
Universität Stuttgart
Fakultät Informatik

A Protocol for Preserving the
Exactly-Once Property of

Mobile Agents

M. Straßer, J. Baumann, M. Schwehm

Bericht 1999/06
Juni 1999

An Agent-Based Framework for the
Transparent Distribution of Computations

Authors:
Dipl.-Inform. M. Straßer
Dipl.-Inform. J. Baumann
Dr. Ing. M. Schwehm

Institut für Parallele und Verteilte
Höchstleistungsrechner (IPVR)
Fakultät Informatik
Universität Stuttgart
Breitwiesenstr. 20 - 22
D-70565 Stuttgart

Introduction 2

An Agent-Based Framework for the Transparent Distribution
of Computations

Markus Strasser, Joachim Baumann, Markus Schwehm

Abstract A mobile agent based framweork for the
transparant distribution and concurrent execution of
computations is presented. The framework uses design
patterns like the master-slave, abstract factory or the
strategy pattern. The architecture of the framework is
built on top of a mobile agent system. A performance
model allows to identify performance bottlenecks and
unbalanced situations within the framework. The
Framework has been implemented and tested on top of
the mobile agent system Mole

Keywords: mobile agents, distributed computation, per-
formance model, load balancing

1 Introduction

Mobile Agent Systems have received great atten-
tion in the last years as a new programming para-
digm for widely distributed and heterogeneous
systems. The basic concepts of agent systems are
places and agents. An agent system consists of a
number of places where computation can take
place and where various services are provided.
Agents are active entities which may move from
place to place to meet other agents or to access
services provided there. The mobility of the agents
- i.e. their ability to migrate from one place to an-
other - is the basic difference from other approach-
es for distributed systems.
Major advantages of mobile agents are seen in the
possibility of reducing (expensive) global commu-
nication costs by moving the computation to the
data [Chess et al. 1997] and in the possibility to
easily distribute complex computations onto sever-
al, possibly heterogenous, hosts. [Straßer and
Schwehm 1997] deals with the first of this two ad-
vantages and presents a performance model re-
garding network load and execution time which
can help to identify situations for which agent mi-

gration is advantageous compared to remote pro-
cedure calls. This paper discusses some aspects of
the second advantage, the distribution of complex
computations using mobile agents.

In general, the distribution of complex compu-
tations using mobile agents requires the applica-
tion developer to explicitly deal with the distribu-
tion, i.e. he has to explicitly code how and on
which node to distribute and how to communicate.
In this paper, we present a small framework for the
transparent distribution of computations over a
network of mobile agent systems. Using this
framework, all computations which can be split
into smaller, autonomously computable parts can
be distributed automatically. Furthermore, to help
the application developer to decide whether to dis-
tribute a computation or not, a performance model
for the framework is developed.
The paper is organized as follows: Section 2 de-
scribes the agent based framework. Section 3 in-
troduces a performance model for this framework.
Section 4 outlines some measurements performed
using an implementation of the framework.

2 The Framework

In this section we present the framework devel-
oped for transparently distributing problems over a
network of mobile agent systems. First we give a
short description of the patterns used for the de-
sign, then we present the agent model (including
system and fault model), and present the architec-
ture of the framework.

2.1 Used Patterns

Patterns are a way of describing in a simple and el-
egant manner solutions to specific problems in ob-
ject-oriented software design. In our framework

The Framework 3

we used some well-known patterns given in [Gam-
ma et al. 1994] and [Buschmann et al. 1996]. In
this section we shortly describe the patterns we
used in the design of the framework.

Master-Slave Pattern. “Divide and Conquer” is a
common solution to many kinds of problems in
computer science. The work is partitioned by the
master into several independent jobs which then
are given to different slaves. The results returned
by the slaves are then combined and a global result
is computed. In our framework the master is the
coordinator that dispatches different jobs, and the
slaves are the worker agents computing the results
of the jobs.

Strategy Pattern. A strategy encapsulates an al-
gorithm and its algorithm-specific data in a way
that allows to avoid detailed knowledge in the ob-
ject using it. In our framework each worker re-
ceives a strategy used to compute one part of the
problem. The worker does not have to know the in-
trinsics of the strategy, it does not even have to un-
derstand the job objects sent to it. The job objects
contain the context needed and interpreted by the
strategy.

