFLG[����`

&DOO5HWXUQ�^�IXQFLG[����`

)XQF5HWXUQ�^�IXQFLG[����`

&DOO�^�IXQFLG[����`

)XQF(QWU\�^�IXQFLG[����`

)XQF5HWXUQ�^�IXQFLG[����`

&DOO5HWXUQ�^�IXQFLG[����`

�

�

�

�

�

�

�

�

�

��

'LVFDUG

Figure 4.6: Call Stack Optimization

Event 1 indicates that function 1 has been called. Since the call stack is empty the event needs

to be kept. Internal is pushed onto the stack. In event 2 function 1 calls imported function 0.

External is pushed onto the stack and the event is kept. Event 3 again indicates a function entry.

Since the top most element on the stack is External the event needs to be kept. Event 4 is a call

4. Approach 27

to an internal function. The event does not need to be kept, nothing needs to be pushed onto the

call stack. The function entry in event 5 does not need to be kept since Internal is on top of the

stack. Another Internal gets pushed. In event 6 the first function return is encountered and the

top most element gets popped from the stack. As long as the stack is not empty, this event can

always be discarded. When discovering the first call return in event 7, Internal is on top of the

stack. The event can be discarded but nothing gets popped. After another function return event 9

is reached. In this call return External is on top, which gets popped, while the event needs to be

kept. The last event 10 indicates the return of the entry function. The top element from the stack

gets popped which leaves an empty stack. As a consequence the event needs to be kept.

This algorithm has great optimization potential in WebAssembly applications where most func-

tion calls do not cross the WebAssembly to JavaScript boundary. In chapter 5.3 the e↵ectiveness

of the call stack optimization is evaluated.

4.3.3 Implementation

Considering the architecture depicted in figure 4.2 the reduction step can take place at multiple steps

in the pipeline. Reduction can happen synchronously during record, which means that only the

reduced trace is recorded and kept in memory. We refer to this strategy as on-the-fly optimization.

This approach has the advantage of consuming only minimal amounts of memory but may in certain

scenarios add additional logic to the recorder that can lead to a performance overhead. This is

however not always the case.

In contrast to on-the-fly optimization reduction can also happen after the trace reached the

server and has potentially been stored to the file system. We call this approach asynchronous

optimization. This strategy keeps the complexity of the recorder logic low, might however lead to

large traces that can be di�cult to process. A common problem that occurs with this strategy is

that the recording process runs out of memory and crashes. This will happen early if the process

keeps the full trace in memory at once but also happens due to back pressure since the trace might

grow faster then a possible stream is able to consume. Experience shows that many real world

applications cannot be recorded with reasonable performance by using asynchronous optimization.

As a third option it is possible to mix the above described approaches and perform parts of the

optimization on-the-fly and other parts asynchronously.

During the workflow of Wasm-R3 reduction will always take place at some step of the pipeline.

At a latest instance the backend will perform this step by simply skipping all events that are not

needed for replay generation.

4.4 Replay

The trace and the original WebAssembly binary together can be used to generate the replay, by only

using a single pass over the trace. The replay however is generated in undefined ordering, which can

be problematic for large replay binaries since they may occupy a lot of memory during generation.

A replay gets generated by a replay generator which produces a replay intermediate representation

or replay IR, described in Section 4.4.1. Section 4.4.3 describes optimizations that can be performed

28 4. Approach

on the replay IR to reduce its size or runtime overhead. Section 4.4.4 demonstrates the capability

of the replay IR to be output to multiple target languages and output formats. Wasm-R3 uses the

in Section 2.4 introduced replacing or ignoring strategies to mimic the environment. This ensures

high portability of the generated benchmarks.

4.4.1 Replay Intermediate Representation

A replay needs to complement the original WebAssembly binary. It needs to provide all imported

entities as well as the host actions to reproduce the program behavior during record. Listing 4.7

shows a simplified replay IR definition that ignores public tables and globals and mutable imported

memories, i.e. we assume the public part of the store to consist out of only one exported memory.

We simplify further and support only one byte stores at a time, which does not alter the replays

semantics, but limits us in our application of replay optimizations. A tuple is denoted by brackets.

Listing 4.7: Definition of Replay Intermediate Representation

1 Replay := { actions: Vec <Action >

2 funcs: Map <ImpDesc , Func >,

3 memories: Map <ImpDesc , Memory >}

4 Func := Vec <Context >,

5 Context := (Vec <Action >, Vec <ValType >)

6 Action := ExportCall | MutateMem

7 ExportCall := (String , Vec <ValType >)

8 MutateMem := (String , I32 , I8)

9 Memory := Vec <I8 >

10 ImpDesc := (String , String)

A replay is defined as an object whose fields correspond to each of the original WebAssembly

modules import types. Since a WebAssembly module can import multiple entities of the same type

an entity gets represented by a map, that maps import descriptions to the actual entity definitions.

An import description mirrors the import in the o�cial WebAssembly specification as it consists

out of a module and a name, both represented as strings. A memory is just a vector of I8 values.

A function is more complex since it contains the actual actions the host environment performed

during record. Next to the imported entities the replay owns a field actions. This is the sequence

of actions that were performed by the host environment independent of an imported function call.

This includes the initial call of one of the WebAssembly modules exported functions as well as

initialization of the stores public entities.

To make understanding of the replay IR more intuitive, we provide an encapsulated minimal

example of an replay IR and how it would translate to the concrete representation in JavaScript in

figure 4.7.

