s, Universitat Stuttgart
Fakultat Informatik

ATOMAS: A Transaction-oriented Open
Multi Agent-System. Final Report

Authors:

Dipl.-Inform. M. Stral3er
Dipl.-Inform. J. Baumann
Dipl.-Inform. F. Hohl

Dr. M. Schwehm

Prof. Dr. K. Rothermel

Institut fir Parallele und Verteilte
Hdchstleistungsrechner (IPVR)
Fakultat Informatik

Universitat Stuttgart
Breitwiesenstr. 20 - 22

D-70565 Stuttgart

ATOMAS: A Transaction-oriented
Open Multi Agent-System.
Final Report

M. StralRer, J. Baumann, F. Hohl,
M. Schwehm, K. Rothermel

Bericht 1998/11
Juni 1998

ATOMAS:

A Transaction-oriented Open Multi Agent-System

Final Report

A Project Funded By Tandem Inc., Cupertino

22.6.1998
Authors:
Prof. Dr. K. Rothermel Institute for Parallel and Distribute
Dr. M. Schwehm High Performance Systems
Dipl.- Inform. J. Baumann University of Stuttgart
Dipl.- Inform. F. Hohl o
Dipl.-Inform. M. StraRer Breitwiesenstralie 20-22

D-70565 Stuttgart

Contents 2

Contents
Section 1: Introduction 6
Section 2: Workplan and Project State 7
WP 2.1: Design and Implementation of Agent Migration 7
WP 2.2: Requirement Analysis Concerning Security 7
WP 2.3 Recoverable Agents 7
WP 2.4 Developed Concepts and Implementation 7
Orphan Detection for Mobile Agent Systems 8
Section 3: WP 2.2: Security 9
Abstract 9
Introduction 9
The Problem of Malicious Hosts 10
Existing Approaches 13
Blackbox Security: The Idea 14
Mobile Cryptography 15
Time Limited Blackbox Protection 16
What Is Changing If the Blackbox Is Time Limited? 16
No communication with a third party 16
Communication only with trusted servers 17
Communication with untrusted servers 17
Migration of the agent 19
How Can We Reach Time Limited Blackbox Protection? 19
Agent mess-up algorithms 20
Agent attributes that can be modified 20
Statements 20
Data 21
Abilities and characteristics of the attacker 21

Examples for mess-up algorithms 21

Contents

Variable Recomposition

Conversion of Control Flow Elements into Value-Dependent Jumps
Deposited Keys

Counter attacks

Variable Recomposition

Conversion of Control Flow Elements into Value-dependent Jumps
Deposited Keys

Problems with mess-up algorithms

How can a blackbox protected agent be created?

Recharging of protected agents

Which Other Attacks by Malicious Hosts Can Be Prevented Using
Blackbox Protection?

New Attacks: Sabotage and Blackbox Testing
What Blackbox Security Costs
Conclusions and Future Work

Bibliography

Section 4: WP 2.3: Recoverable Agents

A Fault-Tolerant Protocol for Providing the Exactly-Once Property of
Mobile Agents

Introduction

Agent Execution Model

A Simple Solution

Protocol Overview

Voting Protocol

Monitoring and Selection Protocol
Blocking Probability and Message Complexity
Optimizing the Stage Construction
Related Work

Conclusion and Future Work
Appendix

Concepts for a Reliable and Scalable Agent Server
Requirements
Architecture of the Agent System
Lifecycle of an Agent

22
22
23
23
23
24
24
24
25
25

26
26
27
27
28

30

30
30
31
32
33
36
42
43
45
49
51
52

55
55
55
56

Contents

Messages

Remote Method Invocation
Migration

Current State

Bibliography

Section 5: WP 2.4: Developed Concepts and Implementation

Mole 3.0: A Middleware for Java-Based Mobile Software Agents

Introduction

Mole System Overview
Lifecycle of an Agent
Agent Migration

Agent Communication and the Session Concept
Badges
Sessions

Agent Infrastructure
Resource Manager
Directory Service
Security Model

Graphical Agent Monitor

Implementational Issues
Agent Identifiers and Name Resolution
Thread Management Unit

Using Java-Enabled Web Browsers to Run Mobile Agents

Installation
System Requirements
Configuration Files
Starting a Sample Agent

Conclusions and Future Work

Section 6: WP 2.5: An Orphan Detection Protocol for Mobile Agents

Introduction

58
60

60

60

60

64

64
64

65
66
67

68
68
68

71
71
72
72

72

73
73
74

75

76
76

77
77

78

81
81

Contents

The Agent Model

The Shadow Protocol
The Idea
The Protocol
Mobile Shadows
Optimizing the Communication
Fault Tolerance

Related Work

Conclusion and Future Work

82

82
82
84
86

88
89

90
91

1 Introduction 6

1 Introduction

The electronic marketplace of the future will consist of a large number of services located on an
open, distributed and heterogeneous platform, which will be used by an even larger number of
clients. Mobile Agent Systems are considered to be a precondition for the evolution of such an
electronic market. They can provide a flexible infrastructure for this market, i.e. for the instal-
lation of new services by service agents as well as for the utilization of these services by client
agents.

Mobile Agent Systems basically consist of a number of locations and agents (see Figure 1). Lo-
cations are (logical) abstractions for (physical) hosts in a computer network. The network of lo-
cations serves as a unigue and homogeneous platform, while the underlying network of hosts
may be heterogeneous and widely distributed. Locations therefore have to guarantee independ-
ence from the underlying hard- and software. To make the Mobile Agent System an open plat-
form, the system furthermore has to guarantee security of hosts against malicious attacks.

(User) Agents are active, autonomous software objects, that reside (and are processed) on loca-
tions. They can communicate with other agents either locally inside one location or globally
with agents on other locations. Mobile Agents furthermore can migrate from one location to an-
other. Mechanisms for the communication between agents and for the migration of agents have
to be provided by the Mobile Agent System.

Service Agents are interfaces to services. Next to the normal communication mechanisms be-
tween agents of the mobile agent system, they have access to services provided by the underly-
ing host. Because of their machine dependent purpose, service agents are not mobile.

location 2

user agent service agent

¢

location 3

Figure 1.1.Mobile Agent System

The Atomas project aims in developing an open agent system as an enabling technology for the
evolution of a electronic marketplace. This report documents the achieved results of the second
year. Section 2 provides an overview over the objectives of the work packages for the first year
and their completion state. Sections 3-??? present the results in detail.

2 Workplan and Project State 7

2 Workplan and Project State

In the second year, the agent system architecure developed in the first year had to be extended
to support migration and to provide reliable agent execution. Furthermore, requirements con-
cerning security issues had to be investigated and the concepts developed during the project had
to be evaluated. Therefore, four work packages had been identified (Section 2.1 - Section 2.4).
In addition orphan detection for agents has been identified as a very important functionality to
be supported by mobile agent systems and thus an additional work package (Section 2.5) has
been added that concentrates on this aspect.

The following sections contain a short introduction into the work packages and the completion
state of these work packages.

2.1 WP 2.1: Design and Implementation of Agent Migration

In work package 1.2, a special form of migration, called weak migration, had already been de-
veloped during the first year. This form of migration has the advantage that it can be implement-
ed without changing the Java virtual machine and therefore allows to run the developed agent
system on each architecture for which a Java virtual machine is available. Our experience in us-
ing this form of migration in several student thesises proved the validity of this concept. There-
fore, no further work has been invested in this topic in the second year.

2.2 WP 2.2: Requirement Analysis Concerning Security

In the first year, driven by the importance of the security aspect of mobile agent systems, we
already started this work package. Section 7 of the last years report investigates the security as-
pects of Mobile Agent Systems and identifies the problem areas which has to be handled.

In Section 3 of this report, a approach to partially solve one of the most difficult aspects of se-
curity of mobile agents systems,the problem of malicious hosts, is presented. This problem con-
sists in the possibility of attacks against a mobile agent by the party that maintains an agent sys-
tem node, a host.

2.3 WP 2.3 Recoverable Agents

An important prerequisite for the use of mobile agents in industrial environments is to provide
reliable and fault tolerant execution of the agents. Section 4 describes two different approaches
to provide the required reliability. In the first approach, fault-tolerant execution of agents on un-
reliable systems is provided. Section 4.1 summarizes two published papers on this topic. In the
second approach, the reliability of agents is provided by using the TUXEDO platform on Tan-
dem Himalaya to build the agent system.

2.4 WP 2.4 Developed Concepts and Implementation

In this work package, the developed concepts are summarized and implemented within the mo-
bile agent system Mole 3.0. Next to the concepts for agent communication and agent migration

2 Workplan and Project State 8

designed and implemeted in the previous year, version 3.0 of Mole now provides an extensive
infrastructure for agents, including a resource manager, a directory service and a global naming
scheme for agents. In order to support the design of agents, a graphical agent monitor allows to
visualize the system behaviour as a whole or of a single agent in particular. Mole further pro-
vides a thread management unit to overcome some shortcomings of the Java virtual machine.
Mole provides a simple means for installation and configuration of the system.

2.5 Orphan Detection for Mobile Agent Systems

Orphan detection in an agent system is very important both from the user’s and from the system
side, because a running agent uses resources which are valuable to both user and system. The
user has to pay for resources (at least in principle), and the system has only a limited amount of
them. So if the user does not need the results of a distributed computation in progress anymore,
he wants to be able to terminate the computation to minimize the resulting cost. With an orphan
detection mechanism the user simply declares the agents to be terminated as orphans. Orphan
detection guarantees that the now useless agents can be determined by the system and ended,
thus freeing the resources they have bound. In this paper we will present a new protocol, the
shadow protocol, that allows both control of mobile agents and orphan detection.

3 WP 2.2: Security 9

3 WP 2.2: Security

This section summarizes a paper published in [Vig98].

3.1 Abstract

In this report, an approach to partially solve one of the most difficult aspects of security of mo-
bile agents systems is presented, the problem of malicious hosts. This problem consists in the
possibility of attacks against a mobile agent by the party that maintains an agent system node,
a host. The idea to solve this problem is to create a blackbox out of an original agent. A blackbox
is an agent that performs the same work as the original agent, but is of a different structure. This
difference allows to assume a certain agent protection time interval, during which it is impossi-
ble for an attacker to discover relevant data or to manipulate the execution of the agent. After
that time interval the agent and some associated data get invalid and the agent cannot migrate
or interact anymore, which prevents the exploitation of attacks after the protection interval.

3.2 Introduction

Mobile agent systems are expected to become a possible base platform for an electronic services
framework (see e.g. [Mob96]), especially in the area of Electronic Commerce. In this applica-
tion area, security is a crucial aspect since all parties involved require the confirmation that none
of the other parties will break the rules without being punished. This requirement is not always
fulfilled even in the traditional, non-electronic commerce. The anonymity of a worldwide com-
munication network and the ease of automatic exploitation of security gaps in electronic appli-
cations make it necessary to meet this demand in the area of commercial transactions done by
computers.

Mobile agents are entities that consist of code, data and control information (e.g. thread states).
Mobile agent systems are platforms that allow mobile agents to migrate between different nodes
of the agent system. From a more technical view, mobile agents can be compared to programs
that migrate to nodes autonomously, while nodes offer the run-time environment of these pro-
grams including the program interpreters.

As in Mobile Code systems (e.g. the Java applet system), one aspect of security is the protection
of the node, onost against possible attacks of the mobile agent. Therefore, some of the security
mechanisms developed in this field can also be applied to mobile agent systems. An example is
sandbox security, i.e. the need of authorizing security-sensitive commands like the deletion of

a file by a designated component. Other security mechanisms like authentication of single
agents instances do not have a counterpart in mobile code systems and have to be designed using
standard cryptographic techniques like encryption or digital signatures.

The reverse security issue, the protection of a mobile agent from possible attacks by a malicious
host, is new as there are barely other areas where this aspect is important. Nevertheless, the pro-
tection of mobile agents from malicious hosts is — at least from the viewpoint of the owner of
the agent — as important as the protection of the host from malicious agents. As we will see,
apart from organisational solutions, no technical approaches to solve this problem without spe-

3 WP 2.2: Security 10

cial secure hardware exist so far. The solubility of this problem which is callg@dotblem of
malicious hostss even estimated to be very low [FGS96].

This report presents an approach to solve most of the aspects of the problem of malicious hosts.
This approach will cost both execution time and communication bandwidth and will require
some time-critical restrictions, but gives the agent the possibility to do some security sensitive
work without the danger of an immediate exploitation of sensitive data by the host.

3.3 The Problem of Malicious Hosts

The fact that the runtime environment (the host) may attack the program (the agent), plays hard-
ly a role in existing computer systems. Normally, the party that maintains the hosts also employs
the program. But in the area of open mobile agents systems, an agent is operated in most cases
by another party, the agent owner. This environment leads to a problem, that is vital for the usage
of mobile agents in open systems: gineblem of malicious host& malicious host can be de-

fined in a general way as a party that is able execute an agent that belongs to another party and
that tries to attack that agent in some way. The question of what action is considered to be an
attack depends on the question which assurances an agent owner needs in order to use a mobile
agent. If we try to achieve a protection level that is comparable to the one of agents that run on
non-malicious, otrustedhosts, we can identify the following attacks:

spying out code

spying out data

spying out control flow

manipulation of code

manipulation of data

manipulation of control flow

incorrect execution of code

masquerading of the host

. denial of execution

10.spying out interaction with other agents

11.manipulation of interaction with other agents

12.returning wrong results of system calls issued by the agent

©OoNo>Oh~wWN P

To illustrate these attacks we will use a small purchase agent as an example. The purchase agent
contains a data and a code block. Entries in the data block may include:

Address home = “PDA, sweet PDA”
Money wallet =203$

float maximumprice =20.00$
good flowers =10 red roses
Address shoplist [] = empty list
int shoplistindex =0

float bestprice =20.00$
Address bestshop =empty

3 WP 2.2: Security 11

The central procedurgtartAgent , that is called by the host every time the agent arrives,
could look like this:
1 public void startAgent() {

2

3 if (shoplist == null) {

4 shoplist = getTrader().

5 getProvidersOf(“BuyFlowers”);
6 go(shoplist[1]);

7 break;

8 1}

9 if (shoplist[shoplistindex].

10 askprice(flowers) < bestprice) {
11 Dbestprice = shoplist[shoplistindex].
12 askprice(flowers);
13 bestshop = shoplist[shoplistindex];
14

}
15 if (shoplistindex >= (shoplist.length - 1)) {
16 /I remote buy
17 buy(bestshop,flowers,wallet);

18 /l go home and deliver wallet

19 go(home);

20 if (location.getAddress() = home) {
21 location.put(wallet);

22 }

23 }

24 go(shoplist[++shoplistindex]);

25 }}

Using this example, the attacks listed above can be illustrated.
1. Spying out code

The code of the agent has to be readable by the host. Although this requirement can be restricted
to the next instruction at a single point of time, this does not solve the problem since some hosts
see almost all of the code because they execute most of the commands. In our example the host
visited last executes nearly all the code. If the agent code is characteristic not only for a single,
but a whole class of agents, the whole code of the agent may be known even before execution
time. If an agent is generated out of standard building blocks (which is a good idea regarding
code migration costs and ease of agent construction), the detail specification is available for
building blocks like libraries or classes. Furthermore, these blocks can be explored by blackbox
tests. Knowing the code leads to knowledge about the execution strategy of the agent, knowl-
edge about the exact physical structure of code and data in the memory of the host and some-
times (by using data statements like initial variable assignments) to knowledge about parts of
the agent data.

2. Spying out data

The threat of a host reading the private data of an agent is very severe as it leaves no trace that
could be detected. This is not necessarily true for the consequences of this knowledge, but they
can occur a long time after the visit of the agent on the malicious host. This is a special problem
for data classes such as secret keys or electronic cash, where the simple knowledge of the data
results in loss of privacy or money. In our example, the money variable would be security sen-

3 WP 2.2: Security 12

sitive when it is represented in a way that the binary number of the “iscin® money and
therefore can be used as real world cash. But there are also other classes of data, which can be
used for an attack although they have not the nature of classes like e-cash. In our example, the
knowledge of the maximum price or the best price so far can be used by a malicious host to offer
flowers for a slightly lower amount than the competitors, although the regular price is much
lower.

3. Spying out control flow

As soon as the host knows the entire code of the agent and its data, it can determine the next
execution step at any time. Even if we could protect the used data somehow, it is rather difficult
to protect the information about the actual control flow. This is a problem, because together with
the knowledge of the code, a malicious host can deduce more information about the state of the
agent. In our example, we can recognize whether an offer is better or worse than the best offer
so far by simply watching the control flow, even if we could not read any data.

4. Manipulation of code

If the host is able to read the code and if it has access to the code memory, it can normally mod-
ify the program of an agent. It could exploit this either by altering the code permanently, thus
implanting a virus, worm or trojan horse. It could also temporarily alter the behaviour of the
agent on that particular host only. The advantage of the latter approach consists in the fact, that
the host to which the agent migrates cannot detect a manipulation of the code since it is not mod-
ified. Applied to our example, a malicious host could modify the code of the agent with the ef-
fect that it prefers the offer of a certain flower provider, regardless of the price.

5. Manipulation of data

If the host knows the physical location of the data in the memory and the semantics of the single
data elements, it can modify data as well. In our example, the host could cut down the shop list
after setting the offer of the local flower provider as the best offer.

6. Manipulation of control flow

Even if the host does not have access to the data of the agent, it can conduct the behaviour of
the agent by manipulating the control flow. In our example, the host could simply alter the flow

at the second or third if statement, forcing the agent to choose the offer of the shop preferred by
the host as the best.

7. Incorrect execution of code

Without changing the code or the flow of control, a host may also alter the way it executes the
code of an agent, resulting in the same effects as above.

8. Masquerade

It is the liability of a host that sends an agent to a receiver host to ensure the identity of that re-
ceiver. Still, a third party may intercept or copy an agent transfer and start the agent by masking
itself as the correct receiver host. A masquerade will probably be followed by other attacks like
read attacks.

9. Denial of execution
As the agent is executed by the host, i.e. passive, the host can simply not execute the agent. This

3 WP 2.2: Security 13

can be used as an attack e.g. in the case that a host knows about a time limited special offer of
another host. The host simply can prevent the detection of this offer by the agent by delaying its
execution until the offer expires.

10. Spying out interaction with other agents

The agent may buy the flowers remotely from a shop situated on another host. If the interaction
between agent and the remote flower shop is not protected, the host of the agent is able to watch
the buy interaction even in case the host cannot watch the execution of the agent. In our exam-
ple, the host could read ewallet and spend the stored money.

11. Manipulation of interaction with other agents

If the host can also manipulate the interaction of the agent it can act with the identity of the agent
or mask itself as the partner of the agent. In our example the host can e.g. redirect the buying
interaction to another shop, or it can interrupt the interaction e.g. to prevent spending the money
by the agent.

12. Returning wrong results of system calls issued by the agent

In line 20 of the example codéf({location.getAddress() = home) "), the agent
requests the name of the current location. Here the host could mask itself as the agent’s home
location by returning the corresponding address. The agent then thinks that it is at home and de-
livers the wallet to the host.

After stating the problem we will now have a look on possible solutions. First we will examine
some approaches that try to prevent single attacks. In the next section we will see an approach
that try to restore the autonomy of the agent, the so dalkefbox approach

3.4 Existing Approaches

As mentioned above, a malicious host is defined as a party that is able execute an agent that be-
longs to another party and that tries to attack that agent in some way. This also means that ma-
licious hosts are only a problem for agents that cannot trust a host in advance. In thistase
means, that the owner either knows or hopes that the operator will not attack. Therefore, some
approaches (see e.g. [FGS96]) exist that try to circumvent the problem of potentially malicious
hosts by not allowing agents to move to non-trusted hosts. There are also approaches that use a
trust approach to protect hosts from agents by not allowing to accept agents that have been on
non-trusted hosts before. The problem of these approaches are that trust in this context is abso-
lute (you do not hide anything from a trusted node), and that it is not always clear in advance
whether a host is trusted or not. This can severely reduce the number of hosts an agent might
migrate to. Even if an owner trusts a big company when it comes e.g. to accounting, it may not
want them to see its secret communication key. If an agent has to obtain prices for a flight, it
cannot trust the host of an air line or any other host that is maintained by a company related to
an air line and so forth.

Another “trust” approach is therganizationalsolution: the agent system is not open in the
sense that everybody can open a host, but only trustworthy parties can operate hosts. This is the
approach General Magic [GM96] used for its agent system application, e.g. Persbrthiink

was operated by AT&T [Mob96].

3 WP 2.2: Security 14

As trust is a relationship between agent and host which often cannot be determined in advance,
a commonly used notion of trusgputation,is used in another approach [RJ96]. This also is
problematic, as we have seen that trust depends on the task an agent has to fulfill. A reputation
approach, where betrayed agents can complain about malicious hosts, that in turn, lose reputa-
tion, can also result in a new security problem. Agents could attack hosts using a “character as-
sassination” attack, by simply complaining about being betrayed.

Another approach [Vig97] enables an agerddtect and prove modification attackorder to

allow the owner to use legal or organizational ways to get its damage refunded. But this ap-
proach cannot prevent other attacks, and it assumes an organizational or legal framework for an
agent system. In the first case, such an organizational framework may not exist in an open agent
system without a central organization. In the second case it seems to be not realistic to assume
such a legal framework on an international level, since also other laws required by new technol-
ogies, e.g. for data protection and privacy, are far from being homogeneous or even widespread.

Since the problem is the wrong behaviour of the executing environment, in contrary to a behav-
iour that meets the specification, another class of approaches (e.g. [Pal94]) uses specialized, at-
tack-proverhardwarethat can ensure its integrity. These approaches therefore require the usage
of this hardware in every host, which is currently a too restricting assumption.

As the presented approaches either do not protect from all the attacks, or do not allow open mo-
bile agent systems, a more adequate approach is needed.

3.5 Blackbox Security: The Idea

In this section we will discuss an approach that is able to protect an agent from most of the
attacks mentioned in the first section. The central idea of this approach is to generate an exe-
cutable agent from a given agent specification which cannot be attacked by read or manipula-
tion attacks. This agent is considered to be a “blackbox”, if the following applies:

Def: Blackbox Property

Input

* anagentis a blackbox if:

P
1. atany time :?pehr;-
2. code and data of the agent specification cannot be read

v

3. code and data of the agent specification cannot be modi- Output

fied Figure 3.1.Blackbox

If this definition can be applied to an agent, only input to and Property
output from the blackbox can be observed.

The “conversion mechanism” that generates an agent with the blackbox property uses configu-
ration parameters that allow to create different blackboxes out of the same specification (see
Figure 3.2). These parameters allow to prevent dictionary attacks. Dictionary attacks guess the
attributes of the blackbox by converting a number of agent specifications and compare the cre-

1. Personalink was a service that allowed users to send electronic mails that carried agents. It was based on the Telescript
mobile agent system.

3 WP 2.2: Security 15

ated blackboxes with the attacked one.

conversion
mechanism 4’.
agent specification executable agent
(blackbox)

parameters

Figure 3.2Blackbox approach

If an agent fulfills the blackbox property defined above, it is autonomous in the sense that if a

hosts executes that agent, the host cannot interfere with this execution in a directed way. If an
agent reaches that level of autonomy, it can be protected from other attacks. Masking of the
host or reading and manipulating the interaction of the agent with other parties can then be pre-
vented by using conventional mechanisms from the area of stationary distributed systems.

The problem now is to ensure the blackbox property. Currently, there is no known algorithm to
fully provide blackbox protection even if one other approach exists that seems to proceed in
this direction. It is called Mobile Cryptography.

3.6 Mobile Cryptography

This approach does not call itself a blackbox approach, but it can be classified in this category.
Sander and Tschudin describe in [ST98a] and [ST98b] a way t&nasgpted programas a

means to protect agents from malicious hosts. Encrypted programs are programs that consist of
operations that work on encrypted data. Agents are produced by converting a agent specifica-
tion into some executable code plus initial, encrypted data. Since the attacker cannot break the
encryption of the data, it cannot read or manipulate the original data. See [ST98a] for a
detailed description of the Mobile Cryptography approach.

The advantages of this approach over the one that will be presented in the next section are:
» the protection of the agent is easily provable

» the costs of the protection are probably small

* the protection is not time-limited

The current restrictions of the Mobile Cryptography approach are:

« random programs cannot be used as the input specification; currently only polynomial and
rational functions can be used for this purpose

* the interaction model of the agent suffers the restriction that cleartext data can be sent only
to trusted hosts

The extension of the approach to recursive functions and Turing machine program equivalent
mechanisms are subject to future work. As soon as the latter can be used as an input to the con-
version function, encrypted programs have also the blackbox property. However, even now
most of the aspects described in this article, which do not rely on the specific conversion mech-
anism, apply also for encrypted programs.

3 WP 2.2: Security 16

The second restriction (cleartext data can be sent only to trusted hosts) is not mentioned explic-
itly. Still, receivers can only read encrypted output of the agent when they know the decryption
function (which includes a potential key). If an attacker is able to decrypt the output of an pro-
tected agent, it is likely that it can also attack the agent itself.

3.7 Time Limited Blackbox Protection

As we have seen, the only known approach that tries to provide fully blackbox protection is
currently not applicable to every existing agent. In order to remove this restriction, we redefine
the blackbox property definition in a way which differs in the statement about how long the
blackbox property is valid. Now we do not assume that the protection holds forever, but only
for a limited, known minimal time interval known in advance. Therefore the definition is now:

Def: Time Limited Blackbox Property
e an agentis a blackbox if: Input

1. for a certain known time interval a n
2. code and data of the agent specification cannot be re ha
i-

3. code and data of the agent specification cannot be mod
f|ed OUtpUt
» attacks after the protection interval are possible _ _
4. but these attacks do not have effects Figure 3.3Time |.
blackbox property

To make the protection time interval explicit, @xpiration date
is attached to the blackbox.

Although this definition is weaker than the original blackbox property and results, as we will
see, in more complex mechanisms, it has one big advantage: there is a way to achieve this.
Before this way is sketched, we examine what changes if blackboxes are time-limited.

3.8 What Is Changing If the Blackbox Is Time Limited?

For achieving the requirement that attacks after the protection interval do not have effects, we
have to examine the circumstances under which time limitedness affects processing. To do
this, four different interaction scenarios are introduced. It will be argued that effects of an
attack can only occur when information of the agent is communicated to third parties.

