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Abstract

Today’s society generates and stores digital information in enormous amounts and
at rapidly increasing rates. This trend affects all parts of modern society, such as
commerce and economy, politics and governments, health and medicine, science in
general, media and entertainment, the private sector, etc. The stored information
comprises text documents, images, audio files, videos, structured data from a
variety of sources, as well as multimodal combinations of them, and is available
in a multitude of electronic formats and flavors. As a consequence, the need for
automated and interactive tools supporting tasks, such as searching, exploring,
monitoring, sorting, and making sense of this information at different levels of
abstraction and within different but steadily converging domains, increases at the
same pace as the data is generated and represents one of the biggest challenges for
current computer science.

A relatively young approach to tackle these tasks by exploiting human analytic power
in synergetic combination with advanced computerized techniques has emerged
with the research field of visual analytics. Visual analytics aims at combining
automated methods, visualization techniques, and approaches from the field of
human computer interaction in order to equip analysts with more powerful tools,
tailored to domains, where large amounts of data must be analyzed. In this
work, visual analytics methods and concepts play a central role. They are used
to search and analyze texts or multimodal documents containing a considerable
amount of textual content. The presented approaches are primarily employed for
analyzing a very special type of document from the intellectual property domain,
namely patents. Since the retrieval and analysis tasks carried out in the patent
domain differ greatly from standard search and analysis tasks regarding rigorous
requirements, high costs, and the involved risks, new, more effective, efficient, and
more reliable methods need to be developed.

Accordingly, this thesis focuses on researching the combination of automatic meth-
ods and information visualization by using advanced interaction techniques in order
to improve upon the state of the art in patent literature retrieval. Such integration
is achieved and exemplified through different visual analytics prototypes, aiming
at creating support for real-world tasks and processes. The main contributions
presented in this thesis encompass enhancements for all stages of patent literature
analysis processes. This includes improving patent search by presenting techniques
for interactive visual query building, which helps analysts to formulate complex in-
formation needs, the development of a technique that allows users to build their own
precise search mechanism in the form of binary classifiers, and advanced approaches
for making sense of a retrieved result set through visual analysis. The latter builds
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Abstract

the base to let users generate insights needed for judging and improving previous
query formulations. Interaction methods facilitating forward analysis as well as
feedback loops, which constitute a critical part of visual analytics approaches,
are discussed afterwards. These methods are the key to integrating all stages of
the patent analysis process in a seamless visual manner. Another contribution
is the discussion of scalability issues in context of the described visual analytics
approaches. Especially interaction scalability, the recording of analytic provenance,
insight management, the visualization of analytic reporting, and collaborative
approaches are addressed.

Although the described approaches are exemplified by applying them to the field of
intellectual property analysis, the developments regarding search and analysis have
the potential to be adapted to complicated text document retrieval and analysis
tasks in various domains. The general ideas regarding the facilitation of low-level
feedback loops, user-steered machine classification, and technical solutions for
diminishing negative scalability effects can be directly transferred to other visual
analytics scenarios.
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Zusammenfassung

Unsere heutige Gesellschaft erzeugt ernorme Mengen digitaler Informationen, und
das in rasant steigender Geschwindigkeit. Dieser Trend zeichnet sich in allen
Bereichen der modernen Gesellschaft ab, sei es in Handel und Wirtschaft, in der
Politik und der o6ffentlichen Hand, im Gesundheitswesen und der Medizin, in der
Wissenschaft, den Medien, der Unterhaltungsbranche oder im privaten Umfeld.
Die gespeicherten Informationen umfassen unter anderem Textdokumente, digitale
Bilder, Tonaufnahmen, Videos, strukturierte Daten aus unterschiedlichen Quel-
len, sowie multimodale Kombinationen aus den verschiedenen Sparten. Sie alle
liegen in einer Fille unterschiedlicher elektronischer Formate und Varianten vor.
Entsprechend wéchst der Bedarf an automatisierten und interaktiven Werkzeu-
gen, die Unterstiitzung fiir eine ganze Reihe von Aufgaben bieten - wie z.B. der
Suche, der Exploration, der Uberwachung, der Einordnung, und der Analyse ge-
speicherter digitaler Informationen, auf unterschiedlichen Abstraktionsebenen und
in unterschiedlichen aber stetig konvergierenden Fachgebieten. Die Entwicklung
von Werkzeugen um diese Aufgaben unter Beriicksichtigung standig wachsender
Datenmengen zu bewiéltigen stellt dabei eine der grofiten Herausforderungen fiir
die heutige Informatik dar.

Ein vergleichsweise neuer Ansatz zur Losung dieser Probleme wurde mit dem For-
schungsgebiet “Visual Analytics” geschaffen, der Synergieeffekte aus der Verbindung
von analytischen Fahigkeiten des Menschen mit fortschrittlichen Informationsverar-
beitungstechniken nutzt. Visual Analytics kombiniert dabei automatische Verfahren,
Visualisierungstechniken und Ansétze aus der Mensch-Computer-Interaktion, um
Analysten mit méchtigeren Werkzeugen fiir die Analyse grofler Datensétze aus-
zuriisten. In dieser Arbeit spielen Visual-Analytics-Ansétze eine tragende Rolle.
Sie werden fiir die Suche nach und die Analyse von Texten und multimodalen
Dokumenten, die einen groflen Textanteil aufweisen eingesetzt. Die vorgestellten
Ansatze, werden hauptsachlich auf die Analyse von Patenten als eine besondere
Art von Textdokumenten angewandt. Da sich die Such- und Analyseaufgaben
innerhalb des Patentumfelds deutlich von Standardsuche und klassischen Analysen
unterscheiden, was die strengen Anforderungen, hohen Aufwand und Kosten und
die damit verbundenen Risiken betrifft, miissen neue, effektivere, effizientere und
verlassliche Methoden entwickelt werden.

Die vorliegende Arbeit beschéftigt sich deshalb mit der Kombination von automa-
tischen Methoden und Methoden der Informationsvisualisierung unter Nutzung
moderner Interaktionstechniken, um die Patentsuche iiber den aktuellen Stand der
Technik hinaus zu verbessern. Die Integration dieser Methoden wird mittels einer
Reihe von Visual-Analytics-Prototypen, welche Unterstiitzung fiir reale Prozesse
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Zusammenfassung

und Aufgaben bieten, erreicht und exemplarisch aufgezeigt. Die vorgestellten Neue-
rungen umfassen Verbesserungen fiir samtliche Schritte des Patentanalyseprozesses.
Dazu gehort die Optimierung der Patentsuche durch die vorgestellten Techniken
zur interaktiven visuellen Anfrageerstellung, die Analysten dabei helfen einen
komplexen Informationsbedarf zu formulieren. Des Weiteren wird ein Verfahren
erlautert, das es Benutzern erlaubt, ihre eigenen, prézisen Suchmechanismen in
der Form binérer Klassifikatoren zu erstellen. Aulerdem werden moderne Ansétze
prasentiert, wie Ergebnismengen mit Unterstiitzung von visueller Analyse interpre-
tiert und verstanden werden konnen. Daraus wiederum kénnen Benutzer sodann
Erkenntnisse gewinnen, die fiir die Bewertung und Verbesserung vorhergehender
Anfrageformulierungen notwendig sind. Im Anschluss folgt die Auseinandersetzung
mit interaktiven Methoden, die sowohl eine Vorwéartsanalyse als auch Feedback
Loops ermoglichen, die einen wesentlich Bestandteil von Visual-Analytics-Ansétze
darstellen. Diese Methoden bilden die Grundlage, auf deren Basis alle Phasen des
Patentanalyseprozesses auf nahtlose Weise visuell miteinander verkniipft werden
konnen. Ein weiterer Forschungsbeitrag besteht in der Untersuchung von Skalierbar-
keitsaspekten im Zusammenhang mit den verwendeten Visual-Analytics-Ansétzen.
Eine wesentliche Rolle spielen hier vor allem die Skalierbarkeit von Interaktions-
techniken, die Aufzeichnung analytischer Prozesse, die Kombination und weitere
Nutzung von gewonnenen Erkenntnissen, die Erzeugung von Analyseberichten,
sowie kooperative Ansétze.

Auch wenn die hier vorgestellten Ansétze anhand konkreter Beispiele fiir spezielle
Fachgebiete beschrieben werden, verfiigen einige der Entwicklungen tiber das Po-
tential, auf andere komplexe Textdokumentsuch- und Analyseaufgaben iibertragen
werden zu konnen. Insbesondere die Ideen zur Optimierung von Feedback Loops
und benutzergesteuerter Klassifikation, sowie technische Losungen zur Verbesse-
rung der Skalierbarkeit lassen sich direkt auf andere Visual-Analytics-Szenarien
iibertragen.
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CHAPTER

Introduction

Today’s society generates and stores digital information in enormous amounts, and
at strongly increasing rates [Gantz and Reinsel, 2011]. This trend affects all parts
of modern society such as commerce and economy, politics and governments, health
and medicine, science in general, media and entertainment, the private sector, etc.
The stored information comprises text documents, images, videos, structured data
as well as multimodal combinations of them, and is available in a manifold of
electronic formats and flavors. As a consequence, the need for supporting tasks such
as searching, exploring, monitoring, sorting, and making sense of this information at
different levels of abstraction and within different but steadily converging domains,
increases at the same pace.

A relatively young approach to tackle these tasks has been defined by the research
field of visual analytics. Here, automated methods, visualization techniques, and
approaches from the field of human computer interaction are combined in order to
equip analysts with more powerful tools, tailored to domains, where large amounts
of data should be analyzed. In this thesis the visual analytics approaches and ideas
play a central role. They are applied to search and analysis tasks for text documents
or multimodal documents containing a considerable amount of textual content.
The presented approaches are primarily employed for analyzing a very special type
of document from the intellectual property domain, namely patents.



2 Chapter 1 e Introduction

1.1 Problem Statement

Many professionals have to deal with patents today, aiming at a variety of analytic
goals including patentability search, freedom to operate analysis, validity search,
portfolio analysis, as well as finding trends, monitoring competitors and many
more. However, a variety of problems make patent analysis a very complex and
time-consuming task. Patent documents are digitally stored in patent databases
and repositories, and are freely available from patent offices. The stock of patent
information, however, is increasing rapidly. For example, the repository maintained
by the European Patent Office (EPO)! (accessible through the esp@cenet? service)
holds more than 60 million patent documents. In 2010, an all-time high of 1.98 mil-
lion filed patent applications has been reported by the World Intellectual Property
Organization (WIPO)?, while 7.3 patents million were in force, worldwide.

Not only the large amount of patent documents poses a challenge, but also the
complexity and heterogeneity of patent information, such as multimodal content,
bibliographic information and other metadata, the ‘patentese’ they are written
in, and several other aspects complicate the tasks mentioned above. For obvious
reasons applicants are trying to produce patent applications that still follow the
rules of patentability, but they also aim to phrase them as general as possible
to achieve a maximum of coverage for their patents. Furthermore, some patent
applications are multi-lingual, others are only accessible in the language of the
country where they have been applied for.

Some patent analysis tasks have to be carried out very thoroughly, since failure in
finding all relevant documents can result in a high risk of litigation and probably
have severe economic consequences. Even if a company does not intend to apply
for patents, the patent landscape of the domain(s) a company is involved in has to
be tracked closely.

With the large numbers of patents applied for today, there is an increasing ‘backlog™
of unprocessed patent applications causing enormous costs. Patents are also a
concern for small and medium-sized enterprises (SMEs), who do not maintain
their own legal departments and therefore depend on external service providers.
It would be beneficial to equip SMEs with the techniques, necessary to carry out
certain patent analysis tasks on their own. As a consequence, there is a need for
approaches that speed up patent analysis, make it available to a wider group of
stakeholders, make it more reliable, easier to handle, reusable, and to work on other
enhancements while taking into account the abovementioned problems. Visual

! http://www.epo.org/

2 WWW.espacenet.com

3 www.wipo.int/

4 nttp://www.ipo.gov.uk/pro-types/pro-patent/p-policy/p-policy-backlog.htm
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analytics approaches offer the chance to increase effectiveness and efficiency to
improve this situation.

1.2 Research Questions
In this context the following research questions arise:

e« How can information visualization models be amended or updated to ac-
knowledge the requirements of visual analytics methods?

e (Can the problems faced in patent search and analysis be alleviated by visual
analytics techniques?

o How can the important issue of scalability be addressed by switching from
traditional to visual analytics approaches?

o Is it possible to derive generic methods from the techniques developed for
patent analysis tasks?

1.3 Contribution

This thesis introduces an approach for patent search and analysis tasks called
‘PatViz’. PatViz, which was developed as part of the EC-Project PatExpert and
the DFG priority program ‘Scalable Visual Analytics’, can be seen as a visual
analytics system for patent search and analysis. Its main contributions is a
visual, interactive interface that spans all phases of patent search and analysis
tasks. It facilitates visual query creation, visual inspection of result sets, and the
combination assessment of findings. Since multiple patent repositories containing
patent documents, bibliographic data, semantic information, and image data, can
be accessed with PatViz, emphasis is put on their integration in one coherent
interface. The integration is realized for visual query definition as well as result
set presentation. Additionally, interactive means are provided on the basis of
this integration that allow patent analysts to include found insights directly in
subsequent query definitions, which directly supports the iterative nature of patent
search and analysis tasks. Furthermore, a selection management and filtering
approach is employed that enables analysts to construct and filter visually and
interactively with a graph-based visualization. Through combinatory analysis of
result sets or subsets of them, hypotheses can be tested, found insights externalized,
and complex restrictions reintegrated into subsequent query refinements.

In order to explain the architecture that has been employed to create PatViz, an
extended variation of the information visualization reference model is introduced.



4 Chapter 1 e Introduction

Furthermore, a process model for visual patent analysis is proposed and aligned
with an adapted version of the sensemaking model as has been suggested by Pirolli
and Card [2005]. Especially, feedback loops that are provided on different levels
of abstraction are discussed in the context of the PatViz system, since these are
necessary if analytic tasks are to be carried out in a seamless, visual, and interactive
manner. One contribution of this work is to highlight and describe in detail those
aspects and concepts of the information visualization reference model that play an
important role in visual analytics approaches.

The PatViz system has been extended with a technique to enhance explorative
tasks, and an approach is suggested that enables analysts to create classifiers for
enhancing text document retrieval tasks. Both techniques are visual analytics
approaches themselves, but are designed in a way to be integrated into large visual
analytics systems. The first method is ‘EdgeAnalyzer’ providing a focus+context
technique for the exploration of link and edge-based views. It facilitates iterative
drill-down operations based on metadata and geometric characteristics of the edges
or links under exploration. Different automatic grouping and visualization methods
are employed in order increase the scalability of the method in situations where
many links are explored at once. In addition, it is possible to use multiple dependent
and independent lenses in one view, which further increases analytic capabilities.
In the context of patent analysis, the technique is used for patent co-classification
analysis, but it is designed in a flexible fashion that makes its employment in other
edge-based visualizations possible.

The approach for visual, user-steered classifier creation presented in this thesis
is generic as well, and can be adapted to other text retrieval scenarios. It is
intended as an additional method to keyword-based retrieval approaches and can
be especially helpful in situations where analysts have problems to define good
(sub)queries for specific retrieval tasks. In the proposed method, binary classifiers
can be trained by labeling documents as relevant and non-relevant according to the
analyst’s information need. In order to speed up the process, analysts are provided
with a visual interface enabling them to carry out selective labeling operations with
a high impact on the classifier training. Linear support vector machines are used
as a classification for this approach. The technique aims at hiding the complexities
of the classification model by translating it into comprehensible visual abstractions
Thus analysts who have no previous knowledge of the employed machine learning
technique, are able to build and assess high-quality classifiers.

Both, EdgeAnalyzer as well as user-steered classifier creation were built based on
specific analytic process models, which are presented in this thesis. They are used
to depict the integration of these systems into larger approaches. Scalability aspects
play another important part in the design of visual analytics systems. This is not
only the case because visual analytics aims at finding solutions for scenarios where
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large amounts of information have to be analyzed, but has many other potentially
conflicting dimensions.

Because analytic processes, whether they are carried out in the intellectual prop-
erty domain or in other fields, are not finished after some findings were made,
collaboration, provenance recording, and analytic reporting are discussed in the
context of the presented approaches as well. They are crucial for sharing, assessing,
and informing others about performed analyses and should therefore be an integral
part of visual analytics systems. Recording analytic provenance data can be seen
as one important building block for collaboration and reporting. If the important
analytic steps taken during a task are stored explicitly, they can later be exploited
to explain analyses to others in collaborative scenarios or to present the results
of an analysis to decision makers. This is shown by example within a scenario
for analyzing microblog data, but using the selection management and filtering
approach developed in PatViz.

Results of the evaluation of all the proposed approaches are presented, and negative
aspects as well as identified advantages are discussed in detail. In the case of user-
steered classifier creation a new evaluation approach is suggested that combines
classic evaluation methods of information retrieval with a user evaluation in order
to assess the value of this visual analytics approach.

1.4 Thesis Structure

This thesis is structured as follows: Chapter 2 briefly introduces the fields and
terminology necessary understanding the subsequent parts. This includes a de-
tailed description of the field of visual analytics and its most important research
goals, information visualizations, visualization models, information and document
retrieval, search user interfaces, sensemaking, as well as a closer look at the data
properties of patent documents and common tasks in the process of patent analysis.
With PatViz, Chapter 3 presents a software prototype for visual patent analysis, its
views, and basic interaction facilities. This comprises the introduction of methods
for integrating the different views and query facilities through advanced interactive
methods, as well as one for selection and insight management. Chapter 4 depicts
two approaches that can be seen as plug-ins for larger analytics approaches. The
first one, EdgeAnalyzer, offers a focus and context technique for edge exploration,
while the second one introduces a method for visual user-steered classifier creation
which can be used to forge task-specific tools for document retrieval. Chapter 5
highlights scalability issues important in the context of visual analytics and ex-
amines how the presented approaches acknowledge these. Chapter 6 covers the
evaluation of the proposed techniques and discusses the results of the methods
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depicted in this work. An outlook to future developments in visual patent document
analysis and how the suggested methods might influence other developments in
the field of visual analytics is given in Chapter 7.

Parts of the work presented in this thesis have already been disseminated in the
form of conference papers, journal articles, and a book chapter, as can be seen
from the list at the end of this chapter. The work described subsequently is part of
the joint effort of many researchers, who are either co-authors of the papers listed
below, or who were collaborators in one of the projects this work has been funded
by. These projects include PatExpert®, financed by the European Commission in
the context of Framework Programs 6, as well as ‘Scalable Visual Patent Analysis’,
which has been funded by the German Science Foundation (DFG) as part of the
priority program ‘Scalable Visual Analytics’®. Additional funding has been provided
by the Universitat Stuttgart.

This thesis is partly based on the following publications:

M. Giereth, S. Koch, M. Rotard, and T. Ertl. Web Based Visual Exploration of
Patent Information. In International Conference on Information Visualization
(IV 2007), pages 150-155, 2007b

M. Giereth, S. Koch, Y. Kompatsiaris, S. Papadopoulos, E. Pianta, and L. Wan-
ner. A Modular Framework for Ontology-Based Representation of Patent In-
formation, pages 49-59. 10S Press, 2007a

S. Koch, H. Bosch, M. Giereth, and T. Ertl. Iterative Integration of Visual
Insights during Patent Search and Analysis. In IEEE Symposium on Visual
Analytics Science and Technology (VAST 2009), pages 203-210, 2009

H. Bosch, J. Heinrich, C. Miiller, B. Hoferlin, G. Reina, M. Hoferlin, M. Wérner,
and S. Koch. Innovative filtering techniques and customized analytics tools. In
IEEE Symposium on Visual Analytics Science and Technology (VAST 2009),
pages 269-270, 2009

C. Rohrdantz, S. Koch, C. Jochim, G. Heyer, G. Scheuermann, T. Ertl,
H. Schutze, and D. A. Keim. Visuelle Textanalyse. Informatik-Spektrum,
33:601-611, 2010

http://www.patexpert.org/
http://www.visualanalytics.de/
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A. Panagiotidis, H. Bosch, S. Koch, and T. Ertl. EdgeAnalyzer: Exploratory
Analysis through Advanced Edge Interaction. In Hawaii International Confer-
ence on System Sciences (HICSS 2011), pages 1-10, 2011

H. Bosch, D. Thom, M. Wérner, S. Koch, E. Piittmann, D. Jackle, and T. Ertl.
ScatterBlogs: Geo-spatial document analysis. In IEEE Conference on Visual
Analytics Science and Technology (VAST 2011), pages 309-310, 2011

S. Koch, H. Bosch, M. Giereth, and T. Ertl. Iterative Integration of Visual
Insights during Scalable Patent Search and Analysis. IEEE Transactions on
Visualization and Computer Graphics, 17(5):557-569, 2011

S. Koch and H. Bosch. From Static Textual Display of Patents to Graphical
Interactions. In M. Lupu, K. Mayer, J. Tait, A. J. Trippe, and W. B. Croft,
editors, Current Challenges in Patent Information Retrieval, volume 29 of The
Kluwer International Series on Information Retrieval, pages 217-235. Springer

Berlin Heidelberg, 2011

D. Thom, H. Bosch, S. Koch, M. Wérner, and T. Ertl. Spatiotemporal anomaly
detection through visual analysis of geolocated Twitter messages. In IEEFE
Pacific Visualization Symposium (PacificVis), pages 41-48, 2012

F. Heimerl, S. Koch, H. Bosch, and T. Ertl. Visual Classifier Training for
Text Document Retrieval. IEEE Transactions on Visualization and Computer
Graphics, 18(12):2839-2848, 2012
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HIVEBEAT - A Highly Interactive Visualization Environment for Broad-Scale
Exploratory Analysis and Tracing. In IEEE Conference on Visual Analytics
Science and Technology (VAST 2012), pages 177-178, 2012







CHAPTER

Foundations and Models

Visual analytics is a multidisciplinary field and the techniques for searching and an-
alyzing patent literature presented in this thesis follow visual analytics approaches.
As a consequence, a broad spectrum of research areas, such as information visu-
alization, information retrieval, and machine learning are touched in this work.
Important foundations and aspects that are part of the approaches discussed later
are presented in this chapter accordingly. In particular models, for describing
information visualization and visual analytics approaches, play an important role,
since they provide the frame for developing domain specific approaches on the one
hand and are valuable means for generalizing new developments to other fields, on
the other. Furthermore, the peculiarities of patent documents that are interesting
during analysis and the metadata attached to them are briefly presented. Finally,
search and analysis approaches and processes as they are currently employed in
patent analysis are discussed.

2.1 Visual Analytics

The term wvisual analytics was introduced by Wong and Thomas [2004]. Visual
analytics as a research direction became a prominent topic after the book ‘Illu-
minating the Path: Research and Development agenda for Visual Analytics’ was
published by Thomas and Cook [2005]. At this point in time, visual analytics was
suggested as an approach to analyze huge amounts of heterogeneous and conflicting
data in order to prevent terrorist threats and to react adequately to disastrous
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events. However, it was obvious from the beginning that the general idea of visual
analytics may be beneficial to many other domains.

The class of problems that can benefit from visual analytics methods can be
roughly characterized as arising in situations where huge amounts of dynamically
changing, heterogeneous, multidimensional, ambiguous, uncertain, or incomplete
data, have to be analyzed and where analytic goals and tasks are either complex
or cannot be specified clearly a priori. In such situations neither purely automatic
approaches can be applied, nor human effort alone will lead to satisfactory results
in a reasonable period of time. Visual analytics therefore proposes the usage of
automatic methods in order to support human analysts in their reasoning tasks.
Visualization, which exploits the exceptional properties of human visual perception,
can help to make large amounts of data and their context quickly accessible to human
analysts. In order to support analytic feedback loops required for sensemaking,
the introduction of interactive methods is inevitable. Thus, interaction techniques
build the glue between the analyst and the computer-implemented systems for
triggering automatic analyses, changing visual perspectives, combining selection
and filtering to validate or invalidate hypotheses. They embed human analysts
in the sensemaking process (see Section 2.7), which makes them an important
prerequisite for analytic discourse. At the same time interaction methods are
one of the most delicate parts of a visual analytics application that can either
greatly increase its analytic power or cause major issues if they are not carefully
integrated.

Regardless of the introduction of visual analytics as a research direction, there
already existed ideas, tools and systems, which could be seen as following the
visual analytics idea, before it was introduced. However, the growth of visual
analytics research during the last years is remarkable. The fields of application
for visual analytics broadened quickly from the domains suggested in Thomas
and Cook [2005]. In 2009, Thomas and Kielman [2009] list further potential
sectors and applications for visual analytics: security, health, energy, commerce,
transportation, food/agriculture, economy, insurance, cyber security, knowledge
workers, and personal use. And what visual analytics achieved is that researchers
start thinking of tightly integrating the three mentioned aspects visualization,
automated approaches, and human computer interaction, thereby boosting the
development of new, more scalable and holistic approaches.

Visual analytics is the offspring of the field of visualization, in particular scien-
tific visualization and information visualization. While the research discipline of
scientific visualization' develops methods for visualizing measured or simulated

1 The term ‘scientific visualization’ was coined from ‘visualization for scientific computing’ which
emerged the first time in the ViSC report [McCormick, 1988] of the NSF.
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data, and typically aims at depicting data that correlate to a spatial represen-
tation, information visualization aims at visualizing abstract concepts and data
(cf. Tory and Moller [2004]). There is a subset of visualization approaches and
scenarios from both disciplines, which also satisfy the definition of visual ana-
lytics. In the context of this work only information visualization techniques are
considered, since intellectual property documents such as patents represent abstract
information.

2.2 Information Visualization

Visualization can be a means to let users gain insights into large amounts of
information quickly. It is therefore a valuable instrument to increase scalability for
the analysis of abstract data. However, this is only possible if the information to be
transported is visually prepared in a suitable way, regarding the type of data as well
as the task that should be carried out. In the case of patent documents, which are
the primary object of investigation in this thesis, a variety of metadata is available,
covering almost every data type discussed in Shneiderman [1996]. This includes
hierarchical data, categorical data, time-based information, and many more as
depicted below in Section 2.8. A broad discussion on the benefits of information
visualization and situations where it can be exploited successfully is given in Fekete
et al. [2008]. Amar and Stasko [2004] discuss analytic gaps that hinder analytical
reasoning and decision making by employing information visualization. By aiming
at process- and task-tailored information visualization, the approaches described
in this thesis try to fill these gaps.

A multitude of information visualization approaches exist for representing data
having different types, and in the context of this work a variety of visualization
techniques are used for presenting patent information as described in Chapter 3.
While visual representations are a good means for providing an overview of data
items to be analyzed, their effectiveness can be increased greatly by introducing
interaction techniques letting users explore details, relate visible data, filter informa-
tion, and select certain aspects to be inspected more closely or to facilitate further
analytic steps. The information visualization mantra stated by Shneiderman [1996]
emphasizes these interaction aspects and suggests how tasks can be supported
through interactive visualization:

“Overview first, zoom and filter, then details-on-demand”
Apart from providing different information visualization perspectives, the ap-

proaches proposed in this work make extensive use of interaction techniques as
well, which are required to facilitate in particular analytic tasks based on such
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views. Basic interaction techniques that are realized as view transformation, such
as zooming and panning, help users to focus on specific regions or data items
depicted in a view. Apart from zooming and panning, which is supported by many
of the discussed views, overview-+detail, focus+context [Cockburn et al., 2009],
and brushing & linking in context of multiple coordinated views [Roberts, 2007]
are used. Advanced filtering techniques and visual query definition also play an
important role for the approaches presented in this thesis. They are presented in
the next section in the context of search user interfaces. A variety of focus+context
have been described in publications. Prominent examples are ‘Fisheye Views’ as
presented by Furnas [1986], ‘Magic Lenses’ as described in Bier et al. [1993], or the
‘Table Lens’ introduced by Rao and Card [1994]. An overview of such approaches
can be found in Card et al. [1999]. Focus+context techniques are deemed to be
superior to overview+detail approaches in certain situations, since they do not
break with visual workflow, resulting in a lower memory load of users and better
visual search performance for explorative tasks. As part of the work presented
in this thesis, a focus+context technique called ‘EdgeAnalyzer’ is described in
Section 4.1.

However, focus+context techniques take effect within one single view. While
different information can be integrated into one view, there is certainly a limit
before a visualization gets very difficult to comprehend and too visually overloaded
to let users get an overview of the shown data. In such a case it is often preferable
to have differently detailed perspectives on data aspects. With overview+detail
methods, users are supported in coordinated drill-down tasks. In order to visually
analyze different data aspects at once, brushing&linking techniques can be applied
as often available with multiple coordinated views (MCV) (see Roberts [2007] for an
overview on the topic). Here different aspects can be visually related by constraining
one aspect interactively, and observing the characteristics of other aspects under
this constraint. MCVs are a key technique of the approaches described in this
thesis.

There is a plethora of related work in the field of information visualization that
addresses visualization variants for different data types and structures, as well as
suitable interaction techniques to let users interactively explore and exploit the
presented information. A historical overview of the development and employment of
early examples of information visualization can be found in Tufte [1986]. Card et al.
[1999] provide a selection of computer aided approaches in the field, addressing
information visualization in general and models for information visualization as
described below in more detail. A comprehensive work dealing with visualization
and perception aspects is available with Ware [2004] and Aigner et al. [2011]
describe visualization approaches that specifically consider time-related data.
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Figure 2.1 — The information visualization reference model according to Card
et al.

2.3 Visualization Models

A variety of abstract models for designing information visualization approaches have
been suggested. Among the most well known are the state chart model as proposed
by Chi [2000] and Card et al.’s [1999]’s information visualization reference model.
Haber and McNabb [1990] previously introduced a model for the visualization
pipeline, which was extended later by dos Santos and Brodlie [2004]. The latter two
give an abstract view on the visualization process in general. Since this work deals
mainly with the analysis of abstract data, especially those explicitly addressing
information visualization are of importance in this work’s context. Figure 2.1 shows
the information visualization model according to Card et al. [1999].

Card et al.’s model is divided into several stages starting with raw data that is
subsequently transformed into data tables. These data tables are enriched to visual
structures by mapping them to visual attributes such as position, spatial extent, etc.
[Bertin, 1967]. Finally, the visual data gets rendered into a view that is perceived
by a user. In interactive environments the user can interact with systems following
Card et al.’s approach in different ways. User interaction such as zooming and
panning can be realized by changing view transformations in the rendering step.
Interactions for modifying the visual mapping, such as switching to a different
color schemes or changing the layout of a view, apply directly to the mapping step.
Interactions that trigger changes in data filtering and aggregation functions affect
the data tables.

Visualization toolkits, systems and products, such as Improvise [Weaver, 2004],
Polaris [Stolte and Hanrahan, 2000], and Prefuse [Heer et al., 2005], just to name
a few, adhere to the abstract scheme of the information visualization models.
The most obvious reason for their lasting popularity lies in the models’ flexibility
and, taking a software engineering perspective, in the separation of concerns they
provide. This separation of concerns guarantees flexibility regarding the integration
of different data sources and different visual perspectives. Tang et al. [2004] provide
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Figure 2.2 — The visual analytics process according to Keim et al. [2008]

an interesting discussion of this separation and distinct implementation strategies
of the stages. They also come to the important conclusion that integrating data
sources and means to access them within the same visual tool can improve the
analytic process as a whole. This is a detail which is important in this work.

As a result of the abovementioned separation it is possible to branch models at
different stages in order to support different usage scenarios. Splitting the data flow
at the data tables stage allows for the creation of multiple visual perspectives on
the same data. Such an approach can be used to build a system supporting MCV.
Branching at the data source and raw data level makes it possible to visualize
and explore different data sources or different filtered perspective of the same data
source in parallel. Splits that occur at stages ‘Visual Structures’ and ‘Views’ are
not so common but have also been exploited as part of collaborative approaches,
e.g., for working on the same view of a data set in parallel at different locations or
to show the same information in different views (see, for example, Tobiasz et al.
[2009]).

2.4 Visual Analytics Models

With the introduction of visual analytics by Thomas and Cook, some new orthogonal
aspects have to be addressed, at least more explicitly than they were stated with
Card et al.’s model. A schematic view of the visual analytics process has been
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Figure 2.3 — Extension of Card et al.’s model for including visual analytics
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described by Keim et al. [2008, 2010] emphasizing data model creation and data
mining explicitly (see Figure 2.2). Keim et al. [2006] also adapted Shneiderman’s
mantra to fit visual analytics approaches into:

“Analyse First — Show the Important — Zoom, Filter and Analyse
Further — Details on Demand”

The information visualization reference model can be seen as an abstract model
that does not restrict its usage to information visualization, but can be utilized
as well to base visual analytics approaches on it. However, since visual analytics
approaches define an additional set of typical characteristics, it is helpful to depict
them by extending or rather concretizing these models.

Card et al.’s reference model was chosen for this purpose, since most of the
visualization approaches presented in subsequent chapters adhere to the reference
model. It is a good basis for depicting visual analytics approaches, since the
users or analysts and the ways they interact with the system is important in the
subsequently described work and should therefore be explicitly modeled within it
(see Figure 2.3). The proposed extension for the reference model can be mapped
to Keim et al.’s visual analytics process model easily and vice versa.

In many cases visual analytics scenarios have to deal with a variety of different
data sources. This can be abstracted as seen with Card et al.’s model and with the
alternative model for visual analytics processes of Keim et al.. However, taking them
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into account explicitly for describing visual analytics approaches seems justifiable,
if considering that many visual analytics applications do not start with a raw set
of data that only has to be filtered or transformed. Typically, there are back-end
systems, such as databases, repositories, or streaming interfaces involved that
should be considered as an integral part of an VA approach. Without integrating
them seamlessly into visual analytics processes, analytic scalability can hardly be
achieved. The integration will get even tighter, if tasks-tailored retrieval strategies
are going to be exploited and user-created tools can be directly applied at this
very first stage of data production/recording. Data sources are therefore explicitly
represented in the proposed model extension.

Because visual analytics approaches aim at solving real world problems, it is more
than likely that an application specific data model exists or has to be created,
which does not adhere to the idea of data tables (with exception to those working
directly on relational information such as described by Keim and Kriegel [1994]
or Stolte and Hanrahan [2000]). Accordingly, this has to be acknowledged by
introducing another stage in the pipeline that represents the collected and derived

data from potentially different sources as aligned data (see also dos Santos and
Brodlie [2004]).

The rest of the model remains unchanged with respect to the stages proposed by
Card et al.. However, collaborative scenarios and the usage of different perspectives
on the data to be analyzed are symbolized by the splitting of the pipeline into
branches. It has been argued that the visualization pipeline in its proposed form
does not meet the requirement of providing suitable back channels for data [North
et al., 2010], since it represents a data-driven approach to information analysis and
does not consider feeding back insight or semantics learned during analysis into the
data model. They are, of course, right with their judgment that the visualization
pipeline represents a data driven perspective, but a very abstract one.

Even if not formulated or depicted explicitly by Card et al.’s model, there is no
reason why interaction should not feed back information into a data model, be it
model updates, analytical insight /semantics, or provenance data about the analytic
task in general. The proposed extension into a visual analytics model as shown in
Figure 2.3 considers these back channels with bi-directional arrows between the
stages.