As the figure shows, the replay IR defines how to construct the WebAssembly import object as

well as how to interact with the instantiated module. In line 26 the JavaScript replay code first

instantiates the original module, with the custom import object. In line 27 the export object of

4. Approach 29

this instance gets set to a global variable. These two lines are boilerplate code that are contained

in any JavaScript replay and are not a↵ected by the replay IR. Starting from line 26 the interaction

with the module starts. We refer to that section as global context. These lines of code are directly

mapped to the replay IRs actions field. Line 28 and 29 initialize the exported memory to the state

that was observed during record. Line 30 is a call to the modules function exported as main. The

import object is constructed through the other fields of the replay IR.

The example does not contain any imported memories, but the two functions foo and bar.

Functions are a vector of context tuples. A functions has one context for each time the function

was called during record. That way it is possible to omit the recording of input parameters. In the

JavaScript the context vector get transformed into a switch statement, where each element directly

maps to one switch case. A function bound static counter keeps track of the current count of

calls of that specific function and helps to enter the correct context which provides the appropriate

actions. Inside of each case, context actions get mapped in the same way as in the global context,

to then be terminated by a return whose values are provided by the contexts second tuple element.

4.4.2 Non Monotone Replay Generation

The replay IR gets generated by a replay generator that takes as an input the original WebAssembly

module and the optimized trace. The trace can be read succeedingly, typically by calling a function

consume_event and each event will either add information to the replay or change the internal

state of the generator. From the generators perspective the trace holds two kinds of events. (1)

Action events, which are mapped directly to replay actions such as load, which maps to the action

MutateMem and function entry, which maps to the action ExportCall, and (2) structural events,

that provide information about the replays structure, i.e. where to insert actions in the replay, such

as call or call return. This distinguishing between action events and structural events, as well as

the internal state of the generator are necessary due to decoupled recording introduced in Section

4.2.6. This optimization states that instead of recording the whole store at every environment

interaction, only the instructions related to the store are recorded. This introduces the challenge

of what we call non monotone replay generation.

On a theoretical level we are able to record an application without applying any optimizations

to neither the recording process nor the trace itself. In this simple scenario we would record the

parameters and the state of the store on each function entry as well as the results and the state

of the store at each call return. If we imagine a sequence of actions in a replay each trace entry

in a trace such as this would end up in the generation of one or multiple actions that will get

added at the end of the replay sequence. We call this process monotone replay generation. Figure

4.8 exemplify this concept. Writing an generation algorithm for such a replay is simple, however

recording traces in that unoptimized form might be impractical and thus was not considered for

Wasm-R3.

In contrast to monotone replay generation there is non monotone replay generation. During

record store changes are observed at positions that are decoupled from the actual occurrence in

the programs execution. This means that observed store changes have to be not only reordered

within the current action sequence but also distributed amongst the di↵erent generated functions.

30 4. Approach

A trace that illustrates the challenge of non monotone replay generation is depicted in figure 4.8.

Listing 4.8: Trace recorded through decoupled recording

1 FuncEntry { funcidx: "main" }

2 Call { funcidx: "foo" }

3 FuncEntry { funcidx: "bar" }

4 Call { funcidx: "baz" }

5 CallReturn { funcidx: "baz" }

6 FuncReturn { funcidx: "bar" }

7 CallReturn { funcidx: "foo" }

8 Load { address: 0, 1}

9 Load { address: 1, 1}

As depicted in lines 8 and 9, two load events are observed that happened in the host environment

at some point in time before the observation. It could have happened before the first function entry

observed in line 1. It could also have happened in the imported function foo. If it happened in

function foo, it could have happened before this function again calls the from the WebAssembly

module exported function baz or after.

Our solution to this problem is a complex algorithm, whose details are too sophisticated to be

explained in this thesis. The algorithm guarantees that the observed events during recording are

observed in the same order during replay. It does however not guarantee that e replay actions are

happening at the exact same spot as they where happening during record.

4.4.3 Optimizations

An advantage of generating the replay as an intermediate representation is that it is possible to

perform optimizations on that IR that do apply for all possible output formats. Optimizations

are not only e↵ective to limit the runtime of the replay to a minimum, but might even be crucial

for some engines to run the replay at all. V8 as an example disallows function sizes above a

certain threshold which becomes problematic when a certain replay function holds a large number

of contexts and actions. One possible optimization that could be performed here is the detection of

repetitions and other patterns on di↵erent contexts consolidate them into a smaller reusable unit.

Another strategy could simply split up generated functions into multiple smaller functions to limit

the absolute size. To implement optimizations e↵ectively the replay IR definition of Listing 4.7

needs to be extended. The overall structure could be more complex and new action types could be

added. There could for example exist multiple MutateMem actions for di↵erent bit sizes, which a

backend could use to output the appropriate concrete instructions.

4.4.4 Backends and Output Formats

Through a backend the replay IR can be output in di↵erent formats. Wasm-R3 implements back-

ends for JavaScript replays and standalone WebAssembly backends. This design enables the replay

on a wide variety of platforms. Javascript runtimes such as Node and Deno for example can run

4. Approach 31

WebAssembly only if it is instantiated via browser APIs such as WebAssembly.instantiate inside

of a JavaScript file. Other engines such as Wizard [35] or Wasmtime might not support JavaScript

but instead run self contained WebAssembly modules by executing their entry function.

