
Institute for Visualization and Interactive Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

Energy-Efficient Visualization
using MegaMol

Tim Schmidt

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Daniel Weiskopf

Supervisor: M. Sc. Patrick Gralka,
M. Sc. Moritz Heinemann,
Dr. Guido Reina,
Dipl.-Inf. Christoph Müller

Commenced: April 18, 2023

Completed: October 18, 2023

Zusammenfassung

Aufgrund von steigendem Umweltbewusstsein und höheren Lebenshaltungskosten wird die En-
ergieeffizienz in den meisten technologischen Sektoren, einschließlich bei Computern, zu einem
immer entscheidenderen Faktor. Bei Grafikprozessoren (GPUs), die ohnehin bereits zu den
stromhungrigsten Komponenten in Computern gehören, geht der Trend in letzter Zeit jedoch dahin,
eine höhere maximale Leistungsaufnahme zuzulassen, als je zuvor . Es gibt zwar Forschungsarbeiten
zur Energieeffizienz von GPGPU-Anwendungen, die sogar teils so weit gehen, den Stromverbrauch
bis hinunter auf die Befehlsebene zu modellieren, aber es wird so gut wie keine Forschung
betrieben, die sich speziell mit Visualisierung wissenschaftlicher Datensätze befasst und damit,
wie Faktoren wie die Größe der Datensätze oder der Rendering-Ansatz den Stromverbrauch und
die Effizienz beeinflussen. Darüber hinaus konzentrieren sich die meisten Forschungsarbeiten
ausschließlich auf GPUs des Herstellers Nvidia, obwohl es auch andere Hersteller gibt, die sich
ebenfalls um die Optimierung von Rechenleistung und Effizienz bemühen. Diese Arbeit analysiert
die Auswirkungen verschiedener Faktoren auf den Stromverbrauch und die Effizienz verschiedener
wissenschaftlicher Rendering-Methoden (Sphere Splatting und Raycast Volume Rendering) auf einer
Auswahl von leistungsstarken Normalverbraucher-GPUs der drei gängigen Hersteller (AMD, Intel
und Nvidia). Die Leistungsaufnahme wird mittels der in den meisten modernen GPUs integrierten
Sensoren und eines externen Hardware-Messaufbaus gemessen. MegaMol, eine Plattform zur
Visualisierung wissenschaftlicher Daten mit Automatisierungsfunktionen, dient als Framework für
diese Benchmarks.

Abstract

Because of rising ecological awareness and higher cost of living, power efficiency is becoming an
increasingly deciding factor in most technology, including computers. However, a recent trend with
GPUs, already one of the most power-hungry computer components, is to allow higher maximum
power draw than ever before. While there is research on the power efficiency of GPGPU applications,
even going as far as modelling power consumption at the instruction level, there is next to none
specifically on scientific visualization and how factors like dataset size or rendering approach
affect power consumption and efficiency. Additionally, most research focuses solely on GPUs by
manufacturer Nvidia, although other manufacturers exist and also strive to improve computing
power and efficiency. This work analyses the effects of various factors on power consumption
and efficiency of different scientific rendering approaches (sphere splatting and raycast volume
rendering) across a selection of high-end consumer GPUs by the three common manufacturers
of (AMD, Intel and Nvidia). Power consumption is measured with the integrated power sensors
integrated into most modern GPUs and an external hardware measuring setup. MegaMol, a scientific
visualization platform with automation capabilities, is the framework for the benchmarks.

3

Contents

1 Introduction 15
1.1 Motivation . 15
1.2 Goals . 16

2 Related Work 17

3 Background 21
3.1 MegaMol . 21

3.1.1 LUA Scripting Interface . 21
3.2 Power Overwhelming Library . 22
3.3 Power Measurements with Tinkerforge Bricks and Bricklets 23

4 Experiment 25
4.1 Hardware and Software Setup . 25

4.1.1 Testbench . 25
4.1.2 Tinkerforge and Hardware Modifications 26

4.2 Implementation of Powerlogging Service . 27
4.3 Software Environment . 31
4.4 Benchmark Process . 31

4.4.1 Test Parameters . 31
4.4.2 Operation . 35
4.4.3 Collected Data . 37

5 Results 41
5.1 Spheres . 41

5.1.1 Performance . 41
5.1.2 Power Consumption . 45
5.1.3 Efficiency . 58

5.2 Volume . 62
5.2.1 Performance . 62
5.2.2 Power Consumption . 64
5.2.3 Efficiency . 69

5.3 General observations . 70
5.3.1 Power Consumption of the Rest of the System 70
5.3.2 Manufacturer-Dependant TDP and Software Sensor Observations 71

6 Conclusion and Outlook 75

Bibliography 77

5

A Extended GPU Specs 79

B Additional Scatterplots 81

6

List of Figures

4.1 Schematic overview of all relevant power connections (green) and how each set of
power lines (orange) is connected to the Voltage/Current Bricklets (based on Fig. 3
of [MHWE22]). The specific setup shown (with the 600 W connector disconnected)
would be applicable for e. g. the AMD Radeon 7900 XTX. 26

4.2 All eight camera angles were used as one of the test parameters. This example
shows the chameleon dataset, but the same angles were used for all other datasets
and render modes. All Screenshots were taken by MegaMol (volume renderer set
to Isosurface) right before starting a test case. 33

4.3 Screenshots of both spheres datasets used as one of the test parameters and visualized
by MegaMol’s sphere renderer. Each row shows them at a different thinning factor
(which is another test parameter set to either 1 (top), 4 (middle) or 16 (bottom)).
All screenshots were taken by MegaMol right before starting a test case. 34

4.4 Screenshots of all volume datasets used as one of the test parameters visualized by
MegaMol’s volume renderer (set to either Integration (left) or Isosurface (right)).
All screenshots were taken by MegaMol right before starting a test case. 35

5.1 Mean FPS by GPU and resolution. left/blue is simple renderer, right/red is SSBO
stream renderer with static data enabled. V-Sync is disabled. Each column is
composed of the mean of the FPS of all spheres test cases that match these parameters. 42

5.2 Mean FPS by GPU and resolution. left/blue is simple renderer, right/red is SSBO
stream renderer with static data enabled. V-Sync is enabled. Each column is
composed of the mean of the FPS of all spheres test cases that match these parameters. 42

5.3 Mean FPS by GPU and resolution. left/blue is simple renderer, right/red is SSBO
stream renderer with static data enabled. V-Sync is disabled. Only cases with the
larger expl30m dataset are included. Each column is composed of the mean of
the FPS of all spheres test cases that match these parameters. 43

5.4 Mean FPS by GPU and thinning factor. left/blue is simple renderer, right/red is
SSBO stream renderer with static data enabled. V-Sync is disabled. Only cases
with the larger expl30m dataset are included. Each column is composed of the
mean of the FPS of all spheres test cases that match these parameters. 43

5.5 Mean FPS by GPU and sphere radius. left/blue is simple renderer, right/red is
SSBO stream renderer with static data enabled. V-Sync is disabled. Each column
is composed of the mean of the FPS of all spheres test cases that match these
parameters. 44

5.6 Mean GPU Power (W) by GPU and resolution. left/blue is with V-Sync disabled
and right/red with V-Sync enabled. Only test cases utilizing the simple renderer
are included. Each column is composed of the mean of the mean power values of
all spheres test cases that match these parameters. 45

7

5.7 Mean GPU Power (W) by GPU and resolution. left/blue is with V-Sync disabled
and right/red with V-Sync enabled. Only test cases utilizing the SSBO stream
renderer (with static data enabled) are included. Each column is composed of the
mean of the mean power values of all spheres test cases that match these parameters. 46

5.8 Mean GPU Power (W) by GPU and thinning factor. left/blue is with V-Sync
disabled and right/red with V-Sync enabled. Only test cases with the larger
expl30m dataset and utilizing the simple renderer are included. Each column is
composed of the mean of the mean power values of all spheres test cases that match
these parameters. 46

5.9 GPU Mean Power (normalized to their respective TDP) by GPU and resolution.
left/blue is simple renderer, right/red is SSBO stream renderer with static data
enabled. V-Sync is enabled. Each column comprises the mean of the mean
utilization of all spheres test cases that match these parameters. 47

5.10 GPU Mean Power (normalized to their respective TDP) by GPU and resolution.
left/blue is simple renderer, right/red is SSBO stream renderer with static data
enabled. V-Sync is disabled. Each column comprises the mean of the mean
utilization of all spheres test cases that match these parameters. 47

5.11 GPU Mean Power (normalized to their respective TDP) by GPU and thinning factor.
left/blue is simple renderer, right/red is SSBO stream renderer with static data
enabled. V-Sync is disabled. Only test cases with the smaller ace_drop_1m
dataset are included. Each column comprises the mean of the mean utilization of
all spheres test cases that match these parameters. 48

5.12 GPU Mean Power (normalized to their respective TDP) by GPU and thinning factor.
left/blue is simple renderer, right/red is SSBO stream renderer with static data
enabled. V-Sync is disabled. Only test cases with the larger expl30m dataset are
included. Each column is composed of the mean of the FPS of all spheres test cases
that match these parameters. 49

5.13 GPU Mean Power (normalized to their respective TDP) by GPU and sphere radius.
left/blue is simple renderer, right/red is SSBO stream renderer with static data
enabled. V-Sync is disabled. Each column comprises the mean of the mean
utilization of all spheres test cases that match these parameters. 50

5.14 Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one spheres test
case with different parameters. Different states of V-Sync are highlighted. 50

5.15 Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one spheres test
case with different parameters. Different render methods are highlighted. 51

5.16 Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one spheres test
case with different parameters. Different datasets are highlighted. 51

5.17 Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one spheres test
case with different parameters. Different thinning factors are highlighted. 51

5.18 Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one spheres test
case with different parameters. Different sphere radii are highlighted. 52

5.19 Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one spheres test
case with different parameters. Different resolutions are highlighted. 52

5.20 Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one spheres test
case with different parameters. Different camera angles are highlighted. 52

8

5.21 Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one spheres
test case running on an AMD 6900 XT GPU with different parameters. Different
factors are highlighted. 53

5.22 Scatterplot of Mean GPU Power (W) and Mean FPS (only the expl30m dataset with
simple renderer). Each point is one spheres test case with different parameters.
Different thinning factors are highlighted. 55

5.23 Scatterplot of Mean GPU Power (W) and Mean FPS (only the expl30m dataset with
simple renderer). Each point is one spheres test case with different parameters.
Different resolutions are highlighted. 55

5.24 Scatterplot of Mean GPU Power (W) and Mean FPS (only the expl30m dataset with
simple renderer). Each point is one spheres test case with different parameters.
Different spheres are highlighted. 55

5.25 GPU efficiency (measured in J per Frame) by render method. left/blue is with
V-Sync disabled and right/red with V-Sync enabled. Each column comprises the
mean of the mean efficiency of all spheres test cases that match these parameters. 56

5.26 GPU efficiency (measured in J per Frame) by resolution. left/blue is with V-Sync
disabled and right/red with V-Sync enabled. Each column comprises the mean of
the mean efficiency of all spheres test cases that match these parameters. 56

5.27 GPU efficiency (measured in J per Frame) by dataset and thinning factor.
left/blue is with V-Sync disabled and right/red with V-Sync enabled. Each
column comprises the mean of the mean efficiency of all spheres test cases that
match these parameters. 57

5.28 GPU efficiency (measured in J per Frame) by sphere radius. left/blue is with
V-Sync disabled and right/red with V-Sync enabled. Each column comprises the
mean of the mean efficiency of all spheres test cases that match these parameters. 57

5.29 Scatterplot of GPU Efficiency (J per frame) and GPU Mean Power (normalized to
their respective TDP). Each point is one spheres test case with different parameters.
Different states of V-Sync are highlighted. 58

5.30 Scatterplot of GPU Efficiency (J per frame) and GPU Mean Power (normalized to
their respective TDP). Each point is one spheres test case with different parameters.
Different render methods are highlighted. 59

5.31 Scatterplot of GPU Efficiency (J per frame) and GPU Mean Power (normalized to
their respective TDP). Each point is one spheres test case with different parameters.
Different datasets are highlighted. 59

5.32 Scatterplot of GPU Efficiency (J per frame) and GPU Mean Power (normalized to
their respective TDP). Each point is one spheres test case with different parameters.
Different thinning factors are highlighted. 59

5.33 Scatterplot of GPU Efficiency (J per frame) and GPU Mean Power (normalized to
their respective TDP). Each point is one spheres test case with different parameters.
Different sphere radii are highlighted. 60

5.34 Scatterplot of GPU Efficiency (J per frame) and GPU Mean Power (normalized to
their respective TDP). Each point is one spheres test case with different parameters.
Different resolutions are highlighted. 60

5.35 Scatterplot of GPU Efficiency (J per frame) and GPU Mean Power (normalized to
their respective TDP). Each point is one spheres test case with different parameters.
Different camera angles are highlighted. 60

9

5.36 Mean FPS by GPU and resolution. left/blue is Integration renderer, right/red is
Isosurface. V-Sync is disabled. Each column is composed of the mean of the FPS
of all volume test cases that match these parameters. 62

5.37 Mean FPS by GPU and resolution. left/blue is Integration renderer, right/red is
Isosurface. V-Sync is enabled. Each column is composed of the mean of the FPS
of all volume test cases that match these parameters. 63

5.38 Mean FPS by GPU and dataset. left/blue is Integration renderer, right/red is
Isosurface. V-Sync is disabled. Each column is composed of the mean of the FPS
of all volume test cases that match these parameters. 63

5.39 Mean FPS by GPU and step ratio. left/blue is Integration renderer, right/red is
Isosurface. V-Sync is disabled. Each column is composed of the mean of the FPS
of all volume test cases that match these parameters. 64

5.40 Mean GPU Power (W) by GPU and resolution. left/blue is Integration renderer,
right/red is Isosurface. V-Sync is disabled. Each column is composed of the
mean of the FPS of all volume test cases that match these parameters. 65

5.41 GPU Mean Power (normalized to their respective TDP) by GPU and resolution.
left/blue is Integration renderer, right/red is Isosurface. V-Sync is disabled.
Each column is composed of the mean of the FPS of all volume test cases that
match these parameters. 65

5.42 Mean GPU Power (W) by GPU and resolution. left/blue is Integration renderer,
right/red is Isosurface. V-Sync is enabled. Each column is composed of the mean
of the FPS of all volume test cases that match these parameters. 66

5.43 GPU Mean Power (normalized to their respective TDP) by GPU and resolution.
left/blue is Integration renderer, right/red is Isosurface. V-Sync is enabled.
Each column is composed of the mean of the FPS of all volume test cases that
match these parameters. 66

5.44 Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one volume test
case with different parameters. Different states of V-Sync are highlighted. 67

5.45 Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one volume test
case with different parameters. Different render methods are highlighted. 67

5.46 Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one volume test
case with different parameters. Different datasets are highlighted. 67

5.47 Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one volume test
case with different parameters. Different step ratios are highlighted. 68

5.48 Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one volume test
case with different parameters. Different resolutions are highlighted. 68

5.49 Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one volume test
case with different parameters. Different camera angles are highlighted. 68

5.50 GPU efficiency (measured in J per Frame) by render method. left/blue is with
V-Sync disabled and right/red with V-Sync enabled. Each column comprises the
mean of the mean efficiency of all volume test cases that match these parameters. 70

5.51 Mean System Power (GPU excluded) by render method. left/blue is with V-Sync
disabled and right/red with V-Sync enabled. Each column comprises the mean of
the mean efficiency of all test cases that match these parameters. 71

10

5.52 GPU Mean Power (normalized to their respective TDP) by render method. Volume
render methods are highlightedred, the spheres render method blue. V-Sync is
disabled. Only cases with the largest dataset (expl30m for spheres and chameleon
for volume) are included. The filters were applied specifically to only include test
cases with generally high GPU utilization. Each column comprises the mean of
the mean utilization of all test cases that match these parameters. 72

5.53 Comparison of average power measurements of tinkerforge and integrated GPU
sensors (ADL/NVML). Each column comprises the mean of the mean utilization
of all test cases. 72

11

List of Tables

4.1 Specifications of the selected GPUs (source: TechPowerUp GPU Database [TPGPU]). 25
4.2 Overview of all test parameters, the test cases where they are applicable and all

potential values they can be at . 32

A.1 Specifications of the selected GPUs regarding various general information (source:
TechPowerUp GPU Database [TPGPU]). 79

A.2 Specifications of the selected GPUs regarding GPU variants and their variant-specific
clocks (source: TechPowerUp GPU Database [TPGPU]). 80

A.3 Specifications of the selected GPUs regarding VRAM and theoretical performance
(source: TechPowerUp GPU Database [TPGPU]). 80

A.4 Specifications of the selected GPUs regarding their render configuration and feature
levels (source: TechPowerUp GPU Database [TPGPU]). 80

B.1 More scatterplots of Mean GPU Power and Mean FPS 83
B.2 More scatterplots of GPU Efficiency (J per frame) and GPU Mean Power (normalized

to their respective TDP) . 86
B.3 More scatterplots of Mean Power of the System (excluding GPU power) and Mean

FPS . 89

13

1 Introduction

1.1 Motivation

In 2019, Sun et al. [SADK19] compared more than 4,000 different CPU and GPU models dating
back to 2000. They concluded that both Moore’s Law1 and Dennard Scaling2, despite numerous
claims through the years of them not holding up for much longer, are still in effect today. While
the minimum possible FET size (currently at 3nm via TSMC’s Nano-sheet FET [ST21]) is still
shrinking, it continues getting closer to the physical limit of ”keeping electrons in place” and will
reach this point eventually. To increase computing power despite these physical constraints, Sun
et al. [SADK19] also predicted that GPU manufacturers would increase both power limit and die
size, as the power density per area will likely not decrease (Dennard Scaling). As larger monolithic
chips are more prone to defects, Sun et al. [SADK19] also predicted the use of MCM packaging for
upcoming GPUs, meaning that the chips are assembled from multiple individual chiplets instead of
a larger monolithic chips, leading to smaller per-unit die size. Both predictions held up well, as at
least AMD utilize multiple dies per package for their current RX 7000 series GPUs, and both AMD
and Nvidia, the arguably most relevant GPU manufacturers, are now beyond 300 W TDPs for their
flagship consumer GPUs. What was not directly predicted is the order of magnitude of the TDP
increases: While Sun et al. [SADK19] stated that, over the last ten years, maximum TDPs slowly
increased up to 300 W, recent flagship GPUs, especially on the Nvidia side, where the flagships’
TDP stayed consistently around 250 W for multiple generations, the flagship’s TDP suddenly
increased to up to 450 W (GeForce RTX 2080 Ti -> 3090 Ti). While these newer, overall more
power-hungry GPUs are proven to offer noticeably higher computing power than their predecessors
[TPGPU], the question remains if the higher power draw is justified by this increase in speed.
More than ten years ago, Johnsson et al. [JGDA12] speculated that reporting energy consumption
per pixel would be as common as reporting frame times in a research context. In the meantime, there
was research on accurately measuring the power consumption of GPUs [JA14] mainly focusing on
general-purpose computation on GPUs (GPGPU), even down to the instruction level [AEE+20]
and also modelling approaches [LHE+13] [KPK+21] for predicting a compute kernel’s power
consumption. However, a field that, up until now, was mostly neglected in terms of analyzing power
consumption and efficiency is scientific visualization. As complex simulations running continuously
on high-performance computing clusters often have a visualization component, optimizing this
aspect could also play a part in reducing global energy consumption. But, without insight into

1Not much of a law, rather an observation by Gordon Moore in the 1960s. The exact wording varies by source, but it
states in some form that every 𝑛 years (usually with 𝑛 = 2), the possible complexity of an integrated circuit (or rather
its transistor density) doubles. This metric alone does not imply that its speed or computing power doubles, but it is
connected to increased computing power over time.