3.8.1 No communication with a third party

In this scenario neither the agent nor the host communicates with a third party. Although this is
a merely academic setting, it demonstrates that the temporal aspect is of no importance in this

3 WP 2.2: Security 17

context. Even if the host successfully attack the agent, nothing results from these attacks.
Host

Figure 3.4No communication

3.8.2 Communication only with trusted servers

Here the agent communicates only wittrsted third party A party can be considered as
trusted if this party never attacks. These two partners can establish a secure communication
channel to prevent attacks by the host. Time limitedness of the agent plays a role in this sce-
nario since the communication partner has to know whether it can still trust the agent or not. If
the host would have been able to attack the agent, the attacker could use the agent to mask
itself as the agent. Since attacks can only take place after the protection interval, the trusted
server has to know the expiration date associated with the agent before it starts communica-
tion. This can be done using an extended key certificate (see Figure 3.6). The resulting over-
head is acceptable since secure communication requires already authentication of the partners

\ersion
Serial Number

Certification Alg.
Host Trusted

Server

Certification Par.
Name of CA
Validity of Certific.
Name of Agent
Expiration Date

Public Key of Agent

Signature of CA

Figure 3.5Communication only with trust- Figure 3.6 Extended key certificate
ed servers

3.8.3 Communication with untrusted servers

In this scenario the agent communicates with either an untrusted third party or with the host,
which is by definition untrusted (see Figure 3.7).

We have to distinguish two kinds of data that can be communicated: token and non-token data.

3 WP 2.2: Security 18

Host Untrusted
Server

Trusted
Server

Figure 3.7 Communication with untrusted
servers

Token dataare self-contained documents that depend on the identity of
the issuer. Therefore they often bear digital signatures. Examples

Data

tokens are electronic money coins, secret keys and capabilities.
problem with tokens is, that an attacker may use or trade them with

having obtained them regularly. Therefore, also tokens have to be
expiration dates to prevent the usage of tokens that could have bee
obtained by attacking the agent. Every party that receives a tokenRiyure 3.8 Token

another party thus has to check whether the expiration date of the tokenstructure

has passed or not. To do that, this party has to be able to get the correct

global time. This means that time limitedness always require synchronized clocks. Note that it
is not necessary for the party that sends a token to know the current time. Only the party that
issues a token and the party that receives a token have to have this information. The issuer
needs it to add the protection interval to it. The receiver needs the current time since if a party
accepts an outdated token, no other party will accept it in return. The drawback of the expira-
tion date is, that a token cannot be protected after the expiration date. Thus, tokens which need
a larger protection interval must not be transported by the agent. This can be the case for some
existing token systems that do not include expiration aspects or which cannot be extended by
this aspect. A good example for tokens that cannot be protected in agents are secret keys of an
agent owner since they are valid normally for a long time.

signature,

Non-token data is everything else. Examples for this category are simple values that do not
need to be protected and values that are security sensitive like the maximum price. The black-
box property guarantees that they cannot be read or modified before the expiration date has
passed. They cannot be used against the agent or its owner since they not depend on the iden-
tity of the issuer. Since non-token data cannot be used to interact with third parties, it does not
need to be protected against modification attacks after the protection interval. Although noth-
ing has to be done to protect non-token data, there is a restriction for these elements: an agent
must not transport non-token data, that can be used to attack the owner of the agent and whose
protection interval has to be larger than the lifetime of the agent. An example for such data
could be a variable describing the maximum price for a good that is valid for all purchasing
agents of a user ever used. Fortunately, data elements with a larger protection need do not
seem to occur very frequently in reality.

Note that this scenario does include both planned interaction of the agent with an untrusted
party or unplanned interaction by an attack of the host. Since an “unplanned interaction”, i.e. a
read attack by the host can only take place after the expiration date, all allowed tokens are also

3 WP 2.2: Security 19

outdated then and non-token data does not have to be protected any longer due to the men-
tioned restriction.

3.8.4 Migration of the agent

The last scenario comprises the remaining possibility to explicitly communicate agent infor-
mation: the migration of the whole agent to a new host. The problem here is, that the agent
may have been “overtaken” or tampered by the host after the expiration date. Although it is
unlikely that the code of the agent was manipulated by the host since it is rather easy to protect
constant code from manipulation attacks by using digital signature techniques, an attacker
could have been altered values that are not protected by the signature, i.e. mainly variable data.

Therefore, the receiving host has to ensure that the arriving agent is still valid, i.e. that its expi-
ration date has not passed already. As we have seen the agent will probably be protected by a
signature, and all we have to do is to either include the expiration date into the constant part of
the agent allowing the signature to also protect this date or to use the extended key certificates
we introduced above. The receiver then can simply check the signature of the agent and the
validity of the agent by checking the expiration date.

Host
'y Hé)st

Figure 3.9 Agent migration

As we have seen, it is possible to compensate most of the effects that occur when agents are
subject of time-limitedness. The next question to answer is how such a protection can be
reached.

3.9 How Can We Reach Time Limited Blackbox Protection?

The lack of approaches that protect agents from host attacks is based on the observation that a
host is always able to read every bit of the memory and the content of every variable and to
know the memory location of every line of code. Therefore, some authors conclude, it is
impossible to prevent e.g. read attacks.

While this observation is always true for the “semantics—— :
in the small”, i.e. the meaning of these elements for tf@e] = bI3] - bESk

next execution step, it is not necessarily true for 71 = b[2] * 256;
“semantics in the large”, i.e. the meaning of these (8] =w[7]+w[6];
ments to the overall semantics of the application. [Aw5] = w[8] - b[4] * 256;
example for this difference is the code in Figure 3]1)0] = w[5] DIV 256;
where you can of course put the finger on every staig1) = w[s] MOD 256:

ment and every variable, but to explain the meaning of a

statement or a variable in relation to the overall reduigure 3.10A code fragment
you have to think about it (the code fragment computes

the difference of two two-bytes-numbers).

3 WP 2.2: Security 20

This effect results from the fact, that this overall semantics is not expressed by code, but by the
“mental model” of the programmer or the reader of a program. To attack an agent, the human
attacker has to have such a mental model of the code in order to find certain points in the code
or values that are interesting for the attacker.

The central idea now is not to allow an attacker to build such a mental model of the agent in
advance, i.e. before the agent arrives, and to make the process of building this model a time-
consuming task. The first goal is reached by creating a new “form” of the agent dynamically,

in an unpredictable, manner at the start of the protection interval. The second goal is reached
by using conversion algorithms that produce a new form tlmairdsto analyse. In this context

hard means that the analysis should take as much as time as possible. These conversion algo-
rithms are therefore callabfuscatingor mess-up algorithmsNote that the approach does not
assume that it is impossible for the attacker to analyse the agent, the analysis simply takes
time. The assumption is that a lower bound of this time can be determined and that this time
interval is large enough for most agent applications on one host.

3.9.1 Agent mess-up algorithms

The task of a mess-up algorithm is to generate a new agent out of an original agent, which dif-
fers in code and data representation but yields the same results. This means, that the specifica-
tion of the agent is given as an executable, unprotected agent. Agents consists of executable
code and some data. To prevent dictionary attacks (see Section 2), it has to use a random
parameter that allows the algorithm to create different new agents out of a single original one
(see Figure 3.11).

— mess-up
=+ wem QD

original agent blackboxed agent

random parameters

Figure 3.11Time-limited blackbox approach

To achieve the requirement that a blackbox protected agent that is hard to analyse, the designer
of a mess-up algorithm has to take into account two key aspects: the attributes of an agent that
can be modified and the abilities and characteristics of the attacker

3.9.2 Agent attributes that can be modified

Statements

A statement has a type and a location in a program (it also consists of data, but this aspect is
viewed below). Theype of a statemertan be hidden until the statement is executed by
dynamically creating it at runtime. This is possible by using e.g. self-modifiable code. The
location of a statememtan also be hidden, either implicitly by using dynamic code creation or
explicitly by hiding a certain statement into other statements.

3 WP 2.2: Security 21

Data

Data, i.e. variables and constants, consist of a type, a value and a locatiojpeTbkea data
elementcan be hidden until the data is needed. This is even normal for languages that use
dynamic typing as e.g. Smalltalk. Thalue of a data elememian be hidden. One way to

achieve this is to replace element accesses by accesses on subelements and to translate opera-
tions on the data elements by operations on the subelements. This results in an execution where
the value of an data element never occurs as a whole. Finallpctt®on of a data element

can be hidden either statically, e.g. by splitting up the element and distributing the parts, or
dynamically by e.g. allowing the element to move around in the data area.

3.9.3 Abilities and characteristics of the attacker

To model the properties of the attacker, we have to distinguish two cases.

In the first case, the attacker does not know the original version of the agent in advance. There-
fore, a human has to analyse the blackbox to build up a mental model. Although it can use the
aid of computerized tools to do this, humans tend to be far too slow compared to the execution
speed of computer. This slowness cannot be reduced fundamentally since it is not possible to
speed up humans. Therefore, the next case seems to be much more relevant.

In the second case, the attacker does know the exact specification of the agent in advance. This
case is probably the common one if most agents in an agent system are instances of a set of
standard agents. If it is possible to identify the type of an agent, i.e. the original agent, then the
exact specification is accessible. If now an attacker knows the exact specification, it can auto-
mate the attack by generating a program that tries to compute only a few or even a single
attribute of the agent, e.g. the current location of a certain variable in the blackboxed agent. In
this case the attack can be accelerated by using faster computers or by employing several com-
puters in parallel.

In both cases the generated code has to be constructed in a way that standard program analys-
ing techniques such as program slicing, data flow analysis or program abstraction, cannot be
used to analyse the agent before the expiration date has passed. Good mess-up algorithms do
not allow the complete analysis to be done statically, but also require to run the agent at least
partially.

Let us now have a look at three example algorithms.

3.9.4 Examples for mess-up algorithms

The most important aspects are the structure and attributes of the used mess-up algorithms, as
they decide about the protection strength of the security mechanism. Therefore, three mess-up
algorithms will be sketched here.

3 WP 2.2: Security

Variable Recomposition

22

This algorithm takes the set of program variab Eyure 3.12a0riginal variable access

cuts each variable content into segments and g:rez-
13 O
Dle

ates new variables that contain a recompositio
the original segments. The original varia

uy(bestshop,flowers,wallet)
o(home)

accesses in the program code are then adapigdre 3.12bVariable recomposition
correspondingly. In Figure 3.12a, you can see| thsstshop flowers wallet

original variable access, Figure 3.12b defing

]

scheme for recomposing two new variables yR3
and v19 from the contents of three original vafi-
ables.

1

v23 v19

D

The access code for the new variables as dE;@ure 3 12cConversion functions

played in Figure 3.12d can therefore be crea
automatically, given the recomposition scheme,

using conversion functions (see Figure 3.12c) tiwablic Money c3(Bitstring b)
create the original values from the new variablgblic Address c34(Bitstring b)

lic Address c7(Bitstring b)
lic Good c4(Bitstring b)

As a result, now there is no direct relationshifigure 3.12dNew variable access

between variables and processing model elem

representation is rather complicated. 6

. . . ag]tsbuy(ﬂ(v23[0]+v19[4]+v23[3])
like the maximum price from our example. The cA(v19[0]+v19[3]+v23[1]),

variable names are now meaningless and the data c3(v23[2]+v19[1]+v23[4]))

go(c34(v21[4]+v19[2]+v21[2]))

Conversion of Control Flow Elements into Value-Dependent Jumps

The next presented mechanismc®aversion of com-
pile-time control flow elements into run-time data o
pendent jumpsControl flow elements likef and

while statements allow the programmer to imag

Figure 3.13a0riginal code
fab) <o) {

b =s(d(e) +);
ne

the potential control flow even at compile time
these statements make control flow explicit. If we c(
vert these elements into a form that depends on
content of variables, the control flow cannot be det
mined as easily as before. This dependence ca
achieved by the usage of jumps that are bound to
lable contents, e.g. switch-statements. The effect
even be strengthened by using complex variable
pressions instead of using simple variables.

dsgure 3.13bConverted Code

)n:' 0

€rif (z=0) then t1 = a(b); z& continue;
N lXgz=1) then t2 = t1 < c; zZ continue;
vaif-(t2) then t3 = d(e); z3; continue;
cah(z=3) then t4 = t3 + f; z#; continue;
e>€": (z=4) then b = t4; z5; continue;
if (z=5) then break;

LOOP

3 WP 2.2: Security 23

Deposited Keys

If the whole protection information is included in th
agent, an attacker is able to break that protec
sooner or later. If we can encrypt parts of the agent ef state
identify other information, that is both small and &:
important for the execution of the agent, we gan A kev I
. . . gent Yi
“externalize” this information on another, trusted
server. The idea is to let the agent request these infzjicious trusted
mation parts, or keys, from the trusted server by indi- host host
cating the state of the agent. An example for one type
of keys can be found in Figure 3.13b where the numbers printed in bold denote data that “inter-
connects” the statements. If these numbers are not present in the code, the attacker is not able
to analyse the agent and, therefore, to attack the agent before runtime. The trusted host will
deliver them to the agent when the right state is indicated.

;E)g]ure 3.14Deposited keys

There are, of course, more and better algorithms, but the above examples demonstrate some of

the principles they have to follow:

* the algorithm needs to be parametrizable with a very large parameter space in order to avoid
dictionary attacks

e it must not be possible to break the protection without running the code

* it may be useful to take out parts of agent and to put these parts on trusted nodes

Each single of these algorithms may be not that strong if they would be used alone. It can be
expected that aombinationof these algorithms is much stronger than the sum of the single
strengths. Therefore, our approach uses a “chain” of mess-up algorithms. To illustrate the
effects of the mess-up algorithms, we want now to sketch possible algorithms that try to break
the protection generated by the example algorithms.

3.9.5 Counter attacks

Having the three example mess-up algorithms in mind, we want now have a look at possible
counter attacksCounter attacks are algorithms that try to break the protection, i.e. mess-up
algorithms.

Variable Recomposition

There are at least two possible approaches: we can try to guess the variable layout by analysing
the access to a byte statistically over the operations known to access certain original variables.
The other approach tries to read the original variables simply by reading the parameters of the
calls of the known procedures. This means in our example, that the attacker sees the values of
bestshop , flowers andwallet as soon abuy is called as these are the contents of the
parameters of this procedure.

Both attacks assume knowledge about the original procedures. Fortunately, this attack is not
that important as either the known procedure is a system call of the host or a call of an “inter-
nal” procedure. In the first case, the parameters do not have to be protected as they are by defi-
nition not secret (they are delivered to the host). In the second case we can dissolve the internal
procedures into code of the main procedure, so that they are not visible any more.

3 WP 2.2: Security 24

Conversion of Control Flow Elements into Value-dependent Jumps

The presented version of this algorithm is rather easy to break as it can be analysed without
having to run the code. All we have to do is to create the original statement out of the if-state-
ments. The computational complexity of this is roughly proportional to the number of if-state-
ments, which corresponds at most to the number of single language expression nodes of the
syntax tree. We can prevent such an approach by replacing the constant numbers in the if-con-
ditions by more complex expressions and by adding another algorithm that adds more dynam-
ics to the computation of the conditions, e.g. the Deposited Keys mechanism.

Deposited Keys

We can attack this algorithm by creating every possible state of the agent and by requesting all
the keys that are associated to these states. We then have all the runtime informations of the
agent and can try to analyse it. The question is, how the attacker gains all the states of an agent.
If the states can be associated to the execution of the agent (e.g. by computing a key that has to
be delivered with the request), the host has to execute the agent. We then can control the attack
by the trusted host since it can notice the execution of the agent.

3.9.6 Problems with mess-up algorithms

The first main problem is that the protection intervals have to be of a “useful” length. Useful in
this context means the question of how long a protection interval has to be in order to allow the
agent to do something useful. The answer depends of course on the task the agent has to fulfill
on a host, but with an interval that allows two “long-range” migrations, some execution time
and enough time for the protection overhead, most applications should be in range. If the pro-
tection interval is longer, the agent can migrate to more hosts or compute a longer time on
every host. If the protection interval is much smaller, the possible application areas of the pro-
tected agent is severely restricted.

The second and even bigger problem is the question of how to determine these protection
intervals from the used mess-up mechanism. Here, the usage of cryptography to protect data
has a valuable advantage: it is possible to express the protection strength of the crypto algo-
rithm in terms of the needed computational power. This is possible because there are known
algorithms that are able to break the encryption. Sometimes (as with RSA), these algorithms
are not necessarily the best possible mechanisms, but the best known, even after some decades
of research. More often, the complexity class of the problem that breaks the encryption is
known to be too hard to be computed, even in case of technological progress if the key is long
enough.

Compared to cryptography, blackbox protection has two advantages:

» there is no receiver that has to apply the reverse encryption process

» theidentity (and - in limits - the specification) and the order of the used algorithms does not
have to be known in advance

We could now try to apply the same mechanism of determining the protection strength of
crypto algorithms to mess-up algorithms. Unfortunately, this approach seems to be very diffi-
cult. The reason for that is the current lack of a formal model of the agent mess-up and the
associated counter algorithms. While in traditional cryptography the problem of breaking an

3 WP 2.2: Security 25

encryption can be tracked down to a well-defined mathematical problem, the possible attacks
against a blackbox protected agent are numerous, and different in nature. Future research has
to develop a model that expresses e.g. the hiding of the location of a variable on several places
and that computes the complexity to find that location. Fortunately we do not have to formalize
the process of building up a mental model of a program by a human as we have excluded this
possibility due to the lack of attack performance of humans in Section 8.3.

However, the current lack of a formal model is not an immanent problem of the approach. It is
an open problem that has to be solved in order to both estimate the strength of the protection
and to compute the current protection interval for a specific agent. This computation will then
take into account the average computational need for solving the problem of breaking the
blackbox protection and estimate how much computational power an attacker will stake. Since
the computation will be done before an agent migrates the first time, the estimation can be
adjusted according to the existing technology.

3.9.7 How can a blackbox protected agent be created?

To create a protected agent, token type data has to be converted into tokens that bear an expira-
tion date and that are signed digitally. In the next step all security sensitive library calls (like
calls of an encryption function) have to be replaced by the corresponding library code. After-
wards the code mess-up algorithms are applied to the code and the data of the agent. Finally,
the agent has to be signed digitally after receiving the agent expiration date. Now the agent is
ready to migrate.

3.9.8 Recharging of protected agents

If the “maximum distance” of the agent is determined by its expiration date, is it possible to
“recharge” the agent in order to allow it to migrate further? Due to the nature of the code mess-
up algorithms, any host could convert the agent to a new form without having to know its inter-
nal structure or the contents of the original data. Therefore, we could assign this task to any
host that does not cooperate with any malicious host the agent has visited or will visit. Unfor-
tunately, the expiration dates of the agent and of the transported tokens are a problem as they
cannot be modified that easily. The first problem is that the agent has to be assigned with a new
expiration date and signed digitally by a party that the agent (or its owner) trusts. This also
incurs, that the agent gets a new identity, as it differs at least in the expiration date. The second
problem is, that the tokens have to be replaced by new ones. If you think of electronic money
coins, you have to change them into new coins with a new expiration date, while tokens that
have no real value like keys, can be easily created. All of this can only be done by a trusted
host. If the agent has checked the identity of the trusted host, it delivers the tokens that have to
be replaced and gets the new ones in return. An alternative to recharging an agent is to extract
the state of a nearly expired agent and to “inject” it into a new agent “hull”, thus creating a new
agent that contains the state of the old one. The advantage of this alternative is that it prevents
the delay that would be needed to mess-up the old agent after its arrival.

Now we have seen how to achieve time limited blackbox protection. But what can we do to
prevent other attacks by the host?

3 WP 2.2: Security 26

3.10 Which Other Attacks by Malicious Hosts Can Be Prevented Using
Blackbox Protection?

Even if an agent is protected by time-limited blackbox security, there are still some possible

attacks:

e amalicious host can try to mask itself as another, perhaps trusted host

* amalicious can try to read and manipulate the interaction of a hosted agent with a third par-
ty and

e amalicious can return wrong results when the agent is calling system library procedures

While there is no known protection from the latter attack apart from verifying the answer by
another third party (but then using library code seems to be rather redundant), the first two
attacks can be prevented.

This is possible since a blackbox protected agent is autonomous again, i.e. that if a hosts exe-
cutes that agent, the host cannot interfere in this execution. This allows us to use the same
mechanisms to prevent the mentioned attacks as in distributed systems where the parties reside
on different, and therefore autonomous, nodes.

We can prevent masking of hosts by using existing authentication methods using symmetric or
asymmetric encryption schemes. We can even strip down these protocols a little bit since no
third party can read the local communication between the agent and the host.

We can also prevent attacks against the interaction of an agent with another party by using
secure channels between the interaction partners. These channels are obtained by exchanging
session keys between the partners and by encrypting the traffic between them. Since in this
scenario, the malicious host can be modeled as an attacker on a connection between two auton-
omous nodes, the protocols do not have to be modified.

3.11 New Attacks: Sabotage and Blackbox Testing

If there is an agent protection scheme like the one described in this report, one can imagine
attacks that rely on the characteristics of this scheme. One attatboigge or the action of
destroying parts of the agent without being detected. As an agent contains data that might
change during execution, the attacker can simply modify single bits of the data area without
knowing about the effects to the agent. Fortunately, this attack is very similar to the problem of
data that is sent over an insecure network. Therefore, similar error detection or even correction
mechanisms like CRC, computed by the agent itself, can be used as long as the attacker cannot
detect the detail structure of the mechanism. It is easy to circumvent a CRC algorithm if the
exact mechanism is known and if it the borders of the protected data elements can be seen.

Another attack is thelackbox testlts aim is to determine characteristics of the inside of the
“black box” by executing the box with different input parameters and by watching the effects.
The recorded reactions can be formal results like output values or characteristic “activity pat-
terns”. In our example, the attacker could execute the agent until it tries to buy the flowers,
starting over and over with the initial agent. The only value that is changed over the tests is the
price for the flowers. When the agent finally wants to buy, the attacker knows the price that is
both the lowest so far and that is below the maximum price. Even if the agent would not buy

3 WP 2.2: Security 27

the flowers immediately (it might want to ask at least three different providers), the attacker
can watch whether the data of the agent changes. If this is the case, it is very likely, that this
agent has memorized a better price. If it comes to countermeasures, two goals have to be
reached: first, the parallel execution of the same agent has to be suppressed, e.g. by using a
trusted third party that is informed by the agent about its execution. Second, the very fast exe-
cution of an agent has to be prevented, e.g. by using a similar interaction with a trusted host.
Finally, activity patterns can be covered up by inserting and executing dummy code.

3.12 What Blackbox Security Costs

Protecting agents using blackbox security is not for free. Since the costs mainly depend on the
class of an agent, it has to be decided per class whether this kind of protection is appropriate or
whether the agent should operate immobile from a trusted host via remote communication. For
calculating the costs, we can distinguish four classes of costs that result from blackbox secu-
rity:

costs at creation time

These are the costs for converting the original agent into the new form. These costs are not
important for the execution time of the agent, only for the “delay” of starting the execution. If
we get an agent with low execution time overhead, we can accept higher creation time costs.

costs at transmission time

This is the size overhead of the agent, since the transmission time is determined by the size.
The main problem here is the fact, that agents have to transport all library code that is security
sensitive instead of using the corresponding system library at the target host. An example are
the J/Crypto libraries from Baltimore Technologies that implement cryptographic functions
like DES, RSA, SHA-1 and MD-5 and which consist of 200 KB of Java bytecode.

costs at execution time

The execution time overhead results on the one hand from the computations that are intro-
duced by the mess-up algorithms and on the other hand from the execution time of the trans-
ported libraries if this time is longer than the execution time of a system library call. There are
also costs if communication with remote trusted nodes is needed (e.g. in the case of Deposited
Keys).

“costs” by not using efficiency enhancing mechanisms

Due to the blackbox mechanism, it is possible, that mechanisms enhancing efficiency cannot
be used by protected agents. One example is the fact, that blackbox agents are not modular and
hence cannot use code caching mechanisms as the code is different for every agent even if pro-
viding exactly the same functionality.

3.13 Conclusions and Future Work

Blackbox security is a new approach to solve the problem of malicious hosts, a problem in the
area of mobile agent security, that has been rated as not solvable by software means. The pre-

3 WP 2.2: Security 28

sented approach does not prevent every possible attack. It is still possible for the host to deny
the execution and to return wrong system call results to the agent. It is further still possible to
read and to manipulate data and code, but as the attacker cannot determine the role of these ele-
ments for the application, the attack results are random. The approach is able to guarantee a
certain protection time interval. Therefore, the agent and its transported data get invalid after
this “expiration date”. For the purpose of comparing the expiration dates with the current time,
synchronized clocks are necessary. As the strength of blackbox security depends on algorithms
that “mess-up” code and data of the agent, these algorithms have to be constructed in a way
that can guarantee the protection time interval, which also have to be of a useful length. As we
have seen, this kind of security is not for free, but costs both in terms of execution and trans-
mission speed. We expect therefore, that blackbox security will be applied only to agents that
transport money-like values or security sensitive data such as secret keys.

We will implement a framework for blackbox security for our own Java-based agent system,
Mole [Mole]. At the moment, no overall implementation of the approach exists as it is a com-
plex framework that needs a lot of modifications in an agent system. Currently, we are finish-
ing the implementation of a first combination of code mess-up algorithms [R6h97], and we are
starting to develop a formal model of the mess-up effects to be able to compute their protection
strength. To prevent blackbox testing attacks, we are currently working on an extension of the
blackbox mechanism, which will also allow agents to authenticate their hosts.