32 4. Approach

1 memories: Map {},

2 actions: [

3 MutateMem ("mem", 12, 123),

4 MutateMem ("mem", 13, 123),

5 ExportCall ("main", []),

6]

7 funcs: Map {

8 ("env", "foo"): [

9 [[MutateMem ("mem", 14, 123), ExportCall ("add", [1, 1])], []],

10 [[MutateMem ("mem", 15, 123)], []]

11],

12 ("env", "bar"): [

13 [[ExportCall ("add", [2, 2])], [4]]

14]

15 }

1 let exp

2 let fooCounter = -1

3 let barCounter = -1

4 const imports = { env: {

5 foo: () => {

6 fooCounter ++

7 switch (fooCounter) {

8 case 0:

9 exp.mem [14] = 123

10 exp.add(1, 1)

11 return undefined

12 case 1:

13 exp.mem [15] = 123

14 return undefined

15 }

16 },

17 bar: () => {

18 barCounter ++

19 switch (barCounter) {

20 case 0:

21 exp.add(2, 2)

22 return 4

23 }

24 }

25 }}

26 let wasm = await WebAssembly.instantiate(getWasmBin(), imports)

27 exp = wasm.instance.exports

28 exp.mem [12] = 123

29 exp.mem [13] = 123

30 exp.main()

Figure 4.7: Example replay IR and its translation to JavaScript

4. Approach 33

1 FuncEntry { funcidx: "foo", mem: [1, 1] }

2 FuncEntry { funcidx: "bar", mem: [1, 1] }

3 FuncEntry { funcidx: "foo", mem: [2, 2] }

1 MutateMem ("mem", 0, 1),

2 MutateMem ("mem", 1, 1),

3 ExportCall ("foo", [])

4 ExportCall ("bar", [])

5 MutateMem ("mem", 0, 2),

6 MutateMem ("mem", 1, 2),

7 ExportCall ("foo", [])

� � �

UHSOD\�DFWLRQ�LQGH[

WUDFH�HQWU\�LQGH[

�
�

�
�

�
�

�

Figure 4.8: Monotone Replay Generation. Above: Recorded trace, Left: Generated replay
actions, Right: Mapping from trace entry index to replay action index

5 Evaluation

We evaluate Wasm-R3 on the following 5 research questions.

• RQ 1 How e↵ective is Wasm-R3 in recording real-world applications?

• RQ 2 How e↵ective is the reduction of the trace?

• RQ 3 Are the generated replays portable across a wide variety of WebAssembly engines?

• RQ 4 Are generated replays accurately representing the original program during record?

• RQ 5 How is the runtime performance of Wasm-R3

The evaluation is conducted using recording enabled through the Wasabi framework with bulk

trace transfer. However the final integration of the custom tracer is expected to lead to significant

improvements in the evaluation results for RQ 1 and RQ 5.

5.1 Experimental Setup

The evaluation is conducted using the stable integrated Wasabi tracer, with bulk trace transfer. It

is expected that measured values in recording performance and applicability will improve with the

future integration of the custom tracer. This will also enable us to use larger evaluation sets.

We evaluate Wasm-R3 based on a set of 17 manually collected real world websites listed on

madewithwebassembly.com. We selected listed apps based on two criteria: (1) The listed appli-

cation is a website which runs WebAssembly and (2) wasm-r3 has the capabilities to instrument

and record it. As described in Section 4.2.8 websites can be structured in a complex hard compre-

hensible way, which makes implementing a program that faithfully instruments all WebAssembly

web applications a challenging task that cannot be completely resolved in the scope of this work.

Another complication are the performance shortcomings of the Wasabi tracer with bulk memory

transfer. Sometimes instrumentation works as expected but transferring the traces to the server

works unreliably due to the process running out of memory.

As a result we limit our evaluation set to a total number of 17. As 5.2 will show, Wasm-

R3 still works on a broader range of actual real world applications compared to the similar tool

WasmView. The set represents a broad range of real world web applications, since the domains of

the collected applications are highly variant. We categorized these domains in ten categories that are

gaming, media editing, video players, programming language execution, animations, benchmarks,

35

36 5. Evaluation

algorithms, Geography and utilities. These websites also di↵er significantly from each other in

the size of traces they generate. When interacting with these websites through a simple workflow

it becomes clear that some applications execute more instructions and generate raw traces that

contain 100 or 1000 times more events then traces generated by a di↵erent application in the same

time. Our test case video does instantiate a WebAssembly module, but does not call any of its

imported functions, so it generates the empty trace. Table 5.1 lists the individual web pages of our

collection and their approximate magnitudes in raw trace sizes through simple interaction.

Name Domain Application Events

boa PL Executor https://boajs.dev/boa/playground/ 106

commanderkeen Game https://www.jamesfmackenzie.com/

chocolatekeen/

107

↵mpeg Media Edit https://w3reality.github.io/

async-thread-worker/examples/

wasm-ffmpeg/index.html’

105

fib Benchmark https://takahirox.github.io/

WebAssembly-benchmark/tests/fib.html

109

figma-startpage Animation https://www.figma.com 103

funky-kart Game https://www.funkykarts.rocks/demo.

html

107

game-of-life Game https://playgameoflife.com/ 103

guiicons Media Editor https://playgameoflife.com/ 106

handy-tools Utility https://handytools.xd-deng.com/ 105

jsc PL Executor https://mbbill.github.io/JSC.js/

demo/index.html

107

kittygame Game https://wasm4.org/play/kittygame 107

pathfinding Algorithm https://jacobdeichert.github.io/

wasm-astar/

107

riconpacker Media Editor https://raylibtech.itch.io/

riconpacker

106

rtexviewer Media Editor https://raylibtech.itch.io/

rtexviewer

105

sqlgui PL Executor https://sql.js.org/examples/GUI/ 105

video Media Editor https://d2jta7o2zej4pf.cloudfront.

net/

0

multiplyInt Benchmark https://takahirox.github.io/

WebAssembly-benchmark/tests/

multiplyInt.html

10

Table 5.1: Real world websites evaluation set

As additional evaluation set we created a suite of 63 micro test cases which is a comprehensible

list that portraits possible WebAssembly application runtime structures that need to be captured

by a record and replay system to create accurate replays. This suite was initially created by carful

examination of the WebAssembly specification and translation of the relevant language constructs

into the separate test cases. The suite was extended constantly to portrait further challenges that

occurred during development. At the current stage it is impossible to claim that the suite satisfies

all possible runtime structures that a↵ect replay, we are however confident that most language

5. Evaluation 37

constructs are considered. This hypothesis is further supported by the fact, that we do not run

into correctness issues when executing Wasm-R3 on arbitrary supported websites.