2A model that states that the power density of transistors stays constant despite their shrinking size, making power
proportional to the area rather than transistor count. It was initially proposed by Dennard et al. [DGY+74] is related
to Moore’s Law, as the shrinkage of transistors is an unavoidable side effect of increasing transistor density.

15

1 Introduction

how different parameters affect a system’s power consumption, it is hard to tell where potential
improvements can be made. Also, as time is not only money but longer runtimes of workloads
inevitably increase the resulting power consumption, how efficiently the power is used also plays a
role. It is more desirable if a workload is processed quicker by more power-hungry hardware than
slower and still results in the same overall power consumption.

1.2 Goals

To gain intel on which factors influence the power consumption and efficiency of different scientific
visualization techniques (sphere splatting and raycast volume rendering), this work will analyze an
extensive set of combinations of different parameters. These factors include variations in hardware
(GPU choice), frame rate, render method, test data, resolution and more case-dependant factors. As
the GPGPU-focused research nearly exclusively focuses on GPUs manufactured by Nvidia, even
less is known about the influence of these factors on GPUs by other manufacturers (AMD, Intel).
Those other manufacturers may be often overlooked, primarily because their GPUs do not support
CUDA3, but they also strive to improve computing power and efficiency and offer comparable
performance on paper, often at a more affordable price range. To accommodate this, our GPU
selection will incorporate GPUs by all manufacturers and from multiple generations to capture
potential improvements. A dedicated hardware power measuring setup allows to accurately measure
the momentary power consumption of different components in the system at a high temporal
resolution. As the complexity overhead of creating such a setup may play a role in why not more
GPU research tracks power consumption and efficiency in addition to performance, we also compare
the measurements acquired by this setup with measurements taken from the power sensors integrated
into most modern GPUs by default. Knowing what exactly to expect from the integrated power
sensors would allow us to use them as a convenient substitute for the complex hardware setup and
would make including power and efficiency measurements in other work more easily realizable.

3CUDA is Nvidia’s proprietary API for parallel computing on their GPUs. Although most prevalent in GPGPU
applications, there are open alternatives like the Open Computing Language (OpenCL)

16

2 Related Work

Among other things, Sun et al. [SADK19] observed GPU manufacturers settling for TDPs of none
higher than 300 W and predicted further increases in GPU power limits and die size. However, while
power limits of recent GPUs have grown faster and higher than predicted, manufacturer-specified
maximum power draw is a lacklustre metric for measuring real-world power efficiency. Over the
almost 20 years of hardware they analyzed, architectures improved and changed drastically with
a rising focus on power efficiency (as indicated by emerging techniques like power gating and
dynamic voltage and frequency scaling (DVFS)).
To accurately determine a GPU’s influence on the system’s total power draw, a measurement
setup that measures power directly at the GPU (or instead ignores all power consumed by other
components) is necessary. One such setup, which is already quite similar to the setup used for this
work, was proposed by Johnsson et al. [JGDA12]. It is a hardware setup for discrete (PCIe) GPUs
and integrated/mobile devices. Included are a PCIe expander card (Ultraview PCIeEXT-16HOT)
with shunt resistors on the 3.3 V and 12V lanes for measuring current, a custom board with four
ACS710 Hall effect current sensors (up to 12A) and two shunt resistors (up to 1A, intended for
smaller mobile device currents). The sensors are connected to an ARM Cortex-M3, which acts as an
analog-to-digital converter (samples at 40 kHz) and sends the measured values to a PC via ethernet.
The high sampling frequency also allows for analyzing individual frames. They examined one GPU
each of every major manufacturer and an iPhone 4S (modified to allow power measurements directly
at the battery). For the iPhone and the Intel iGPU, where only full-system power measurements
were an option, idle power was analyzed and subtracted to approximate GPU power draw. Various
primary and shadow rendering approaches were used as power benchmarks, and the results were
compared within each category (discrete and integrated GPUs). They found that efficiency (as in
performance per W) is not always directly proportional to performance. Also, for some algorithms,
efficiency (and its influencing factors relative frame times and relative power consumption) vary
noticeably across different platforms. It also should be mentioned here that this exact setup may
cause issues with modern PCIe 4.0 GPUs (judging by experience with AMD 7000 cards) because
of the increased length of the PCIe lanes on the riser card.
As a later addition, Johnsson and Akenine-Möller [JA14] proclaim that measurements should be
done from the beginning of one frame to the beginning of the next. This change allows power
consumption of idle time to be tracked and inter-frame coherency effects to better show up in the
results. To enable this approach without intrusion into the source code (this was necessary for the
earlier approach and caused power measurements to terminate before the start of the next frame),
they propose a semi-automatic detection approach for finding ”frame starts” by analyzing the shape
of the recorded power curve of a single frame and pattern-matching it to the rest of the curve. Once
a ”potential frame start” is found, the surrounding samples are further analyzed to confirm that the
beginning of a frame was found. This approach works best when V-Sync is enabled and, in some
edge cases, may not identify all frames correctly with a variable frame rate. They also warn about
measurements taken within the time right after a launch because energy consumption will be much
higher on most architectures and, hence, less representative of performance within a continuous

17

2 Related Work

load.
Müller et al. [MHWE22] used a similar hardware measuring setup to Johnsson et al. [JGDA12]. They
primarily proposed Power Overwhelming, a C++ library measuring power from different sensors
with a generalized API. Additionally, they ran a suite of benchmarks spanning different scientific
visualization techniques (namely sphere and volume rendering) on systems with both Nvidia (RTX
3090) and AMD (Radeon Pro W6800) GPUs and compared their hardware measurements against
the GPUs’ integrated power sensors. They found that limiting the frame rate raises the energy
consumption per frame and that the readings from the software sensors undershoot the hardware
measurements (3-10% for Nvidia’s NVML and 14-20% for AMD’s ADL). They also recorded the
course of power consumption of browser-based visualization and found that the AMD W6800 had
more variance in power draw than the Nvidia 3090, which stayed relatively constant for a short time.
Another take on analyzing the power consumption of scientific visualization was done by Heinemann
et al. [HBFE17]. They analyzed volume rendering on a mobile device utilizing an IntrinsycOpen-
Q820 DevelopmentKit and an ARM Energy Probe and observed an approximately linear correlation
between the Qualcomm Snapdragon 820 SoC’s utilization and power consumption.
While a hardware setup like the aforementioned can produce very accurate measurements with
high temporal resolution, it also requires dedicated and not as readily available hardware (at least
not in an assembled and ready-to-use state). When the research goal is not primarily evaluating
power efficiency, such a setup is likely too complicated and causes too much overhead for ”ad-
ditionally recording the GPU power consumption”. Fortunately, most modern GPUs ship with
onboard power sensors, which are accessible via API calls and, while overall less accurate, offer
far more convenience and a significantly smaller barrier of entry. Burtscher et al. [BZZ14] found
shortcomings in the integrated power sensor on the Nvidia Tesla K20 (Kepler Architecture) and
proposed an approach for improving the quality/accuracy of the sensor’s measurements. They
noticed a non-linear correlation between kernel runtime and total energy consumption and that
power consumption is still higher than expected after a kernel has succeeded. The first phenomenon
resulted from the energy consumption while kernel runtime resembled limited growth (even though
the kernel ran at full speed from the beginning). The second resulted from the tailing limited decay
of power right after kernel succession and a kernel-independent constant amount of energy before
returning to idle power. As these findings mostly match the behaviour of a capacitor (de)charging,
they can be modelled this way, and the corresponding formulas can be applied to get closer to the
actual power consumption. However, it should be noted that this was evaluated on the first iteration
of Nvidia’s onboard power sensor, and it needs to be clarified if those findings apply to the more
recent GPUs.
Instead of benchmarking whole compute kernels, Arafa et al. [AEE+20] focused on a more general-
ized approach by analyzing the power consumption of individual PTX instructions1. Measurements
were done on multiple generations of Nvidia GPUs (Maxwell, Pascal, Volta, Turing) utilizing their
onboard power sensors and three different software approaches for querying the sensor (NVML with
polling at constant intervals, NVML with multi-threaded synchronization and via CUDA/PAPI)
were compared. The results were verified against a hardware setup (also utilizing a PCIe riser
with shunt resistors and an oscilloscope with hall-effect sensors), and NVML with multi-threaded
synchronization (where the start and end timestamps of the benchmarks were most accurate)
produced the closest results.

1PTX is an assembly language for CUDA programming and the finest granularity of publically available instructions
for Nvidia GPUs. The machine-independent PTX gets compiled to the machine-dependent SASS instructions with
variations across different GPUs/GPU generations.

18

On the other side, there is also the modelling approach for determining, or rather ”predicting”,
power consumption instead of measuring it. Hong and Kim [HK10] proposed an ”integrated
power and performance prediction model” to predict the optimal number of active processor cores
(active meaning ”used when running the program”) for a given application for a specified GPU
architecture. Peak memory bandwidth serves as the primary metric for determining the point
where more cores are unlikely to improve performance further, and it would be more beneficial
for overall efficiency to disable them (they measured an improvement of 11%). For just running
the model, no measurements of execution time, hardware performance counters or architecture
simulation are required. It takes the code of a GPGPU kernel as input and outputs predictions
for both performance per watt and the optimal thread/block configuration. Predictions are based
on GPU instructions, while each instruction is factored by the logical components (ALU, FPU,
Cache, etc.) it utilizes. Power consumption resulting from VRAM transfers/usage, cooling fans and
temperature increases are also factored in. To create the model, factors like ”maximum power” for
various parts of the GPU and architecture-dependant scaling factors must be determined empirically
for each architecture by synthetic micro-benchmarks. The model’s limitations are inherited from the
underlying power and timing models and include control flow intensive, asymmetric, and texture
cache intensive applications. This model was initially established with a GTX 280, built on an
obsolete, over ten years old architecture. This difference in architectural fidelity may render the
model less applicable to modern GPUs, where many more power-saving techniques are present.
Another now obsolete model is GPUWatch by Leng et al. [LHE+13]. They claimed that per-
formance per watt is more crucial than peak performance and provided an improved cycle-level
model for predicting GPU power consumption down to microarchitecture components. Eighty
micro-benchmarks are utilized for setting initial parameters, and the model was validated for Fermi
GPUs. They show how DVFS can reduce energy consumption by 14.4% in general and 66.6-13.6%
for clustered execution and that clock gating reduces dynamic power, one component of total power,
by 11.2%. These techniques are staples in modern GPU architectures. Abe et al. [ASP+12] have
proven earlier that, in general, tighter control of GPU voltage and frequency can reduce the whole
system’s power by 28% while only losing less than 1% of performance.
While Leng et al. [LHE+13] showed how DVFS can be beneficial, GPUWatch does not account
for the benefits of its implementation in newer architectures (Nvidia Pascal, Volta, Turing and
onward) and will falsely predict power consumption of more than 2000% of the measured value,
as shown by Kandiah et al. [KPK+21] mostly caused by a lack of support for both the DVFS
implementation and the ”radical” power gating on newer architectures. They also claim that while
GPU performance modelling has improved over the years, power modelling still needs to catch up.
Based on a heavily modified GPUWatch [LHE+13], they propose Accelwatch, a new detailed and
accurate cycle power model capable of capturing constant and static power. It supports emulation,
trace profiling and hardware counters, also simultaneously and in combination, and accounts for
power gating, control-flow divergence and DVFS. The latter two are not accounted for in Hong and
Kim [HK10]’s model. The modular construction of the model is tailored to study discrete hardware
components without developing new models for all of the architecture’s components by allowing
the use of real-world data where available and filling the rest with simulations. Once a good model
for one architecture is compiled (absolute percentage error of 7.5–9.2±2.1–3.1% on their model for
the Volta architecture), it is not necessarily required to be ”retuned” for another GPU architecture to
deliver accurate power models (unchanged Volta model delivers error of 11±3.8% (Pascal) or 13 ±
4.7% (Turing)), making design space exploration possible. What should be kept in mind with these
percentage values is that the Volta model was only verified against NVML data, which is, as shown
by Müller et al. [MHWE22], itself off by 3-11% and mostly lower than the value measured by an

19

2 Related Work

external hardware setup.
Bridges et al. [BIM16] gave a further overview and a comprehensive picture of various mod-
elling/profiling/simulation approaches. Their main claim is that the comparably advanced CPU
modelling and simulation provide a basis or a jumping-off point for further GPU research. Future
work should focus on more generalization to allow experimenting with combining parts of different
architectures effectively, which was not as possible with rather architecture-dependant models of
the time they gave this overview, but the newer Accelwatch already ticks some of the boxes.

20

3 Background

3.1 MegaMol

MegaMol [mm] [GBB+19] is an open-source and cross-platform tool for scientific visualization. It
was initially intended for visualizing point-based molecular datasets. It also supports volume ray
cast rendering for visualizing volumetric data1 and various 2D render modes for analyzing statistical
data (scatterplot matrix, parallel coordinates and table histogram). OpenGL is used for rendering,
and the various render modes are all implemented in GLSL2.
A sphere renderer is used to visualize particle datasets as a cloud of spheres. Different types of
particles can be highlighted. There also is the option of a raytracing mode, which is not utilized for
the benchmarks in this work. Different render methods are available, which allow the utilization
of different data structures (standard OpenGL buffer arrays and Shader Storage Buffer Arrays) for
uploading the particle data to the GPU. The SSBO render method also allows the data to be kept in
the GPU’s VRAM, removing the need to upload it for every rendered frame repeatedly.
In contrast to the sphere renderer, where the render methods (at least the ones we use in the bench-
marks) implement different procedures but produce visually indistinguishable results, Integration
and Isosurface follow the same steps up to a point until diverting to vastly different results (more
on the visual implications of different config parameters in 4.4.1). Integration applies a transfer
function to the voxels, which assigns different voxel ranges to different RGBA colours. Conversely,
Isosurface extracts a connected shape from the volume by filtering for only a specific grey value
(iso value).
Scenes in Megamol can be constructed with the module graph, where various modules can be
connected by different calls to exchange and process data. The parameters of the modules can be
edited via a hierarchical GUI and console commands.
In this work, MegaMol mainly serves as the framework for running various sphere and volume
renderer test cases, and its source code is modified to help realize this (see 4.2 for details). Addi-
tionally, MegaMol’s 2D visualization modes proved themselves helpful in analyzing the benchmark
results.

3.1.1 LUA Scripting Interface

Megamol projects containing the entire state of MegaMol’s graph and current GUI state are stored
as Lua scripts.
Lua [Lua] is a comparably minimalistic programming/scripting language, which is not only designed

1Volumetric datasets consist of layers of voxels (usually evenly-spaced on each layer), and each voxel has a grey value
(often representing density or resistance to specific radiation). Volumetric data is commonly produced by different
types of 3D scanners (computer tomography, magnetic resonance, etc.).

2OpenGL’s shader language.

21

3 Background

to be fast and robust but with a small footprint (< 2 MB for the standard library, the interpreter and
documentation) in mind. The small size encourages embedding Lua into more extensive projects,
and MegaMol is one of them.
Lua is used within MegaMol as a scripting interface, which can also be actively used at runtime
via the console. However, the more relevant use case is to automate MegaMol with consecutively
executed Lua instructions.
With the project files being functional Lua scripts, loading them does not simply load data, but
actively instructs MegaMol to set the graph and the GUI to a specific state. However, it does
not have to end at reconstructing a specific state, as the whole of Lua as a fully-featured modern
programming language allows control flow to automate arbitrarily complex sequences of events.
To be accessible via the Lua interface, ”Lua callbacks” must be registered within MegaMol. A Lua
callback is created by defining a Lua function and the parameters it takes within MegaMol’s source
code, which is written in C++, not Lua. The actual implementation of the function is also done in
C++ but will be called whenever the defined Lua function is called. As it is also possible to provide
a return value, communication between the Lua interface and MegaMol can be bidirectional to
control and retrieve data from MegaMol during runtime.
Examples of Lua callbacks include

• mmCreateView(), mmCreateModule() and mmCreateCall() for generating the graph,

• mmSetParamValue() for setting GUI parameters to a given value (parameters are addressed
by following the hierarchy in the graph),

• mmRenderNextFrame() for rendering frames on command

• or mmQuit() for exiting MegaMol.