3.14 Bibliography

[FGS96] Farmer, William; Guttmann, Joshua; Swarup, Vipin: Security for Mobile Agents:
Authentication and State Appraisal, in: Proceedings of the European Symposium on
Research in Computer Security (ESORICS), pp. 118-130, Springer LNCS 1146, 1996

[GM96] General Magic: The Telescript Reference Manual. 1996. http://www.genmagic.com/
Telescript/Documentation/TRM/

[Hoh97] Hohl, Fritz: An approach to solve the problem of malicious hosts. Universitat Stuttgart,
Fakultat Informatik, Fakultatsbericht Nr. 1997/03, 1997. http://www.informatik.uni-
stuttgart.de/cgi-bin/ncstrl_rep_view.pl?/inf/ftp/pub/library/ncstrl.ustuttgart_fi/TR-1997-
03/TR-1997-03.bib

[Vig98] Vigna, Giovanni (Ed.): Mobile Agents and Security, Springer-Verlag, to appear 1998

[R6h97] Rohrle, Klaus: Konzeption, Implementierung und Analyse von
Verwurfelungsmechanismen fur Quellcode, Diploma Thesis Nr. 1541, Faculty of
Informatics, University of Stuttgart, Germany, 1997

[Mob96] Mobilis: Exploring Telescript - mobilis Reader Interview: General Magic’'s Jim
White. Mobilis March 1996. http://www. volksware.com/mobilis/march.96/interv1.htm

[Mole] Mole project page. http://www.informatik.uni-stuttgart.de/ipvr/vs/projekte/mole.html

[Pal94] Palmer, E: An Introduction to Citadel - a secure crypto coprocessor for workstations,
in: Proceedings of the IFIP SEC’94 Conference, 1994

[RJ96] Rasmusson, Lars; Jansson, Sverker: Simulated Social Control for Secure Internet
Commerce, in: New Security Paradigms ‘96, ACM Press, 1996

3 WP 2.2: Security 29

[ST97a] Sander, Tomas: Security! or “How to Avoid to Breath Life in Frankensteins Monster”.
Slides of a talk at the ICSI Inhouse Workshop on Auto Mobile Code, “Technology and
Applications of Auto Mobile Code (AMC)”, September 1997. http://
www.icsi.berkeley.edu/~tschudin/amc/workshop97/security.html

[ST98a] Sander,Tomas; Tschudin,Christian: Protecting Mobile Agents Against Malicious
Hosts, in: Vigna, Giovanni (Ed.): Mobile Agents and Security, Springer-Verlag,
1998. http://lwww.icsi. berkeley.edu/~sander/publications/MA-protect.ps

[ST97b] Sander,Tomas; Tschudin,Christian: Towards Mobile Cryptography. Technical Report
97-049, International Computer Science Institute, Berkeley. 1997. http://
www.icsi.berkeley.edu/~sander/publications/tr-97-049.ps

[ST98b] Sander,Tomas; Tschudin,Christian: On Sofware Protection via Function Hiding.
Submitted to the 2nd International Workshop on Information Hiding, Dec 1998. http://
www.icsi.berkeley.edu/~sander/publications/hiding.ps

[Vig97] Vigna, Giovanni: Protecting Mobile Agents through Tracing, in: Proceedings of the
Third ECOOP Workshop on Operating System support for Mobile Object Systems, 1997.
To appear.

4 WP 2.3: Recoverable Agents 30

4 WP 2.3: Recoverable Agents

An important prerequisite for the use of mobile agents in industrial environments is to provide
reliable and fault tolerant execution of the agents. This chapter describes two different ap-
proaches to provide the required reliability. In the first approach, fault-tolerant execution of
agents on unreliable systems is provided. Section 4.1 summarizes two published papers
[RoSt98][StRoMa98] on this topic. In the second approach, the reliability of agents is provided
by using the TUXEDO platform on Tandem Himalaya to build the agent system.

4.1 A Fault-Tolerant Protocol for Providing the Exactly-Once Property of
Mobile Agents

4.1.1 Introduction

Over the last few years, the concept of mobile agents has drawn a lot of attention in both
academia and industry. Today many prototypes of mobile agent systems exist, most of them
based on the Java programming language. Moreover, various efforts to standardize mobile agent
technology are already underway (e.g., OMG MASIF, CSELT FIPA). However, despite of all
these activities, only few “real” applications based on mobile agents exist today. One reason for
that might be that current mobile agent platforms are in a rather early stage. Application-critical
functions, such as security mechanisms, are often incomplete or missing at all. Moreover, only
little work has been done so far in studying the problem of integrating agent technology with
legacy systems, such as TP-Monitors and transactional resource managers. In this paper, we will
show how agent technology can be integrated with transactional technology to improve fault-
tolerance.

Mobile agents are autonomous objects that are able to migrate from node to node in a computer
network. When an agent decides to migrate to another node, the agent’s code, data and execution
staté is captured and transferred to the next node, where it is initiated after arrival. Agent exe-
cution proceeds istages[Sch97], where the operations of a stage are performed at a single
node. Whenever an agent moves to a new node, this ends the current stage and begins a new one.
The assignment of stages to nodes can be defined by means of a user-defined itinerary
[LO97][GM] before the agent is launched, or on the fly by the agent logic taking into account

the current system state [PS97][SBH96].

The use of mobile agents has been proposed for many application areas, including electronic
commerce, systems management, or active messaging. In electronic commerce scenarios, for
instance, agents autonomously go shopping on a user’s behalf, do the reservations needed for a
business trip, or monitor the stock market and trigger user-defined operations when certain con-
ditions occur. Obviously, many of these applications require an agent to be exe@dty

once For example, assume a user that launches a mobile agent to make a flight and hotel reser-
vation for a forthcoming business trip. The agent is expected to make both reservations if pos-
sible, and in any case return a status message back to the user. Of course, the user will only del-

1. Actually we distinguish betweestrongandweak migratiofGV97]. While weak migration only trans-
fers the code and data, strong migration also transfers the agent’s execution state.

4 WP 2.3: Recoverable Agents 31

egate this job to an agent if it is guaranteed that the agent does it “exactly once” and cannot be
caught by a network partitioning or node failure. In other words, independent of node and com-
munication failures it must be ensured that the agent is never lost and hence will get its job done
eventually. Moreover, failures may not cause the agent to perform operations more than once
(e.g., to reserve and pay two seats instead of one).

The exactly once property has already been defined for RPC systems [Spe82], where it defines
the failure semantics of a single remote procedure. In the context of mobile agents, a sequence
of agent stages are to be considered rather than a single procedure. An agent execution is defined
to be “exactly once” if the entire sequence of its stages is eventually performed, and all opera-
tions of each stage are executed exactly once.

In this paper, we will first describe a simple protocol based on transactional message queues
(e.g. IBM MQSeries, see [BE97][Bla95]). This protocol already provides the “exactly-once” se-
mantics as defined above. However, for many applications it is not sufficient to get the job done
“eventually” but as fast as possible or even up to a certain deadline. In our reservation example
above, the agent’s status message should arrive at least before the date the business trip is sched-
uled. The problem with our simple protocol is that an agent may be blocked due to a node crash
or network partitioning even if there are other nodes, where it could continue processing. There-
fore, we propose an extension of this simple protocol to reduce the probability of agents to be
blocked. The extended protocol allows a numbebservemodes to be assigned to each stage.

The observers monitor the stage node currently executing the agent and take over agent execu-
tion when this node becomes unavailable. A voting procedure integrated in commit processing
ensures the “exactly-once” semantics. The protocol is currently implemented in Mole
[Mole][BauEA98], a mobile agent system developed at Stuttgart University.

The remainder of the paper is structured as follows. In the next section, we will describe our
agent execution model. Section 4.1.3 presents the simple protocol and discusses the problems
associated with it. Section 4.1.4 introduces an enhanced model for agent processing and gives
an overview of the extended algorithm, which is subdivided in a voting protocol and a so-called
selection protocol. These two protocols are described in detail in Section 4.1.5 and Section
4.1.6 . Section 4.1.7 discusses the gain in fault-tolerance obtained by the protocol and gives a
short estimation on the costs introduced. Section 4.1.8 presents an approach to reduce the over-
head introduced by the protocol. Related work is discussed in Section 4.1.9 , before the paper
concludes with a brief summary.

4.1.2 Agent Execution Model

In ouragent execution modetasks are assigned to agents, which perform them autonomously.
To execute its task a mobile agent may exploit the services provided by the various nodes of a
computer network. According to the mobile agents paradigm [GV97] an agent moves to a node
before accessing the node’s services, i.e., agents only interact with local services. Once
launched an agent moves from node to node accordingtinetary, which may be determined
before the agent is initiated or dynamically while agent execution is in progress. A more detailed
description of the concept of an itinerary can be found in [StRoMa98].

Agent execution proceeds steps where a new step is initiated whenever an agent migrates to
the next node. A step of an agent at a node is defined to be the set of operations performed by

4 WP 2.3: Recoverable Agents 32

the agent while it visits this node. Consequently, all operations of a given step are performed at
the same node and access local resources only. In our model, we assume that resources are en-
capsulated in resource managers, which - depending on the actual system environment - may be
represented by stationary agents, servers or (recoverable) objects. Each step may change the
agent’s state as well as the state of the local resources. For example, assume an agent buying a
ticket from a ticket server. After this step, the agent’s state would reflect the ticket information

as well as the modified electronic wallet data, and the ticket server’s database would have been
updated accordingly. Note that this step has to be performed in an atomic manner.

LetL(l) be the number of nodes in the agent's itinefafil;,N,,... N)] and § be the step to
be performed on nody; (1<i<L(l)). Then the execution of an agent is defined to be exactly-
once if

* the agent executes st§pbefore stef§. 4, 1<i<L(l), and

* each stef 1<i<L(l) is executed exactly once, independent of communication and node
failures.

As we will see below, the exactly-once semantics of steps is implemented by means of ACID
transactions in conjunction with a mechanism that guarantees a step transaction to be performed
exactly once.

For the protocols described in this paper, we will assume the follaystgm modelNodes

are interconnected by means of a communication network, and each node has volatile as well
as stable storage [Lam81]. Moreover, nodes are assumed to suffer from crash failures [Jal94]
only. Communication failures may cause the network to be partitioned. The communication net-
work provides for reliable channels provided the sender and receiver reside in the same parti-
tion, i.e., messages are not lost, garbled or duplicated and are delivered in order.

4.1.3 A Simple Solution

The exactly-once property of mobile agents as defined above can be achieved in a simple way
by using transactional message queues (e.g., see [GR94]). Message queues provide for asyn-
chronous communication between processes residing on the same or different nodes, where the
sender of a messaBatsthis message on a queue and its rec&esit from that queue. Trans-

actional message queues provide for persistent messages and ensure the exactly-once delivery,
l.e. once a queue manager has accepted a message, it will be delivered once, independent of
node and communication failures. Moreover,RaeandGetoperations can be performed with-

in ACID transactions [HR93]. A message is only placed on or removed from a queue if the
transaction including the correspondidgt respectivelyGetoperation is committed. Transac-

tional message queues are supported by a wide range of middleware products (e.g., see IBM
MQSeries, TUXEDO[GR94], Encina[GR94]).

Figure 4.1 depicts how transactional message queues can be used to implement agents with ex-
actly-once property. Assume that an agent moves from node to node alonyrobig>...-
>Ni.1->N,c . As an agent may visit the same node several tiesdN; (1<i,j<k) may denote

the same or different nodes. Assume further that an agent is stored in a message queue when it
is accepted by the agent system for execution. Once the agent has been stored in the initial queue

4 WP 2.3: Recoverable Agents 33

(Qq in our example), the owner of the agent can be informed that this agent - provided that
nodes, queues and the network recover - will be performed exactly once eventually.

T T Ty1 Tk
7 N 7/ AN 7 AN 7/ N
Ge Put Ge Put Ge Put Ge \
Ql\ / Q2 Q3 o \ / Qk /
/
Launch < Execute < Execute ~ Execute < Execute

Figure 4.1 Simple implementation of exactly-once agents using message

Except N, each other node is performing the following sequence of operations:
Begin_TransactionGef{Agent); ExecutéAgent); Put{Agent); Commit Getremoves an agent

from the node’s input queuExecuteperforms the received agent locally, &t places it di-

rectly into the input queue of the node to be visited next. All three operations are performed
within a transaction and hence build an atomic unit of work. So, if for instance trangaction
aborts due to a node or transaction failure, recovery undoes all of the agent's effeetsdat
restores the agent in its original stat€jnAny effects inQ;.; are undone also. After recovery

is finishedN; continues normal processing and will execute this agent eventually and then hand
it over to its successor. Of course, the last node in the agent’s itindgsasges not have to per-

form Put, it simply destroys the agent when the execution is finished.

The problem with this simple solution stems from the autonomy of agents. Due to this property
there is no “natural” instance that monitors the progress of an agent. If a node crashes after the
agent has been placed in its (local) input queue and before it is moved to the next queue, the
agent is “caught” as long as the node is down even if there are other stage nodes which could
execute the agent. A partitioning of the underlying network may have similar effects. Note that
this is different in client/server systems, where a client calling the operations of a server moni-
tors the availability of this server. When it detects a server failure, the client can continue
processing by using alternative servers offering the same or similar services.

With the above protocol, there is no system entity that will notice that an agent is “caught”. Of
course, the end user might notice when the agent misses a deadline. This is a serious drawback
since agent processing is blocked even if alternative nodes providing the needed services are
available. Even if those nodes do not exist, some sort of exception handling should be per-
formed, e.g., informing the user that the agent will most probably miss the deadline. In the next
section we will extend the simple protocol described above to reduce the probability of agents
to be blocked due to failures.

4.1.4 Protocol Overview

The execution of an agent proceeds in a sequerstageés The operations associated with a

stage are entirely performed at a single node, and an agent enters a new stage whenever it moves
to the next node. For each stage there exists a non-empty set of nodes which alternatively can
perform that stage. Each stage initially includeseker node, which is responsible for execut-

ing the agent in this stage. The other nodesolhserversmonitoring the availability of the

stage’s worker. When the worker fails, this will be detected by the observers, which then will
elect a new worker from the set of available stage nodes. Each stage node is associated with a

4 WP 2.3: Recoverable Agents 34

priority, which defines a total ordering between the nodes belonging to the same stage. Node
priorities are required for the voting and selection process. The node with the highest priority
becomes the initial worker of a stage. Figure 4.2 shows a 3-stage execution of an agent. For ex-
ample, stagé&, is associated with one worker, and 4 observers;,Ithe node with the highest
priority (1) failed and the node with priority 2 was elected to be the new worker.

Figure 4.2Execution of an agent in 3 stages

What are the functional capabilities expected from observers? Ideally, an observer provides the

same set of services an agent expects to find at the initial worker (e.g., a flight reservation serv-

ice). However, an observer that offers no more than an environment for running agents is also

acceptable. At such a node an agent can perform the exception handling mentioned above. For
example, it can use the infrastructure services to find alternative servers, it can change its travel
plans, or it can just move back to the user’'s machine to report the problems and receive new di-

rections.

To allow an observer to take over agent execution, it obviously needs a copy of the agent. There-
fore, in our scheme, a worker sends the agent not only to the (initial) worker but to all nodes of
the next stage when it has finished processing. However, only the worker initiates agent process-
ing, while the observers just do the monitoring for this stage. As in our simple protocol above,

we use transactional message queues to move agents from one stage to another. In contrast to
the simple protocol, the Put-operation of the message queue has to ensure that the message has
already arrived at the destination node at transaction commit. Stage processing has the following
structure (see Figure 4.Begin_TransactionGei(Agent); ExecutéAgent); Put(Agent)to (All-
NodesOfNextStagelzommit?

The monitoring protocol (see Section 4.1.6) ensures that an observer eventually recognizes
when a worker becomes unavailable. In such a case, the observers of that stage select a new
worker, which initiates aew stage processing transaction comprising the sequence of opera-
tions described above. Now, there is an obvious problem with this approach. Since the observers
in general cannot decide whether an unavailable worker has crashed or is still active in a differ-
ent partition of the network, it may happen that two or more nodes of the same stage execute the

2. Note that th&etoperations of the observer nodes are not part of the transaction. If they would be
included in the transaction, this would require all nodes of a stage to be available to execute an agent at
that stage. Clearly, this increases the probability that an agent becomes “caught” rather than decreasing
it. It is important to notice that having sevelaitsinstead of one in the transaction does not increase
the “caught” probability since the observers for the next stage can be determined on the fly from the set
of available nodes.

4 WP 2.3: Recoverable Agents 35

Put

Execute

Figure 4.3The transactional processing of an agent in a stage

agent at the same time. However, the exactly once property of agents requires that exactly one
stage transaction is committed per stage. In order to achieve this, we integrate a voting protocol
into the two-phase commit (2PC) processing [GR94] of stage transactions: a transaction can
only commit if a majority of stage nodes agree. It is also the responsibility of this voting proto-
col to make sure that all observers of a stage remove all stage information when a worker’s stage
transaction commits (see tleet operations in Figure 4.3).

@ ergenda |
m—— |QM: Queue |

u’ : \Manager |
@‘_, I IRM: Resource |
: @_, IManager |
@ 'w: Worker |
.QM‘ | TM ™ |¢ ,E |
:O: Orchestra-
[iy |t5L |
S Si1 '—4— t ————— 4

Figure 4.4Components and interactions relevant to process a stage

In Section 4.1.5 , we will present our voting protocol and show how it can be integrated in stand-
ard 2PC processing. We will assume an architecture similar to the X/Open Distributed Transac-
tion Processing [X/O91] architecture, which consists of transaction managers running the 2PC
protocol and resource managers maintaining the recoverable data. Figure 4.4 depicts the com-
ponents and interactions relevant for the processing of siayj¢h8n the worker of ;Salls

Commit the local TM initiates 2PC processing, which involves the worker itself and all nodes

of S;1. During the commit procedure, each involved TM interacts with those local resource
managers that were involved in stage processing. For example, at the worker node this is the
gueue manager associated with the worker’s input queue and the other local resource managers
(e.g. a DBMS) that have been involved in agent execution. In addition, the worker’'s TM inter-
acts with another type of resource manager caltedestrator The orchestrator, which com-
municates with the so-callastersbelonging to its stage, is responsible for orchestrating the
voting procedure. Each stage node runs a voter, which determines and communicates the node’s

4 WP 2.3: Recoverable Agents 36

vote. The orchestrator and the voters of a stage communicate according to the voting protocol
presented in the next section.

It is important to notice that the proposed architecture nicely separates voting and 2PC process-
ing. From a TM'’s point of view, the orchestrator is just another resource manager, which pro-
vides the same interface as all other resource managers (e.g., an XA interface [X/O91][BE97]).
Consequently, the voting procedure can be easily integrated in existing middleware systems,
such as CORBA [OMG96] or X/Open compliant systems, just by implementing a new resource
manager, or a new recoverable server to use CORBA terminology.

Besides the voting proceduresalection protocols needed, which allows the observers of a
stage to select a new worker when they recognize that the old one failed. Since the voting during
2PC processing already ensures that only one stage transaction commits, the exactly once prop-
erty is not jeopardized even if more than one new worker is selected. Actually, each observer
that recognizes a worker failure could select itself without talking to the other observers. Con-
sequently, the problem of selecting a new worker differs from the well-known election problem
as defined in the literature (e.g., see [GM82]). For that reason we are using the term “selection”
rather than “election” throughout this paper.

The selection protocol proposed in Section 4.1.6 is a “light-weight” protocol, which usually se-
lects one new worker, but also can end up with multiple workers in rare situations. Each worker
and observer node runs monitor processes that do the monitoring and the selection of new work-
ers if needed.

4.1.5 \Voting Protocol

In this section, we will focus on the voting protocol and its integration into 2PC processing. In-
stead of describing the well-known 2PC procedure, we will confine ourselves on presenting the
interactions between the transaction manager (TM) and the local voting orchestrator (see Figure
4.5).

The voting protocol used here is based on the fault tolerant majority quorum algorithm
[Thom79][Giffor79] and is extended by an algorithm similar to the one described in [Maek85]

to resolve concurrent invocations of the algorithm using priorities. In terms of message com-
plexity more efficient quorum based fault-tolerant algorithms for mutual exclusion have been
proposed (e.g. [AgrAbb91], [ChaCha97]). Although these algorithms have the same time com-
plexity in the error-free case (O(1)), they have a higher time complexity in the presence of fail-
ures. In addition, the difference in number of messages for small stages (5 to 7 nodes) is mar-
ginal in the error free case. Therefore, we chose to use the simple algorithm.

As already stated in the previous section, from the TM’s point of view the orchestrator looks
like an ordinary resource manager. We assume that resource managers implement an XA-like
interface with the following operationsn_preparerm_commitandrm_rollback The first op-

eration, called in the first phase of 2PC, returns eftheyesor rm_nq depending on whether

or not the resource manager is able to prepare for commitment. In the second phase, the TM
issues eitherm_commitor rm_rollbackdepending on the transaction’s outcome. Upon such a
call a resource manager terminates the transaction accordingly and netuackto the TM.

4 WP 2.3: Recoverable Agents 37

— — — = -
™M © |~
rm_prepare AN

| voting |
| rm_yes phasei.

rm_commit
| voting |
| rm_ack phase f /

/ . .
L L <4 Stage i Stage i+1

Figure 4.5Integration of voting into 2 PC

The interactions between the 2PC of the stage transaction and the voting protocol are shown in
Figure 4.5.

The voting protocol is run between the orchestrator and the voters of a stage. While the orches-
trator is located at a worker node only, there exists a voter at each stage node. When 2PC
processing is started at the orchestrator (i.e., wineprepareis called), it issues vote requests

to the voters of its stage and then collects the returned votes. Only if it receives a majority of yes
votes, the orchestrator returnena yesto its local TM, and an_nootherwise. In other words,

only if a majority of voters vote yes, the transaction can be committed. That is why only one
transaction can commit per stage even if there is more than one worker.

We distinguish between two types of stable states, namaglgaction statesndstage states

Both are stored on stable storage and thus are supposed to survive node failures. Transaction
states are maintained by orchestrators, while voters maintain stage states. A transaction’s state
can be “Unknown”, “Ready” or “Committed”, while a stage’s state may be “Unknown” or “Ac-
tive”. For both types of states “Unknown” means that no state information is stored on stable
storage for the corresponding transaction or stage. The state information of an “Active” stage is
stored in a so-callestage recordn stable storage. It contains the following information:

* Anidentifier of the stage, which consists of Agéntld HopCoun} pair. Agentldis a glo-
bally unique agent identifier aitbpCountis incremented whenever the agent is moved to
the next stage.

» Alist of nodes patrticipating in the stage. For each node the node’s identifier and priority is
included.

When an agent moves to the next stage, not only the agent itself but also the stage record of the
next stage i®utinto the input queues of the nodes associated with the next stage. Each stage
node reads the stage record without actually removing it. Once the stage record Has# been
into the message queue (on stable storage), the stage becomes “Active” at the corresponding
node. Since alPut operations are performed in a single transaction (see Figure 4.3), either all
stage nodes are “Active”, or none of them. Initially, the stage node with the highest priority be-
comes the worker, while all other nodes take over the observer role.

Voters and orchestrators are identified by globally unique node identifiers (ids), i.e., a voter and
orchestrator residing on the same node have the same id. In analogy to 2PC processing, our vot-
ing protocol proceeds in two phases which are described in the following paragraphs. Figure 4.6
shows two possible scenarios in a stage with two stage nodes to illustrate the voting algorithm.

4 WP 2.3: Recoverable Agents 38

In Figure 4.6a only one orchestrator initiates the voting procedure while Figure 4.6b shows a
scenario where both orchestrators initiate the voting procedure concurrently.

Vi O, Vo 0, Vi Vo O,
rm_preparg rm_prepare rm_prepare
—> -PIEPES vore VOTE =P
VOTE VOTE — |
—APRIO
. \ GAVE_UP
oo —
rm_commi]
— | m yes— | UN_VOTE}
FORGET FORGET ¢ — |-
/\ rm_commit >
ACK ACK H%
«— rm_ackﬂ/
<_
Figure 4.6a0ne orchestrator initiat- Figure 4.6bTwo orchestrators
ing voting initiating voting concurrently

Normal Processing: Phase 1

Phase 1 of the voting protocol is initiated when an orchestrator receivepeeparecall from

its local TM. First, the orchestrator sends a VOTE request to each voter of its stage. This request
includes several globally unique identifiers: the id of the stage currently processed, the orches-
trator’s id, and the id of the transaction the orchestrator is currently invoR:ebhien, the or-
chestrator waits for the answers, periodically resending the VOTE request to all stage nodes that
have not yet answered.

To record its votes already given to orchestrators, a voter maintains a lisrah&eton sta-

ble storage. Whenever the voter returns a YES vote, the identifier of the receiving orchestrator
Is recorded irOrchSet Normally, OrchSetends up with one node identifier. In the presence of
failures, however, there might be several orchestrators competing for a node’s vote.

A voter receiving a VOTERtageld Tld, Orchld request for stag8tagelddetermines its reply
based on it©rchSet If OrchSetis empty, the voter has not voted YES before. In this €se,
chldis added t®rchSetand a YES$tageld Tld, Voterld) reply is sent back to the orchestrator,
whereVoterldidentifies the voter (replies of the voters in Figure 4.6a, the first replies of the vot-
ers in Figure 4.6b).

If OrchSets not empty instead, there are obviously several orchestrators competing for the vote.
To make sure that one of the them will eventually receive a majority of votes, our voting protocol
prefers the orchestrator with the highest priority. Assume\tisthe node with the highest pri-

ority in OrchSet If OrchSetis not empty an@®rchld has a lower priority thaN, then the voter

3. The transaction identifier is received in the preparecall and is used here to match VOTE requests
with the corresponding votes. Due to node failures it may happen that the same orchestrator starts several
rounds of voting.

4 WP 2.3: Recoverable Agents 39

has already voted YES for a node with a higher priority. In this case, the voter replies with
NO(StageldTId, Voterld), i.e.,Orchldloses the competition. In our scenario in Figure 44b,
already gave its vote to orchestra@rwhich has a higher priority than orchestra®gr That

is whyV; sends a NO t®..

If OrchSetis not empty an@®rchld has a higher priority thad, then the voter has already voted
but only for orchestrators with a lower priority.Nfis not the voter’'s node, the voter immedi-
ately sends back a COND_YESRé&geld Tld, OrchSet Voterld) and then add®©rchld to its
OrchSet The semantics of this vote is tMatterldvotes YES, provided that all node<OrchSet
also vote YES.

If N equals the voter’s node, there exists a local orchestrator, which has already initiated a com-
peting voting procedure. Sin€achld has a higher priority than the local orchestrator, the latter

one is supposed to give up. This, however, is only possible (and desirable) before the stage trans-
action at the orchestrator has entered the “Ready” state (i.e., before the orchestrator has got a
majority of votes). To check the transaction’s state, the voter sends a HHGHER_PRIO request to
the local orchestrator, which returns either GAVE_UP to indicate its stage transaction has been
aborted, or ALREADY_DONE if the transaction state is already “Committed” or “Ready”. If
ALREADY_DONE is returned, the voter sends a IS@@geldTId, Voterld message t®rchld,

and a COND_YEStageldTId, OrchSet-{N} Voterld) message (or YES(ageldTld, Voterld)

if OrchSet-{N}is empty) otherwise. In Figure 4.6, receives a vote request frddg after al-

ready having given a YES vote@ which has a smaller priority tha@y. ThereforeV, sends

a HIGHER_PRIO request 1, which, still being in “Unknown” state, replies with GAVE_UP,
enablingV, to reply a YES vote (COND_YES with empty OrchSetpto

To record the received votes matching the curféatthe orchestrator maintains three sets in
volatile storageYesVotesNoVotesandCondYesVotedVhen it receives a YES or NO vote, it
includes the voter’s id ifesVotesr NoVotesrespectively. If it receives a COND_YES, it adds
the (Voterld OrchSe} pair included in this messageG@ondYesVotedNote that this conditional
YES becomes a “real” YES after all nodegirchSetvoted YES. In other words, @®rchSet
YesVotegquals the empty séfoterld can be added téesVoteand {oterld OrchSe} can re-
moved fromCondYesVote©bviously, this check has to be performed whenhee(ld Orch-

Se) pair is added t€ondYesVoteand wheneveyes\Votess changed.

