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Kurzfassung

Application Performance Management (APM) beschäftigt sich mit der Performanz von
Anwendungen. Beim Application Performance Monitoring wird das Verhalten der Soft-
ware mithilfe eines Programms, im folgenden Agent genannt, überwacht. Der Agent
sammelt bei der Ausführung der Anwendungssoftware im Hinblick auf Performanz
relevante Daten, die ausgewertet werden können. Zum Beispiel werden Methoden
instrumentiert, sodass bei der Ausführung der Methode Daten gesammelt werden kön-
nen. Typische Beispiele für solche Daten sind die Antwortzeit oder die Prozessorzeit
einer Methode. Es existieren viele APM-Werkzeuge, die einen solchen Agenten zur
Verfügung stellen. Moderne Tools bieten Monitoring an und können Warnungen aus-
sprechen, jedoch bieten sie keine Ursachenanalyse an. Die NovaTec Consulting GmbH
[NTC16b] und die Universität Stuttgart (Abteilung Reliable Software Systems) entwic-
keln aus diesem Grund das diagnoseIT [dIT15], um Probleme bezüglich Performanz
in Anwendungssoftware systematisch zu erkennen und zu analysieren. Die Ergebnisse
von diagnoseIT werden dem Benutzer in Form eines Berichts präsentiert. Um dem
Benutzer konkrete Lösungsvorschläge für Probleme im Bericht bereitzustellen, befasst
sich ein Teil der Analyse von diagnoseIT mit der Erkennung von Software Performance
Anti-Patterns [ap00]. Ein Performance Anti-Pattern beschreibt einen häufig getätigten
Fehler bei der Implementierung einer Software, welcher eben zu Problemen in der
Performanz führt. Da die Fehler häufig auftreten und somit bekannt sind, können hierfür
konkrete Lösungsvorschläge bereitgestellt werden. Um die Anti-Patterns automatisch in
gesammelten Daten zu erkennen, benutzt das diagnoseIT eine Rule Engine. Eine Regel
kann dabei ein Anti-Pattern repräsentieren, indem sie die gesammelten Daten mit den
Merkmalen des Anti-Patterns vergleicht. Entdeckt eine Regel ein Anti-Pattern, so kann
die Analyse automatisch entsprechende Lösungsvorschläge bereitstellen [HHO+15].
Da diagnoseIT bisher nur wenige Regeln besitzt, um Anti-Patterns zu erkennen, fügen wir
diagnoseIT in dieser Bachelorarbeit weitere Regeln hinzu, um entsprechend Anti-Patterns
zu erkennen. Bisher war es diagnoseIT zudem nicht möglich Anti-Patterns zu erkennen,
die mit der Zeit sichtbar werden, weil diagnoseIT keine Möglichkeit hatte, Daten zu
speichern. Wir erweitern diagnoseIT in dieser Bachelorarbeit darum um eine spezielle
Datenbank, sodass auch Anti-Patterns erkannt werden können, die sich eventuell erst in
einem längeren Beobachtungszeitraum von Performanz-Daten herauskristallisieren. Die
abschließende Evaluation dieser Arbeit zeigt, dass die entwickelten Regeln Anti-Patterns
richtig erkennen. Jedoch zeigt die Evaluierung auch Grenzen der Regeln auf, die in
manchen Fällen zu falschen Resultaten führen.