3.2 Power Overwhelming Library

Power Overwhelming [pov] [MHWE22] is a C++ library for retrieving data from different types of
power sensors with strictly separate APIs in a manner that is as generic as possible across various
integrated sensors and external devices. Currently supported are

• the integrated power sensor(s) on AMD GPUs via the AMD Display Library (ADL),

• the integrated power sensor on Nvidia GPUs via the NVIDIA Management Library
(NVML),

• Running Average Power Limit (RAPL), which is used for accessing the CPUs integrated
power sensor,

• Tinkerforge Voltage/Current Bricklets 2.0,

• Rohde & Schwarz oscilloscopes of the RTB 2000 family,

• and Rohde & Schwarz HMC8015 power analysers.

22

3.3 Power Measurements with Tinkerforge Bricks and Bricklets

The library allows all sensors to be accessed synchronously, where samples are acquired on demand,
or asynchronously, where the sensor is configured to provide examples at a fixed time interval. To
allow asynchronous sampling on sensors that operate strictly synchronous (like NVML), Power
Overwhelming creates a sampling thread as an abstraction, which handles the repeated queries at
fixed intervals and can be configured to process the samples as desired. The main advantage to
asynchronous sampling, at least for the sensors that support it out of the box (like Tinkerforge), is
that once configured, the communication with the sensor is unidirectional, as only the sensor has to
send data. If synchronous sampling is used, the bidirectional communication of the queries and
the samples would require twice the bandwidth, and the sensor could be under a higher load for
processing the queries. Both factors could negatively influence the maximum possible sampling
interval, decreasing temporal accuracy. The library provides a Windows file time3 timestamp in
milliseconds along with every sensor sample. For all sensors but ADL, where the samples already
come with a timestamp, the timestamps are generated when the sample is acquired. The timestamps
are helpful when assigning sensor samples to benchmark test cases in retrospect.

3.3 Power Measurements with Tinkerforge Bricks and Bricklets

As all of the PC’s components run on direct current (DC), so power draw P [W] can be computed
by simply multiplying measurements of voltage V [V] and current I [A]:

(3.1) P = U · I

Voltage is measured parallel to the carrier by referencing the desired point’s electrical potential to a
common ground. Assuming that the PC’s PSU outputs a stable voltage (of either 3.3, 5 or 12 V),
we could theoretically assume this as constant. However, as we want to strive for high accuracy and
there are always small voltage fluctuations in the mV range, and because we get this measurement
more or less for free in our measuring setup, we do include it.
Measuring current is generally more complex, as it has to be measured in series. There are two
common approaches to accomplish this. The first inserts a shunt resistor (usually in the mΩ range)
and measures the voltage drop across it. Ohm’s law can be used to derive the current from these
factors:

(3.2) I =
Udrop

Rshunt

This approach is intrusive as it is necessary to route all of the current contributing to the total power
across the shunt resistor.
The second approach uses a hall-effect sensor to detect the magnetic field induced by the current
externally. The sensor surrounds a wire section instead of intercepting it, making it less intrusive.
However, according to Maniar [Man18], hall-based solutions are more susceptible to noise and
temperature changes, less accurate and overall less flexible.
For our purposes, the current measuring is handled by a Tinkerforge Voltage/Current Bricklet 2.0,

3Time in nanoseconds since January 1, 1601, 12:00 AM as a 64-bit unsigned integer

23

3 Background

internally using a Texas Instruments INA226 power monitor. It is intrusive as it is shunt-based, but
it also measures voltage and directly computes power.
Tinkerforge is an open-source modular platform with various building blocks conveniently accessible
via USB or (W)LAN. There are two types of building blocks: Bricklets, like the Voltage/Current
Bricklet 2.0, are connected to and controlled by Bricks, which include a microcontroller (32bit
ARM) and are stackable for more connectivity. We can save bandwidth by only retrieving the
already computed values for power. This optimization is convenient and critical as retrieving two
values (voltage and current) could be problematic at the high temporal resolution (5 ms between
samples) we want to measure.

24

4 Experiment

With this work being a continuation of [MHWE22] and being carried out at the exact location,
hardware and proposed library for measuring power were reused wherever possible and adapted
when necessary and viable. While the hardware mainly remained unchanged (except for an overhaul
of the Tinkerforge setup and the use of a different selection of GPUs), it was necessary to extend
MegaMol’s source code [mm] to enable its use as a benchmarking platform for power benchmarks.

4.1 Hardware and Software Setup

4.1.1 Testbench

The testbench is an open PC case, to allow for easy component access and quick GPU changes, with
the modified power cables and the tinkerforge setup next to it. It is an x86_64 PC configuration
based on an AMD Ryzen 5900X Processor (12 cores, 24 threads at 3.7-4.8 GHz rated at 105
W) on an ASUS ROG Strix X570-E Gaming motherboard. It has 64 GB of DDR5 memory and
multiple solid-state drives: a SATA SSD for the operating system and an NVME SSD for all relevant
data/software. A be quiet Dark Power Pro 1200 W is the power supply unit.
While the rest of the system’s hardware remains unchanged for all test cases, seven different GPUs
featuring all major GPU manufacturers (AMD, Intel, Nvidia) are used in succession. All selected
GPU models are targeted at consumers (no professional/workstation GPUs) and, with one exception,
include each manufacturer’s top and penultimate models from their current generation (AMD:
Radeon RX 7900 XTX and 7900 XT; Nvidia: GeForce RTX 4090 and 4080) and the top models
from their last (AMD: Radeon RX 6900 XT; Nvidia: GeForce RTX 3090 Ti). As Intel does not
have a comparable offering to the other manufacturers’ highest-end consumer cards, neither in
their current nor their last generation, only one Intel GPU (ARC A770) is included. Table 4.1
provides an overview of selected technical specifications of the chosen GPU models (see Chapter
A for further details). Except for the GeForce RTX 4090 and ARC A770, all GPUs are factory
overclocked, raising out-of-the-box GPU and memory clocks compared to their base models. For
the benchmarks, no further overclocking was attempted.

Chip M. GPU VRAM Size VRAM Clk. (eff.) VRAM Bandw. FP32 (float) Pixel Rate TDP MSRP (2023)

AMD Radeon RX 6900XT 16 GB 16 Gbps 512 GB/s 23.65 TFLOPS 295.7 GPixel/s 300 W 700 USD
AMD Radeon RX 7900XT 20 GB 20 Gbps 800 GB/s 55.05 TFLOPS 491.5 GPixel/s 300 W 899 USD
AMD Radeon RX 7900XTX 24 GB 20 Gbps 960 GB/s 63.04 TFLOPS 492.5 GPixel/s 355 W 999 USD
Intel ARC A770 16 GB 17.5 Gbps 559.9 GB/s 19.66 TFLOPS 307.2 GPixel/s 225 W 350 USD

Nvidia GeForce RTX 3090 Ti 24 GB 21 Gbps 1008 GB/s 41.29 TFLOPS 215.0 GPixel/s 450 W 1499 USD
Nvidia GeForce RTX 4080 16 GB 22.4 Gbps 716.8 GB/s 50.49 TFLOPS 290.6 GPixel/s 320 W 1199 USD
Nvidia GeForce RTX 4090 24 GB 21 Gbps 1008 GB/s 82.58 TFLOPS 443.5 GPixel/s 450 W 1599 USD

Table 4.1: Specifications of the selected GPUs (source: TechPowerUp GPU Database [TPGPU]).

25

4 Experiment

PSU

GPU

Mainboard
with CPU

PEG Slot

PEG Riser

CPU P4

CPU P8

ATX

PCIe Power

PCIe Power

PCIe Power

PCIe Power
(600 W)

12V 3.3V

12V 5V 3.3V

12V

12V

12V

12V 12V

12V 12V

12V 12V

12V

12V

Tinkerforge
Setup

Figure 4.1: Schematic overview of all relevant power connections (green) and how each set of
power lines (orange) is connected to the Voltage/Current Bricklets (based on Fig. 3
of [MHWE22]). The specific setup shown (with the 600 W connector disconnected)
would be applicable for e. g. the AMD Radeon 7900 XTX.

4.1.2 Tinkerforge and Hardware Modifications

Like the testbench, the power measuring setup used by Müller et al. [MHWE22] was also adopted
for this work. To accurately measure each component’s power consumption (or at least differentiate
between the power draw of the GPU and the rest of the System) all of the PSU’s outgoing power
lines are cut and intercepted by Voltage/Current 2.0 Bricklets (featuring Texas Instruments INA226
power monitors). Additionally, because the GPU draws a part of its power from the motherboard’s
power via the PEG slot, a special PCIe riser card with voltage/current probe points is required.
This riser card is installed in the PEG slot instead of the GPU, and the GPU is placed on top of it.
Because the CPU (similar to the GPU) also draws power from the motherboard, its isolated power
can also not be measured by only including the readings from the 8-pin CPU power connectors.
However, in contrast to the GPU, we do not know of a ”CPU riser” which would allow to intercept
the CPU socket’s power rails to allow for measurements. Originally, another PCIe riser card without
probe points was installed between the first riser and the GPU to decrease wear on the riser caused
by the numerous GPU swaps. However, the increase in PCIe lane length (or some other related
factor) caused by the second riser made the AMD 7000-series GPUs stop working correctly 1, so it
was omitted.
The riser’s probe points are also connected to Voltage/Current Bricklets and later allow us to

1The GPU was unable to even produce a stable 60 FPS on an idling Windows 10 and dragging around console or
explorer windows caused noticeable stutters. Also, GPU utilization, as displayed by the Windows Task Manager,
was inconsistent and did not seem to match the actual utilization but was generally too high for what it should be
(seemingly random spikes to 100% while not actively interacting with anything or otherwise causing GPU load).

26

4.2 Implementation of Powerlogging Service

determine how much of the motherboard’s power is used by the GPU. As shown in 4.1, we need 16
Voltage/Current Bricklets for the following power lines:

• Motherboard and periphery (ATX) 3.3 V, 5 V and 12 V

• dedicated CPU (150 W 8-pin connectors) 2 x 12 V

• dedicated GPU (3 x 150 W 8-pin PCIe connector) 3 x 12 V

• dedicated GPU (1 x 600 W 12+4-pin PCIe connector) 6 x 12 V

• GPU via motherboard (probe points on riser card) 3.3V and 12 V

Wherever possible (without exceeding the Bricklet’s current limit), multiple power lines within the
same connector were connected to a single Bricklet. Although none of the selected GPUs requires
all of the power connectors simultaneously because rewiring the Bricklets would stretch out the
GPU changing process significantly, and the Dark Power Pro 1200 W has enough PCIe power
connectors, all Bricklets stay connected all the time.
Although technically possible, the power connector for the SATA SSD has no dedicated Bricklet to
save bandwidth, as the power consumption of a mostly idling SSD is insignificant compared to the
CPU and GPUs with three-digit power ratings.
All Bricklets are connected to the Brick, which is connected to the testbench via USB-C. Although
available both physically and within Power Overwhelming (the library for interfacing with the
different types of power sensors), the Rohde & Schwarz HMC8015 power analyzer and the Rohde &
Schwarz RTB2004 Digital Oscilloscopes were not used in this particular test setup. The oscilloscope
is out of the question because it is tailored to high-resolution (per frame) momentary readings,
while this test is highly automated, has a long runtime to cover all relevant combinations of test
parameters, and measurements over 5 seconds have to be combined. The tinkerforge sensors’
resolution is sufficient and the setup does not produce as much data this way. Also, even with
the two oscilloscopes, there would not be enough sensors to cover all power sources separately.
However, the oscilloscopes were used for a debugging step in preparation for this test run. The
power analyzer was omitted to streamline the benchmark process further and because the whole
system’s power does not help analyze the power draw of individual components. However, the
measurements could have helped measure the PSU’s influence on efficiency and more accurately
represent the whole system’s efficiency (PSU losses included).

4.2 Implementation of Powerlogging Service

The current master of MegaMol [mm] already includes a recent version of Power Overwhelming,
but the integration to configure and actually use the power measurements was part of this work.
The result can be found on a forked Git repository [mm-f] on GitHub.
The desired procedure is to start and configure MegaMol to cycle through various pre-defined
test cases via a Lua file. It is not sufficient to simply record all possible power sensor data in
the background, we also need a way to match the sensor data to the test cases accurately. To
accomplish this functionality, we settled on a MegaMol service, a structure within MegaMol
that uses polymorphism to inherit from ”AbstractFrontendService” (based on a template found in
frontend/services/service_template). A service is initialized as a service object and a corresponding

27

4 Experiment

config object, which are added to the FrontendServicesCollection ”services” in MegaMol’s main.cpp.
It provides various abstract methods that get called at specific points during the rendering process
and allows for conveniently sharing resources with other services (like the GUI, for example).
For our purposes, we do not care about most resources, as we neither require our service to be
controllable via MegaMol’s GUI nor to interfere much with MegaMol, except for a few specific
cases. Of the abstract methods for sharing resources, we only really need setRequestedResources()
to enable us to create custom Lua callbacks, which help us control the Power Library and extract
specific data from our current MegaMol session. The other abstract function we make use of is
postGraphRender(), but only for synchronous sampling (or rather sample_sensor()-calls, counting
frames and flushing the sample buffer accordingly (note that buffers will also be flushed when full
in asynchronous mode). Synchronous sampling and automatic flushing are technically not required
for the benchmarks, as buffers are manually flushed after completing a test case via a Lua callback.
However, they were implemented as an intermediate step and are still present. As there was no
intention of dynamically controlling this ”Powerlogging_Service” via MegaMol’s GUI, it is either
enabled when MegaMol_USE_POWER is set and always running in the background or not enabled
at all (this should, however, be achievable without completely rewriting the service).
Like common for classes in modern C++, a MegaMol service consists of a header (.hpp) and a
body (.cpp) file. As intended for services, the header defines a ’Config’ structure, which contains
variables for setting properties specific to the service’s implementation:

• powerlog_file: path for logging file (only for synchronous, all synchronous sensors are logged
to this one file (for asynchronous, every sensor has its file))

• frames_per_flush: how many frames to render before flushing buffer

• frames_per_request: how many frames to render until sampling sensor

• asynchronous_logging: can be en/disabled. Synchronous logging writes samples directly to
the log, asynchronous uses a separate thread that is notified whenever a sample buffer is full

• asynchronous_sampling: can be en/disabled. Synchronous sampling samples in between
frames and utilizes a shared buffer, asynchronous in a specified interval on a separate thread
with separate buffers for each sensor

• sample_timeout: time between samples when using asynchronous sampling

• sample_buffer_size: maximum number of samples (per sensor) that can be stored before
automatically flushing the sample buffer. Should be chosen so that one of the buffers can be
flushed in time before the other buffer is full (asynchronous sampling uses double buffering)

• sensors: which sensor types to sample (currently supported: ADL, NVML, Tinkerforge). If
one sensor type is enabled, all sensors of this type will be sampled.

In addition to most of what was already defined in the template service, the Powerlogging_Service’s
header also contains private structs for internally handling sensor samples as timestamp/value pairs
with a constructor (compact_sample) and for keeping track of sampling threads (sampling_container).
There are also collections for tracking the individual sensors in use and their corresponding logging
threads (in case of asynchronous sampling).
For all collected services, init() will eventually be called. In the case of the Powerlogging_Service,
it does the following in this order:

28

4.2 Implementation of Powerlogging Service

• The internal config parameters are set to the values given by the external Config object (the
one that was added with the service object to services collection)

• A unique ID for this MegaMol instance is derived from the current timestamp. This ID
is used for generating different names for asynchronous log files of different test runs (for
example, running the same test cases once with and once without V-Sync, where MegaMol
has to be restarted) so they do not overwrite each other by sharing the same file name. The
ID will also be accessible via a Lua callback for being usable for the exact purpose outside of
the Powerlogging_Service.

• Each sensor type is checked for being enabled, and all available sensors of the enabled types
are collected (NVML is usually only one for single Nvidia GPUs, ADL are likely numerous,
even with a single GPU, and Tinkerforge will be as many as connected). This collection
step is more elaborate for Tinkerforge sensors, as they get configured to internally average 4
samples and their conversion time is set to 588 𝜇s (this should result in a sampling interval of
approximately 5ms and got Müller et al. [MHWE22] the best results).

• for ansynchronous sampling only: bind_sensor() is called for all collected sensors

Synchronous sampling happens within postGraphRender(), where a sensor sample is captured,
reformatted to the desired CSV format and written to a shared buffer. On the other hand, asynchronous
sampling is enabled via bind_sensor(), which does the following:

• A unique file path for the sensor called on is generated by combining the unique session ID
and the sensor’s ID

• A new sampling_container for this sensor’s sampling thread is created. It consists of the
following:

– the name,

– double buffers for sensor samples and the maximum buffer size

– mutex locks and a signalling variable for controlled and thread-safe buffer swapping
and flushing

– a time-to-die flag

Pointers to all sampling_containers are stored within the Powerlogging_Service.