Abstract Factory Pattern. An abstract factory
provides an interface for creating objects without
specifying their concrete class. This allows to de-
fer the specification of the actual object until run-
time. In our case the abstract factory produces the
strategies that will be sent out with the worker
agents, without any component, besides the facto-
ry, knowing the specifics of the strategy.

2.2 The Agent Model

In this section we present a very simplified agent
model, which describes the minimal concepts
needed for our framework. Agent models for exist-

ing agent systems are normally much more com-
plex; one example for this is the agent model used
for Mole (see [BaumEA98] for a description). Fur-
thermore we present the fault model we assume for
the underlying distributed system.

The Agent Model. The agent model used
throughout this paper is based on the concepts of
mobile agents and places. An agent system con-
sists of a number of (abstract) places providing an
infrastructure for agents. Places provide the envi-
ronment for safely executing local as well as visit-
ing agents. An agent system consists of a number
of (abstract) places, being the home of various
services. Agents are active entities, which may
move from place to place to meet other agents and
access the places’ services. In our model (see Fig-
ure 1), agents may be multi-threaded entities,
whose state and code is transferred to the new
place when agent migration takes place. Each
agent is identified by a globally unique agent iden-
tifier. An agent’s identifier is generated by the sys-
tem at agent creation time. A place is entirely lo-
cated at a single node of the underlying network.

Fault Model. We can distinguish node and net-
work failures. We assume that nodes suffer from
crash-recovery failures only. This type of failure is
an extension of the original crash failure, in which
no failure is assumed permanent (see Aguilera,
Chen and Toueg (1998) for details). The failure
causes the node to halt and to lose its internal vol-
atile state. The stable storage survives failures. We
assume a communication protocol is used that sup-
ports full connectivity between the nodes, and the
delivery of messages in order, correct (i.e. the mes-
sage is not garbled), and exactly-once as long as no
network fault occurs. Furthermore, we assume the

Mobile Agent

Place

Agent Migration

Local Communication

Global Communication

Server

Desktop

Laptop

Figure 1: Mole System Overview

The Framework 4

communication protocol to be fail-aware. Many
protocols providing this type of reliable datagram
service are known, i.e. this assumption is close to
reality. Consequently the following can be as-
sumed: the communication network is fully con-
nected and it provides reliable communication
channels as long as no network fault occurs. Com-
munication networks can suffer from crash failures
that may cause the network to be partitioned. In the
case of a network partition the communication
channel between sender and receiver in different
partitions fails, but continues to work between par-
ticipants within the same partition. Node and net-
work failures are detectable, but not distinguisha-
ble.

2.3 Architecture

Our architecture consists of an application, a coor-
dinator and workers. All of these are agents. Op-
tionally, the coordinator may be realized as an ob-
ject being attached to the application. A
programmer using our framework has to provide
only the strategies (containing the algorithm and
the global strategy identifier) and the application
(integrating the results) to allow transparent distri-
bution.
The normal operation is as follows (numbers in
braces correlate to the numbers in Figure 2): the
application is started and in turn starts a coordina-
tor (provided by the framework) with a strategy
factory as a parameter (0). In the next step the ap-
plication begins to give different jobs to the coor-

dinator (1). Every job contains an identifier for the
strategy needed for this job. The coordinator exam-
ines its list of free workers for one containing this
strategy (in the beginning none), and sends the job
to the worker. If no worker exists containing the
needed strategy, or if all workers are busy, and
there are still places left to which workers can be
sent, then a new worker is created with the needed
strategy. The needed strategy is requested from the
factory with the help of the strategy identifier (2).
The worker is now sent to a place where it com-
putes the result of the job (3). As soon as the result
is sent back (4), the coordinator removes the job
from the worker’s queue and transfers the next job
in the queue (5). The local queue in the coordinator
contains time-stamped entries with the jobs sched-
uled for one worker. Different policies can be used
to send the jobs to the workers, or to reschedule if
either a job needs an unforeseen time, or if the
worker has crashed (detected via regular “alive”
messages). The result received by the coordinator
is then returned to the application, which integrates
this part into the overall result (6).

This continues until the application signals that
it has no more jobs. Now the coordinator removes
all workers as soon as their queue is emptied and
the last result reported. The final step for the coor-
dinator is to remove itself to finish the clean-up.