All experiments are performed on a desktop pc with an 8-Core Intel Core i9 (3.6 GHz, 16 MB

L3 cache) and 32 GB of RAM. The operating system is macOS Catalina 10.15.6 64-bit. To record

our benchmarks we use a developer build of chromium 119.0.6045.9.

5.2 E↵ectiveness of Recording (RQ 1)

We use an extended set of real world WebAssembly web applications to evaluate the e↵ectiveness of

Wasm-R3 in properly instrumenting and recording real-world web applications. We create this set

by collecting all links listed on https://madewithwebassembly.com and https://github.com/mbasso/

awesome-wasm via web scraping, which leaves us with a list of 339 websites. As a next step we

filter out 33 links that are not accessible and another 225 that only point to static webpages that

are not interactive. This leaves us with 80 websites out of these, we pick all websites that contain

the string WebAssembly.instantiate in at least one of their served JavaScript or html files. In

total we end up with a set of 59 web applications.

We run the Wasm-R3 recorder on all of these and check if trace gets recorded inside of the

browser context. If yes, we consider Wasm-R3 to be applicable on that specific application. Our

experiment shows that Wasm-R3 is applicable on 41 websites, which translates to about 69.49%

percent of the extended evaluation set.

To assess this result we also run the comparable tool WasmView once on the same applications

and evaluate its applicability. WasmView is suitable for this comparison, because it similarly to

Wasm-R3 takes a URL as input, redirects the user two the respective website and then dynamically

collects runtime information of the underlying program while the user interacts with it [31]. Based

on our research we could not find other publicly available tools that are based on a comparable

work flow. WasmView generates output on only 14 websites or 23.73% of applications.

This is due to a variety of reasons. WasmView is for example not able to detect WebAssembly

modules loaded in iframes, as well as other diverse bugs that make the tool crash or not accept

specific URLs. Based on these values we can claim that Wasm-R3 is broader applicable on real-

world WebAssembly applications than other comparable tools out there.

5.3 E↵ectiveness of Reduction (RQ 2)

To evaluate the e↵ectiveness of our trace reduction we run Wasm-R3 on the 17 websites of our

evaluation set and compare the raw trace with the reduced trace. To get an overall impression, we

first sum up the number of events of all collected raw traces and calculate the percentage of how

many events remain in the optimized trace. We call the ratio between raw event count and reduced

event count remaining ratio. We find that only of 0.1% of all events remain in the optimized traces.

While this number seems small, a more granular analysis is required since the considered web

applications have very di↵erent trace sizes, as presented in Section 5.1. This means a very good

remaining ratio in fib will overshadow weak remaining ratios in other applications. To get more

38 5. Evaluation

precise insights we calculate the remaining ratios for all event types found in the traces separately

for each application. Figure 5.1 shows the results.

Figure 5.1: Remaining ratios for selected event types per application. Lower is better.

The x-axis lists the ratios for three di↵erent event types. Loads, function calls, and function

entries. Loads evaluate our overall e↵ectiveness for shadow memory optimization, while function

calls and function returns indicate the e↵ectiveness for the call stack optimization. Other call stack

related event types are omitted, since they mirror results for function calls and function returns.

As for table and global related events, we find that there remaining ratios are always 0%, which

means that public tables or globals are never mutated by the host environment by the applications

in our evaluation set. If this would be true for applications in general, this would enable significant

complexity reduction and performance improvements for Wasm-R3.

The left most bar indicates the overall remaining ratio for this application. The y-axis indicates

the remaining ratio in a logarithmic scale. Most of the time only between 0% and 1% of the raw

trace events remain in the optimized trace. In only a few cases more then 10% of the events remain.

The absence of any events of a certain type in an application is indicated by the red string None.

As seen in the first chart for the application boa, the remaining ratio is very low for all three

event types. Precisely they are 0.02% for loads, 0% for calls and 0.005% for function entries. These

values are even to small to be visible on a logarithmic scale. The bar chart for multiplyInt indicates

a remaining ratio of 100% for function entries. These values however are not necessarily meaningful

in a larger context since the overall raw trace of multiplyInt consists only out of 10 events. The

5. Evaluation 39

three applications figma-startpage, funkyKart, and kittygame render animations. Applications of

that type typically have a high remaining ratio for function calls, since they need to call into the

environment multiple times per second in order to display the rendered frames.

The last bar chart indicates the means of the reduction ratios across all applications. These

are 8.53% in total, 3.97% for loads, 4.65% for calls, and 6.17% for function entries. The standard

deviations are 5.42% for loads, 10.83% for calls, and 24.14% for function entries respectively.

5.4 Portability of Wasm-R3 (RQ 3)

A goal of Wasm-R3’s server architecture is the generation of replays in di↵erent output formats

for them to be run on di↵erent engines. Currently JavaScript replays for runtimes such as NodeJs

and self contained, standalone WebAssembly replays for engines such as Wizard or Wasmtime are

supported. To evaluate the portability of our created benchmarks we first generate replays for

the 17 web applications in our real world evaluation set and try to execute those on a variety of

di↵erent engines. For standalone WebAssembly replays we use Wizard, Wasmtime, Wasmer, SM,

V8 and JavaScriptCore. For evaluating the portability of JavaScript replays we use the well known

runtimes nodejs, Deno and bun for execution. We run each of the replays once on each engine via

a CLI invocation until completion. If a runtime reports an error we consider the benchmark not

portable to this specific runtime. Table 5.2 shows the the the portability of created benchmarks to

di↵erent WebAssembly engines.