• Power Overwhelming’s asynchronous sampling is configured:

– sampling timeout and the pointer to this sensor’s sampling container are provided

– method to execute each time when sampling is provided: ”store_sample_and_flush_if_necessary”

∗ flush is considered "necessary"when the active buffer is full or the time-to-die flag
is set

∗ blocks the thread until buffers are successfully swapped (should be almost instanta-
neous, as only pointers are swapped using std::vector<>::swap())

∗ the corresponding logging thread is notified via the signalling variable

• the corresponding logging thread is also created

29

4 Experiment

– also provided with the corresponding sampling container

– executes "flush_powerlog_buffer":

∗ waits for a signal on the sampling container’s signalling variable (intended to
originate from the sampling thread, when the buffers were swapped after the active
buffer has been full)

∗ formats and writes the contents of the inactive buffer to a CSV file and empties the
buffer (the writing will likely take multiple milliseconds, but the clearing of the
buffer should happen almost instantaneously via std::vector<>::clear())

∗ terminates if the time-to-die flag is set (this usually happens when the service is
terminated by exiting MegaMol)

At least when MegaMol is exited, the Powerlogging_Service will be terminated alongside all the
other services and close() will be called. It is implemented as follows: close():

• The time-to-die flag gets set for all sampling containers. This step will eventually cause the
sampling threads to notify the logging threads to do their final flush, regardless of how filled
the buffers are.

• The service has to wait for the logging threads to empty the remaining samples from the
buffers.

• All sensors get unbound, so the threads for asynchronous sampling threads within Power
Overwhelming also terminate.

In addition to all of this, fill_lua_callbacks() is utilized to create the following Lua callbacks, which
can later be used via the Lua scripting interface:

• mmFlushPowerlog(): manually flush the powerlog buffers of all sensors

• mmSwapPowerlogBuffers(): swaps active and inactive powerlog buffers of all sensors

• mmSwapSwapAndClearPowerlogBuffers(bool clear_active_buffer, bool clear_logging_buffer):
swaps active and inactive powerlog buffers of all sensors and clears them if specified so

• mmGetPowerTimeStamp(): Returns a numeric timestamp (in ms) matching the format used
within the power overwhelming library (this includes a shift from the UNIX epoch (1/1/1970)
to the Windows epoch (1/1/1601))

• mmGetInstanceName(): Returns a string that changes on each execution of Powerlog-
ging_Service (the same ïnstance IDäs generated within init())

This sums up all required changes to MegaMol’s source code. Any further configuration of the test
cases is done externally via MegaMol’s Lua scripting interface.

30

4.3 Software Environment

4.3 Software Environment

The benchmarks were run under Windows 10 Pro Version 22H2. The following versions of the
GPU drivers were installed:

• AMD: 31.0.21001.45002 (Adrenalin 23.7.1)

• Intel: 31.0.101.3959

• Nvidia: 31.0.15.3640 (NVIDIA 536.40)

The driver version as an influencing factor in performance and power consumption should not be
overlooked as some of the GPUs are, when this is written, approximately or even less than a year old
and especially the Intel A770 is known to have significantly better performance with more recent
drivers.
The version of MegaMol is the commit with id f6f022e0dd from August 8 2023 form the custom
fork [mm-f], and was compiled with Microsoft Visual Studio 2022 with all default settings, except
for enabling MEGAMOL_USE_POWER, to enable the Powerlogging_Service.

4.4 Benchmark Process

4.4.1 Test Parameters

As our overarching goal is to determine how different factors in scientific visualization influence
power draw and efficiency, we first need to establish a parameter space with the exact parameters
and their corresponding values we want to analyze. To accurately determine the influence of
each parameter on all other parameters, we have to run at least one test case for all reasonable
combinations of parameters. ”Unreasonable” combinations of parameters include all test cases,
where a test parameter is used, that does not apply to the test case in use. The render methods and
test data values are only intended for either the sphere or volume renderer. The thinning factor
and sphere radius only apply to the sphere renderer, and the step ratio only applies to the volume
renderer. Additionally, there are all cases of the type (Intel ARC A770, ..., SSBO stream with static
data, ...) because this combination does not work correctly on the version of MegaMol used for the
benchmarks. All of these test cases would either be duplicates of other ones because they do not
change anything or would not run at all. Because of time constraints, we settled on running each
test case exactly once and for 5 seconds. As further elaborated in 4.4.2, if MegaMol is still in the
middle of rendering a frame when the 5-second time limit is reached, the rendering will not be
force stopped, but it will be the last frame rendered for this test case. This behaviour may cause the
total runtime to be off by a few milliseconds (typically < 10). Because the exact runtime and the
number of actually rendered frames are tracked, the average FPS of a test case can be determined
accurately. Ideally, we would want to use a single MegaMol project file, but as shown in Table 4.2,
certain constraints to some of the test parameters render such a setup impossible.
By design, our outermost test parameter will be the selection of the GPU, as changing this parameter
requires physically changing the GPU installed to the testbench. As the system needs to be shut
down for this, we can not automate this step.
The following two parameters are also not viable to change within one MegaMol session:
The test case, or more precisely using either the sphere or volume renderer, dictates the type of usable

31

4 Experiment

test parameter applicable test case possible values

GPU all*

AMD Radeon RX 6900 XT,
AMD Radeon RX 7900 XT,
AMD Radeon RX 7900 XTX,
Intel ARC A770,
Nvidia GeForce RTX 3090 Ti,
Nvidia GeForce RTX 4080,
Nvidia GeForce RTX 4090

test case type all** Sphere Renderer, Volume Renderer
V-sync state all** true, false

render method Spheres simple, SSBO stream with static data
Volume Integration, Isosurface

test data Spheres ace_drop_1m, expl30m
Volume bonsai, bunny, chameleon

camera angle all 1-8
resolution all 720p, 1080p, 1440p, 2160p
thinning factor Spheres 1, 4, 16
sphere radius Spheres 1, 2
step ratio Volume 0.5, 1, 2

* requires hardware modification
** requires MegaMol restart

Table 4.2: Overview of all test parameters, the test cases where they are applicable and all potential
values they can be at

dataset (particle or volumetric), the available render methods and some other test-case-exclusive
parameters. Loading another MegaMol project while one is already open is possible. However,
instead of overwriting the current project, the new project’s contents are added, making this approach
unsuitable for our purpose.
The V-Sync state determines whether the FPS are capped to the display’s refresh rate (60 Hz in our
case) or unlocked to render as many frames as quickly as possible. Turning V-Sync on or off is
done before MegaMol is interactable by either changing a setting in the ”MegaMol_config.lua” or
by using the CLI option ”–vsync” when launching MegaMol. We can use a batch script to launch
multiple sessions of MegaMol with the correct project file and CLI options.
The remaining test parameters are all changeable via the Lua scripting interface and thus can be
handled within an ongoing MegaMol session and automated within the same MegaMol project file.
Two of these parameters apply to both test cases:
Resolution includes a selection of four common high-definition resolutions in 16:9 format. One
expected outcome would be that higher resolutions produce lower framerates and may or may not be
more expensive and less efficient. Camera angle comprises eight possible angles, as shown in Fig.
4.2. They were generated via the Lua callback ”mmGenerateCameraScenes()"to stay consistent
across different resolutions, render modes and datasets. In our case, the mode was set to ”orbit”.
The main purpose of the different angles is to minimize the influence of asymmetry in the datasets

32

4.4 Benchmark Process

(all suffer from this to a degree).
The parameters specific to the sphere renderer test cases include the two possible render methods
(simple renderer and SSBO stream with static data). The datasets consist of the smaller and cubic
ace_drop_1m (1 million particles) and the larger and more elongated expl30m (30 million particles).
There are also two parameters exclusive to spheres:
The thinning factor reduces the particle density (thus reducing the particle count). A thinning
factor of 𝑛 results in only every 𝑛th particle from the dataset being included in the render (and
skipping the rest). For the simple renderer, this is done by setting the stride when uploading the
data to the GPU (handled by the GPU driver’s OpenGL implementation). Stride is a byte offset that
determines, after how many values in an array a new element begins. The SSBO renderer uploads

Figure 4.2: All eight camera angles were used as one of the test parameters. This example shows
the chameleon dataset, but the same angles were used for all other datasets and render
modes. All Screenshots were taken by MegaMol (volume renderer set to Isosurface)
right before starting a test case.

33

4 Experiment

(a) ace_drop_1m (no thinning) (b) expl30m (no thinning)

(c) ace_drop_1m (thinned by 4) (d) expl30m (thinned by 4)

(e) ace_drop_1m (thinned by 16) (f) expl30m (thinned by 16)

Figure 4.3: Screenshots of both spheres datasets used as one of the test parameters and visualized
by MegaMol’s sphere renderer. Each row shows them at a different thinning factor
(which is another test parameter set to either 1 (top), 4 (middle) or 16 (bottom)). All
screenshots were taken by MegaMol right before starting a test case.

the whole data, resulting in technically unused data in the VRAM. Fig. 4.3 shows both datasets on
various thinning factors visualized in MegaMol’s sphere renderer. Sphere radius determines the
radius of the rendered spheres. Larger spheres will likely lead to more overdraw in already dense
areas.
For the volume test cases, there are also exclusive render methods, datasets and one additional test
parameter:
The selection of volumetric data consists of three cubic datasets with increasing size: bonsai (2563),
bunny (5123) and chameleon (10243). The two render methods Integration and Isosurface cause
the renders to be visually distinct, as seen in Fig. 4.4. On top of these differences, shadows are
turned off for Integration (variance in colour is only a result of the transfer function and potential

34

4.4 Benchmark Process

(a) Bonsai (Integration) (b) Bunny (Isosurface)

(c) Chameleon (Integration) (d) Chameleon (Isosurface)

Figure 4.4: Screenshots of all volume datasets used as one of the test parameters visualized by
MegaMol’s volume renderer (set to either Integration (left) or Isosurface (right)). All
screenshots were taken by MegaMol right before starting a test case.

transparency).
Similar to the thinning factor in the spheres test cases, there is step ratio for volume rendering, which
determines how many rays are cast per voxel. A step ratio of 𝑛 results in only every 𝑛th voxel sampled.

4.4.2 Operation

As already discussed in 4.4.1, the choice of GPU has to be our outermost test parameter, as swapping
GPUs is not (realistically) automizable, so the benchmarking process has to start with physically
installing the correct GPU. After the GPU is installed and secured (with a screw and support for its
”tail end”), the power and display output (2160p@60Hz) plugs can be connected. Then, the PSU’s
power plug can be plugged in, and the system can be started to boot into Windows. On the desktop,
specific explorer windows and the Task Manager were opened (and positioned consistently across
multiple runs) to confirm that everything was running correctly regularly. Fortunately, this ends the
manual part of the benchmark, as the only step left is to launch the batch script that handles the rest
automatically.
The batch script launches megamol.exe four times (the spheres and volume project files with V-Sync
enabled and disabled). Both project files are of similar structure but differ significantly in the
sections where the MegaMol graph is set up, and unapplicable test parameters are handled.

35

4 Experiment

As it is not required for automated test cases and could get in the way, the GUI is hidden after the
project is fully set up, and a variable for storing the output file is created. Next is a nested for loop
spanning all the relevant test parameters in the following order:

• Spheres: dataset - thinning factor - render method - sphere radius - resolution - camera angles

• dataset - render method - step ratio - resolution - camera angles

The datasets are first because loading them has the potential to take longer than changing other
parameters, and not having a dataset selected in the beginning causes problems when changing
renderer-specific parameters (sphere radius, step ratio). In our case, the thinning factors are already
encoded within the datasets’ files. When changing the render method within the volume project, the
correct transfer function is applied for Integration and the correct iso value for Isosurface. Both are
predefined, the bunny dataset reuses the chameleon’s transfer function and suiting iso values for
each dataset were selected empirically (testing different values until only the desired parts of the
volume were rendered).
The following happens within the innermost loop: First, a name for identifying the current test cast
is generated by concatenating the various test parameter values (excluding GPU and V-Sync state).
After slightly modifying this name to be a viable Windows file name, a screenshot of MegaMol
rendering the current test case is taken for later verification. Next, ten frames are rendered to
eliminate power fluctuations observed when starting kernels/engaging loads. After this step, the
actual benchmark begins. It consists of four steps:

• A line consisting of the test case name, ”start” and the current timestamp (as provided by
mmGetPowerTimeStamp()) is appended to the output file.

• The function render() is called. This function was defined elsewhere in the script and will
render (via mmRenderNextFrame()) and count a new frame until the given time (5 seconds
in our case) is over. It uses the system clock via Luas os library, which is accurate to the
millisecond. However, the exact runtime might not be accurate to the millisecond, as the
rendering of the current frame is not terminated immediately after reaching 5000 ms (the
frame is always rendered to completion, and the time is only checked to determine if another
frame should be rendered). When the rendering is done, the number of rendered frames is
returned.

• Another line is appended to the output file. This time, with a new timestamp, ”end” instead of
”start” and the number of rendered frames. These two lines allow us to accurately determine
the test case’s runtime and, as the total number of frames is also known, to compute the
average FPS of the test case.

• mmFlushPowerlog() is called to write all values our Powerlogging_Service sampled in the
background while running the test case to their respective files. We can later use the start and
end timestamps to select the relevant sensor samples for this test case.

After the outermost loop and all test cases are completed, the output file is written to disk (the test
bench has more than enough memory to not require buffered writing for <1 MB of text). Finally,
MegaMol is closed (mmQuit()), and the next line in the batch script is executed.
The only manual step after the batch file has finished is to move all data to another folder and
continue with the next GPU.

36

4.4 Benchmark Process

4.4.3 Collected Data

Although all sensors are configured within the Powerlogging_Service to be polled asynchronously
every 5 ms, the exact interval for each sensor is neither consistently in this range nor consistent
across multiple sensors. Tinkerforge samples were acquired every 5ms on average. However, less
than 0.005% of the samples’ timestamps were off by approximately 5000ms, which is one test
case. The exact cause of this phenomenon is unknown, but as they were always singular stray
samples, they should not have interfered too much with the outcome of a test case, as, on average,
there were 999 valid samples to compensate for them. Ignoring these stray samples results in a
standard deviation of approximately 2 ms and 99.99% below 30 ms. ADL and NVML performed
similarly with a sample every 16 ms on average, a standard deviation of approximately 1.5 ms and
99.99% below 40 ms. This lack of consistency makes it hard to directly compare samples from one
sensor to another because the other sensor might not have a sample at the given timestamp. Instead
of significantly reducing the temporal resolution (potentially until no data is left) by omitting all
samples at timestamps not covered by every sensor, all samples are quantized at an interval of 1 ms
(1000 Hz). No data is lost because this is above twice the maximum possible sample frequency

(4.1) 5 𝑚𝑠 =⇒ 200 𝐻𝑧 < 500 𝐻𝑧 = 1000 𝐻𝑧 ∗ 0.5)

No dedicated interpolation is performed before or after the quantization step. The quantization
iterates over every timestamp 𝑡 and checks if its value P𝑡 exists. If it does, the last known value Plast
is updated; if not, the current timestamp is assigned the last known value. There always is a Plast, as
the first timestamp, by definition, always has a value.

(4.2) P𝑡 , Plast =

{
P𝑡 , if P𝑡 ≠ null
Plast otherwise

After quantization, samples from multiple sensors can be (re)combined to produce more meaningful
power readings.
As a first step, some power connectors consisting of multiple power lines (with potentially different
voltages) can be recombined for some basic building blocks:

(4.3)
PCPUP = PP4 + PP8

PATX = PATX3.3V + PATX5V + PATX12V

PPEG = PPEG3.3V + PPEG12V

These building blocks already cover all power sources for every component on the motherboard
(except the GPU). PPEG is a reading of how much of PATX is used by the GPU. As from a ”system
total perspective”, PPEG is already included in PATX and must be subtracted here:

(4.4) PSystem\GPU = PCPUP + PATX − PPEG

37

4 Experiment

It could be interesting to split up PSystem further into hypothetical values for PCPU, PRAM, PChipset
and more. However, as our setup has no way of determining how PATX is divided among different
components (except for the GPU via PPEG), we have to live with only isolating the GPU’s power
draw from the rest of the system. To get PGPU, we first have to add up all PCIe power sensors:

(4.5) PPCIe =

9∑︁
𝑖=1

{
PPCIe𝑖 , if 𝑥 < ∞
0 otherwise

Note that while there are nine separate power bricklets/sensors dedicated to PCIe power, there are
currently no cases where all of them are simultaneously used for a single GPU because the first
three bricklets cover one 150 W connector each (most GPUs do not utilize them all) while the rest
covers the single 600 W connector (see Fig. 4.1). If a sensor is not used, every sample will have a
value of ∞, which is used as a criterion to filter out the sensor entirely (one ∞-sample is enough;
this can be done before quantization to save time).
Both of the GPU’s power sources are covered now:

(4.6) PGPU = PPEG + PPCIe

With both PSystem\GPU and PGPU known, it is possible also to estimate the system’s total power
draw:

(4.7) PSystem = PSystem\GPU + PGPU

Note that PSystem is not equivalent to the power draw of the testbench when measured from the
wall outlet, as the PSU generally does not operate without losses. Additionally, there is a mostly
idling SSDs to consider, which has its own power connector. However, it is omitted in this setup to
remove clutter and because of its lack of significance to the total power draw (likely <1W). The
NVMe-SSD where MegaMol is running from and where the benchmark data is written should
be comparably insignificant, but it is conveniently covered by PATX and hence included in PSystem\GPU.