Furthermore, (semi)automatic processing potentially taking effect at every stage of
the process is introduced. These methods might be applied without involvement
of users, but can also be triggered, parametrized, or even created on analysts’
interaction as well. As a final enrichment the recording of provenance information,
either generated from automatic procedures or captured from user’s interaction
with a visual analytics system is indicated.
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The information visualization pipeline as well as the sensemaking process described
by Pirolli and Card [2005] (see Section 2.7) represent two sides of the same coin —
a data driven or architectural view and a task-tailored or process-based perspective
that can be brought together in visual analytics approaches as described in this
thesis by the example of patent search and analysis.

2.5 Document and Data Retrieval

Methods for retrieving information from large databases and repositories have been
developed since the very beginning of the digital age. A related research discipline,
information retrieval, has evolved during the years. For the domain of retrieving
text documents Manning et al. [2008] suggest the following definition for this area
of research:

“Information retrieval (IR) is finding material (usually documents) of
an unstructured nature (usually text) that satisfies an information need
from within large collections (usually stored on computers).”

But not only text documents fall into the category of being unstructured in terms
of data characteristics, images, audio, as well as video data exhibit the same
properties, meaning that their semantic structures are typically not available for
computational processing explicitly. Of course text documents do have structure
such as title, headlines, paragraphs, etc., which is acknowledged by employing
formalisms for creating semi-structured documents, such as XML formats. Any
syntactic or even semantic structure however is not available directly for machine
processing. Closely related to the field of text document retrieval is the domain
of natural language processing (NLP). Both fields have some overlap regarding
employed methods and data models.

In this work, information retrieval approaches are the base technology applied to
searching and analyzing intellectual property documents. As described in more
detail in Section 2.10 such documents are most often not only monolithic text
documents but include images, formulae, etc. which makes their characterization
as being multimodal or multimedial suitable and might require to take into account
other unstructured data as well.

2.5.1 Information Need

As has been mentioned above retrieval tasks are performed as a result of a user’s
information need. Manning et al. describe it as follows:
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“An information need is the topic about which the user desires to know
more, and is differentiated from a query, which is what the user conveys
to the computer in an attempt to communicate the information need.”

This description already points out the discrepancy between what a user wants to
retrieve and how this need is formulated. But there is also a qualitative aspect to
information needs that has to be considered, in particular in context of analytic
tasks. Information needs are not always clear from the very beginning of an analysis,
moreover information needs might shift or new information needs my arise during
the analysis of search results. As a consequence, methods that take these issues
into account and let analysts change their focus during search and analysis, e.g. in
form of providing explorative techniques, are required. A more detailed description
of this topic in context of visual search interfaces can be found in Hearst [2009]
(Chapter 3).

Besides their unstructured contents, a variety of structured bibliographic metadata
is attached to documents such as patents and scientific articles. Such structured data
is usually stored in traditional database systems for example relational database
management systems (RDBMS). The search for, or better, accessing structured
information from database systems are not considered as being part of information
retrieval. However, both kinds of information play an important role searching
and analyzing intellectual property documents, and, as a consequence, different
mechanisms have to be foreseen to search for or manage them. Therefore, the
terms document retrieval and data retrieval are used in the following to cover these
two aspects.

2.5.2 Text Document Retrieval

With respect to the topics touched in this thesis, Boolean retrieval of documents
but also vector space models play an important role (see Baeza-Yates et al. [1999]
and Manning et al. [2008] for details of the topics touched in this section). Text
documents are often processed as a bag-of-words model, meaning that in such a
model the sequence of words within the text document is not taken into account in
the model representation. After tokenizing documents into single words, stemming
is often applied in order to abstract word forms that have the same stem but different
suffixes as a result of declination and conjugation. Often, bag-of-word models are
represented as vectors, which are typically high-dimensional but sparsely populated,
since each word, or stem is represented as one dimension in the vector.

Such vectors can, for example, find application in the vector space model, on which
a variety of text document retrieval approaches are based on. Since documents
have different lengths (with respect to the terms or words they contain), these



2.5 o Document and Data Retrieval 19

vectors are typically length normalized. For retrieval it is also helpful to consider
the importance of a term with respect to its occurrences within a document and
its distribution over the corpus®. One idea here is to give words that are widely
distributed over many documents in the corpus less emphasis than words that occur
more rarely, since the latter are potentially better for discriminating documents
than frequent ones. This can be achieved using inverse document frequency (idfy).
Document frequency df; describes the number of documents in a corpus containing
a specific term t. Inverse document frequency is defined as

, N
idf, = logﬁ,
¢

whereby N is the number of all documents in the corpus.

Moreover, terms that occur often within a document are obviously better descriptors
of its content that less frequent ones. This can be described using term frequency
tf; « which accordingly specifies the occurrence of one term within a document d.
The combination of both led to the idea of the Term Frequency - Inverse Document
Frequency (tf-idf) weighting scheme of terms which is exploited for increasing
retrieval effectiveness and for a better ranking of results:

tf-idfy g = th 4 - idf;

In the vector space model such term-weights are added as values with the corre-
sponding dimension of the documents’ vectors.

The basic idea of retrieval approaches employing the vector space model is that
similarity of documents can be determined with a distance measure, defined for
these document vectors. For information retrieval tasks, the vectors of a document
corpus are stored in the index structure of a text repository. Keyword queries
to such a system are simply transformed into (weighted) vectors as well and the
most similar documents in terms of the abovementioned distance measure can be
returned. One of its biggest benefits over strictly Boolean approaches is that the
vector space model facilitates ranking of results, typically taking into account the
similarity of documents to a given query.

For evaluating the effectiveness of retrieval approaches a variety of measures have
been proposed. Among the most commonly used, as within this thesis, are recall
and precision. For patent retrieval in particular, recall is important, since missing
relevant documents is not acceptable for most patent search tasks. Recall is defined
as the number of relevant documents returned as the response to a query in relation
to all relevant documents in the corpus:

retrieved relevant documents

ll=
fieca all relevant documents

2 Collections of texts are referred to as ‘text corpora’ or ‘copora’ for short in the NLP domain
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However, recall does not account for irrelevant documents (false positives) that are
likely to be returned as well. As a consequence, precision has to be taken into ac-
count, since nobody wants to browse through masses of irrelevant documents. Here
the result set’s quality regarding contained relevant documents is measured:

retrieved relevant document

Precision = -
all retrieved documents

In order to create one score for measuring both the F-score was proposed and is now
widely used. The F-score depicts the harmonic mean of precision and recall:

2. precision - recall
Ja precision - reca

precision + recall

More specifically this score is usually termed F) score, indicating that precision
and recall are weighted equally for the computation of F'. It is also possible to
apply different weights to recall and precision respectively, but for comparability,
F will be used in this thesis.

2.5.3 Machine Learning

Machine learning techniques can be exploited as well and for enhancing document
retrieval. This section provides related work and background information on those
techniques, which are employed for classifier creation in Section 4.2. Machine
learning approaches are categorized into supervised and unsupervised methods
according to whether they rely on labeled data or not. Thereby labeled data means
that typically a human annotator has labeled data which is exploited to train
the machine learning algorithm. In context of retrieval tasks both variants find
application. Unsupervised methods are, for example, used for clustering documents
automatically, while supervised machine learning techniques need labeled training
examples in order to be created.

In order to enable analysts to understand and perceive clustering of data, visual
representations can be a suitable means. If the clustered data to be shown is
high-dimensional, as is the case with documents represented in the bag-of-words
model, methods have to be applied to represent the results in two- or three-
dimensional space. A broad variety of projection and down-scaling techniques
exist, either independent of the clustering algorithm itself or integrating them with
projection methods. Linear, e.g. principal component analysis (PCA) [Jolliffe,
2005] as well as non-linear, such as multidimensional scaling (MDS) [Cox and Cox,
2000], approaches, have been employed for projecting high-dimensional spaces.
Systems and approaches such as InfoSky [Andrews et al., 2002], IN-SPIRE [Wong
et al., 2004], and [Wise et al., 1995] make use of such clustering and projection
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techniques in order to visualize clustered documents. A relatively new approach
combining linear and non-linear computation methods for accomplishing precise
and fast dimension reduction has been suggested by Paulovich et al. [2008]. Another
direction was followed by Kohonen et al. [2000], who use a neural network approach
for creating a map from patent data. Borner et al. [2003] provide a survey on
techniques that can be applied for dimensionality reduction in context of text
document visualization.

The employment of machine learning techniques for document retrieval also depends
on the task and how concrete the information need can be specified. Clustering is
typically employed in situations where no specific information need is available a
priori, since it can provide users with automatic grouping of the data/documents to
be inspected. Also variants that let users influence the clustering process actively
have been proposed in recent visual analytics approaches (cf. Joia et al. [2011]) In
general, the visualizations representing the results of clustering techniques are good
for presenting overviews as well as leveraging explorative scenarios. Clustering
methods have the benefit of being cheap in terms of effort required by analysts using
them, since no labeling is required. Despite these enhanced clustering approaches
that can be influenced by an analyst, they are not a good choice in situations where
a specific information need exists, since they hardly represent the idea of grouping
or separation that matches an analyst’s information need.

Classification instead relies on labeled data and users can quite directly express
their information need through their labeling actions when annotating examples
according to their class membership. In context of this thesis, methods are
described for letting analysts create and assess their own classifiers quickly. Here
linear support vector machines (ISVMs) are used as the classification framework,
which were proposed by Vapnik [1998]. This choice was made since support vector
machines are known to work well on text classification tasks and they are very fast
[Joachims, 1998]. LSVMs are binary classifiers that aim at linear separation of
two classes of a data set. This separation can be achieved with a hyperplane also
referred to as decision border in the following, which is placed in high-dimensional
space in such a way that it separates two classes in the training data. In case
of document classification, where documents are represented as sparse vectors,
it is typically possibly to find a linear hyperplane for separating labeled data.
But ISVMs do not employ an arbitrary separating hyperplane (w,b), but aim at
finding one that maximizes the margin between positive and negative examples (see
Figure 2.4) [Burges, 1998; Cristianini and Shawe-Taylor, 2000]. Class membership
is determined with the following decision function:

f(2) = sgn(w” -7 +b).
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Figure 2.4 — Two-dimensional depiction of binary classification situations with

separating ‘hyperplanes’ and corresponding margin. In i) the classes are separated
correctly, but the hyperplane is not placed according to an SVM’s optimization
criterion of maximizing the margin between the classes to separate as shown in ii).
The support vectors are shown in ii) with black circles.

Thereby, @ describes the normal vector of the hyperplane, Z is the data item (or
document vector in this context) to test and b is the bias to the coordinate system’s
origin. As a consequence of maximizing the margin, only those examples that lie
close to the class boundary influence the position of the hyperplane and are called
support vectors. Details for solving the problem of finding an optimal hyperplane
can be found in Vapnik [1998].

However, employing classifiers such as ISVMs comes at the cost of labeling effort.
Active learning (AL) methods (see Settles [2009]; Olsson [2009]) can greatly speed
up the labeling process and reduce this drawback. AL establishes a training/labeling
loop, where (typically human) annotators are requested to label training examples
and the classifier is subsequently trained with these labeled examples. The basic
idea is to choose and automatically present those instances to annotators for
labeling, which promise the highest benefit for classifier training, thereby reducing
the number of iterations and the annotators’ labeling effort. AL can be applied in
situations where a very small initial training set and a much larger set of unlabeled
examples are available. Uncertainty sampling [Lewis and Gale, 1994] is one strategy
for AL, which picks the training example as the most informative one that receives
the lowest confidence (or probability) rating for the label assigned by the classifier.
With respect to a support vector machine employed as classification method, this
is the unlabeled example that lies closest to the decision border. Due to their
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property of only choosing a subset of all training instances that influence the model,
SVMs fit well with the concept of AL, because they only rely on a subset of training
examples defining the hyperplane [Campbell et al., 2000].

2.5.4 Relational Databases and Other Data Sources

Relational database systems (RDBMS) are very common today. They are based
on a relational model which was first described by Codd [1970]. RDBMS store
information flexibly in a table oriented manner and provide access to this data in
a controlled and managed way. Tables can be connected implicitly via attribute
values associated with data items stored in the table’s rows. Besides supporting
set operations, other specific operations for constraining and constructing sets
such as selection, projection, and joins are supported. In context of the work
presented in this thesis, relational databases have been used to store especially the
metadata (bibliographic) of patent literature. However, the fact that all operations
on relational databases deliver sets of entities plays a role for designing the search
interface. In case of RDBMS, data is accessed through the well-known Structured
Query Language (SQL). For several reasons, the software prototype as described
with PatViz in Chapter 3 does not provide the full expressiveness of a relational
algebra as SQL does (cf. Section 3.1.1), but enforces implicit joins on patent
documents as the primary object of investigation considering the restrictions on the
documents attributes. This topic as well as related fields such as data warehouses,
data mining, and data integration are discussed in context of visual analytics in
Keim et al. [2010]. Since RDBMS are very commonly used, technical details are
omitted here for brevity, detailed information on this topic can be found in [Elmasri
and Navathe, 2003].

In the context of the PatViz approach, semantic repositories were available as
back-end data sources as well. The semantic information was handled according to
the model proposed with the Resource Description Framework (RDF)? — one of the
building blocks of the semantic web. In contrast to relational models the information
is here represented explicitly through a graph structure. Different repositories for
storing such RDF based information are available and with SPARQL, a structured
query language for RDF data is provided.

2.6 Visual Search Interfaces

Using information visualization as means for querying textual information from
digital libraries as well as representing the returned documents visually is chal-

3 http://www.w3.org/RDF/
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lenging. One reason might be different processing of verbal information (including
written text) and visual information in the human brain as Paivio [1986] suggests
with the dual coding theory. Moreover, Ware [2004] states that

“[Written natural language] is by far the most elaborate, complete, and
widely shared system of symbols that we have available.”

This does not apply in the same way to visually depicted, abstract information
with respect to sharing and understanding.

Text is a perfect means to communicate complex processes but has to be processed
sequentially to be understood, while images and visualization can be perceived in
parallel and certain details can be obtained much quicker, and, e.g., structure can
be represented often better with visualization than with words. It is therefore a
valid question to ask why anyone should want to employ visual means for retrieving
and representing textual information. And the answer is that no one should, if there
is no need for it. If web search is taken as an example, which is certainly one of the
most popular and successful applications of an IR technique today, it is obvious
that typically no information visualization technique is employed in corresponding
user interfaces. This has much to do with the type of information need that exists
when a typical web search is performed. Most often a few precise hits that can be
found on the first page of search results, satisfy a user’s information need.

However, the situation would be rather different if it is required to find all documents
talking about a very specific aspect, as is often the case with patent search. It is
impossible to read through thousands of documents quickly, since reading takes
time and for analytic tasks it can be worth the effort of learning to deal with
interactive, visual approaches, if the process can be sped up, can be made more
reliable, or can be improved in another way. Furthermore metadata that is available
with documents to be retrieved can be visualized more directly and exploited for
enhancing search tasks as well.

A comprehensive overview on information visualization approaches for search in-
terfaces can be found in Chapter 10 of Hearst [2009]. In the context of this thesis
basically two applications of information visualization for search interfaces are
interesting — techniques for visual query definition and visual result set presenta-
tion.

2.6.1 Visual Query Definition

Ahlberg and Shneiderman [1994]; Jones [1998]; Spoerri [1993] present approaches
for query definition and filtering, however, not all of them are scalable enough
or are too difficult to interpret to employ them in analytic tasks. An interesting
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approach for advanced filtering has been proposed by Shneiderman [1994] with the
filter-flow method, which facilitates direct querying (cf. Ahlberg and Shneiderman).
The latter are commonly applied in an overview+detail manner, letting users define
query or filter operations in one view, while the effects of these operations are
shown in another one. A similar approach was taken with the selection management
facility, which is part of the PatViz system (see Section 3.2.9).

Visual query specification is in particular useful in analytic scenarios, where queries
tend to get large or complex, and iterative procedures are applied to refine it. Here,
visual representations of the query structure provide overview and help users to
quickly understand queries again after intermediate analysis tasks. With the visual
query builder as presented in Section 3.1.2 such an analytic, task-tailored technique
was created.

2.6.2 Visual Result Set Presentation

The visualization of large amounts of (heterogeneous) data is one of the strengths
of information visualization. It is therefore not surprising that many approaches
exist for visualizing query results from digital libraries as well as from databases.
Depending on the data type(s) a broad variety of information visualization tech-
niques are potentially useful and as has been mentioned before, patent documents
are associated with a large variety of bibliographic data of different types. Addi-
tionally, methods for aggregating and representing textual information visually
are of interest. This section can therefore give only a very coarse overview of
related visualization approaches and addresses specifically those that were applied
in similar contexts. Stolte et al. [2002] presented a system for representing the
results of relational database queries with ‘Polaris. TRIST by Jonker et al. [2005]
enables analysts’ to explore a contrasting view of the results of several queries in
parallel [Proulx et al., 2006]. Baeza-Yates [1996] suggest the usage of visualization
specifically for large answers from text repositories, while Borner et al. [2003]
provide a good overview on visualization of knowledge domains.

A subtopic of visual results set presentation is the explanation of query results. Typ-
ically the terms or constraints that were addressed through a query are highlighted
in the result set views. A prominent example of such a technique was provided with
‘TileBars’ by Hearst [1995]. Here, search term distribution in result documents
is indicated through visual metaphors that present an aggregated overview of
corresponding term occurrences in the documents. SeeSoft realizes an alternative
approach for depicting query hits in large documents Eick [1994]. Collins et al.
[2009] proposed a visualization method for showing concepts and their relations to
subconcepts in a document set with ‘DocuBurst’.
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2.7 Sensemaking

The sensemaking model according to Pirolli and Card [2005], which has been
derived from cognitive task analysis of intelligence tasks, depicts several stages
of information foraging and sensemaking and the different ways to proceed from
one stage to another. Again, it is important that the model does not describe
a one-way process. Many different feedback loops on different levels of abstrac-
tion are pointed out to move back to earlier stages, or to iteratively carry out
the subtask of one specific stage. The two main loops are termed foraging and
sensemaking loop respectively. The foraging loop relates to ‘information foraging’
as described by Pirolli and Card [1995], covering all subtasks that are required
for searching, collecting, filtering, and preparing the information to be used later
in the sensemaking loop. In the sensemaking loop, this information is analyzed,
hypotheses are built and tested based on the previously collected data, conclusions
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are derived from the information under investigation, before it is finally exploited
to take according action.

Pirolli and Card [2005] depict the sensemaking process for intelligence tasks as
shown in Figure 2.5. However, the principal idea can be mapped to other analytic
tasks as well. From a very abstract point of view, certain tasks in the patent
domain can be seen as business intelligence tasks, or at least being part of it. It is
therefore not too far-fetched to see similarities with the leverage points Pirolli and
Card identify for the foraging loop:

Exploration-enrichment-exploitation trade-off

Scanning, recognizing, selecting items for further attention

Shifting attentional control

Follow-up searching

All the mentioned aspects incur costs in terms of effort and time spent on them
and they can be found in patent search as well. The methods suggested in this
theses focus on diminishing the costs of these specific problems.

In order to make the mapping of the sensemaking process easier to comprehend,
some of the described activities and stages are adapted to an example scenario
of patent analysis in Figure 2.6. Typically, patent analysis processes as described
in Section 2.10 have a strong focus on the foraging part, however, this can shift
according to the type of analysis that should be carried out. There are however
several parallels as well.

In both cases the process starts with searching an filtering external data sources
to collect important information into a ‘local’ storage facility called ‘shoebox’ in
Pirolli and Card’s model and ‘result sets’ in the suggested model for patent search
and analysis. Information that has been found can also trigger new information
needs (see Section 2.5) and require additional search tasks or adaptations of the
original search respectively. This stored information is screened and filtered further
to extract the relevant information from it, which build the basis for the following
sensemaking and reasoning subtasks — Pirolli and Card name this the creation of
an evidence file, while in the patent process description it is termed (meta)data
perspectives. Again, the filtered information might pose the need for identifying
additional relevant information that has to be taken into account, either through
additional filtering or updating the search. While the steps described so far make up
the foraging loop for intelligence tasks, patent search tasks might put even stronger
focus on foraging by introducing means for letting users compare and combine
patent sets as an another explicit step, e.g., using advanced set management.
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Sensemaking instead is more characteristic for intelligence tasks. The sensemaking
part of Pirolli and Card’s model starts with the creation of schema from the evidence
file. Ideally, this schema should represent the analyst’s mental model. Because
one contribution of this thesis is to support and integrate all steps visually and
interactively, in the model for patent analysis the selection or set management can
be seen as the first stage for sensemaking. With the schema/set management as a
base, hypotheses can be created either for confirming or invalidating assumptions on
the underlying information. Finally, the result of an analysis has to be summarized
in order to present it to decision makers or for other further exploitation. Both
models can be enriched iteratively with further information extracted from previous
steps, which poses the need for feedback loops into the foraging stage.
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Even if not always mentioned or depicted explicitly in the description as well as in
the diagram, backward loops might not only reach back to direct preceding phases
but to any previous stage in the process. As can be seen from the description of the
process stages and its subtasks, information foraging as well as sensemaking can be
a highly iterative process; this is the case with patent analysis tasks as well.

In contrast to the original sensemaking model, which identifies constant increase of
effort when traversing the stages of the process from ‘data sources’ to ‘presentation’,
this can be different for patent analysis, since here, the effort put into the activities
of the foraging phase can already be very high. The increase in structure as depicted
in the model is related to finding connections between information, schema creation,
and hypothesis building, which lead to an increase of insight in the end. If the
sensemaking process as a whole is supported through computer-based means these
derived structures have to become integral part of the underlying data model, or
at least the outcome of an analysis should be stored adequately. Otherwise no
sustainable use of analytic results is possible.

2.8 Patent Data

Patents documents can be seen as multivariate, multimodal, heterogeneous, high-
dimensional data objects. Apart from their multimodal content, comprising un-
structured information such as text and image data, a considerable amount of
bibliographic information and metadata is assigned to a patent, that can be ex-
ploited for search and analysis tasks as well. Bibliographic data that is important
in the context of this work are shortly introduced in the following.

Patent publication number: Patent documents are assigned a serial number
by the issuing authority on publication in order to make them uniquely identifi-
able.

Title: A required textual description of the patent document that can be exploited
for scanning large numbers of patent documents quickly. Unfortunately, some
patent titles are not very distinctive.

Legal entities: The most important legal entities mentioned in a patent are
applicants/assignees and inventors. The inventor can also be the applicant of a
patent application.

Designated states: The states for which the patent application is effective.

Priority: Applicants can file applications that are based on the same invention in
other states by claiming priority for the invention’s first patent application. This is
possible within one year after the initial application’s filing. The Priority Date is
the filing date of the application priority is claimed for.
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with an example from the field of optical recording.

Patent family: There are several definitions for patent families. Two of them are
commonly used. i) a patent family consists of those patents having exactly the
same combination of priorities. ii) a patent family comprises all patents that share
at least one common priority.

Patent classification Various schemes for classifying patents exist. among the
most widely used are the International Patent Classification® (IPC), the United
States Patent Classification® (USPC), the European Classification® (ECLA), and
the FI and F-term classification schemes” available from the Japanese Patent Office®
(JPO). Throughout the work presented in this thesis the IPC has been used as the
main classification scheme and is therefore described in more detail in the following.
The IPC is a hierarchical classification and comprises in its current version 8
sections that contain roughly 70,000 subdivisions. The scheme of IPC classification
and its encoding scheme down to the group level is depicted in Figure 2.8.
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2.9 Patent Characteristics

Patents are typically conferred to applicants for a maximum time span of twenty
years. Inventions have to meet certain criteria such as novelty, description of
an inventive step, and they must be of practical use in order to be issued by
patent offices. While in force, they protect the owners’ invention, thereby granting
them the exclusive right to decide who is allowed to make commercial use of the
invention and who is not. In exchange for this protection, patent owners have to
disseminate their inventions to the public. This means that other parties can access
the information that is contained within the patent document. After its expiration,
the patent is ‘in the public domain’ and the formerly protected invention can be
used by anyone. As a consequence, the need to analyze patent information is high,
even if patents have expired.

The search for and the analysis of intellectual property (IP) rights such as patents
is nowadays a common and inevitable task for analysts from a broad range of fields.
It is evident that patents are an important factor in today’s globalized economy
and the amount of patent applications increases at fast a pace [WIP, 2011]. As
a result, the effort required for searching, analyzing, and keeping track of patent
documents increases accordingly.

Patent specialists in companies are involved in a variety of different tasks. Prior
art search, monitoring of competitors, trend recognition, technology assessment,
freedom to operate analysis, and objecting to infringing/trivial patents comprise
just an excerpt of typical tasks in business life [Joho et al., 2010]. This need
to analyze IP-related document does not only emerge for large companies, but
also for small and middle-sized enterprises (SME), who are not in the position
to maintain their own legal departments. In both cases computational support
is required, but especially SMEs rely on external service providers and/or their
software products. Thus, software tools and systems that can be used by informed
personnel having no extensive legal education, can help to reduce this dependence
and decrease costs consequently. Even companies that do not aim at applying for
patents themselves, have to stay aware of the development of intellectual property
rights in their market segments and domains of interest, if they do not want to put
their economic success at risk, especially with respect to globalizing markets. Apart
from intellectual property specialists who are involved with the patent strategies of
a company and reviewers from patent offices, many other parties are interested in
patent information, since patents are an invaluable source of technical knowledge.
These include experts from the finance sector, patent lawyers, scientists and many
more.

Depending on the task, different aspects of the patent search and analysis process
as described later in this section gain more or less focus and also the scope of
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data to be analyzed changes. If carrying out, for example, novelty search not only
patents and patent applications, but also scientific literature and other sources
of IP have to be screened. For freedom to operate search, the patents in force in
a specific country or region have to be analyzed. Search, however, is almost for
all scenarios an inevitable part of the patent analysis process. Quite often the
terms patent search and patent analysis are used interchangeably when mentioned
in context of the tasks described above. This is not surprising, since search is
typically performed iteratively and analyzing intermediate results is an integral
part to drive the search process. Accordingly, in this work the terms patent search
and patent analysis are also used exchangeably for all IP-related search problems
including intermediate analysis as well as to describe more high-level and strategic
tasks that rely on previous search steps.

Patent search is a very hard task Atkinson [2008]. Unfortunately, not only the
rapidly increasing amount of new patent applications and the already available mass
of patent information makes patent analysis a tedious task, but also the complexity
of available patent material hinders straightforward access to the information
needed. For obvious reasons applicants are trying to produce patent applications
that still follow the rules of patentability, but they also aim to phrase them as widely
as possible to achieve a maximum of coverage for their patents. Occasionally, there
also seem to be tendencies to obfuscate patent texts intentionally, e.g. by using
terms that are not typical for the corresponding technical field, probably in order
to prevent competitors from obtaining easy access to these patents. Because patent
applications can address a large variety of technical fields, even without obfuscation,
the language used within these sectors might differ greatly due to terminology and
phrases that are commonly used within one of these fields. Especially the claims
section of patent documents makes use of legalese, which further deteriorates their
readability and as a consequence reduces their retrievability for inexperienced patent
searchers. This led to the coining of the term patentese [Singer and Smith, 1967]
to name the very special language used in patent documents. Furthermore, some
patent applications are multi-lingual, others are only accessible in the language
of the country where they have been applied for. In addition to the difficulties
described above, all problems common to the retrieval of natural language texts (e.g.
ambiguities) further increase the complexity. But patents do not only have textual
content. They can contain tables, figures of different nature, such as schematic
drawings, electronic circuits, diagrams, chemical formulas, gene sequences, etc.
Additionally, there is a plethora of metadata associated with patents like title,
abstract, applicants, inventors, classification information, dates for publication,
applying, granting them, as well as legal events, designated countries patents are
in force in or applied for, citations of other IP documents, etc. Aside from patent
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documents, other sources of IP have to be considered and it is quite common that
multiple databases and repositories have to be accessed during search.

Several scalability issues have to be considered during the development of patent
search and analysis approaches as described in Chapter 5. Large repositories of
patent literature pose one challenge. The data contained in patent documents can
be characterized as high-dimensional, multi-modal, heterogeneous, and ambiguous.
Typical tasks are cost extensive in terms of required time, effort, and required
expertise.

In practice many other issues have to be accounted for and cannot be described
in detail in this thesis. For example application fields, such as the biochemical
domain, require specific search tools, for example, to search for chemical formulas or
gene sequences, and different tasks influence the ways and scopes of searching and
analysis, which are not covered in this work. Furthermore, only patent documents
(with exception to the proposed classifier creation approach in Section 4.2) are
taken into account as part of the addressed research problems presented in this
work.

To conclude, patents are, aside from their sheer amount, difficult to understand for
human users and patent documents exhibit data characteristics, making them hard
to process with computational methods. These properties makes patent analysis a
field that fits a visual analytics approaches in general quite well, since the problem
can neither be solved by human effort alone, nor fully automatically.

A good overview of patent search tasks, strategies, corresponding search scopes,
and the problems patent practitioners are faced with, can be found in Alberts et al.
[2011]. All characteristics of patent search and analysis that are important for
understanding the design decisions made during the development of the approaches
presented in this thesis are discussed subsequently.

2.10 Patent Search Processes and Analysis Tasks

The effort put in searching for patent literature deviates from task to task, but in
contrast to common search problems, such as web search, patent search is typically
more exhaustive. Accordingly, patent search is almost always performed in an
iterative manner. An initial query is formulated and sent to some repository, the
results are inspected, in detail if needed, and the query is reformulated or updated
in order to improve the results’ quality. The predominant usage of Boolean query
approaches in patent search increases this requirements for iterations.

This dominance of Boolean search approaches can be explained from several angles.
One reason is the level of control and transparency Boolean search provides. The
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effects of a query are directly understandable with respect to matched documents
returned as result set. The basic set of operations used in Boolean search are AND,
OR, and NOT. Restrictions can be stated with the binary AND operator, which
narrows the results to a set of documents containing both expressions. Widening
of a query can instead be achieved through connecting expressions with the binary
OR operator, resulting in a broader set of result documents fulfilling either the
constraints of the first or the second operand. Unary NOT operators invert the
results of an expression, which is generally used to exclude a non-relevant set of
documents from the results. Typically, Boolean search systems provide extensions
such as wildcards and proximity operators for convenience and in order to reduce
the verbosity of query formulation. Adding a restriction or widening to an existing
query immediately effects the number of returned documents, which gives searchers
an idea on the quality of their update. Removing it again, results in exactly
the same situation as before. Boolean queries are literally constructed iteratively
until the result suffices the searcher’s expectation. Even if Boolean queries are
straightforward to control, it requires a lot of experience to formulate adequate
queries, returning all relevant results and as few as possible irrelevant ones. Being
able to control precisely, however, might be a further, psychological reason for
trusting such an approach better than others offering less possibilities to influence
at least the amount of results.

As has been mentioned, searching legal documents collections is one field where
Boolean search is still employed by professionals. Accordingly, Boolean search has
been, and still is, the de facto standard for retrieving patent literature and the
patent analysts’ knowledge in applying this search strategy is comprehensive. As
a consequence patent analysts are reluctant to switch or change to other search
approaches. However, experience is not only an important factor with respect to
patent searchers’ familiarity with the Boolean search paradigm, but even more
with regard to having expertise within a technical field and its patent-specific
terminology. Patent specialists are typically well-trained professionals, and without
their profound knowledge which terms to include and the expected number of
relevant documents, the construction of high-quality Boolean search queries would
become even more time-consuming. Nevertheless, Joho et al. [2010] have identified
through a survey patent search tasks to take about 12 hours for completion on
average, indicating them to be the predominant cost factor of patent analysis
tasks.

Another problem hindering the usage of new automatic techniques is the use of
patentese. There have been great advances in Natural Language Processing (NLP)
in the last decades, visible especially from the evolution of web search engines,
machine translation, and several other applications. Many of these advances are
based on exploiting statistical properties of texts, e.g., for creating and training
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machine learning approaches. The training data used for accomplishing this are
typically taken from web documents, news articles, and other broadly available
examples of written text. Unfortunately, such approaches do not always perform
particularly well in the patent domain, since the use of terminology of, e.g., training
documents extracted from the web and patent documents differs substantially.
However, there are first approaches addressing this problem. The European Patent
Office (EPO) provides a new machine translation service that has been developed in
cooperation with Google. Here, the parallel corpora of European patent documents
were exploited during training in order to achieve better translation quality”.

Depending on the task the necessity to identify a considerable amount of relevant
patent documents can vary according to Trippe and Ruthven [2011]. But most of
them require very high, up to full coverage of relevant documents. This means
high recall is crucial for patent search. While in other fields than in the legal
domain, it is consent that ranked retrieval models such as the vector space model
exhibit advantages over Boolean approaches, patent professionals tend to prefer
the Boolean model for another reason. The missing of relevant documents during
patent retrieval might lead to severe economic consequences. At the point of
writing this thesis the fight for securing advantages in the mobile devices market is
preformed with unprecedented force and the values in litigation reach the billion
dollar range'>''. As a consequence, patent searchers want to be as sure as possible
that no relevant documents are missed during search. Or, to put in other terms,
they want to have a high level of trust in their searches and the found results.
However, it is very difficult do build trust into mechanisms that cannot be fully
controlled. Manual control and construction of queries, however, can create this
perception of trust even if this can be misleading, when important search terms
are missed.

Figure 2.9 depicts the patent search process as a rather abstract model, that might
also be suitable for describing other extensive search tasks. In this work this process
description will serve as a hook for more detailed explanations in subsequent sections
as well as a bridge for describing the integration of the visualization pipeline and
the sensemaking process.

By looking at the patent search process and by taking into account the specific
properties of patent literature, of patent practitioners’ tasks, as well as practitioners’
expertise, possible areas for improvement can be identified. In the search stage
several enhancements are thinkable. Ideally, the technical search mechanism itself
could be improved while considering the specific needs of patent searchers: to find

9 http://www.epo.org/news-issues/news/2012/20120229.html

and http://www.epo.org/searching/free/patent-translate.html
YOhttp://cand.uscourts.gov/lhk/applevsamsung
= http://en.wikipedia.org/wiki/Apple_Inc._v._Samsung Electronics_Co., _Ltd.
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Figure 2.9 — An abstraction of the iterative patent search and analysis process

all relevant documents, while not being overwhelmed with a large number of false
positives. Since human patent searchers are involved, supporting them poses a
good chance for helping to improve the results. Speeding up the whole search
process is one potential improvement, another one provides means that help users
to create better queries another one. Ways to make search and analysis methods
more easy to learn and to apply is another direction for finding enhancements. All
of these aspects are closely related to the leverage points [Pirolli and Card, 2005]
identified for the foraging loop.