OnceYes\Votegontains a majority of votes, the orchestrator moves into the “Ready” state and
then returnsm_yesto its local TM (see orchestrat@y in our scenarios). Then it waits for the

TM’s commit or abort decision. Note that thee_yesresponse is only a prerequisite for com-
mitment rather than a commit decision. If a majority becomes impossible (i.e., at least half of
the voters voted NO), the orchestrator returngnano to its local TM, sends an
UN_VOTE(Stageld, Tld, Orchldmessage to all voters recorded inYiesVotesaindCondYes-
Votesset, and then forgets the transaction (see orches®ator Figure 4.6b). Note that the
rm_no response forces the TM to abort the stage transaction. The orchestrator’s node then
changes from the worker to the observer role (see Section 4.1.6).

When the orchestrator receives a HIGHER_PRIO message, it replies ALREADY_DONE if its
stage transaction is already “Ready” or “Committed”. If the transaction is still in the “Un-
known” state, it sends back GAVE_UP to the local voter and retornsoto the local TM (see

O, in Figure 4.6a). Furthermore, it sends UN_VOTE messages to all voters recordé@sn its

4 WP 2.3: Recoverable Agents 40

VotesandCondYes\Voteset before it forgets the transaction. As above, orchestrator’s node then
changes from the worker to the observer role.

An orchestrator receives a GIVE_UP request from the local voter if another stage node already
committed its stage transaction (see below). Clearly, this message can only arrive while the re-
ceiving orchestrator resides in the “Unknown” transaction state. When GIVE_UP arrives, it im-
mediately forgets the transaction, and retumsnoto the local TM.

Normal Operation: Phase 2

If the TM commits the transaction, it issu@s_commitfor each local participating resource
manager. Wherm_commitis called, the orchestrator atomically enters the “Committed” state
and returns anm_ackto the local TM. Subsequently, it sends a FORG&Egeld Orchid)
message to all voters of its stage and then waits for the acknowledgements to arrive. It periodi-
cally resends FORGET until it received an ACK from each voter. When the ACKs are complete,
it moves to the “Unknown” transaction state before it forgets the transaction.

A voter receiving FORGET atomically goes into the “Unknown” stage state, i.e. the stage’s
stage record (together with the agent) is removed from the voter’s transactional input queue in
an atomic fashion. Subsequently, the voter removes the s@igbSetfrom stable storage and
sends back an ACIKstageld message to the sender of FORGET. If there happens to be a local
orchestrator different fror®rchld, the voter sends GIVE_UP to this orchestrator, causing the
locally initiated stage transaction to be aborted.

If the orchestrator receives_abortinstead ofm_commifrom its TM, it enters the transaction
state “Unknown” and then sends UN_VOTE requests to all voters recordedr@s\tsteor
CondYesVoteset. Then the orchestrator's node restarts the transaction. Voters receiving an
UN_VOTE removeOrchld from theirOrchSeti.e., they withdraw their votes previously given

to Orchld. Note that this “unvote” mechanism is needed to allow a lower priority node to achieve
a majority after some higher priority node gave up. Remember that a voter only votes YES (or
COND_YES) ifit has not already voted YES (or COND_YES) for some other node with a high-
er priority

Failure Recovery

Once a voter has returned a vote to an orchestrator, it can expect either a FORGET or UN-VOTE
response. When the voter times out while waiting on the response, it sends an INQUIRY mes-
sage to the corresponding orchestrator. INQUIRY messages are sent periodically until FORGET
(or GAVE_UP) is received, or each orchestrator recorded in the v@tmtsSetreturned an
UN_VOTE response.

An orchestrator’s response on an incoming INQUIRé(eld Voterld) request depends on its
current transaction state. If the transaction state is “Ready”, the orchestratvoltiio its
YesVoteset if it is not already included. This ensures that the identified voter will be notified
accordingly as soon as the TM issues commitor rm_abort If the orchestrator is in the
“Committed” state when receiving an inquiry, it responds with a FORGET message. If the or-
chestrator resides in the “Unknown” state, two cases must be distinguished: If there is no active

4 WP 2.3: Recoverable Agents 41

transaction belonging to the stage identifiedSbggeld the orchestrator returns an UN_VOTE
message. If there is an active transaction instead (i.e., voting is still in progress for the stage) the
INQUIRY can be ignored. Let us briefly argue why/dterldis already inresVotesr CondYe-
sVotesor will be included at a later point in time, the identified voter will be informed during
phase 2. Even if this is not the case, a future INQUIRY will eventually find no locally active
transaction, causing an UN_VOTE to be returned to the voter.

When a node recovers from a failure, it reads the transaction and stage states recorded in stable
storage. Orchestrator recovery only takes place if the transaction state is “Committed” or
“Ready”. If the transaction is “Ready” after restart, the orchestrator waits until it is informed by
the local TM about the transaction’s outcome, and then proceeds as described above. If the
transaction is already “Committed” instead, the orchestrator sends FORGET to all voters of the
stage and collects the ACKs. After having received all ACKs, it can enter the “Unknown” trans-
action state.

A voter only performs recovery if its stage state is “Active”. In this case, the voter periodically
sends INQUIRY request to all orchestrators recorded @riteSetlt continues to send inquir-

ies until it receives FORGET from some orchestrator, or it got an UN_VOTE from each orches-
trator inOrchSet It acts upon the received responses as described above.

Correctness Arguments

In the following, we will give some informal correctness arguments for the voting protocol de-
scribed above. We will assume that the selection protocol ensures that there eventually exists a
non-empty set of orchestrators (or workers). The objective of the voting protocol is to guarantee
that exactly one of these orchestrators will commit its state transaction.

Let us first show that - given a non-empty set of orchestrators - exactly one of them will even-
tually enter the “Ready” transaction state. If there is only one orchestrator, it will get YES votes
from all available voters. As soon as a majority of voters is available, it can enter the “Ready”
state.

Now assume that there are several competing orchestrator®; athe one with the highest
priority. When another orchestrator, $ay; receive€),’s vote request, it has either already en-
tered the “Ready” or “Committed” state, or it gives up. In the first €@sbas got a majority

of votes, which allows no other orchestrator to move into the “Ready” state. In the latter case,
O, sends UN_VOTE to its voters, allowing its local voter to send a YES vote baik £dl

other voters either return a YES or COND_YE3»)(message back ©,, depending on the
sequenceO;’'s and O,’s vote requests arrived. Sind®, returned a YES vote, the
COND_YES(Q,) votes can be interpreted as yes votes. Consequéntlyjll eventually re-

ceive a majority of votes and thus can enter the “Ready” state.

If O, aborts its transaction, the “unvote” mechanism ensures that all voters will eventually with-
draw their votes given t@; (or forget the stage). Therefore, also a lower priority orchestrator
will get the chance to collect a majority of votes.

As shown above, if there are several orchestrators, exactly one of them will eventually enter the
“Ready” state. This orchestrator’s transaction will either commit or abort. In the case of com-
mitment, all stage nodes forget the stage, and thus no other transaction of this stage will be able

4 WP 2.3: Recoverable Agents 42

to commit any more. In the case of abort, the transaction becomes “Unknown” and its orches-
trator starts a new transaction. In the latter case, as shown above, this or another orchestrator
will eventually become “Ready”. Consequently, exactly one orchestrator will eventually per-
form commitment.

4.1.6 Monitoring and Selection Protocol

In the previous section, we already pointed out that in addition to the agent also the stage record
of the stage to be performed next, Saig Putinto the input queues of the nodes associated with

S. Remember that all the&eit operations are performed within the transaction of the previous
stage and thus are “all or nothing”. Each stage node reads the stage record without removing it
from its input queue and decides its initial role depending on the priorities recorded in the stage
record. The node with the highest priority becomes the worker node, which then performs the
sequence of operations already outlined in Section 4Bedin_TransactionGeiAgent); Ex-
ecut€Agent); Put(Agent, StageRecordd (AlINodesOfNext-Stage)Commit The other stage

nodes are observers, which monitor the worker.

A worker, sayw, periodically sends |_AM_ALIVE messages to the observers of its stage. If it
receives an|_AM_ALIVE or|_AM_SELECTED (see below) message from another node, then
there obviously exists a competing worker, $&ylf W has a higher priority thaw, W sends

a HIGHER_PRIO request to the local orchestrator. If the response is GAVE_UP (see Section
4.1.6),W becomes an observer monitorig

When an observer times out while waiting on the worker's I_AM_ALIVE messages, it assumes
that the worker is not available any more and initiates the procedure for selecting a new worker.
The selection protocol described below adopts the basic principles of the fault-tolerant bully al-
gorithm [GM82], which allows elections taking place even in presence of network partitioning.
As already mentioned above, this protocol may end up with several workers in case of network
partitioning. The voting protocol described in 4.1.5 ensures that only one worker commits its
transaction.

A node initiating the selection procedure sends ARE_YOU_THERE messages to all stage
nodes with a higher priority. Available nodes (observers as well as workers) reply to this mes-
sage with an I_AM_THERE message. If no reply arrives within a reasonable time, the initiator
is selected to be the new worker (Figure 4.7a). The newly selected worker sends an
|_ AM_SELECTED message to all other stage nodes, and starts a new stage transaction com-
prising the sequence of operations sketched above. If the initiator receives a reply instead, it
waits for the |_AM_SELECTED (or |_AM_ALIVE) of the new worker to arrive (Figure 4.7b).
When this message arrives, it starts monitoring the new worker.

ARE_YOU_THERE | AM_SELECTED ARE_YOU_THERE
Timeout
I_AM_THERE

Figure 4.7aSuccessful selection Figure 4.7bUnsuccessful selection

4 WP 2.3: Recoverable Agents 43

In the presence of network partitioning, the protocol presented so far selects a worker in each
partition, if two partitions are joined, two workers remain in the resulting partition. Note that
this is not a problem since our voting protocol ensures that only one worker will commit.

Starting a transaction in a partition that does not include a majority of nodes is at least question-
able. With a little modification of the protocol, starting transactions in partitions without a ma-
jority of nodes can be avoided: Observers getting an |_AM_SELECTED message are supposed
to reply with an ACK, and the initiator of the selection protocol becomes the new worker only

if it receives a majority of ACKs. Therefore, the initiator periodically sends |_AM_SELECTED
messages until it receives either a majority of ACKs or an |_AM_SELECTED from a higher
priority node. In the first case, it becomes the new worker, while it continues to be an observer
in the latter case.

The worst case message complexity of the chosen algorithmAs (@} n stage nodes initiate

the algorithm at the same time), the time complexity of the algorithm is O(1). A lot of other,
more efficient election algorithms have been proposed (e.g. [AA88], [MNHT89], [Singh96],
[Singh97]). Most of these algorithms do not terminate in the presence of network partitioning,
but the main idea of some of these algorithms, to reduce message complexity by “eliminating”
the other nodes sequentially, could be applied to our selection problem. Using this approach en-
hances the time complexity considerably taYOTherefore, as long as stages are relatively
small (max. 5 to 7 nodes), the chosen algorithm is considered to be convenient.

4.1.7 Blocking Probability and Message Complexity

The worker node needs to collect a majority of votes during 2PC processing to be able to com-
mit the transaction of a stage. Therefore, a transaction can only be committed if more than half
of the stage nodes (including the worker) are available. This fact can be used to give a (simple)
metric for the availabilityAg of a stage which is the probability that a majority of stage nodes is
available so that an agent can finish a step and proceed with the next step.

Let n be the number of the nodes of a stageabe the availability of an individual node (i.e.
the probability that the node is available). Then the probability that exaatiyt of thesen
nodes are available can be calculated using the binomial probability function
f(nm = g‘ngpm(l-p)(”‘m) [HuGr71]. The availabilityA(n, p) of a stageS can then be calculated

by

AN, p) = T a-p""

{2

The blocking probability is defined to be the probability that the agent is blocked in the stage.
It is calculated by n, p = 1-A(n, p . The relative blocking probabiByn, p) is calculated by

B,(n, p) = B(n, p/B41, p), Where a relative blocking probability Bf(n, p)=0.4 means for example

that the probability of an agent blocking in a stage witbdes (node availabilify) is only 40%

of the probability of an agent blocking on one node with availalmlity

4 WP 2.3: Recoverable Agents 44

Table 4.1 and Figure 4.8 show the relative blocking probaBilitlepending on the availability
p of a node and the numbeiof stage nodes. It shows that an odd number of nodes bigger or
equal to 3 reduces the relative blocking probability dramatically.

p

0.75 0.9 0.99
1 100% 100% 100%
2 175% 1909 199%
3 62% 289 3%
4 105% 529 6%
5 41% 9% ~09
6 68% 169 ~0%
7 28% 3% ~0% 7 07

n 9

Table 4.1Relative blocking probability of a Figure 4.8Relative blocking probability
stage of a stagef

Obviously, the fault-tolerant protocol considerably reduces the blocking probability of an agent
compared to the simple protocol of Section 4.1.3 . The price one has to pay for this is the over-
head introduced by the protocol. In this section, we compare the number of inter-node messages
necessary for the simple protocol with the number of intra-node messages necessary for the fault
tolerant protocol. Assuming that errors are the exception, we only examine the error-free case.

The simple protocol introduced in Section 4.1.3 is the “cheapest” possibility to provide the ex-
actly-once property for mobile agents. The amount of messages used depends heavily on the im-
plementation of the message queues. An optimized version of a message queue only needs 4
messages, piggybacking the PREPARE to the put message: (data + PREPARE), PREPARED,
COMMIT and ACK

The communications potentially taking place in the
fault-tolerant protocol are shown in Figure 4.9. Usingonitoring
optimized message queues as described above, all invoting
all 4n messagesnEnumber of nodes) are necessaryermination
for the transport of the agent to the next stage and the

2PC (solid arrows). If the worker of the current stage . _
is also member of the next stage, the number of mes- ' L I+1

sages reduces tordl). The two phases of the votin igure 4.9Communication patterns

protocol (dashed arrows) neech-A() messages for

the voting and 2{-1) messages for the termination of the stage. In addition, (n-1) messages are
sent periodically during stage execution for monitoring purposes.

Further optimizations are possible. If the timeout for monitoring is bigger than the execution
time of an agent in a stage, no monitoring messages are necessary (the FORGET replaces the
|_AM_ALIVE). Additionally, the FORGET message may be delayed (and piggybacked onto
another message) until the next monitoring message would have to be sent. Finally, the ACK
message acknowledging the FORGET can be delayed some time (it just has to be in time before

4 WP 2.3: Recoverable Agents 45

the receiver resends the FORGET). Another possibility to reduce the overhead based on the
knowledge on the agents itinerary is presented in the next section.

Altogether, the number of messages for the fault-tolerant protocol without monitoring messages
is between 6{1) if the worker is member of the next stage and all FORGETSs as well as all
ACKs could be piggybacked and#4(n-1) if none of the optimizations is possible.

4.1.8 Optimizing the Stage Construction

The fault-tolerant protocol described above introduces some overhead. This overhead can be re-
duced if some information about the agent’s travel plan is known in advance. The first part of
this section introduces a facility callgoherary which allows a very flexible description of the
agent’s travel plan. Then the notion of the exactly-once property is extended to the itinerary con-
cept and a classification of stage node types is introduced. Finally, an algorithm reducing the
protocol overhead is presented.

The Itinerary

While performing a job, a mobile agent often has to visit several nodes to use services offered
locally. In many cases, some (or all) of these nodes are either known before agent initialization
or can be determined by the agent several steps in advance. However, as in real life, no strict
order exists in which the nodes have to be visited. For example, an agent having to buy a CD,
one pound of beef and a theatre ticket, may perform these tasks in any sequence. On the other
hand, if there are several branches of a music shop, the agent needs only to visit one of these
branches. To exploit the possible benefits given by a flexible travel plan (e.g. by calculating the
shortest path) and to provide a powerful facility to the agent developénexary concepis

provided. Thigtinerary concepgllows a very flexible specification of an agent’s travel plan as

well as the dynamic adaptation and expansion of the travel plan during the execution of the
agent.

Theitinerary is composed using different typestaferary entries The simplest form of an en-

try is a simple pairrfode method specifying a node which has to be visited and the step (de-
fined bymethod which has to be executed on this node (see [WoEA97]). The other possible
entries, calledsequencesetandalternativecontain several other entries (recursively)sek
quences a list py,...&4] of n entries (=1) defining that the nodes specified by esfr{i<i<n)

must have been visited before the nodes of egiryare visited. Asetis a set of entries
{e1....en} specifying that the elements, ... g, can be handled in any order as long as each ele-
ment is handled exactly once. Afternative(e,...,) allows to specify that exactly one of the
entriesey,....g, have to be chosen.

To clarify this definition, let us consider the following scenario. Paul, planning to spend a ro-
mantic evening with his wife, instructs his personal concierge agent to order some flowers, to
buy a ticket for the theatre and to reserve a table in a nice restaurant close to the theatre. The
play, for which the agent has to buy tickets is currently enacted in two different theatres. To fulfil
the job, the agent has to visit the node of the flower service, one of the two nodes offering the
ticket service (unfortunately, there is no central ticket service for both theatres), and, depending
on the chosen theatre, the node of the restaurant.

4 WP 2.3: Recoverable Agents 46

The itineraryi specifying the travel plan of our concierge agent is defined using the notation in-
troduced above by

i ={ (BestFlowers, buyFlowers),
([(CentralTheatre, buyTicket), (KingsInn, reserveTable) |,
[(ModernArts, buyTicket), (BeefHouse, reserveTable)]

)

}
A graphical representation of the itinerary is shown in Figure 4.10a. The top level entry of the
itinerary is asetspecifying that the agent has to go and buy flowers on node “BestFlowers” (us-
ing the method buyFlowers) and to follow the specification iralteenative This can be per-
formed in any order. Thalternativespecifies the two possible ways of buying a theatre ticket
and making a reservation for a table. Each alternative is definedsesjngnces hesequences
specify that the agent first has to go to the theatre to buy a ticket using the method “buyTicket”,
and afterwards to go to the restaurant to make a reservation for a table (a sequence is used here
instead of a set because the agent needs the information when the theatre play ends to make the
reservation).

(Centrall heatre, buyTicket)
alternative (Kingd nn, reserveTable)

set
sequence

()
Q
Q

® ® &

(BeeHouse, reserveTable) @
ModerrArts, buyTicket)

(BesFlowers, buyFlowers) @ @ @

Figure 4.10aAn itinerary... Figure 4.10b... and the corresponding
tree of possible paths

Given this itinerary, the system can decide which node has to be visited next provided there are
alternatives. For the first step, it has the possibility to visit either one of the theatre nodes or the
flower shop. The possibilities for the next step depend on the alternative chosen. Using the in-
formation given in the itinerary, a tree containing all possible paths of the agent can be con-
structed. The tree in Figure 4.10b shows all possible paths that can be taken by Pauls agent. The
path, where the agent first orders the flowers, then buys a ticket in the ModernArts theatre and
finally makes a reservation for a table at the BeefHouse is marked with bold circles.

The itinerary provides operations to query and to change its content. The query methods allow
to navigate through the entries in the itinerary, to provide information about which nodes al-
ready have been visited and which nodes, according to the itinerary, may be visited next. The
change methods allow to insert new entries and to delete entries in the part of the itinerary not
yet processed. This allows the agent to gain an overview over the current state of its execution
and to change the itinerary dynamically during its execution.

4 WP 2.3: Recoverable Agents 47

An Adapted “Exactly-Once” Property Definition

The adapted definition of the exactly-once property of mobile agents is based on the information
contained in the agent’s itinerary and on the steps to be performed on the visited nodes.

Let P={P4,...P,} be the set of all possible paths the agent may take for a given itinerary, let
L(P;) be the number of nodes in p&fF[N; 1,N; »,...N; | ;p] and let§ ; be the step to be per-
formed on thg-th nodeN; ; of pathP; (1<i<n, 1<j<L(P;)). Then the execution of an agent is
defined to be exactly-once if

 only noded\,; j,...N; | (pj) belonging to one patR[IP are visited,
* the agent executes stgp before stefy 4, 1<j<L(P;), and
« eachstefy; 1<j<L(P;) is executed exactly once.

In the above scenario, a system providing the exactly-once property for mobile agents guaran-
tees, that the agent visits the flower shop, only one of the two theatres and the restaurant asso-
ciated with that theatre. The steps which have to be executed on these nodes are performed in
one of the orders defined by the tree of possible paths in Figure 4.10b. Each of this steps is ex-
ecuted exactly once.

Types of Stage Nodes

A stage can be constructed using two different types of nadgdar nodesandexception han-

dling nodegqshort:exception nodgsLet j be the node currently executing the agent, Mexij

defines the set of nodes that can be visited next according to the agent’s itinerary. In the example
depicted in Figure 4.10b thidextset associated with no®# includes nodeMA andCT. Let

nodej be the worker of stagel then a node of stagés called aegular nodeif it is member

of Nextj All other nodes of the stage are cakledeption nodedn other words, regular nodes
provide the services needed to perform the “regular” steps of an agent, while exception nodes
are only expected to provide a runtime environment for agents. An agent is only moved to an
exception node if in the stage no regular node is available due to failures. Each agent is supposed
to provide a methodoRegularNodeAvailable()vhich is initiated when the agent arrives on an
exception node. As mentioned above, on regular nodes the method specified for the node in the
itinerary is performed.

Stage Construction Algorithm

The algorithm described in this section aims at constructing a stage such that communication
overhead is minimized during normal operation. The basic idea of the algorithm is to use as
much as possible regular nodes to construct a stage and, if there is any freedom in the choice of
nodes, to ensure that consecutive stages have as much nodes in common as possible. As an input
this algorithm takes the number of stage nodesnsayd the agent’s itinerary. Assume nede

is the worker of stagie Thenw performs the algorithm to determine the nodes of steljesay

S+ 1, together with the nodes’ priorities.

Before describing the algorithm, we have to introduce some termin&agylefined to be the
nodes of stagethat are available fromv's point of view. TheNextset is used as defined above,

4 WP 2.3: Recoverable Agents 48

I.e., Next, defines the set of nodes that potentially can folloaccording to the agent’s itiner-
ary.

Case 1: In the simplest case, the cardinalityeft, ([Next,|) equals. In this caseg,; is equal
to Next,, which by definition includes regular nodes only. The way how priorities are assigned
to these nodes will be described below.

Case 2: If the cardinality dfiext, is bigger tham, then the resulting stage also contains only
regular nodes. The choice of stage nodes is performed in two steps: In the fi1 st&on
Next, is computed. 1f§.1|=n, the priorities of the nodes 8§, are determined (see below) and
then nodes with the highest priorities remainSg,. In this case, no second step is needed. If
IS+1/<n, them-|S,4| nodes are selected fravex{,\§ according to their priorities (see below).
Subsequently, the final priorities of the node§in are calculated.

Case 3: If the cardinality dfiext, is smaller tham, m=n-|Nex{,| exception nodes have to be
chosen. Good candidates for this choice are the no&particularlyw. By using these nodes,
the number of code transfers for migrating the agent from staggtage+1 can be reduced by
IS n S+4]- In addition, usingv as an exception node of stagé& reduces the number of data
and execution state transfers and saves 4 messages during 2PC processing.

If m<|S\Next,|, mnodes - includingv - are taken frong\Next, as exception nodes according

to their priorities. Ifm>|S\Next,|, then all nodes i§\Next, are used as exception nodes. In or-

der to select the yet missing exception nodes, future destinations specified in the itinerary can
be taken into account. In suf, includesNext, and a set of exception nodes selected as de-
scribed above. Sindéext, includes regular nodes, the exception nodes are assigned a lower pri-
ority than the ones iNext, .

Priorities: To determine the priorities of the nodes, several possibilities exist. A simple approach
Is to randomly assign the priorities just ensuring unique priorities per stage. A more effective
strategy is to exploit knowledge about node reliability. In this case, the priorities are assigned in
accordance with the reliability, i.e., the higher the reliability, the higher the priority. Priorities
between nodes with equal reliability can be chosen randomly. Obviously, with this heuristic
more reliable nodes are preferred for agent execution.

A third strategy to determine the priorities is to take into account not only the next stage but also
the ones following the next stage. Unfortunately, the nodes which can be visited in a stage de-
pend on the worker of the previous stage, making the computations rather complex and time
consuming. Therefore, this path hasn’t been investigated further here.

The possible reductions of the protocol overhead gained by the presented algorithm are shown
in Table 4.2. Assuming a number of stage nodes8f the use of e.g. one node of the current

stage as stage node of the next stage (regular or exception node) already reduces the number of
code transports by one third.

The example itinerary shown in Figure 4.11 represents the

optimal case for the stage construction algorithm. The first (Ny, m) (N2, m)
stage (=3) contains nodds; to N3, ordered by their priority. \@Set

For this first stage, only the code has to be transported to the (N3, m)
nodes (3 code transports) and the transaction of putting the

code onto the first stage nodes has to be committed (4*3 megure 4.11Simple itinerary

4 WP 2.3: Recoverable Agents 49

Code State Messages for
Transports Transports 2PC
S§n§a=1{ n n 4n
§n Szl n-1§n S4qf n 4n
§n Sz
n-1Sn n-1 4(n-1
WS S 0 Sl (1)

Table 4.2Possible reductions of the overhead

sages). In the second stage, the worker of the first stage, (aSglraets as exception node.

Here, no code transports, only two state transports and 4*2 messages for the 2PC are necessary.
In the third stagelN; and the worker of the second stage (assNg)@ct as exception nodes.

The number of data transports is the same as in the last stage. Therefore, a total of 3 code trans-
ports (no overhead at all!), 4 state transports (overhead: 2 transports) and 28 messages for the
2PC are needed. Without the flexible definition of the itinerary and the optimization of the stage
construction algorithm, 9 code transports, 9 state transports and 36 messages for 2PC would
have been used.

In our example of Section , the first stage3) contains the two ticket service shops and the
flower shop (3 code transports + 4*3 messages). If the concierge agent is executed on the flower
shop node first, the second stage consists of the two ticket service nodes (as regular nodes) and
the flower shop node as exception node (two state transports and 4*2 messages). Then, the third
stage consists of one of the restaurant nodes (depending on the ticket node used as worker in
stage two) as regular node and the worker node of stage two and one other node of stage two as
exception nodes (one code transport, two state transports and 4*2 messages). This results in a
total of 4 code transports (overhead: one transport), 4 state transports (overhead: two transports)
and 28 messages for 2PC. In this case, each stage contains as much as possible regular nodes.
If, on the other side, the worker node of the first stage is one of the ticket service nodes, there
can be an additional code transport if the flower shop is not contained in the second stage (the
flower shop node is not Mext, in this case, which is rather an inadequacy of the itinerary con-
cept than of the stage construction algorithm).