For some later analysis steps, the PGPU was normalized to the GPU TDP to give an approximation
of the GPU’s utilization and allow for a better comparison between GPUs with different TDPs:

(4.8) utilGPU𝑖
=

PGPU𝑖

PTDPGPU𝑖

As alternatives to PGPU, the power samples from the GPUs’ internal power sensor are also recorded,
which gives us PADL on AMD GPUs and PNVML on Nvidia GPUs (there is currently nothing
comparable for Intel GPUs). These values offer the benefit of being measurable ”out of the box”,
i.e. without physical modifications to the hardware while having lower temporal resolution and

38

4.4 Benchmark Process

less accuracy than the tinkerforge setup. Our primary use for them is evaluating their accuracy
compared to the tinkerforge samples while also serving as an overall ”sanity check”, if available.
The NVML samples can be directly interpreted as PNVML, and no post-processing to improve the
values further, as suggested by Burtscher et al. [BZZ14] was attempted. The reasons for not trying
to compensate for these artefacts resembling capacitor (de)charging include a lack of clarity about
the applicability of these compensation suggestions, initially formulated for Kepler GPUs, to the
more modern architectures of the tested Nvidia GPUs (we do not even have proof2 of them still
existing). As there was no suggestion for improving ADL sensor values, the compensation would
also make the GPU sensor results across different GPU manufacturers less comparable. On the
other hand, the ADL samples require minor post-processing to get a PADL that can be compared to
the other sensors’ values without problems:
Different ASICs within the AMD GPUs are recognized as different ”software sensors”, and each
one provides its values paired with a timestamp (timestamps for other sensors are generated on
acquisition within the power library). However, the values they provide appear to originate from the
same physical sensor because only their timestamps vary slightly (sampling the physical sensor
at different times), while the overall values match across all ”software sensors”. For the sake of
simplicity, the results from all ”software sensors” but those originating from the ASIC recognized
as ”0” are discarded.

(4.9) PADL = PADL0

Additionally, the ADL timestamps occur approximately 2 hours later than other sensors. When
running the benchmark, the system clock was set to Central European Summer Time, which is
UTC+2. The ADL timestamps are seemingly UTC±0, so they must be shifted by 2 hours to align
with the rest.

(4.10) 𝑡ADL = 𝑡ADL − 72000000 ms

On top of the power samples (with their timestamps) from the various sensors (ADL, NVML,
Tinkerforge), the start and end timestamps of each test case and the number of rendered frames
within these timestamps are recorded as well. Because MegaMol does not get restarted after every
test case (only to change between sphere/volume rendering and to turn vertical synchronization
on/off), the logging produces a single stream of samples, necessitating these start/end timestamps
(𝑡start, 𝑡end) to assign samples to test cases correctly. If a sample 𝑠𝑡 has a timestamp 𝑡 between 𝑡start
and 𝑡end, it is assigned to the test case 𝑇 :

(4.11) 𝑡start ≤ 𝑡 < 𝑡end =⇒ 𝑠𝑡 ∈ 𝑇

2Müller et al. [MHWE22] (Fig. 9) showed that the NVML sensor on the Nvidia 3090 still has some vaguely similar
behaviour, but this was on the browser rendering tests and the sections in question looked more like linear than
exponential growth/decay.

39

4 Experiment

Not every sample is necessarily assigned to a test case because, as the logging is active while
MegaMol is running, samples still get corrected in between test cases (when MegaMol parameters
are changed, dummy frames are rendered, screenshots are taken or powerlog buffers are flushed).
However, no sample can be part of two different test cases.

The start/end timestamps, in combination with the number of rendered frames per test case, also
allow us to calculate the average FPS throughout the test case, which is a more tangible metric
(especially regarding VSync):

(4.12)
𝑛frames

𝑡end − 𝑡start
[s−1] = avg. FPS [s−1]

The abovementioned metrics can also be used to calculate efficiency in J/frame. It is especially
useful when comparing GPUs on different ends of the computing power spectrum because it
estimates how effectively the consumed power is used. To save time, 𝑎𝑣𝑔. 𝐹𝑃𝑆 can be used
alternatively:

(4.13)
Pmean · (𝑡end − 𝑡start)

𝑛frames
[W s] = 𝑃mean · (avg. FPS)−1 [W s] = J/frame [J]

40

5 Results

For the sake of simplicity, any GPU will typically be referred to by a combination of only
manufacturer and specific model name (omitting "model line"names like "Radeon RX", ÄRC", and
"GeForce RTX"). In some cases, all GPUs by the same manufacturer or GPU generation behave
similarly. However, this does not imply that all GPUs by this manufacturer or within this generation
behave this way, only the ones examined within this work (see 4.1).
While the same metrics are recorded for both spheres and volume test cases, their vastly different
implementations and differences in test parameters (see 4.4.1) render them unsuitable for equal
comparisons. Hence, they will be analyzed separately, except for some general observations which
do not rely on the individual influences of specific test parameters. However, the analysis itself will
be similar for both types of test cases, as it will first look into the causes of different FPS and power
draw readings (because both are required to compute efficiency) and then analyze efficiency in J/
per frame.
In certain sections, scatterplots with highlighting for various test parameters are used. These are
excerpts from a more extensive table of scatterplots, which can be found in the appendix (B).

5.1 Spheres

When using the Intel A770 and set to SSBO stream, MegaMol’s sphere renderer crashed because
the driver did not accept the set buffer size. Intel’s OpenGL implementation does not follow the
standard specifications at specific points (most notably for our case: default maximum SSBO buffer
size). Earlier, there were problems with the volume renderer always showing an empty volume when
using the Intel A770. However, in contrast to these problems, the issue with the SSBO renderer
could not be fixed without significantly altering the renderer. In MegaMol’s current state, it is
possible at least to run the SSBO renderer with the Intel A770, but thinning does not work correctly
yet (it is uneven and whole ”blocks” are removed instead of every 𝑛th particle) and enabling static
data breaks it even further. Because of this, only test cases of the Intel A770 with the simple
renderer are included, and the Intel A770 will be ignored when discussing SSBO with static data.

5.1.1 Performance

First, we compare the average performance (measured by the average number of FPS) of the different
render modes (Simple and SSBO stream with static data) across the different GPUs and resolutions.
For this purpose, all spheres test cases on the same GPU with equal resolution, render mode and
V-Sync state are averaged (see Fig. 5.1 and 5.2). Averaging over the different camera angles and
especially the different datasets in their various stages of thinning aims to paint a general picture of
the GPUs’ performance (detailed analysis of their influences follows in the next subsection).
Comparing the values for the different render methods in Fig. 5.1 and 5.2 reveals that for every case,

41

5 Results

Figure 5.1: Mean FPS by GPU and resolution. left/blue is simple renderer, right/red is SSBO
stream renderer with static data enabled. V-Sync is disabled. Each column is
composed of the mean of the FPS of all spheres test cases that match these parameters.

Figure 5.2: Mean FPS by GPU and resolution. left/blue is simple renderer, right/red is SSBO
stream renderer with static data enabled. V-Sync is enabled. Each column is composed
of the mean of the FPS of all spheres test cases that match these parameters.

42

5.1 Spheres

Figure 5.3: Mean FPS by GPU and resolution. left/blue is simple renderer, right/red is SSBO
stream renderer with static data enabled. V-Sync is disabled. Only cases with the
larger expl30m dataset are included. Each column is composed of the mean of the
FPS of all spheres test cases that match these parameters.

Figure 5.4: Mean FPS by GPU and thinning factor. left/blue is simple renderer, right/red is SSBO
stream renderer with static data enabled. V-Sync is disabled. Only cases with the
larger expl30m dataset are included. Each column is composed of the mean of the
FPS of all spheres test cases that match these parameters.

43

5 Results

Figure 5.5: Mean FPS by GPU and sphere radius. left/blue is simple renderer, right/red is
SSBO stream renderer with static data enabled. V-Sync is disabled. Each column is
composed of the mean of the FPS of all spheres test cases that match these parameters.

FPS with SSBO static data are consistently and significantly higher than with the simple renderer.
The unlimited FPS (Fig. 5.1), in particular, are always more than twice as high. With V-Sync (Fig.
5.2), SSBO static data delivers respectively 10% (AMD) and 20% (Nvidia) more FPS compared to
simple.
For the simple renderer, the GPUs rank in the following order: AMD 7000-series > Nvidia GPUs
and AMD 6900 XT > Intel A770. Despite their comparably lower performance on paper, the AMD
GPUs outperform their Nvidia counterparts when using the simple renderer (even when exclusively
looking at the larger expl. dataset 5.3).
Changing the renderer yields the following order: Nvidia 4090 > AMD 7000-series > Nvidia GPUs
and AMD 6900 XT. This order also does not match the theoretical raw power of the GPUs, especially
with the Nvidia 3090 Ti performing noticeably worse than the AMD 6900 XT. Eliminating the
influence of the smaller ace drop dataset, Fig 5.3 reveals that the theoretically more powerful Nvidia
GPUs mostly take the lead for the larger and denser data. However, the Nvidia GPUs seem to have
more pronounced scaling with the resolution and especially at 2160p, their AMD counterparts
hold up reasonably well. The cause of this is likely not the AMD GPUs being underutilized at low
resolutions but rather a case of the Nvidia GPUs being underutilized for smaller and less dense
datasets. Fig. 5.4 provides evidence of this, as, even with only the expl. dataset, the AMD GPUs
show higher relative performance increases with higher thinning factors (more robust evidence
provided in the scatterplots).
Filtering for sphere radius will not change any of the orders but does still have a significant impact
on performance: Fig. 5.5 consistently shows a general decrease in performance for the larger
sphere radius, although less noticeable with the simple renderer (except AMD 7000-series GPUs).

44

5.1 Spheres

Figure 5.6: Mean GPU Power (W) by GPU and resolution. left/blue is with V-Sync disabled
and right/red with V-Sync enabled. Only test cases utilizing the simple renderer
are included. Each column is composed of the mean of the mean power values of all
spheres test cases that match these parameters.

Additionally, Nvidia GPUs seem less impacted by sphere radius but not by orders of magnitude.
Also, the margin of the sphere radius for all GPUs seems to stay relatively equal across different
resolutions and thinning factors.

5.1.2 Power Consumption

Similar to the performance analysis, we start with looking at the general influences of the different
parameters, but on the mean power consumption of the GPU (as measured via the tinkerforge
setup) this time. Fig. 5.6 shows the GPUs’ mean power consumption when using the simple
renderer. Most GPUs score within a similar range, with the only apparent outliers being the Nvidia
3090 Ti as the highest and the Intel A770 as the lowest. It should be noted that, although taking
similar power at higher resolutions, the AMD GPUs take 20 W less at 720p than the Nvidia 4000
GPUs. Independent of V-Sync being enabled or disabled, power consumption increases with higher
resolutions. This effect seems less pronounced on the Intel A770, making it more expensive at
lower resolutions with enabled V-Sync than the AMD GPUs.
Regarding the other render mode, Fig. 5.6 looks similar for enabled V-Sync, with only the Nvidia
3090 Ti sticking out as the highest. However, looking at the values for disabled V-Sync paints a
different picture, as the order now changes to the following: AMD 7900 XTX > Nvidia 3090 Ti >
AMD 7900 XT > AMD 6900 XT + Nvidia 4090 > Nvidia 4080. Neighbouring GPUs in this order
are reasonably close in value and significantly overlap.
As seen in Fig. 5.8, the relative power step from V-Sync disabled to enabled seems to increase for
cases that produce higher FPS. A possible interpretation would be that the GPUs generally save

45

5 Results

Figure 5.7: Mean GPU Power (W) by GPU and resolution. left/blue is with V-Sync disabled and
right/red with V-Sync enabled. Only test cases utilizing the SSBO stream renderer
(with static data enabled) are included. Each column is composed of the mean of the
mean power values of all spheres test cases that match these parameters.

Figure 5.8: Mean GPU Power (W) by GPU and thinning factor. left/blue is with V-Sync disabled
and right/red with V-Sync enabled. Only test cases with the larger expl30m dataset
and utilizing the simple renderer are included. Each column is composed of the mean
of the mean power values of all spheres test cases that match these parameters.

46

5.1 Spheres

Figure 5.9: GPU Mean Power (normalized to their respective TDP) by GPU and resolution.
left/blue is simple renderer, right/red is SSBO stream renderer with static data
enabled. V-Sync is enabled. Each column comprises the mean of the mean utilization
of all spheres test cases that match these parameters.

Figure 5.10: GPU Mean Power (normalized to their respective TDP) by GPU and resolution.
left/blue is simple renderer, right/red is SSBO stream renderer with static data
enabled. V-Sync is disabled. Each column comprises the mean of the mean utilization
of all spheres test cases that match these parameters.

47

5 Results

Figure 5.11: GPU Mean Power (normalized to their respective TDP) by GPU and thinning factor.
left/blue is simple renderer, right/red is SSBO stream renderer with static data
enabled. V-Sync is disabled. Only test cases with the smaller ace_drop_1m dataset
are included. Each column comprises the mean of the mean utilization of all spheres
test cases that match these parameters.

more power by the more frames they do not have to render. However, while it holds for the small
dataset or increasing the thinning factor, lowering the resolution does not increase the gap.
The graphs of both render modes show that the GPUs’ ranking order is off from their order by TDP,
implying that their utilization must be below 100% and varies by GPU. To approximate the GPU
utilization within a test case, the test case’s mean power is divided by the respective GPU’s TDP.
This approach is not without flaws because different manufacturers interpret the TDP differently,
but it still allows for a more evenly matched comparison across different GPUs.
Fig. 5.9 shows how the average utilization of all GPUs when using V-Sync is below 30% and, for
some, drops below 15% at lower resolutions. For AMD GPUs, SSBO with static data is consistently
more expensive. At the same time, the simple renderer is more expensive for Nvidia GPUs (except
for 2160p, where all GPUs notably struggle to maintain a stable 60 FPS in every test case). However,
it should be noted that the differences on AMD GPUs disappear when only looking at the smaller
ace_drop350k dataset, and the differences on Nvidia GPUs are less pronounced on the larger
expl30m dataset.
When V-Sync is disabled, SSBO with static data is, on average, more expensive for all GPUs, as
shown by 5.10. Their utilization with the simple renderer is mostly below 50%, being the highest
on the Nvidia 3090 Ti and the lowest on both the Nvidia 4090 and the Intel A770, with mostly less
than 33%. This low utilization indicates a bottleneck caused by having to retransfer the data to the
GPU on every frame.
When using SSBO with static data, AMD GPUs generally get more than 70% and even reach full
utilization at higher resolutions, while Nvidia GPUs reach less than 60-75% (even less the stronger

48

5.1 Spheres

Figure 5.12: GPU Mean Power (normalized to their respective TDP) by GPU and thinning factor.
left/blue is simple renderer, right/red is SSBO stream renderer with static data
enabled. V-Sync is disabled. Only test cases with the larger expl30m dataset are
included. Each column is composed of the mean of the FPS of all spheres test cases
that match these parameters.

the GPU gets). Utilization generally increases with higher resolutions, independent of the render
mode. The utilization gap between the render modes is more pronounced on AMD GPUs.
To get a good picture of the influence of thinning factors on the utilization, the two datasets are
better viewed separately: Fig. 5.11 shows that when the dataset gets too small, another bottleneck
appears (even though these are the cases where the highest FPS are produced). On the other hand,
as seen in Fig. 5.12, the utilization for larger datasets generally benefits from higher thinning factors.
Only Nvidia GPUs seem to stagnate across different thinning factors when using SSBO with static
data. One possibility is that, even without thinning, the dataset is still too small to cause a difference
on Nvidia GPUs.
As for the influences of the sphere radius, Fig. 5.13 shows approximately 10% more utilization on
AMD GPUs with the larger spheres when using the simple renderer. This increase is also visible for
all other GPUs but is less pronounced. For SSBO with static data, there is no significant difference
caused by the sphere radius (if at all, a slight increase on Nvidia GPUs).

After establishing these general influences of the different test parameters, we shift the focus to
analyzing the influence of the parameters on the outcomes of the individual test cases and their
spatial relation to each other. For this purpose, we use plots where the axes are the earlier discussed
mean FPS and GPU power (each on its axis). Additionally, as dividing mean power by FPS
yields performance per Watt, all points on a line intersecting with the origin imply equal efficiency.
Because the GPUs of the same manufacturer (quite literally) paint a similar picture, we will primarily

49

5 Results

Figure 5.13: GPU Mean Power (normalized to their respective TDP) by GPU and sphere radius.
left/blue is simple renderer, right/red is SSBO stream renderer with static data
enabled. V-Sync is disabled. Each column comprises the mean of the mean utilization
of all spheres test cases that match these parameters.

(a) AMD 7900 XT (b) Intel A770 (c) Nvidia 4080

Figure 5.14: Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one spheres test
case with different parameters. Different states of V-Sync are highlighted.

50

5.1 Spheres

(a) AMD 7900 XT (b) Intel A770 (c) Nvidia 4080

Figure 5.15: Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one spheres test
case with different parameters. Different render methods are highlighted.

(a) AMD 7900 XT (b) Intel A770 (c) Nvidia 4080

Figure 5.16: Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one spheres test
case with different parameters. Different datasets are highlighted.

(a) AMD 7900 XT (b) Intel A770 (c) Nvidia 4080

Figure 5.17: Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one spheres test
case with different parameters. Different thinning factors are highlighted.

51

5 Results

(a) AMD 7900 XT (b) Intel A770 (c) Nvidia 4080

Figure 5.18: Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one spheres test
case with different parameters. Different sphere radii are highlighted.

(a) AMD 7900 XT (b) Intel A770 (c) Nvidia 4080

Figure 5.19: Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one spheres test
case with different parameters. Different resolutions are highlighted.

(a) AMD 7900 XT (b) Intel A770 (c) Nvidia 4080

Figure 5.20: Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one spheres test
case with different parameters. Different camera angles are highlighted.