iii





Abstract

Application performance management (APM) deals with performance issues within
applications. With application performance monitoring the software’s behaviour is
investigated with the help of a program, in the following called agent. When the
applications software runs, the agent collects performance-relevant data, which can be
evaluated. For example, methods get instrumented, so that data can be collected, when
the method is executed. Typical examples for such data are the response time or the
CPU time of a method. There are many APM tools, that provide such an agent to collect
performance data. Modern tools provide monitoring and alerting, but not root-cause
analysis. Therefore, the NovaTec Consulting GmbH [NTC16b] and the University of
Stuttgart (Reliable Software Systems group) are developing the diagnoseIT [dIT15] to
systematically detect and analyze performance problems in applications software. The
results of the diagnoseIT analysis are summarized in a report, which is then presented
to the user. To provide concrete approaches for a solution concerning a performance
problem within the monitored software, one part of the diagnoseIT analysis deals with
detection of software performance anti-patterns [ap00]. A performance anti-pattern
describes a frequently made mistake, when implementing a software and which results
in performance problems. Because the mistake is made often and well known, concrete
approaches for a solution can be proposed. To detect anti-patterns in collected data,
diagnoseIT uses a rule engine. Thereby, a rule can represent an anti-pattern by comparing
the collected data with the characteristics of the anti-pattern. When a rule detects an
anti-pattern, the diagnoseIT analysis automatically can provide concrete solutions for a
performance problem [HHO+15].
In its current state, diagnoseIT has only a few rules to detect anti-patterns. So in this
bachelor thesis, we add more rules to the diagnoseIT to detect other performance anti-
patterns. Also, diagnoseIT has no possibility to detect anti-patterns, that get visible over
time, because it has no possibility to save data. Therefore, in this bachelor thesis, we
extend the diagnoseIT analysis with a special database, so that performance anti-patterns
can be detected, which become visible in a longer observation period of performance
data. The concluding evaluation of this work shows, that the implemented rules correctly
detect anti-patterns. However, the evaluation also identifies limitations of the rules, that
lead to wrong results in some cases.
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Chapter 1

Introduction

This thesis presents an approach for rule-based detection of software performance anti-
patterns (SPAs) [ap00], that are manifested within an applications software. Using the
rules, the anti-patterns will be detected automatically.

The intention of this introduction is to clarify, why such an approach is needed. For
this purpose, the chapter starts with a short motivation in Section 1.1. The next part,
Section 1.2, names the goals of this thesis. An overview of the approach of this thesis is
described in Section 1.3 and finally, in Section 1.4, some notations for this thesis are
described and the document organization is presented.

1.1. Motivation

Application performance management (APM) provides solutions for monitoring applica-
tions to detect performance problems. Performance problems in an enterprise system
can have a huge negative impact on the success of the enterprise. A little increase in
page load time of the system can decrease sales drastically. Therefore, it is a necessity to
detect performance problems as early as possible, at best before they affect end users
[Wer15].

Many APM tools have been developed to tackle this problem. An APM tool tracks steps
in executions of the monitored application and collects performance data. However,
most of the existing APM tools only provide alerting and visualization of performance-
relevant measures, not showing the root cause of the problem. There are experts with
the required knowledge for the analysis of performance problems, but because they are
rare, they are costly and their evaluation of performance problems can be very time
consuming and can be wrong. Enterprises could try to setup APM by themselves, but
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1. Introduction

the initial setup and maintenance of APM is error-prone and frustrating manual task,
which again requires experience and expertise.

The main task of diagnoseIT [dIT15] is to systematically detect and diagnose perfor-
mance problems using formalized expert knowledge. The formalized expert knowledge
allows diagnoseIT to automatically execute recurring APM tasks, like the configuration
of a meaningful software instrumentation. Based on performance problem diagnosis,
diagnoseIT also offers the possibility to isolate root causes of detected problems. The
analysis results are provided to the user in the form of a comprehensive report, so that
even non-experts can take advantage of the diagnoseIT. The report contains both, quali-
tative and quantitative information. The qualitative results contain, e.g., the problem’s
location, its type, and the matching performance anti-pattern for this problem, whereas
the quantitative information hold the impact of the problem in numbers, e.g., response
times or CPU times. As a part of the qualitative information presented to the user, SPAs
have to be detected through the diagnosis to provide the user with appropriate solutions
to achieve an increased application performance. The automated diagnosis of these
anti-patterns is designed as follows: The expert knowledge contains possible symptoms
for performance problems. These symptoms are defined as an extensible set of rules.
Thereby, a rule can define symptoms for anti-patterns. When diagnoseIT receives a trace
to analyze, it automatically starts applying one rule after another on that trace to get
insights. An anti-pattern can be detected, when the analyzed data matches the defined
symptoms of a rule [HHO+15]. However, diagnoseIT, in its present condition, has no
sufficient amount of rules and thus can detect only few anti-patterns. So the main goal
of this thesis is to develop further concepts and rules to detect SPAs in execution traces.
Furthermore, as diagnoseIT has no possibility to detect performance anti-patterns, which
become visible in a longer observation period of performance data, this thesis proposes
a concept to extend the diagnoseIT, so that particular data from execution traces can be
saved and then a sequence of data can be analyzed.