CHAPTER

Visual Patent Analytics

Various enhancements to patent analysis are presented in this chapter. These
enhancements are shown based on the PatViz prototype implementation of a patent
search and analysis approach. A couple of the approaches and software prototypes
discussed in the following were developed as part of the EC project PatExpert!
[Wanner et al., 2008]. Many of them were extended and refined in the project
‘Scalable Visual Patent Analysis’, which was funded in the first period of the
priority program Scalable Visual Analytics? by the German Science Foundation
(DFG). Within PatViz, the visual interactive creation of patent search queries forms
the basis for these enhancements. It aims at simplifying the creation of complex
queries for lay users?, while at the same time improving the overview of the logical
structure of the employed Boolean queries, thereby supporting IP specialists as
well. Additionally, the visual query representation is an important prerequisite for
the implementation of interactive feedback loops, as will be discussed in detail in
Section 3.3. To simplify and potentially speed up iterative query refinement, such
feedback loops have to be integrated seamlessly, meaning that a system for visual
analysis of patent documents has to support them, ideally through direct interaction
embedded in an entirely visual environment. A structured visual representation
can also serve as the foundation for creating parallel, multilingual search queries,
without forcing users to build up similar logical structures redundantly from

! http://www.patexpert.org/

2 http://www.visualanalytics.de/

3 Lay users in terms of users having little knowledge regarding the application of Boolean search
strategies to patent search, but having the required domain expertise.


http://www.patexpert.org/
http://www.visualanalytics.de/
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scratch. Finally, a flexible visual query-building mechanism not only allows for
the integration of multiple patent information sources, but can serve as a basis for
integrating advanced search mechanisms, such as user-steered classification.

Multiple visual perspectives on the result set of a particular search iteration
enable users to assess the quality of a previous query more quickly and to derive
additional insights that are important during strategic tasks. Smaller feedback
loops facilitating sensemaking tasks within result sets increase the usefulness of
single views. If designed adequately, the analytic possibilities in such an interlinked
approach exceeds the expressive power of its single components. Again, suitable
interaction mechanisms are needed to establish the relation between different views,
test hypotheses, and to keep track of the analysis process as a whole. Interaction
within one single view can be seen as the lowest level of feedback loops. Even in
these cases, automatic methods can be exploited to let analysts identify properties
of interest more quickly by creating plug-in visual analytics approaches on a fine
grained level (see Section 4.1).

As described in the previous chapter, support for iterative refinement of search
requests comprises an important component of patent search software. Thereby,
query modification typically aims at either narrowing the request to remove noise
from the results, or at widening the search because the user wants to find additional
relevant patents. In either case, the insight that generates a user’s desire for
refinement is normally gained through the display of the previous result set data.
Hence, patent search software needs an efficient feedback loop to transfer insights
from result set exploration to the query formulation. PatViz facilitates such a
feedback loop, enabling patent analysts to either integrate findings directly from
results set views or to integrate more complex findings that have previously been
constructed using the selection management technique described later in this
chapter.

Current patent analysis products often do not directly support such closed transfer
loops - at least not on the larger scale, and through facilitating visual perspectives.
Software suites and patent libraries are, for example, available from Thomson
Reuters (i.e., Derwent*, Delphion®, Micropatent®, Questel Orbit”, Lexis Nexis®,
and several others). An extensive description and analysis of their use is provided
by [Dou et al., 2005] and Hunt et al. [2007]. Freely available search engines include

4 http://thomsonreuters.com/products_services/legal/legal_products/a-z/derwent_

world_patents_index/

http://www.delphion.com/

www.micropatent.com
http://www.questel.com/Prodsandservices/IP_Portal.htm
http://www.lexisnexis.com/en-us/products/total-patent.page
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Esp@Qcenet? from EPO, patent text and image databases'® from USPTO, the search
library!! maintained by WIPO, Google Patent Search!?, etc. Hence, providing
additional visual perspectives of patent data has become more and more common
during the last number years as can, for example, be seen with the approach offered
by Questel. Trippe provides an overview of commercial tools to tackle common
tasks for patent search and analysis in Trippe [2003]. A more recent survey can be
found in Yang et al. [2008]. Moehrle et al. [2010] also contribute a current outline
of commercial systems and relate them to a taxonomy based on a business process
model.

Flexible systems for the analysis of relational data offering such feedback loops exist
outside the patent domain. An example thereof is Polaris [Stolte and Hanrahan,
2000])**, which facilitates the integration of feedback loops and query creation as
well. PatViz differs from this approach by integrating multiple back-end search
services which are not solely based on relational data and cannot guarantee the
completeness of a request’s result. Because completeness of results is of high priority
in patent search, users are forced to build trust in their retrieved results by carrying
out the iterative query process described in Section 2.10.

A variety of other visual analytics approaches for analyzing documents were pro-
posed during the last years. These include approaches for intelligence analysis such
as [Gorg et al., 2007], scientific literature analysis [Oelke et al., 2010; Dunne et al.,
2011; Correll et al., 2011], as well as more generic approaches for dealing with
text collections [Wise et al., 1995; Xu et al., 2011; Endert et al., 2012]. NetLens
by Kang et al. [2006] enables users to analyze content actor relations as they are
available with e.g., authors and corresponding scientific publications, employing
an iterative visual approach for query specification as well. Alsakran et al. [2012]
proposed an interesting system suitable for real-time analysis and visualization of
text streams. An overview of visualizing textual information in digital libraries
and knowledge domains can be found in Borner and Chen [2002] and Bérner et al.
[2003]. Most of them employ multiple coordinated views, as does PatViz, in order
to analyze documents under different perspectives, yet they differ from PatViz
with respect to the application domain, search approaches, text processing and
metadata handling, and analytic focus.

PatViz was originally built as a graphical front-end for a set of different search
engines and patent document analysis services created in PatExpert. However, the

9 http://www.epo.org/searching/free/espacenet.html

Vhttp://www.uspto.gov/patents/process/search/

Uhttp://patentscope.wipo.int/search/en/search. jsf

2http://www.google.com/patents

13The approach was successfully commercialized by Tableau Software http://www.
tableausoftware.com/
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Figure 3.1 — An overview of the PatViz desktop showing a variety of the available
views for patent document search and analysis.
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patent domains accessible by PatExpert’s back-end systems were restricted™ to
the IPC main classes ‘optical recording’ and ‘machine tools’, reducing the amount
of patent documents to about 160,000.

The essential components of PatViz comprise a querying system, a multitude
of visual result set representations, and the linkage between them. All these
components are bundled in a desktop application that handles the data management
and event propagation between components. The visual interface which allows
users to build classifiers has also been developed as part of the DFG program
Scalable Visual Analytics, albeit in its second funding period, where the scope of
the project was extended to the analysis of scientific literature. Figure 3.1 shows
an overview of the PatViz visual interface. The implementation of PatViz was
accomplished using the Java programming language'® and makes use of a variety
of third-party libraries, including Prefuse [Heer et al., 2005], JFreeChart'¢, and
Lucene!”.

14 This restriction was necessary to develop the natural language preprocessing mechanisms on
the patent material, because these mechanisms needed to be optimized for domain-specific
vocabulary. This was a prerequisite for the fulfillment of other scientific objectives in PatExpert
and does not reflect any scalability restriction of the graphical front-end.

Bhttp://www. java.com/

Yhttp://www.jfree.org/jfreechart/

"http://lucene.apache.org/
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This chapter is partly based on the following publications:

M. Giereth, S. Koch, M. Rotard, and T. Ertl. Web Based Visual Exploration of
Patent Information. In International Conference on Information Visualization
(IV 2007), pages 150-155, 2007b

M. Giereth, S. Koch, Y. Kompatsiaris, S. Papadopoulos, E. Pianta, and L. Wan-
ner. A Modular Framework for Ontology-Based Representation of Patent In-
formation, pages 49-59. 10S Press, 2007a

S. Koch, H. Bosch, M. Giereth, and T. Ertl. Iterative Integration of Visual
Insights during Patent Search and Analysis. In IEEE Symposium on Visual
Analytics Science and Technology (VAST 2009), pages 203-210, 2009

C. Rohrdantz, S. Koch, C. Jochim, G. Heyer, G. Scheuermann, T. Ertl,
H. Schiitze, and D. A. Keim. Visuelle Textanalyse. Informatik-Spektrum,
33:601-611, 2010

S. Koch, H. Bosch, M. Giereth, and T. Ertl. Iterative Integration of Visual
Insights during Scalable Patent Search and Analysis. IEEE Transactions on
Visualization and Computer Graphics, 17(5):557-569, 2011

S. Koch and H. Bosch. From Static Textual Display of Patents to Graphical
Interactions. In M. Lupu, K. Mayer, J. Tait, A. J. Trippe, and W. B. Croft,
editors, Current Challenges in Patent Information Retrieval, volume 29 of The

Kluwer International Series on Information Retrieval, pages 217-235. Springer
Berlin Heidelberg, 2011

3.1 Visual Interactive Support for Patent Search

Querying the retrieval system is the initial task that has to be performed when
working with a patent information system. This is true for almost every use case
independent of the analysts’ specific goals. In certain situations this step might
not be obvious, e.g., during monitoring, when patent applications in a specific
technical domain should be observed or a competitor’s patent applications are to
be tracked, and when working with a ‘predefined’ patent portfolio. However, in
these cases the search task has been carried out beforehand. Similarly, in the case
of monitoring, preassigned queries have been defined limiting the patents the user
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will be informed about, and any collection in a patent portfolio has very likely been
created from one or several previously formulated queries.

As described in Section 2.10, queries in the patent domain tend to get complex
and large. In PatExpert, different search facilities and data sources were integrated
using one query mechanism. These include full text search, metadata store, image
similarity search, and a semantic repository. The full-text search engine provides
conventional keyword search for the patent analysis systems. Patent full texts
as well as all metadata are stored within a relational database. Image similarity
search is accomplished by a system based on a vector space model. Thereby,
feature vectors are computed from the images through several preprocessing steps.
Additionally, semantic information extracted from the patents’ section describing
the images is used for increasing this mechanism’s effectiveness. The semantic
information extracted from the patent documents is stored in the semantic web
format RDF'®, which is accessible through the mentioned semantic repository.
Details on these back-end systems and their integration can be found in Codina
et al. [2008].

Each query subsystem has its own formal query language. To facilitate the usage of
all query subsystems in one common interface, a method to integrate them as well
as their query languages had to be developed first. The combination of different
search expressions from different search facilities was realized through a Boolean
integration language. While the back-end services were mainly created by partners
in the PatExpert consortium, their integration, including the definition of formal
languages, was part of PatViz’s development as presented within this thesis.

There are also other approaches to tackle visual query definition for search problems,
either as part of searching data sets available in a visual interface or, as described
here, for querying external data sources. An overview of them is provided in
Section 2.6.1

3.1.1 Boolean Integration of Search Facilities

Providing different search engines that can be combined through a Boolean inte-
gration language allows for stating complex and powerful queries, but also makes
query creation a sophisticated task for the user. To compensate the complexity
of the new, combined query language, a visual query editor has been developed
that is directly linked to a conventional textual interface. As a requirement, the
editor has to provide a clear view of the logical structure of the whole query and an
interactive way to create search expressions for each of the different facilities. The
result of this integration can be seen in Figure 3.2. In order to create an appropriate

Bhttp://www.w3.org/RDF/


http://www.w3.org/RDF/

3.1 e Visual Interactive Support for Patent Search 45

(

(

@@text

{
"focus error” CR

AND [

"optical disk™ N "
OR focus error

OR : AND

DVD : ]
) ;
AND E l—OR —l_l
"focal lens” E "optical disk" CD DVD
OR E
lens E domain’ optical_recarding
A;D pulo:decreases
i pulo:Something @
OR URL (http://v3.esp.
l_ 1 sections: claims
"focal lens” lens
/| g)
i Lt F
obj(pulo:Error) i I
emaniic@@

AND
3

pubdate = '2008"

://v3.espacenet.com/jjpeg ?PN=US20 :
@

|ﬂ mage@@ I

<] i Dk

Figure 3.2 — Overview of a query that addresses the four back-end services.
The window on the left shows the textual query representation, while the right
window depicts the corresponding visual representation. Here, a complex keyword
query is shown inside a green box, a metadata query restricting in the orange
box, a semantic query in the grey box and an image similarity query in the blue
box. Results matching the query either contain the shown Boolean combination of
keywords and are published in 2008 as well, or they contain a concept that ‘can
decrease an error’, or they contain images similar to the one shown in blue.

visual metaphor for the Boolean integration language, it was decided to use one
that is related to the very common Syntax Diagrams according to Wirth [1973].
Therefore, our approach uses node-link diagrams with an orthogonalized circuit-like
graph layout as displayed in the right half of Figure 3.2. The set of operators for
the Boolean integration language is limited to ‘AND’, ‘OR’ and ‘NOT".

Directed links describe a combination of these constraints correlating directly with
the binary operators ‘AND’ and ‘OR’ in the visualization. A sequential link between
two nodes always expresses the ‘AND’ relation and has the semantic meaning that
both constraints represented by the connected nodes have to be fulfilled by a
patent to pass the filter function. A branching link on the other hand represents
an alternative (‘OR’) and has its semantic equivalent in a conjunction of filtered
results of every branch that belongs to the same junction. All operator scopes
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are represented by boxes in the visual representation. The ‘NOT’ operator, for
example, is represented by a box, which encloses the negated constraint as can
be seen in red in Figure 3.3. Users can identify which terms are part of which
Boolean operation, where the scope of an operator ends, and they can spot the
positions where they might want to alter the query easily. Boolean operators can
be applied recursively in order to define more complex queries. This is possible
locally, e.g., within a keyword query, or globally for designing complex queries to
multiple back-ends. Therefore, two kinds of nodes can be distinguished — Boolean
operator nodes represented by colored, filled boxes and constraint nodes shown as
inside these boxes with a white background.

3.1.2 Visual Creation of Search Statements

The creation and modification of query constraints for all specialized sub-queries
as well as their combination is possible by direct interaction with the visual
representation. This ensures that only syntactically valid search terms can be
created, and it frees the user from the cognitive task of remembering possible filter
operations and values by representing them visually. New query parts can be added,
through context menus. The location where the context menu is activated within
the query visualization is thereby taken into account. Consequently, the offered
manipulations are adapted to the corresponding query scope. If activated within
the AND block of a keyword sub-query, for example, operations such as ‘surround
with OR’, ‘add AND branch’, ‘negate block’, and ‘delete block’ are offered (as
shown in Figure 3.3 for a keyword query). If the context menu is activated on a
constraint node such as “focus error” in Figure 3.3, a form for editing the constraint
is shown. In case constraints for other back-end facilities are to be included, the
context menu has to be activated outside the key word query box.

Further interaction functionality allows to zoom and pan the graphical represen-
tation of the constructed query. Within the hierarchical graph representation,
complex nodes can be collapsed/expanded to further enhance comprehensibility of
the query graph.

In the textual view, the logical structure of the query is accentuated by reformatting
the input with line breaks and indentation, like in the example in the left half of
Figure 3.3. On the one hand, the textual query view ensures that users who are
familiar with the query languages of the different search engines can still enter
queries directly. This is an important aspect, since professional patent analysts
want to create and test their queries quickly, and, mastery of the formal language
presumed, entering textual queries is faster than interactive creation. On the other
hand, having both representations available can help inexperienced users learn the
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Figure 3.3 — A complex keyword query for retrieving documents that contain
the term ‘focus error’ as well as any of the terms ‘optical disk’, ‘CD’; or ‘DVD’
and either the term ‘focal lens’ or ‘lens’ but not the term ‘jitter’ In the left part
the textual form of this query is depicted, while the right area shows its visual
representation. In the depicted situation the edit form for the node containing
the term ‘focus error’ is shown in the visual representation. This dialog can be
used to change or update the term. In the lower right region the context menu
for modifying the visual query is shown. If a node in the visual representation
is hovered (‘focal lens’ in this case) the corresponding textual part is highlighted.
Any valid modification of the query in either representation immediately updates
the other view.
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query language vocabulary and supports all analysts with a structural overview of
the logical composition of a query.

Additionally, a highlighting mechanism that serves two purposes was developed.
Hovering the mouse pointer over a block in the visual query representation auto-
matically highlights the corresponding parts of the textual representation. On the
one hand, this helps to find the corresponding part in the textual representation of
a query quickly, if a user intends to apply updates or changes textually, and, on
the other hand, users who want to learn the formal language can easily identify
textual and visual counterparts. The following sections briefly describes the query
mechanisms for the different back-ends, starting with keyword queries and its
(possible) extensions considering multilingual queries and templates, metadata
search, semantic querying, and image search.

Keyword Queries

The creation of keyword queries is quite straightforward (see Figure 3.3). Keywords
can be combined in an arbitrary manner using Boolean operators to create more
complex constraints, as has been described above for the combination of queries for
different search back-ends. The Boolean keyword search is realized by employing a
Lucene' repository as a back-end data source. Therefore, a variety of additional
features and operations can be employed for searching. These include wildcards,
proximity search, and term boosting.

Besides these extensions, Lucene allows for Boolean ranked retrieval by applying
Boolean search mechanisms and employing the vector space model for ranking
afterwards (see Section 2.5.2). So far, this ranking can only be exploited in PatViz
if no other search back-ends are employed, since not all of them provide scoring
values for the retrieved results, and even if they did, it would be problematic
to achieve alignment of different scoring models to come up with a reasonable
ordering of the results. However, ranking methods for other back-ends, such as for
relational databases are theoretically possible. Fuhr and Rolleke [1997] presented
an approach for probabilistic models in databases that could handle uncertainty of
relations as well as ranking of the retrieved relations. In contrast to the approach
of Fuhr and Rolleke, experiments that introduce ‘fuzziness’ on the operator level
were undertaken in PatExpert [Codina et al., 2008]. However, this rather late
development is not reflected in the visual interface and all its views for result set
inspection. A variety of tools from the legal domain that employ Boolean search
(without ranking) show the results in chronological order, newest first, with the
assumption that new results might be more relevant that older ones. Through
the various result set perspectives available in PatViz, chronological ordering is

Yhttp://lucene.apache.org/core/
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therefore one besides many other possibilities to depict a patent result set (see
Manning et al. [2008] for details on ranking).

Multilingual Patent Search and Query Extension

An important problem in patent search is the multilingual nature of patent literature.
As a consequence, it is often necessary to search for documents in several different
languages. Jochim et al. [2010, 2011] made several suggestions how patent queries
can be expanded with multilingual translations. Exploiting the fact that parts of
European patents are available in English, French, and German, makes the creation
of aligned, domain-specific translation dictionaries possible. Several initiatives
have addressed multilingual patent retrieval in recent years. Since 2009, the Cross
Language Evaluation Forum (CLEF)?" sponsors an Intellectual Property track with
different subtasks dedicated to crosslingual information retrieval (CLIR). Other
initiatives, such as NTCIR?!, organize separate workshops for both CLIR and patent
retrieval since 2002. The benefits of using domain-specific translations over general-
purpose translation lexica become obvious from receiving higher recall for the
domain-specific variants when applied to the CLEF-IP 2010%? dataset. Such aligned
translation dictionaries not only allow for multiple different synonymous translation,
but also have a value for translation probability attached to each entry pair. This
is especially interesting since translation probabilities are not bidirectionally equal,
meaning that, e.g, a German term’s probability to be translated into a certain
English term might be different from translating the English target term back into
German. Patent experts are typically proficient in several languages; however, it is
likely that their foreign language skills differ from language to language.

Patent queries are often created according to a certain strategy. This applies
in particular to the construction of the keyword query part, which constitutes
the main area being affected by multilingual query creation, while other aspects,
such as constraining metadata, semantic concepts, and images, are less language
dependent. Here, several aspects important to a patent might be addressed, for
example, when searching in disciplines such as mechanical engineering, the problem
to be solved and the solution to be applied can be of interest. Accordingly, a query
is constructed that tries to capture these aspects by different search terms and
phrases. Synonyms for both aspects are likely to be introduced either ad hoc or
during subsequent iterations to optimize the queries’ coverage.

POnttp://www.clef-initiative.eu
nttp://research.nii.ac.jp/ntcir/
2Znttp://www.ir-facility.org/clef-ip
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When searching for these aspects in multiple languages, similar logical structures
can be applied for each language®® and integrated within one combined search
structure by the Boolean OR operation. Users can be supported by providing
semi-automatic translation of a query formulated in a single language. For these
translations domain-specific dictionaries can be exploited. By relying on those, not
only the structure of the initial monolingual query can be replicated, but also the
most likely translations of terms and synonyms for the problem at hand can be
suggested automatically. Such an approach might be especially beneficial in the
abovementioned situation, when analysts are not equally well-skilled in different
languages. An initial suggestion for a translated query can be generated based
on extracted dictionaries without the need for user interaction. Based on a first
translation, improvements, such as selecting additional or different synonyms, can
be accomplished in a straightforward manner. Currently, the described mechanism
is not realized as part of the PatViz interface, but future work will aim at its
incorporation for searching scientific literature and patent material. While from
a logical point of view the creation of query translations is already possible (see
Figure 3.4), some small adaptations are required to support analysts in exploiting
it. One prerequisite is that a searcher formulates a Boolean keyword query using
only one language and the translation operation is initialized explicitly afterwards.
This is important, since it might be difficult to identify the language of single query
terms if the original query already mixes terms from different languages.

If this requirement is fulfilled, automatic detection of the query language might
be possible or can be provided explicitly by the analyst. Afterwards, suggested
translations can be presented in a copied logical structure of the initial query.
Another requirement is to keep track of the language affiliation of copied structures,
which is not tracked by the system in its current version. If this is provided, users
can change terms in one structure while having updated others automatically, or
at least be presented with new suggestions on translations. As a consequence,
even suggestions for enriching the original query with further synonyms becomes
possible by using the opposite translation direction. Later changes in the logical
structure of a multilingual query are more difficult, since an automatic procedure
will not be able to distinguish between logical changes and the introduction of
additional synonyms, for example. However, adding synonyms in translation will
also not harm automatically-created translations as long as the scope of introduced
synonyms is acknowledged correctly. A method for turning off the automatic
enrichment of translated queries has to be provided in situations where such a
behavior is not intended.

2 Depending on the relatedness of languages and the desired keyword restrictions the logical
structure might have to be adapted for very different languages such as English and Chinese
for example.
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Figure 3.4 — Multilingual keyword query. The left branch depicts the original
English query while the right one shows a ‘derived” German query. In the shown
case both query parts were constructed manually, but mechanisms for providing
translation suggestions in both directions (semi-)automatically could be integrated
to support patent searchers in query formulation.

Query Templates

Much knowledge and effort is invested in the costly process of query construction.
Accordingly, the idea of saving and reusing this investment is appealing. This applies
to the expensive analytic process in general and is discussed on the process level
with focus on implicit exploitation later in this thesis (see Section 5.2). However,
additional exploitation can be also achieved explicitly on the query formulation
level. As has been described in the previous section, Boolean query construction
follows the construction of a searcher’s assumptions and knowledge in the domain
of search. For specific domains and tasks best practices for designing a query might
be available a priori, as part of an experienced searcher’s knowledge. On a very
coarse level it might therefore be interesting to work with templates of patent
queries as a starting point [Alberts et al., 2011]. A very direct way to exploit
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previous queries is saving them to disk. This possibility is integrated in the query
definition view of the PatViz query system.

Such templates might also be used to provide inexperienced users with a general
plan on how to construct such a query. Depending on the field and task, certain
metadata information, such as the IPC classes, can already be taken into account to
offer a good start for an initial search. However, this approach has never been tested
for real users, and it might also pose risks if applied in the wrong scenario.

In order to emphasize the template characteristics of a stored query, a method
for integrating variables into predefined queries is available in PatViz. Variables
are marked with a leading ‘7’ and shown with a yellow background in the visual
representation of predefined queries. When executing a query containing such
variables to the full-text back-end, the values that should be applied are requested
explicitly before it is sent. This prevents unintentional execution of stored queries
with inappropriate constraints in the structures important for the task while not
limiting flexibility. A second benefit of the described mechanism can, of course, be
drawn from it by the creator. If similar search objectives within a domain have
to be addressed frequently, analysts can build up and maintain a predefined set
of template queries to get started more quickly with new searches meeting these
conditions.

However, template queries alone are an insufficient means to learn and comprehend
how to search for and analyze patent documents iteratively. Much more can be
gained from understanding the search process itself and the methods of controlled
widening and narrowing of search queries in order to achieve the required recall
while maintaining acceptable precision. Approaches for tracking and comprehending
such analytic processes in PatViz as well as in other developments are discussed in
Section 5.2.

3.1.3 Querying Metadata

Constraining the metadata (bibliographic data) of patent documents is another
important aspect of patent searching. In technical domains, such as mechanical
and electronic engineering, restrictions of the search domain are often made by
constraining the query using the IPC, but can also be a good starting point
for creating initial result sets with good precision (see Section 2.10 and Alberts
et al. [2011]). The prototype system developed during the PatExpert project
employs a relational database for providing metadata. Such databases can be
accessed using SQL, a formal query language that meets the requirements of a
relational algebra. For several reasons the expressiveness of the query language for
accessing the relational database in PatViz was restricted to subset of operations
and constraints.
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Figure 3.5 — Combination of a complex metadata query with a complex keyword
query using the Boolean AND operator.

The most important restriction comprises the implicit joins on patent documents,
meaning that always sets of patent documents are returned, even if the restriction
applies to different entities associated with patent documents such as applicants.
This is reasonable, since patent documents themselves present the primary target
of analysis for patent researchers. There are not that many entities apart from the
patent documents themselves, which makes an abstraction of the data as one plain
table containing all entities’ attributes, or at least a shallow hierarchical structure,
possible. Relations between patent documents, such as citations, priority or family
membership, can be propagated into visual perspectives directly. Since all other
data sources provide only patent documents as results as well, the straightforward
Boolean logic applied to combine different sources requires this implicit join strategy.
Otherwise, explicit join mechanisms would be needed in the query language, at
least for querying metadata entities of patent documents.
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Another great benefit is that brushing & linking for patent-centric visual result set
representations can be equipped with a much clearer interaction semantic, making
document sets more easily comprehensible. Creating visual query languages for
accessing databases are getting more common in certain domain specific approaches,
but not yet for patent search interfaces. Here, formal query languages and form-
based search interfaces are still the standard. The approach taken for querying
metadata in PatViz can be seen as a pragmatic one, simplifying the model to
a level that can be understood easily, while still maintaining a powerful query
language. For constraining metadata aspects, a set of the most common attributes
is offered to users in a context menu, as well as a set of appropriate relational
operators. The value to constrain the attribute with has to be provided by the
user. Figure 3.5 depicts the additional restriction of a keyword query in order to
retrieve only documents that have either ‘Philips Inc’ as applicant, or that were
invented by somebody with the name ‘Meier’, that were published in 1998 or later,
and that are classified in a certain set of IPC classes but not co-classified in others,
etc.

3.1.4 Image Queries

Alberts et al. [2011] report that descriptive images are often a crucial means for
quick identification of the patent’s invention since they are not affected by patentese
(see Section 2.10). Although patent images are frequently provided in bad quality
and with handwritten comments, they constitute an important aid that allows
patent analysts to screen documents more quickly. With the image similarity search
developed by partners of the PatExpert consortium, analysts are not only able to
evaluate the relevance in result set assessment, but can also request documents
containing certain types and occurrences of images directly. The mechanism for
image similarity search not only takes into account the images themselves but also
the text describing them, which is available from the description section of patents.
This additional textual information is preprocessed, important semantic aspects
are extracted and stored in semantic web format RDF?* (see 3.1.5). Details on
the extraction process, the execution of image similarity search, and a retrieval
framework for patent image search are available from Vrochidis et al. [2010].

In terms of image similarity search, a query by example variant is available in
PatViz’s visual query building facility. Here, arbitrary images can be fed to the
query interface either by identifying them within an available patent document or
by providing a URL where the example image is stored. Image similarity is best
applied in situations where recall should be improved by including it in existing
queries through Boolean OR operation. However, this poses the risk of loosing

2 nttp: //www.w3.org/RDF/
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precision. An adequate countermeasure is its restriction by classification as can be
seen in Figure 3.2.

3.1.5 Semantic Queries

Extracting semantic concepts from textual material has the potential to reduce the
effort put into search greatly. Actually, if it were possible to represent all aspects,
their relations, and their categorization conveyed in a natural text in a unique,
formal way, searching for them would be superfluous, since they could be accessed
through automatic means directly, as long as the concepts are known to the searcher.
The idea of the semantic web is based on introducing such computer-interpretable
semantics [Berners-Lee et al., 2001], and a variety of mechanisms and standards
for representing it formally have been developed and are maintained through the
World Wide Web Consortium (W3C)2°.

Unfortunately, in practice it is not very likely to have natural texts annotated
with such formal semantic information, because this would require either a human
annotator introducing this information or an automatic procedure that attaches
it. The first variant is very complex and time-consuming, while the latter is
unreliable. However, certain aspects can be extracted and formally represented
almost automatically, also for patent documents as has been shown by Potrich
and Pianta [2008]; Cunningham et al. [2011]. Giereth [2012] proposes a semantic-
web-based framework to represent patent information, which has been exploited in
the PatExpert project in accordance to the project’s main scientific objectives. In
PatExpert, the extraction of semantic concepts and their relations is carried out
as a preprocessing step on the available corpus of patent material. As a basis for
this step, a variety of ontologies have been hand-crafted and, on a more detailed
level, were created semi-automatically using the IPC and their description. In a
final step, instances of concepts available in patent documents were extracted and
aligned to these ontologies.

A rich semantic repository has thus been established for PatExpert aside from
the already described data sources. As the name implies, semantic web data is
organized in network structures, and, similar to relational databases, a formal
query language (SPARQL?%) exists for retrieving semantic information from it. For
PatViz’s query creation mechanism, simplifications had to be made in order to
conform to the Boolean paradigm and the restriction to retrieve only sets of patent
documents. Therefore, the semantic query part allows for specifying constraints by
defining the existence of concepts in the documents to be retrieved. For example,
it is possible to define the restriction that a concept which occurs in a patent has a

Bhttp://www.u3.org/standards/semanticweb/
26nttp://www.w3.org/TR/rdf-sparql-query/


http://www.w3.org/standards/semanticweb/
http://www.w3.org/TR/rdf-sparql-query/

56 Chapter 3 o Visual Patent Analytics

specifiable relation to another concept in the same document. Or to put it more
simply, one can define small patterns of a semantic graph that must be present
in the documents to be retrieved. In order to tweak the query for better recall
or higher precision, hyponyms?” and hyperonyms®® of the concepts required to be
contained in a document can also be defined.

In the future the approach could be extended to let users define more complex
semantic patterns within documents, because currently it is not possible to request
chains of semantic patterns of arbitrary size. Again, the way it has been developed
so far had its origin in pragmatic considerations: problems as well as solutions
that are represented semantically and which might be of interest to a patent
searcher can be requested and combined by using available Boolean operators. As
mentioned before, the preprocessing steps needed to extract semantic concepts are
far from perfect; as a consequence, semantic search can be an interesting addition
for retrieving relevant documents at high precision and expanding queries beyond
known keywords and metadata restrictions, but the other search mechanisms are
still needed for assuring good recall.

3.1.6 Integrating Search Back-ends

Figure 3.6 depicts the integration of multiple search back-ends as well as their
orchestration through a query broker service and the query builder in the PatViz
front-end. The architecture employs a three-tier client-server approach, wherein the
single tiers are connected asynchronously through web services. Such a separation
is advantageous for a variety of reasons. Firstly, it decouples the front-end from
the rest of the services, enabling multiple client systems to use the same back-end.
Furthermore, local object oriented models can be established within each client
that are necessary to feed and drive the visualization of the query as well as
the result set visualizations after a query has been executed. This relieves the
back-end services from the costly computational generation of views, which are
only needed on the system’s clients (see Section 5.1.1 for a detailed discussion of
scalability issues). Secondly, updates of the data sources in terms of including
new patent documents is possible without the need to apply changes on the client
side as well. This reflects the common approach to how patent search systems
are organized today. Thirdly, additional patent data sources can be added and
integrated with manageable effort. However, integrating sources that provide new
data types require changes on the client side. First, a new sub-query language has

2TMore concrete semantic concepts that could be summarized under a common semantic concept,
e.g. ‘optical lens’ is a hyponym of the semantic class of ‘lens’.

28 Describes a more abstract semantic concept to given one and describes the relation opposite to
a hyponym.
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Figure 3.6 — General communication paths between front-end and back-end
components. If a query is executed by a user, it is first sent to a broker mechanism
that takes care of splitting it into its back-end specific parts. After this splitting
step these parts are sent to the corresponding search services and all returned
results are collected. Before transferring the results back to the client, all duplicates
are removed by the broker. Subsequently the results can be inspected by users in
the various result set views, suitable restrictions and constraints can be derived for
improving the previous query to start another iteration.
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Figure 3.7 — Overview of the parser/generator framework for the query perspec-
tives. The parser component translates visual and well-formed textual queries into
an internal query model after changes are made by users. Based on the query model
a generator component is responsible for creating visual and textual representations
of the model to be shown in the views. If a query should be sent to the back-end
services, the generator takes care of creating the corresponding XML query as well.

to be introduced. The inclusion of new sub query languages is accomplished by
providing a corresponding grammar to create the language using a parser generator
as shown in Figure 3.7. In the PatViz system this is realized through the javacc
library?”’. The creation of the visual counterpart, which must be linked to generated
parse trees, has to be created manually. Additionally, the query broker has to
be updated to accept query requests to the new data source and to route them
accordingly.

The query broker depicted in Figure 3.6 plays an important role in the described
setup. It takes query requests from clients, splits them into source-specific parts,
possibly translating them into source-specific queries, and sends them to data
sources. The answers from the data sources comprise the patent numbers of
matching hits, and — in case of key word query, image similarity query, and
semantic query — the position of the hits within each patent document. Afterwards,
the broker collects the responses from the data sources, merges them, removes
duplicates, and sends the results back to the PatViz front-end. PatViz maintains
a sparse, object-oriented model of the returned patent documents. As soon as

Phttp://javacc. java.net/
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result sets are visualized for inspection by the patent analysts, metadata as well
as additional content information are directly requested (on demand) from the
repositories.

3.2 Interactive Search Result Visualization

A central idea of the described approach is the tight linkage between query
(re)formulation and result representation. As mentioned above, one important
aspect of applying the Boolean search paradigm in patent search is trust building
through testing subsequent widening and narrowing operations against the analyst’s
information need. Visual result set representations are a good means to leverage
the generation of insight on how complete and precise a result set is, at least if
a patent searcher is knowledgeable in the corresponding technical field. In order
to support users in evaluating and making sense of the results, it is beneficial to
provide visual perspectives for all aspects that can be constrained during query
building. Otherwise, the effects of changing a query, except for the change in the
amount of returned results, are hard to understand and interpret. Accordingly,
this section describes the group of visual components relevant to interactive query
refinement tasks in the representation of the query’s result set.

PatViz provides ten different views of the result set, which are shown in Figure 3.1.
For their integration into the PatViz environment, all views must provide interfaces
for basic brushing and linking operations. This means they must be capable to
accept and and react on highlight and selection events. Every brushing operation
in one view results in the selection of a subset of patent documents. This subset is
encapsulated in a selection event and broadcast through the PatViz environment.
When other views receive such an event, they have to highlight the selection within
their view correspondingly.

Care has to be taken in order to provide comprehensible and consistent selection
semantics, despite different coordinated views being used within the system. Oth-
erwise, the time needed to understand and use the system increases significantly,
since interaction for each visual component has to be learned separately.

Consistency regarding selection has been realized in PatViz through two arrange-
ments. Firstly, similar to the visual query builder, where constraints affect the
restriction to patent documents, all selections possible within result set views
lead to the selection of patent document sets. This means that performing the
selection interaction on a bibliographic aspect is translated into the selection of
all patent documents that fulfill this criteria. This can be seen as an interactive,
visual pendant to faceted browsing or filtering but without removing the context
as realized in traditional faceted browsing interfaces. Both filtering and faceted
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browsing always affect the same types of objects (patent documents) in PatViz,
while restrictions are defined based on the objects’ properties. Internally, the
selection mechanism not only collects the documents meeting a certain property
characteristic, but rather stores them with the property restriction that determines
the semantics of the selection operation as well. This can already be seen as an
important feedback loop, enabling patent analysts to obtain an idea of a result
set’s properties and dependencies.

Storing the constraining aspects of a selection is not necessary for realizing brushing
& linking in the multiple coordinated view display, but it constitutes an important
base for advanced filtering or selection management and for realizing important
feedback loops as described in Section 2.10. Secondly, multi-selection is only
possible within single views, meaning that applying several constraining criteria
from different views in parallel is prevented. The reason for this is again semantic
clarity. As soon as multi-selection should be realized, multiple interesting questions
arise: how are different selection restrictions combined — through Boolean OR-logic,
or through Boolean AND-logic? And how are secondary selection and highlighting
effects handled? Even if the combination of multiple selections from different views
could be configured explicitly to a specific set operator, it would be quite difficult
to reconstruct and comprehend such operations after some steps. As a consequence,
multi-selection with clear semantics is only allowed within one view; nevertheless,
additional means for explicit, constructive selection management were added as
discussed in 3.3. When a selection interaction is triggered in another view, all
former selections and highlights are dropped.

Even within one view, similar questions regarding multi-selection have to be
addressed. Therefore, all multi-selection operations in result set views in PatViz are
per default Boolean AND-combinations. Color-coding for selected and highlighted
patent documents, or rather their aspects and facets, is consistent as well throughout
the views of the system. The selected aspect is displayed in yellow, all affected, or
respectively highlighted, facets are depicted in red (see for example Figure 3.8).
This secondary highlighting effect can also affect the visualization where the initial
selection is made as, for example, described in the next section for the map
view.

Most of the views that are subsequently presented as part of the PatViz interface for
result set analysis employ information visualization techniques, thereby deviating
from typical patent search interfaces. Their combination, as well as the means for
interaction realized on them, have been tailored to integrate them in a sophisticated
visual analytics system that supports exploration and refinement of these sets, and
that goes beyond current state of the art techniques.
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Figure 3.8 — The designated states of a patent document set. Color saturation
depicts the number of documents that include the country as designated state.
Spain is hovered by the user in the left case. The right view depicts the selection of
all patents that have been applied for in France, resulting in secondary highlighting
of all other countries these patents list as designated states.

3.2.1 World Map

Figure 3.8 depicts a map showing the countries where the patents in the result set
are in force. The color saturation of the countries indicates the number of valid
patent documents. Details on how many of them are in force are displayed if the
user hovers the mouse pointer over a specific country. The patents of a country can
be selected by clicking on it. As a result the selected country is displayed in yellow,
and all facets that are linked to the selected documents in other views are shown
in red. This may also include other countries in the same view, where selected
patent documents are in force as well. Zoom and pan interaction is available
to enable users to see more details and to concentrate on countries and regions
they are particularly interested in. Information on the patents’ designated states
can become an important aspect during strategic tasks, e.g., finding cooperation
partners, licensing, etc.
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Figure 3.9 — The IPC view showing a patent result set at the main group level.
Areas containing patent results are depicted in blue. Section ‘B’ has been selected
(yellow) and as a consequence parts of section ‘G’ were highlighted (red). This
effect results from patents co-classified in both sections as is indicated by the green
co-classification edges.

3.2.2 1IPC views

The integration of the treemap views in PatViz strongly builds on the work of
Giereth et al. [2007b]; Giereth [2012], who employed this technique for representing
patent classification information. Figure 3.9 shows the IPC (see Section 2.8) in
the form of an ordered treemap as proposed by Shneiderman and Wattenberg
[2001]. Patents in a result set are shown by coloring the corresponding treemap
areas starting from the sections level in blue. Saturation of the map areas, again
relates to the number of patent documents that are classified to be within them.
Using color to map the number of result documents instead of an area’s size as
is often done with treemaps has two reasons. Since the IPC holds quite a huge
number of categories, it seemed beneficial to show the whole context of the IPC
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Figure 3.10 — The main section A of the IPC, depicted down to the subclass
level. All nodes that are not leaf nodes have a border showing the corresponding
IPC label as described in Section 2.8. The border also enables users to interact
with such intermediate nodes by clicking on it.

in one overview perspective and a treemap is a perfect means to provide such an
overview. The IPC view equips users with the possibility to browse and explore
IPC categories, even if no result document has been classified in such an area.

Furthermore, labels for sections, classes, sub classes, and groups were introduced
to provide users with orientation within the classification system and to facilitate
interaction, e.g., clicking on a area of the treemap. This would not be feasible
without sufficiently wide borders between parent and child areas in the treemap as
can be seen in Figure 3.10. Maintaining borders intentionally, however, might lead
to wrong interpretation of areas where no or just a few patents are classified, which
forbids the mapping of patent number to treemap area size. Another consideration
that led to this decision is the easy identification of source and target area of
co-classification links as subsequently described.

In order to emphasize the exact class, subclass, or group membership of retrieved
patent documents, the borders of parent structures of the IPC are colored and
the most detailed category is filled. With this coloring method, it is possible to
provide an overview of the coarser levels containing patents as well as showing
specific details on the fine-grained levels. In these fine-grained levels, map areas
where patents are categorized in are emphasized stronger, while sibling areas
having no patents categorized in are depicted with a less saturated color. This
means, membership in the IPC structure is propagated and accumulated along
the path to the parent structures stopping at the IPC section level. Selection
interaction is possible at each level by clicking the corresponding area and results
in the restriction of the document set to all patents classified in the corresponding
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sub-hierarchy of the IPC. The selection semantics can therefore be described as
‘select all patent documents that are classified in the clicked IPC node, or any of its
child classifications’ down to the group level. Again, the color scheme for selection
interaction is applied showing selected IPC parts in yellow and highlighted ones in
red (see Figure 3.9).

The TPC view provides a slider in order to show more or fewer details in the
classification view, which can be used by patent analysts to determine the granularity
of the IPC level they are interested in. If set to 1, only IPC sections are shown.
Level 2 and 3 additionally show classes and subclasses respectively. Level 4 adds
main groups in combination with patent co-classification, whereas level 5 also takes
into account IPC sub groups.

The co-classification information, shown as green edges between groups in the
detail levels 4 and 5, enables analysts to understand if patents are categorized in
multiple different IPC groups. Since connecting IPC groups directly with straight
edges would cause visual clutter and would also make it more difficult for analysts
to identify strong co-classification relations in the result set, hierarchical edge
bundling is applied, as has been proposed by Holten [2006]. Here, the IPC’s
hierarchical structure is exploited for routing the edges by using the centers of
parent areas within the IPC as additional points on the path. Through the
employment of splines instead of drawing straight lines, links that follow similar
directions within the hierarchy share parts of the their path. As a consequence,
fewer edge-crossings occur, and more space of the underlying treemap is kept
clear of edges, providing patent analysts with a better overview of a result set’s
co-classification characteristics. If multiple edges are drawn along the same path,
they are visually aggregated using alpha blending which leads to higher saturation
of the affected links, signaling that relations with high saturation are more common
in a result set than ones with low saturation. However, the advantage of providing
a good overview is decreased by the loss of details through the bundling process.
A focus+context interaction mechanism to overcome this drawback and which
conforms to the properties of visual analytics enhanced workflow itself, is discussed
in Chapter 4, Section 4.1.

In addition to the described interaction possibilities, structural zooming, which can
be seen as a focus+context technique, has been introduced. If users double-click an
area of the IPC, the area is enlarged showing more detailed levels as before, while
other areas are reduced accordingly, showing fewer details. This form of interaction
is possible on each level of the IPC and always affects only the sibling areas of the
zoomed one. Figure 3.11 depicts the IPC treemap after IPC section ‘B’ has been
structurally zoomed. The reverse zoom-out interaction is achieved through another
double-click on the same area. A similar approach for interacting with treemaps is
described by Blanch and Lecolinet [2007].
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structural zooming operation has been applied to section ‘B’

The third view in the lower row of Figure 3.1 shows a 3-dimensional version of
the IPC treemap. This is an experimental view that aims at depicting additional
properties, e.g., the number of documents classified within an area, on the introduced
third dimension of the treemap. As mentioned above, area size is not used to
represent, properties of the patent result set, a disadvantage that can be diminished
by introducing a third dimension. However, showing additional details using 3-
dimensional visualization comes at the cost of occlusion problems, which then have
to be addressed through an increased complexity in interaction mechanisms, such
as pan, tilt, and visual zoom. Details about this concept can be found in Giereth
et al. [2008a].

The categorization of patent documents according to classifications systems such
as the IPC (Section 2.8) plays an important role in the construction of queries,
especially for broadening and increasing recall. Besides showing IPC classes in
which patents of the result set are classified, explicit co-classification information is
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Publication Mumb.. Title Publication Date ~
EP1734517A2 Disk recording medium, disk drive apparatus, reproducing method, and disk manufacturing method 20 Dec 2008
EP1628291A2 Method for manufacturing optical disk media of high-to-low and low-to-high reflectance types 22 Feb 2006
EP161742441 DIFFRACTION OPTICAL DEVICE AND OPTICAL PICKUP DEVICE USING THE SAME 18 Jan 2006
EF158309442 Power saving system for optical disc recording/reproducing apparatus 05 Oct 2005
EF153642242 Optical disc and method for recording additional information to an optical disc 01 Jun 2005
EP1521247A2 Optical pick-up device and optical information recording reproducing apparatus 06 Apr 2005
EP151532141 OPTICAL RECORMMMG MEDILUM 16 Mar 2005
EP146517142 Optical pickup devighFIG. 1 it 06 Oct 2004
EF143421042 Optical recording m ¢ ) 30 Jun 2004
EP1414034A2 Optical disk, optical nd program license system |28 Apr 2004
EP1361569A2 Optical information 1 . 12 Nov 2003
EP135754641 OPTICAL DISK, RE M=—"TT VICE FOR OPTICAL DISK,...[29 Oct 2003
EP133343141 OPTICAL DISC oy (R 06 Aug 2003
EP1213709A1 Focus control seleg dium 12 Jun 2002
EP1195755A2 Optical recording m 10 Apr 2002
EP116831542 Optical recording m area, and recording/reprod...|02 Jan 2002
EFP1136991A2 Slider moving devic 26 Sep 2001
EP11242237A2 Optical pickup, tilt d aratus 16 Aug 2001
EP110225842 Caontroller for data r 3 23 May 2001
EP09929858A2 Optical disk apparato 12 Apr 2000
EF088605541 Information recording apparatus 15 Mar 2000
EF0811818A1 Compact dual wavelength optical pickup head 28 Apr 1999

Figure 3.12 — List view showing a patent result set that has been sorted by
publication date. For entries that are hovered over, the representative image
contained in a patent’s abstract is shown.

provided. Such co-classification is suitable to create additional insight about which
IPC classes are promising candidates to take into account during subsequent query
refinements as well.

3.2.3 Patent List

Figure 3.12, showing a table of patents contained in the result set, comes closest
to result set views typically presented by available patent search systems such
as EspQcenet®’. It shows several fields such as the patents’ publication numbers,
their titles, a score for patent ranking if available from the search context, their
publication dates, and the previous selection operation. The last field informs
about the availability of semantic annotations extracted through preprocessing
steps. The availability of such a table view is important, because it helps immensely
in making the transition from rather text-based interfaces to interactive, visual
ones easier. Even if patent practitioners are unexperienced in visual patent analysis,
it guarantees that they can immediately use the system.

The table can be sorted by each field through clicking the corresponding column
header. Sort order can be inverted by clicking again. If the mouse is hovered
over one patent entry the representative image contained in a patent’s abstract

30http://www.epo.org/searching/free/espacenet.html
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Figure 3.13 — The patent graph view depicts patents in the result sets as well
as their relations and attributes. Depending on the chosen structural zoom level
only relations connecting more or less attributes and patent documents are shown.

is displayed in order to disclose more details on the corresponding invention for
quick result set browsing. The table also serves as the primary means to trigger the
detail views, which can be accessed by double-clicking a specific entry. Multiple
selection is possible like in other list interfaces with the modifier keys ‘ctrl’ for
adding single documents to the selection and ‘shift” for range selection. Next to the
table, only two other views allow for the direct selection of a single patent document
— the patent property graph, and the priority-time plot. The selection mechanism
for this view therefore slightly differs from the other views, because selection is
explicit, meaning that specific patent documents are selected directly through their
patent numbers and not implicitly via a restriction of some content-related or
metadata property. From a logical perspective this is consistent with the overall
approach.
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3.2.4 Patent Property Graph

Figure 3.13 shows a graph of the patent result set. While most of the other views
depict certain facets of the patent set to be explored, this view provides a good
overview of implicit connections between shared properties in the result set, which
to some extent reduces the negative effects of coordinated views as opposed to
integrated visualization. However, the usefulness of this view highly depends on the
amount of patents to be displayed. Even for relatively small result sets, the number
of relations and links can quickly exceed a problematic level resulting in heavy
clutter caused by too much interconnectivity and a multitude of nodes. In such
cases, reduction of the details is advisable. Similar to the IPC treemap, properties
can be hidden or added through a slider that enables users to choose from different
levels of detail. With all details activated, a graph of the currently available patent
set with property relations is shown. These properties include applicants, inventors,
cited patent documents, and IPC subgroups. Patents themselves are shown in dark
blue. In addition, members of the same patent family are indicated by showing a
colored convex hull around them.

The graph’s layout is generated employing a n-body force simulation [Barnes and
Hut, 1986] provided by the prefuse visualization toolkit?' [Heer et al., 2005]. A
focus+context method for structural zooming is available, which makes more details
of a clicked node visible, i.e., the node itself and all directly connected nodes are
zoomed in and the labels of the nodes are expanded as shown in Figure 3.14. At the
same time, the rest of the graph is greyed out and reduced in size. The described
interaction also selects the node of interest. Depending on the node type, patent
documents are either selected directly or restricted for patent sets analogously
to the procedure described for other views above. Multi-selection is not allowed
in this view, since it is possible to restrict different properties during selection,
which does not comply with the general selection model (restrict only one facet) of
the PatViz interface. In order to support users during selection interactions, the
properties related to patents are labeled according their connectivity in zoomed out
perspective. This means that properties which are shared amongst patent nodes
will be labeled accordingly, e.g., an applicant holding 4 patents in the result set
will be labeled with a 4 and exhibit 4 links to these patents. Such an indicator
supports patent analysts in choosing promising nodes before the interaction itself
is performed, because they can directly assess the selectivity of a subsequent
selection operation. Zooming and panning interactions are available to give users
the possibility to explore details of the graph. In order support users with a better
overview during high zoom levels, an additional mini map of the graph is provided
in the lower right-hand corner of the view.

3http://wuw.prefuse.org/
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Figure 3.14 — Structural zooming operation applied to a European patent in

the property graph view. Related attributes such as inventors (orange), applicant

(green), IPC subgroups (light blue), and cited patent documents (yellow) are
zoomed, while the rest of the graph is greyed out.

The patent property graph serves as an auxiliary view depicting patents and their
properties in a common context. Many of the selection operations that are possible
in this view can also be achieved with other perspectives.

3.2.5 Priority-Time View

The priority-time view (Figure 3.15) depicts patents and their corresponding
priorities (see Section 2.8). On the x-axis time is shown: all patents and priorities
are placed on it according to their application date. This view can optionally be
switched to the publication date. In y-direction patents and priorities are ordered

according to the country or regional office where the patent has been applied
for.

If a patent document is hovered over, all its priorities are indicated through directed
edges as depicted in Figure 3.15. Clicking on a country label expands the view in
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E Priority-Time View

121986 06M 388 111989 061980 031991 021993 011885 031996 101996 0411998 031999 1012000 0472001 0512002 06/2003 0812004

Figure 3.15 — The priority-time view with time depicted in x-direction and
patents sorted according to application region in y-direction. Japanese and US
applications were expanded to show more details of them.

y-direction showing patent and priority labels in more detail. Selection interaction
is possible analogously to the patent property graph view.

3.2.6 Term Cloud

The term cloud view as shown in Figure 3.16 represents terms occurring within a
patent’s textual parts. This type of visualization is well-known as ‘tag clouds’, which
were originally used to indicate the importance of either manually or automatically
created tags. The general idea of tag clouds is to provide a coarse overview of
electronic documents. Apart from employing them to display the most frequent
tags assigned by users to digital documents as part of the creation of folksonomies
or social tagging, they are now also used to summarize text collections, e.g., by
representing the most frequent terms, and almost any other kind of (meta)data
[Viégas and Wattenberg, 2008]. In order to emphasize differences in the provided
tags’ importance, font size is adapted, giving more important tags a bigger size and
less important tags a smaller one. Depending on the field of application various
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Figure 3.16 — Term cloud of a smaller patent result set. Label size and the
attached, subscript numbers relate to the terms’ document frequency in the result
set. The term ‘error’ has been selected in the shown situation and others are
highlighted as a consequence of the selection, since they occur in one of the
documents that contain this term.

measures for importance are applied. To underline the fact that terms contained
in patents are provided in this scenario, the name ‘term cloud’ seemed to be more
appropriate.

As provided in the PatViz interface, the terms’ local?? document frequency df
(see Section 2.5.2) is mapped to importance and accordingly to the font size in
which they are shown. Additionally, local document frequency is denoted explicitly
with every shown term. The choice to use document frequency as the measure
for importance was made for two reasons. Similar to the property graph view, df
indicates the number of affected documents if a selection interaction is triggered.

32Local in the sense of being computed on the loaded result set documents.
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Another good measure could be the tf-idf scores of the result set’s contained terms,
which, however, would be only meaningful if the whole patent collection could be
taken into account for idf computation (see, again, Section 2.5.2 on this topic). As a
result the most valuable terms for discriminating the result patent set to the overall
patent set could be extracted. However, this would have been a rather expensive
operation as tests showed, because every term contained in the patent documents
result set would have required a web service lookup to the repository, in order to
retrieve document frequencies and the separate computation of each term’s tf-idf
value and their sorting. Thus, this option was discarded due to PatExpert’s system
design, but nevertheless it constitutes an interesting means to depict important
terms for systems with tightly integrated back-ends.

In order to maintain a manageable number of patent terms, only the top 100 terms
with highest local df are shown in the map. Unlike other views, the term map
provides two modes for multi-selection: one for applying Boolean OR logic and
another one for AND logic. The decision to allow two modes was again a pragmatic
one, since this view was considered to be very important for query refinement.
Selections made in this view are regularly reintegrated into previous queries, which
motivated the introduction of an additional ‘update query’ button, to simplify
reintegration.

A variety of layouts for tag clouds have been suggested and tested in related work,
e.g., in Lohmann et al. [2009]. In the PatViz implementation an alphabetical
ordering was chosen, since this was the most obvious method that enables analysts
to scan for a specific term in the cloud.

3.2.7 Legal Entity Chart

As already mentioned in Section 2.8, legal entities, such as the applicants and
inventors of a patent, constitute another interesting facet that can be exploited
during patent search and analysis. The legal entity chart (Figure 3.17) enables
analysts to explore these facets. Patent applicants and inventors are depicted in
the form of a bar chart, showing the names of legal entities on the y-axis and the
numbers of the current result set’s patents related to them on the x-axis. The type
of legal entity can be set by users as required. The chart can be sorted by the
number of patents where a legal entity is involved in increasing and decreasing
order. This way, users can quickly identify important players in the patent set
under analysis. Additionally, it is possible to sort the chart according to legal
entities’ names alphabetically, which is especially helpful when specific legal entities
are to be identified in the set.

Selection interaction is possible in several ways. Clicking on a bar or the name
of a legal entity is the simplest way to accomplish it. Accordingly, the result set
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PIONEER ELECTRONIC CORP
KONICA MINOLTA OPTO INC
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DREXLER TECHNOLOGY CORP
KONICA MINOLTA HOLDINGS INC
FUJIFILM CORP

HONEYWELL INC -

Figure 3.17 — Bar chart depicting the legal entities associated with a patent
document such as applicants and inventors. In the depicted case applicants are
shown and the chart was sorted by the number of patents they applied for. To
handle large numbers of legal entities, a text field for reducing the shown applicants
to those containing a user-specified substring is provided. Additionally, the shown
entities can be restricted to those associated with a user-specified number of patent
documents. In the depicted scenario fractions of the patents are highlighted (red)
as a result of a selection in a different view.
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is restricted to the chosen legal entity, and affected aspects in other views are
highlighted. Selection of multiple legal entities is possible through brushing over
multiple bars, by clicking several of them subsequently while pressing ‘shift’, or by
applying a filter regarding the minimum and maximum number of patents a legal
entity should be connected with.

Highlighting as a consequence of selections made in other views, may result in
highlighting only a fraction of corresponding bars in the chart. It might also occur
as a side-effect of selection performed in the chart itself, if more than one legal
entity is registered in a patent’s metadata.

3.2.8 Detail Views

There are two views that allow for the inspection of a single patent’s content. While
the first one depicts the whole patent document with its most important metadata
aspects, as is common with most patent search interfaces, the interactive view
additionally shows extracted semantic annotations. Apart form the possibility to
explore details of these annotations by hovering the mouse pointer over them, a
focus+context method can be applied to help users concentrate on those parts of
the document where semantic concepts and relations can be found. A detailed
description of the interaction technique is given in Giereth et al. [2008b]. The inter-
active view can also be used to select important semantic concepts for integrating
them into previous query statements.

3.2.9 Selection Management

Simply selecting a subset of documents, as facilitated through the interaction
mechanisms of the views described in the previous section, is not expressive enough
to reflect interesting subset definitions, which can then be used as part of advanced
filtering, as a means to test hypotheses on, or to be exploited in a later step to
improve the search query. Therefore, the views also need to maintain a description
of the filter operation used to create the subset. In the example of the world map,
this could be ‘filing-country = Sweden’ if users mark Sweden, or a concatenation of
such statements if selecting a multitude of countries. The goal of this approach is to
derive and preserve users’ intention from their interaction instead of applying direct
selection. With the increased self-descriptiveness of selections it is possible to enrich
the selection management with interactive adjustments of the underlying filter
mechanisms, as well as to create appropriate filter definitions for the search query
reformulation. However, if the selection operation should extend on separated sub-
selections in multiple linked views of aggregated data, the selection of a particular
data set may be difficult or even impossible, for the reasons discussed in the first
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paragraphs of Section 3.2. Therefore, PatViz contains a graph-based technique
for visual selection management allowing for the combination of data subsets by
applying set operations on them. This technique provides increased expressiveness
over classical approaches by utilizing them as building blocks for more complex
extraction strategies.

The method itself employs a node-link-based graph view (see Figure 3.18) that
provides nodes serving as interactive widgets. The directed graph, which is built
in a user-steered manner, comprises three different types of nodes: content nodes,
filter nodes, and operator nodes. In its initial state the technique displays a single
(root) content node representing the entire set of patent documents contained in the
current result set. Content nodes have a vertical bar attached to them symbolizing
the size of the set they represent in relation to the whole set. Additionally, the bar
is labeled with the exact size of a (sub)set. One method to create new nodes is
given through a context menu, enabling analysts to represent an arbitrary selection
made in one of the result set views as a new content node in the graph. As soon as
such a node is added, it is automatically attached to the root node representing
the whole set of available patents via a filter node which describes the selection
restrictions made in the view. The other way to build new nodes is through direct
interaction on existing graph nodes. Content nodes can be connected to filter
nodes, which constrain one of the set’s attributes, in order to restrict a content
node’s set of documents. The result of the restriction is another content node with
the reduced document set. Set operator nodes constitute the third type of nodes.
These nodes allow for the combination of different content nodes and thus can
have an arbitrary number of incoming edges and one outgoing edge, each again
connected to corresponding content nodes. In order to exploit the visual selection
management successfully, typically all mechanisms have to be combined.

Set operators, i.e., union, intersection, and symmetric difference can be set explic-
itly via additional nodes, apart from the implicit combination contained in the
graph structure itself, i.e., sequences (AND) and branches (OR). In contrast to the
filter /flow metaphor described by Shneiderman [1994] these operators facilitate
the combination of arbitrary sets of data objects without the need to generate
multiple instances of a particular filter just to apply it in different combinations.
DataMeadow [Elmqvist et al., 2008] describes a related, also network-based ap-
proach, to combine filters on multidimensional data, whereby different aspects can
be filtered at once using interactive visual metaphors called DataRoses.

The construction of the graph itself is performed completely by the users. Guiding
users when they interact with graph widgets prevents the occurrence of illegal
graph configurations. For example, if a content node is dragged by a user it can be
only attached to set operator nodes. During the drag interaction valid targets are
highlighted in green to help users in identifying valid connection points in the graph.
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Selection Management

Zoom: #

®

Figure 3.18 — The selection management view. In the depicted situation three
content nodes (yellow) were derived from the available results set of 50 patent
documents, which is represented by the upper left content node. These subsets
are connected via filter nodes shown in red. The subsets were created (top to
bottom) by selecting Spain in the world view and representing this selection in the
management view, by directly applying a filter that restricts the publication date
to the time period between April 1985 and December 2006, and by selecting all
patents having ‘Matsushita’ as an applicant. Finally, all filtered/selected sets are
combined through an intersection operation (blue node). With the bars (attached
to a content node) indicating number of patent documents associated with a content
node, it becomes quickly obvious how restrictive previous filtering operations are.
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Different filter nodes are created with respect to the data type of the property that
should be constrained. After combining different sets and parameterizing filter
nodes, every document subset can be reflected back on the result set visualization
by selecting an arbitrary content node. In this way, the visual selection management
expands result set exploration facilities with an important, additional feedback
loop.

Visual selection management also serves another important purpose. It is a means
for extending user working memory, by providing a workspace to externalize findings.
Pirolli and Card state that

“Techniques aimed at expanding the working memory capacity of an-
alysts by offloading information patterns onto external memory (e.g.,
visual displays) may ameliorate [the problem that only a limited number
of hypotheses, amount of insight, and found relations can be heeded by
humans at the same time]”.

Selection management facility acknowledges the limits of humans’ attention span,
and supports patent searchers to include and consider previous findings as well as
their integration at any time in their analytic workflow.

It is possible to highlight document sets represented by content nodes in the
selection management technique in the result set views using the nodes’ context
menu. While this still makes the testing of hypotheses — e.g., ‘does a certain
applicant dominate others with respect to patented solutions in a specific domain
within a certain country’ — possible, comparing different sets can only be performed
in a sequential manner. For the latter case it would be necessary to either duplicate
views, to compare different result sets side by side, or to extend the available ones
to show two or more subsets in parallel, emphasizing their differences and their
common characteristics. Both solutions, however, would increase the complexity
of the visual interface considerably and would conflict with the idea of a single,
consistent, centralized selection mechanism.

Since the selection management technique does not depend on the type of documents
in the sets, and because filter options are derived from the underlying data model,
the selection management and its insight integration facility can be applied to other
application domains without great difficulty. In cooperation with others this has
been successfully demonstrated in different VAST-Challenge?®* submissions [Bosch
et al., 2009, 2011; Kriiger et al., 2012].

In 2011, the filtering and selection management technique was employed in the
context of analyzing microblogging messages in order to gain situational awareness

33nttp://hcil.cs.umd.edu/localphp/hcil/vast/archive/index.php
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of a fictional epidemic outbreak, its means of transmission, and its cause [Bosch
et al., 2011]. In combination with other coordinated views, the method turned
out to be especially helpful to test a variety of hypotheses, and was significant
for finding a meaningful interpretation of the given scenario. In 2012, the same
technique was exploited as part of a toolkit for analyzing a large computer network
[Kriiger et al., 2012] and helped exclude certain events that might have caused
some of the problems encountered affecting the network.

Besides having an explicit means for insight management, the mechanism for
selection management also describes parts of the analytic process itself, including
aspects such as invalidated hypotheses and other analytic steps that probably
cannot be used further, but are still important for increasing an analyst’s trust in
the validity of the analysis. Together with the changes applied to previous queries,
analytic processes are formally represented in the system without any explicit
recording triggered by the user. However, users can provide descriptive information
to made selections and combinations of them in order to identify and remember
specific analytic findings more easily.

One distinctive aspect of the approach described above is its user-directed con-
structive nature. The formalized user-steered construction of an analysis and its
explicit representation creates potential for exploiting a variety of synergetic effects.
It is, for example, a suitable base for representing analytic provenance, which can
be exploited in later steps to support collaboration and analytic reporting. Those
aspects are discussed in detail in Chapter 5.

3.3 Feedback Loops and Insight Reintegration

Facilitating views and interaction methods to extract insights from visual perspec-
tives is one key aspect of visual analytics. But without providing additional means
for exploiting these insights successfully afterwards, e.g, during subsequent stages,
analysts are forced either to keep these insights in mind, or to externalize them by
recording them manually or by exporting them if possible. Support for interactive
feedback loops increases analytic possibilities. It is therefore desirable to make
insights exploitable directly within a visual analytics framework to provide seamless
integration for larger sensemaking and feedback loops.

For this purpose, several levels for insight integration have been realized in the
PatViz system. As discussed in Section 2.10, reading documents in the patent
domain tends to be rather laborious, but the documents provide a variety of
metadata that can be refined into aggregations, relations, and statistics. Thus,
it is possible to create a rich set of views on result sets depicting metadata as
well as summarized content. Without integration, the interactions provided by
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an individual view are restricted to the adjustment of view-dependent parameters
like sorting, filtering, highlighting, zooming, and panning. The user can only gain
insights by exploiting the set’s (meta)data which is related to the current view.
The first level of integration is therefore realized through brushing and linking
between the views to make, for example, connections in the result set visible. By
cross-highlighting, the user can answer questions about the frequent filing countries
of the applicant with the highest number of patents in the set. While being a
powerful method, brushing and linking can only show connections between the
selection in one view and its representation in the other views, but does not take
into account their combination.

The second level of integration is therefore the saving and recombining of selections.
Multiple views can now be used to define subsets and to combine them employing set
operators, allowing the user to answer the same type of questions as above but with
additional restrictions from other views, e.g., 'who is the applicant with the highest
number of patent documents valid in Spain within my result set?’. This question
could also be formulated as a new query, but this would make the combination of
the answer with other subsets of the result set more complicated.

Up to this point patent analysts do not leave the phase of exploring the result set.
While this phase is important for creating insights regarding the problem domain, it
interferes with the patent domain’s need for high relevance of result sets. Therefore,
query widening has to come into play. The third level of integration addresses this
requirement in the form of a query refinement by result set interaction. The views
are aware of the type of data they are displaying and are capable of providing a
search expression based on the user’s selection in the corresponding view. The
selection management component, in turn, is capable of combining the selections
and their attached search term description into complex queries. Finally, the visual
query editor allows for the direct incorporation of (combined) selections, to find
more or exclude documents of the specified kind. This aspect cannot be achieved
by a single component, but only by the whole system.

It is important that the last step of integrating findings into previous query formula-
tions is steerable by the analyst, since the system cannot decide automatically how
the integration into previous queries should be realized. The semantics regarding
the correct scope inside the query and the intended Boolean operation to be applied
for the integration have to be provided by the human analyst. The feedback loop to
exploit insights from the analysis for query refinement is realized in PatViz in such
a steerable manner, e.g., by dragging content nodes of the selection management
facility directly into the query view or by adding it via context menu. A description
of a use case, exemplifying iterative patent search and analysis with the proposed
set of techniques, can be found in Koch et al. [2009].
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For patent search and analysis the described composition of the visual front-end
also opens up new search strategies which can hardly be followed using traditional
approaches. A direct and formal query approach is intelligently connected with
views for explorative proceedings. This allows for a seamless combination of an
analyst’s previous knowledge with berrypicking strategies [Bates, 1989; Hearst,
2009], which can be applied as a secondary means for increasing relevance. While
the query approach should accommodate patent searchers in their established
routines, visual berrypicking introduces new strategies alongside these familiar
search patterns.

Instead of applying a search plan starting with a high-precision query as described
by Alberts et al. [2011] followed by subsequent systematic broadening of the search,
patent analysts can start with high-relevance approaches taking into account all
factors at the very beginning. With the selection management system and filter
techniques they can test and compare the different aspects against each other
in order to increase precision for reducing the effort of a subsequent detailed
patent inspection. Furthermore, crosschecking of patents and the (in)validation
of hypotheses subsets becomes available through selection management. This
establishes trust in the relevant subsets of a broad search, again without the cost
of additional query formulation and the need to store intermediate results for
later comparison. Such an approach can reduce the number of required iterations,
as opposed to currently available systems for patent search, and is suitable for
speeding up the search process.

This chapter presented an approach that covers the iterative patent search and
analysis process. While the approach clearly addresses a specific domain, it is
still very flexible regarding the analytic paths that can be followed by analysts.
Moreover, it can be adapted for analyzing and searching scientific literature,
which is also one aspect in patent searching, but has not yet been addressed.
Domain adaption is important to optimally meet the needs of domain experts;
for larger analytic approaches as those presented here, it is therefore imperative.
Smaller analytic subtasks, which can also be supported employing visual analytics
approaches, however, have the potential for broader application. The next chapter
presents two of these approaches,; also in context of patent analysis, but emphasizing
characteristics that make it easier to generalize them.



CHAPTER

Plug-In Visual Analytics

While the previous chapter covered the application of visual analytics concepts on
the task and process level, this chapter describes two methods at a much more
fine-grained level, focusing on subtasks as part of visual analytics approaches at
a larger scale. The first of those is an interaction technique for exploring large
and dense node-link-based views, the second one presents a method for creating
task-tailored text retrieval mechanisms in the form of binary classifiers.

What makes these approaches interesting is that their design also follows visual
analytics principles of combining visualization, interaction and automated tech-
niques, inclusion of feedback loops on different levels, etc. Their application within
larger systems can be seen as a recursive stacking of visual analytics approaches.
If carefully designed, such approaches have the potential to be adapted to and
employed in other contexts as well.

Even if their integration into larger analytic loops is optional and might only be
suitable for specific groups of users or for specific tasks, the fact that they can
be integrated seamlessly into larger visual analytics frameworks and tasks further
increases the power of available methods. As a side effect of their focus on specific
aspects of an analysis, they are less domain-dependent and can be transferred to
other analytic scenarios where similar problems have to be addressed. By providing
corresponding interfaces, even orthogonal aspects, such as provenance, collaboration,
and presentation (see Chapter 5), can be preserved and made available to the larger
visual analytics tasks.
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This chapter is partly based on the following publications:

A. Panagiotidis, H. Bosch, S. Koch, and T. Ertl. EdgeAnalyzer: Exploratory
Analysis through Advanced Edge Interaction. In Hawaii International Confer-
ence on System Sciences (HICSS 2011), pages 1-10, 2011

F. Heimerl, S. Koch, H. Bosch, and T. Ertl. Visual Classifier Training for
Text Document Retrieval. IEEE Transactions on Visualization and Computer
Graphics, 18(12):2839-2848, 2012

4.1 Visual Analytics on the Interaction Level

With ‘EdgeAnalyzer’ [Panagiotidis et al., 2011] a focus+context technique was
developed that features visual analytics characteristics. It can therefore be seen as
the recursive application of visual analytics principles and feedback loops within one
interaction mechanism eligible to be used in the context of larger visual analytics
approaches such as PatViz.