52

5.1 Spheres

(a) V-Sync (b) Sphere Radius (c) Resolution

Figure 5.21: Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one spheres test
case running on an AMD 6900 XT GPU with different parameters. Different factors
are highlighted.

focus on the AMD 7900 XT, the Intel A770 and the Nvidia 4080. This selection is mostly arbitrary,
but these specific GPUs are closest regarding TDP, recency and general performance.
Fig. 5.14 shows the general ”shapes” of the GPUs’ plots and highlights the test cases with enabled
V-Sync, which appear as vertical lines at integer divisions of 60. Being confined to only very few
positions on the lower end of the FPS axis, these test cases do not allow many clear spatial relations
and mostly get in the way, so they are omitted from the following graphs.
Looking at the cases with disabled V-Sync, the AMD and Nvidia GPUs both show a more spread-out
upper section and a lower section consisting of diagonal descending lines of clusters (note: this
direction implies lower power but more FPS). The upper section for the AMD GPUs is primarily
horizontal, with concentration points at the top (except for the area with the highest FPS), while it is
approximately diagonally descending for the Nvidia GPUs and completely missing for the Intel
A770. Fig 5.15 explains that, as it shows that, the upper section, except for minor overlap, mainly
consists of test cases for SSBO stream with static data, which the Intel A770 has no test cases for.
On top of that, the simple renderer test cases for the Intel A770 are more spread out, which could be
a side effect of the lower FPS on this GPU (more evidence for this later when analyzing the leftmost
conglomeration of values). The shape of the data points for the SSBO stream with static data on
the AMD GPUs matches the previous observations of the AMD GPUs being fully utilized in most
cases and running into bottlenecks in cases with high FPS.
Fig. 5.16 highlights the generally more clustered data points to the right belonging to the
ace_drop_1m dataset and the more spread-out data points to the left belonging to the expl30m
dataset. While the lines earlier established as belonging to the simple render remain concise for the
expl30m dataset on the Nvidia GPUs and the Intel A770, they are not as clearly separable on the
AMD GPUs. Also, one of the ”simple renderer lines” belonging to the ace_drop_1m consistently
appears to the left of the rightmost line belonging to the expl30m dataset. This behaviour applies to
all GPUs (except the Intel A770, where it just overlaps instead of being separate on the left) and
implies that there is a factor that causes the larger dataset to produce higher FPS than the smaller
consistently. Fig. 5.17 makes it clear that this ”factor” is a thinning factor of 16, which seems odd,
as the expl30m dataset should, even this thinned out, still contain more data points. In addition
to this observation, all ”simple renderer lines” can now be classified as the influence of different
thinning factors (even observable for the expl30m dataset on the AMD 7900 XT). On top of all
these influences on the simple renderer test cases, distinguishable areas of equal thinning factors
have appeared even in the more spread-out area of the SSBO with static data test cases. Again, the

53

5 Results

areas of equal thinning factor are more concise within the values for the ace_drop_1m dataset. It is
also clearly visible now that the high FPS areas with non-GPU bottlenecks primarily consist of
ace_drop_1m data at a high thinning factor (on both AMD and Nvidia GPUs).
Now that the factors causing various areas are more transparent, Fig. 5.18 provides more details
on the composition of the individual small clusters within these areas. Focusing once again on
the ”simple renderer lines”, we can see that every cluster of test cases with sphere radius 1 has a
corresponding cluster of sphere radius 2 to its upper left (implying more power while producing less
FPS). While not as clearly distinguishable for the SSBO with static data test cases, at least within
the area with high FPS, these pairs of clusters are also observable, and it can be assumed that the
sphere radius has a similar influence on test cases with lower FPS outcomes.
Fig. 5.19 explains the relationship of the cluster pairs within the ”simple renderer lines”, as it
depicts each line consisting of one cluster pair for every resolution. At least on the AMD GPUs,
for the SSBO stream with static data, a pattern of higher resolutions being more common in the
upper left, where FPS are lower and power consumption is higher, is visible. At this point, it should
be mentioned that the general trend of simple renderer test cases requiring less power for lower
resolutions/sphere radii while producing more FPS does not apply to the AMD 6900 XT. Fig. 5.21
shows that The ”simple renderer lines” are not diagonal here, but rather approximately vertical. This
shape implies that lower resolutions/sphere radii require less power but generally do not directly
increase FPS on a per-case basis.
The only missing detail for the simple renderer test cases is how the clusters are composed.
Incidentally, the only test parameter not discussed yet should play a role here, and Fig. 5.20 confirms
it. Although the distribution of the camera angles across the whole plot seems chaotic, it is relatively
straightforward that each cluster contains all camera angles. It should be noted that because of the
proximity of the test cases that are only differentiated by the camera angle, a significant amount of
overdraw causes the camera angles with higher indices to hide the angles with lower indices. Other
than this observation, the different camera angles seem to be evenly distributed across the plots’
more spread-out areas, but other than that, no clear pattern is observable.
Because of the compressed nature of the data points in the lower FPS range, it is harder to make out
if ”simple renderer lines” also exist for the expl30m dataset, so eliminating the test cases for the
ace_drop_1m and all SSBO cases gives more insight:
Fig. 5.22 shows line-like structures with a line representing each thinning factor for all GPUs,
although they are more spread out on the AMD GPUs and the Intel A770. Compared to the lines
corresponding to the ace_drop_1m test cases, these lines are generally more straight downward
(meaning there are more test cases with different power draws that produce similar FPS) and no
defined clusters within the lines (only hints of clusters at higher thinning factors). The absence
of clusters also makes the distribution of different resolutions/sphere radii less organized, and
relations between different test cases are unclear. However, there is still a tendency for higher
resolutions/sphere radii to appear more to the upper left (higher power draw, less FPS) (see Fig.
5.23 and Fig. 5.24). As the expl30m test cases for SSBO stream with static data also show the same
tendency of being less organized than their ace_drop_1m counterparts, it can be assumed that larger
datasets (especially on higher thinning factors) have higher variance in power draw and FPS across
similar cases (especially different camera angles).

54

5.1 Spheres

(a) AMD 7900 XT (b) Intel A770 (c) Nvidia 4080

Figure 5.22: Scatterplot of Mean GPU Power (W) and Mean FPS (only the expl30m dataset with
simple renderer). Each point is one spheres test case with different parameters.
Different thinning factors are highlighted.

(a) AMD 7900 XT (b) Intel A770 (c) Nvidia 4080

Figure 5.23: Scatterplot of Mean GPU Power (W) and Mean FPS (only the expl30m dataset with
simple renderer). Each point is one spheres test case with different parameters.
Different resolutions are highlighted.

(a) AMD 7900 XT (b) Intel A770 (c) Nvidia 4080

Figure 5.24: Scatterplot of Mean GPU Power (W) and Mean FPS (only the expl30m dataset with
simple renderer). Each point is one spheres test case with different parameters.
Different spheres are highlighted.

55

5 Results

Figure 5.25: GPU efficiency (measured in J per Frame) by render method. left/blue is with
V-Sync disabled and right/red with V-Sync enabled. Each column comprises the
mean of the mean efficiency of all spheres test cases that match these parameters.

Figure 5.26: GPU efficiency (measured in J per Frame) by resolution. left/blue is with V-Sync
disabled and right/red with V-Sync enabled. Each column comprises the mean of
the mean efficiency of all spheres test cases that match these parameters.

56

5.1 Spheres

Figure 5.27: GPU efficiency (measured in J per Frame) by dataset and thinning factor. left/blue
is with V-Sync disabled and right/red with V-Sync enabled. Each column comprises
the mean of the mean efficiency of all spheres test cases that match these parameters.

Figure 5.28: GPU efficiency (measured in J per Frame) by sphere radius. left/blue is with V-Sync
disabled and right/red with V-Sync enabled. Each column comprises the mean of
the mean efficiency of all spheres test cases that match these parameters.

57

5 Results

(a) AMD 7900 XT (b) Intel A770 (c) Nvidia 4080

Figure 5.29: Scatterplot of GPU Efficiency (J per frame) and GPU Mean Power (normalized to
their respective TDP). Each point is one spheres test case with different parameters.
Different states of V-Sync are highlighted.

5.1.3 Efficiency

While the scatterplots of Mean GPU Power (W) and mean FPS offer some insight into performance
per watt, they lend themselves poorly to broad, generalized statements. Fig 5.25 shows that,
regardless of render mode, enabling V-Sync causes an average overhead of less than 0.5 J. When
factoring in the (although relatively constant) power consumption of the rest of the system, this
is raised to 1̃-2 J, although Fig. 5.51 shows that enabled V-Sync decreases power draw by 5-10
W on average. Fig 5.25 also shows that the simple renderer on Nvidia GPUs is around twice as
expensive as the SSBO stream with static data. On the AMD 6900 XT, there is no distinguishable
difference between the render modes, while on the AMD 7000-series GPUs, the simple renderer is
less than 0.5 J more efficient. This behaviour leads to the following order of efficiency from least to
most efficient: Intel > Nvidia 3090 Ti Simple > Nvidia 4000-series Simple > Nvidia 3090 Ti SSBO,
AMD 6900 and AMD 7000-series SSBO > AMD 7000-series Simple > Nvidia 4000-series SSBO.
Although it has the lowest average power draw, the Intel A770 is the least efficient because of the
generally low FPS it produces. Despite its 450 W TDP, the Nvidia 4090 is the most efficient because
it produces reasonably high FPS while not always drawing as much power as it technically could.
The observations hold when looking at Fig. 5.26, but can be expanded by frames at higher resolutions
generally being more expensive (except for the Intel A770. Additionally, the gap between the
render modes on Nvidia GPUs decreases at higher resolutions. This decrease implies that the FPS
generally increase by a smaller factor than the power draw. What seems odd is that the efficiency of
the Intel A770 increases at higher resolutions. The best explanation may be the wider FPS spread
across the test cases for the exact resolution (see Fig. 5.19) combined with the generally lower FPS.
On the other hand, what holds for every tested GPU is a substantial increase in efficiency for
smaller/thinner datasets, as shown in Fig. 5.27. While dataset size alone does not seem to scale
linearly with performance per watt (potentially a result of the bottlenecks encountered at the frequent
high-FPS test cases of the smaller ace_drop_1m dataset), thinning out a dataset in some cases,
yields an increase in efficiency that almost matches the thinning factor.
The only highly influential test parameter left to discuss is the sphere radius, which, as shown by
Fig. 5.28, increases efficiency when lower. However, not by much, as it results in 1 J less per frame
on average for AMD GPUs and less than 0.5 J for the other manufacturers.

58

5.1 Spheres

(a) AMD 7900 XT (b) Intel A770 (c) Nvidia 4080

Figure 5.30: Scatterplot of GPU Efficiency (J per frame) and GPU Mean Power (normalized to
their respective TDP). Each point is one spheres test case with different parameters.
Different render methods are highlighted.

(a) AMD 7900 XT (b) Intel A770 (c) Nvidia 4080

Figure 5.31: Scatterplot of GPU Efficiency (J per frame) and GPU Mean Power (normalized to
their respective TDP). Each point is one spheres test case with different parameters.
Different datasets are highlighted.

(a) AMD 7900 XT (b) Intel A770 (c) Nvidia 4080

Figure 5.32: Scatterplot of GPU Efficiency (J per frame) and GPU Mean Power (normalized to
their respective TDP). Each point is one spheres test case with different parameters.
Different thinning factors are highlighted.

59

5 Results

(a) AMD 7900 XT (b) Intel A770 (c) Nvidia 4080

Figure 5.33: Scatterplot of GPU Efficiency (J per frame) and GPU Mean Power (normalized to
their respective TDP). Each point is one spheres test case with different parameters.
Different sphere radii are highlighted.

(a) AMD 7900 XT (b) Intel A770 (c) Nvidia 4080

Figure 5.34: Scatterplot of GPU Efficiency (J per frame) and GPU Mean Power (normalized to
their respective TDP). Each point is one spheres test case with different parameters.
Different resolutions are highlighted.

(a) AMD 7900 XT (b) Intel A770 (c) Nvidia 4080

Figure 5.35: Scatterplot of GPU Efficiency (J per frame) and GPU Mean Power (normalized to
their respective TDP). Each point is one spheres test case with different parameters.
Different camera angles are highlighted.

60

5.1 Spheres

Again, to get more intel on the spatial relations between the test cases, we plot the efficiency values
against the power consumption (this time normalized by each GPU’s respective TDP, the metric we
use to approximate GPU utilization).
First, Fig. 5.29 shows many diagonal lines, implying less efficiency at higher utilization. The
lines are generally less concise on the Intel A770. The most concise lines stem from the test cases
with enabled V-Sync; each line represents a fraction of 60 (the more potent the slope, the higher
the divisor). But even the test cases with V-Sync disabled show similar diagonal lines but with
more vertical spread. Fig. 5.30 shows that these lines result from the simple renderer test cases
and appear mostly below 50% approximate utilization (matching the earlier observations), while
the more spread out section at a higher utilization level is from the SSBO stream with static data
test cases. Fig. 5.31 reveals that most of the data visible is from the expl30m dataset because the
significantly higher FPS of most ace_drop_1m test cases causes the resulting efficiency generally
better than 1 J per frame. For all GPUs, the spread in the expl30m simple renderer lines matches
the spread previously visible in Fig. 5.22m, so there is less (in this case vertical) spread in these
lines. The lines for simple renderer with ace_drop_1m are also visible enough to confirm their
existence (see B for more details). Despite the AMD GPUs’ tendency to be at high utilization when
FPS are unlocked when using SSBO stream with static data, not only the ace_drop_1m cases, but
even most of the expl30m cases are below 2 J per frame. However, the same is true for Nvidia
GPUs, which do not show as wide of a spread on ”low-efficiency outlier cases” as AMD GPUs
do (even at lower utilization levels). Fig. 5.32 improves the visibility of the simple renderer lines
of the ace_drop_1m cases, but, more importantly, reveals that most of the outliers on the AMD
GPUs were from the unthinned dataset, as its test cases make io the majority of the upper left area
of SSBO test cases. The lower thinning factors on the AMD GPUs are primarily located within a
cluster at full utilization with <2 J per frame. As for Nvidia GPUs, test cases with higher thinning
factors get rarer at higher utilization levels.
As for the influences of the sphere radius, Fig. 5.33 shows that, for the simple renderer test cases,
AMD GPUs are less efficient with the larger sphere radius at higher thinning factors. At the same
time, there is no noticeable difference for the other GPUs. What is noticeable about the test cases
for the SSBO stream with static data is that Nvidia GPUs are generally less efficient at the larger
sphere radius, and the highest outliers on the AMD GPUs are also test cases with the larger sphere
radius. Fig. 5.34 shows how the ace_drop_1m cases are somewhat sorted by resolution, as higher
resolutions come with higher utilization. On the other hand, the SSBO stream with static data cases
with significantly lower efficiency are mostly higher resolutions on Nvidia GPUs. At the same
time, there are almost vertical lines of matching resolutions on the AMD GPUs. When looking at
the topmost outliers, there are also clearly visible horizontal (or somewhat slightly diagonal) lines
that show how, in these cases, higher resolution causes higher utilization and worse efficiency. To
get an explanation for these outlier lines, this time, the camera angles, which still are primarily
chaotic, reveal an important detail: Fig. 5.35 shows that every line represents a camera angle, and
the standing out ones are 7, 6, 5 and 2. Orientation-wise, no apparent factor sets them apart from
the other angles. However, the orientation of the expl30m dataset causes these angles to feature the
data fully lit, while the other angles show the dataset’s ”dark side”. When directly lit, the increased
complexity of the shadows seems to significantly affect the AMD GPUs’ performance, causing the
efficiency to plummet.

61

5 Results

Figure 5.36: Mean FPS by GPU and resolution. left/blue is Integration renderer, right/red is
Isosurface. V-Sync is disabled. Each column is composed of the mean of the FPS of
all volume test cases that match these parameters.

5.2 Volume

5.2.1 Performance

As shown in Fig. 5.36, the GPUs perform in the following order: AMD 7000-series > Nvidia
4090 + AMD 6900 > Nvidia 4080 > Nvidia 3090 Ti > Intel A770. Isosurface always performs
significantly better (likely because it is a process with fewer steps), and the increase over Integration
looks like a fixed percentage at first glance but increases significantly at higher resolutions for all
GPUs. The difference between render modes is the highest on the Intel A770 (60-130%) and the
lowest on the Nvidia GPUs (35-65%). Doubling the resolution comes with a decrease in FPS of
30-50%. The difference in render modes and resolution is also visible in the test cases with enabled
V-Sync, as seen in Fig. 5.37. It also shows that only the Nvidia 4090 could maintain a stable 60
FPS at 2160p in most cases.
Fig. 5.38 shows that the step ”bonsai to bunny” is generally less pronounced than ”bunny to
chameleon” when using Integration. This observation also somewhat applies to Isosurface, but
here, it is more apparent that each ”step” (8x increase in dataset dimensions, 2x per dimension)
approximately halves the FPS.
Doubling the step ratio, as shown in Fig. 5.39, has a similar effect of increasing FPS by 50-100%.
The scaling with higher resolution is generally more pronounced at higher step ratios for all GPUs.
The absolute FPS overhead of the Isosurface render method stays relatively consistent across
different step ratios on the same GPU. The relative FPS overhead is the most pronounced on the
Intel A770 and the least on the Nvidia GPUs.

62

5.2 Volume

Figure 5.37: Mean FPS by GPU and resolution. left/blue is Integration renderer, right/red is
Isosurface. V-Sync is enabled. Each column is composed of the mean of the FPS of
all volume test cases that match these parameters.

Figure 5.38: Mean FPS by GPU and dataset. left/blue is Integration renderer, right/red is
Isosurface. V-Sync is disabled. Each column is composed of the mean of the FPS of
all volume test cases that match these parameters.

63

5 Results

Figure 5.39: Mean FPS by GPU and step ratio. left/blue is Integration renderer, right/red is
Isosurface. V-Sync is disabled. Each column is composed of the mean of the FPS of
all volume test cases that match these parameters.