There are already existing works for detecting anti-patterns, but none of them specializes
on anti-pattern detection by analyzing runtime data that agents from APM tools collected,
when the monitored system was executed. The commonly used approach for detecting
SPAs is static code analysis. The problem is, for example, that the code to analyze
could not be available. Further works in this area specialize, for example, more on a
model-based detection approach for anti-patterns by analyzing the software architecture
[Tru11]. Approach by Wert uses experiments to systematically detect performance
anti-patterns in systems [Wer15], but not considering runtime production data.
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1.2. Goals

1.2. Goals

The goals of this thesis were defined earlier in a proposal submitted in June 2016. The
results for each goal will be documented. The goals are listed again in the following.

Evaluation of diagnoseIT and the OPEN.xtrace: The first goal of this thesis is to
evaluate the diagnoseIT and the OPEN.xtrace [OHH+16] approach. The OPEN.xtrace
can be seen as a universal data format diagnoseIT can analyze. Therefore, every trace,
which should be analyzed by diagnoseIT, first has to be converted into the OPEN.xtrace
format. So only the metrics the OPEN.xtrace provides will be used in the diagnoseIT
analysis. Therefore, the OPEN.xtrace has to be investigated to find out, which metrics
are accessible. Furthermore, since diagnoseIT uses a rule engine for its analysis, it has
to be investigated, how the rule engine analyzes execution traces.

Access history data in diagnoseIT: One further goal is to find a way to access history
data in diagnoseIT, since there are anti-patterns, that become visible over a longer
observation period. That means, for some anti-patterns, it is not sufficient to investigate
a single trace, but a sequence of more traces is needed to detect the anti-pattern.

Anti-pattern research: The next goal of this thesis is to research, which SPAs exist,
how they can be detected, and what data has to be visible for extracting the anti-pattern.
Furthermore, deciding if the anti-pattern can be detected with the current diagnoseIT
implementation and the available data in the OPEN.xtrace, is also an important objective
of this thesis.

Developing concepts and rules: Since diagnoseIT uses a rule engine for its analysis,
the anti-patterns have to be detected by applying rules to the analyzed traces. However,
the concepts for detecting anti-patterns in single traces and anti-patterns, that need
historical data, differ. This is why new concepts for detecting anti-patterns have to be
developed. The rules based on the developed concepts have to be implemented in Java
code.

Evaluation of the implementation: After prototyping the concepts and rules, the
implemented rules will be systematically tested on problematic traces to evaluate the
false positive and false negative rate of the rules. Therefore, the rules have to be applied
to several traces generated using an example application, in which some of them the
anti-pattern is manifested and in some not.

3



1. Introduction

1.3. Overview of the Approach

In this thesis, the diagnoseIT approach is split into three parts. The first analysis approach
dedicates itself to anti-patterns, that can be detected by analyzing a single execution
trace. This approach is called detection based on trace data. The second analysis part
is for anti-patterns, that cannot be detected by analyzing a single trace, and the analysis
of more traces is needed to detect them. Therefore, trace data is saved into a time
series database (TSDB). By investigating the time series data for inconsistencies, the
diagnoseIT analysis can detect anti-patterns. The approach for detecting anti-patterns
from time series data is called detection based on time series. The last part of the
analysis is a combined approach. Thereby, when detecting inconsistencies in the time
series data, a problematic data point can be assigned to a trace. This trace can then be
analyzed further. The third approach is called detection using combined approach.

