Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14054
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorWeiss, Matthias-
dc.contributor.authorStaudacher, Stephan-
dc.contributor.authorMathes, Jürgen-
dc.contributor.authorBecchio, Duilio-
dc.contributor.authorKeller, Christian-
dc.date.accessioned2024-03-13T16:07:23Z-
dc.date.available2024-03-13T16:07:23Z-
dc.date.issued2022de
dc.identifier.issn2075-1702-
dc.identifier.other188343601X-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-140735de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14073-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14054-
dc.description.abstractCurrent state-of-the-art engine condition monitoring is based on a minimum of one steady-state data point per flight. Due to the scarcity of available data points, there are difficulties distinguishing between random scatter and an underlying fault introducing a detection latency of several flights. Today’s increased availability of data acquisition hardware in modern aircraft provides continuously sampled in-flight measurements, so-called full-flight data. These full-flight data give access to sufficient data points to detect faults within a single flight, significantly improving the availability and safety of aircraft. Artificial neural networks are considered well suited for the timely analysis of an extensive amount of incoming data. This article proposes uncertainty quantification for artificial neural networks, leading to more reliable and robust fault detection. An existing approach for approximating the aleatoric uncertainty was extended by an Out-of-Distribution Detection in order to take the epistemic uncertainty into account. The method was statistically evaluated, and a grid search was performed to evaluate optimal parameter combinations maximizing the true positive detection rates. All test cases were derived based on in-flight measurements of a commercially operated regional jet. Especially when requiring low false positive detection rates, the true positive detections could be improved 2.8 times while improving response times by approximately 6.9 compared to methods only accounting for the aleatoric uncertainty.en
dc.description.sponsorshipGerman Federal Ministry of Economic Affairs and Energy (BMWI)de
dc.language.isoende
dc.relation.uridoi:10.3390/machines10100846de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.titleUncertainty quantification for full-flight data based engine fault detection with neural networksen
dc.typearticlede
dc.date.updated2023-11-14T00:11:36Z-
ubs.fakultaetLuft- und Raumfahrttechnik und Geodäsiede
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Luftfahrtantriebede
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten17de
ubs.publikation.sourceMachines 10 (2022), No. 846de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
machines-10-00846-v2.pdf3,44 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons