Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14268
Autor(en): Polukhov, Elten
Titel: Multiscale modeling and stability analysis of soft active materials : from electro- and magneto-active elastomers to polymeric hydrogels
Erscheinungsdatum: 2023
Verlag: Stuttgart : Institute of Applied Mechanics
Dokumentart: Dissertation
Seiten: x, 237
Serie/Report Nr.: Publication series of the Institute of Applied Mechanics (IAM);15
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-142875
http://elib.uni-stuttgart.de/handle/11682/14287
http://dx.doi.org/10.18419/opus-14268
ISBN: 978-3-937399-63-8
Zusammenfassung: This work is dedicated to modeling and stability analysis of stimuli-responsive, soft active materials within a multiscale variational framework. In particular, composite electro- and magneto-active polymers and polymeric hydrogels are under consideration. When electro- and magneto-active polymers (EAP and MAP) are fabricated in the form of composites, they comprise at least two phases: a polymeric matrix and embedded electric or magnetic particles. As a result, the obtained composite is soft, highly stretchable, and fracture resistant like polymer and undergoes stimuli-induced deformation due to the interaction of particles. By designing the microstructure of EAP or MAP composites, a compressive or a tensile deformation can be induced under electric or magnetic fields, and also coupling response of the composite can be enhanced. Hence, these materials have found applications as sensors, actuators, energy harvesters, absorbers, and soft, programmable, smart devices in various areas of engineering. Similarly, polymeric hydrogels are also stimuli-responsive materials. They undergo large volumetric deformations due to the diffusion of a solvent into the polymer network of hydrogels. In this case, the obtained material shows the characteristic behavior of polymer and solvent. Therefore, these materials can also be considered in the form of composites to enhance the response further. Since hydrogels are biocompatible materials, they have found applications as contact lenses, wound dressings, drug encapsulators and carriers in bio-medicine, among other similar applications of electro- and magneto-active polymers. All above mentioned favorable features of these materials, as well as their application possibilities, make it necessary to develop mathematical models and numerical tools to simulate the response of them in order to design pertinent microstructures for particular applications as well as understand the observed complex patterns such as wrinkling, creasing, snapping, localization or pattern transformations, among others. These instabilities are often considered as failure points of materials. However, many recent works take advantage of instabilities for smart applications. Investigation of these instabilities and prediction of their onset and mode are some of the main goals of this work. In this sense, the thesis is organized into three main parts. The first part is devoted to the state of the art in the development, fabrication, and modeling of soft active materials as well as the continuum mechanical description of the magneto-electro-elasticity. The second part is dedicated to multiscale instabilities in electro- and magneto-active polymer composites within a minimization-type variational homogenization setting. This means that the highly heterogeneous problem is not resolved on one scale due to computational inefficiency but is replaced by an equivalent homogeneous problem. The effective response of the macroscopic homogeneous problem is determined by solving a microscopic representative volume element which includes all the geometrical and material non-linearities. To bridge these two scales, the Hill-Mandel macro-homogeneity condition is utilized. Within this framework, we investigate both macroscopic and microscopic instabilities. The former are important not only from a physical point of view but also from a computational point of view since the macroscopic stability (strong ellipticity) is necessary for the existence of minimizers at the macroscopic scale. Similarly, the investigation of the latter instabilities are also important to determine the pattern transformations at the microscale due to external action. Thereby the critical domain of homogenization is also determined for computation of accurate effective results. Both investigations are carried out for various composite microstructures and it is found that they play a crucial role in the response of the materials. Therefore, they must be considered for designing EAP and MAP composites as well as for providing reliable computations. The third part of the thesis is dedicated to polymeric hydrogels. Here, we develop a minimization-based homogenization framework to determine the response of transient periodic hydrogel systems. We demonstrate the prevailing size effect as a result of a transient microscopic problem, which has been investigated for various microstructures. Exploiting the elements of the proposed framework, we explore the material and structural instabilities in single and two-phase hydrogel systems. Here, we have observed complex experimentally observed and novel 2D pattern transformations such as diamond-plate patterns coupled with and without wrinkling of internal surfaces for perforated microstructures and 3D pattern transformations in thin reinforced hydrogel composites. The results indicate that the obtained patterns can be controlled by tuning the material and geometrical parameters of the composite.
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Dissertation_EPolukhov.pdf31,37 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.