1.4. Document Organization

This section is for describing the typographical conventions in this thesis and for presen-
ting the document structure.

1.4.1. Formalia

To better highlight certain parts of this thesis, the following typographical conventions
are introduced:

Paragraphs, column names and important words: When a paragraph starts, the
name of the paragraph is highlighted in bold. Furthermore, column names of tables and
important words are highlighted in bold.

Example names: Names for entities or methods in an example are highlighted in italic.

Implementation parts and class diagram entities: Implementation parts are in
typewriter font. Words, that are used in a implementation, are also in typewriter

font. These include, for example, class names and method names. Furthermore, class
diagram entities, as they are also used for implementation, are in typewriter font.
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1.4. Document Organization

[References]: Whenever referring to foreign works like papers or referring to web
pages, a reference is used, which is linked to an entry in the bibliography, where you
can find more details about that reference.

1.4.2. Synonyms

In this thesis, for two terms synonyms are used. These are listed in Table 1.1.

Term Synonym(s)

Software performance anti-pattern
Performance anti-pattern
Anti-pattern

Execution trace Trace

Table 1.1.: Synonyms

1.4.3. Structure

This thesis is structured as follows:

Chapter 2 – Foundations and State of the Art: In this chapter, the foundations for
this thesis are described. The important terminology for this thesis is explained,
and a short introduction to SPAs is provided. Also, related work according to this
thesis is presented. The related work deals with the anti-pattern detection. The
chapter ends with presenting the state of the art, where the diagnoseIT and the
OPEN.xtrace are covered, and an introduction to time series databases and the
InfluxDB [inf16a] is provided.

Chapter 3 – Rule-based Approach of Anti-Pattern Detection This chapter introduces
the various performance anti-patterns, that are considered in this thesis and
assigns the anti-patterns to one of the proposed detection approaches, that were
introduced in Section 1.3. In this chapter, we also present anti-patterns, that
cannot be detected with the current state of the diagnoseIT and the available data
in the OPEN.xtrace. Furthermore, the diagnoseIT rule engine is described in more
detail and the schema for implementing rules to detect anti-patterns is presented.

Chapter 4 – Detection based on Trace Data In this chapter, we deal with the first ap-
proach for anti-patterns, which can be detected by analyzing a single execution
trace. We develop concepts and rules to detect the anti-patterns. The rules are
implemented using Java [Ora16] and a detailed description of the implementation
is provided.

5



1. Introduction

Chapter 5 – Detection based on Time Series This chapter describes the second ana-
lysis approach. The second approach is for anti-patterns, that become visible
over a longer observation period. For this purpose, the diagnoseIT is extended
with a TSDB. The approach is applied to particular anti-patterns, that can now be
detected using this approach. We develop concepts and rules for the anti-pattern
detection and also implement the rules in Java code.

Chapter 6 – Detection using combined Approach Combining the first two analysis
approaches leads to the third analysis approach, that is described in this chapter.
The approach links time series data to a corresponding trace, that can then be
further analyzed. We apply this approach on two anti-patterns. We develop
concepts and rules for the anti-pattern detection and also implement the rules in
Java code.

Chapter 7 – Evaluation This chapter presents results of the evaluation of the anti-
pattern detection implementation. The evaluation goals are described and how
the experiment will be executed. The experiment results are provided and finally
discussed.

Chapter 8 – Conclusion The conclusion of this thesis sums up the outcomes of this
thesis and outlines the future work.