Name Wizard Wasmtime Wasmer SM V8 jsc node deno bun

boa
commanderkeen
↵mpeg
fib
figma-startpage
funky-kart
game-of-life
guiicons
handy
jsc
kittygame
pathfinding
riconpacker
rtexviewer
sqlgui
video
multiplyInt

Table 5.2: Portability of the replays generated for each application.

As depicted in the table, our benchmarks are portable through a wide variety of WebAssembly

engines. Only the newly introduced JavaScript runtime Bun (v1.0.29) fails to execute 6 out of 17

replays.

40 5. Evaluation

5.5 Correctness of Wasm-R3 (RQ 4)

To validate that the by Wasm-R3 produced JavaScript replays do not modify the semantics of the

original program, and indeed deterministically replay the same process as during record, hence to

evaluate the overall correctness of the approach, we compare the behavior of the program during

record with the behavior of the replay. For our test suite of 17 real-world applications we attach the

recorder to the replay and generate traces once again. We then compare the optimized traces during

record with the optimized traces captured during replay. If these two traces match, we consider

Wasm-R3’s behavior accurate. Similarly for our suite of micro tests we collect and compare the

raw traces generated during record and replay. Our results show that Wasm-R3 is able to generate

matching traces for all 17 real world programs as well as all 63 micro test cases. This result

lets us conclude back on the overall correctness of the replay IR since it reflects the underlying

structure of the concrete JavaScript representation. To validate that the by Wasm-R3 procured

standalone WebAssembly replays are correct we generate them through the same test set. To ensure

determinism we run the replays five times and ensure that they yield the exact same traces on every

execution. and check if it is a valid WebAssembly module by verifying it through wat2wasm. 1 Since

we know about the correctness of the replay IR we can assume that the generated WebAssembly

replay also is accurate, however we cannot make any guarantees about the absence of bugs in the

responsible backend.

We make our results reproducible by writing a script that that automatically runs Wasm-R3 on

all websites and micro test cases. For each of these tests our script generates traces and replays and

keeps them available after execution for potential debugging. In addition a report file is created

that contains additional debugging information such as the full traces in case of a mismatch.

5.6 Performance of Wasm-R3 (RQ 4)

We collect several distinct metrics to evaluate the performance of Wasm-R3. In Section 5.6.1 we

measure as an overview the wall time from start to end of a Wasm-R3 invocation. In Section 5.6.2

we measure the the recording overhead. Section 5.6.3 provides data about the replay generator

performance. We measure the performance of executing the generated benchmarks in Section

5.6.4.

5.6.1 Wall Time

To get an overview over the total performance of Wasm-R3 we measure the wall time. Using the

performance object of the web’s performance api, we measure the time from the initial launch of the

recording of a web application until the generation of all related replays is finished. This is includes

the startup and shutdown of the browser instance, the time it takes to transfer generated trace

data and the original WebAssembly binary to the server via bulk trace transfer and the generation

of the replays. For the measurement we automatically run Wasm-R3 on the 17 applications in

our evaluation set. The interaction with the web application during record is defined by a simple

1https://github.com/WebAssembly/wabt

5. Evaluation 41

playwright script. To reduce the e↵ect of the recording script onto the wall time we subtract the

recording duration from the total measured time. We do this because the playwright script that

defines the interaction with the website, sometimes relies on hardcoded fixed delays to perform

actions. Including the record in the execution time would distort the results.

To make our measurements more robust to external factors we run the measurement N times

with N=5 and calculate the mean. Figure 5.2 shows our results. We measure a shortest wall time

of 876 milliseconds for multiplyInt and a longest of 37.913 seconds for jsc. This long wall time

of jsc is explained by the large size of the WebAssembly binary, which takes in each of our five

measurement repetitions more then 10 seconds to be sent to the server. As a mean wall time we

measure 8.651 seconds, the standard deviation is 9.396 seconds.

Figure 5.2: Wall time.

5.6.2 Recording Overhead

We measure the recording overhead of Wasm-R3 by selecting all web applications of our evaluation

set where the playwright interaction script does not rely on static hardcoded delays. This is true

for only five applications: ↵mpeg, fib, handy-tools, sqlgui, and multiplyInt. Creating delay free

playwright scripts for the other web applications is quite involved and could not be achieved in the

limited working time of this thesis. We measure the time from the start of the run of the playwright

script until its end. We again measure each execution N times with an N=5. Figure 5.3 shows the

results.

As the chart shows, the recording overhead fluctuates quite a lot between a 6x slowdown for

↵mpeg and not observable slowdown for multiplyInt, which results in a variance of 2.26. This shows

that the overall slowdown factor is highly dependent on the internal structure of the application

under record.

42 5. Evaluation

Figure 5.3: Relative recording of Wasm-R3 normalized to the uninstrumented website interaction

5.6.3 Replay Generation

We are interested in the time Wasm-R3 needs to generate replays. We run the same experiment

as described in Section 5.6.1 but this time measure the time it takes for the replay generator to

generate the replay IR and save it in the JavaScript representation to a file.

All of our test cases generate traces of di↵erent length, which as we expect will a↵ect the time the

replay generator runs. For this reason we divide the measured time by the number of events of the

optimized trace and obtain the relative replay generation time. Figure 5.4 shows this relative replay

generation time on a bar chart on the left. We omit the application video since it generates a trace

with no events and thus makes a calculation of the relative replay time impossible. The shortest

time we measure is 0.655 microseconds per trace event for the test kittygame, the longest time is

377.754 microseconds for the test fib. In the mean the relative replay time is 50.545 microseconds,

the standard deviation is 99.666 microseconds. These numbers come as no surprise. kittygame has,

since it needs to display the frames for its game, and thus has many calls to imported functions,

large optimized traces. In contrast fib does not contain any store related events and only calls to

internal functions which makes its optimized trace size very small.