4.1.9 Related Work

In the field of mobile agents, only few research groups have considered aspects of transaction
management and fault tolerance so far. In [MinsEA96] and [Sch97], a stage model similar to the
one in this paper is proposed. However, the papers focus on a different aspect of fault-tolerance.
Fault tolerance is achieved by processing the agent on each stage node (in parallel) and to send
the migrating agent to all nodes of the following stage. Stage nodes perform voting on incoming
agents to determine a majority of equal agents. Only an agent from this majority is processed
further. Our approach assumagernativeservices in a stage instead of replicated ones. Even

in the case of failures, the agent is performed exactly once, e.g. in a car rental stage consisting
of a Hertz, Avis and Budget server, the step “rent a car” is eventually performed once at one
server. In [SK97], an agent- based transaction model is presented. Similar to our model, an agent

4 WP 2.3: Recoverable Agents 50

executes a transaction while moving from node to node. To prevent the blocking of agents due
to long-lasting failures, the use of monitoring components is proposed. However, this paper
purely concentrates on modelling aspects, protocols or algorithms are not given. [DaImEA98]
introduces a mechanism based on a special system model. A site consists of several nodes in-
terconnected by a reliable LAN. Agents within a site are monitored by a recoverable checkpoint
manager (CM). The CM, which is assumed to be very reliable, is responsible to keep track of
the agents and to restart the agents after a node has crashed and recovered. Unfortunately, this
approach is very sensitive against CM crashes (no migration is possible during a CM crash) and
long lasting node crashes (an agent cannot be restarted while a node is down). [VoKuMo097a]
[VOKuM097b] claim to realize exactly-once semantics for mobile agents by executing the mi-
gration between nodes in a distributed transaction. According to the description, the agents are
not stored in stable storage. Considering this fact and the fact that there is no monitoring of
agents, it can be assumed that agents are lost in case of a node crash and that agents are caught
in case of a network partitioning. [JoReSc95] proposes an implementation of fault-tolerance us-
ing rear-guard agents, which are instantiated at migration time on the system the agents are leav-
ing and which monitor the progress of the agents. Unfortunately, no details are given. Particu-
larly, it is unclear how the blocking of agents on nodes can be prevented during a partitioning
between the rear-guard and the agent. [BagcEA98] presents a mechanism to provide (non agent)
applications with fault-tolerance using mobile agents.

In addition, there has been a lot of related work in the fields of transaction processing and fault-
tolerant computing. The ConTract model [WR92][RSS97] also aims at the exactly-once prop-
erty and similar to our approach only allows for forward recovery. A ConTract is defined by a
script which is performed by a ConTract manager. A first prototype implementation, APRI-
COTS [Sch93], will be extended to allow the migration of scripts between ConTract managers,
even in the case that the ConTract manager processing the script crashed, by using logging in-
formation written during the execution of the script to recover the state of the script on another
node. However, there is currently no component which autonomously (and reliably) initiates the
migration of a script to another ConTract manager if the ConTract manager executing the script
crashes. Another approach is the use of process pairs [GR94] (also called hot backups [BE97]),
where a primary process executes the program and sends checkpoint messages to a backup proc-
ess. The backup process monitors the primary and takes over the execution using the latest
checkpoint information received. In this approach, the communication between process pairs is
assumed to be reliable. An extension to this approach are system pairs [GR94], where the proc-
essors can be geographically remote. This approach also cannot deal automatically with net-
work partitioning. An approach based on replicated objects is presented in [BeedEA95]. Each
replica of an object gets all messages sent to the object and executes all methods that are in-
voked. Only the primary sends messages (method calls, replies on method calls) to other ob-
jects. The system handles failures of primaries by selecting one of the replicas as primary. The
communication system is assumed to be reliable and to offer an atomic broadcast. Despite the
extraordinary overhead of executing all calls on an object on all its replicas, no byzantine errors
are detected.

Voting algorithms are mainly used in the area of replicated data (e.g. [Thom79][Giffor79]) and
mutual exclusion in distributed systems (e.g. [Maek85]). In our protocol, voting is used as a mu-
tual exclusion mechanism preventing multiple stage nodes to commit.

4 WP 2.3: Recoverable Agents 51

4.1.10 Conclusion and Future Work

We have investigated how the exactly once property can be provided in mobile agent systems in
a fault-tolerant way. We presented a protocol guaranteeing this property, while reducing the
probability for agent blocking. Moreover, we proposed an architecture that allows to integrate
the protocol in standard transactional technology. In other words, the proposed mechanism can
be realized on top of conventional TP-monitors and transactional message queues. Currently,
the protocol is under implementation in the Mole system [MOLE] and will be evaluated in terms
of performance. Results are expected to be available in autumn 1998.

Future work will concentrate on enhancing our agent execution model. A straightforward exten-
sion is to allow the agent to access remote services resulting in distributed transactions which
include arbitrary nodes. More sophisticated problems to solve are the communication with other
mobile agents and the support of enhanced transaction models. One limitation of our current
protocol is e.g. that, on system level, it allows for forward recovery only. In other words, if a
user wants to abort an agent, the potentially required compensation operations are not automat
ically triggered on the system level. Instead, the logic to perform compensations must be pro-
vided in the agent by the agent programmer. This goes in line with the experiences made with
today’s workflow systems that many operations can only be compensated in an application-spe-
cific manner and often require the intervention of human users. However, some compensation
can be done automatically, and we will investigate what concepts and protocols are needed to
support compensation on the system level. Related problems also to be investigated are support
of long-lasting actions including the recovery on other stage nodes without losing all work al-
ready done in the stage (e.g. by using safe points) and “atomic” actions over several nodes. We
are confident that we can learn from the research conducted in the field of transaction models
(e.g., Sagas [GMS87], open nested transaction [Wei91][WS91], etc.).

4 WP 2.3: Recoverable Agents 52

4.1.11 Appendix

The voting protocol described in the Section 4.1.5 is illustrated in this appendix using a pseudo-
code notation. To keep the code as small as possible, several simplifications are performed. Most
of the variables used in the code depend on the c8tageldand should be read gsStageld

instead ok. VoterldandOrchld are synonyms for thdodeldof the node the voter/orchestrator
reside on. The orchestrator gets the information about a Stgee(d, Transaction)drom the

entity performing the agent and is able to determiné&thgeldcorresponding to th&ransac-

tionld (short: Tld) and vice versa. All communication primitives are executed asynchronous.

The tests using the Tld to determine if votes are current are omitted.

Orchestrator

RECEIVE rm_prepare(TId){ // from TM

YV=CYV=NV={}; // Vote Sets

REPEAT
SEND VOTE(Stageld, Tld, Orchid)

TO StageVoters\(YV+CYW+NW);
WAIT(sometime)

UNTIL (majority achieved)

}
RECEIVE YES(Stageld, Tld, Voterld){

YV =YV + Voterld;

CheckCondYes(CYV, YV);

IF YV contains majority THEN
TA_State = Ready;
SEND(rm_yes) TO TM;

}
RECEIVE NO(Stageld, Tid, Voterld){

NV = NV + Voterld;

IF NV contains majority THEN
SEND(rm_no) TO TM,;

SEND(UN_VOTE(Stageld, Tid,
Orchld)) TO
All Voters in YW+CYW

RECEIVE COND_YES(Stageld, Tid
OrchSet, Voterld){

CYW = CYW + (Voterld,OrchSet);

CheckCondYes(CYV, YV);

IF YV contains majority THEN
TA_State = Ready;
SEND(rm_yes) TO TM;

}
RECEIVE HIGHER_PRIO(Stageld){

IF TA_State==Unknown
SEND(rm_no) TO TM;

SEND(UN_VOTE(Stageld, Tid,
Orchld)) TO
All Voters in YW+CYW

REPLY GAVE_UP;
ELSE
REPLY ALREADY_DONE;
}
PROCEDURE CheckCondYes(CYV, YV){
FORALL (vid,orchSet) in CYW DO
IF orchSet\YV == {} THEN
CYV = CYV\(vid,orchSet)Set);
YV =YV +vid;

}
RECEIVE GIVE_UP(Stageld){

SEND(rm_no) TO TM;

4 WP 2.3: Recoverable Agents

ELSIF TA_ State == Committed THEN

53

RECEIVE rm_commit(TId){ // from TM
TA_State = Committed,;
SEND(rm_ack) TO TM;

REPEAT
SEND FORGET(Stageld, Orchld)
TO StageVoters;

WAIT (sometime);
UNTIL (all ACKs received)
TA_State = Unknown;

RECEIVE rm_abort(TId){ // from TM
TA_State = Unknown;

SEND(UN_VOTE(Stageld, Tld,

Orchld)) TO
All Voters in YW+CYW

}
RECEIVE INQUIRY (Stageld, Voterld){
IF TA_State == Ready THEN
YV =YV + Voterld;

SEND FORGET(Stageld, Orchld)
to Voterld
ELSE // Unknown
IF (no active TAfor Stageld) THEN
SEND UN_VOTE(Stageld, Null)
TO Voterld;

ELSE
/[ignore
I

PROCEDURE RECOVERY ()}
FORALL TA with TA_state==Committed

DO

REPEAT
SEND FORGET(Stageld, Orchld)
TO StageVoters;

WAIT (sometime);
UNTIL (all ACKs received)
TA_State = Unknown;

4 WP 2.3: Recoverable Agents

\oter

54

RECEIVE VOTE(Stageld, Tld, Orchld){
IF OrchSet=={} THEN
OrchSet = OrchSet + Orchid;
REPLY YES(Stageld, Tid, Voterld);
ELSE

N=node with
highest priority in OrchSet;

IF prio(Orchld) < prio(N) THEN

REPLY NO(Stageld, Tld,
Voterld);

ELSE
IF N not Voterld THEN

REPLY COND_YES(Stageld, Tld,
OrchSet, Voterld);

ELSE
SEND HIGHER_PRIO(Stageld);
RECEIVE ANSWER;
IF ANSWER = GAVE_UP THEN
IF OrchSet\{N} =={} THEN

REPLY YES(Stageld,
Tid, Voterld);

ELSE

REPLY COND_YES(Stageld,
Tld, OrchSet\{N},
Voterld);

ELSE // ALREADY_DONE

REPLY NO(Stageld, Tid,
Voterld);

IF voted YES or COND_YES THEN
REPEAT
WAIT(sometime);

IF NOT RECEIVED (FORGET
or UNVOTE) THEN

SEND INQUIRY (Stageld,
Voterld) TO Orchld;

UNTIL RECEIVED (FORGET or UNVOTE)

}
RECEIVE UN_VOTE(Stageld, Tld)

FROM Orchld{

OrchSet = OrchSet\{Orchld};
}
RECEIVE FORGET(Stageld, Orchld){

remove stage record and OrchSet;

REPLY ACK(Stageld);

SEND GIVE_UP TO local orchestrator;
}
PROCEDURE RECOVERY(){

FOR all OrchSets DO
FOR all Orchlds in OrchSet DO

REPEAT

SEND INQUIRY (Stageld,
Voterld) TO Orchld;

UNTIL RECEIVED (FORGET or UNVOTE)

4 WP 2.3: Recoverable Agents 55

4.2 Concepts for a Reliable and Scalable Agent Server

4.2.1 Requirements

Reliability: The agent system ensures, that the agents residing at the system don’t get lost if
some hardware or software components fail but that they get restarted in a well defined
state. Especially in view of the use of mobile agent systems in the commercial environment,
this requirement occupies a central role: nobody wants to lose money only because an agent
carrying electronic cash gets lost.

Scalability: With the increasing use of mobile agents to access services, it is of first importance
for service providers, that the agent execution environment scales to be able to flexibly react
on an increased demand.

Communication and migration functionality should follow closely the functionality of the
agent system Mole, which was developed at university of Stuttgart.
The agent system offers functionality to synchronously and asynchronously send messages.
If a message can't be delivered to its recipient, it is ether queued and delivered at a later time
or the sender gets an error message (depending of the specified failure semantics of the mes-
sage). To deliver a message to an agent, the location calls the receiveMessage() method of
the agent. Besides the message mechanism, the agent system offers a remote method invo-
cation mechanism which enables the agent to invoke methods of other agents.
Additional to the direct addressing using unique agent names, it is able to use so-called
badgesfor anonymous communication. Badges are tags (simple strings), which an agent
may put on e.g. to announce that it offers a certain service.

4.2.2 Architecture of the Agent System

The agent system consists of several components. Figure 4.12 depicts these components and
their interactions.

The basic idea of the agent system is to store all agent in a serialized form in a Tuxedo message
gueue. In the queue they are protected against software and hardware failures. To execute an
agent ready for execution, tReManagerprocess gets the agent out of the message queue and
sends the agent to a free server of the Tuxedo serverStlascationusing an asynchronous
tpacall. TheSublocationserver processes offer tBecuteAgenfunction as its only service.

This function takes a serialized agent as its parameter and executes this agent in a local (to the
process) Java virtual machine. TleecuteAgerfunction terminates if the agent terminates, if

it migrates to another location or its execution state changes from “executable” to “blocked”
(communication, sleep-functionality). In the last case QHdanagerre-inserts the serialized

agent (and some additional state information) into the local message queue. All actions begin-
ning from getting the agent out of the queue up to re-inserting the agent into the queue are per-
formed within a transaction. In the case of an (hard-/soft-)failure of the SublocatiQaMha-

ager rolls the transaction back, if th@-Manager fails, the transaction is rolled back
automatically. If the transaction rolls back, the agent still resides in the input queue in its former
state.

4 WP 2.3: Recoverable Agents 56

Server Class

Sublocation

Sublocation

tpacall / tpreturn
>
Q-Manager) =

\\tpqueue / tpdequeue

Message Queug

Java-RMI
tpqueue / tpdequeu

Figure 4.12Architecture of the agent system

Sublocation

Sublocation

Locationsare places where agent are instantiated, to which agents can migrate and where agents
“live” logically. Locations manage the agents residing at this location. One of their tasks is to
make sure that blocked agents residing in the message queue are executed again if an commu-
nication request (message, remote method invocation) concerning this agent arrives.

For performance reasons, the real communication takes place directly between the involved
agents. Hereby, the agents are supported by their sublocation. A sublocation is some kind of
runtime environment which among others provides the agent with the ability to communicate
and to migrate. A sublocation is launched each time the ExecuteAgent service is invoked. The
sublocation registers the agent at the local RMI registry to be able to receive messages and re-
mote method invocations for the agent. Afterwards, the agent is registered at its location by
passing the RMI-URL under which the agent can be reached. Before the ExecuteAgent service
terminates, the agent is removed at the local RMI registry and its location.

4.2.3 Lifecycle of an Agent

The state diagram in Figure 4.13 shows the life cycle of an agent, which will be explained in
detail in the next paragraphs.

An agent can be started in two different way. On the one hand, an agent can be started from the
command line of a location using the new command (syntax: new <agent class> [<tag><param-
eter>[, <tag> <parameter>[,...]]];). On the other hand, an agent can be launched by an other
agent using the createAgent() method provided by the location. After the creation and the ini-

4 WP 2.3: Recoverable Agents 57

Queued
State: Blocked

RMI of / message t agent terminates
the blocked agent his threads

Migration .
new ... - die()
— >
createAgent() \ State: Ready ExecuteAgent>

Figure 4.13Life cycle of an agent

tialization of the agent by the location, the agent including the information that the agent is
ready to run is put into the message queue. The location additionally stores some other informa-
tions about the agent in a list containing all agents residing on this location. As soon as a server
of the class ExecuteAgent is available, the Q-Manager starts a new transaction, reads the agent
from the message queue and invokes its execution using the asynchronous call (tpacall) of the
ExecuteAgent service. The ExecuteAgent service now starts a new sublocation. This subloca-
tion registers itself (using the agent’s name) at the local RMI registry to be able to receive (and
to deal with) messages and remote methods invocations for the agent. Then, the sublocation reg-
isters the agent at its location using the registerAgent() method of the location. The location up-
dates its informations about the agent (e.g. “agent xy now being performed in service process
z") and returns state information to the sublocation. This state information tells the sublocation
what to do with the agent. If the agent is newly started or if it is just migrated to the location,
the start() method of the agent has to be invoked. If the agent stayed in the queue while being
blocked (sleeping, waiting for communication), according steps have to be taken (see below).

The start() method of an agent implements the desired functionality of the agent. During the ex-
ecution of start(), the agent may communicate to other agents (messages, remote method invo-
cations), use local services and invoke the migration to other locations. It is important to note
that, because the agent always starts its execution on a location with the start() method, the agent
itself always has to know what to do on the location it just arrived (e.g. by using some informa-
tion stored in the agents data).

If the agent intends to terminate itself, it calls the die() method. This method removes the agent
at the location and the local RMI registry. Then, the execution of the ExecuteAgent service is
terminated using the tpreturn call. The Q-Manager, which periodically checks if a service re-

guest returned (using tpgetrply), now commits the transaction (which was started before the
agent was read from the queue).

If, during the execution, an agent has no more active threads (e.g. if it sleeps or waits for com-
munication requests), the agent can be put back into the message queue to enable other agents
to be executed. In this case, the sublocation informs the location on the agent’s state (waiting

4 WP 2.3: Recoverable Agents 58

for communication, sleeping) and remove the agent (more exact: itself) from the local RMI reg-
istry. Then, the execution of the ExecuteAgent service is terminated using the tpreturn call, in-
forming the Q-Manager to put the agent (and its state “blocked”) into the message queue and to
commit the transaction.

If the reason that the agent is blocked doesn't hold any longer (communication request or time
to sleep is exceeded), the location has to reactivate the agent. Therefore, it gets the agent from
the message queue and puts the agent back in the queue with the information that the agent is
ready to be executed. As soon as a server from the ExecuteAgent class is available, the Q-Man-
ager invokes the agent execution as described above. If the sublocation executing the agent now
registers itself at the location, the location provides the information why the agent has been ac-
tivated (message, remote method invocation, time to sleep exceeded, combinations are possible)
enabling the sublocation to invoke the required functionalities (receive the message, call the de-
sired method or activate the agent after its sleep).

4.2.4 Messages

The sublocation offers two different methods for message transmission for the agent. The syn-
chmessage() method transfers messages synchronously using the thread in which the method
has been called. The message() method transfers messages asynchronously by starting a new
thread in which synchmessage() is executed. This enables the agent to continue its execution
while the message is being transferred.

Both methods require as a parameter an error sematics specification defining their behaviour in
the case that the message can't be delivered to the receiver agent. Currently, three different pos-
sibilities exist. In the first case, the message is only discarded if the receiver agent does not re-
side at the specified location, no error message is generated. In the second case, the message is
discarded and an error message is sent to the sender of the message. In the third case, the mes-
sage is stored at the specified receiver location and is delivered when the receiver agent arrives
at the location.

Other parameters of the two methods are the receiver of the message and, of course, the content
of the message. The receiver of the message is specified by providing the receiver agent’s unique
agent name and the location where the receiver agent resides. The location has to be specified
because there is currently no service to map an agent’s name to its current location.

In the following paragraphs, a short description of the synchmessage() method is given. If the
synchmessage() is invoked, the sublocation of the sender first invokes the getAgentRMIURL()
method of the sender location to get the RMI-URL of the receivers sublocation. If the sender
and the receiver reside at different location, the senders location passes the method invocation
to the receiver location. If the receiver is currently being executed by the ExecuteAgent service,
getAgentRMIURL() immediately returns the existing RMI-URL of the receiver agent’s sublo-
cation. If the receiver agent currently stays in the message queue, its location reactivates the
agent by reading it out of the message queue and re-inserting it with the information that the
agent is now ready for execution. Now the thread executing getAgentRMIURL() is suspended
until a sublocation registers the receiver agent with the location via registerAgent(). Now, getA-
gentRMIURL() is able to return the agent’'s RMI-URL.

4 WP 2.3: Recoverable Agents 59

The sending sublocation is now able to get a reference to the receiver’s sublocation using the
RMI lookup (with the RMI-URL received by getAgentRMIURL()). This reference is used to
invoke the deliverMessage() method of the receivers sublocation. This method now invokes the
best-fitting receiveMessage() method of the agent using the java reflection API (the agent may
contain several methods having different message types (classes) as (its only) parameter).

Figure 4.14 shows the synchronous message transfer in the case that sender and receiver agent
both reside at the same location (black bars symbolize executing threads).

Sender Location Receiver

getAgentRMIURLY()

deliverMessage(
recelveMessagel

Figure 4.14The synchmessage() method

N

In general, two communicating agents send more than one message in both directions. To en-
hance the efficiency of the communication by avoiding to resolve the receiver agents subloca-
tion (by calling getAgentRMIURL() and resolving the reference by RMI lookup) for each com-
munication, a cache is used. This cache maps agent names to the last known sublocation
reference. At each invocation of synchmessage(), the cache is searched for an entry for the re-
ceiver agent. If the cache contains an entry, deliverMessage() is invoked with this reference as

a parameter. If the reference contained in the cache is obsolete (e.g. because the agent stays in
the message queue), an exception occurs. In this case as well as the case that there is no cache
entry for the agent, getAgentRMIURL() and a RMI lookup are invoked as described above and
the obtained reference is stored in the cache.

The receiver agents may not only be addressed using their (unique) agent name, but it is also
possible to send messages to anonymous recipients by using a badge. An agent may pin on a
badge (containing a string) which can then be used to address the agent (instead of the agents
name). If several agents on a location have pinned on the same badge, messages being addressed
to agents wearing this badge are distributed “round-robin” to the agents wearing this badge. Be-
cause agents are able to remove a badge they have pinned on and because badges can be used
to realize a rudimentary load balancing between several agents, agent sublocations which are
resolved from a badge are not stored in the cache.

4 WP 2.3: Recoverable Agents 60

4.2.5 Remote Method Invocation

To invoke a method offered by another agent, the sublocation offers a call()-method to its agent.
This method takes as parameters the name and the parameters of the method which should be
called and the name (or badge) and location of the agent offering the method.

The execution of the call() method is very similar to the execution of synchmessage(). By means
of getAgentRMIURL() and RMI lookup, the reference of the sublocation of the receiver agent
is resolved. This reference is then used to invoke the dispatchRPC() method of the receiver
agent. This method uses the Java reflection API to invoke the desired method.

Figure x may also be used to show the execution of a remote method invocation (substitute syn-
chmessage() by call() and deliverMessage()/receiveMessage() by dispatchRPC())

4.2.6 Migration

If an agent wants to continue its execution on another location, it calls the migrateTo(destina-

tionLocation) method of its sublocation. This method first suspends all active threads of the

agent (of course all but the thread executing the migrateTo()). Then, the RMI-URL of and the

reference to the destination location is determined. This reference is used to invoke the hand-
leMigration() method of the destination location, passing the serialized agent as parameter. The
handleMigration() method inserts the agent in its message queue.

If the agent is passed successfully to the other location, the “old” sublocation deletes its entry
in the RMI registry and its location. Then, the ExecuteAgent service terminates and the Q-Man-
ager commits the affiliated transaction. If the agent cannot be passed successfully to the desti-
nation location, the suspended threads of the agent are reactivated

4.2.7 Current State

The agent server is currently under implementation on a Tandem Himalaya under OSS. First re-
sults are expected in June 1998.

4.3 Bibliography

[AA88] Abu-Amara, H.H. 1988. “Fault-tolerant distributed algorithm for election in complete
networks.” IEEE Transactions on Computers, 37(4). 449-453

[AgrAbb91] Agrawal, D.; El Abbadi, A.: “An Efficient and Fault-Tolerant Solution for
Distributed Mutual Exclusion”. In: ACM Transactions on Computer Systems, Vol. 9, No.
1. February 1991, pp. 1-20

[BauEA98] Baumann, J.; Hohl, F.; Rothermel, K.; Stral3er, M.: “Mole - Concepts of a Mobile
Agent System.” accepted for “WWW Journal, Special issue on Applications and
Techniques of Web Agents”, Baltzer Science Publishers, 1998.

[BE97] Bernstein, P.; Newcomer, E.: “Principles of Transaction Processing”. Morgan
Kaufmann Publishers Inc, 1997

[BeedEA95] Beeduball, G., A. Karmarkar, A. Gurijala, W. Marti, and Udo Pooch. 1995. ,Fault
Tolerant Objects in Distributed Systems Using Hot Replication“. Technical Report

4 WP 2.3: Recoverable Agents 61

TR_95-023. Department of Computer Science. Texas A&M University

[BeHaGo087] Bernstein, P.; Hadzilacos, V.; Goodman, N.: “Concurrency Control and Recovery
in Databas Systems.” Addison-Wesley Publishing Company. 1987

[Blak95] Blakeley, B.: “Messaging and Queuing Using the MQI”, McGraw-Hill series on
computer communications, 1995

[ChaCha97] Chang, Y., and Chang, Y.: “A Fault-Tolerant Triangular Mesh Protocol for
Distributed Mutual Exclusion.” In: Operating Systems Review, Vol. 31, No. 3, July 1997.
ACM Press. pp 29-44

[Giffor79] Gifford, D.K. 1979. “Weighted Voting for Replicated Data.” Proc. 7th Symp. on
Operating System Principles 1979 (SOSP79). ACM, New York. pp. 150-162

[GM] General Magic: “Agent Technology”, http://www.genmagic.com/agents/

[GM82] Garcia-Molina, H.: “Elections in a Distributed Computing System”. |IEEE
Transactions on Computers, Vol. C-31(1), 1982

[GMS87] Garcia-Molina, H.; Salem, K.: “Sagas”. In: Proc. ACM Conf. on Management of
Data, pp. 249-259, 1987

[GR94] Gray, J.; Reuter, A.: “Transaction Processing - Concepts and Techniques”. Morgan
Kaufmann Publishers Inc, 1994

[GVI7] Ghezzi, C.; Vigna, G.: “Mobile Code Paradigms and Technologies: A Case Study”. In:
Mobile Agents, Proc. 1st Int. Workshop, MA’97. Springer, 1997

[HR93] Haerder, T.; Reuter, A.: “Principles of Transaction-Oriented Database Recovery.”.
ACM Computing Surveys, 15(4), 1993

[HuGr71] Hughes, A.; Grawoig, D.: “Statistics: A Foundation for Analysis.” Addison-Wesley
Publishing Company, 1971.

[lyKaBaA97] lyer, R.K.; Kalbarczyk, Z.; Bagchi, S.: “Chameleon: A Software Infrastructure
and Testbed for Reliable High-Speed Networked Computing”. UIUC (University of
lllinois at Urbana-Champaign) Technical Report No.UILU-ENG-97-2218, July 97.