5.2.2 Power Consumption

Fig. 5.40 shows that the power consumption of all GPUs scales with the resolution at least to some
degree. The order from highest to lowest power consumption goes as follows: Nvidia 3090 Ti >
AMD 7900 XTX and Nvidia 4090 > AMD 6900 XT and 7900 XT > Nvidia 4080 > Intel A770.
Isosurface not only generally produces higher FPS than Integration but also requires less power to
do so (although the difference shrinks at higher resolutions). Overall, the scaling is insignificant on
the AMD GPUs, as they, on average, only require less power for Isosurface on the lowest resolution.
As Fig. 5.41 shows, all GPUs operate close to their TDP in these cases, so their absolute power
consumption is in the earlier discussed order. The scaling on the AMD GPUs is overshadowed by
them operating at full utilization. The approximate utilization above 100% is a byproduct of our
TDP-based approximation, which depends on how a manufacturer measures their TDP.
Fig. 5.42 shows that when V-Sync is enabled, the scaling with resolution is much more pronounced,
and all GPUs, except the Nvidia 3090 Ti, which is higher than the rest, have comparable absolute
power consumption. Fig. 5.43 shows that their utilization varies, as now, from a relative viewpoint,
the order of utilization is now as follows: Intel A770 > Nvidia 3090 Ti > the other GPUs > Nvidia
4090. The order is not as clear, as there is much overlap.
The results for different datasets and step ratios are mainly similar to the resolution results, as larger
datasets and lower step ratios cause higher power consumption, and the scaling is more pronounced
when V-Sync is enabled. Of these factors., the step ratio has the most minor effect on the power
consumption.

Jumping to the spatial relations of the volume test cases, Fig. 5.44 shows horizontal lines at the
expected FPS values (fractions of 60) for the V-Sync cases. The AMD GPUs show a horizontal line
that kinks and scatters at higher FPS, while the Nvidia GPUs show a diagonally descending line

64

5.2 Volume

Figure 5.40: Mean GPU Power (W) by GPU and resolution. left/blue is Integration renderer,
right/red is Isosurface. V-Sync is disabled. Each column is composed of the mean
of the FPS of all volume test cases that match these parameters.

Figure 5.41: GPU Mean Power (normalized to their respective TDP) by GPU and resolution.
left/blue is Integration renderer, right/red is Isosurface. V-Sync is disabled. Each
column is composed of the mean of the FPS of all volume test cases that match these
parameters.

65

5 Results

Figure 5.42: Mean GPU Power (W) by GPU and resolution. left/blue is Integration renderer,
right/red is Isosurface. V-Sync is enabled. Each column is composed of the mean
of the FPS of all volume test cases that match these parameters.

Figure 5.43: GPU Mean Power (normalized to their respective TDP) by GPU and resolution.
left/blue is Integration renderer, right/red is Isosurface. V-Sync is enabled. Each
column is composed of the mean of the FPS of all volume test cases that match these
parameters.

66

5.2 Volume

(a) AMD 7900 XT (b) Intel A770 (c) Nvidia 4080

Figure 5.44: Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one volume test
case with different parameters. Different states of V-Sync are highlighted.

(a) AMD 7900 XTX (b) Intel A770 (c) Nvidia 4090

Figure 5.45: Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one volume test
case with different parameters. Different render methods are highlighted.

(a) AMD 7900 XT (b) Intel A770 (c) Nvidia 4080

Figure 5.46: Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one volume test
case with different parameters. Different datasets are highlighted.

67

5 Results

(a) AMD 7900 XT (b) Intel A770 (c) Nvidia 4080

Figure 5.47: Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one volume test
case with different parameters. Different step ratios are highlighted.

(a) AMD 7900 XT (b) Intel A770 (c) Nvidia 4080

Figure 5.48: Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one volume test
case with different parameters. Different resolutions are highlighted.

(a) AMD 7900 XT (b) Intel A770 (c) Nvidia 4080

Figure 5.49: Scatterplot of Mean GPU Power (W) and Mean FPS. Each point is one volume test
case with different parameters. Different camera angles are highlighted.

68

5.2 Volume

that gets thinner at higher FPS. The Intel A770 is somewhere in between, with a slight diagonal that
scatters a lot at higher FPS. The diagonal orientation implies lower power draw at higher FPS, and
the scattering only at high FPS indicates a bottleneck that prevents even higher numbers.
In contrast to the sphere renderer, where the two render methods appeared in different plot areas, Fig.
5.45 shows Integration and Isosurface test cases intertwined. The high-FPS area for all GPUs is
mainly populated by Isosurface test cases, making them the majority of cases where the bottlenecks
occur. It looks like there is a slight bias on AMD 7000-series GPUs to Isosurface cases being less
power-hungry, while they seem slightly more power-hungry on the Intel A770 and Nvidia GPUs.
To confirm if there is a significant difference between the areas of Integration and Isosurface, a
t-test was conducted, which led to mixed results: 𝑝 for most GPUs was orders of magnitude below
0.05, but the AMD 7900 XTX was hitting right on the spot with 𝑝 = 0.496, and the Nvidia 4090
was even higher with 𝑝 = 0.0856. The results indicate evidence for the render methods creating
different areas, but there is more evidence against it.
Fig. 5.46 shows that the datasets are less intertwined but still not separable. There is, as expected, a
strong tendency for the smaller datasets to be more to the lower right. The bunny test cases seem to
cluster at various medium-FPS areas (at least on the AMD GPUs and the Intel A770), while all
chameleon test cases are located in the upper left corner.
Fig. 5.47 shows different behaviour for each manufacturer: There are clusters on the AMD GPUs,
but they overlap strongly. However, the lowest step ratio cases are more present in the area of
lower FPS and are entirely missing from the bottleneck area. For the Intel A770, the scattered area
does not seem to follow a pattern, but the step ratios in the ”regular” area are staggered as rotated
L-shapes, with the lowest factor being the top-left-most. The spread also increases at higher step
ratios. As for the Nvidia GPUs, the lowest step ratio makes up the underside and the highest the
top side of the diagonal. So, for Nvidia GPUs, higher step ratios generally increase FPS and lower
power draw, while for the Intel A770, higher step ratios often decrease power draw. The increase in
power draw on the Nvidia GPUs for individual test cases is in contrast to the average, which seems
to be lowered significantly by the test cases in the high-FPS area.
Fig. 5.48 shows that the resolutions paint a more precise picture, with higher resolutions aligned to
the top left and lower resolutions more to the bottom right. However, the lower the resolution, the
more the test cases are spread along the FPS axis. Last, Fig. 5.49 reveals that the single low-FPS
outlier all AMD GPUs share is the chameleon viewed from camera angle nr. 1 at the lowest step
ratio and 720p. This being the first test case rendered after loading the chameleon dataset, this
outlier is likely just a measuring artefact.

5.2.3 Efficiency

According to Fig. 5.50, the efficiency in order of worst to best order goes as follows: Intel A770 +
Nvidia 3090 Ti > AMD 6900 XT > AMD 7000-series and Nvidia 4000-series. Despite having the
widest TDP gap, the Intel A770 and Nvidia 3090 Ti are comparably (in)efficient. As expected from
Integration consuming more power than Isosurface, it is, on average, always less efficient. Enabling
V-Sync causes a similar absolute overhead between 0.25 and 0.5 J per frame on all GPUs. The
overhead is the highest on the AMD 6900 XT (both render methods) and the AMD 7000-series
GPUs (Isosurface only). The only exceptions are AMD 7000-series GPUs with Integration, where
the overhead is <0.2J per frame. The influences of other test parameters are significant, but
not surprising: Higher resolutions and larger datasets decrease while higher step ratios increase
efficiency.

69

5 Results

Figure 5.50: GPU efficiency (measured in J per Frame) by render method. left/blue is with
V-Sync disabled and right/red with V-Sync enabled. Each column comprises the
mean of the mean efficiency of all volume test cases that match these parameters.

5.3 General observations

5.3.1 Power Consumption of the Rest of the System

Up until now, we exclusively looked at the GPUs’ power consumption. This perspective leaves
the question of how much different render methods on different GPUs might affect the power
consumption of the rest of the system (mainly CPU and memory). Fig. 5.51 shows a general
trend across all GPUs and render modes (even across sphere and volume renderer test cases) of
power consumption of 130 W without and 120 W with V-Sync. This relatively consistent power
consumption (with a standard deviation of <10 W for all render methods) also suggests a relatively
consistent CPU load. Minor exceptions to this are the Intel A770, which causes the rest of the
system to draw equal (spheres simple) or even >5 W less (volume) power with disabled V-Sync
(which could mostly be an artefact of the Intel A770 struggling to produce a stable 60 FPS in many
test cases even without V-Sync) and the Nvidia 4090, which also makes the rest of the system sit at
120 W.
A minor (<5 W) decrease in power draw can generally be observed from the simple renderer to the
SSBO stream with static data. Although this effect is explainable by enabling static data, liberating
the CPU and system memory from repeatedly copying the data to the VRAM, it is an insignificant
change to the overall power consumption compared to how much the different test parameters
influence the GPUs’ power consumption alone.
It should also be mentioned here that the effects of the test parameters on the rest of the system’s power
consumption are generally even more negligible. Changes in resolution, dataset size or thinning

70

5.3 General observations

Figure 5.51: Mean System Power (GPU excluded) by render method. left/blue is with V-Sync
disabled and right/red with V-Sync enabled. Each column comprises the mean of
the mean efficiency of all test cases that match these parameters.

factor, which, as shown previously, have a significant effect on the GPUs’ power consumption,
influence the rest of the system’s power consumption similarly, but only in a general range of <5
W.

5.3.2 Manufacturer-Dependant TDP and Software Sensor Observations

When discussing certain test cases with high utilization on AMD GPUs earlier, there were multiple
cases where the tinkerforge power measurements exceeded the TDP on AMD GPUs by more
than 10%. Fig. 5.52 highlights this pattern even more by only including test cases where high
GPU utilization was consistently recorded previously (unlocked FPS, the largest available datasets
(expl30m for spheres and chameleon for volume) and render methods other than the simple spheres
renderer). It is apparent that the Intel and Nvidia GPUs mostly meet but do not exceed their TDPs,
while the AMD GPUs consistently overshoot them by 10%. Judging by the findings of Müller et al.
[MHWE22], a possible explanation would be that the ADL sensor tends to be off around 10% more
than the Nvidia sensor. This divergence would imply that AMD based its TDP ratings on the internal
sensor’s measurements. However, Fig 5.53 shows that a percentage differing by the manufacturer can
not simplify the difference between the external and integrated power sensors. The last-generation
GPUs (AMD 6900 XT and Nvidia 3090 Ti) show percentages that match the observations by
Müller et al. [MHWE22], which were recorded on GPUs with the exact architectures (AMD W6800
(RDNA 2) and Nvdia 3090 (Ampere)). However, the current-generation AMD GPUs’ ADL sensors

71

5 Results

Figure 5.52: GPU Mean Power (normalized to their respective TDP) by render method. Volume
render methods are highlightedred, the spheres render method blue. V-Sync is
disabled. Only cases with the largest dataset (expl30m for spheres and chameleon
for volume) are included. The filters were applied specifically to only include test
cases with generally high GPU utilization. Each column comprises the mean of the
mean utilization of all test cases that match these parameters.

(a) Absulte power (W) measured by Tinkerforge
(blue/left) and ADL/NVML (red/right)

(b) Relative additional power measured by the
Tinkerforge sensors

Figure 5.53: Comparison of average power measurements of tinkerforge and integrated GPU
sensors (ADL/NVML). Each column comprises the mean of the mean utilization of
all test cases.

72

5.3 General observations

tend to report more power than the tinkerforge sensors measure. The current-generation Nvidia
GPUs are missing more power than the previous generation. Additionally, the Nvidia 4090 is off by
more than the 4080, so this specific Nvidia 4000-series issue could be connected to the TDP.

73

6 Conclusion and Outlook

In this work, we compared how various combinations of parameters influence the power consumption
and efficiency of different visualization methods. Larger and denser datasets, higher resolution,
and, for the sphere renderer, larger spheres lead to lower FPS and higher power draw, resulting in
worse efficiency. When using the simple sphere renderer, test cases with different datasets and
dataset thinning stages appear to be separable into areas. For the SSBO stream with static data and
the volume test cases, this is also true to an extent. However, while test cases with equal datasets
and thinning stages/sampling intervals behave the most similarly, they are not as clearly separated.
Also, all simple sphere renderer test cases show signs of a bottleneck, as FPS and GPU utilization
are generally low. However, this only negatively affects the efficiency of the Nvidia GPUs. In
volume rendering, Isosurface consistently performed better and more efficiently than Integration.
The choice of the render method and practically all other parameters showed little to no influence
on the power consumption of the rest of the system. Enabling V-Sync significantly decreases power
draw, as long as the GPU can produce much higher FPS when not limited to 60 Hz, but generally
not enough to be more efficient on average. Following this observation, limiting FPS for interactive
workloads, which are not constrained by having to render as many frames as quickly as possible,
benefits power consumption.
We also found that multiple GPU models by the same manufacturer tend to show similar behaviour.
When V-Sync is disabled, AMD GPUs always tend to use as much power as they can to produce the
highest possible FPS, except for when they run into a bottleneck somewhere above 2000 FPS, while
Nvidia GPUs get either steadily more bottlenecked or steadily reduce power draw on purpose, the
higher the FPS are. This behaviour also causes AMD GPUs to squeeze more FPS out of smaller
and more diluted datasets. The Intel A770 is, behaviour-wise, somewhere in between but leaning
more toward the AMD side. Especially at lower FPS levels, with large particle datasets, Nvidia
GPUs tend to perform more consistently across different resolutions, sphere radii and camera angles.
Despite generally drawing the least power, efficiency-wise, the Intel A770 is mostly outclassed
by the other, more power-hungry GPUs because they can generate significantly higher FPS. This
advantage is especially true for the Nvidia 4090, which, despite its massive 450 W TDP, shows
massive improvements compared to its predecessor (3090 Ti) and often comes out as the most
efficient. For a fairer comparison, it would be insightful to compare the Intel A770 to similarly
priced and specced offerings from AMD and Nvidia to see if the comparably low efficiency is
an architectural issue on Intel’s side or simply a shortcoming of lower-powered GPUs. Adding
more GPUs of older generations to the comparison could also be insightful to analyze generational
efficiency improvements and predict how this trend will continue (assuming GPU manufacturers
successfully maintain Dennard Scaling).
Comparing the power consumption measured by our hardware setup and the GPUs’ integrated
sensors showed significant differences, where, in most cases, the GPUs’ integrated sensors reported
too little power. There were also significant differences in how much the values were off, even
within the same generation of GPUs, so it could be insightful to compare this aspect across multiple
GPUs of the same model, although the results from the older GPU generation matched previous

75

6 Conclusion and Outlook

research. If the exact shortcomings of the integrated sensors were known, and preferably also their
cause, accurate power measurements would be possible with low overhead.
Nevertheless, despite this work analyzing multiple factors and drawing some conclusions, there is
still more than enough that still needs to be explained and a potentially nearly infinite number of
parameters that could influence power consumption and efficiency in ways yet to be analyzed and
discovered.

76

Bibliography

[AEE+20] Y. Arafa, A. ElWazir, A. ElKanishy, Y. Aly, A. Elsayed, A.-H. Badawy, G. Chennupati,
S. Eidenbenz, N. Santhi. “Verified instruction-level energy consumption measurement
for nvidia gpus”. In: Proceedings of the 17th ACM International Conference on
Computing Frontiers. 2020, pp. 60–70 (cit. on pp. 15, 18).

[ASP+12] Y. Abe, H. Sasaki, M. Peres, K. Inoue, K. Murakami, S. Kato. “Power and performance
analysis of {GPU-Accelerated} systems”. In: 2012 Workshop on Power-Aware
Computing and Systems (HotPower 12). 2012 (cit. on p. 19).

[BIM16] R. A. Bridges, N. Imam, T. M. Mintz. “Understanding GPU power: A survey of
profiling, modeling, and simulation methods”. In: ACM Computing Surveys (CSUR)
49.3 (2016), pp. 1–27 (cit. on p. 20).

[BZZ14] M. Burtscher, I. Zecena, Z. Zong. “Measuring GPU power with the K20 built-in
sensor”. In: Proceedings of Workshop on General Purpose Processing Using GPUs.
2014, pp. 28–36 (cit. on pp. 18, 39).

[DGY+74] R. Dennard, F. Gaensslen, H.-N. Yu, V. Rideout, E. Bassous, A. LeBlanc. “Design of
ion-implanted MOSFET’s with very small physical dimensions”. In: IEEE Journal
of Solid-State Circuits 9.5 (1974), pp. 256–268. doi: 10.1109/JSSC.1974.1050511
(cit. on p. 15).

[GBB+19] P. Gralka, M. Becher, M. Braun, F. Frieß, C. Müller, T. Rau, K. Schatz, C. Schulz,
M. Krone, G. Reina, T. Ertl. “MegaMol – a comprehensive prototyping framework
for visualizations”. In: The European Physical Journal Special Topics 227.14 (Mar.
2019), pp. 1817–1829. issn: 1951-6401. doi: 10.1140/epjst/e2019-800167-5. url:
https://doi.org/10.1140/epjst/e2019-800167-5 (cit. on p. 21).

[HBFE17] M. Heinemann, V. Bruder, S. Frey, T. Ertl. “Power efficiency of volume raycasting
on mobile devices”. In: Energy (J/60s) 20 (2017), p. 30 (cit. on p. 18).

[HK10] S. Hong, H. Kim. “An integrated GPU power and performance model”. In: Proceed-
ings of the 37th annual international symposium on Computer architecture. 2010,
pp. 280–289 (cit. on p. 19).

[JA14] B. Johnsson, T. Akenine-Möller. “Measuring per-frame energy consumption of
real-time graphics applications”. In: Journal of Computer Graphics Techniques 3.1
(2014) (cit. on pp. 15, 17).

[JGDA12] B. Johnsson, P. Ganestam, M. C. Doggett, T. Akenine-Möller. “Power Efficiency
for Software Algorithms Running on Graphics Processors.” In: High Performance
Graphics. 2012, pp. 67–75 (cit. on pp. 15, 17, 18).

77

https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1140/epjst/e2019-800167-5
https://doi.org/10.1140/epjst/e2019-800167-5

Bibliography

[KPK+21] V. Kandiah, S. Peverelle, M. Khairy, J. Pan, A. Manjunath, T. G. Rogers, T. M. Aamodt,
N. Hardavellas. “AccelWattch: A power modeling framework for modern GPUs”. In:
MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture.
2021, pp. 738–753 (cit. on pp. 15, 19).

[LHE+13] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M. Aamodt,
V. J. Reddi. “GPUWattch: Enabling energy optimizations in GPGPUs”. In: ACM
SIGARCH Computer Architecture News 41.3 (2013), pp. 487–498 (cit. on pp. 15, 19).

[Lua] Lua scripting language. https://www.lua.org/about.html. Accessed: 2023-10-15
(cit. on p. 21).

[Man18] K. Maniar. “Comparing shunt-and hall-based isolated current-sensing solutions in
HEV/EV”. In: (2018) (cit. on p. 23).

[MHWE22] C. Müller, M. Heinemann, D. Weiskopf, T. Ertl. “Power Overwhelming: Quanti-
fying the Energy Cost of Visualisation”. In: 2022 IEEE Evaluation and Beyond
- Methodological Approaches for Visualization (BELIV). 2022, pp. 38–46. doi:
10.1109/BELIV57783.2022.00009 (cit. on pp. 18, 19, 22, 25, 26, 29, 39, 71).

[mm] Megamol. https://github.com/UniStuttgart-VISUS/megamol (cit. on pp. 21, 25, 27).

[mm-f] Megamol. https://github.com/chelast55/megamol (cit. on pp. 27, 31).

[pov] Power Overwhelming. https://github.com/UniStuttgart-VISUS/power-overwhelmi
ng (cit. on p. 22).

[SADK19] Y. Sun, N. B. Agostini, S. Dong, D. Kaeli. “Summarizing CPU and GPU design
trends with product data”. In: arXiv preprint arXiv:1911.11313 (2019) (cit. on pp. 15,
17).

[ST21] E. Sicard, L. Trojman. Introducing 3-nm Nano-Sheet FET technology in Microwind.
Research report INSA Toulouse France on the Nano-Sheet 3NM CMOS technology
implemented in Microwind. Oct. 2021. url: https://hal.science/hal-03377556
(cit. on p. 15).

[TPGPU] TechPowerUp GPU Database. https://www.techpowerup.com/gpu-specs/. Accessed:
2023-10-10 (cit. on pp. 15, 25, 79, 80).

78

https://www.lua.org/about.html
https://doi.org/10.1109/BELIV57783.2022.00009
https://github.com/UniStuttgart-VISUS/megamol
https://github.com/chelast55/megamol
https://github.com/UniStuttgart-VISUS/power-overwhelming
https://github.com/UniStuttgart-VISUS/power-overwhelming
https://hal.science/hal-03377556
https://www.techpowerup.com/gpu-specs/

A Extended GPU Specs

Chip M. GPU Process Size Transistor Count Transistor Density Die Size TDP Min. PSU Release Date MSRP (launch) MSRP (2023) PCIe Version

AMD Radeon RX 6900XT 7 nm 26,800M 51.5M / mm² 520 mm² 300 W 700 W Oct 28th, 2020 999 USD 700 USD PCIe 4.0 x16
AMD Radeon RX 7900XT 5 nm 57,700M 109.1M / mm²* 529 mm² 300 W 700 W Nov 3rd, 2022 899 USD 899 USD PCIe 4.0 x16
AMD Radeon RX 7900XTX 5 nm 57,700M 109.1M / mm²* 529 mm² 355 W 750 W Nov 3rd, 2022 999 USD 999 USD PCIe 4.0 x16
Intel ARC A770 6 nm 21,700M 53.4M / mm² 406 mm² 225 W 550 W Oct 12th, 2022 350 USD 350 USD PCIe 4.0 x16

Nvidia GeForce RTX 3090 Ti 8 nm 28,300M 45.1M / mm² 628 mm² 450 W 850 W Jan 27th, 2022 1999 USD 1499 USD PCIe 4.0 x16
Nvidia GeForce RTX 4080 5 nm 45,900M 121.1M / mm² 379 mm² 320 W 700 W Sep 20th, 2022 1199 USD 1199 USD PCIe 4.0 x16
Nvidia GeForce RTX 4090 5 nm 76,300M 125.3M / mm² 609 mm² 450 W 850 W Sep 20th, 2022 1598 USD 1599 USD PCIe 4.0 x16

* Transistor density varies between GCD and MCD transistors

Table A.1: Specifications of the selected GPUs regarding various general information (source:
TechPowerUp GPU Database [TPGPU]).

79

A Extended GPU Specs

Chip M. GPU Architecture Variant Base Clock Boost Clock VRAM Clock VRAM Clock (effective)

AMD Radeon RX 6900XT RDNA 2.0 ASUS TUF Gaming Radeon™ RX 6900 XT TOP Edition 16GB GDDR6 1900 MHz 2310 MHz 2000 MHz 16 Gbps
AMD Radeon RX 7900XT RDNA 3.0 XFX Speedster MERC310 RX 7900 XT 1810 MHz 2560 MHz 2500 MHz 20 Gbps
AMD Radeon RX 7900XTX RDNA 3.0 ASUS TUF Gaming Radeon RX 7900 XTX OC Edition 24GB GDDR6 1895 MHz 2565 MHz 2500 MHz 20 Gbps
Intel ARC A770 Alchemist Intel Arc A770 Limited Edition 16GB 2100 MHz 2400 MHz 2187 MHz 17.5 Gbps

Nvidia GeForce RTX 3090 Ti Ampere ASUS TUF RTX 3090 Ti GAMING OC 1560 MHz 1920 MHz 1313 MHz 21 Gbps
Nvidia GeForce RTX 4080 Ada Lovelace ASUS TUF Gaming GeForce RTX 4080 16GB GDDR6X OC Edition 2205 MHz 2595 MHz 1400 MHz 22.4 Gbps
Nvidia GeForce RTX 4090 Ada Lovelace NVIDIA GeForce RTX 4090 2235 MHz 2520 MHz 1313 MHz 21 Gbps

Table A.2: Specifications of the selected GPUs regarding GPU variants and their variant-specific
clocks (source: TechPowerUp GPU Database [TPGPU]).

Chip M. GPU VRAM Capacity VRAM Type VRAM Bus Width VRAM Bandwidth Pixel Rate Texture Rate FP16 (half) FP32 (float) FP64 (double)

AMD Radeon RX 6900XT 16 GB GDDR6 256 bit 512 GB/s 295.7 GPixel/s 739.2 GTexel/s 47.31 TFLOPS (2:1) 23.65 TFLOPS 1.478 TFLOPS (1:16)
AMD Radeon RX 7900XT 20 GB GDDR6 320 bit 800 GB/s 491.5 GPixel/s 860.2 GTexel/s 110.1 TFLOPS (2:1) 55.05 TFLOPS 1.720 TFLOPS (1:32)
AMD Radeon RX 7900XTX 24 GB GDDR6 384 bit 960 GB/s 492.5 GPixel/s 985.0 GTexel/s 126.1 TFLOPS (2:1) 63.04 TFLOPS 1.970 TFLOPS (1:32)
Intel ARC A770 16 GB GDDR6 256 bit 559.9 GB/s 307.2 GPixel/s 614.4 GTexel/s 39.32 TFLOPS (2:1) 19.66 TFLOPS N/A

Nvidia GeForce RTX 3090 Ti 24 GB GDDR6X 384 bit 1008 GB/s 215.0 GPixel/s 645.1 GTexel/s 41.29 TFLOPS (1:1) 41.29 TFLOPS 645.1 GFLOPS (1:64)
Nvidia GeForce RTX 4080 16 GB GDDR6X 256 bit 716.8 GB/s 290.6 GPixel/s 788.9 GTexel/s 50.49 TFLOPS (1:1) 50.49 TFLOPS 788.9 GFLOPS (1:64)
Nvidia GeForce RTX 4090 24 GB GDDR6X 384 bit 1008 GB/s 443.5 GPixel/s 1,290 GTexel/s 82.58 TFLOPS (1:1) 82.58 TFLOPS 1.290 TFLOPS (1:64)

Table A.3: Specifications of the selected GPUs regarding VRAM and theoretical performance
(source: TechPowerUp GPU Database [TPGPU]).

Chip M. GPU Shader Units TMUs ROPs Compute Cores* Tensor Cores RT Cores L1 Cache L2 Cache Direct X OpenGL OpenCL Vulkan CUDA Shader Model

AMD Radeon RX 6900XT 5120 320 128 80 N/A 80 128 KB (/Array) 4MB** 12_2 4.6 2.1 1.3 N/A 6.7
AMD Radeon RX 7900XT 5376 223 192 84 N/A 84 256 KB (/Array) 6 MB*** 12_2 4.6 2.2 1.3 N/A 6.7
AMD Radeon RX 7900XTX 6144 384 192 96 N/A 96 256 KB (/Array) 6 MB**** 12_2 4.6 2.2 1.3 N/A 6.7
Intel ARC A770 4096 256 128 512 512 32 N/A 16 MB 12_2 4.6 3.0 1.3 N/A 6.6

Nvidia GeForce RTX 3090 Ti 10752 336 112 84 336 84 128 KB (/SM) 6 MB 12_2 4.6 3.0 1.3 8.6 6.7
Nvidia GeForce RTX 4080 9728 304 112 76 304 76 128 KB (/SM) 64 MB 12_2 4.6 3.0 1.3 8.9 6.7
Nvidia GeForce RTX 4090 16384 512 176 128 512 128 128 KB (/SM) 72 MB 12_2 4.6 3.0 1.3 8.9 6.7

*This includes Compute Units (AMD), Execution Units (Intel) and Streaming Multiprocessors (Nvidia)
**additionally 128 MB of L3 Cache and 32KB of L0 Cache (per WGP)
***additionally 80 MB of L3 Cache and 64KB of L0 Cache (per WGP)
****additionally 96 MB of L3 Cache and 64KB of L0 Cache (per WGP)

Table A.4: Specifications of the selected GPUs regarding their render configuration and feature
levels (source: TechPowerUp GPU Database [TPGPU]).

80

B Additional Scatterplots

GPU M. Power (W)
/ Mean FPS all GPU AMD 6900 XT AMD 7900 XT AMD 7900 XTX Intel A770 Nvidia 3090 Ti Nvidia 4080 Nvidia 4090

All
Cases

Spheres
(no

V-Sync)
by

Camera
Angle

Spheres
(no

V-Sync)
by

Render
Method

Spheres
(no

V-Sync)
by

Resolution

Spheres
(no

V-Sync)
by

Sphere
Radius

Spheres
(no

V-Sync)
by

Test
Data

Spheres
(no

V-Sync)
by

Thinning
Factor

Spheres
(simple,

expl,
no

V-Sync)
by

Camera
Angle

Spheres
(simple,

expl,
no

V-Sync)
by

Render
Method

81

B Additional Scatterplots

Spheres
(simple,

expl,
no

V-Sync)
by

Resolution

Spheres
(simple,

expl,
no

V-Sync)
by

Sphere
Radius

Spheres
(simple,

expl,
no

V-Sync)
by

Thinning
Factor

Spheres
(SSBO
static
data,
expl,
no

V-Sync)
by

Camera
Angle

Spheres
(SSBO
static
data,
expl,
no

V-Sync)
by

Resolution
Spheres
(SSBO
static
data,
expl,
no

V-Sync)
by

Sphere
Radius
Spheres
(SSBO
static
data,
expl,
no

V-Sync)
by

Thinning
Factor

Spheres
by

V-Sync

Test
Case

Volume
(chameleon,

no
V-Sync)

by
Camera
Angle

82

Volume
(chameleon,

no
V-Sync)

by
Render
Method

Volume
(chameleon,

no
V-Sync)

by
Resolution

Volume
(chameleon,

no
V-Sync)

by
Step
Ratio

Volume
(no

V-Sync)
by

Camera
Angle

Volume
(no

V-Sync)
by

Render
Method

Volume
(no

V-Sync)
by

Resolution

Volume
(no

V-Sync)
by

Step
Ratio

Volume
(no

V-Sync)
by

Test
Data

Volume
by

V-Sync

Table B.1: More scatterplots of Mean GPU Power and Mean FPS. Each point is one test case with
different parameters. Different test parameters are highlighted and test cases.

GPU Eff. (J/fr.)
/ Appr. Util. (%) all GPU AMD 6900 XT AMD 7900 XT AMD 7900 XTX Intel A770 Nvidia 3090 Ti Nvidia 4080 Nvidia 4090

All
Cases

83

B Additional Scatterplots

Spheres
(no

V-Sync)
by

Camera
Angle

Spheres
(no

V-Sync)
by

Render
Method

Spheres
(no

V-Sync)
by

Resolution

Spheres
(no

V-Sync)
by

Sphere
Radius

Spheres
(no

V-Sync)
by

Test
Data

Spheres
(no

V-Sync)
by

Thinning
Factor

Spheres
(simple,

ace,
no

V-Sync)
by

Camera
Angle

Spheres
(simple,

ace,
no

V-Sync)
by

Render
Method

Spheres
(simple,

ace,
no

V-Sync)
by

Resolution

Spheres
(simple,

ace,
no

V-Sync)
by

Sphere
Radius

Spheres
(simple,

ace,
no

V-Sync)
by

Thinning
Factor

84

Spheres
(SSBO
static
data,
expl,
no

V-Sync)
by

Camera
Angle

Spheres
(SSBO
static
data,
expl,
no

V-Sync)
by

Resolution
Spheres
(SSBO
static
data,
expl,
no

V-Sync)
by

Sphere
Radius
Spheres
(SSBO
static
data,
expl,
no

V-Sync)
by

Thinning
Factor

Spheres
by

V-Sync

Test
Case

Volume
(chameleon,

no
V-Sync)

by
Camera
Angle

Volume
(chameleon,

no
V-Sync)

by
Render
Method

Volume
(chameleon,

no
V-Sync)

by
Resolution

Volume
(chameleon,

no
V-Sync)

by
Step
Ratio

85

B Additional Scatterplots

Volume
(no

V-Sync)
by

Camera
Angle

Volume
(no

V-Sync)
by

Render
Method

Volume
(no

V-Sync)
by

Resolution

Volume
(no

V-Sync)
by

Step
Ratio

Volume
(no

V-Sync)
by

Test
Data

Volume
by

V-Sync

Table B.2: More scatterplots of GPU Efficiency (J per frame) and GPU Mean Power (normalized
to their respective TDP). Each point is one test case with different parameters. Different
test parameters are highlighted and test cases.

Sys. M. Power (W)
/ Mean FPS all GPU AMD 6900 XT AMD 7900 XT AMD 7900 XTX Intel A770 Nvidia 3090 Ti Nvidia 4080 Nvidia 4090

All
Cases

Spheres
(no

V-Sync)
by

Camera
Angle

Spheres
(no

V-Sync)
by

Render
Method

Spheres
(no

V-Sync)
by

Resolution

86

Spheres
(no

V-Sync)
by

Sphere
Radius

Spheres
(no

V-Sync)
by

Test
Data

Spheres
(no

V-Sync)
by

Thinning
Factor

Spheres
(simple,

expl,
no

V-Sync)
by

Camera
Angle

Spheres
(simple,

expl,
no

V-Sync)
by

Render
Method

Spheres
(simple,

expl,
no

V-Sync)
by

Resolution

Spheres
(simple,

expl,
no

V-Sync)
by

Sphere
Radius

Spheres
(simple,

expl,
no

V-Sync)
by

Thinning
Factor

Spheres
(SSBO
static
data,
expl,
no

V-Sync)
by

Camera
Angle

Spheres
(SSBO
static
data,
expl,
no

V-Sync)
by

Resolution

87

B Additional Scatterplots

Spheres
(SSBO
static
data,
expl,
no

V-Sync)
by

Sphere
Radius
Spheres
(SSBO
static
data,
expl,
no

V-Sync)
by

Thinning
Factor

Spheres
by

V-Sync

Test
Case

Volume
(chameleon,

no
V-Sync)

by
Camera
Angle

Volume
(chameleon,

no
V-Sync)

by
Render
Method

Volume
(chameleon,

no
V-Sync)

by
Resolution

Volume
(chameleon,

no
V-Sync)

by
Step
Ratio

Volume
(no

V-Sync)
by

Camera
Angle

Volume
(no

V-Sync)
by

Render
Method

Volume
(no

V-Sync)
by

Resolution

88

Volume
(no

V-Sync)
by

Step
Ratio

Volume
by

V-Sync

Table B.3: More scatterplots of Mean Power of the System (excluding GPU power) and Mean
FPS. Each point is one test case with different parameters. Different test parameters are
highlighted and test cases.

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Motivation
	1.2 Goals

	2 Related Work
	3 Background
	3.1 MegaMol
	3.1.1 LUA Scripting Interface

	3.2 Power Overwhelming Library
	3.3 Power Measurements with Tinkerforge Bricks and Bricklets

	4 Experiment
	4.1 Hardware and Software Setup
	4.1.1 Testbench
	4.1.2 Tinkerforge and Hardware Modifications

	4.2 Implementation of Powerlogging Service
	4.3 Software Environment
	4.4 Benchmark Process
	4.4.1 Test Parameters
	4.4.2 Operation
	4.4.3 Collected Data

	5 Results
	5.1 Spheres
	5.1.1 Performance
	5.1.2 Power Consumption
	5.1.3 Efficiency

	5.2 Volume
	5.2.1 Performance
	5.2.2 Power Consumption
	5.2.3 Efficiency

	5.3 General observations
	5.3.1 Power Consumption of the Rest of the System
	5.3.2 Manufacturer-Dependant TDP and Software Sensor Observations

	6 Conclusion and Outlook
	Bibliography
	A Extended GPU Specs
	B Additional Scatterplots