Strategy
Factory

Coordinator

Worker
Strategy

Application

JobJobJobJob

StrategyStrategyStrategy

Worker
Strategy

Worker
Strategy

Worker
Strategy

Strategy
Factory

StrategyStrategyStrategy

(0)

(1)

Worker

JobJob

(2a)
(2b)

Worker
Strategy

(3)

Queue (4)

(5)

(6)

Figure 2: Architecture of the Framework

Performance Model 5

3 Performance Model

In this section, we will discuss some performance
issues regarding the presented framework. The fol-
lowing simplifying assumptions are made:
• The coordinator itself is no agent. It is inte-

grated (as an object with own threads) into the
application agent. Therefore, no (global) com-
munication between application and coordina-
tor has to be considered.

• All places execute jobs with the same speed,
the average execution time texe of a work pack-
age and the average integration time tint of a
work package result are known.

• The time tstart needed to start a new worker
agents is known.

• Network delay δ and throughput τ are equal
between all places. Therefore, the transfer
times of work packages tsnd, result packages
trec and the migration time for worker agents
tmig are constants.

• Only one type of worker functionalities is
assumed

3.1 Local Computation

To calculate the time needed for a local execution
of a job, two approaches have to be considered:
The first approach is to time the execution of the
job. In this case, the job is done and you don’t have
to think about distribution. But you can use this
measurement as a base for similar jobs. The sec-
ond approach is to use the (known) average times
for the execution of a work package and the inte-
gration of results to compute the time for a local
execution.
To be able to deal with the problem in general, we
use the second approach and calculate the time t0
for the local execution by

where texe and tint are the average work package
execution and integration times and n is the
number of work packages of the job. In this case,
the calculated time is the “worst case time” for the
local execution of the job including the overhead
for dividing the job into work packages and for in-
tegration of the work package results.

3.2 Distributed Computation

To calculate the time needed for the distributed
computation of a job consisting of n work packag-
es with m worker agents, we first have a look at the
sequence of actions that have to be executed by the
coordinator and the worker agents respectively.
The coordinator performs the following algorithm:

1. Repeat for each worker agent (m times)

a. Start worker agent

b. Migrate worker agents to destination

c. Send work package

2. Repeat until all work packages are sent (n-m
times)

a. Receive result

b. Send new work package

c. Integrate result

3. Repeat until all results are received (m times):

a. Receive result

b. Integrate result
Meanwhile the worker agents does

4. Repeat until terminated (about n/m times):

a. Receive work package

b. Execute work package

c. Deliver result
A lower bound for the execution times for each al-
gorithmic step is computed as follows. The time
for the initialization phase is approximated by

The main loop of the coordinator computes to

The wrap up time at the end of the computation is

On the other hand, a lower bound for the execution
time of the worker agents is

The equations above are only lower bounds for the
execution time because additional time might be-
come necessary for the synchronization between
coordinator and the worker agents. For example,
the coordinator normally has to wait for results

t0 n texe tint+()=

tini m tstart tmig tsnd+ +()=

tcoord n m–() tsnd trec tint+ +()=

t fin
m
n
---- trec tint+()=

twork
n
m
---- trec texe tsnd+ +()=

Implementation 6

from the worker agents before it can continue
sending work packages. But it can also happen that
worker agents have to wait for work packages, e.g.
because the coordinator has to process too many
small work packages or is busy with the integra-
tion of previously delivered results. In order to es-
timate the overall execution time, we have to know
whether the coordinator is overloaded with work
or not. The coordinator can be expected to be over-
loaded if

i.e. the inner loop of the coordinator takes longer
than the average worker agent cycle: In this case
the coordinator is the bottleneck of the computa-
tion.

The overall computing time using m worker agents
now computes to

3.3 Evaluation

Using the above equations we have computed the
expected performance of the framework for two
scenarios. In the first scenario we consider the ex-
ecution of a fixed number of 500 work packages
using zero to four worker agents. The execution
times for the diagram in Figure 3 are given by

, , ,
, while the execution time for a work

package is varied between 1 and 20. It can be
observed that the use of worker agents yields a per-
formance gain only for large work packages. For
example, using one worker agent yields a perform-
ance gain only if the execution time for the work
package is larger than 2, i.e. if the remote execu-
tion of the work package is faster than the time
needed for sending the work package request and
for receiving the results. In this case the perform-
ance gain can be explained by the concurrent exe-
cution of the work package by the worker agent
and the integration of the results by the coordina-
tor. If more worker agents are used, the overhead
for the initial starting and migarating of worker
agents increases and the coordinator has to prepare
more work packages per time unit. So the coordi-

nator remains a bottleneck unless larger work
packages are sent to the worker agents.