In information visualization the integration of several data aspects within one
interactive view that provided details and context at the same time by using
focus—+context techniques [Card et al., 1999], is often considered to be preferable to
providing different linked views showing these aspects separately, since the cognitive
load for users can be lower for such integrated views compared to separated ones.
Integrated views using focus4context interaction are particularly suggested for
explorative tasks and scenarios, since switching between displays or windows can
have negative effects on visual search performance [Larkin and Simon, 1987].

One example of such a visual combination of different data types is the integration
of relational, i.e., graph-based, data properties on top of other spatially represented
information, e.g, in the form of a two-dimensional map. A broad variety of scenarios
can benefit from this combination. Examples are the visualization of air traffic,
migration information, and other relational information on a map, the visual
representation of call-graphs within hierarchically organized software packages,
or, as addressed in the following, relational patent co-classification information
depicted on the classification hierarchy represented as a treemap.

Graph-based data is often visualized in the form of node-link diagrams. In order to
help users understand and interpret node-link diagrams, a large variety of layout
algorithms are employed, which try to provide a suitable layout that takes into
account a good trade-off between a variety of potentially contradicting criteria
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[Di Battista, 1999]. If the number of nodes and their connectivity exceeds a certain
level, even sophisticated and carefully designed graph layouts cannot prevent them
from appearing visually cluttered due to overdraw effects of nodes and edges.
Unfortunately, the combination of graph data on top of spatially represented data
exacerbates the problem of overdraw, because not only the graph itself becomes
cluttered but the spatially represented information is also occluded.

In recent years, various solutions for reducing visual clutter in such situations were
proposed. A general overview of clutter reduction techniques, not limited to graph
visualization, can be found in Ellis and Dix [2007], while von Landesberger et al.
[2011] provide an overview of the state of the art in analyzing large graphs including
interaction techniques. Specific methods to decrease visual clutter for graph
drawings include graph drawing algorithms [Di Battista, 1999], node clustering
[Kaufmann and Wagner, 2001] or summarization of nodes with other visualization
techniques [Henry et al., 2007], as well as edge bundling techniques [Holten, 2006;
Cui et al., 2008; Holten and van Wijk, 2009; Lambert et al., 2010; Gansner et al.,
2011; Selassie et al., 2011]. The latter aim at presenting users with the gist of
relational connectivity without occluding too much information of the underlying
spatial visualization. Besides these constructive approaches, interaction techniques,
as described in Wong et al. [2003]; Wong and Carpendale [2007]; Hurter et al. [2009]
for local reduction of visual clutter in dense graphs were developed.

While maintaining good overview, edge bundling techniques come at the cost of
obfuscating details of the depicted relational information. To some extent this
problem can be diminished by using techniques such as emphasizing the strength
of edge aggregation by color saturation; however, especially if edge properties
are of interest, additional techniques are necessary to let analysts inspect details.
Techniques for exploring edge properties interactively can help in situations like
that. Indirect inspection of edges can be realized by enabling users to interact
with nodes, which is suitable for tasks where analysts know the important nodes
beforehand and are interested in their connectivity.

This approach, however, might result in many tedious interaction steps with nodes
in order to understand the properties of aggregated edge bundles during explorative
tasks. Particularly if multiple edges from different locations are bundled together
ending in another region but pointing at spatially separate targets there, indirect
exploration gets laborious because, potentially, every pair of nodes has to be
explored separately. A solution to solve this problem is direct interaction with
edges or bundles of them. The technique proposed with EdgeAnalyzer falls into
this category of edge-interaction mechanisms and aims at explorative tasks (see
Figure 4.1). Apart from exploring edges or bundles of them, it additionally provides
mechanisms for drilling down into specific edge properties in order to select exactly
those needed for the larger task to be solved. Alternative approaches for exploring
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Figure 4.1 — The EdgeAnalyzer focus+context technique applied to the patent
co-classification scenario as described in Section 3.2.2

the properties of large graphs, such as NodeTrix suggested by Henry et al. [2007],
are available, but they are not developed to be applied on top of already available
views with fixed spatial layout.

4.1.1 A Focus+Context technique for Edge Exploration

EdgeAnalyzer provides a lens-based visual metaphor for inspecting edges within
a region. The lens can be resized for narrowing or widening the focus of interest.
Theoretically, arbitrary shapes are possible for this interaction mechanism, but
throughout this section circular lens shapes are considered in text and images.

EdgeAnalyzer provides a three-stage process for detecting edges of a hovered area
in a first step, optionally grouping edges in a second step, and providing alternative
views of the second step’s outcome in the third step (see Figure 4.2). Corresponding
to these steps, separate modules with well-defined interfaces are provided in order
to make the mechanisms for grouping and visualization exchangeable for users and
extensible for new methods if they should be required.
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Figure 4.2 — The basic process for carrying out edge exploration with the
EdgeAnalyzer approach.
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Edge Exploration

In order to explore edges, analysts simply have to move the lens which is shown
semi-transparently over an existing visualization that employs edges for depicting
relational aspects. During movement as well as resizing of the lens, hovered edges
are automatically and dynamically detected, grouped and visualized according to
the user’s preferences. The mechanism takes into account edges intersecting the
lens as well as fully covered edges. The detection mechanism itself is generic, given
that underlying visualizations are able to provide geometric information on their
edges via a predefined interface.

If many edges or bigger edge bundles are inspected in the lens area, showing details
for all edges from the beginning makes it difficult to understand the situation
quickly. In order to make larger sets of edges manageable, ways of grouping them
according to a user’s needs are required. In the EdgeAnalyzer approach this is
realized through organizing the edges supplied by the parent visualization in a
flexible, internal data structure. After the detection of hovered edges is finished,
internal grouping of edges is enabled through the corresponding module.

The grouping can be realized based on various edge properties. These proper-
ties include geometric aspects, such as intersection angle of edges with the lens,
intersection points, global edge direction, etc., and metadata properties of edges,
which, in case of patent co-classification, for example, comprise years of application,
applicants, designated countries, and so forth. Thereby, characteristics visualized
by the parent view EdgeAnalyzer is applied to can be taken into account as well, if
available. Naturally, this comprises geometrical aspects and metadata. If metadata
is to be included in the grouping process, another interface for accessing the parent
visualization or the data it is based on has to be provided.

Grouping itself is realized through aggregation and clustering. The grouping can
therefore be seen as a user-steered automated step in the process of exploration
and selection, which is typical for visual analytics approaches. Using automated
methods such as clustering (e.g. k-Means clustering) is especially helpful if large
amounts of edges are explored and the user does not know beforehand, which
criteria might be well suited for aggregating them. In a second step, the clustering
might be refined by choosing different clustering parameters or by switching to an
alternative grouping based on metadata characteristics of edges.

Depending on the task, different views for depicting the situation in focus can be
beneficial. In order get an idea on the number of edges and bundles of them, (local)
de-bundling strategies as shown in Figure 4.3 can be conducive. The different
views can take into account the edges’ context outside the focused area, or ignore
edges’ paths and present then in an abstract way, independent from the parent
view. In either case, the visualization of edges relies on the selected grouping
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Figure 4.3 — EdgeAnalyzer’s lens applied to a patent co-classification edge
bundle. No grouping is activated and the visualization mode is set to de-bundling.
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Figure 4.4 — Different visualization modes are available for users to choose from.

In the left variant focused (groups) of edges are ‘de-bundled’. Similar with the
right visualization. Here edges are shown as horizontal dashed lines instead. In the
perspective in the middle, all edges are bundled together.

of the previous step. In order to keep users informed about the active grouping
mechanism, an optional tooltip is provided. Another switchable tooltip summarizes
the characteristics of the focused region by showing the number of edges, number
of groups, as well as the id/label and additional information about the currently

highlighted edge group (see Figure 4.5).

Browsing Groups of Edges

Browsing (groups of) edges is possible using the mouse wheel. On each wheel tick
the next edge (group) is highlighted and details are depicted in the corresponding
tooltip. By combining grouping and visual inspection of these groups, the browsing
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Figure 4.5 — Components of an EdgeAnalyzer lens. Two arc wheels for iterative
grouping/drill down are shown around EdgeAnalyzer’s lens, as well as tooltips,
telling

mechanism enables analysts to filter those groups that are of specific interest to
their tasks. In case of employing EdgeAnalyzer in the co-classification view of
PatViz, this, for example, can be exploited to determine IPC groups where the
patents under analysis are frequently co-classified in, because edges always relate
to patent documents. If such a frequent co-classification exists, this insight enables
analysts to broaden their search to IPC subclasses or groups that were not taken
into account in previous analyses.

Although specialized views for depicting and browsing edge groups are available,
depicting groups’ sizes to these views is problematic. Mapping size to edge width or
color, for example, makes depicting edges’ contexts, e.g. in form of aligning them
to their paths outside the focused area, difficult. Additionally the space inside the
lens is limited, and views are shown on top of existing visualizations. Depicting
various properties in parallel inside the lens can quickly result in additional visual
clutter. In order to avoid this issue, the lens was extended with a visual mechanism
that has been termed ‘arc wheel’.

The arc wheel is a circular structure displayed around the lens, which is partitioned
into arcs representing the currently explored edge groups and sizes (see Figure 4.5).
An arc’s size thus depends on the number of edges within its group relative to
the total number of focused edges. When users browse through edge groups,
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the correspondingly selected arc is always located at the top of the wheel, while
the wheel is rotated during browsing. All segments are colored according to an
interpolated palette that fades from the edge group color to a medium gray, in order
to indicate the wheel’s current position to the users. Furthermore, if a subgroup is
selected by an analyst, grouping can again be applied to the subgroup according
to a user’s needs. As a result, multiple arc wheels are stacked outwards, making
complex filtering and iterative drill-down possible. In the patent co-classification
scenario such a drill-down operation could, for example, consist of selecting a
prominent bundle of edges connecting to specific IPC groups first, then exploring
this bundle according to the patents’ applicants showing immediately the most
important players who applied for patents classified in both IPC groups.

The approach of the arc wheel shows some similarities to the ‘Details Outside’
method described by Stasko and Zhang [2000], who suggest a focus+context
interaction technique for exploring subhierarchies in sunburst visualizations. With
the Details Outside method the focused subhierarchy is drawn around a sunburst
overview depicted with reduced size in the visualization’s center. However, there
are a number of significant differences to EdgeAnalyzer’s arc wheel. Firstly, the arc
wheel does not directly reflect the hierarchical nature of any underlying space-filling
view, but an edge grouping hierarchy instead. Secondly, in the case of stacked arc
wheels, every sub-group is shown as a circle of arcs, representing the partitioning of
the selected parent group as a whole and not as a fraction, as it is done with child
nodes of the selection in the Details Outside method. And thirdly, the arc wheel
is always shown relative to EdgeAnlyzer’s movable lens and not at a predefined
location as in Stasko and Zhang’s approach.

Selection of single edges and edge groups is possible throughout the browsing
process. In the case of EdgeAnalzer’s integration into the PatViz interface, this
results in the constrained selection of (sets of) patent documents, that can be used
both for highlighting and within the selection management technique. Selections
are handled analogously to PatViz. They store the selections’ constraints with
the selection of patent documents and can be directly used for query widening.
However, selection criteria are derived from the chosen grouping method and storing
selection constraint is only possible if grouping is metadata based. In those cases
where grouping is based on geometric constraints, only the patent documents are
marked as selected.

Advanced Filtering

EdgeAnalyzer also facilitates the combination of multiple lenses. Either independent
or dependent child lenses can be spawned by the user in order to address more
complex analyses. In this context, independent means that restrictions of the first
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Figure 4.6 — The architectural dependencies of EdgeAnalyzer, showing a part of
the parent VA model in blue (see Section 2.4), EdgeAnalyzer’s model (turquoise),
and the required interfaces (purple).

lens are not considered in grouping and filtering of the second lens. If independent
lenses are used in a larger application context, both selections are combined
accordingly with the Boolean OR operation. In the case of dependent lenses, the
filter and drill-down operations of a child lens only apply to the selection of the
parent lens. This is of particular benefit if the effects of one lens need to be observed
in a spatially disjunct location, or if a target region is heavily cluttered with edges
and pre-selection in a less cluttered region can overcome this issue. Dependent
lenses can be seen as describing Boolean AND relations regarding the combination
of their constraints. As mentioned above, the described focus+context interaction
techniques require certain information from the visualization it is to be applied to.
Figure 4.6 depicts these dependencies schematically. If the described interfaces can
be provided, the technique can be flexibly employed with any edge or link based
view.

Shortly after the publication of the EdgeAnalyzer approach a similar approach was
presented with ‘MoleView’ by Hurter et al. [2011]. In contrast to EdgeAnalyzer,
MoleView has been applied to a broader spectrum of visual primitives in addition
to edges, including points, and image’s pixels. Similar to EdgeAnalyzer, it takes
into account geometric properties as well as additional domain-related attributes
of visually depicted data in focused regions. MoleView also facilitates mouse-
wheel interaction resulting in changing the range of attribute values used as a
constraint for filtering the underlying data. While MoleView is presented as a
purely explorative method, EdgeAnalyzer has been designed to facilitate complex
filtering and selection tasks required within larger application contexts. In addition,
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Figure 4.7 — Employing dependent lenses in the context of a parallel coordi-
nates [Inselberg and Dimsdale, 1990] view. The upper image shows the situation
with one applied lens, while the lower image depicts the situation after adding a
dependent lens, restricting the edges to those intersecting both lenses.
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EdgeAnalyzer enables analysts to drill down into underlying edges hierarchically, to
step through (groups of) them, to choose from a set of automatic grouping methods,
to switch visualization modes within the lens, and to apply multiple (in)dependent
lenses for advanced explorative analysis.

4.1.2 Feedback Loop

A variety of low-level feedback loops are facilitated by EdgeAnalyzer. As with
all focus+context techniques, focused regions can be explored while context is
available which could be seen as the technique-immanent basic feedback loop. In
the case of EdgeAnalyzer, the accentuation of edges under inspection is also visible
outside the focus region enhancing this feedback loop for the specific analysis of
links and edges. Furthermore, analysts are provided with direct feedback on edge
group size and number through the arc wheel and optional tooltips. The tight
integration of the arc wheel into edge-browsing activities keeps this information
always up to date with regard to the currently selected edge (group), while still
providing an overview of all groups under inspection. Through using multiple
lenses, intra-visualization brushing & linking is supported which only applies to
specific visual items within a view, in this case edges.

4.2 A Visual Analytics Approach
to Classifier Creation

The combination of (semi-)automatic methods, such as from the field of machine
learning, with interactive visualization techniques is one central aspect of visual
analytics. Visual analytics methods can also be used to facilitate the creation of
such automatic methods, e.g., for enhancing text retrieval tasks. This is especially
interesting regarding the application of automated techniques tailored to specific
subtasks which cannot be easily anticipated before they have to be addressed. One
of the problems of employing task-tailored machine learning techniques is that
some of them need extensive parameterization or training in order to be used
effectively. Without any previous knowledge about machine learning, the creation
of high-quality tools is hard or even impossible to achieve for an analyst. Supervised
machine learning techniques have the potential to be used in such task-tailored
tools, since they are normally trained with examples that are manually labeled. For
scenarios described in related work, text labeling effort is often externalized by
assigning the labeling of data to people, who are not interested in the classification
task itself. Typically the training of a machine learning technique’s model is then
performed separately at a later point in time.
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Apart from this aspect, the described approach differs from others that directly
integrate an already available, pre-configured machine learning technique in domain-
tailored systems, because it facilitates the visual interactive creation of a tool
through an analyst, which can afterwards be employed fully automatically as part
of retrieval tasks. A comparison with the search facilities included in the PatViz
front-end illustrates this point. Here, general purpose techniques, such as keyword
search on a document retrieval index, or approaches for image retrieval, and
semantic search created in domain-specific preprocessing steps by specialists, were
employed. These cannot be configured and adjusted by analysts themselves.

The following section presents an approach in which analysts can create and assess
a classifier interactively and visually, for exploiting it afterwards in text retrieval
tasks. In the context of this chapter, classification should not be mistaken for
searching predefined classifications schemes like the IPC, which relates to a search
for patents using classification codes from one of the patent classification systems
(IPC, ECLA, US classification, and Japanese F-Terms classification). Instead,
classification here refers to an automated technique that can be assigned to the
field of machine learning.

4.2.1 Background and Motivation

Many domains and scenarios include the subtask of searching or filtering the data
to be analyzed, especially if textual documents are involved. This is even the case
if tasks are unknown at the beginning of the analysis, or if it starts with relatively
vague objectives. Eventually, a more concrete information need (cf. Manning et al.
[2008]) will manifest itself during exploration in said analysis processes and lead
to these search and filter tasks. As has been discussed before, information need
in the patent domain is often recall-biased (see Section 2.10, meaning that as
many relevant objects as possible should be retrieved, while still maintaining good
precision (see Section 2.5.2). This restriction does not only apply to the patent
domain, but is typical for all scenarios where missing relevant documents during
search is not acceptable.

In common retrieval scenarios, analysts have to translate their information need
into a keyword search query or a combination of filtering constraints. This implies
the ability to derive such explicit queries or constraints either from a set of examples
small enough to be manageable for an analyst — i.e., to read through them — or the
skill to guess useful keywords and metadata restrictions. Generally, the creation of
queries and constraints works well, especially if the analysts are experienced with
respect to selecting keywords relevant to their tasks and domain. However, it can
still be difficult to achieve good coverage of relevant documents if not all important
aspects are considered.
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In situations like that, the interactive creation of binary classifiers can be an
additional, complementary method for improving information retrieval during
analytic tasks. Here, the classifier’s purpose is to separate a corpus into relevant
and non-relevant documents and to improve recall through generalization. To
demonstrate the applicability of the approach, linear support vector machine
(ISVM) classification [Vapnik, 1998] has been applied in text retrieval scenarios
intending its integration with keyword search based methods. This choice was
motivated by the fact that ISVMs have been successfully applied to text classification
tasks [Joachims, 1998, 1999] and they are known to achieve good classification
performance with the vector space model, which is used for the approach. SVMs
can also be used for multi-classification by stacking several of them (see Seifert
and Granitzer [2010]). For their employment as part of retrieval tasks binary
classification into relevant and non-relevant results is sufficient. The prototype
system developed for visual classifier creation has been tested on different document
sets, including a corpus of news groups postings, a set of news articles, and a corpus
compiled from the abstracts of scientific papers. Apart from the latter corpus,
the others are only of subordinate interest in the field of patent analysis. The
choice was mainly based on the possibility to create gold standards needed to
assess analysts’ classification performance during a comparative user evaluation.
As part of a user study, the approach was compared to other interfaces through
which users created classifiers with less interaction and visualization support (see
Section 6.1.4).

Two prerequisites have to be considered, if classification is to be used during
search tasks. On the one hand, the classifier must be adaptable, letting analysts
represent their information need as accurately as possible. Thus, analysts must be
equipped with techniques to perform this adaptation, ideally without the obligation
to become machine learning experts before. Approaches that enable analysts to
build classifiers primarily on the observation level [Endert et al., 2011] meet this
requirement. Another term under which such approaches are summarized is the
black box model [Bertini and Lalanne, 2009]. Since the application presented below
can be seen as an instance of the black box model, one needs views for presenting
text documents on different levels of abstraction, as well as interaction techniques to
let analysts carry out informed labeling. Furthermore, the interaction mechanisms
should help analysts in controlling the creation of classifiers by observing and
judging their quality. On the other hand, analysts must be enabled to assess the
creation of a classifier by observing and judging its quality, e.g, via providing
suitable interaction techniques on these views. This is important for detecting
classification problems, such as overfitting, or too broad generalization, while
adapting the classifier to the analytic task. In order to allow users judge the
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quality, the same views as for labeling plus a preview feature are provided, thereby
facilitating an interactive, visual analytics feedback loop.

Additional requirements have to be met for creating classifiers efficiently. The
task itself requires a labeling effort that can only be justified if an important
information need exists. The employment of classifiers for search should therefore
be an optional step, and the decision to build one has to be made by analysts
themselves. Additionally, the creation of the classifier should be possible in a
efficient manner, or else the problem of creating traditional complex search queries
is just shifted to the other potentially laborious task of labeling examples to train
the classifier with.

Significant speedup in training a classifier can be achieved by exploiting active
learning (AL) approaches (see Section 2.5.3). AL aims at helping users in labeling
those instances that provide the highest impact on improving the classifier’s
performance during the next training iteration. Often, the instances that are
classified as most uncertain, i.e., those closest to the classifier’s decision border in
high-dimensional space, are chosen for this purpose. While normally AL provides
users directly with these most uncertain instances, the method proposed here
loosens this restriction and gives analysts the freedom to choose from a visually
presented set of uncertain instances. This transfers the labeling initiative to the
analyst, while still giving hints on selecting good labeling candidates. In order to
support this selection, analysts are provided with feedback on the informativeness of
their current labeling choice. Apart from picking the most informative documents,
analysts can select multiple instances for labeling at once.

An integration of binary classifiers with key term search can be exploited in two
ways. First, the key term query can be used to bootstrap an initial classifier in order
to relieve analysts of the burden to build it from scratch. Second, the built classifier
can be applied in conjunction with classic search and filter methods analysts have
a considerable expertise in.

The approach presented here is meant as a visual analytics technique that can
be employed as part of larger visual text analysis tasks, but also for creating
dedicated classifiers that can be exploited in batch mode processing of text document
collections. It is scalable with respect to the size of the document collection.
Additionally, a mechanism for capturing provenance information of a classifier’s
evolution is available. This information is made available in the form of the
interactive history graph enabling users to start over at any intermediate state
of the classifier in case subsequent labeling actions lead to unsatisfactory results.
The same mechanism can be used to visually inspect, understand, and retrain
built classifiers at a later point in time if the need arises, e.g., when dealing with
dynamic data sources (see Section 5.1.1 for details on scalability).
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Figure 4.8 — 50 positive and 50 negative results of an user-formulates initial

query are used to bootstrap an initial classifier. Afterwards the users train the
classifier interactively through iterative labeling and training rounds.

4.2.2 A Prototype for Visual Classifier Training

Figure 4.8 provides a schematic overview of the system for individual text classifier
creation. After an analyst provides an initial keyword query, the search is executed
and the top 50 relevant documents are extracted using a ranked retrieval mechanism.
In addition, 50 random, non-relevant documents are selected from the corpus as well,
in order to have a set of positive and negative examples for bootstrapping the initial
classifier. Once the classifier is created, its current state is visualized in a multiple
coordinated view environment for inspection by the analyst. Various perspectives
and interaction methods support analysts in identifying and selecting promising
labeling candidates for adapting and refining the classifier during subsequent
training iterations.

For the prototype implementation the Apache Lucene' framework was used again as
text search engine for the initial bootstrapping step and as the base text document
repository. The LibLinear? library [Fan et al., 2008], providing a very efficient
linear support vector machine implementation for large data vectors, such as given
for text representations with ‘bag of word” models (see Section 2.5.2), has been
employed for the classification tasks.

! http://lucene.apache.org/
2 http://www.csie.ntu.edu.tw/~cjlin/liblinear/
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coordinated views for inspecting a classifiers state.

Classification View

Figure 4.9 shows the views available for classifier training and refinement. The cen-
tral idea behind the classification view (4.9) is to approximate the SVM classifier’s
current state in high-dimensional space as good as possible with a 2-dimensional
analogy. As described in Section 2.5.3, an ISVM tries to find a hyperplane dissecting
high-dimensional space in such a way that all training examples are separated
according to their class membership, and that the margin between the documents
closest to this decision border is maximized.

Accordingly, the classification view has been designed as a scatter plot to depict
the two classes as two regions. The left region, shown with a light-red background,
contains all non-relevant documents while the right, light-blue region holds the
relevant documents. The white space between both areas represents the decision
border or hyperplane of the ISVM. The documents are depicted as dots, which are
either classified as relevant or non-relevant symbolized through their placement in
one of the depicted colored regions. Training data, i.e., documents that have been
labeled as relevant or non-relevant, either by the analyst or through bootstrapping,
in previous steps, are shown in purple (see Figure 4.9, in the upper middle),
whereas the gray dots are classified according to the classifier’s state. The layout
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of the dots in x-direction is solely based on their distance from the hyperplane
in high-dimensional space, thereby representing the confidence or uncertainty of
classification, showing the uncertain ones close to the decision border and the more
confidently classified ones farther away. The distribution on the scatter plot’s y-axis
reflects inter-document similarity.

As mentioned above, especially those document close to the hyperplane are of
interest to the analyst since they provide the potentially biggest impact during
subsequent training steps. Accordingly, the set of the 100 documents U closest
to the decision border are projected in y-direction according to their vectors’
first principle component. This results in a good spatial distribution and reduces
overdraw for these important documents, with the goal to make it easier for analysts
inspect them. All other documents d; are positioned in y-direction according to
the ten documents closest to them Ujg;y in set U. Similarity of the documents,
or their vector representation respectively, is thereby computed using the cosine
distance cos. Their exact placement on the y-axis y(d;) is computed using the
following weighted sum:

Z cos(d;, d) - y(d)

dEUlO(i)

> cos(d;,d)

deUlO(i)

y(d;) =

Apart from helping analysts in concentrating on the uncertain documents near the
hyperplane this approach also reduces the costs for computing the first principal
component significantly and thus speeds up the creation of the view after a training
step.

The classification view can be zoomed and panned to the the analyst’s region of
interest for closer inspection. Hovering document dots with the mouse or selecting
them by clicking results in highlighting them in all other views. Additionally,
selections can be made through rectangular brushing interaction or by using the
term lens as described below.

The term lens visible in Figure 4.10 can be activated by pressing the ‘shift’ key,
and its size is adjustable through using the mouse wheel. If activated, the term
lens shows at most the top ten terms shared by the documents covered by the lens,
mapping a term’s document frequency to font size, and annotates them with the
explicit frequency information. Additionally, the document frequency affects the
ordering of terms from high frequency shown at the top to lower frequency shown
at the lower part of the lens. The idea is completely analogous to the term cloud
employed in PatViz, although it is used as part of a focus+context technique in
this case and not in a separate view as in PatViz. The term lens facilitates quick
browsing of the regions of interest, e.g. along the hyperplane, offering a coarse
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Figure 4.10 — The term lens applied to the classification view and the region
near the hyperplane. The 10 most frequent terms are depicted around the lens
(according to document frequency).

form of gist for the inspected documents to the analyst. By clicking during the
usage of the lens, all covered documents are selected accordingly.

Detail View

The detail view depicts the textual contents of a document, if it is hovered or
selected in one of the other views. This is of high importance since informed labeling
decisions can often only be made if the unabridged contents can be accessed or at
least scanned quickly. If multiple documents are selected, their titles are shown
as a list of interactive links, facilitating detailed content inspection by clicking
them.

Term Chart

Since documents are modeled as weighted term vectors on which the classification
mechanism is also based, the term chart provides the user with direct information
about the terms’ importance with respect to the classification model. An ISVM’s
normal vector (see Section 2.5.3) representing the current hyperplane is a good
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Figure 4.11 — The term chart depicting the changes in weight during the last
clagsifier training in the first row, most positively weighted terms in the second
row and the model’s ten most negatively weighted terms in the third row

indicator for providing analysts with additional insight on the model’s state and
state changes. Accordingly, the top row of bar charts shows the ten terms with the
highest changes compared to the classification model of the previous iteration. The
middle row displays the ten terms that have the highest positive weights in the
current model, and the bottom row shows the ten terms with the highest negative
weights in the current model. This view gives analysts an idea of what the training
algorithm has learned from the training data so far in summarized form. Each
of the bars can be hovered by the mouse resulting in highlighting the documents
containing the respective term in the other views. Selection works correspondingly
by clicking a bar.

Cluster View

The cluster view (Figure 4.12) shows the 100 most uncertain documents (U)
clustered solely by their similarity. In contrast to the classification view, this view
does not take into account the hyperplane; it ignores classification uncertainty and
uses both dimensions to depict document similarity. The clustering is computed
using the bisecting k-means algorithm and accomplishes the subsequent projection
into two-dimensional space using the LSP algorithm [Paulovich et al., 2008]. The
respective implementations of the Projection Explorer (PEx) project [Paulovich
et al., 2007] were used to realize this. Different class membership of documents is
indicated by the corresponding colors. The basic idea of this view is to guide the
user’s attention to potential candidates for labeling actions but not the clustering
aspect per se. This view is supposed to show how very similarly documents are
classified by the current model. An interesting observation in this view that would
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Figure 4.12 — The top 100 most uncertainly classified documents clustered
according to document similarity. Documents placed close to each other having
different class membership are potential labeling candidates. In the shown exam-
ple, documents talking about text visualization should be separated from others.
Two, according to the clustering, similar documents showing heterogeneous class
membership have been selected. From the documents’ titles it already becomes
apparent that both documents are related to text visualization. As a consequence
the incorrectly classified document can be annotated with the correct label.
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Figure 4.13 — Overview on previous labeling actions (separated into non-relevant
an relevant labels), including those from the bootstrapping steps.

deserve closer scrutiny, are, for example, heterogeneously classified clusters of
documents. Such heterogeneously classified clusters identify suitable regions for
detailed inspection since the chance that some of them are classified incorrectly is
high. The term lens is also available in this view and works in the same way as in
the classification view.

Training Data View

The training data view as can be seen in Figure 4.13 contains four different lists
of the documents that have been assigned a label so far — either through the
bootstrapping step or during iterative classifier training. The latter are accessible
via the tabs ‘relevant’ and ‘non-relevant’, while the tabs ‘relevant lucene’ and
‘non-relevant lucene’ contain the documents added to the training set due to the
bootstrapping. The documents in the lists can be highlighted in the views by
clicking on them. This view is especially useful for inspecting the bootstrapping
results, if an analyst suspects that the initial query definition might not have been
precise enough.
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Figure 4.14 — The labeling panel showing the impact of currently labeled
documents on a subsequent training step as well as the buttons for labeling actions
and the removal of set labels.

Labeling Panel

Selected documents can be marked as relevant or non-relevant according to the
current classification task by using the labeling panel shown in Figure 4.14. The
panel offers two buttons for both labeling actions. In addition, labeling made during
the current iteration can be revoked using the ‘Remove Labels’ button. The ‘Train
Classifier with current Labels’ button triggers the training of a new SVM model
considering all applied labeling actions. It can be useful to label wrongly classified
documents on both sides, as well as confirming correct classification of yet unlabeled
documents. Several selected documents can be labeled at once as well. As a direct
result of any labeling action the changes according to document classification are
shown as a preview in the classification view, without yet persisting the training
step. The bar shown above the buttons of the labeling panel displays the impact
of the currently labeled documents during the next training iteration. The shown
impact is computed using a heuristic which takes into account that the reduction
of the margin size of the new SVM model compared to the old model based on the
fact that the margin of the classification model can be maximally reduced to half
of its previous size by selecting one example during each iteration.

Labeling actions can be applied on selected documents. In the classification view
and the cluster view, newly labeled documents are shown with triangle shapes,
while other documents that would be affected in a subsequent training step are
colored according to their anticipated change in class. Figure 4.15 depicts such
a situation. Blue triangle-shaped glyphs, with one vertex pointing upwards, are
labeled as being relevant. Red triangles pointing downwards represent documents
labeled as non-relevant. The classification view additionally provides an automatic
preview of the changes that apply regarding the current labeling situation. Red
dots depict documents that will change their class to non-relevant, while blue ones
will change to the relevant class respectively. The adaptation of the classifier by
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Figure 4.15 — The document represented by the blue triangle was labeled as
being relevant resulting in the document represented by the blue dot being classified
as relevant as well. A red triangle represents a document that has been labeled as
being non-relevant.

training the model with the currently labeled documents introduces a new iteration
and updates all views according to the new model’s properties. The described
‘preview’ mechanism is realized by computing the new classifier model through
carrying out a training step each time a labeling action takes place. However, the
effects of the new classifier are shown in the current visualization and they are not
persisted until a user explicitly requests training. Afterwards the new situation is
shown with an updated visual layout.

Classifier History

A classifier’s history is captured by preserving its state for each training iteration.
This means that all intermediate states of a classifier are accessible at any point
of the classifier creation process. In those cases where users are not satisfied
with the results of a training step, e.g., because for some reason many obviously
irrelevant documents are classified as relevant, it is possible to go back and reload
a previous version of the classifier to start over with other labeling actions. The
states of the classifier under development are depicted as a tree table as shown
in Figure 4.16, whereby each iteration is assigned a unique ascending number to
make the classifier’s evolution traceable. Analysts can also provide their own labels
for identifying classifier states more easily at a later point in time. Furthermore,
the number of positive and negative labels provided during a training iteration, as
well as the number of positive and negative classified documents, are shown for
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Figure 4.16 — The history of classifier creation during several training rounds.
Here, arbitrary models can be loaded to start over with training iterations from a
previous model.

each saved model. These numbers provide a coarse overview of the changes applied
during one iteration and are intended to help analysts to judge the impact of the
corresponding iteration. If users decide to go back to a previous classifier state and
restart training from this iteration, a new branch is introduced to document this
step. The mechanism represented by this view guarantees that no trained classifier
model is lost.

4.2.3 Feedback Loops and Workflows
for Classifier Training

Again a variety of different feedback loops are facilitated during user-steered
classifier creation. The main analytic feedback loop is shown in 4.17. As with the
interaction method presented in the first section of this chapter, visual classifier
building is intended as an instrument that can be applied in addition to other
search /retrieval tasks and not necessarily as a standalone method. If this is the
case, it can be seen as a visual analytics method integrated into some larger visual
analytics system.

Apart from the main feedback loop, a variety of smaller feedback loops are available
through the orchestration and coordination of available views. While the system
does not enforce a specific working strategy, a variety of promising approaches and
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Figure 4.17 — An abstract overview of the classifier creation process.
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usage patterns exist that exploit these micro-feedback loops. Some of them were
intentionally integrated while others could be derived from the behavior of test
subjects observed during the user study as well as from the comments received from
the questionnaires and the discussion with participants (see Section 6.1.5).

The multiple coordinated views provide users with different perspectives on the
state of the classifier. The most commonly used strategy during the evaluation is,
as was expected, the selection or highlighting of documents in the classification
view as well as from the cluster view and their subsequent inspection in the
detail view. Especially the automatic preview in the classification view turned
out to drive iterative refinements within one labeling session. As described above,
labeling one or several documents, makes others change their class membership,
as can be seen from the preview. Accordingly, users tend to check especially the
documents with anticipated changes in class and immediately corrected unintended
side effects of previous labeling actions, which led to high-quality labeling actions
with considerable impact during follow-up classifier training.