[Jal94] Jalote, P.: “Fault Tolerance in Distributed Systems”. Prentice Hall Inc., 1994

[JoReSc95] Johansen, D.; van Renesse, R.; Schneider, F.B.: “Operating system support for
mobile agents.” Proceedings of the 5th. IEEE Workshop on Hot Topics in Operating
Systems. IEEE. 1995

[Lam81] Lampson, B.: “Atomic Transactions”. In: Lampson, B. et al (eds): “Distributed
Systems - Architecture and Implementation”, Springer-Verlag, 1981

[LO97] Lange, D.; Oshima, M.: “Java Agent API: Programming and Deploying Aglets with
Java”. To be published by Addison-Wesley, Fall 1997; a working draft, “Programming
Mobile Agents in Java, is available at http://www.trl.ibm.co.jp/aglets/whitepaper.htm.

[Maek85] Maekawa, M.: “AJ/N Algorithm for Mutual Exclusion in Decentralized Systems.”
In: ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985, pp 145-159
[MinsEA96] Minsky, Y.; van Renesse, R.; Schneider, F.B.; Stoller, S.D.: “Cryptographic
Support for Fault-Tolerant Distributed Computing.” In:Proceedings of the Seventh ACM

SIGOPS European Workshop. 1996. pp 109-114.

[MNHT89] Masuzawa, T., N. Nishikawa, K. Hagihara, and N. Tokura. 1989. “Optimal fault-
tolerant distributed algorithms for election in complete networks with a global sense of
direction.” In Proceedings of the 3rd Int'l Workshop on Distributed Algorithms.

[Mole] Project Mole, http://www.informatik.uni-stuttgart.de/ipvr/vs/projekte/mole.html

[OMG96] Object Management Group: “CORBA 2.0 specification”, ptc/96-03-04, 1996

4 WP 2.3: Recoverable Agents 62

[PS97] Peine, H.; Stolpmann, T.: “The architecture of the Ara platform for mobile agents.”. In:
Mobile Agents, Proc. 1st Int. Workshop, MA’97. Springer, 1997

[RoSt98] Rothermel, K.; StralRer, M.:"A Fault-Tolerant Protocol for Providing the Exactly-
Once Property of Mobile Agents”. Accepted for 17th IEEE Symposium on Reliable
Distributed Systems. 1998

[RSS97] Reuter, A.; Schneider, K.; Schwenkreis, F.: “ConTracts Revisited”. In: S. Jajodia and
L. Kerschberg (ed.): Advanced Transaction Models and Architectures (ATMA), Kluwer
Verlag, 1997

[SBH96] Stral3er, M.; Baumann, J.; Hohl, F.: “Mole - A Java Based Mobile Agent System”. In:
Muhlh&user, M.: “Special Issues in Object-Oriented Programming”, Workshop Reader
ECOOP’96, p327-334, dpunkt.verlag, 1996. pp 327-334

[Sch93] Schwenkreis, F.: “APRICOTS - Management of the Control Flow and the
Communication System”. In Proc. of the 12th IEEE Symposium on Reliable Distributed
Systems, Princeton, October 1993

[Sch97] Schneider, F.: “Towards Fault-tolerant and Secure Agentry”. In: Proc. 11th Int.
Workshop on Distributed Algorithms, 1997

[Singh96] Singh, G. 1996. “Leader Election in the Presence of Link Failures.” IEEE Transact.
on Parallel and Distributed Computing, 7(3)

[Singh97] Singh, G. 1997. “Leader Election in Complete Networks.” SIAM Journal on
Computing, 26(3). June 1997

[SK97] Morais de Assis Silva, F.; Krause, S.:"A Distributed Transaction Model based on
Mobile Agents”. In: Mobile Agents, Proc. 1st Int. Workshop, MA’97. Springer, 1997

[Spe82] Spector, A.: “Performing remote operations efficiently on a local computer network”,
Communications ACM, vol. 25, pp 246-260, Apr. 1982

[StRoMa98] StralRer, M.; Rothermel, K.; Maihofer, C.: “Providing Reliable Agents for
Electronic Commerce.” In: “Trends in Distributed Systems for Electronic Commerce”,
International IFIP/GI Working Conference (TREC’98), Hamburg, Germany, June 1998.
Lamersdorf, Winfried; Merz, Michael (Eds.), Lecture Notes in Computer Science 1402,
Springer Verlag, Berlin, Pages 241-253. 1988

[Thom79] Thomas, R.H. 1979. “A Majority Consensus Approach to Concurrency Control for
Multiple Copy Databases.” ACM Transactions on Database Systems, Vol. 4, No. 2., June
79.pp. 180-2009.

[VoKuMo097a] Vogler, H.; Kunkelmann, T.; Moschgath, M.L.: “Distributed Transaction
Processing as a Reliability Concept for Mobile Agents.” In: 6th IEEE Workshop on Future
Trends of Distributed Computing Systems (FTDCS’'97). IEEE Computer Society. 1997.
ISBN 0-8186-8153-5.

[VoKuMo97b] Vogler, H.; Kunkelmann, T.; Moschgath, M.L.: “An Approach for Mobile
Agent Security and Fault Tolerance using Distributed Transactions.” In; Proc. 1997 Int’l
Conference on Parallel and Distributed Systems (ICPADS’97). IEEE Computer Society.
1997 ISBN 0-8186-8227-2

[Wei91] Weikum, G.: “Principles and realization strategies of multi-level transaction
management”. ACM Transactions on Database Systems, 16(1): pp. 132-180, March 1991

[WOEA97] Wong, D.; Paciorek, N.; Walsh, T.; DiCelie, J.; Young, M.; Peet, B.: "Concordia:
An Infrastructure for Collaborating Mobile Agents.” In: Rothermel, K.; Popescu-Zeletin,
R. (eds.): “Mobile Agents. First International Workshop MA ‘97.” Lecture Notes in

4 WP 2.3: Recoverable Agents 63

Computer Science, Vol. 1219, Springer. 1997, pp. 86-97.

[WR92] Wachter, H.; Reuter, A.: “The ConTract Model”. In: A. EImagarmid (ed), Database
Transaction Models for Advanced Applications, Morgan-Kaufmann, 1992

[WS91] Weikum, G.; Scheck, H.: “Multi-level transactions and open nested transactions”.
IEEE Data Engineering Bulletin, March 1991

[X/091] X/Open DTP:*X/Open Common Application Environment”, “Distributed Transaction
Processing:Reference Model”, “Distributed Transaction Processing: The XA
Specification” Reading, Berkshire, England: X/open Ltd, 1991

5 WP 2.4: Developed Concepts and Implementation 64

5 WP 2.4: Developed Concepts and Implementation

Version 3.0 of Mole has been strongly revised and several requests and proposals from users of
the earlier versions of Mole were integrated into the new release. In particular Mole supports
communication between agent groups and concept of sessions. The infrastructure of Mole in-
cludes a resource manager, a directory service and a global naming scheme for agents. In order
to support the design of agents, a graphical agent monitor allows to visualize the system behav-
lour as a whole or of a single agent in particular. Mole further provides a thread management
unit to overcome some shortcomings of the Java virtual machine. Mole provides a simple means
for installation and configuration of the system. This chapter summarizes a paper that will be
published at the Middleware’98 conference by Baumann, Hohl, Rothermel, Schwehm and
StralRer (1998).

5.1 Mole 3.0: A Middleware for Java-Based Mobile Software Agents

5.1.1 Introduction

Mobile agents are a new programming model for distributed systems. Generally a mobile agent
IS a process that can act within a distributed system on behalf of its user. In particular such proc-
esses must be able to move freely from node to node in a distributed system and to continue
processing asynchronously even if its user is (temporarily) not connected with the system any
more. To allow such a functionality, each computing node of the distributed system must pro-
vide a suitable infrastructure. Such a platform for mobile agents consists basically of a virtual
machine (engine) that must run on each participating node of the distributed system. The engine
manages two types of objects: places and agents. A place is an object that provides an infrastruc-
ture for executing agents. An agent is a process that can occupy a place and that can communi-
cate with other agents. Stationary agents can provide services and system resources to other
agents. A mobile agent can actively move from one place to another (agent migration) and can
access or provide services by communication with other agents. Applications of mobile agents
can be found among others in the areas of network management, electronic commerce and mo-
bile computing.

The idea to send machine independent executable messages via a network can be traced back to
the very beginning of the Internet, where the Decode-Encode-Language (DEL) was considered
to run interactive programs on remote consoles of a networked systerrg®N 1969). Later

the idea emerged independently in the area of radio network communication, where the SOFT-
NET project used Forth-messages to transmit data as well as to reprogram the underlying net-
work (ZANDER 1981). Another early approach was the Network Command Language by F

CONE (1987). In the nineties the term ‘messengers’ was usesbpMUDIN (1993) to denote

active messages programmed in his Postscript-like language MO. The term ‘mobile agent’ was
coined in a white paper by General Magic Inc. (1994, republishedhyaAL997a, 1997b).

General Magic’s Telescript language was specifically designed for mobile agent programming
and already included most of the concepts of later mobile agent systems, but it was dropped
when it became clear that it could not compete with Java as a commercial product. In the sequel
several mobile agent systems have been developed in the research community. The research sys-

5 WP 2.4: Developed Concepts and Implementation 65

tems were based on such diverse programming languages like untyped scripting languages, e.g.
Agent Tcl, an extension of Tcl byRAy (1995, 1996), or strongly typed functional languages

like MAP based on Scheme bg®RRET and DUDA (1996), but the mainstream of the systems
today are based on Java. Examples are MoleTBRa%&R, BAUMANN and HoHL (1996) or

Aglets by the IBM AGLETSWORKBENCH TEAM (1997). Other approaches use a language inde-
pendent approach like TACOMA bypHANSEN, VAN RENESSEand SHNEIDER (1994, 1995) or

Ara by REINE and SOLPMANN (1997). Recently, several companies and research groups have
presented MASIF, a proposal for the standardisation of mobile agent systemagh et al.

(1998)).

This paper presents Version 3.0 of Mole, one of the first Java-based mobile agent systems. The
paper proceeds with an overview of the Mole system in Section 2. Then basic concepts of the
Mole system like agent migration in Section 3 and agent communication in Section 4 are pre-
sented. Section 5 continues with a description of the agent infrastructure provided by Mole and
Section 6 introduces the graphical agent monitor of the system. Implementational issues are dis-
cussed in Section 7 and the installation procedure is sketched in Section 8.

5.2 Mole System Overview

Our model of an agent-based system - as various other models - is mainly based on the concepts
of agents and places. Places provide the environment for safely executing local as well as visit-
ing agents. An agent system consists of a number of (abstract) places, being the home of various
services. Agents are active entities, which may move from place to place to meet other agents
and access the places’ services. In our model (see Figure 5.1)., agents may be multi-threaded
entities, whose state and code is transferred to the new place when agent migration takes place.
Each agent is identified by a globally unique agent identifier. An agent’s identifier is generated
by the system at agent creation time. The creating place can be derived from this name. It is in-
dependent of the agent’s current place, i.e. it does not change when the agent moves to a new
place. In other words, the applied identifier scheme provides location transparency. A place is
entirely located at a single node of the underlying network, but multiple places may be running
on a given node. For example, a node may provide a number of places, each one assigned to a
certain agent community, allowing access to a certain set of services or implementing a certain
prizing policy. Places are divided into two types, depending on the connectivity of the underly-

O Place S
O Mobile Agent { aptop ~
() Service Agent :

[] Application
=\ Agent Migration

4 Local Communication
4" Global Communication

Server

Data System
-l Deskto Base Resources

User Application Legacy Softwarg

Figure 5.1Mole System Overview

5 WP 2.4: Developed Concepts and Implementation 66

ing system. If a system is connected to the network all the time (exept for network failures and
system crashes), a place on this system is called connected. If a system is only temporarily con-
nected to the network, e.g. a user’'s PDA (Personal Digital Assistant), the place is called associ-
atedAgent Lifecycle and Agent Mobility

5.2.1 Lifecycle of an Agent

After an agent is created, its initialization routing() is processed (see Figure 5.2). The
arguments given to the agent at creation time are passed to this routine. The programmer can set
up the internal state and initialize the agent attributes. At this time the agent is still outside any
place. Now the agent system injects the agent into the system as if it had just arrived after a mi-
gration. First the agent is made known to the place, but other agents are not yet allowed to com-
municate with it. Theprepare() -method is called, allowing the agent to do its place-specific
setup, e.g. identifying local services. Finally the agent is started by calliagatl(¢ -meth-

od. After that normal processing takes place, the agent can start its own threads, use local serv-
ices, and can communicate locally or remotely. The agent stays on the place until it decides to
either migrate or to terminate.

init() —e¢pare() —staF() the O

‘\ migrate()

Figure 5.2Lifecycle of a Mobile Agent

If the agent wants to migrate it calls the methudrateTo() (described in more detail in

the next section). The system suspends the agent’s threads, serializes the agent and sends it to
the target place. If the target place accepts the agent, the agent is injected into the system and
started again via the methopiepare() andstart() . Now the target place sends an ac-
knowledgement back to the source place which removes the suspended agent from the system.

If the target place does not accept the agent, an error message is sent back and the agent resumes
its work on the original place. It receives an exception as the result of the failed migration, and
can react e.g. by trying to migrate to another place. If the agent has reached the end of its life,

it calls the methodlie() . The system now stops all threads of the agent, removes it from the
place, and deletes the agent.

Additionally the system supports periodic operation. This provides a simple mechanism for the
programmer to implement recurring tasks, e.g. checking a database for changes if no trigger
mechanism exists. If an agent implements the inteRac®dical |, then the system, in ad-

dition to calling theinit() -method, executes the methbdartbeatinit() . Now as

soon as thetart() -method has been called for the first time, the system begins executing a
method calledheartbeat() in regular intervals. This continues until thie() -method is

called.

5.2.2 Agent Migration

5 WP 2.4: Developed Concepts and Implementation 67

The concept of a mobile agent supports process mobility, i.e., program executions may migrate
from node to node of a computer network. Obviously, for migrating agents not only code but
also the state information of the agent has to be transferred to the destination. An agent’s state
is subdivided into data state and execution state. While the first includes the agent’s global and
instance variables, the latter comprises the local variables and the active threads. According to
GHEZzzI and MGNA (1997) two types of agent migration can be distinguished: weak migration
and strong migration. With strong migration, the underlying system captures the entire agent
state (consisting of datand execution state) and transfers it together with the code to the next
location. Once the agent is received at its new location, its state is automatically restored. From
a programmer’s perspective, this scheme is very attractive since capturing, transfer and restora-
tion of the complete agent state is done transparently by the underlying system. On the other
hand, providing this degree of transparency in heterogeneous environments at least requires a
global model of agent state as well as a transfer syntax for this information. Moreover, an agent
system must provide functions to externalize and internalize agent state. Since the complete
agent state (including data and execution state) can be large - in particular for multi-threaded
agents - strong migration might be a very time-consuming and expensive operation. These dif-
ficulties have led to the development of the so-called weak migration scheme, where only data
state information is transferred. The size of the transferred state information can be limited even
more by letting the programmer select the variables making up the agent state. As a conse-
guence, the programmer is responsible for encoding the agent’s relevant execution states in the
program variables. Moreover, the programmer must specify a start method that decides on the
basis of the encoded state information where to continue execution after migration. While this
method may substantially reduce the amount of state to be communicated, it puts additional bur-
den on the programmer and makes agent programs more complex. The difference between weak
and strong migration is a change in semantics, but not in expressive power. One of the design
goals of Mole is the ability to run on every Java Virtual Machine (VM). A normal Java VM does
not support capturing the state of a thread, which would be a prerequisite for capturing the ex-
ecution state. Thus our decision was to choose the changed semantics of weak migration and
with it the ability to run Mole on unchanged Java interpreters. This includes that, while agents
in Mole can be multithreaded, after a migration only one thread is started. If more threads are
necessary the agent has to start them explicitly.

Weak migration in Mole is implemented by using a part of the Remote Method Invocation pack-
age RMI, the object serialization provided as part of Java 1.1. After an agent thread calls the
migrateTo() -method, all threads belonging to the agent are suspended (not stopped). No
new messages and calls (RPC) to the agent are accepted. After all pending messages to the agent
have been delivered, the agent is removed from the list of active agents. Now the agent is seri-
alized using the object serialization. The object serialization computes the transitive closure of
all objects belonging to the agent (ignoring transient objects and threads), and creates a system-
independent representation of the agent. This serialized version of the agent is sent to the target
place that reinstantiates the agent. If any of the Java classes needed are not available locally, the
target place requests these classes either from a code sepwerefHal, 1997), or from the

source place. Now the agent is reinstantiated. One new agent thread is started. gfist the

pare() -method is called to initialize the place-specific attributes. Then this thread begins its
work at thestart() -method. As soon as the thread assumes control of the agent, a success
message is sent back to the source place. The source place now terminates all threads pertaining

5 WP 2.4: Developed Concepts and Implementation 68

to the agent and removes it from the system at any stage of the migration an error occurs, the
migration is stopped and the agent threads at the source place are resumed. The control flow
continues after thenigrateTo() statement, where error handling can be implemented (an
exception is thrown in the case of failure).

5.3 Agent Communication and the Session Concept

As will be seen below, a session between agents can be established only if the agents can iden-
tify each other. In our model, there are basically two ways how agents can be identified, the
unique agent identifiers - comparable to object identifiers - and the so-called badges. Agent
identifiers are well-suited for identifying service agents, as long as there exists a directory sys-
tem, that maps user-defined service names to service agent identifiers. Note, however, that the
directory service is not part of our base system, i.e., we clearly separate the mechanism for iden-
tifying services from the one for finding services. As a consequence, different naming schemes
and directory systems can be used on top of this system. The directory service provided by Mole
Is described in Section 5.2.

5.3.1 Badges

In the case of mobile agents the concept of agent identifiers is not always sufficient. Assume for
example, that an agent wants to meet some other agent participating in the same task at a given
place. If only agent identifiers were available, both agents would have to know each others iden-
tifiers. Actually, for identification it would be sufficient to say “At place XYZ | want to meet an
agent participating in task ABC”. This type of identification is supported by the concept of
badges. A badge is an application-generated identifier, such as “task ABC”, which agents can
“pin on” and “pin off”. This badge does not necessarily have to be unique, it simply represents
arole of an agent at a given time. As long as the agent provides the functionality associated with
this role, it wears the badge. An agent may have several badges pinned on at the same time.
Badges may be copied and passed on from agent to agent, and hence multiple agents can wear
the same badge. For example, all agents participating in a subtask may wear a badge for the sub-
task and another one for the overall task. The agent that carries the result of the subtask may
have an additional badge saying ,,CarryResult“. Using badges, an agent is identified by a (place
identifier, badge predicate)-tuple, which identifies all agents fulfilling the badge predicate at the
place identified by the place identifier. A badge predicate is a logical expression, such as (“task
ABC” AND (“CarryResult” OR “Coordinator”)). Obviously, this is a very flexible naming
scheme, which allows to assign any number of application-specific names to agents. To change
the name assignments two functions are proviéaOnBadge(badge) andPinOff-
Badge(badge)

5.3.2 Sessions

A session defines a communication relationship between a pair of agents. Agents that want to

communicate with each other, must establish a session before the actual communication can be
started. After session setup, the agents can interact by remote method invocation or by message
passing. When all information has been communicated, the session is terminated. Sessions have

5 WP 2.4: Developed Concepts and Implementation 69

the following characteristics: Sessions may be intra-place as well as inter-place communication
relationships, i.e., two agents participating in a session are not required to reside at the same
place. In order to preserve the autonomy of agents, each session peer must explicitly agree to
participate in the session. Further, an agent may unilaterally terminate the sessions it is involved
in at any point in time. Consequently, agents cannot be trapped in sessions. While an agent is
involved in a session, it is not supposed to move to another place. However, if it decides to move
anyway, the session is terminated implicitly. The main reason for this property of sessions is to
simplify the underlying communication mechanism, e.g., to avoid the need for message for-
warding.

The question may arise, why sessions are needed at all. There are basically two reasons: Firstly,
the concept of a session can be used to synchronize agents that want to meet for cooperation.
Note that the first property stated above allows agents to meet even if they stay on different plac-
es. The concept of a session is introduced to allow agents to specify which other agents they are
interested to meet at which places. Furthermore, it allows agents to wait until the desired coop-
eration partner arrives at the place and indicates its willingness to participate. Secondly, we want
to support both “stateless” and “stateful” interactions. In contrast to the first, the latter maintain
state information for a sequence of requests. Obviously, if they encapsulate “stateful” servers,
service agents have to be “stateful” also. A prerequisite for building “stateful” entities are ex-
plicit communication relationships, such as sessions.

In order to establish sessions, two methods are prow#ssjveSetUp() andActiveS-

etUp() (see Figure 5.3). The first operation is non-blocking and is used by agents to express
that they are willing to participate in a session. In contfagtyeSetUp() is used to issue

a synchronous setup request, i.e., the caller is blocked until either the session is successfully es-
tablished or a timeout occurs.

void PassiveSetUp (PeerQualifier , Placeld)

SessionObject ActiveSetUp (PeerQualifier, Placeld, Timeout)
boolean SetUp (SessionObject)

void SessionObject.Terminate 0

Figure 5.3Session Methods

If ActiveSetUp() succeeds, it returns the reference of the newly created session object to
the caller. Input paramet®taceld identifies the place, where the desired session peer is ex-
pected, andPeerQualifier qualifies the peer at the specified plac&eerQualifier

Is either an agent identifier or a badge predicate. Note that at most one agent qualifies in the case
of a single agent identifier, while several agents may qualify if a single badge predicate is spec-
ified. In that case a randomly picked agent is chosen. To avoid infinite blocking, the parameter
TimeOut can be used to specify a timeout interval. The operation blocks until the session is
established or a timeout occurs, whatever happens first.

The parameterBeerQualifier andPlaceld of the operatiorPassiveSetUp() are
optional. If neither of both parameters is specified, the caller expresses its willingness to estab-
lish a session with any agent residing at any place. By spec®yatgld and/ orPeer-

Qualifier the calling agent may limit the group of potential peers. For example, a group may

5 WP 2.4: Developed Concepts and Implementation 70

be limited to all agents wearing the badge “Stuttgart University” and / or that are located at the
caller’s place. As pointed out above, before a session is established both participants must agree
explicitly. An agreement for session setup is achieved if both agents issue matching setup re-
quests. Two setup requests, saydRd Ry of agents A respectively B, match if

 Place_Id in Ry and Ry identifies the current place of B and A, respectively, and
* PeerQualifier in Ry and Ry qualifies B and A, respectively.

If a setup request issued by an agent matches more than one setup request, one request is chosen
randomly and a session is established with the corresponding agent. A combin&&sa of
siveSetUp() andActiveSetup() allows a client/ server style of communication (see
Figure 5.4). The agent playing the server role once iszaesveSetUp() when itis ready

to receive requests. When an agent playing the client role indckies Setup() , this caus-

es theSetUp() method of the server side to be invoked implicBigtUp() implicitly estab-

lishes a session with the caller and assigns a thread for handling this session. Therefore, once
the server agent has calledssiveSetup() , any number of sessions can be established in
parallel, where session establishment is purely client driven. If both agents issue (matching)
ActiveSetUp() requests this corresponds to a rendezvous. Both requesters are blocked until
the session is established or timeout occurs (see Figure 5.4b). This type of session establishment
is suited for agents that want to establish peer-to-peer communication relationships with other
agents. Communication between agents is peer-to-peer if both have their own “agenda” in terms
of communication, i.e., both decide - depending on their individual goals - when they want to

interact with whom in which way.
('W
ActiveSetUp N ActiveSetUp
() |
,

SetUp() Tte-ol

a) Client/Server-Interaction b) Peer to Peer Interaction
Figure 5.4 Different Types of Interactions

As pointed out above, Remote Method Invocation (RMI), the object-oriented equivalent to
RPC, seems to be the most appropriate communication paradigm for a client / server style of
interaction, while message passing is required to support peer-to-peer communication patterns.
The available communication mechanisms are realized by so-€dlebbjects. Currently,

there are two types @omobjects, RMI objects and messaging objeCtanobjects are asso-

ciated with sessions. Each session may have an RMI object, a messaging object, or both. Each
session object offers a method for creatdwn objects associated with this session. With the

RMI object the methods exported by the session peer can be invoked. It can be compared with
a proxy object known from distributed object-oriented systems. With the messaging object,

5 WP 2.4: Developed Concepts and Implementation 71

messages can be conveyed asynchronously between the participants of a session. Messages are
sent by calling thesend() method. For receiving messages theeive() and sub-

scribe() -methods are provided. Threceive() -method blocks until a message is re-

ceived or timeout occurs, whatever happens first. I§tiiscribe() -method is invoked in-

stead, the incoming messages are handed over by callingabsage() -method of the

recipient and passing the message as method parameter. The advantage of having the concept
of Comobjects is twofold. Firstly, only those communication mechanisms have to be initiated

that are actually needed during a session. Secondly, other mechanisms, such as streams, can be
added to the system transparently. The latter advantage enhances the extensibility of the system.

At any time, a session can be terminated unilaterally by each of the both session participants,
either explicitly or implicitly. A session is terminated explicitly by calliSgssionOb-

ject. Terminate() (see Figure 5.3), and implicitly when a session participant moves to an-
other place. When a session is terminated, this is indicated by calliSgss®nTermi-

nated() -method exported by agents. Moreover, all resources associated with the terminated
session are released. We want to mention, that for easier programming, we still allow the pro-
grammer to use “traditional” RMIs or messages without the need of a session overhead, giving
them the opportunity to issue single communication acts.

5.4 Agent Infrastructure

5.4.1 Resource Manager

Resource management is necessary for two purposes. One is accounting, the other is resource
control. Accounting is a prerequisite for commercial applications with agents, and resource con-
trol is necessary to prevent e.g. denial-of-service attacks. In Mole the following resources are
managed:

« CPUtime

* local network communication

e communication with remote networks
e number of created children

« total time at the local place

The CPU time used is calculated by counting the time slices given to threads of an agent. Mole
has a central scheduler, the MCP (Master Control Process), that schedules all threads in the
Mole system. We decided to implement our own scheduler, when problems with Java 1.0 led to
the conclusion that the Java scheduler of the Solaris implementation had problems with concur-
rent execution of more than four threads of the same priority. This results from the Java speci-
fication being imprecise in this respect. The network communication is an important cost factor.
Thus it is important for both accounting and resource control. Because all agent communication
has to use the mechanisms provided by the agent system, control is done here. When an agent
arrives at one place the arrival time is logged. This way the total time at the local place can be
computed without problems. One other resource is not managed, the memory consumption of

5 WP 2.4: Developed Concepts and Implementation 72

an agent. While in principle extremely important, it can not be implemented with acceptable
costs without modifying the Java virtual machine.