We suspect that the relative replay generation time decreases with a larger trace sizes. To

proof our suspect, we plot the relative replay generation time relative to optimized trace size in

the right graphic of Figure 5.4. As shown in the plot we reach optimal relative replay generation

time at optimized trace sizes higher then 100,000. The optimal relative replay generation time is

lower than 1 microsecond. The increase in relative replay time for smaller trace sizes is explained

by the startup time of the replay generator. Having a relative replay generation time lower than 1

microsecond means that the generation of a replay from a trace of event length 1,000,000 can be

conducted in below 1 second added to the replay generator startup time.

5. Evaluation 43

Figure 5.4: Relative Replay Generation time

5.6.4 Replay Execution Time

We measure the replay execution wall time, for our evaluation suite of 17 web applications. Again,

we repeat the measurements N times with N=5 and calculate the mean. Figure 5.5 shows the

results. With a wall time of above 3 seconds fib has the highest replay wall time. 11 out of 17

replays have a execution time below 100 milliseconds. The mean wall time is 633.00 milliseconds,

the standard deviation is 987.60 milliseconds.

Figure 5.5: Replay execution wall time

6 Discussion

Wasm-R3 is still under active development. As to this day the implementation su↵ers from various

di↵erent bugs and performance ine�ciencies. Since the state of this tool is highly dynamic, data

collected and presented in the evaluation section might be outdated soon in the future. The

evaluation has been conducted on a stable but already outdated version of Wasm-R3.

Capturing the performance properties of Wasm-R3 is di�cult. This is due to the complex

multi step process a Wasm-R3 invocation triggers. Measuring the performance of recording di↵ers

significantly from the performance measurement of the replay generation. Another di�culty arises

through the dynamic nature of Wasm-R3. Since the approach can and is implemented in many

di↵erent ways, performance measurement results can di↵er significantly from one implementation

to the other. Comparing the performance of di↵erent implementations between each other was not

possible in the scope of this thesis.

Since Wasm-R3’s proxy component struggles to support a wide variety of websites, we could

only obtain a set of 17 real world applications to perform our evaluation. While being relatively

versatile we expect to not have covered many use case scenarios of WebAssembly in our evaluation

set. This has severe consequences especially on the evaluation of the correctness of Wasm-R3.

The language constructs under consideration are collected manually in our micro test suite, which

cannot be guaranteed to be complete. Wasm-R3 furthermore disregards some new instructions

that are part of the WebAssembly specification 2.0.

It would be desirable to use a whole set of many other metrics to proof that our benchmarks

have strong similarities to the original application. Our evaluation has shortcoming in that regard.

We argue for the similarity by just comparing the generated trace during record with the generated

trace during replay.

In Chapter 4 we introduced an abstract architecture for Wasm-R3. This architecture can be

applied for web applications running in the browser, might however not be well suited for building

record and replay systems for WebAssembly programs that run on the server.

45

7 Future Work

Wasm-R3 still houses a lot of potential for improvements. Currently the integration of the custom

tracer is under active development. We expect the custom tracer to dramatically boost the recording

performance, which will enable to Wasm-R3 to record a whole new class of applications such as

hardware emulators and make the recording of other resource intensive applications such as games

much more fluent. Due to not being limited to memory anymore, streaming the traces to the server

during record will further allow to record larger traces and generate larger replays. To evaluate

those improvements, an extensive evaluation of the recording performance needs to be conducted

to show evidence, to show the approach’s capabilities of generating benchmarks out of arbitrary

applications.

Wasm-R3 uses playwright as a browser automation library to instrument the desired web ap-

plications and adding the recording runtime. Since playwright is developed for end-to-end testing

of web applications it has shortcomings in its ability of analyzing and modifying live websites.

Currently there are no uniformly working strategies available for tasks such as intercepting each

WebAssembly module instantiated by a website, or adding runnable code to each browser context.

Since the architecture of web applications is typically complex, we see a lot of use cases for tooling

that simplifies the analysis and modifications of such applications and suggest that further research

e↵orts should work on developing techniques to enable such tooling.

In the current state Wasm-R3 does not yet support all features of WebAssembly 2.0 such as

for example bulk memory instructions. Ongoing e↵orts shall support these features and further

implement current WebAssembly specification proposals to enable recording capabilities in the

future. Furthermore we are planning to extend our program to not only be able to record web

applications but also server side applications that get run at di↵erent runtimes such as NodeJs,

Wasmtime and Wizard. This will improve the approach’s ability to generate a broader range of

di↵erent real world benchmarks.

A goal of our work is to provide a simple and quick solution to create benchmarks that are

relevant and thus representative of real world applications. We expect to see engine developers to

use our approach to improve the performance of their virtual machines by being able to reason

more precisely about their implementations and approaches.

In the past record and replay techniques have typically been used for debugging purposes.

The underlying concepts of record and replay stay the same independently of its final goal of

creating a benchmark or reproducing the execution for debugging. Given that fact we expect that

the principles presented in this thesis can be reused to create further development tools such as

debuggers to help future WebAssembly developers to write more robust applications.

47

8 Related Work

Wasm-R3 is inspired by the work of Richards et al. who proposed a record and replay technique

for the automated construction of JavaScript benchmarks [30]. They called the implementation of

their technique JSBench. Since WebAssembly is a deterministic bytecode to which nondeterminism

gets only introduced by its calls to imported functions, the overall approach of Wasm-R3 di↵ers

significantly from the underling approach of JSBench. Wasm-R3 does not rely on mock objects to

record its traces, and collects information about nondeterminism in a non monotone manner. To

record the WebAssembly execution traces need to be collected that typically grow a lot faster and

exceed the total size of traces that get generated by JSBench. This introduces a whole class of

optimization problems, that Wasm-R3 solves.