The cluster view is typically employed as a secondary means for inspecting hetero-
geneously classified regions, as intended, and usually after exploring and labeling in
the classification view. The term lens is used in the classification view as well as in
the cluster view, and selections were made based on the displayed term frequency
information. However, users refrain from labeling these selections as a whole; rather,
they inspected the list of titles in the detail views and the document’s content
respectively before labeling.

The term chart facilitates explicit crosschecking and is typically applied in advanced
stages of classifier training. Especially terms exhibiting an increase in importance
according to the last training round and those shown as being generally important
for the model are hovered to inspect the distribution of documents containing these
terms in the classification view.

The approach also provides undo functionality on different levels of abstraction.
Local undo operations within one iterative step are available through the remove la-
bels functionality provided with the labeling panel. A global undo/redo mechanism
is provided with the classifier history.

As mentioned before, active learning methods for labeling tasks actively request
labels from annotators by employing a selection strategy for the instance to be
labeled that promises the biggest chance for maximal training progress during
subsequent training steps. As a consequence, fewer instances have to be annotated
and classifier creation can be accomplished much more quickly. The most tentatively
classified documents are good selection candidates as part of training an ISVM.

For the described approach, one goal was to transfer more labeling control to the
analyst while still providing clues which labeling operations are likely to have high
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impact. Three methods for speeding up user-steered classifier building, which
could be seen as inspired by active learning, were integrated to support analysts
with feedback on good labeling choices. As explained above for the classifier
view, uncertainty directly relates to distance from the decision border. The closer
instances selected for labeling are to this border, the larger the expected value for
the next training iteration. The first and most important measure is therefore the
representation of the decision border in the classification view offering a prominent
clue where to label documents. The classification view’s layout acknowledges the
diversity of the documents closest to the decision boundary in order to support
analysts in exploring labeling candidates in its vicinity. As a second measure,
the cluster view only depicts the 100 most uncertain documents. This ensures
that any labeling action in this view has considerable impact on the classifier’s
evolution during the next training step. The third measure informs analysts
about the potential training progress of their labeling actions by providing a bar
displayed above the labeling panel that shows expected impact. The labeling
impact is computed from the reduction of the margin size of the new SVM model as
compared to the old model, which is likely to decrease during the training process.
As a result analysts also get an idea when to stop training.

4.3 Integration

Both presented approaches are intended to be integrated into larger systems that
might facilitate visual analytics approaches themselves. However, a variety of
constraints must be considered to achieve this. Figure 4.18 depicts both analytic
processes in context of their integration into the PatViz process. In order to make
additional visual analytics approaches available within a parent system, the parent
system itself must offer a set of well defined interfaces. As with EdgeAnalyzer, one
or several views in the system become the data source of the add-on technique,
and accordingly have to provide interfaces for the data they depict, for geometrical
information, and for their alignment. Integrating techniques for classifier creation
might be easier with respect to the visual front-end. Here the difficulties arise from
providing scalable back-end services where trained classifiers can be stored to be
(re)used during subsequent analyses.

Theoretically, it would be possible to realize these integrations as plug-ins that
can be dynamically added. To take effect on a broader scale, however, it would
be necessary that current visualization toolkits are developed into visual analytics
toolkits with well-defined interfaces. These interfaces not only comprise those
for bi-directional data exchange, but also mechanisms for provenance recording,
generalization modularization of automatic methods, and interfaces for scalable
back-end integration. Considering the large number of different application areas
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Figure 4.18 — Integration of the classifier creation process and the edge ex-
ploration process as realized with EdgeAnalyzer into the overall patent analysis
process.
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and their very specific requirements in terms of data characteristics and data size
to be analyzed, e.g., streamed data from social networks or simulations as opposed
to large, less rapidly changing data sources, it is very difficult to find a general
scheme for such a holistic integration approach. On the level of subtasks, as with
the methods presented in this chapter, it might be feasible.

The possibility to integrate solutions addressing subtasks into other visual analytics
systems makes them scalable from the analysis perspective. Besides the mentioned
issue many other scalability aspects play an important role in visual analytics and
are discussed with details of the presented approaches’ scalability characteristics in
the next chapter.



CHAPTER

Scalability, Provenance
and Reporting

Scalability was identified by Thomas and Cook [2005] as a major challenge for
developing visual analytics approaches. They identify the following scalability
aspects to be addressed: information scalability, visual scalability, display scalability,
human scalability, software scalability, as well as security, privacy and globally
distributed analysis tasks. According to Thomas and Cook, information scalability
relates to extracting relevant information from large data sources and presenting it
in an audience-tailored manner. Representations and interactions spanning various
scales of information are subsumed under this category as well. Visual scalability
refers to the depiction of large amounts of information through visualization, while
display scalability requires accounting for different display sizes and qualities, e.g.,
from mobile devices and desktop computers up to to large display walls. In order to
achieve human scalability, visual analytics systems have to account for collaborative
approaches. Software scalability relates to integrating aspects of automated data
analysis and interactive visualization to support scenarios that are difficult or
impossible to support without this integration. Many visual approaches have to
deal with some, if not all of the listed scalability issues.

Different schemes have been proposed to characterize visual analytics challenges
that are related to scalability, which offer different perspectives on the problem
area. Characteristics such as problem size, visualization richness, interaction pace,
level of computational analysis, and comprehensiveness can also be employed to
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look critically at visual analytics solutions.! Those will be referred to as well during
the following sections, since these characteristics are interesting in the context of
patent analysis, too. During the development of the field in recent years, additional
challenges and fields of application have been identified [Thomas and Kielman,
2009; Wong et al., 2012].

The approaches presented in this thesis were developed with the aim to explicitly
address certain scalability aspects and related challenges that play an important role
in the patent domain, as well as for document retrieval in general. The addressed
scalability considerations roughly follow the categorization of Thomas and Cook
[2005], but are adapted to the properties of document retrieval and analysis. In
addition to general scalability considerations, ideas for deriving analytic provenance,
history recording of analytic processes, and collaboration aspects are presented in
the following. Some of the design facets described in the subsequent section have
already been realized in the prototypes presented in Chapters 3 and 4. However,
some ideas are introduced as prototypes indicating promising solutions, but have
not yet been developed in depth.

This chapter is partly based on the following publications:

S. Koch, H. Bosch, M. Giereth, and T. Ertl. Iterative Integration of Visual
Insights during Patent Search and Analysis. In IEEE Symposium on Visual
Analytics Science and Technology (VAST 2009), pages 203-210, 2009

S. Koch, H. Bosch, M. Giereth, and T. Ertl. Iterative Integration of Visual
Insights during Scalable Patent Search and Analysis. IEEE Transactions on
Visualization and Computer Graphics, 17(5):557-569, 2011

A. Panagiotidis, H. Bosch, S. Koch, and T. Ertl. EdgeAnalyzer: Exploratory
Analysis through Advanced Edge Interaction. In Hawaii International Confer-
ence on System Sciences (HICSS 2011), pages 1-10, 2011

H. Bosch, D. Thom, M. Worner, S. Koch, E. Piittmann, D. Jackle, and T. Ertl.
ScatterBlogs: Geo-spatial document analysis. In IEEE Conference on Visual
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5.1 Scalability Aspects
of Patent Literature Analysis

As emphasized in Chapter 3, searching and analyzing patents are complex problems,
while at the same time the risk of missing an important document is high and can
have severe economic consequences. In this regard, information scalability, and
specifically extraction of relevant documents is of particular importance. Therefore,
all approaches presented in this thesis aim at improving retrieval scenarios, with
respect to completeness, speed, and analytic coherence, meaning that whole analytic
cycles and feedback loops are integrated seamlessly and can be carried out in an
interactive visual manner. In relation to problem size, the amount of data that has
to be considered during patent analysis can be seen as being large: databases of
the EPO, for example, contain more than 70 million patent documents®. However,
taking into account a specific information need and the number of patent documents
a professional has to deal with during a corresponding analysis, typically not more
than a few thousand documents have to be handled after an initial search. These
are further drilled down to a set that can finally be analyzed in detail, i.e. read.
It requires experience and iterative approaches to retrieve a manageable number
of documents to be analyzed further in subsequent steps. Therefore, automatic
methods in the form of retrieval systems are needed. Besides Boolean retrieval,
which is still the most commonly used retrieval method in patent search, other
retrieval back-ends can be employed (see Chapter 3). Clearly, data scalability and
task scalability are significant issues in patent literature analysis.

In order to support analysts with a coherent interface, all of the search back-ends
are — again using Boolean combination — made accessible through a coherent visual
interface in order to account for visual scalability. EdgeAnalyzer was developed
to address the same problem on a much smaller scale and within a specific type
of visualization. However, it also facilitates Boolean combination of findings
and advanced filtering methods. The approach which allows analysts to create

2 nttp://www.epo.org/searching/free/espacenet.html
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task-tailored classifiers deviates from the retrieval back-ends of PatViz. Here,
the users can determine the goals of an automatic technique according to their
requirements. Since it can be integrated into Boolean retrieval approaches as well,
it can be an interesting choice for cases where keyword search, for instance, does
not suffice.

In the following subsections scalability aspects of the three presented approaches
are discussed. Each of the sections focuses on one scalability issue and how it is
addressed respectively.

5.1.1 Software and Data Scalability

A key concept of the PatExpert system is its distributed architecture with several
data sources, search engines and services. The two central components in this
architecture are the broker (Figure 3.6) for integrating different search engines
as well as their data sources, and the PatViz front-end steering the search and
analysis process. With the method for interactive visual classifier building, an
approach has been developed that makes the analysts not only users of retrieval
systems which rely on preprocessed documents but creators of new automatic
methods. Its integration into larger retrieval systems has not been accomplished
so far, but it is designed in way that accounts for this option. EdgeAnalyzer has
been created to be extensible, and with future employment in a large variety of
line-based visualizations in mind.

PatViz

The PatViz front-end is part of a larger approach developed in the PatExpert
project and represents one module in a distributed system facilitating a number
of services. Two principal types of communication interfaces connect PatViz
to PatExpert’s back-end system: a search request interface and the document
request interface (see Figure 3.6). The difference between both request types
can be described as follows: search requests define a constraint without available
knowledge about concrete documents, thereby formalizing the users’ information
needs, while document requests are used to retrieve the (meta)data associated with
given patent numbers. As a response to the search request interface only a list of
patent document IDs are returned to the visualization front-end and according to
the data needed for visualizing patent aspects, additional information is requested
through the document request interface. This means, for example, that the search
engine for metadata does not need to cope with the textual content of the patent
document, and the semantic search engine can ignore the bibliographic data.



5.1 e Scalability Aspects of Patent Literature Analysis 115

As a benefit, the lean data-exchange mechanism makes the system applicable to
other domains requiring iterative analysis of unstructured data (other document
types, images, etc.) and related metadata. For the visual components, however,
further mechanisms have to be planned for to make the system adaptable (see
Section 5.1.2 below).

The described design decision has not only been made to achieve a greater separation
of concerns, but also to reduce the initial data transfer, since it is not known which
data associated with a document is needed by the visualization module later on.
Through this simplification, the network load is reduced and the latencies of request
response cycles of both request types are low. In addition to that, combined queries
can be distributed to the corresponding different search back-ends and run in
parallel. Depending on the query structure, the system throughput can even be
increased by letting the query broker send back partial results of those query parts
that are connected disjunctively. A system can be created that does not have
single points of failure, by making the back-end services (including the broker)
redundantly available. Even parallel execution of subqueries would theoretically be
possible, but neither feature has yet been implemented in the prototype system.
Furthermore, the described architecture provides a large degree of freedom with
respect to the system’s extensibility. This applies to additional back-end services,
e.g., new query facilities or analysis services and also to new visual methods that
can be incorporated into the front-end as described in Section 5.1.2.

All back-end components are connected via XML?-based Web Services to allow their
easy integration into a common web infrastructure. Within these components, the
broker service takes a key role. If a query will be executed, an XML representation of
the query is generated to be encapsulated in a Web Service request. As sketched in
Figure 3.6, the broker is responsible for interpreting this XML request, decomposing
it into the different subqueries, querying each search service, merging the results,
eliminating duplicate results, and delivering them back to the visualization module.
In addition to the Boolean requests mentioned earlier, the broker is also capable
of handling fuzzy queries and has mechanisms to incorporate user feedback for
adjusting the score of result set entries. For more details on the query broker
service see the description by Codina et al. [2008].

The visualization component PatViz is modularized into different parts which can
be mapped to the different stages of the visual analytics cycle in the patent analysis
process. Search/query stage, results set analysis stage, and detail examination
stage provide different visualizations to give users the opportunity to take different
perspectives on the problem space within the corresponding stage. All views define
interfaces that allow for their interoperability with each other and, at a coarser

3 http://www.w3.org/XML/
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level, with the specific requirements of the back-end. The interfaces needed for the
visual components will be discussed in the following paragraphs.

The visualizations that are available for analysis have been designed in a flexible
way, because a bar chart, for example, can be used to display any kind of object as
long as there is some nominal and some scalar data available that can be related to
each other in a meaningful way. Each view in PatViz therefore provides capability
information with respect to the type of data it can display. On the one hand, this
allows for dynamic checks on the suitability of data routed to the view, given that
the data is self-descriptive enough. On the other hand, extensibility with views for
other scenarios taking the same type of data is guaranteed.

In PatViz this is solved by using an additional object-oriented model of the data
available for visualization tasks in the front-end. Unfortunately, knowledge of the
model is not enough to create abstractions for user-steered interactive selections in
order to provide advanced brushing & linking mechanisms, because the semantics
for the selection is not taken into account. Highlighting data in other views can be
accomplished by considering only primary domain objects or their ID respectively,
as it is done for search responses. Well-defined selection semantics are necessary
for the creation of complex insights and for reusing them in subsequent analytic
iterations though (see Section 3.3). The views for result set and detail analysis
are easily exchangeable, as long as they can provide information about what kind
of data they are capable of displaying, which kind of data they are displaying as
concrete instances, and how the selection semantics are defined on them. Defining
specific semantics is often difficult, because, depending on the selection operations
available within a view, ambiguous interpretations of the constraint that should
be applied are almost unavoidable. Visualization components must therefore
implement three interfaces, including a capability interface, an interface that makes
the displayed data accessible, and an interface that provides information on what
kind of semantics is associated with selection gestures. To realize them, an object-
oriented data model (see Aligned Data in Figure 2.3) is employed within the client
and fagades [Gamma et al., 1995] are provided for the single views to allow them
to access the data in the way they need: in a set or table-oriented manner, for
instance. With the object-oriented domain model and the visual components
knowing which kind of data they need, lazy loading of model data can be achieved.
A minimal object model solely consists of a set of primary object IDs. Because
views know what data they are meant to display, activation of such a view can
trigger the loading or computation of the corresponding additional data. Even more
fine-grained loading strategies are possible, e.g., when zooming into the details of a
view; although this carries the risk of unresponsiveness to user interactions, since
possible latencies emerging from the back-ends web infrastructure are difficult to
control. In some cases, such as loading of patent texts or images into separate
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views as a response to user interaction, this disadvantage is acceptable. The palette
of available visual analysis views can be adapted according to the size of the patent
set under analysis, since the requirements regarding the amount of data needed
for each view is known before. At least a user commitment can be requested
before perspectives are activated which would have negative effects on the client’s
performance.

The visual perspectives used for query creation do not only need to fulfill the
contract to the described internal interfaces, but must also obey external restrictions,
which are dictated by the expressiveness of the available back-end search facilities.
Extensibility of the query views requires an additional mechanism, which allows for
the integration of further visual search perspectives. In PatViz this is technically
realized through a hierarchical parser/generator module as depicted in Figure 3.7.
The module is capable of parsing/accepting the textual as well as the visual
representation of the combined query language. If expressions or visual constructs
of a specific sublanguage are encountered, they are forwarded to the corresponding
subparser. Both representations are updated automatically, if the changes applied
by a user to one of them are syntactically correct, which is not guaranteed in
the case of modifying the textual query. Due to the hierarchical parser/generator
concept, the query system can also be adapted to other domains or extended by
additional search facilities by adding new subparsers that can be created semi-
automatically. Such an approach is very helpful for the automatic generation of the
textual part of the query. However, the visual representation and the representation
that is sent to the broker and finally to the corresponding search engine, still have
to be developed manually. The development of solutions which also facilitate the
creation of interactive visual metaphors using a descriptive formalism have not been
fully developed in PatViz yet. First tests for Semantic Web data with techniques
borrowed from the Fresnel display vocabulary? indicate that this is possible.

User-steered Classifier Creation

With the approach for classifier creation (see Section 4.2), which has not yet been
integrated into larger systems, possibilities have to be provided for employing it in
distributed retrieval environments. The classifier training and its application are
both scalable enough to run on a normal desktop client machine, but its integration
would break with some of the the design decisions mentioned above. A solution
running on the server could be created straightforwardly, since the approach for
classifier training is designed in a scalable way, using a Lucene repository as its
back-end, which is also employed for storing and searching patent documents in the
PatViz back-end. However, this would require that analysts connect directly to the

4 http://www.w3.org/2005/04/fresnel-info/
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server in order to build or update classifiers. In case a setup is desired that permits
only certain specialists to build classifiers, this might be a viable solution.

If a broader group of analysts should be enabled to create classifiers, it must be
available as a client-solution and would require that a document repository holding
the documents to build the classifier is available on client machines. Since the first
step in of the presented approach for classifier building is bootstrapping, the set of
relevant documents decrease greatly in comparison with the whole document set.
It would therefore be possible to transfer a collection of vectorized documents to
a client system, if the connection to the document server(s) allows it. Since non-
relevant documents are important classifier training as well, sampling strategies
could be used to retrieve those documents, in order to transfer a big enough,
representative number of documents. A subset of a document corpus is sufficient
for classifier training with visualization-centric methods. If necessary, the sampling
step could be repeated for each training iteration. An alternative strategy for
handling large training sets is to restrict the classifier view to a subset of the
whole corpus by displaying only the most uncertain documents (e.g. 5,000 of them)
together with the training documents, and to hide all other documents.

Created classifiers must then be transfered back to the server-side retrieval facility,
where they are available for subsequent use and can potentially be shared and
used by other analysts too. Since the classifier itself is solely defined through the
hyperplane, the model that has to be transfered is relatively small and no scalability
issues arise from this step.

All client-side solutions entail the benefit of moving computational effort for classifier
training and the creation of the visual perspectives from servers to client-machines.
For distributed setups, however, enabling analysts to create their own tools for
document retrieval clearly requires a tighter integration of services and necessarily
increases the amount of data to be transferred. Fortunately, the active learning
principle or the proposed adaptation for user-steered classifier building diminishes
this effect greatly, since it is specifically designed to train classifiers more quickly,
and reduces the number of documents an analyst has to label. If a good set of
examples can be determined, e.g. through sampling, the number of documents to
be transfered is reduced accordingly.

Also hybrid solutions are conceivable but depend on the size of document repositories
and data characteristics. Users who are interested in building their own classifiers
could be provided with a mechanism for bulk download of the document repository,
and transfer back only created classifiers. Such a solution would be feasible only for
medium-sized repositories fitting in client machine’s storage, and holding documents
that do not change dynamically over time, since the latter might require adaptation
of classifiers and consequently frequent updates of the repository.
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Classification training as well as applying the classifier to large document sets is
also scalable through the use of linear support vector machines (1SVMs). The
proposed solution is based on the LibLinear [Fan et al., 2008] library, which is
suitable for solving ISVMs for high-dimensional data vectors and large training sets
very fast. Hence, it is perfect for dealing with text documents that are represented
as large vectors in a so-called ‘bag-of-words’ model. The integration of Lucene and
LibLinear ensures high scalability of the presented approach with respect to corpus
size. Well-built classifiers also adhere to the 'create once, apply often’-idea and can
be reused. Classification also has to take into account highly skewed classes. If, for
example, the number of ‘relevant’ documents in a large corpus is very low compared
to the number of ‘non-relevant’ documents, even active learning strategies might
take a long time to converge and are not guaranteed to succeed. Furthermore,
sampling strategies are likely to miss relevant documents. With the bootstrapping
approach these problems are addressed, since good keyword queries guarantee the
inclusion of relevant documents in the training sample.

EdgeAnalyzer

The EdgeAnalyzer approach can be employed within any edge or link-based views
different from the patent co-classification scenario. It is scalable in this regard from
a software engineering perspective. However, it relies on the interfaces for geometric
edge properties/intersection tests and access to edge metadata if corresponding
grouping mechanisms are to be used (see 4.3). It has been specifically designed
to work on large numbers of edges of densely connected graphs. Furthermore,
it can be easily extended with respect to employed grouping and visualization
mechanisms, since the respective interfaces are provided. However, implementors of
these interfaces have to acknowledge the the amount of edges to be inspected within
the intended tasks and take care to provide grouping and visualization methods
that are fast enough from a computational perspective. Otherwise, fluid interaction
is not possible and will restrain analysts’ explorative tasks. Figure 4.7 shows its
application within a multiple coordinated view demonstrating this flexibility.

Regarding the abovementioned alternative characterization of visual analytics prob-
lems and approaches, problem size and comprehensiveness are most closely related
to the scalability issue described above. The problems tackled with the approaches
described in this thesis can be categorized as medium to large sized (hundreds
to tens of thousands ‘data objects’ must be processed), from a visualization and
data perspective. If the overall size of available information in patent repositories
is considered, the high-dimensionality and diversity of the data, as well as the
complexity of the documents that have to be interpreted by human specialists, the
problem size could also be described as huge. With respect to comprehensiveness, in
particular the EdgeAnalyzer technique and the method for classifier building can be
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Figure 5.1 — For each query iteration a new tab is generated depicting the state
of the corresponding query and result set views.

considered as being flexible. While the overall approach of PatViz is restricted to a
specific domain, some of its components, e.g., the selection management technique,
have successfully been exploited in the context of other developments, too.

5.1.2 Visual and Interaction Scalability

The efficient usage of available display space is an important aspect of visual
scalability, which can be improved through different visualization approaches and
interaction methods. As many other techniques, the approaches presented here
address this aspect on a per-view level by providing common interaction techniques,
such as zooming, panning, and scrolling for most of the single views available in
the user interface. Visual aggregation and abstraction of patent information, are
uses as well for increasing scalability. This section highlights the measures taken
to improve usage of display space for the multiple coordinated view approaches in
PatViz, user-steered classifier creation interface, and the impact of EdgeAnalyzer
on scalability.

PatViz

PatViz provides different tabs to hold the multiple coordinated views for each
iteration of the analytic cycle, namely the query view, result views, and detail
views. On (re)submission of a modified query, a new tab containing the set of
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views and a copy of the submitted query is generated (cf. Figure 5.1). Former
analytic results remain available and can be accessed at a later point in time. All
views can be detached from the main PatViz window to allow for the concurrent
use of different views that do not reside in the same tab, This is also beneficial
if several monitors are available, helping to avoid situations where views occupy
different displays at the same time with distracting monitor frames in between.
Because drag gestures are used either for moving insights from one view to another
or for highlighting a selection, overlapping windows pose a problem. While most
windowing systems provide techniques to perform dragging between overlapping
windows, visual inspection of all views used at the same time is particularly
beneficial for complex analytic tasks, as long as enough display space is available.
However, good alignment of a variety of perspectives within a multiple coordinated
views environment, in order to prevent occlusion, is not easy to achieve. Especially
if the view’s constraints, such as minimum perceivable size and aspect ratio, are
taken into account. PatViz’s solution is quite simple but works well for arranging
multiple views in a delimited rectangular area, i.e., a tab. It applies an ordered®
and squarified treemap layout [Kandogan and Shneiderman, 1996; Shneiderman
and Wattenberg, 2001; Bruls et al., 2000] to place the views within one tab. The
hierarchy for creating the treemap is shallow and simple; it just consists of the
tabbed parent window and just one child level, containing all currently activated
views. Users have two options for ordering the views: either in sequence of their
activation or in the same order as the corresponding buttons in the tool bar. The
idea behind this kind of placement is to help users to keep their mental maps,
thereby allowing them to track the available views more easily if new ones are
added or old ones removed. Furthermore, the squarification of the views is an
approximation of a good aspect ratio for most visualizations, and users can still use
interactive zooming and panning to adjust them to their needs. One other option
tested was to change the views’ orientation automatically, reducing structural zoom,
and even recomputing the layout of view content wherever possible. However, it
quickly became obvious that such a massive change in multiple views created too
much confusion for the users.

User-steered Classifier Creation

Visual classifier creation also uses a multiple coordinated view system in order to
offer analysts different perspectives on the classifier’s state during each training
iteration, where views are handled similar to the PatViz approach. The employed
views either use point-based, scatter-plot-like techniques, aggregated views, or detail
perspectives. Scalability is not an issue for the latter two. For the scatter-plot-based

5 At the moment the pivot-by-middle method for the ordered treemap layout is employed.
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views zooming and panning interaction is available. In the case of classifier view,
about 50,000 documents can be represented without experiencing performance
issues. Of course, this is already more documents than an analyst could reasonably
inspect in detail for classifier creation. With the employed interaction mechanism
in the form of the term lens this problem can be decreased, but the effect with the
highest impact on scalability clearly comes from active-learning-inspired interaction
approaches and task-tailored layout. The term lens summarizes documents under
the lens by showing the 10 most frequent terms with respect to document frequency.
The layout of the cluster view directly depicts the classifier’s decision border giving
users a good idea where best to label documents. Furthermore, the layout of
document nodes around the decision border reduces overlap and aims at simplifying
interacting with them. This lets users explore densely populated regions quickly,
while still providing feedback on the underlying documents’ content. In the cluster
view, the number of depicted document items is restricted to the 100 most uncertain,
in order to guarantee good labeling impact and less training iterations.

As described in Section 4.2, employing user-defined classifiers is not intended as a
stand-alone retrieval method, but should complement other retrieval approaches.
Such an integration, e.g, into PatViz or other visual interactive retrieval environ-
ments would be possible by extending the Boolean search interface to include
user-created classifiers as well. With the introduction of a new classification node,
either existing classifiers could be made available for selection or an option to create
a new one, thus calling the interface for classifier creation.

EdgeAnalyzer

The EdgeAnalyzer approach is intended to increase scalability of edge and line-
based visualizations. This can be achieved in scenarios where edges have been
bundled, as well as in densely-connected line-based views. However, it is particularly
useful if analysts are required to work with edges or their corresponding metadata
properties directly. In the case of bundled edges, details are reduced for the sake of
a better overview. This can be an improvement, since visual clutter, as caused by
many edge-crossings, not only restrains overview, but also prevents analysts from
perceiving details. EdgeAnalyzer equips analysts with the possibility to explore
details in visualizations that have been improved through edge bundling, thereby
adding an additional benefit to such views. In case of link-based visualizations
without bundling, it facilitates detail inspection as well, and can be used to create
‘local overview’, meaning that focused links or edges can be bundled in order to
increase clarity in a region.

If seen from the point of view of visualization richness, all categories from simple to
rich are covered with the presented approaches. While rather primitive views are
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employed in the PatViz approach and for user-steered classifier creation (charts,
scatter plots and maps), their interplay and linkage within the coordinated views
environment adds a certain expressiveness to the overall visual approach. Some
of the presented single views can be regarded as advanced or even complex: the
EdgeAnalyzer’s approach utilized on top of the co-classification treemap would be
such an example.

5.1.3 Platform Scalability

In companies, patent search is often carried out in research and development,
strategic planning, and in other contexts involving different departments. Platform
scalability therefore plays an important part, if heterogeneous IT-infrastructures
and different working environments like workstations dedicated to patent analysis,
common office computers, or laptops should all be usable for analytic tasks. Open
communities, such as researchers and other groups interested in patent analysis,
also rely on easy access to such a system. Visualization systems and applications
that are usable via standard web browser technologies or which can be easily
deployed via the Internet greatly affect human scalability as has been shown, e.g.,
with ManyEyes [Viégas et al., 2007]. Different systems with different capabilities
in terms of processing and graphic performance can be addressed if flexibility for
the visualization techniques is planned for. The PatExpert back-end allows for
flexible solutions concerning the location of data storage and execution of search
requests. To achieve a similarly flexible solution for deployment of and access to
the PatViz system, a variety of prototypes have been created in order to evaluate
different web-based deployment approaches.

The rich client PatViz front-end, as described in this thesis, can be easily deployed
to any computer with a current Java Runtime Environment using the Java WebStart
technology.® This was especially useful to demonstrate the prototype to remote
partners in the consortium. Even without an available installation of Java, large
parts of the PatViz system can still be used. In this case the application runs
completely on the server component. To interact with the system, the user accesses
the website with a query interface and dynamically updated images of the result set
views. Whenever the user clicks on an image, the event is registered and transmitted
to the server together with the location of the click, using asynchronous JavaScript.
The server reacts to the event and renders the result into an image to be sent to
the user. While this works well for click events and keystrokes, drag operations
suffer from the transmission delay. Currently, this solution comes at the cost of
reduced interaction support.

6 http://www.java.com/
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In between the two extremes, search requests and result set views are also executable
in Java Applets. This allows for their integration into existing web environments like
forums and Wikis. An approach for collaborative patent search using visualization
applets in a Wiki is described in Giereth and Ertl [2008].

EdgeAnalyzer as well as the approach for user-steered classifier creation are also
based on Java Technology, which makes them applicable on various platforms. In
the case of the approach for classifier building, the dependencies on other client-side
views are only marginal. As long as a possibility for starting the interface and
means for integrating trained classifier models into existing systems are available,
the method can be used independently.

5.1.4 User, Task and Process Scalability

Scalability issues also arise with respect to those who use analysis systems and
their specific tasks. On the one hand, users with different levels of knowledge and
experience want to use the analytics system to accomplish a variety of tasks. On
the other hand, very complex tasks, such as patent analysis, can be sped up, made
more reliable, or even simplified through providing visual analytics approaches.
This, however, is often also reflected in increased visualization and interaction
complexity that has to be learned before it can be exploited successfully. This
section will give a brief overview of what has been done to support both aspects
in the discussed approaches, with exception to collaboration aspects discussed
separately in Section 5.2.

PatViz

In PatViz it is possible to define presets for result set visualizations that are well-
suited for specific tasks including prior art search, freedom-to-operate search, etc.
However, users can select more than one or alternative views if they wish, and are
not prevented from using arbitrary views either. This feature has been explicitly
requested by patent specialists of the PatExpert consortium. The combination
of view and layout presets with parameterized forms allows for a task- and user-
oriented customization of the PatViz system.

Varying user experience levels are addressed at different stages of the analysis cycle
as well. This is valid for the query formulation as shown in Section 3.1 and for the
result set analysis, which provides both very common views, e.g., charts, and more
complex ones for experienced users. This makes it possible to use the parts of the
system with lower complexity from the very beginning, while having the option of
switching to complex views and workflows at a point in time when basic features
are mastered.
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The technique for selection management further increases task scalability, by
externalizing subtasks. such as selection operations in single views or their boolean
combination. As a result, analysts are freed of keeping in mind what they found out
in previous steps, in the form of interesting sets, or (in)validated hypotheses. This is
an important feature for approaches that support analytic reasoning processes:

“Reflective thought requires the ability to store temporary results, to
make inferences from stored knowledge, and to follow chains of reasoning
backward and forward, sometimes backtracking when a promising line
of thought proves to be unfruitful. The process takes time.” — Norman

[1993]

The visual selection management technique is also scalable with respect to the
possibility of creating different selection and filter paths in parallel. Users can
always switch back, choose and change one of the (intermediate) results that have
been created, and check the effects of their refinements by re-displaying them in
linked views.

User-steered Classifier Creation

In case of classifier building, the evaluation (see Section 6.1.5) showed that users
who are not well trained, or have not understood certain aspects of the approach,
are at risk of creating bad classifiers with the user-steered method. In some cases
much simpler methods, employed during the comparative user evaluation, turn
out to deliver more robust results, even if this comes at the cost of decreased
trust in the created classification models. This shows again that offering methods
acknowledging users’ expertise in carrying out a task is of great importance.

Visual classifier creation can also take more time than with the simple method.
Here, the test subjects spent large amounts of time on exploring the documents.
While techniques facilitating interactive, visual exploration” are often described as
being superior to less interactive approaches, they carry the risk of requiring more
time for such a task. In order to increase exploration speed, the term lens was
introduced to diminish the effect. Again, spending too much time on exploration
is likely to decrease during training. Developing meaningful and successful task
workflows is therefore a key issue for all complex analytics tasks. Ignoring the
workflows and principles of classic analysis (if available in a field) tends to reduce
the acceptance of visual analytics approaches and leads to a decrease in analytic
performance, too.

7 Here only approaches are referred to that facilitate explorative approaches that are meaningful
for the task at hand, i.e. when an analyst’s information need is unclear and has therefore to be
shaped first through explorative tasks.
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However, if patent experts are well-trained in user-driven classifier creation, it has
the potential to scale well with their requirement of building trust in search solutions,
which is the main argument for employing Boolean search. Here, visual perspectives
support users by letting them interactively refine and build classifiers, without the
need to understand all technical details of the machine learning technique. By
visualizing the classifier’s state and its mode of operation adequately, users can
build more trust in such automatic solutions and integrate them into their existing
search strategies, as opposed to out-of-the-box solutions, whose behavior is hardly
understood and difficult to assess.

Facilitating interactive feedback loops tailored to analytic workflows can greatly
help to increase efficiency in carrying out analytic tasks. Feedback loops for speeding
up patent literature retrieval have been described in detail in the Chapters 3 and 4
and are therefore not discussed again in this chapter.

5.1.5 Scalability Conflicts

Some scalability aspects are inherently conflicting. While software scalability can be
addressed by using single generic visualizations in order to reuse them in different
scenarios, specialization of views with respect to the problem domain can improve
analytic performance. Flexible approaches, allowing for multiple ways of performing
an analysis can increase a technique’s power greatly, but are at the same time more
difficult to learn and understand for analysts.

Another conflict exists between the creation of scalable distributed multi-tier
software systems and the aim to interact with and influence automatic back-end
systems in order to realize task-driven and user-adapted approaches. The presented
technique for classifier building is such an example. While retrieval quality can be
increased, software scalability is reduced at the same time, since the decoupling
of systems is at least reduced. As can be seen from the modified information
visualization model (see Figure 2.3), potentially all steps in the processing pipeline
can take part in feedback loops, and data flow between these step is bidirectional
as well. An increase in dependencies between components can lead to monolithic,
tightly coupled approaches. Therefore, particular care must be taken to keep visual
analytics approaches scalable with respect to clear separation of concerns and
modularization. The development of back-end systems that acknowledge back-flow
of information and other properties important in the context of visual analytics is
still at its beginning. Chapter 6 in Keim et al. [2010] offers an extensive discussion
of infrastructure issues in visual analytics.

Even if specialized visualizations are designed to be compact, precise, and scalable,
they might require more user knowledge to be interpreted correctly, hence they
initially decrease user scalability in terms of the time needed to learn using them.
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For visual scalability the goals may be contradictory as well. On the one hand, the
system should organize views in a space-efficient manner, while retaining ordering,
aspect ratio, and zoom levels; on the other hand, single views should be placeable
on auxiliary displays. Additionally, visual and interaction scalability are closely tied
to task scalability. If tasks are sufficiently complex, interaction and/or visualization
complexity will increase also in the number of employed views, their complexity, or
their need for advanced interaction techniques.