5.4.2 Directory Service

A directory service is an electronic database that contains information on entities. An example
for a full-fledged directory service is X.500 (see e. gABNICK (1994)). In our Mole system

we simply provide a local directory service. It supplies information on agents providing a serv-
ice denoted by a string. This local directory service exists on every place. An agent can register
itself locally if it provides a service by submitting a string identifying the service to the directory
service. Another agent wanting to use this service first asks the directory service. The directory
service returns a list containing all agents providing the service. This list is either empty, or con-
tains one or more agent identifiers. The agent now chooses one of the agent identifiers and con-
tacts the agent.

5.4.3 Security Model

In Mole, theSandboxsecurity model is enforced by implementing a simple concept. In Section

2 we presented our agent model, and with it mobile and service agents. Mobile agents are the
normal user agents, programmed and employed by the user. They have absolutely no access to
the underlying system. Service agents are agents with access to system resources, providing
controlled, secure abstractions of these resources inside the agent system. Furthermore, service
agents may offer access to legacy software, using the native code interface offered by Java. This
does not cause any security problems, because the service agents are immobile and may be start-
ed only by the administrator of the place. User agents may only communicate with other agents
and have no direct access to system resources.

Additionally it can be decided on a per-place basis which types of agents to allow on a place.
Only agents that are derived from a specific type can migrate to a place. This mechanism can be
used to implement access restrictions. Take e.g. a place that allows only agents of a very specific
type. These can only be created at one other, open place. Then every agent wanting to access a
service on the first, closed place has to migrate to the open place and request a service. This serv-
ice then creates one of the specific agents that migrate to the closed place.

5.5 Graphical Agent Monitor

In Mole the graphical agent monitor Moleview is used for the examining places, agents, and
messages sent between them (see Figure 5.5). The snapshot has been made while running part
of the test suite at installation time.Every Moleview window contains the information for one of

the places that are inspected. In this example the [geaBonl.mole.dénas been examined.

We can see 7 agents on the place, their ids and their descriptions. In the lower left corner of the
window the services provided by agents are printed (in the example none). In the lower right
corner of the window the communication in which the agents on this place participate is logged.
This might be local or remote communication. RPCs as well as messages are logged with their
message id, sender and receiver. Additional information about the agents, the provided services,

5 WP 2.4: Developed Concepts and Implementation 73

= Tl ewivma | 4] i
Clse | Addbest. || Shobst optiors |
Pafraih I Haw W ingaw [e
lemtien 1 mokode @ 139 65310029 13969 103 -|J
Agani
&= S S S
tonncand | tocseans | vossnoss | osesenna
F'mi singieg e the ruln{ E-Chosecaenn | I Floager | siem o Flocadsr
g ;
caonasies | GO0A0T0,F | coscares |

sun af 5o of Floadar] en of 2on of son of Flocder] n of fon of 50 o

E

Serioey Mg

HPC: T A0BESET FAETEAG 548 0.0, 0.0.0, 000
RPCT B34 159951 5501 TRSES3 (0 000G
M5G: T2 SBTEEE 10002 T 00 0L 00 0
MG ISR IEEL 160000 280 O L0000
APC: B0 BT 2297 151 S6E (08 000, (000G -

Figure 5.5Moleview - The graphical Agent Monitor

the messages, and the RPCs can be acquired by using an inspector window. In this specific ex-
ample a non-existing recipient is used for some of the tests for the communication subsystem.

5.6 Implementational Issues

5.6.1 Agent Identifiers and Name Resolution

In Mole, an agent is seen as a unique entity. This view is supported by using a globally unique
name for every agent. This name is immutable, i.e. it does not change when the agent migrates.
The uniqueness can only be guaranteed if the system creates the names used. If the system cre-
ates the agent identifiers, then these identifiers should be devisable without global knowledge.
Additionally it is of advantage to be able to derive the site where the agent has been created from
the agent identifier. Why do we place such constraints on the agent identifier? First, to be able
to identify an agent (this is needed for communication, termination etc.), its name must be lo-
cally unique. Second, to be able to do the same after an agent has migrated, the name has to be
immutable. From this follows that the agent identifier has to be globally unique. This can only

be guaranteed if the system itself provides a service to create agent identifiers conforming to
these requirements. If global knowledge is needed to create this agent name, then either an ex-
pensive mechanism has to be implemented to obtain the global knowledge, or a single point of
failure is introduced if e.g. an identifier server is included into the system (see e.g. the Amoeba

5 WP 2.4: Developed Concepts and Implementation 74

sequencer poposed byNENBAUM (1995)). The ability to derive the site where the agent has
been created is of advantage e.g for localization algorithms utilizirtgothe location registry
approach. This approach is used in GSIbpal System for Mobile Communicatipsse e.g.
(MouLy and RUTET, 1992)), where the identifier of the user (his telephone number) leads to a
designated place (the home location registry) that contains the information how this user can be
reached.

The agent identifier in Mole is created from information that can be obtained locally. Table 5.1
contains the components of the agent identifier. The internet protocol Version 6 address of the
underlying system together with the port number of the engine allows to identify the engine on
which the agent has been created. The uniqueness of the name is guaranteed by using a combi-
nation of a normal counter that is set to O at the start of the e?é;ine, and a so-called crash counter,
that is incremented every time the engine is started. If more thagents are started the crash
counter is incremented also. Two more bytes are reserved for future use, giving a total of 24
bytes.

Table 5.1Components of the Agent Id

Bytes Meaning
4 Dynamic Counter, incremented for every new agent iderti-
fier
4 Crash counter, incremented every time the system is started.

Also incremented if dynamic counter overflows.

12 IP Version 6 address of the system on which the enginejruns

2 | The port number of the engine

2 | Reserved for future use (set to 0)

5.6.2 Thread Management Unit

One of the disadvantages of the Java language is that in some respects it is underspecified. One
of the underspecified areas is the thread management. For instance if two threads of the same
priority run in a virtual machine, nothing is said about the kind of scheduling used. It might even
happen that one of the threads is executed solely and only when it has terminated is the other
thread performed. This led to many problems in the platform-independent development of
Mole, and we decided to implement our own thread scheduler. One of the few guarantees that
Java gives is that a thread with higher priority is executed in preference to threads with lower
priority. Our scheduler was implemented using this property of Java as follows: One designated
thread called MCP is started when the Mole engine is booted, and controls all Mole threads (in-
cluding all threads running in agents) at runtime. This thread gets the highest possible priority
(apart from system threads). All other threads are on the lowest possible priority. The MCP-
thread has a list of these threads and allows them their time slices by of changing their priorities.
In regular intervals (time slices) the MCP-thread wakes up, lowers the priority of the running
Mole thread, takes the next thread from its list and changes its priority to its own. Now it sleeps

5 WP 2.4: Developed Concepts and Implementation 75

for the length of the time slice, after which again the next thread is scheduled. This way the Mole
system guarantees that threads are executed “concurrently” in time slices. A feature of the MCP
Is that the computing resources can be managed as well.

5.7 Using Java-Enabled Web Browsers to Run Mobile Agents

One of the main problems of the mobile agent technology is that before users get interested in
using this technology, it has to offer advantages over the existing technology. One of the scenar-
ios where mobile agents would offer tremendous advantages is their usage as an integrated serv-
ice platform that can unify the existing information and service provider on the internet on the
one hand and the need for automatic access to these things on the other side. In order to get such
a platform, the technology, even a single product had to be wide-spreaded since no one would
use such a platform without a large set of offered services, and no one would offer a service
without a large set of users the service can reach. This need for a critical mass is one of the
problems to solve in order to have this technology accepted. Another problem of current agent
systems is that, as they rarely have been developed as a commercial product, the usage of such
an agent system is rather complicated, at least for the end user. In order to allow more users to
run mobile agent based application, the threshold to install an agent system has to be lowered.

For this purpose, an agent system based on Mole was developed that runs as a Java applet inside
any Java-enabled browser. Although a Mole engine, the runtime environment of the Mole agent
system, is a regular Java application, it cannot simply be executed by a browser. The reason for
that lies in the area of security, namely the protection of computer from malicious applets. Since
applets are currently not allowed in most browsers to do anything that can be used to attack the
computer the applet is executed, typical restrictions for applets are:

» applets cannot access, start or manipulate other programs
e applets cannot open sockets except to the server they were loaded from
* applets cannot access system resources like file systems

Another problem is the different “operating mode” of web browsers and servers such as regular
Mole engines: while the first were started and stopped by users at their will, servers normally
are started once and run until either the computer crashes or a new version of a server is in-
stalled, both often in a controlled, non ad-hoc manner. A model that uses browsers to run an en-
gine has to cope with the aspect that the user stops the browser at any time, regardless of the
state of the agents. In this sense, browsers have similar characteristics like mobile devices.

The architecture of the modified engine has to reflect these problems, but it should also try to
make these aspect transparent to the agents, so that mobile agents can run in both a browser and
a server environment. To handle the restrictions of applets, a new componenikekieds
introduced (see Figure 5.6). The purpose of the Relay component is to act as a representative of
the browser engine. Therefore, Relays are located on a regular Server Engine. At startup time,
a Browser Engine opens a connection to a certain Relay. This connection, a socket, remains
open until the Server Engine is stopped. Every time the Browser Engine wants to communicate
with another engine or vice versea, the relay acts as a proxy object of the Browser Engine and
relays the communicated data to or from the Browser Engine.

5 WP 2.4: Developed Concepts and Implementation 76

To do this in a transparent manner, Browser Engines use special location names of the form
browserLocation<engine number>_<location number>:<regular engine name=g.
browserLocation12_3:stuttgart.mole.informatik.uni-stuttgart.de

These names are created dynamically by the Relay at Browser Engine startup t|me Since the
applet can open a connection to the computer from where the applet was loaded, a weeb server
is also needed on the computer where the Realy resides. Fortunately, Mole engines already can
be used as a web server for Mole classes since HTTP is used as the code transfer protocol be-
tween engines. The Browser Engine is configured by a list of parameters that are provided in
the<APPLET>tag of the enclosing HTML page. The (not optimized) Browser Engine applet

is as big as any regular Mole engine and needs some 40 seconds to load in a browser. Further
optimization can reduce both the length and the loading time of the applet. To demonstrate the
Mole Browser Engine technology, an existing game (Mister X) was configured using mainly
the engine on the one browser an users uses to start the game.

Agent) (Agent Agent
A B D
Browser Engine =~ Relay| Server Engine Server Enginge
in
Engine 1 Engine 2 Engine 3

Figure 5.6 Architecture of the modified engine

5.8 Installation

Mole is a research development designed to experiment with new concepts arising in the context
of mobile agents. It is available for free on the World Wide Web. The Java source code, docu-
mentation and sample agents can be downloaded from:

http://www.informatik.uni-stuttgart.de/ipvr/vs/projekte/mole.html.

This Web site currently allows downloading of Mole 2.1.2. Mole 3.0 is currently in the beta test
phase and will be updated for the Middleware’98 conference in September 1998. For a prere-
lease of the beta version of Mole 3.0 please please contact Mr. Baumann, at University of Stutt-
gart, email.Joachim.Baumann@informatik.uni-stuttgart.de.

5.8.1 System Requirements

Mole is undemanding regarding hardware and software requirements, especially compared to
Telescript (WHITE, 1997b). This is due to the design focusing on the use of an unmodified Java
Virtual Machine and existing hardware. While this didn't allow e.g. strong migration or the con-
trol of the memory consumption of agents, it allows Mole to run on every hardware platform
that runs a Java Virtual Machine version 1.1 or higher. We have tested the system on various

5 WP 2.4: Developed Concepts and Implementation 77

computer types and operating systems. Normal PC’s with a Intel Pentium (we have not tested
systems with Intel 486) or compatible CPU with main memory ranging from 16 to 128 MBytes
under Windows 95, Windows NT V3.51 or V4.0, OS/2 or Linux runs the system as well as Sun
Sparc with Solaris, IBM RS/6000 with AIX, or HP workstations with HPUX.

5.8.2 Configuration Files

Two main configuration files exist for Mole, the global mole resourcglfilealmolerc

and the user-specific Mole resource file-/.tholerc ” (under Windows 95/NT
“C:\.molerc). These contain global as well as user specific definitions for variables that can
be read by system agents at runtime. This way a simple method of configuring arbitrarily com-
plex system agents is provided. Furthermore, many of the settings of the Mole system itself are
defined in the Mole resource files. One example is the debug level, another one is the location
of the global Mole installation. The following three variables are predefined:

* $(HOME) is the absolute path to the home directory of the user (under Windows 95/NT
this is “C:\)

* $(USER) is the login name of the user

* $(CWD) is the working directory

A very handy feature for all of the Mole configuration files is that resources that have been de-
fined already can be referenced in a simple way. Let us assume we have defined a resource

“Hello =howdy " and another resourc&\orld =world ”, then the following definition
of the variablediworld would yield a contents ohbwdyworld ”: “ Hiworld =$(Hel-
lo) $(World) ". This is very advantageous for the definition of complex values. Moreover,

a user can define user-specific values depending on global values set by the system administrator
in the global resource file.

5.8.3 Starting a Sample Agent

In Appendix A a very simple agent that wanders between two places is listed (the static part is
left out). The names of the places can be found in the two vartatesandtarget . For the
dynamic instantiation of agents a constructor without parameters is needed. As has been dis-
cussed in Section 3.1, the methioit() is called first in the lifecycle of the agent. In this case

we simply initialize the variables containing the two places and return the booleatrwvalue
indicating that the initialization was successful. The system now calis¢pare() -method

that sets the boolean variabltlome depending on the place of the agent (if at home, it is true).
Now the agent is ready to start at the new place and its mstd(is called. Here the

agent simply decides where to migrate next. If the migration was not successful it prints an error
message and dies. This agent can be brought into the system by issuing the following command
at the command line of the Mole system (we assume two plagdasel " and “place2 ”):

new mole.apps.SimpleWanderer(Home placel, Target place2) at placel;

The agent is started as described above and begins to wander forth and back between the two
places.

5 WP 2.4: Developed Concepts and Implementation 78

5.9 Conclusions and Future Work

We have presented a platform for Java-based mobile agents, a research development that imple-
ments many new concepts of mobile agent systems. Besides a basic infrastructure like weak mi-
gration of agents and local/global communication between agents and agent groups, the empha-
sis of the Mole system lies on providing a comfortable infrastructure for agents. In particular,
Mole implements a resource manager for accounting and resource control, a directory service,
a thread management unit and a global naming scheme for agents. The usage of Mole is sup-
ported by simple means for installation and configuration and by a graphical agent monitor.

Earlier Versions of Mole have been used e.g as the prototypical infrastructure for an electronic
document system by@®NSTANTAS, MORIN and MTEK (1996), as a simulation environment for
distributed network management by Siemens in the project Swarms and as an execution envi-
ronment for Tandem server classes BRAER et al. (1997). In order to make mobile agents
usable in a commercial setting, our current research investigates further extensions to the system
infrastructure. In particular, methods for orphan detection and agent termination have been in-
vestigated by BUMANN (1997), coordination of agent groups has been investigatediby B

MANN and RADOUNIKLIS (1997), an approach for securing agents against malicious hosts has
been investigated bydHL (1997) and a protocol for preserving the exactly-once-property of
mobile agents by & HERMEL and SRAER (1997).

A Java-Code of the Wanderer Agent

package mole.apps;
import mole.*;

public class SimpleWanderer
extends UserAgent
implements MobileAgent
{
private LocationName home = null;
private LocationName target = null;
private boolean atHome = null;

public SimpleWanderer()
{
}

public boolean init(Hashtable parameters)

{
String des = (String)parameters.get(“Description”);
if(des != null)

super.init(des);// Set description of agent if given

/l in the real world all parameters would have to checked as above
home = new LocationName((String)parameters.get(“Home"));
target = new LocationName((String)parameters.get(“Target”));
return true;

5 WP 2.4: Developed Concepts and Implementation 79

public void prepare()
{

atHome = (getCurrentLocation().locationName()).equals(home);

}

public void start()
{
if (atHome == true)
{
migrateTo(target);
Engine.out(“Wasn't able to migrate to “ + target);
die();
}

else

{
migrateTo(home);
Engine.out(“Wasn't able to migrate to “ + home);
die();
}
}
}

References

BAUMANN, J. F. HoHL, K. ROTHERMEL, M. SCHWEHM, M.STRARER 1998: Mole 3.0: A Middle-
ware for Java-Based Mobile Software Agents, in Proc Int. Conf. Middleware ‘98 (to be
published)

BAUMANN, J. 1997: A Protocol for Orphan Detection and Termination in Mobile Agent Sys-
tems. Bericht Nr. 1997/09 der Fakultat Informatik, University of Stuttgart, Germany.

BAUMANN, J. & RADOUNIKLIS, N. 1997: Agent Groups in Mobile Agent Systems. In Proceed-
ings of the DAIS’97, Chapman & Hall, London, UK.

BRADSHAW, J. M. (Ed.) 1997Software AgentAAAI Press/MIT Press, Menlo Park, CA.

CHADWICK, D. (1994):Understanding the X.500 Directorghapman & Hall, London, UK.

COCKAYNE, W. R. & ZYDA, M. 1997:Mobile AgentsManning Publ. Co., Greenwich.

FALCONE, J. R. 1987: A Programmable Interface Language for Heterogeneous Distributed Sys-
tems.ACM Trans. Computer Systenad$4):330-351.

GHEZzzI, C. and VGNA, G., Mobile Code Paradigms and Technologies: A Case Studyro-
THERMEL and ®PESCUZELETIN, 1997), pp. 39-49.

GRAY, R. S.1995: Agent Tcl: Alpha Release 1.1. Technical Report, Department of Computer
Science, Dartmouth College.

GRAY, R. S. 1996: Agent Tcl: A flexible and secure mobile agent system. Proc. 4th Annual Tcl/
Tk Workshop, pp. 9-23.

HoHL, F. 1997: An approach to solve the problem of malicious hosts. Bericht Nr. 1997/03 der
Fakultat Informatik, University of Stuttgart, Germany.

HOHL, F.; KLAR, P. & BAUMANN, J. 1997: Efficient Code Migration for Modular Mobile Agents.
In: Proc. 3rd ECOOP Workshop on Mobile Object Systems, dpunkt-Verlag, Heidelberg,
Germany. (to appear)

5 WP 2.4: Developed Concepts and Implementation 80

IBM Aglets Workbench Team 1997:Aglets Workbenkth(Cockayne & Zyda, 1997), pp.165-
183.

JOHANSEN, D.; VAN RENESSE R. & SCHNEIDER, F. B. 1994: Operating System support for mo-
bile agentsin: Proc. 5th Workshop on Hot Topics in Operating Systems, IEEE Comp.
Soc. Press, pp. 42-45.

JOHANSEN, D.; VAN RENESSE R. & SCHNEIDER, F. B.1995: An Introduction to the TACOMA
Distributed System. Technical Report 95-23, Department of Computer Science, Univer-
sity of Tromso, Finland.

KONSTANTAS, D.;MORIN, J. H. & VITEK, J. 1996: MEDIA: A Platform for the Commercializa-
tion of Electronic Documentfn: Tschiritzis, D. (ed.) 1996bject ApplicationsUniver-
sity of Geneva, pp. 7-18.

MiLoJicic, D.; BREUGST, M.; BUSSE |.; CAMPBELL, J.; QOVACI, S.; FRIEDMAN, B.; KOSAKA,

K.; LANGE, D.; ONO, K.; OSHIMA, M.; THAM, C.; VIRDHAGRISWARAN, S. & WHITE, J.
(1998): MASIF: The OMG Mobile Agent System Interoperability Facility, (submitted to
MA'98).

MouLy, M. & PAUTET, M. 1992:The GSM System for mobile Communicateurope Media
Publications S. A., ETSI, Palaiseau, France.

MUHLHAUSER, M. (ed.) 1996Special Issues in Object-Oriented Programmitgunkt-Verlag,
Heidelberg, Germany.

PEINE, H. & STOLPMANN, T. 1997: The Architecture of the Ara Platform for Mobile Agehs.
(ROTHERMEL & POPESCUZELETIN, 1997) pp. 50-61.

PERRET, S. & DUDA, A. 1996: Implementation of MAP: A system for mobile assistant program-
ming. In: Proc. IEEE Int. Conf. of Parallel and Distributed Systems.

ROTHERMEL, K. & POPESCUZELETIN, R. (eds.) 1997First Int. Workshop on Mobile Agents
MA97, Lecture Notes in Computer Science 1219, Springer-Verlag, Berlin.

ROTHERMEL, K. & STRARER, M. (1997): A Protocol for Preserving the Exactly-Once Property
of Mobile Agents. Bericht Nr. 1997/18, Fakultat Informatik, University of Stuttgart, Ger-
many.

RULIFSON, J. 1969: DELIn: Internet Engineering Task Force, Network Working Group, Re-
quest for Comments 5, ftp://ds.internic.net/rdc/rfc5.txt

STRARER, M.; BAUMANN, J. & HOHL, F. 1996: Mole: A Java Based Mobile Agent System.
MUHLHAUSER, 1996) pp. 327 - 334.

STRARER, M.; BAUMANN, J.; HOHL, F.; RADOUNIKLIS, N.; ROTHERMEL, K. & SCHWEHM, M.
1997. ATOMAS: A Transaction-oriented Open Multi Agent-System. Annual Report.
Bericht Nr. 1997/14 der Fakultat Informatik, University of Stuttgart., Germany

TANENBAUM, A. 1995:Distributed Operating SystemBrentice Hall, Englewood Cliffs, NJ,
USA.

TSCHUDIN, C. F. 1993: On the Structuring of Computer Communications. Ph.D. Thesis, Univer-
sity of Geneva, Suisse.

WHITE, J. E. 1997a: Mobile Agenti: (BRADSHAW, 1997) pp. 437-472.

WHITE, J. E. 1997b: Telescripin: (COCKAYNE & ZYDA, 1997) pp. 37-57.

ZANDER, J. 1981: SOFTNET - Packet Radio in Sweden. In: ARRL Amateur Radio Computer
Networking Conferences 1-4, The American Radio Relay League, Newington, CT, re-
printed 1985, pp. 1.7 - 1.10.

6 WP 2.5: An Orphan Detection Protocol for Mobile Agents 81

6 WP 2.5: An Orphan Detection Protocol for Mobile Agents

Orphan detection in distributed systems is a well researched field for which many solutions ex-
ist. These solutions exploit well defined parent-child relationships given in distributed systems.
But they are not applicable in mobile agent systems, since no similar natural relationship be-
tween agents exist. Thus new protocols have to be developed. In this paper one such protocol
for controlling mobile mobile agents and for orphan detection is presented.

The ‘shadow’ approach presented in this paper uses the idea of a placeholder (shadow) which
is assigned by the agent system to each new agent. This defines an artificial relationship between
agents and shadow. The shadow records the location of all dependent agents. Removing the root
shadow implies that all dependent agents are declared orphan and eventually be terminated. We
introduce agent proxies that create a path from shadow to every agent. In an extension of the
basic protocol we additionally allow the shadow to be mobile.

The shadow approach can be used for termination of groups of agents even if the exact location
of each single agent is not known.

6.1 Introduction

A mobile agent is regarded as a piece of software roaming the network on behalf of a user, e.g.
searching for information in different databases, buying a flight ticket and renting a car, or trying
to find the cheapest flower shop. Mobile agents seem to be the solution to many of the problems
in the area of distributed systems. But while the idea of mobile agents is quite appealing, and
while many researchers are working in this area, some very important problems have not been
solved. Most of the research concentrates on providing the basic system support for migration,
communication, the security of the platform underlying the agent system and for the asynchro-
nous operation of agents. Some solutions for these problems already exist and have been imple-
mented in different agent systems (e.qg. [12], [4], [8], [14], [7], [6]). But until now no protocols
exist for orphan detection in mobile agent systems.

Orphan detection in an agent system is very important both from the user’s and from the system
side, because a running agent uses resources which are valuable to both user and system. The
user has to pay for resources (at least in principle), and the system has only a limited amount of
them. So if the user does not need the results of a distributed computation in progress anymore,
he wants to be able to terminate the computation to minimize the resulting cost. With an orphan
detection mechanism the user simply declares the agents to be terminated as orphans. Orphan
detection guarantees that the now useless agents can be determined by the system and ended,
thus freeing the resources they have bound. In this paper we will present a new protocol, the
shadow protocol, that allows both control of mobile agents and orphan detection. The paper is
organized as follows: Section 6.2 presents our agent model. In Section 6.3 the shadow protocol
is presented with different extensions and optimizations. Section 6.4 presents related work, and
in Section 6.5 the conclusion and outlook is given.

6 WP 2.5: An Orphan Detection Protocol for Mobile Agents 82

62 The Agent MOdeI mobile agent

In this section we will give you a short overview| of + ‘4\
our agent model, that has been described in morne
tail in [12], [1] and [4]. Our model of an agent-basgd:: N~

system - as many other models - is mainly basgd o @
the concepts of agents and places. Places provide th|({™[] h place C
environment for safely executing local as well as yis-

iting agents. An agent system consists of a numberofFjgure 6.1 The Agent Model

(abstract) places, being the home of various services.

Agents are active entities, which may move from place to place to meet other agents and access
the places’ services. Each agent is identified by a globally unique agent identifier. An agent’s
identifier is generated by the system at agent creation time. The creating place can be derived
from this name. It is independent of the agent’s current place, i.e. it does not change when the
agent moves to a new place. In other words, the applied identifier scheme provides location
transparency. A place is entirely located on a single node of the underlying network, but multi-
ple places may be situated on a given node. For example, a node may provide a number of plac-
es, each one assigned to a certain agent community, allowing access to a certain set of services
or implementing a certain prizing policy. Places are divided into two types, depending on the
connectivity of the underlying system. If a system is connected to the network all the time (bar-
ring network failures and system crashes), a place on this system icoaledtedIf a system

Is only part-time connected to the network, e.g. a user's PDA (Personal Digital Assistant), the
place is calleéssociated

service agent

6.3 The Shadow Protocol

In this section we discuss the basic Shadow Protocol with its agent proxies, the extension that
allows the shadows to be mobile, and discuss possible optimizations.

6.3.1 The ldea Agent

In the shadow concept each application creates one or more P&
shadows, a data structure on a connected place. The place
where the shadow is created does not necessarily hayeegicaton creates
run on the same host on which the creating application uns
Each agent created by the application depends on such
shadow (Figure 6.2). The agent is dependent of the shadow

instead of the application. As long as the shadow exists in the system, no contact of agents to
the application itself or to the computer system on which the application runs is necessary. In
regular intervals (calleime to liveor ttl) the system checks for each agent if the associated
shadow still exists. If the shadow does no longer exist, the agent is declared to be an orphan and
is removed.