Figure 3: Performance of fixed
number of work packages

In the second szenario, a fixed overall work load of
5000 units are executed using zero to four worker
agents. Using the same execution times as above,
the graph in Figure 4is normalized using the exe-
cution time for the local coordinator-only execu-
tion . It can be observed that using a single
worker agent there is a clear optimal work package
size with .Similarly a larger number of
worker agents also need for a larger work package
size.

Figure 4: Relative perfor-
mance for fixed problem size

4 Implementation

A prototype of the framework has been imple-
mented in Java using Mole [BaumEA98]. The im-
plementation provides a set of interfaces which the
agents serving as application, coordinator or work-
er have to implement. In addition, basic implemen-

tcoord twork>

tm tini max tcoord twork,() t fin+ +=

tstart 200= tmig 100= tsnd trec 1= =
tint 3=

texe

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Size of work packages

no worker 1 worker 2 worker 3 worker 4 worker

t0

texe 3=

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Size of work packages

no worker 1 worker 2 worker 3 worker 4 worker

Conclusions 7

tations for each of the three agent types are provid-
ed.
This approach allows to simply replace one agent,
e.g. the coordinator by a similar agent with en-
hanced capabilities. For example, in the first proto-
type, the crucial question of how to find places for
the worker agent has been solved by simply pro-
viding the coordinator with a list of available plac-
es. Replacing the coordinator by another agent
which collects load information of available places
and schedules the jobs according to this informa-
tion would provide a very powerful tool for load
balancing.
To show the validity of the concept, we just started
to make meassurements using the implemented
prototype. For the meassurements, an application
calculating the Mandelbrot set [Peitgen et al.
1992] has been implemented.
The table shows average times (in milliseconds)
for the distributed calculation of a Mandelbrot set

(384x256 image pixels) with different numbers of
workers (2, 3 and 4 workers, one cpu per worker)
and different job sizes (16x16, 32x32 and 64x64
image pixels per job). The coordinator and the ap-
plication reside on the same place. The parameters
of the calculated set (especially the parameter
which specifies “infinity”) are chosen to generate
a very heavy load.

5 Conclusions

We have presented a mobile agents based frame-
work for the transparent distribution and concur-
rent execution of computations. A performance
model for this framework indicates that a perform-
ance gain is possible despite the overhead intro-
duced by the creation and coordination of agents.
The performance model furthermore allows to
tune work package sizes such that the workload is
balanced between coordinator agent and worker
agents. First measurements performed on the im-

plementation of the framework on top of the mo-
bile agent system Mole confirm these evaluations.
Further measurements and their discussion will be
included in the final version of this paper.

References
Aguilera, M. K. and Chen, W. and Toueg, S.

(1998), “Failure detection and consensus in
the crash-recovery model”, Technical Report
TR98-1676, Cornell University, Computer
Science Department.

Baumann, J. and Hohl, F. and Rothermel, K. and
Straßer, M. (1998), “Mole - Concepts of a mo-
bile agent system”, WWW Journal 1, 3, Baltz-
er Science Publishers, pp. 123 - 137.

Buschmann, F. and Meunier, R. and Rohnert, H.
and Sommerlad, P. and Stal, M. (1996), A
System of Patterns, John Wiley & Sons, Eng-
land.

Chess, D. and Harrison, C. and Kershenbaum, A.
(1997), “Mobile Agents: Are They a Good
Idea?”, In: Vitek, J. and Tschudin, C. (ed) Mo-
bile Object Systems. Towards the Program-
mable Internet. Second International Work-
shop, MO’96. Selected Presentations and
Invited Papers, Springer, Berlin, Germany, pp.
25-47

Gamma, E. and Helm, R. and Johnson, R. and
Vlissides, J. (1994), Patterns: elements of re-
usable object-oriented software, Addison-
Wesley, Reading, Massachusetts.

Jalote, P. (1994), Fault Tolerance in Distributed
Systems, PTR Prentice Hall.

Peitgen, H.-O. and Jürgens, H. and Saupe, D.
(1992), Fractals for the classroom, Springer,
New York

Straßer M. and Schwehm M. (1997), A Perform-
ance Model for Mobile Agent Systems. In: H.
Arabnia (ed.), Proc. Int. Conf. on Parallel and

Distributed Processing Techniques and Appli-
cations (PDPTA'97).Vol II, CSREA, pp.
1132-1140

2 3 4

16 33452 29110 27095

32 18065 14475 11353

64 15028 12724 9573