Finding appropriate solutions for these conflicts is possible in some situations,
but typically comes at the cost of suboptimal analytic efficiency, steeper learning
curves, tightly coupled systems, and incoherent workflow support. In the end,
visual analytics approaches must always find a compromise regarding conflicting
scalability requirements, depending on the focus of the tasks to be achieved and
the processes to be supported.

5.2 Collaboration, History Recording,
and Analytic Provenance

Collaboration is seen as a very important aspect of achieving user scalability. In
this context, collaboration does not refer to the integration of automatic methods,
human reasoning, and their interplay, but to collaboration between users, who are
involved in the same analytic effort. This section discusses collaboration along with
analytic provenance and history recording. There is an inherent connection between
the latter two, since provenance information has to be attached to search/analysis
history. Collaboration approaches, reporting, and also evaluation, as discussed in
the next chapter, can benefit from this provenance information.

The need for capturing analytic provenance for visual analytics approaches was
already formulated by Thomas and Cook. With VisTrails [Callahan et al., 2006]
an extension to VTK® was proposed that allows for recording ‘visual provenance’
information on the visualization process and data manipulation steps. Logging
of users’ interactions was employed to evaluate how users explore information
in InfoVis systems and perform reasoning when using visual analytics systems
[Pohl et al., 2010; Dou et al., 2009]. Other suggestions for dealing with analytic
provenance were formulated by Gotz and Zhou [2009]. They propose HARVEST, a
visual analytics prototype system that combines manual and automatic provenance
recording. Furthermore, they define a taxonomy for user interaction on different
abstraction levels: tasks, subtasks, actions, and events. If compared to the HAR-
VEST approach, PatViz captures analytic steps on a coarser level and focuses on

8 http://www.vtk.org/
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the action and subtask levels that Gotz and Zhou identify as the ones critical for
capturing analytic provenance. Heer et al. [2008] present a design space analysis of
interactive, visual history tools. With the ‘CzSaw’ visual analytics system, [Kadivar
et al., 2009] introduce editable and replayable history recording aimed at making
analyses more comprehensible and reusable within other analyses.

PatViz’s visual selection management as described in Section 3.2.9 enables users
to save and combine selections in order to actively steer the search and analysis
process. The resulting graph is stored for later (re)use. By applying this selection
management technique, analysts automatically document steps of their analytic
sessions, thereby generating an abstract form of analytic provenance data that
reflects mainly high-level analytic tasks. Furthermore, saved graphs can be applied
to new result sets, serving as ready-to-use analysis steps. Saving the various stages
of a performed analysis may also be of value with respect to accountability. However,
some patent researchers have expressed concerns with regard to such a functionality.
The reason for this is the legal practice in some countries to increase the fine for
infringing patents if there is evidence that someone in the sued organization had
prior knowledge of the patent in question.

In addition, every analysis cycle, i.e. analysis of result sets, query modification and
subsequent requesting of a new result set, is recorded in order to enable analysts to
access previous findings and to perform undo steps if a hypothesis turns out to be
unsuccessful regarding the aims of an analytic task. This feature can be exploited
in collaborative scenarios, since discrete improvement steps of the query are easily
traceable for other analysts. This combination of global query management and
local selection management has the potential to serve as documentation helping
analysts to continue work commenced by others, thereby enabling collaboration.
Further, it can also be used to teach new examiners which steps to take during a
patent search.

For user-driven classifier creation, a similar approach has been taken, even if it is
less comprehensive and does not reflect single sets of documents. Here the approach
could be seen as a even more abstract form of history recording. Its main purpose
is to serve as a reminder for the classifier-creating analyst, which training steps
were applied to develop a classifier and how training steps influenced subsequent
versions of classifiers. The amount of labeled documents for each class, as well as
the balance of the classification outcome are recorded and made available. As part
of the classifier history view, it also facilitates undo and redo operations, enabling
analysts to start over from ‘older’ versions of the classifier. Besides, the classification
history can be exploited in collaborative scenarios. Analysts can retrain available
classifiers to adapt them to new situations. Classifiers can theoretically be shared
easily, and others can exploit the effort previously invested by a colleague.
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To ensure that all necessary steps have been taken, analysts often employ templates
that can be followed for common tasks. In PatViz, these templates come in the
form of parameterizable queries. A parameterized query consists of a template
query and a list of variables. These variables have fixed positions once the query is
saved. Upon loading the query, the user will be requested to provide a value for
each parameter. This mechanism allows for easy creation of forms that can start an
initial query for a special patent search task or at least provide templates and basic
strategies for common search objectives. Parameterized queries can be seen as a
very short and condensed script on how to address a certain search problem.

The means created for representing and recording analytic steps so far are still
rough prototypes. In order to use them effectively in larger systems, a more
fine-grained recording of actions has to be developed. However, the advantages
the shallow recording already offers can be demonstrated with the approach for
reporting described in the following section.

Automatic Report Generation

Because visual analytics tasks and systems increase in complexity, reporting the
gist of findings becomes an important issue. As one of their top 10 observations
for visual analytics systems Thomas and Kielman [2009] consider reporting as
being “Critical to analytical assessment [...].” Analysts themselves might not
be authorized to make decisions. Consequently, the findings must be presented
adequately to the person or group of persons in charge — the decision makers.
A similar need occurs if there is a team of analysts working on larger problems,
and intermediate results must be distributed among them effectively to leverage
collaboration? as discussed above. Furthermore, reports of analytic tasks and
findings can be a valuable resource during evaluation, archival, and future reuse of
analysis results. Interesting thoughts on analytic reporting and possible directions
were discussed in Chinchor and Pike [2009] and Lipford et al. [2010] describe an
approach for letting analysts track and store their analytic steps in order to help
them remember and reconstruct their reasoning processes. This could be seen as a
means for ‘self-reporting’, as is the case with many of the related approaches that
were mentioned above in context of provenance recording.

Creating analytic reports manually, without (semi)automatic support can be a
tedious task. Firstly, visual analytics methods often lack an export option for data
extracted during analyses, which is at least true for most of the visual analytics
approaches presented in academia, despite the fact that such options are highly
relevant in practice. Accordingly, a variety of commercial visual analytics systems

9 Presentation of analytic results can also be seen as a special form of collaboration.
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already integrate reporting facilities, e.g., IBM’s I2 Analyst’s Notebook'? or Oculus’s
Sandbox [Wright et al., 2006].

Manual creation, however, forces users to perform additional actions to transfer
the ‘result data’ into the reporting method, or, in the worst case, to transfer them
manually by reproducing analytic insights and through indicating the important
parts of the data. Additionally, it is difficult to judge a finding’s importance before
it was (cross-)validated, and other analysis tasks have been carried out. Thinking
about reporting when carrying out the analytic task may hinder the analysis itself,
because it interrupts an analyst’s workflow. All methods for recording analytics
tasks that require active, manual user interaction to store a intermediate result, to
make a screen shot, etc., suffer from the mentioned issues, independent of whether
they are integrated into an analytics system or not.

Secondly, it is quite natural that reporting comes into focus after an analysis
has been performed. If no measures are taken to record analytic artifacts, e.g.,
interesting data (subsets), automatically during the analytic process, analysts have
to reproduce and retrace the process with the reporting aspect in mind, thereby
taking notes and screen shots to document their work. The more traces that are
followed and the more hypotheses that are checked during an analysis, the harder
this gets. The more complicated the analytic task is with respect to the number
of automatic and visual methods involved and the required human reasoning, the
longer it takes.

The creation of automatic reporting mechanisms for visual analytics approaches
is closely related to, or even depends on, a variety of different aspects, such as
history recording, provenance, and collaboration, discussed in the previous section.
Solutions for semi-automatic support of recording reasoning processes that could
also be used as a basis for reporting have been suggested by Shrinivasan and van
Wijk [2008]; Chen et al. [2009, 2010]. Active construction of analysis as proposed
with facilities such as the selection management technique can be directly exploited
for reporting the results of an analysis. Here, the analyst externalizes findings and
combines them to test hypotheses, thereby creating a visually represented solution
for an analytic task. In order to make findings identifiable at a later point in
time, analysts can attach meaningful labels to them. Every time a node is created
in the selection management technique (see Section 3.2.9) or existing ones are
combined, the analyst externalizes a potentially valuable finding. Node creation
and manipulation actions can therefore be seen as indicators for the creation of
new insight and the fulfillment of an analytic subtask. After an analysis is finished,
a graph of findings — ideally also holding the solution to the analyzed problem — is
available. The idea is to exploit this graph for report generation just by identifying

Ohttp://www.i2group. com/
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the node(s) of interest. Since all sets are defined in a formal way, the analytic
story of how they were created can be told automatically, by traversing the graph
backwards to its root, starting from the node of interest. In this way all nodes and
operations that were part of the refinement of the interesting finding are considered.
The backward traversal of the graph acknowledges that the analytic result decision
makers might base their actions on is presented first, but the whole process of its
construction can be tracked and followed. As mentioned before, analytic processes
are rarely linear. It is therefore no surprise that analysis graphs created with the
selection management technique are typically non-linear as well (except for very
simple cases). In order to tell a non-linear story, a medium had to be chosen
that acknowledges this aspect, facilitates navigational exploration for following the
construction of findings, and allows for combining textual and visual descriptions.
HTML'" is an obvious solution to fulfill these requirements: it facilitates non-linear
browsing through hyperlinks, it can be viewed on a considerable number of devices
making it rather platform independent, it can be shared easily through common
world wide web infrastructure, and non-analysts should be able to work with it
through common web-browsers as well.

During the VAST 2011 mini challenge 1'?, which dealt with the analysis of geo-
located microblogs, the selection management technique was employed, and the
first prototype of an automatic reporting component has been added [Bosch et al.,
2011]. By making geo-temporal selections of sets of microblog messages filtered
through keywords, it was possible to create insight graphs to answer the questions
posed in this challenge (Figure 5.2 depicts an overview of the approach). Of course,
this is a simplified scenario on a test data set, but it should suffice to illustrate the
idea of exploiting provenance information for automatic reporting.

One subtask in the mini challenge was to answer questions about the spreading of
‘disease’s symptoms’ and the consequences for the affected people. The data set to
be analyzed consisted of about 1 million microblog messages. From these messages’
content and their geo-temporal distribution, the answers had to be derived. The
approach aims at finding spatio-temporal anomalies of term usage in messages, and
placing important terms as labels on the map through an automatic extraction
procedure. The latter can be seen in Figure 5.3.

The approach turned out to be scalable enough for applying it in real-world
scenarios, such as the analysis of Twitter ' messages [Thom et al., 2012]. In both
approaches it is possible to apply spatial, temporal, and content-based filtering
for carrying out analyses and gain insights from microblog messages that can be
externalized and combined using said selection management technique.

1 http://www.w3.org/TR/html-markup/
2http://hcil.cs.umd.edu/localphp/hcil/vastil/
Bhttps://twitter.com/
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Figure 5.2 — Desktop of the approach for analyzing geo-located microblog
messages showing a hierarchical time slider at the top, the map view (middle, left),
the microblog list (middle, right), the selection management tool (bottom, left),
and a spatio-temporal 3d view (bottom, right). Details on the system can be found
in Bosch et al. [2011].

The usage of the reporting technique is exemplified with the following analytic
subtask. Two different groups of symptoms could be identified during the analysis:
persons reporting stomach problems, and persons suffering from fever symptoms.
In order to analyze the consequences of these two ‘outbreaks’, the selection man-
agement facility was employed. First, the messages of all persons talking about
stomach and fever problems are selected and added as selection nodes (see nodes i)
and ii) in Figure 5.4). As a second step, messages from the vicinity of hospitals
are selected talking about ‘stomach’ or ‘fever’ as can be seen with node iii) from
Figure 5.4. Afterwards, messages of sets i) and ii) are joined by the microblog’s
user’s id with iii) resulting in the nodes iv) (hospitalized persons, who had fever)
and v) (hospitalized persons who suffered from stomach issues). From the numbers
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Figure 5.3 — Automatically detected spatio-temporal term anomalies derived
from the VAST Challenge 2011 microblog dataset

of the set nodes, it is possible to see that there are many more persons with fever
symptoms sending messages from hospitals than with stomach issues.

The report is generated as a post-processing step that can be triggered by an
analyst employing the context menu of a node (Figure 5.4). Theoretically, all
information is available to reconstruct the exact selection, including the view it
was performed on during the analysis, which could be integrated into a report
for depicting the analytic process. For evaluating analytical sessions a posteriori,
e.g., for evaluation purposes or accountability reasons, such an approach would be
preferable. In the case of creating reports for decision makers, it might instead be a
good idea to employ simplified views that are easy to interpret and which transport
the gist of analytical findings. This is the case with the generated figures shown
in the mini challenge report (Figure 5.5) that depict microblog messages as red
dots on a map accompanied by representative labels summarizing the regions with
a certain microblog density. The restrictions, filter operations, and combinations
thereof are presented in a textual form, to further ease interpretation.

In the prototype version of the automatic reporting facility, some aspects are not
yet addressed adequately. For instance, temporal evolution of sets (of microblog
messages in the example above) is not yet represented , but could be added, e.g.,
in the form of short animations. Underlying keyword restrictions are depicted
together with the first sets where they occur, and are not propagated to higher-level
combinations. The very important aspect of uncertainty is not considered and



134 Chapter 5 e Scalability, Provenance and Reporting

1.023.056m [ 73928

L@

@
7

3
| 3.012m ART32

(at#22
(lat[42.1
(lat[42.2

(at[422 V)
(at[s22

(at42.2

512m f510u

ver and endeghup in hospttal |
=

Highlight in other views
Set as Query

Tag as event

Generate report from node

[ aremez
2| [&
= [&
c
7
2] la

6.857m i 54530

Figure 5.4 — Selection graph that has been constructed by creating a node for
people talking about stomach problems i) and persons reporting fever issues ii).
Node iii) represent persons writing messages from the location of hospitals on
fever and stomach issues. Subsequently, both ‘symptom’-selections i) and ii) are
intersected by user with the message set from the hospitals iii). Inspecting nodes
iv) and v) it becomes obvious that people reporting fever symptoms end up in
hospital much more often than those suffering from stomach issues. In the view
shown, the context menu of node iv) has been activated in order to generate a
report for the corresponding finding.

only rudimentary statistical information is provided with the report. Right now,
generating reports is only possible for one selected node or the the whole graph.
This will be extended to select several nodes of interest for report generation. Future
enhancements of the proposed method will integrate these missing aspects.
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iv) shown in Figure 5.4. The result is depicted with the larger image in the center,
while the sets/findings it has been created from, are shown below. Additionally,
some text on the construction of the final set is provided with the images. The
smaller images are linked to the description of their corresponding creation. It
can be accessed by clicking on the image representing the intermediate result of
interest.






CHAPTER

Evaluation, Results and Discussion

This chapter presents results gained through user studies carried out with the
approaches introduced in Chapters 3 and 4. Additionally, benefits as well as
identified problems are discussed in the context of related work.

6.1 Evaluation

There is an ongoing discussion about how visual analytics approaches can and should
be evaluated. The biggest problem is that even for smaller information visualization
approaches formal and thorough evaluations are difficult and costly to undertake, at
least if starting on the cognition and perception level. Pohl et al. [2012] discuss the
relevance of important theories from psychology and HCI in the context of visual
analytics approaches,’ but cannot offer concrete evaluation procedures. If multiple
connected views are used, which are in combination more powerful than their
single components, evaluation gets even more complicated. Accordingly, pragmatic
ways are followed in order to close the gap between theoretical foundations and
evaluation strategies that can be used. While promising suggestions have been made
for evaluating specific aspects of smaller tasks and corresponding methods in the
context of information visualization [Plaisant, 2004], and visual analytics [Plaisant
et al., 2008], holistic solutions for evaluating approaches addressing more complex
analytic scenarios in detail do not seem to be on the horizon. The complexity of an

1 They also see Pirolli and Card’s [2005] sensemaking model as a probable way to describe visual
analytics approaches as is done in this thesis (see 2.7).
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approach is also dictated by the complexity of the scenario which makes bottom-up
evaluation often too expensive. To some extent this is an inherent problem of visual
analytics scenarios that can potentially find broad application in various fields,
where large amounts of data have to be studied by human analysts. The problems
arising from evaluating such scenarios are discussed in the next section.

This thesis does not claim to present a satisfying solution for evaluating complex
analysis methods like PatViz. However, it adds another instrument to the VA
evaluation toolset with an approach adapted from the field of information retrieval,
which is extended to involve users in the test procedure, while keeping the effort
manageable. The said approach has been applied during the evaluation of visual
classifier creation and is described in detail in Section 4.2. Additional ideas about
exploiting suggested features of visual analytics approaches offering new directions
for evaluation are presented as well.

This chapter is partly based on the following publications:

S. Koch, H. Bosch, M. Giereth, and T. Ertl. Iterative Integration of Visual
Insights during Patent Search and Analysis. In IEEE Symposium on Visual
Analytics Science and Technology (VAST 2009), pages 203210, 2009

A. Panagiotidis, H. Bosch, S. Koch, and T. Ertl. EdgeAnalyzer: Exploratory
Analysis through Advanced Edge Interaction. In Hawaii International Confer-
ence on System Sciences (HICSS 2011), pages 1-10, 2011

F. Heimerl, S. Koch, H. Bosch, and T. Ertl. Visual Classifier Training for
Text Document Retrieval. IEEE Transactions on Visualization and Computer
Graphics, 18(12):2839-2848, 2012

6.1.1 The Difficulty of Evaluating
Visual Analytics Approaches

Undertaking extensive user studies for evaluating visual analytics systems and
approaches is hindered by a variety of problems. These include, but are not limited
to:

o task complexity

 tool/method complexity
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o duration of tasks

o diversity of domains

 availability of domain experts

o lack of suitable (large enough) test data

o lack of ground truth data and gold standard data
o lack of comparable VA approaches

e lack of VA approaches’ maturity

¢ lack of suitable evaluation criteria

Many of these problems are not independent, but rather intertwined. One of them
is the complexity of visual analytics tasks. If the analysis scenario is complex and
difficult enough, methods for addressing the problem are likely to increase in com-
plexity as well, e.g., with respect to the employment of different sophisticated views,
complex automated methods, and advanced interaction (tool/method complezity).
Visual analytics aims to provide solutions for complex problems of this particular
kind, meaning that this is an intrinsic problem. Of course, a primary goal of visual
analytics systems is to reduce the complexity, ideally making analytics problems
solvable by lay users or semi-experts as well, but some problem domains still
require expertise. With an increase in analytic quality or a speed-up of an analytic
process, complex approaches, unsuitable to be used without previous training, can
constitute significant progress over the state of the art, but come at the cost of
being difficult to evaluate. Closely linked to task complexity is a potentially long
duration of analyses that hampers a broad evaluation of such approaches with
many test subjects. The duration of tasks can therefore be another problem, as is
the case with patent search, where analysis sessions can easily take a whole working
day [Joho et al., 2010].

Analytic tasks which can potentially benefit from visual analytics approaches
are highly diverse, since large amounts of data that cannot be analyzed solely
automatically are nowadays generated in almost every sector of modern society. Due
to this diversity of tasks, visual analytics approaches are problematic to compare
during evaluation. Quite often, however, the people interested in analyzing this data,
and accordingly also the analysis tasks and questions, are domain experts. This
poses additional problems, because addressing the needs of domain experts naturally
requires the same experts to be the test subjects for evaluating corresponding visual
analytics approaches (availability of domain experts).
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Moreover, suitable data sets must be found for evaluation tasks. While there should
be plenty of them available as a result of the often-quoted data explosion, especially
in those fields where the pressure to analyze data is high (business and economy),
the willingness to provide real data sets is marginal, because most often broad
dissemination of internal information does not comply with companies’ interest
(lack of test data). This is even the case if the data has been successfully analyzed
before, which would be a prerequisite for having a ground truth of insights that
can be drawn from this data. But even if the data is freely available, the sheer
amount of data makes the finding or definition of a ground truth difficult (lack of
ground truth data and gold standards). The broad variety of domains to be covered
adds another obstacle, making data sets and tools, and as a result their evaluation,
difficult to compare. Other research disciplines, such as information retrieval and
NLP in general, have undertaken enormous efforts to create ground truth data sets,
e.g., available from evaluation forums such as CLEF? and TREC?. Corresponding
efforts in the field of visual analytics are still in their beginnings, even if artificial
ground truth data sets were created as part of the VAST challenges and Infovis
contests®.

Unlike in other fields, automatic benchmarking and testing strategies are difficult
to use for evaluation of visual analytics approaches, since by definition human
analysts’ skills of reasoning and sensemaking are an integral part of any analytics
process in this field. This has consequences for the comparability of competing
approaches and the required quality of the tools to be evaluated. Even if competing
approaches are available, common evaluation procedures must be found in order to
make them comparable (lack of comparable approaches). This still does not take
into account that different test subjects, whether they are experts in their field or
not, have different expertise and will most likely choose different analytic strategies
of a given task. It further raises the question of how much training or introduction
has to be provided to account for similar starting situations. Additionally, provided
tools must have near production maturity, since omitting certain convenience
functions, or approaches exhibiting low robustness, and other issues are likely to
affect analytic efficiency greatly (lack of approaches’ maturity).

There is still a lack of suitable evaluation criteria for visual analytics approaches.
However, the problems were recognized in the visual analytics community and a
variety of suggestions and methods for carrying out user evaluations under the
described circumstances were made. The assessment of insights gained by test
subjects during a user evaluation is one common method to rate the suitability of a
visual analytics approach. Most often the methods for collecting the gained insights

2 http://www.clef-initiative.eu
3 http://trec.nist.gov/
4 nttp://hcil.cs.umd.edu/localphp/hcil/vast/archive/provenance.php
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are think-aloud procedures. Methods for counting insights were proposed, but it
is questionable whether this is a meaningful measure on its own [Saraiya et al.,
2005; North, 2006]. Designing visual analytics approaches in a participatory way
has the potential to increase usability, but cannot serve as a qualitative measure.
Relatively recent work suggests the combination of these methods and considers
relations of insights and test subjects’ prior knowledge [Smuc et al., 2009].

Often the abovementioned problems are addressed by reducing the number of
participants for evaluation, simplifying analytic tasks, finding similar ones in
different fields that can be evaluated more easily, employing small test sets with
known ground truth, generating artificial test data sets, etc. To some extent this
was also necessary during the evaluation of the approaches presented here.

6.1.2 Exploiting Analytic Provenance Data for Evaluation

Since visual analytics tasks can be extremely complex, why not apply the same
visual analytics methods intended to facilitate those tasks to the evaluation itself
as well? In principle, some of the features requested for visual analytics approaches,
such as provenance recording and report generation, can be exploited for evaluation
directly, which increases their importance even more. Clearly, the goals of gathering
analytic provenance information while using a visual analytics tool and at the
same time evaluating visual analytics tools overlap. A discussion of these points
is provided in the context of scalability issues in Chapter 5. However, exploiting
provenance recordings for evaluation also brings along a variety of additional
requirements. First of all, the visual analytics tools to be tested would require the
implementation of provenance and reporting mechanisms, which are often omitted
in research prototypes in order to reduce the implementation effort. Furthermore,
the recording of provenance data must comply with the level of insights study
organizers are interested in and have time stamps included if analytic efficiency
is to be evaluated as well. Analytic provenance capturing must also consider
data recording beyond positive analytic insight. Otherwise, it would be difficult
to derive potential mistakes and dead-ends of a user’s analysis from this data.
Another requirement would be the description of findings by users, including
invalidated hypotheses, in order to capture and reproduce the analyst’s chosen path
of reasoning. ‘Tool insights’ as described by Smuc et al. [2009] that are valuable
for improving a visual analytics tool’s quality are difficult to be attained with this
method alone.

Nevertheless, such an approach has some intriguing aspects, and, at least if insights
are considered on a task or process level, it could be realized with some of the visual
analytics methods discussed in this thesis. Given a certain degree of tool quality,
such an approach has the potential to decrease the evaluation effort. The reporting
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facility shown during the VAST Challenge 2011 [Bosch et al., 2011] comes closest
to achieving this. With some limitations, such a strategy could be seen as reusing
analytic provenance information for evaluation and as a substitution or addition to
think-aloud procedures. Additionally, the analytic provenance data recorded during
longitudinal studies could be evaluated using, again, visual analytic approaches as
proposed by Smuc et al. with the RIO approach.

6.1.3 Evaluation of the PatViz Approach

According to Trippe and Ruthven [2011], measuring the performance of patent
retrieval systems is questionable if one relies solely on retrieval performance indi-
cators like recall and precision as determined through evaluation setups following
the Cranfield paradigm [Voorhees, 2002]. Typical information retrieval evaluations
consider a predefined set of documents, where all relevant documents according to
a specific query or information need to be known in advance and automatic test
procedures are carried out to assess a system’s quality without considering the user
of a retrieval system. To some extent Trippe and Ruthven are right; at least if the
process of searching and analyzing patent information is seen, as within this thesis,
as always involving human reasoning and sensemaking. However, performance of
the automatic parts of patent retrieval techniques can be improved with traditional
evaluations, even if this means that patent experts cannot immediately use such
techniques, because it would require to change their search strategies and to learn
and deeply understand alternative search back-ends.

For different domains the variance in search effort can be very high. Quite a large
number of analysis tasks, techniques, and systems require user expertise in order to
judge the quality of a search task’s results. This is especially true for difficult tasks
and those where the cost of missing relevant documents is high as well — patent
retrieval is a good example for this. Domain experts might be able to coarsely
judge whether the number of returned relevant documents is reasonable or not and
base their decision to continue or cancel a search subtask on this experience.

Trippe and Ruthven [2011], certainly taking the perspective of patent professionals,
suggest to “develop [...] evaluation approaches that help estimate the confidence |...]
in different system components” and to estimate confidence by the level of ‘trust’
that can be established by users for (parts) of the retrieval process. While they aim
specifically at retrieval aspects and do not explicitly take into account visualization,
their general idea to develop process-based measures unsurprisingly matches at
least partly the ideas for evaluating visual analytics processes. However, they do
not offer practical solutions regarding concrete evaluation methods and how to
impose trust or confidence measures. As a consequence to the problems discussed
at the beginning of the section, the evaluation procedures had to be simplified. For
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the approaches taken in the PatViz system interface, two evaluation tasks with
two different groups of participants were conducted. The viability of using a visual
query representation with respect to its understandability was evaluated through
a questionnaire sent out to persons knowledgeable in Boolean search, including
patent searchers, via email and resulted in 15 replies. The evaluation of central
approaches, such as the interactive reintegration of visually detected insight, was
much more challenging to carry out due to problems described above. Especially
finding experts in the specific field of ‘optical recording” and ‘machine tools’ was
difficult, since the prototype system was restricted to these patent domains. The
length of typical searches also limited the evaluation procedure, because the patent
professionals could not afford to spend a whole day testing the system. The most
important results of this evaluation are provided in the next sections.

Visual Query Building

As described in Chapter 3, the visual query system consists of two coordinated
views - a text-based and a visual one. The tools were developed in close cooperation
with patent professionals, but this did not warrant the suitability of the coordinated
views for a broader user spectrum. To guarantee that the chosen visual metaphors
can be interpreted correctly by users, a questionnaire was drawn up for which test
subjects had to interpret single and combined visual metaphors, correlate textual
query representations with visual ones, and translate visual into textual queries.
All evaluators were asked to answer questions regarding the following aspects:

o Suitability of the chosen visual metaphors

o Comprehensibility of visual metaphors

e Recognition of the scopes of Boolean operators

o Helpfulness of interactive exploration for query understanding
o C'reation of Boolean queries

o and Composition of complex queries including different search facilities.

To cross-check the results, most of the aspects were addressed in two different
questions, whereby some of the questions incorporated two or more of the aspects
above. If required, the evaluators could also include comments and questions as
part of their email reply containing the results.

The test subjects were asked to decide whether the provided visual metaphor for
Boolean AND and OR operation within the PatViz query approach was appro-
priate. The evaluators disagreed on whether the Boolean AND operator should
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be represented by a sequential or a branching metaphor (analogous to the OR
operator). Nevertheless, none of them had difficulties to interpret combinations of
the metaphors correctly. There is a strong indication that the visual metaphors
are suitable. In order to prevent misinterpretation of the visually represented
metaphors, additional labels, placed on the links representing operators, were
introduced. The comprehensibility of the provided visual query example (without
labels) was high. All except one of the testers interpreted the visual example
queries correctly. The same holds for the testers’ ability to recognize operator scopes
accurately. Thirteen of the testers deemed scope highlighting a useful feature for
the exploration of queries. With respect to the creation of Boolean queries, three
participants mentioned that they would prefer a purely textual query interface over
a visual one. All others preferred the combined approach which has been applied
in PatViz. Twelve of the test persons expressed the opinion that the approach is
suitable for the composition of complex queries including the integration of multiple
search facilities. Three were undecided. The result of the questionnaire’s evaluation
suggests that, even without using the query tool for direct insight integration, the
approach already offers an advantage over a purely textual approach.

Iterative Insight Integration

The viability of the concept for insight integration into subsequent search and
analysis cycles is much more demanding to test. As already discussed, correct
interpretation of patent documents requires at least some experience with the
technical field under analysis. For this task, the employment of patent specialists
as test subjects was a must, in order to be able to judge the suitability of the
developed tools. Since it was difficult to find patent specialists knowledgeable
in the field of ‘optical recording’ or ‘machine tools’, three patent practitioners
from the consortium were asked to take part in a think-aloud evaluation. The
actions of the participants as well as their ‘loudly spoken thoughts’ were recorded.
Naturally, the validity of such a test is limited by the relatively small sample for
this evaluation. The fact that not enough patent experts knowledgeable in the field
of optical recording could be recruited, even within the consortium, exacerbated
the problem.

One frequently expressed comment indicated that most of the patent experts had
never worked with a system providing linked and interactive visual interfaces.
While this was also one of the system’s properties most appreciated by the users, it
became clear that such features are very difficult to use without previous training.
In order to carry out the ‘think-aloud’ evaluation, the test persons were given
access to an online version of the system prior to inviting them for the test itself.
Additionally, the evaluators were introduced to brushing and linking within the
multiple coordinated views interface and to the meaning and usage of the available



6.1 e Evaluation 145

views. Subsequently, they were asked to carry out the same analysis tasks they are
performing in their daily work.

All patent practitioners agreed that the visual interface provides a valuable means
for creating and editing complex queries for different search engines, but some
of them were puzzled when they had to use it for the first time. In subsequent
discussions it became clear that this was related to the fact that conventional,
mostly form-based, interfaces for patent search are designed in the same way patent
documents are structured. Of course, this is not reflected within an interface
that allows for arbitrary combinations of different constraints for search facilities;
however, it might be a good starting-point for future enhancement of the query
visualization tool providing a third view taking this issue into account. Practitioners
who were used to employ formal Boolean languages instead appreciated the visual
representation from the beginning.

Another observation was that most of the patent experts used views like the tag
cloud, the legal entity charts, and the world map more frequently than the more
sophisticated ones. A probable explanation for this behavior is that users may
tend to perform their tasks with tools they are accustomed to. Nevertheless, after
a quick introduction, the testers were able to integrate the other views successfully
into their analysis. The most significant benefit identified by the test users was
the support for iterative refinement of queries and patent sets. Also the synergetic
effects of using different views of the same set in parallel were appreciated by
the users and the linking and brushing facilities were used extensively after a
short period of familiarizing themselves with the system. The testers commented
positively on the flexibility and power of the system resulting from the degrees of
freedom in moving back and forth between the stages of the analysis process and
between different perspectives within one stage of the process.

6.1.4 Advanced Focus+Context

In order to evaluate the fundamental idea of the EdgeAnalyzer approach only,
again the think-aloud protocol was employed to evaluate an early version of the
prototype. Due to the large number of combinations of parameters and methods for
the proposed technique, it was not feasible to perform a comparative evaluation of
all features. Instead a subset of the implemented grouping mechanisms and available
views was accessible during the evaluation. The arc wheel and the employment of
multiple lenses were also not available during evaluation, since these features were
developed later. Participants could use a single lens (moving/resizing), geometric
grouping, and parameters were fixed. The evaluation should therefore be seen as
a rationale for introducing features such as the arc wheel and to illustrate users’
general acceptance of the approach.
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Eleven students took part in the study that involved two tasks embedded into the
example scenario about patent co-classification analysis. A data set consisting of
1000 patent documents and 169 co-classification relations was used for both tasks.
The test subjects received a brief introduction to the IPC schema, the corresponding
tree map view, and the basic idea of patent co-classification. Afterwards they were
given a few minutes to familiarize themselves with the lens-based focus+context
technique and to ask questions regarding its usage until they felt confident enough
to start with the tasks. All participants stated they were able to use the technique
in less than two minutes of training time. During the study, the participants
were encouraged to think aloud, ask questions if they got stuck, and make general
comments on the tool even if they were not related to the tasks at hand.

The first task was to explore a dense edge cluster that was partially collapsed to
a single bundle due to edge bundling, which constitutes a common situation in
dense node-link diagrams (Figure 4.3 depicts a similar situation). Edge groups were
visualized with the local de-bundling method, that splits edges in the focused region.
For grouping three methods were available: grouping by intersection points with the
lens, grouping by angle between lens-intersecting line segments, and ‘no grouping
at all’ — meaning that each edge was allocated to a separate group, whereas the
first two methods are variations of geometric grouping. The test subjects could
switch between the different grouping mechanisms.

Three participants found that ‘no grouping’ is superior in this particular task,
while most test subjects commented, that the geometric grouping methods seemed
to yield unreliable and incomprehensible results. Nevertheless, two participants
preferred them as they produced fewer interaction elements. One reason why
participants favored ‘no grouping’ was the fact that the number of focused edges
was instantly perceptible. Test subjects also mentioned that multiple lenses could
have been useful for this task.

The second task asked participants to find the IPC group with the highest number
of connections using the row representation of edge groups (see Figure 4.4, right
image). While the saturation of edge bundles already gave a hint to the solution,
still many nodes appeared as potential candidates in this scenario. All participants
found the correct answer, and two were surprised how deceptive the opacity of
bundles was, since no visual difference could be perceived when the amount of
edges exceeded a certain number. Asked about their approach, eight participants
answered that they first used the opacity of edges as a starting point and then the
lens for further inspection.

After completing the two tasks, the test subjects were asked to state their opinion
regarding the usefulness of the technique for edge exploration. All participants
appreciated the proposed interaction mechanism for exploring large graphs. Five
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participants could also imagine to select edges by stretching a user-defined shape
over the edges, i.e. employing traditional brushing interaction, instead of moving
the lens-shaped metaphor. The option to change the size of the lens was used
frequently. Seven participants appreciated that the lens stays visible after a focus
region has been selected. Two other participants disliked the overdraw of the
focus region by the lens and the visual representation of edge groups. The tooltip
was highly valued by all participants. Three participants wanted to move the
tooltip, which was not possible in this scenario. Seven participants stated that
this interaction technique was confusing at first and took some time to get used
to.