Shado

'rgure 6.2The Creation of
a Shadow

6 WP 2.5: An Orphan Detection Protocol for Mobile Agents 83

If an agent creates a new agent, the system assigns [he 10, __

this new agent the shadow of the creating agent, and the Qsm""
same remainingtl until the next check (Figure 6.3). This ’_,—ae'penq/
assignment cannot be changed by the agents. Limitingaghie— - -~ < Agent
time span to the remainirty of the creating agent (and n tPIace
to the original time interval) is necessary to prevent mali- — :
cious agents from living infinitely. Otherwise the mecha- F'gure 6.3Creating a New

nism could be circumvented simply by creating a new agent Agent

with again the wholdtl just before the life span of the old

agent ends. If a place on which a shadow resides cannot be reached, the system tries to contact
the place several times. If still the place cannot be reached, the shadow is presumed no longer
existent and its associated agents are killed. The disadvantage of this approach is that regardless
of what an agent does, it has to connect to its shadow’s place in regular intervals. The advantage
on the other hand is that we have a worst-case time bound for the termination of agents through
removing the shadows. This upper bound is exactly the stthnobthe agents and the timeout

for contacting.

Until now the protocol only allows passive termination. By removing a shadow all dependent
agents are declared orphans, and aftettltiteds guaranteed that all agents have been removed

by the orphan detection. By adding theth concept to this protocol, we also allow active ter-
mination, i.e. termination of an agent whiletiisis greater 0. Agent proxies are structures at
each place that keep track of the movement of all agents dependent of a specific shadow, thus
creating a path leading to the agent. By storing the place at which the agent got checked the last
time we can find the beginning of a path for every agent. Even if the path gets lost, the agent
will contact the shadow after tlik.

If an agent arrives at a place where not yet an agent proxy for this shadow exists, one is created
(Figure 6.4). As soon as the agent migrates to another place, the destination (being part of the
path leading to the agent) is stored in the proxy together wittl the

When the end of th#tl is reached, the agent’s shadow gets a request for extending the agent’s
life, and thus the new place of the agent is made known to the shadow (Figure 6.5:). The path
entries stored in the different agent proxies along the agent’s way is now superfluous and can be
removed using the knowledge about tthetored in the proxy. An entry can also be removed if

the agent migrates back to this place (this simply optimizes the now circular path by removing
the loop).

An agent proxy contains, for a specific place, all path segments of agents belonging to the same
shadow. It exists exactly as long as there is a path entry in it. As soon as the agent proxy contains
no more entries, it can be removed as well. This is especially helpful if the agents are actively
terminated, i.e. the system actively sends messages to terminate the agents as fast as possible.
In that case, all entries are removed from the agent proxy, allowing the system to delete the
proxy as well.

6 WP 2.5: An Orphan Detection Protocol for Mobile Age

Shadow
Agent Proxy

Agent

Place

Shadow
Agent Proxy

Agent

Place

Figure 6.4 Proxie
Paths

nts

Shadow
Agent Proxy
Agent
Place
Shadow
Agent
Place

Figure 6.5: Regular Update of
Proxies

6.3.2 The Protocol

We will discuss the different parts of the protog
separately. The protocol is presented in an obj
oriented pseudo-code notation.

The place on which the agent resides, decrem
in regular intervals th#l of the agent. As soon &
thettl of the agent is 0, a message is sent bac
the home place of the shadow, containing the ig
agent and shadow. At the same time atimeris s
ed with a timeout, and the agent entersdieck
phasegFigure 6.6). To allow greater flexibility eac
shadow (and thus the group of associated agg
can have a timeout of its own. This allows for

loophole by setting a very long timeout. But this

can be corrected by introducing a per-place tin
out. The timeout finally chosen is the minimum
agent timeout and place timeout.

Regular Intervals:
for each agent

agent.timeToLive - -;

if (agent.timeToLive == 0)
sendCheck(agent.shadowHome,

ol

bCt-
Place,

508,
S

ler@rrival(agent)

agentproxy = proxyList.find(agent.shadowld);
| ofif(agentproxy == null)

?‘U’E agentproxy = new Proxy(agent.id, agent.tim

Ccu

agent.shadowld, agent.id);

agent.proxy, agent);

N€-agent.start();

@f\Leaving(agent, target)
if (agent.timeToLive > 0)
agentList.remove(agent);
agent.proxy.setTarget(agent.id, target));
startTimer(agent.timeToLive + agent.time(
agent.proxy, agent.id);
SendAgent(target, agent);

Figure 6.6 System Methods

84

rent

startTimer(min(place.TimeOut,agent.time-

agent.shadowHome, current

ﬁlace);

proxyList.add(agentproxy);
ntsylise _

agentproxy.add(agent.agentld, agent.timeTo
1&ve);
is agent.proxy = agentproxy;

agentList.add(agent);

ut,

6 WP 2.5: An Orphan Detection Protocol for Mobile Agents 85

The check message is received by the home place Gfdf&echeck(from, shadowld, agentid)
shadow. First a timer is stopped that has been started thagopTimer(agentid);

. . shadow = shadowList.find(shadowld);
|aSt t|me thEtﬂ haS been Sent baCk tO the agent ThIS al'timeToLive = shadowltimeToLive(from, apge

lows to detect agents that have been terminated (seg bé{timeToLive >0) _
. . startTimer(timeToLive
low). Thettl is requested from the responsible shadpw, + shadow.getTimeOut(agentld),
i i _ shadow, agentld);
and if greater O is sent back by the system to thereq est- 4 Allowance(from, agentid, timeTaLi
ing agent. As soon as the message is recglved, the timer. Allowance(agentld, timeToLive)
for the timeout is stopped, and the agetit’'ss set (see stopTimer(ageLr]tIdf)_; dagent "

H H) ent = agentList.fin ent(agentld);
Figure 6.7). This ends the agent's check phase anl afgen: imetoLive = fimeToLive:
lows it to migrate again. When an agent arrives at aproxyList.setTime(agentld, imeToLive);
place, the list of agent proxies is searched for a proxy of
that agent. If none exists, a new one is created, and tf@gure 6.7 The Check Phase

n referen nit. A n n nt wants
age tget; a ?e ence on it . S.SOO as an agent timeToLive(from, agentld, shadowld)
to leave, itsttl is checked. This is done to prevent @Gfere an example policy is presented] ‘
agent who is in the check phase to migrate. If it is nqt in shadowproxy = listOfProxies.find(shadold

. . . . _agententry = shadowproxy.get(agentld)
the check phase, the information in the agent proxy isif(agententry != null)
updated to point to the target place. At the same time g, 29ententry.target = from;
timer is started that removes the path after the sum qf re- agententry = new AgentEntry(fro)m, age

P : : timeToLive);
mainingttl and timeout (see Figure 6.6). The shadow spagowproxy.add (agententry);
can decide on a case-by-case basis if an agent’s life|timeeturn agententry.timeToLive;

is to be extended, and by which interval. remove(agentld)
[implement policy]

In Figure 6.8 we present an example policy, that for all gggmg;gg_fe:irfé%ggéﬁfdf)iF‘d(age””d);
of the agents returns the sattle This method checks '
first if an agent entry already exists for this agent-ta—: .
case a newly created agent contacts the shadow), udi_lgure 6.8Meth0(_js in the

dates the information about the location of the agent, Shadow Object

and returns thél. The shadow is also called if the system has detected (via the timeout), that

an agent has been terminated. The simplest policy is to remove the related entry from the list.
We now discuss the reaction to the different timeouts (see Figure 6.9). One possible reaction to
the timeout of the check message has been sketched out above. Here we present a simple alter-
native; the agent is removed at once. The next timeout affects the paths.

7

As soon as an agent migrates, the path segment pOirgifher(proxy, agent) / check timeou
to its new location is created, and a timer started.| Age anttle_xatmple policy is tp.resented]
soon as this timer ends, we know that the path inforna-gggﬂtp'rf,;ﬁg%\'f\fgagne%’“d);
tion in the shadow itself has been updated, and this pari(agentproxy.entries() == 0)

. proxyList.remove(agentproxy);
of the path can safely be removed. The last methog) LS mer(agentproxy, agentid)/ path redunda
called if an agent has not tried to contact the shadow [I%ﬂilement policy]
the sum oftl and timeout. In this case the agent has fer-39=nibiox-temoue@gentcy
minated. The shadow method (see Figure 6.9) is called proxyList.remove(agentproxy);

to react to it. onTimer(shadow, agentld) // ag. terminated
shadow.remove(agentld);

Figure 6.9 System: Reaction to
Timeouts

6 WP 2.5: An Orphan Detection Protocol for Mobile Agents 86

Finding Agents find(agentid)
if (agentLi(s;].fir)ld(agentld) I=null)
i i ifi return(this);
If we want tq ac_tlvgly termlnate a specific age t, agentproxy = shadowList find(agentid);
we have to find it first. This can be done with the if(agentproxy != null) _
help of the information stored in the agent proxies. , Sendrind(@gentproxy.target(agentid), this, ggent
If the agent is in the local list of active agents, ifis return(notFoundError);
already found. If not, the related agent proxy|igeiveFind(searcher, agentld)
hed. If it i tf d - t dlIf if (agentList.find(agentid) != null)
.SGIarC. eda. Irieis r.]O ound, an error Is returneaq, ~ sendFound(searcher, this, agentld);
it is discovered, &nd requesits sent to the target if((agtproxy = proxyList.find(agentld)) != null)
. . sendFind(agtproxy.target(agentld), searchef, age
found in the proxy. At the target place the list jof ¢se
active agents is again examined. If the agent is sendEror(searcher, notFoundError, agentig
found, a success message is sent back. If not|"th g’tﬁfr?(‘#‘odrg)r.om’ agentld)
related agent proxy is searched again. If no PrOXYeiveError(error, agentid)
exists, an error is sent back. Otherwise, the njesif (error == notFoundError)
sage is sent on. This is repeated until the agent is "™M"";

found or the path ends (see Figure 6.10).

~

Figure 6.10Finding Agents
6.3.3 Mobile Shadows

In cases where many of the agents depending on a shadow move somewhere far away (i.e. com-
munication costs are high), every one of the agents has to contact the shadow independently, re-
sulting in unnecessarily high communication costs. If the migration behaviour is known in ad-
vance, the shadow can be placed in a way that reduces the communication cost. But in many
cases the behaviour is not known in advance, or the group moves as a whole from area to area
(e.g. from one organization to another). In these cases it would be much better if the shadow
moved with the agents. Possible policies where to place the shadow could be:

» at a place where the communication cost to all dependent agents would be lowest.

* where one agent important for the computation is situated. If the place becomes unavailable
(e.g. crashes), both shadow and agent would not be reachable, and the other dependent
agents would be terminated.

While in the first case the shadow would have to be persistent, in the second case it would have
to be transient to implement the policy.

To move a shadow two problems have to be dealt with. The first is that the agents depending on
the shadow have somehow to be notified about the new location of the shadow. The second is
that the application still has to be able to reach the shadow, e.g. in case it wants to terminate the
agents. Both problems can be solved similar to the approach used with the agent proxies. When
a shadow moves, a shadow proxy stays behind. Thus over time a shadow path is built. By con-
tacting the copy at the home place in regular intervals this path can be cut short. As alternative
to intervals at which to cut the path short, a maximum path length would be suitable. But using

a maximum path length adds communication along the path, because as soon as the maximum
path length has been reached the shadow proxies along the path have to be notified that they are
no longer needed. A combination of these policies seems the most flexible.

Now, when an agent requests a rigthe shadow might already have moved somewhere else.
In this case, the request is sent to the new place of the shadow. If the shadow already has moved

6 WP 2.5: An Orphan Detection Protocol for Mobile Agents 87

again, the request is forwarded along the path of shadow proxies until the shadow itself is
reached. The shadow sends a new grant back to the agent together with its new place. The next
time the agent sends its request directly to the new place.

The shadow proxies can be removed as soon as the path is no longer needed and no agent still
has the reference to a shadow proxy. Thus the maximum of agent and ghesdb maximum

time the proxy has to be hold. One exception has to be made though. The first proxy, that stays
at home, cannot be removed as long as the shadow is elsewhere.

The Protocol move(target)
if (timeToLive != 0)

: : sendShadow(target, this);
We first examine the shadow part of the protocol. Mov- cirentPlace I= null) /7 part of pat

ing the shadow to another place creates a path to the tar- pathTimeOut = timeToLive + timgO
. . - startTimer(pathTimeOut, shadow);
get and starts a timer. After the timeout of this timer{the cyrentPlace = target;

path has to be deleted. The path is created by leavjagnateshadow()

shadow proxy behind. Removing the shadow is dong byf (currentPlace 1= nul)) // shadow mov
) . sendTerminate(currentPlace, id);

sending a message along the path (see Figure 6.11)| Eag&ete(this);

shadow gets #l, after which it must contact its home

place. This time is not necessarily the same as for fhigure 6.11Additional Shadow
agents. Methods

D

In regular intervals thistl is decremented. As soon @8egular intervals:

the shadow'stl is 0, the shadow enters the check pha§gSnt related part stays the same]
A message containing the shadow id and its current if (shadow.homePlace != place.nam¢())

. . ; shadow.timeToLive--;
place is sent to the home place and a timer is started (see i ghadow.timeToLive == 0)

Figure 6.12). The check message for the shadow con- sendCheck(shadow.homePlace,
tains the new place of the shadow. If the shadow proxy startTimer (hadow.itheOut,
at home still exists, it is updated and tthés sent back shadow);

If the answer is not received until the timeout, the sha
ow is removed (more complex reactions with retries c
be chosen instead).

A
6llfigure 6.12Extended System
'Methods: Regular Intervals

As soon as it is received, the timer is stopped and ti®@mer(shadow) 7/ this path seg. is redund
ttl is set (see Figure 6.13). The shadow proxies crieatShadowList.remove(shadow);
; ceiveAllowance(shadowld, timeToLive)
ing the path between home place and shadow get %hadqwz shadowList find(shadowld):
similar timeout after the sum tf of the shadow, of sthopTlmer(shadQW);_ _ o
the agent (see below) and the communication time-S"adow-timeToLive = timeToLve;

. . receiveCheck(from, shadowl!d)
out. At that point the path is redundant and can be I€-shadow = shadowList.find(shadowld);
moved (see below). This way the path created by the'f(ShS?%%‘gv!v:CElrJr”e)mplace - place:
shadow is cut short in regular intervals. If the shadow sendAllowance(from, shadowld,

comes back to its home place, the shadow proxy is re- shadow.timeTolive),

placed by the original Figure 6.13Additional System
Methods: Checking the shadow

Q

6 WP 2.5: An Orphan Detection Protocol for Mobile Agents 88

In the basic protocol the agent check message iS[$&JakeCheck(from, shadowid, agentid)

to the shadow’s home place. Now it is sent to [the StopTimer(agentid);
if(currentPlace != place.name())

place from which the ladtl message has been re- sendCheck(currentPlace, from,
ceived. This is done by storing it in an additional [at- ., shadowld, agentid);
tribute. If the shadow moves between two such mes- shadow = shadowList find(shadowld);
sages, the check message is sent to a shadow proxy "M*T°VeL o imeToL ive(irom, ageht

(somewhere on the path) instead of the original. The if (timeToLive >0)
startTimer(timeToLive

shadow proxy now forwards this agent check mes- + shadow.getTimeOut(ageht!
sage along the path. The original, upon receiving|the shadow, agentld);

. sendAllowance(from, place.name(),
message, sends back tileand its own place. The agentld, timeToLive);

path is superfluous as soon as the shadow’s plalcecisveAllowance(shadowPlace, agentid, timeToL
; stopTimer(agentld);

known at thg home plamd no agent still referenc agent = agentList.findAgent(agentld):

es a part of it (see Figure 6.14). agent.timeToLive = timeToLive;

agent.shadowHome = shadowPlace;

proxyList.setTime(agentld, timeToLive);

Figure 6.14Changed System Methods:
Extending the agent’s life

Together with Sending back the to the agent the onTimer(shadow, agentld) // agent terminat

shadow starts a timer. If after this timeout the agent] didshadow.remove(agentld);
shadow.currentPlace != place.name())

not send a check message, the shadow knows that ter(sendRemoved(currentPlace, shadow
agent has terminated. But since the timeout is detegcted agentld);

at a place and not inside the shadow, the inform ti@ﬁ‘ﬂg’gggvc“gfhdﬁgﬁv‘i?;’{'ﬁﬁ&%ﬁg&%{,\”d).

might only reach a proxy and not the shadow itself| Inif(shadow != null)

: : if(shadow.currentPlace != place.name())
this case the shadow has to be informed. Thus a fnes- ™. iRcmoved(currentPlace, shadowi

[¢)

2

sage is sent along the path containing the information | agentld);
that the agent has terminated. Every proxy sends the in- % aqow = shadowList.find(shadow/d):
formation onward until it reaches the shadow. Now the shadow.remove(agentid);

agent entry is removed (see Figure 6.15).

Figure 6.15Changed System Methods

. L Detecting terminated agents
6.3.4 Optimizing the Communication g g

As soon as more than one agent belongs to a shadow, optimizations of the communication are
possible. Three optimizations exist:

* If two agents belonging to the same shadow come to the same pladepfttiee one with
the lower remaining time interval is set to theof the other one. This works with an arbi-
trarily large number of agents on a place and happens conveniently at the arrival of a new
agent.

» Ifan agent’'s shadow has been checked, then this information also gets transferred to all oth-
er agents belonging to the same shadow on the same place as the agent.

* The combination of shadow and agent proxies creates a spanning tree that follows the
agents’ movements with the shadow as the root. The tree can be optimized by simply using
common paths for the parts of the paths that are the same for different agents. This effec-

6 WP 2.5: An Orphan Detection Protocol for Mobile Agents 89

tively reduces the number of messages that flow without changing the functionality. Fur-
thermore, the agents on nodes along the tree can be updated simulataneously.

The proxies allow to find an agent, e.g. to terminate it actively. But with all of the mentioned
optimizations the path to a specific agent can be lost. This can happen if an agent gets additional
ttl from another agent, and the path assuming the origlnal removed. The optimizations

make it impossible to terminate a specific agent.

The interesting point though is that this doesn’t matter for the termination of the whole group

of agents. If the termination message is sent to all known proxies, then these proxies forward
the termination message along all of the paths they are part of. Ultimately this termination mes-
sage reaches all of the agents, even those no longer directly known to the shadow. The path seg-
ment for an agent exists exactly for the curtérdf the agent. So if it got additional time, then

at that place the agent proxy holds the path from that place for that remaining time. Every time
an agent gets additional time from another agent, there exists a valid path to that other agent. So,
by first following the path to the other agent, and then the still valid path to our agent, every
agent gets the termination message. This way, all of the mentioned optimizations can be used
without compromising functionality for the group as a whole.

6.3.5 Fault Tolerance

Our fault model contains two types of failures, node failures (fail-stop) and network partitions.

It is important to note that from the viewpoint of a node these failures are not distinguishable.
By introducing a path of proxies the fault sensitivity of the protocol is increased. If only one of
the nodes containing a proxy is not reachable, either through node failure or network partition-
ing, the path is broken. Different mechanisms have to be used for the two different kinds of
paths. While in the case of a broken agent proxy path only one agent is no longer reachable until
its ttl is 0, in the case of a broken shadow proxy path the agents trying to extend their life are
threatened. The mechanism employed for the agent proxy paths has already been presented in
Section 6.3, and is only discussed briefly. The mechanism used for shadow proxy paths has not
yet been discussed in the protocol section and is examined in the following in detail.

Agent Proxy Path

By introducing thetl, after which the agent has to contact the shadow’s place, it is guaranteed
that even if the path is broken, the new location of the agent can be identified aftefatha
worst-case bound), as long as either the network partition is short-term, or agent place and shad-
ow place are in the same partition. If after th¢plus the timeout) the agent has not contacted

the shadow, the shadow knows that the agent does not exist any longer (either because it has
terminated or has been declared orphan and removed by the system).

Shadow Proxy Path

Two strategies are possible for dealing with a broken shadow proxy path. The first strategy does
not change the characteristics of the protocol, but manages only short-term failures. It lets the

6 WP 2.5: An Orphan Detection Protocol for Mobile Agents 90

last shadow proxy of the still-existing path try to contact the next shadow proxy again. The prob-
lem though is that the netiv has to be sent to the agent before the system decides to terminate it.

The second strategy allows for longer failures but changes the worst-case bound for passive ter-
mination of the agents (the worst-case boundtls ia this variant). If the last shadow proxy
detects the break, it sends a ridviback to the agent, but with themeplace of the shadow as

the new location. The netil is the minimum of the remaining shadtwand the agerttl. If

the shadow would have been removed, then the shadow proxy would know about it (and would
have been removed as well). Thus the shadow still exists and it is correct to send the allowance.
The home place of the shadow is sent instead of the location of the next shadow proxy in the
path, to guarantee that the agent has a valid place to send the request fortthéf tleattl of

the agent is shorter than the remaining time of the shadow proxy path, then the next request will
be sent along the same path (that hopefully is connected again)ttlifahthe path is shorter,

then the agent will contact the home place of the shadow when the shadow itself has requested
a newttl. This means that the home place holds the new location of the shadow and forwards
the request correctly.

6.4 Related Work

In the area of mobile agent systems the current research concentrates on the basic system sup-
port. But now that many different agent systems existing support the functionality needed to re-
alize applications, mechanisms providing the functionality presented in this paper are essential.
Thus the problem areas of orphan detection and termination of agents are beginning to evoke
the interest of the research community. But apart from the mechanisms developed at the Uni-
versity of Stuttgart (see [5] describing a group concept or [2] discussing an energy concept and
a path concept) no publications present similar functionality for mobile agent systems. Howev-
er, in the area of distributed systems many algorithms exist that solve similar problems. The area
of distributed algorithms, and especially distributed termination detection (in [9] and in [13] a
discussion of many algorithms can be found) and distributed garbage collection (one example
is the work on Stub Scion Pair Chains [11]), has to be seen as related work.

But two differences prevent the use of these algorithms for mobile agent systems. First of all,
the fault model is different. The possibility of network partitions or node crashes does not exist
in the fault model used for most distributed algorithms. Mobile agent systems explicitly include
these faults in their fault model. Furthermore, the fault model supports the asynchrony of agents.
The second difference is the autonomy of the “objects” in question that very much influences
the processing model. A process (or object) in the distributed system area is not normally seen
as autonomous. Here a process is seen as a cooperating part of a larger application. For a mobile
agent the autonomy is one of the important prerequisites. This autonomy leads to the problem
that a malicious agent might try to remove itself from the control by the system. These differ-
ences make it impossible to use the existing distributed algorithms in the area of mobile agent
systems. It might be possible to use one such algorithm as the basis for a new design tailored to
the needs of mobile agent systems. But the changes in the fault model and in the processing
model effect so many changes in the algorithm itself tradreect transformation would be
problematic at best. Nevertheless we believe that in principle it is possible to transform these
algorithms correctly into algorithms that take the peculiarities of mobile agent systems into ac-

6 WP 2.5: An Orphan Detection Protocol for Mobile Agents 91

count. The key to this is an automatic transformation that, used on e.g. an algorithm for distrib-
uted garbage collection, turns it into a orphan detection and / or termination algorithm for mo-
bile agent systems. An analogon to such an algorithm exists for the automatic transformation of
termination detection algorithms into distributed garbage collection algorithms [10].

6.5 Conclusion and Future Work

In this paper we presented the shadow protocol. The shadow protocol has still some disadvan-
tages: it introduces additional communication into the system and resources (memory) are
bound to store the different path information. But the advantages outweigh the disadvantages by
far: the mechanism is robust against malicious or faulty agents, the path information is updated
without additional communication costs (no outdated path information exists), and the time un-
til all agents are terminated in the worst case can be determined exactly. The presented protocol
has been implemented in our agent system Mole (for a description of Mole see [12], [1], and
[4]).

We will examine the area of fault tolerance in detail. The presented mechanism is robust against
short time network partitioning and system faults, but does not cope well with lasting faults. We

will investigate in which way the shadow concept can be made fault resilient by replication of
the control structures.

Comment: This paper does not contain the full protocol as an appendix due to space restric-
tions. For the complete description please refer to [3].

Acknowledgements:Parts of the protocol have been implemented by M. Zepf. The comments
of F. Hohl, M. Schwehm and M. Stral3er improved the quality of the paper.

References

1. J. Baumann, F. Hohl, N. Radouniklis, K. Rothermel, M. Stral3er. “Communication
Concepts for Mobile Agent Systems”, in Mobile Agents ‘97, LNCS 1219, Springer-Verlag,
pp. 123 - 135, 1997.

2. J. Baumann. ,A Protocol for Orphan Detection and Termination in Mobile Agent Systems*,
Tech. Report 1997/09, Fac. of Computer Science, U. of Stuttgart, 1997.

3. J. Baumann, K. Rothermel. “The Shadow Approach: An Orphan Detection Protocol for
Mobile Agents®, Tech. Report 1998/08, Fac. of Computer Science, U. of Stuttgart, 1998.

4. J. Baumann, F. Hohl, K. Rothermel, M. Stral3er. ,Mole - Concepts of a Mobile Agent
System®, in WWW Journal, Special Issue on Software Agents, to appear.

5. J. Baumann, N. Radouniklis. ,Agent Groups for Mobile Agent Systems*, in Distributed
Applications and Interoperable Systems, H. Kénig et al., Eds., Chapman & Hall, pp. 74 -
85, 1997.

6. J. Baumann, C. Tschudin, J. Vitek. “Mobile Object Systems: Workshop Summary”,

Workshop Proceedings for the 2nd Workshop on Mobile Object Systems, in Workshop

Reader ECOOP '96, d-punkt.verlag, pp. 301 - 308, 1996.

General Magic, “Odyssey Web Site”. URL: http://www.genmagic.com/agents/

IBM. “The Aglets Workbench”. URL.: http://www.trl.ibm.co.jp/aglets/

F. Mattern. “Verteilte Algorithmen”, Springer-Verlag, 1989.

© N

6 WP 2.5: An Orphan Detection Protocol for Mobile Agents 92

10. G. Tel, F. Mattern. “The Derivation of Distributed Termination Detection Algorithms from
Garbage Collection Schemes.“, ACM TOPLAS 15:1, pp. 1-35, 1993.

11. M. Shapiro, P. Dickman, D. Plainfossé. “SSP Chains: Robust, Distributed References
supporting acyclic Garbage Collection”, Tech. Report No. 1799, INRIA, Rocquencourt,
Frankreich, 1992.

12. M. Stral3er, J. Baumann, F. Hohl. “Mole - A Java Based Mobile Agent System”, in

Workshop Reader ECOOP '96, d-punkt, pp. 327 - 334, 1996.
13. G. Tel. ,Distributed Algorithms*, Cambridge University Press, 1994.
14. J. E. White. “Telescript Technology: The Foundation of the Electronic Marketplace”,

General Magic, 1994.