At the core of our instrumentation approach is Wasabi, a framework for dynamic WebAssembly

analysis [25]. Wasabi works in a intrusive way by adding additional instructions to the WebAssem-

bly binary and triggering a call to JavaScript functions on certain events. These functions are

defined by the user and obtain all necessary information about the occurred event through argu-

ments. Writing the recording logic for Wasm-R3 with the help of Wasabi is relatively simple and

scalable. Through the WebAssembly to JavaScript call overhead however we receive significant

performance penalties that prevent Wasm-R3 to record a whole bunch of web applications in rea-

sonable time. Since a goal of our tool is to support arbitrary websites we are currently working on

deprecating the Wasabi based recorder and generating traces through custom instrumentation.

Replay techniques have been extensively explored previously, primarily with a focus on debug-

ging applications. Researchers such as Cornelis et al. [8] and Dionne et al. [12] have conducted

surveys and classifications of replay-based debugging tools. According to Dionne’s classification,

Wasm-R3 stands out as a data-driven automatic replay system. It operates by capturing data ex-

changes between the program and its environment and does not necessitate manual modifications

to the source code of the monitored program. A replay is considered unsuccessful if the program’s

interactions with its environment diverge from the recorded trace.

A variety of studies have investigated the runtime performance of WebAssembly, either com-

pared to JavaScript [37, 9, 10, 36] or to native code [22, 23]. All of these rely on already existing

benchmark suites such as PolyBenchC or Spec CPU which are not necessarily representative of real

world applications. This shortcoming is a motivation for Wasm-R3 to better support future claims

about WebAssembly’s runtime performance. We also hope that benchmarks generated by our tool

will speed up the optimization development of virtual machines.

Shadow memory is a concept widely used in Dynamic Binary Analysis (DBA) tools, which

inspired our shadow optimization approaches. In [26], Nethermost et al. give a detailed description

49

50 8. Related Work

of robust shadow memory implementations. In [33], Sen et al. use shadow values to develop a

selective record and replay framework for JavaScript.

9 Conclusion

This thesis introduced Wasm-R3 an approach for recording and replaying WebAssembly web appli-

cations and creating standalone benchmarks from them. We introduced the concept of environment

E and application A to provide us with a basic framework to describe record and replay applica-

tions in general. We provided an extensive description of Wasm-R3’s basic workflow via record,

reduce, and replay and its abstract architecture. Furthermore we implemented the approach in

Typescript and Rust and described our considerations and di↵erent approaches we took, as well as

their advantages and disadvantages.

We evaluated Wasm-R3 and showed that our approach is able to successfully instrument around

three times as many web applications as the already existing tool WasmView. We furthermore

proofed the e↵ectiveness of our developed trace reduction algorithms by executing our tool on a

test suite of 17 real world applications and calculated that 99.9% of all recorded raw trace events

can be filtered out. We further showed that all of these 17 generated benchmarks run on most

popular WebAssembly engines.

By comparing the generated traces collected during record for our 17 real-world applications,

with the traces generated during replay, we saw that Wasm-R3 is able to produce benchmarks that

accurately represent the recorded application.

Lastly we showed that benchmarks can be generated in reasonable time, by measuring a mean

wall time of 8.651 seconds.

51

Bibliography

[1] WebAssembly Specification. https://github.com/WebAssembly/spec. Retrieved Februar 18,

2024.

[2] WebAssembly website. https://webassembly.org/, 2024. Retrieved Februar 8, 2024.

[3] S. M. Blackburn et al. The dacapo benchmarks: Java benchmarking development and anal-

ysis. In Conference on Object-Oriented Programming Systems Languages and Applications

(OOPSLA), pages 169–190, 2006.

[4] Blindman67. Why is webassembly function almost 300 times slower than the

same javascript function. https://stackoverflow.com/questions/48173979/

why-is-webassembly-function-almost-300-time-slower-than-same-js-function,

2018. Retrieved Februar 9, 2024.

[5] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst. Interactive record/replay for web application

debugging. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and

Technology, UIST ’13, page 473–484, New York, NY, USA, 2013. Association for Computing

Machinery.

[6] W. Chen. Performance testing web assembly vs javascript. https://medium.com/

samsung-internet-dev/performance-testing-web-assembly-vs-javascript-e07506fd5875,

2018. Retrieved Februar 9, 2024.

[7] ColinE. Why is my webassembly function slower than the javascript

equivalent? https://stackoverflow.com/questions/46331830/

why-is-my-webassembly-function-slower-than-the-javascript-equivalent/

46500236#46500236, 2017. Retrieved Februar 9, 2024.

[8] F. Cornelis, A. Georges, M. Christiaens, M. Ronsse, T. Ghesquiere, and K. De Bosschere. A

taxonomy of execution replay systems. 01 2003.

[9] J. De Macedo, R. Abreu, R. Pereira, and J. Saraiva. On the runtime and energy performance

of webassembly: Is webassembly superior to javascript yet? In 2021 36th IEEE/ACM Inter-

national Conference on Automated Software Engineering Workshops (ASEW), pages 255–262.

IEEE, 2021.

53

54 Bibliography

[10] J. De Macedo, R. Abreu, R. Pereira, and J. Saraiva. Webassembly versus javascript: En-

ergy and runtime performance. In 2022 International Conference on ICT for Sustainability

(ICT4S), pages 24–34. IEEE, 2022.

[11] S. Dieckmann and U. Hölzle. A study of the allocation behaviour of the specjvm98 java

benchmarks. In European Conference on Object Oriented Programming (ECOOP), pages 92–

115, 1999.

[12] C. Dionne, M. Feeley, J. Desbiens, and A. Informatique. A taxonomy of distributed debuggers

based on execution replay. 09 1996.