As a consequence of this study, metadata based grouping mechanisms were imple-
mented, since users seem to expect a comprehensible, predictable, and repeatable
outcome when grouping edges, which is not guaranteed for geometric grouping
criteria that can also depend on the lens’ relative location to intersecting edges.
In addition, EdgeAnalyzer was extended by the arc wheel and with support for
using multiple lenses. Furthermore, focused edges are always highlighted entirely
by default, meaning that not only the focused part is affected. Non-focused edges
can be hidden on demand to further reduce clutter.

During this study, clearly more insights regarding the tool than the underlying
data set were derived, as was intended for this early stage study, aiming more at
the approach’s usefulness [Greenberg and Buxton, 2008] than at usability or for
determining how much insight could be gained from data analysis. Accordingly,
the tasks were predefined and limited to specific exploratory usage of the tool.
As a result, of course, usability aspects could be addressed afterwards by adding
additional interaction mechanisms as described above.

6.1.5 Classifier Creation

For evaluating the approach of visual interactive classifier creation, it was possible
to choose a more comprehensive method. The evaluation procedure could be
designed in a comprehensive manner, since the tasks to be carried out were much
less demanding and complex as opposed to the analytic possibilities offered by
PatViz. Furthermore, the method for user-steered classifier creation as described
in Section 4.2 is applicable to a broader, almost domain-independent spectrum
of text retrieval scenarios, aiming at improving high-recall search tasks. Another
important aspect was the availability of test data sets with given gold labels, or
data where gold labels could be derived from. Additionally, two extra tools were
developed for carrying out the same analytic tasks in order to compare the visual
interactive approach with two other, more basic techniques. These additional tools
and their functionality are briefly described along with the evaluation setup in the
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next section. Primarily, the user study aimed at finding out whether a classifier
can be trained visually and interactively. Further goals included a comparison
of the tool’s effectiveness with other methods, gaining feedback regarding the
employed tool’s usefulness, and assessing the insights the test subjects could derive
for the tasks. To achieve these results, a task-based user evaluation including two
different tasks and all three alternative methods for classifier creation was carried
out, complemented by think-aloud procedures, questionnaires, and open discussions
with the participants, as described below.

Evaluation Setup and Procedure

For the qualitative evaluation three different data sets were employed, two of
which are well-known and widely-used benchmark corpora with gold labels for text
document classification. In the context of the classifier building task one problem
was to create an artificial information need that fits the existing gold labels of the
corpus. As a consequence, information needs were derived from the gold labels
in the corpus and communicated to the participants to ensure that participants’
labels, applied during the classification procedure, fit the original gold labels.

Through introducing an artificial information need, the comparison of different
participants’ results as well as comparing the approaches’ effectiveness was possible.
This also introduces a problem: When using standard test corpora or tasks and
information needs that do not reflect the participants’ interest in the data, test
subjects are less motivated in carrying out the task — an effect described by Saraiya
et al. [2006]. It can therefore be expected that the reported results would be better
for all methods if text corpora of an analyst’s interest were used in combination
with a real information need.

Three text corpora were used: 20 newsgroups®, Reuters RC'V1, and one corpus that
has been assembled from the abstracts of VisWeek® publications. The 20 newsgroups
corpus (short: 20ng) consists of usenet postings from 20 different newsgroups. The
corpus was assembled by the author of the Newsweeder system Lang [1995] and
has often been used as a benchmark corpus since then. The version applied during
the evaluation was one where duplicates were removed resulting in about 19,000
remaining postings. As the example task for this corpus all computer-related posts
had to be labeled as relevant for classifier training and all others as non-relevant.
The gold labels were created by defining all posts from the comp.* newsgroups as
relevant, and others as non-relevant.

® The corpus itself can be downloaded from the web, e.g. at http://people.csail.mit.edu/
jrennie/20Newsgroups/

6 TEEE VIS (formerly known as VisWeek) is a yearly held major forum for conferences in the fields
of scientific visualization, information visualization, and visual analytics http://ieeevis.org/
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The second corpus is a subset of Reuters RCV1 [Rose et al., 2002] (RCV1). While
the original corpus consists of over 800,000 Reuters newswire articles, a subset of
12,000 documents was chosen for the evaluation to keep the document pool that
each user had to handle at a manageable size. A discussion of scalability aspects,
including the employment of meaningful amounts of documents for classification
training, can be found in Section 5.1.1. All articles in the RCV1 corpus are labeled
according to their topics. For the RCV1 corpus, the task of separating all sports
news articles (relevant) from the other news (irrelevant) was chosen.

The third corpus contains about 1,200 VisWeek abstracts. There are no gold
labels for this corpus, since it was only used for familiarization with the interface.
The exercise task consisted of the identification and labeling of all those abstracts
as relevant that talked about a natural language processing or text visualization
component. As all of the participants had a visualization background, this was
expected to be a rather straightforward task for them.

The documents of each corpus were tokenized and represented as normalized tf-idf
vectors (see Section 2.5.2). Stemming of tokens was omitted to avoid confusing
the participants by displaying terms that are difficult to recognize as regular
words.

In order to carry out a comparative user study two other tools were employed. At
first, a rather basic method was created resembling active-learning-based procedures
usually carried out for NLP labeling tasks (see Figure 6.1). Typically this procedure
is used to produce labeled data sets as a basis for creating classifiers afterwards,
without involving the annotators in the training process or in the assessment of a
trained classifier’s quality. After the initial bootstrapping step, the basic method
presents the most uncertainly classified document to the annotator who must label
it at as relevant or non-relevant to the given task. In case annotators are undecided
regarding the document’s class, they can also reject the document without labeling
it; they are then presented with the second most uncertain document, etc. Each
labeling action automatically entails a subsequent training step. Feedback on the
current classifier’s choice is provided by showing the classifier’s guess on class
membership of the document. Labeling actions continue until test subjects have
the impression that the classifier works adequately enough.

The second method already provides the interface as described in Section 4.2 for
the visual, interactive, user-steered method. It enables participants to explore
the current classifier’s state visually, but enforces the active learning procedure as
described for the basic method. This means that all selection interactions available
in the user-steered method are disabled, the labeling panel is replaced with the
same view shown for the basic method, but without stating the classifier’s guess on
the displayed document’s classification. The classifier history is not available either.
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Figure 6.1 — The interface for the basic method showing just one document at
a time. Users can either label it as relevant, non-relevant, or reject it if they are
unsure to which class it belongs.

The idea of introducing this method was to detect whether the visual feedback
would help users in assessing the quality of a classifier, e.g., to stop the training if
sufficient classification quality was achieved.

The participants for this evaluation were twelve PhD students from the visualization
department. They were asked to create classifiers with two of the three methods.
In order to prevent users from becoming familiar with the data sets, they were
presented different corpora for their first and second task. Additionally, the order of
the methods was permuted to diminish the effect that test subjects become familiar
with the tools, since parts of the different methods are similar. Each combination
of method and labeling task has thus been executed exactly four times by four
different participants in different order.

During the evaluation the participants were encouraged to think aloud about all
aspects of the tool or the task that came to mind. All comments during the
evaluation sessions were recorded on paper. In addition, the participants’ actions
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were observed and interesting behavior, including mistakes and employed strategies
of usage, were logged.

The evaluation procedure for each participant comprised all of the following ten
steps:

i) initial instruction: Participants were instructed about the evaluation process
and informed that they could stop the evaluation at any time and without giving any
reasons for stopping. They were also informed about which data was recorded during
the evaluation sessions and that all of the recordings were fully anonymized.

ii) colorblindness test: Each participant was tested for colorblindness with the
Ishihara color plates. This was necessary because the methods contained red-green
color differences by default, but could be switched to another color mapping if
necessary.

iii) tutorial for the first task: Participants were introduced to the tool for the
first method and received a short tutorial. Afterwards, they were able to use the
tool with the exercise task until they felt confident enough to start the real labeling
task with the next corpus. Questions about the tool or the labeling tasks were
answered at any time.

iv) tool evaluation for the first task: The first task was started. The partici-
pants had a maximum time of 15 minutes to accomplish this task, but they were
also allowed to stop at any time for any reason (e.g. because they were satisfied
with the classifier’s performance or the training did not make any progress).

v) questionnaire for the first task: Participants were asked to complete a
questionnaire about the first task.

vi) - viii): Tutorial, tool evaluation, and questionnaire for the second task.

ix) final questionnaire: Participants were asked to complete a questionnaire
with questions about their age and previous knowledge.

x) comments and discussion: Finally, the two methods and tasks were discussed
with the participants. Each evaluation session took about one to one and a half
hours.

Quantitative Evaluation

In order to compare the classifiers’ performances, predefined queries for each task
were used. The queries were kept constant for each participant and corpus, in order
to guarantee the same starting situation and to explicitly rule out suboptimal start-
ing configurations caused by problematic initial queries. The artificial information
need was presented to the participants in terms of the initial query and in form of
a short task description displayed in each of the three tools.
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’ Corpus \ Initial Query
20ng: computers network motherboard graphics
RCV1: sports baseball basketball tennis game
VisWeek (tutorial): | text

Table 6.1 — The fixed initial queries used for classifier bootstrapping with the
three corpora in the evaluation

Accordingly, all participants started with the exactly same configuration. The
preselected initial queries were as follows:

For measuring the performance of the classifiers trained on the selections of the
participants, each of the corpora was split randomly into an 80% training set and a
20% test set. The evaluation task was performed entirely on the training set. The
smaller test set was used to evaluate the performance of the classifiers with respect
to the gold labels.

Figures 6.2 and 6.3 show the results of the quantitative evaluation for the two
corpora with the three methods. Each of the diagrams depicts the classifier’s
evolution curve’. Hence, each diagram contains four classifier evolution curves of
four different users. The classifier evolution curves generated by the participants are
compared to a random sampling baseline (in blue) and simulated active learning (in
black). The random sampling curve depicts the average evolution (ten simulation
runs) of a learner that randomly picks a document from the training set and
assigns its gold label. The simulated active learning curve has been generated with
the basic method as proposed for interactive systems by Tong and Koller [2000].
The resulting classifiers’ performance was then measured on the test set of the
respective corpus. Simulated learning was realized through a perfect labeler using
the gold labels, in order to have a common baseline which all curves generated
by the participants could be compared to. In contrast to the classifiers’ evolution
curves produced by the participants of the user study, which assigned labels to
documents according to the labeling task assigned to them, some reduction in
performance due to different labeling decisions can be expected. For the simulation
of AL (the black curve in Figures 6.2 and 6.3), the same initial training documents
as for the user evaluations were used to keep the results comparable. All of the
classifier evolution curves are identical up until 100 instances due to using the same
preliminary bootstrapping step in each case, and are therefore cut off below this
border. The dashed black line depicts classification performance when the classifier
is trained with all gold-labeled examples. The dashed line in each of the diagrams

" In the literature such diagrams are known as learning curves. To avoid confusion with users’
learning progress, the term evolution curves is used here in the context of classifiers instead.
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indicates the performance of the classifier when trained on the complete training
set with the gold labels.
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Figure 6.2 — Evaluation results as Fj-scores over labeled instances for the RC'V1
dataset. The upper left diagram shows results for the basic method, the upper
right for the visual method, and the bottom one for the user-steered method.
The dashed, black lines represent the training of the classifier with all available
training instances. The blue lines in each case show 10 averaged classification runs
with random sampling (perfect labeling). The continuous black lines depict the
classifiers’ evolution with a perfect labeler using simulated active learning. All
other curves show results achieved by the test users.

The positive effect in speeding up the creation of a high-quality classifier by applying
active learning can be clearly perceived from all diagrams with the exception of
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Figure 6.3 — Evaluation results as Fj-scores over labeled instances for the 20ng

dataset. The curves in the diagrams are to be interpreted analogously to Figure 6.2.
Upper left: basic method; upper right: visual method; bottom: user-steered
method.

the diagram for the 20ng task with the user-steered Method in Fig. 6.3. It is thus
possible to effectively train an ISVM with all three methods producing comparable
results. Taking a look at the best results achieved during the evaluation, the
research question, whether it is possible to train high quality classifiers with an
visual analytics approach, can be answered positively.

Classic active learning and the user-steered method learn slower on the 20ng task
compared to RCV1, which is due to the greater diversity of the relevant class in the
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’ task \ basic method \ visual method \ user-steered method \ all docs ‘

RCV1 0.97 0.94 0.96 0.96
20ng 0.80 0.79 0.80 0.94
Table 6.2 — The shown performance values are measured in Fy, the all docs

column specifies the performance of a classifier trained on all gold-labeled documents
of the training set.

20ng corpus. The evaluation indicates that methods with lower degrees of freedom
in labeling are more robust against labeling actions that have a severe impact on
the trained classifier’s performance.

Examples for such disadvantageous labeling actions can be seen in Fig. 6.3 (user-
steered). Here, user 1, depicted in red, labeled vast amounts of the negatively
classified documents as positive in one training iteration. This resulted in a strongly
skewed classifier. Unfortunately, the undo functionality was not used afterwards,
but other mass labeling actions were performed in order to ‘repair’ the classifier.
This led to over 2,000 labeling actions and a slight improvement ending with an
F7 score of 0.42. User 9 made selections mainly using the term chart view without
much further refinement. This resulted in many incorrectly labeled instances and
thus in a bad classifier performance. Since the number of labeling actions in these
two cases was very high, most of them are cropped in favor of preserving details of
the other participants’ actions. The F; values come back up during subsequent
training rounds, but do not come close to the levels achieved by other users.

What can be clearly learned from these results is that the additional degrees of
freedom the visual analytics approach provides are accompanied by risks of choosing
wrong labeling candidates. This is at least the case for rather good-natured tasks
used in the described evaluation setup. Here, uncritical queries for the bootstrapping
steps were chosen, and an active learning procedure with uncertainty sampling
works well. If many documents are incorrectly labeled due to the initial query,
it can be difficult to create a good classifier without relabeling these documents.
Relabeling documents, however, is not intended in ‘classic’ AL approaches as
applied in the basic and the visual method. In the context of dynamic data
sources, such as blogs and forums, visual verification of the classifier performance
is important. Otherwise, new relevant subtopics that were not encountered during
classifier training are not detected and the need for retraining the classifier cannot
be recognized anyway.

The basic method outperforms the visual and the user-steered method with respect
to efficiency and higher robustness. However, this comes at the cost that users
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cannot judge the quality of the produced classifier very well, which was one aspect
participants complained about most when using the basic method.

Qualitative Evaluation

Qualitative feedback was requested from the users through a questionnaire on
an optional basis after they carried out each evaluation task. The first part of
the questionnaire contained questions of the standard NASA-TLX test [Hart and
Stavenland, 1988] for measuring the task load on the participants. Other questions
asked about the participants trust in the classifier, why participants stopped
the training, and the usefulness of the methods’ views. The final questionnaire
requested information on the participants’ age, gender, and their expertise in using
web search engines, machine learning, using interactive visualizations, and carrying
out information finding tasks.

No correlation could be found between the performance of the trained classifier
and the level of participants’ experience in machine learning. This could be seen as
a first indication that all three tested methods can be used successfully by machine
learning non-experts. The 20ng corpus labeling task turned out to be more difficult
than the RCV1 task, which was reflected in the test subjects’” answers. Furthermore,
the participants had higher trust in the classifiers built for RCV1, independent of
the applied method, and they reported lower workload as well. Task complexity
obviously plays a bigger role than the employed method.

Most of the participants stopped training because the time limit was reached. The
classification view was rated as being most beneficial for the task, followed by the
detail view. Some users found the term chart view helpful, while others hardly
ever used it. The interaction mechanism provided with the term lens was regarded
as equally helpful by the test subjects.

The affiliation of the test persons as well as their expertise in computer science and
visualization may raise questions regarding their representativeness. In addition
to their experience in the field of visualization, they matched the scheme of being
specialists in their field, and should have some familiarity with recall-biased retrieval
problems such as related work search. However, it became obvious through the
participants’ questions and loudly spoken thoughts that not all of them were able
to develop a meaningful interaction workflow for training a classifier with the
user-steered method. It could be observed that some participants were still learning
and exploring certain aspects of the tools while carrying out the tasks for the
visual and user-steered method. This might be a possible reason for the two quite
unsuccessful attempts in training the ISVM with the user-steered method (see
Figure 6.3). These findings indicate that the learning curve to successfully exploit
this method is high.



6.2 e Discussion 157

Further comments indicate that inspecting a considerable number of documents
sequentially, as required with the basic method, is tiring, and that the participants
are getting inattentive quickly. Two of them even reported physical load in the
TLX questions and mentioned eyestrain and weariness in the later discussions.
Getting visual feedback is preferred by most of the participants.

In summary, most participants achieved good classification performance. Since
almost all of them used the whole 15 minutes for their labeling tasks, the number
of labeled instances in the diagrams shows that participants were faster using the
basic method. The influence of a task’s difficulty on the amount of labeled instances
can be seen in Figures 6.2 and 6.3, when comparing the results of the RCV1 task
and the 20ng task. It is likely that the time planned for the tutorial was insufficient
for mastering the complexity of the user-steered method. This has an additional
negative influence on the number of labeling actions. Better user training would
most probably diminish this influence.

6.2 Discussion

The different evaluations of the presented approaches revealed benefits regarding
analytic effectiveness but also flaws. Both are summarized and discussed in the
following.

6.2.1 PatViz

On the one hand, the flexibility and implicit functionality provided by the developed
prototype is difficult to comprehend if users start working with the system without
previous instruction. To some extent, this problem can be reduced by providing
appropriate context-sensitive help systems. On the other hand, a powerful and
flexible demonstration prototype that facilitates diverse patent analysis tasks
was created. This fact has been recognized by the test users and was positively
emphasized by them during the test sessions. The main contributions of PatViz
are the visual representation of queries to address different retrieval back-ends,
the result set views that allow for an advanced visual form of faceted browsing,
while still preserving context, and the selection management and filtering approach.
In combination, these techniques support a variety of interactive feedback loops
required for a coherent and powerful analysis environment and suitable to leverage
human information discourse. In particular the possibility that insights gained
during analysis can be directly exploited in subsequent query iterations has the
potential to be useful for other text retrieval scenarios. The selection management
approach has already been successfully exploited in different visual analytics
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prototypes and always led to an increase of analytic power, besides offering a coarse
form of provenance recording.

6.2.2 EdgeAnalyzer

The approach presented with EdgeAnalyzer is specifically interesting to explore
complex visualizations containing a large number of visual elements. Its application
within PatViz, however, has to be seen critically, since it deviates from other views
regarding increased interaction complexity. One aspect is the break in conformity
with respect to integrating two almost opposite approaches with overview+detail
plus brushing&linking in multiple coordinated views and a focus+context technique
within one of these views. No evaluation has been carried out to detect correspond-
ing negative effects, but from the feedback received from patent specialists for the
PatViz interface, it can be deduced that patent analysts need quite some training
to use interactive visual tools efficiently. Offering sophisticated interaction facilities,
such as with EdgeAnalyzer, adds further complexity and would most probably
require an extended training phase.

However, the approach itself provides a powerful interaction mechanism and can be
applied to many different scenarios where relational connection of data attributes
is expressed with visual links or edges. It further replicates some aspects of the
selection management a filter approach on an intra-visualization level through the
employment of advanced and stacked filters, and the support of multiple lenses
for the combination of findings and selections. In scenarios where an explorative
approach for rather dense, link-based views is needed, it can be a useful add-
on.

6.2.3 Classifier creation

The evaluation as carried out above showed that the basic method tends to be
more robust regarding the quality of the trained classifiers in comparison to the
suggested visual interactive procedure. However, user-steered classifier creation
offers a variety of benefits that could not be addressed adequately in the user
study presented above. In the evaluation, users only had to deal with well-selected,
unproblematic initial classifiers. Depending on the task and predefined query this
cannot be guaranteed in general. While the bootstrapping step through a user-
defined key term search is suitable to leverage the creation of an initial classifier,
it also poses risks. The initial query should be carefully created to achieve high
precision. Otherwise there is a chance that a considerable number of non-relevant
documents will be wrongly labeled as relevant. This results in displaying them as
regular training data, possibly even far away from the decision border. If many
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documents are incorrectly labeled due to the initial query, it can be difficult to
create a good classifier without relabeling these documents. Relabeling documents,
however, is not possible in ‘classic’ AL approaches as applied in the basic and
visual methods that were used during the evaluation.

Similarly, a query with low recall can lead to false negative training examples
displayed in the same way as false positives on the other side. Depending on the
document set to be classified and the concrete query formulation, this however gets
more unlikely if the selectivity of the query is low and/or the document collection
is huge.

Furthermore, visual control and corrective actions are important in the context of
dynamic data sources, such as (micro)blogs and forums. Otherwise, new relevant
subtopics, that were not encountered during classifier training, are not detected
and the need for retraining the classifier cannot be recognized. Situations might
arise where a set of documents cannot be classified according to an analyst’s needs
at all. Such situations are hard to detect without visual feedback as well.

Until now the approach for visual classifier creation is realized as a separate software
prototype. If it were to be used as part of larger systems, e.g., such as PatViz, a
variety of architectural considerations would have to be taken into account. As
described in Section 5.1, it is reasonable to organize large information retrieval
systems into several distributed layers. The communication channels between
visual front-end and the system’s back-end interfaces are used to send queries and
retrieve the corresponding results. However, such systems are usually not designed
to integrate user-defined retrieval methods in the back-end.

Even if the overall complexity is considerably lower than with PatViz, the created
prototype showed similar problems during evaluation as encountered there. While
it could be handled effectively by some users during the evaluation, they had to
understand the tool and develop useful workflows. In this case, there is no break
with conventions, because analysts are not confronted with classifier training and
assessment for ad hoc tasks at the moment (see next section). Nevertheless, it is
worth pursuing this further, since high-recall searching requires that analysts build
trust in their search methods, and visual feedback as well as interactive methods for
fixing/improving a search method can be a suitable means for achieving this.

6.2.4 General Considerations

A key issue of visual analytics is providing appropriate interactive feedback loops
at different levels of abstraction, leveraging analysis approaches by facilitating
hypotheses testing, and better integration of automatic methods — these are the
most important protagonists of human information discourse. In particular non-
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linear workflows can be supported with such feedback loops as is often the case
with tasks that require human reasoning. The approaches presented in this work all
facilitate such feedback loops, as part of domain-tailored systems like PatViz, but
also within more generic approaches addressing analytic sub-tasks, as shown for
visual classifier creation and the sophisticated interaction mechanisms depicted in
EdgeAnalyzer. As can be seen from the analytic process models in the Figures 2.9,
4.2, and 4.17, the presented approaches follow the aforementioned Shneiderman
mantra “Overview first, zoom and filter, then details-on-demand” [Shneiderman,
1996], or Keim’s adaptation thereof “Analyse First — Show the Important — Zoom,
Filter and Analyse Further — Details on Demand” [Keim et al., 2006] on different
levels of abstraction. The better feedback loops can be integrated with the help
of interaction, the fewer breaks occur within analytic workflows, and the better
analysts are supported in fulfilling their tasks.

However, feedback loops also raise new questions regarding system design and
suitable software architectures. Automatic methods, often employed in earlier
stages of visual analytics pipelines (i.e., on the data source and the aligned data
level as can be found in Figure 2.3), should be made steerable and adaptable for
situations where analytic tasks require such an adaptation. As a consequence, the
integration of automatic approaches and visualization has to be designed tighter,
which can cause conflicts with software engineering principles, such as separation
of concerns, thereby raising new scalability issues (see Section 5.1.1). The larger
the feedback loops are with respect to the stages and steps they are spanning (even
if this would be very advantageous for the analytic workflow), the larger these
problems get. This issue is also related to back-end systems, such as databases and
retrieval systems, that exist in rather standardized form and often do not provide
means to change their settings or working behaviors during analytic tasks. Both
issues are severely hindering scalable visual analytics solutions.

With respect to comprehensiveness of the presented approaches, PatViz is targeted
at the patent domain, while EdgeAnalyzer and user-steered classifier creation are
more flexible, even if they were also presented in the context of patent literature
analysis. Nonetheless, PatViz can be adapted to related domains like searching
for scientific literature and other document retrieval tasks requiring high recall.
In particular the query approach could be applied in many other scenarios. The
other two approaches have fewer constraints regarding their field of deployment.
EdgeAnalyzer can be used for every dense, line-based visualization, as long as a
need for inspecting relational details represented by those lines exists. User-steered
classifier creation can be employed in text retrieval scenarios, where more effort
spent on the retrieval task can be justified by higher quality of the results - either
because the task is worth it, or because it can be reused many times thereafter.
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Both can, again, be integrated into larger analytics systems such as PatViz as has
been described in Chapter 4.

Explicitly depicting found insights and the testing of hypotheses not only in the
model but also visually are key aspects of visual analytics approaches. Including
means enabling analysts to actively construct their analysis is therefore beneficial
for a broad variety of aspects considered to be important for visual analytics
approaches. Such an approach has been presented in this thesis with the selection
management tool as proposed in Section 3.2.9. Constructive analysis instead allows
for externalizing single analytic subtasks in arbitrary sequence, which acknowledges
human reasoning processes, typically not being linear. Letting users connect these
insights through operations results in an analysis graph where combined and higher
level insights can be represented as well. Apart from helping analysts during the
analysis by permitting them to externalize insights to work on a specific subtask
that can later be integrated into the analytic graph, this construct can be used to
support collaboration, history recording, analytic reporting, and probably even user
evaluations of analytic approaches, by comparing the created analytic graphs.

Crouser and Chang [2012] suggest a framework for describing different facets of
human computer collaboration and for assessing the complexity of visual analyt-
ics approaches which facilitate this cooperation, employing an ‘affordance-based’
perspective. The term affordance was originally coined by Gibson [1977] and was
transfered to the field of human-computer interaction by Norman [1988] to describe
opportunities for the action an object offers to a human (inter)actor. Crouser and
Chang generalize the term to a set of ‘human affordances’” and ‘machine affordances’
in order to be able to describe the abovementioned collaboration. In a case study
Crouser and Chang come to the conclusion that PatViz provides too many of
these affordances. They see them as the source of PatViz’s problems as identified
in Section 6.1. However, Crouser and Chang mix up affordance with perceived
affordance, constraints, and conventions, at least if they derive their notion of
affordance from Norman’s understanding of it — a misinterpretation that has been
made before by others [Norman, 1999]. Referring to the addition of graphical
interaction elements to a user interface Norman states:

“Usually they [graphic designers] mean that some graphical depiction
suggests to the user that a certain action is possible. This is not
affordance, either real or perceived. [...] Tt is a symbolic communication,
one that works only if it follows a convention understood by the user.”

What Crouser and Chang identify as a problem resulting from too many affordances
in the case of PatViz is rather the fact that it breaks with conventions, to phrase it
in accordance with Norman’s terminology. And it not only breaks with one of them,
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but violates a variety of rules suggested for designing user interfaces in general,
including conformity with user expectations, and self descriptiveness and providing
user guidance (for new and complex views and interaction techniques). These issues
are discussed subsequently in the context of visual analytics approaches.

Conformity with user expectations: To some extent the idea of visual analytics
is to find new ways of leveraging human reasoning capabilities by providing visual
and automatic methods that are combined through interactive means [Thomas
and Cook, 2005]. For situations, tasks, or processes that could not be addressed
before, visual analytics approaches can define the target course and come up with
completely new ways of addressing problems visually, as well as from an interaction
perspective. For already established, hard-to-solve analytic tasks, such as patent
analysis, new ways have to be developed to speed them up, make them more reliable,
or raise the quality of analytic outcomes. What is important in both cases, is that
visual analytics approaches are designed in a task- and process-tailored manner.
The approaches presented in this thesis were developed with task-appropriateness
in mind.

Self descriptiveness: Following Norman’s idea, interactive information visualiza-
tion has to be interpreted as means for symbolic communication as well. Especially
advanced information visualization is not understood by a large number of ‘readers’
and not ‘spoken’ (by interacting with it) either. It does not always ‘follow a conven-
tion understood by the user’ and it is therefore not comprehended automatically by
users - it has to be learned. This is also one of the reasons why new developments
in information visualization take time to reach practical application. The problem
is intrinsic to visualization. Yet visualization also offers the chance to introduce
new ideas, that will be learned by specialists drawing large benefit from them, and
which might become conventional for a broader audience, if they turn out to be
useful to them over time.

Of course, analysts should not be left alone in coping with a new analytic system.
And in the context of visual analytics, it is also important to ensure a careful
trade-off between expert users and casual users. While the effort to learn new
visualizations might pay off for expert users, this might not be the case either
for casual users. Ad-hoc usage of visual analytics systems should offer more
conventional views, that represent ‘common grounds’ and which are more easy to
learn.

PatViz does account for self-descriptiveness by providing tooltips for visual items
and employs descriptive labels where possible to reduce this gap, but does, for
instance, not provide online help as would be necessary for a regular product. This
brings up the topic of user guidance.
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User guidance: Whether the sensemaking loop as described by [Pirolli and Card,
2005], Keim’s model for depicting visual analytics approaches, or the extension
of Card’s information reference model as suggested in this thesis (see Section 2.4)
is used to describe visual analytics processes and approaches, all have one aspect
in common: they are highly flexible with respect to the analytic paths that can
be followed, and they rely on exchanging data in between all modules involved in
architectural models. It would be a great mistake to reduce analytic flexibility of
such systems in general, since this would force users into analytic paths they might
not want to follow.

In PatViz, user guidance was addressed by introducing the measures described in
Section 5.1.4, in order to account for certain analytic setups or to support lay users,
but it also provides the flexibility to address all feedback loops that are necessary
for effective patent search and analysis. Visual analytics approaches will always
have to be developed under the conflicting priorities discussed above.

There is also no doubt that an approach such as PatViz can be improved into many
directions. However, the approach provides advances over the state of the art,
since otherwise, patent experts would not have appreciated the feedback loops it
provides. For evaluating new approaches and addressing existing analytic problems
this poses a problem, since experts from the field will always be confronted with
‘unfamiliar territory’. As a consequence, learning curves for such systems can be
steep - a fact that should not be omitted if presenting visual analytics approaches
for complex scenarios®.

If aiming at commercializing new ideas for problem domains with already existing
solutions, it is therefore wise to follow the guideline ‘evolution instead of revolution’
and try to keep old workflow patterns while also offering new ones. To some extent
this has been realized with PatViz, that offers some well-known views and options,
such as textual Boolean query definition, list-based result set views, and classical
detail views, but also provides a variety of alternatives, regarding visual methods,
interaction techniques, and alternative workflows. In the case of PatViz, traditional
views were integrated to explain alternatives to patent experts and in order to
kick-start evaluation tasks. Through the linkage of traditional and new views,
additional synergetic effects are achieved, that were positively acknowledged by
domain experts (see Section 6.1.3).

8 Patent examiners, e.g. from the EPO, need to have a university degree in a technical field, speak
at least the three European languages English, French, and German, and undergo intensive
training during their first years of employment. This indicates that the learning curves for
traditional patent analysis are high as well.






CHAPTER

Outlook

This thesis presented and discussed visual analytics approaches for patent search
and analysis and related tasks. The described approaches take effect at different
levels of granularity and abstraction.

The PatViz system spans the whole patent analysis process, focusing on iterative
refinement of search queries and analytic feedback loops, which facilitate the transfer
of insights made during the analysis back into earlier stages of the process. The
approach aims, in particular, at increasing patent analysts’ trust in their created
search statements, which is one of their primary requirements to counteract the
economic risks they are faced with. The high risk levels inherent to this industry
and the associated desire to trust the analysis are more than ever visible in the
ongoing ‘Patent War’ in the mobile industry'. The trust building in PatViz is
based on the interactive visual exploration of result sets, the derivation of insights
from these sets, the combination of these insights, and their re-integration for
improving search and analysis. However, still much effort is needed to improve
patent research further. While PatViz supports search and analysis on the process
level, taking into account patent metadata and content as well, the extraction
of patent content must be a main concern for future research within this field.
Still, understanding and assessing the complex patent content is an extremely
time consuming task. Progress in this direction will also leverage better and more
precise retrieval approaches, and has the biggest potential to speed up patent
analysis and to make it more reliable. With user-steered classifier creation, one

! http://en.wikipedia.org/wiki/Patent_war
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such promising, scalable approach was presented in this thesis. Future directions
in intellectual property analysis also include the detection of emerging trends
and finding promising areas where new developments and, consequently, patent
applications could be directed. Again, visual analytics approaches seem to offer
the ingredients needed to find such uncharted waters.

Research in the field of information retrieval and its tight, seamless integration into
analytic tasks are one of today’s big challenges taking into account the enormous
amounts of digital documents produced. In this broader context, PatViz and the
presented user-steered classifier creation technique contribute visual, interactive
workflows and the integration of automated methods with human reasoning capa-
bilities, thereby forming new visual analytics approaches to address this goal.

Currently employed (web) search approaches aim at increasing automation and
personalization to guess what (casual) users are looking for based on their search
behavior. A discussion is starting [Pariser, 2011] whether this restricts users to
‘personal ecosystems of information’ and how severe such effects are. As a conse-
quence of this discussion, demands for more transparency on search results spring
up. Visual analytics approaches are potentially suitable to provide and increase this
transparency. In particular, this requires methods for capturing provenance and
analytic reporting. Promising ideas on how such an expansion can be achieved with
minimal additional effort required on the part of the analyst have been proposed in
this thesis. However, there are obstacles to be overcome if such approaches are to
find broad application. These include technical ones, such as scalability problems
arising from close integration of visual and automatic techniques, but also factors,
such as steadily increasing economic interests, availability of regulatory restrictions,
etc.

Transparency of electronic transactions is generally becoming more important
nowadays. Government institutions, companies, journalists, and scientists base
their conclusions and decisions on the analysis of electronically available information.
At some point, these decisions are likely to be the objective of assessment — be it
in the context of law suits, as is the case with patents, ensuring compliance with
the law and constitution, or compliance with scientific or institutional rules. At
the same time large amounts of private information is passed to governments and
companies, or is deliberately disseminated, and often becomes accessible through
the Internet, which raises privacy concerns. Again, the data and the process of
analysis on which a decision was based on will shift the balance here. If visual
analytics approaches are going to be employed as the basis for important decisions
of this kind, analytic provenance must be accessible as a basis for critical review
and inspection. However, provenance alone, as presented in this work, will not be
sufficient in such situations. Uncertainty of information regarding the automatic
procedures employed to derive it from underlying data and facts, correctness of
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visual representation, as well as the validity of human analytic reasoning based on
their interpretation, will have to be assessed as well.

Taking this train of thought further, the aim of these efforts should be to achieve
accountability [Weitzner et al., 2008]. In order to accomplish accountable analyses,
considering only the abovementioned measures might not be sufficient. The visual
analytics technique itself, in the version it was used to carry out the analysis,
plus the data the analysis was based on, both also have to be preserved for
later confirmability. Given the contemporary availability of cheap digital storage
space, storing the visual analysis tool, the involved data, and analytic provenance
information together for later examination might come into reach.

Since the analytic processing of big data becomes available, visual analytics will
provide insights into (public) data in unprecedented detail and with negligible effort.
It is to be hoped that the visual analytics community also takes into account the
responsibilities that arise from the ability to make big data analytically available,
and that it considers its consequences.
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