[13] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan. Repeatable reverse engineering

with panda. In Proceedings of the 5th Program Protection and Reverse Engineering Workshop,

PPREW-5, New York, NY, USA, 2015. Association for Computing Machinery.

[14] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen. Revirt: Enabling intrusion

analysis through virtual-machine logging and replay. ACM SIGOPS Operating Systems Review,

36(SI):211–224, 2002.

[15] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen. Revirt: Enabling

intrusion analysis through virtual-machine logging and replay. SIGOPS Oper. Syst. Rev.,

36(SI):211–224, dec 2003.

[16] R. Fryer. Low and non-intrusive software instrumentation: a survey of requirements and

methods. In 17th DASC. AIAA/IEEE/SAE. Digital Avionics Systems Conference. Proceedings

(Cat. No.98CH36267), volume 1, pages C22/1–C22/8 vol.1, 1998.

[17] G. Gurgone and P. Spiess. A real-world webassembly benchmark, 2018.

[18] A. Haas, A. Rossberg, D. L. Schu↵, B. L. Titzer, M. Holman, D. Gohman, L. Wagner,

A. Zakai, and J. Bastien. Bringing the web up to speed with webassembly. SIGPLAN Not.,

52(6):185–200, jun 2017.

[19] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii. Chstone: A benchmark program

suite for practical c-based high-level synthesis. In 2008 IEEE International Symposium on

Circuits and Systems (ISCAS), pages 1192–1195, 2008.

[20] A. Hilbig, D. Lehmann, and M. Pradel. An empirical study of real-world webassembly binaries:

Security, languages, use cases. In Proceedings of the Web Conference 2021, WWW ’21, page

2696–2708, New York, NY, USA, 2021. Association for Computing Machinery.

[21] A. Janes, X. Li, and V. Lenarduzzi. Open tracing tools: Overview and critical comparison,

2023.

[22] A. Jangda, B. Powers, E. D. Berger, and A. Guha. Not so fast: Analyzing the performance

of {WebAssembly} vs. native code. In 2019 USENIX Annual Technical Conference (USENIX

ATC 19), pages 107–120, 2019.

Bibliography 55

[23] A. Jangda, B. Powers, A. Guha, and E. Berger. Mind the gap: Analyzing the performance of

webassembly vs. native code. arXiv preprint arXiv:1901.09056, 2019.

[24] D. Lehmann. Program Analysis of WebAssembly Binaries. PhD thesis, Universität Stuttgart,

Stuttgart, Germany, July 2022. Doctoral dissertation.

[25] D. Lehmann and M. Pradel. Wasabi: A framework for dynamically analyzing webassembly.

In Proceedings of the Twenty-Fourth International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS ’19, page 1045–1058, New York,

NY, USA, 2019. Association for Computing Machinery.

[26] N. Nethercote and J. Seward. How to shadow every byte of memory used by a program. In

Proceedings of the 3rd International Conference on Virtual Execution Environments, VEE ’07,

page 65–74, New York, NY, USA, 2007. Association for Computing Machinery.

[27] R. O’Callahan, C. Jones, N. Froyd, K. Huey, A. Noll, and N. Partush. Engineering record and

replay for deployability. In 2017 USENIX Annual Technical Conference (USENIX ATC 17),

pages 377–389, Santa Clara, CA, July 2017. USENIX Association.

[28] R. O’Callahan, C. Jones, N. Froyd, K. Huey, A. Noll, and N. Partush. Engineering record and

replay for deployability. In 2017 USENIX Annual Technical Conference (USENIX ATC 17),

pages 377–389, Santa Clara, CA, July 2017. USENIX Association.

[29] S. Padmanabhan and P. Jha. Webassembly at ebay: A real-world use case. https://tech.

ebayinc.com/engineering/webassembly-at-ebay-a-real-world-use-case/, 2020. Re-

trieved Februar 9, 2024.

[30] G. Richards, A. Gal, B. Eich, and J. Vitek. Automated construction of javascript benchmarks.

In Proceedings of the 2011 ACM International Conference on Object Oriented Programming

Systems Languages and Applications, OOPSLA ’11, page 677–694, New York, NY, USA, 2011.

Association for Computing Machinery.

[31] A. Romano and W. Wang. Wasmview: Visual testing for webassembly applications. In 2020

IEEE/ACM 42nd International Conference on Software Engineering: Companion Proceedings

(ICSE-Companion), pages 13–16, 2020.

[32] Y. Saito. Jockey: a user-space library for record-replay debugging. In Proceedings of the sixth

international symposium on Automated analysis-driven debugging, pages 69–76, 2005.

[33] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs. Jalangi: a selective record-replay and dynamic

analysis framework for javascript. In Proceedings of the 2013 9th Joint Meeting on Founda-

tions of Software Engineering, ESEC/FSE 2013, page 488–498, New York, NY, USA, 2013.

Association for Computing Machinery.

[34] S. M. Srinivasan, S. Kandula, C. R. Andrews, Y. Zhou, et al. Flashback: A lightweight

extension for rollback and deterministic replay for software debugging. In USENIX Annual

Technical Conference, General Track, pages 29–44. Boston, MA, USA, 2004.

56 Bibliography

[35] B. L. Titzer. A fast in-place interpreter for webassembly. Proc. ACM Program. Lang., 6(OOP-

SLA2), oct 2022.

[36] W. Wang. Empowering web applications with webassembly: Are we there yet? In 2021

36th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages

1301–1305, 2021.

[37] Y. Yan, T. Tu, L. Zhao, Y. Zhou, and W. Wang. Understanding the performance of webassem-

bly applications. In Proceedings of the 21st ACM Internet Measurement Conference, IMC ’21,

page 533–549, New York, NY, USA, 2021. Association for Computing Machinery.