Appendix A – Rules In this appendix, the implementations of the rules developed in
this thesis are provided.
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Chapter 2

Foundations and State of the Art

The introduction gave a short motivation on this topic and argued, why the anti-pattern
detection in applications software is relevant. The main goal is to detect root causes of
performance problems and to provide appropriate solutions for them.

To better understand important terms, that are used throughout this thesis, the first
section of this chapter, Section 2.1, provides some descriptions for them. In Section 2.2,
a short introduction to SPAs and how they can be detected is provided. Then, related
work to this thesis about anti-pattern detection is presented in Section 2.3. After that,
a description of the APM tool diagnoseIT is provided and can be found in Section 2.4.
In the next part, Section 2.5, the OPEN.xtrace is described. Finally, in Section 2.6, an
introduction to TSDBs is provided, and we also present InfluxDB.

2.1. Terminology

Software performance anti-pattern: An anti-pattern describes a poor recurrent ap-
proach to design problems which may have a negative impact on particular software
quality attributes. In terms of SPAs, the affected quality attribute is the performance of
the software [ap00].

Performance measurement: In the context of APM, performance measurement re-
presents the collection of performance-relevant data from a monitored software. Per-
formance measurements usually contain, e.g., the executed method names, method
parameters, response times, execution times, exceptions and others [HHO+15].
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2. Foundations and State of the Art

Performance problem: In the context of performance measurement a performance
problem is characterized by undesirable performance measurements decreasing the
performance of the software, such as high response times or CPU times [IHE15].

Execution trace: The described structure of the execution trace in this paragraph
refers to the OPEN.xtrace [OHH+16]. An execution trace [JSB97] subsumes a logical
invocation sequence through the monitored software. A trace consists of a tree structure
of subtrace instances. A subtrace is executed in exactly one location, e.g. in a particular
computer node of a system. The subtrace, in turn, consists of a tree structure of
different callable instances. These represent the execution operations (performance
measurements), like CPU time, method name or SQL statement, when the application
makes remote calls to a database. However, each APM tool has a different format for its
execution traces.

APM tool: An APM tool monitors the performance of software systems. Usually, it uses
an agent that instruments the monitored system to collect performance measurements.
Every step between the request and the response from the system takes time and
resources to compute. The APM tool tracks these steps with the help of the agent and
records the time and resources each method call requires and builds an execution trace
from it.

DVD Store: The DVD Store [Nov11] is the application we will use for the evaluation in
this thesis. It is a web-based shop, where DVDs can be bought, searched and orders can
be looked up. For performance testing, performance problem injection was implemented.
For example, when enabling the ’Slow Search’ function, the search for DVD titles within
the store gets slower. We test with the diagnoseIT rule engine and the new implemented
rules throughout this thesis, if the rules can diagnose performance problems in the DVD
Store.

2.2. Software Performance Anti-Patterns

Software patterns describe common solutions and best practices from expert knowledge
in order to solve recurring problems, when building a software. They refer to the
software architecture as well as to the software design or to the software development
process. Patterns are documented with their name, a description for the considered
problem and a solution for the problem.
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The counterparts to software patterns are software anti-patterns. Since using software
anti-patterns is a frequently made mistake when building a software, they are also often
documented with a name, description and a solution for solving the anti-pattern or how
to avoid the anti-pattern. Software anti-patterns refer to different quality attributes that
are affected by it. In Section 2.1, we already described what a SPA is. Concerning SPAs,
the affected quality attribute of the software is the performance. Therefore, when a
performance anti-pattern is manifested in a system, the system’s performance decreases.
Software anti-patterns in literature commonly do not refer to performance problems.
They concentrate rather on other quality attributes, like the reusability, modularity and
the maintainability of the software [ap00]. In this thesis, we investigate anti-patterns
from a performance stand point.
We differentiate between technology-dependent and technology-independent perfor-
mance anti-patterns. In case of technology-dependent performance anti-patterns mi-
susing a specific technology leads to performance problems. Examples are Hibernate
anti-patterns, that are described by Węgrzynowicz [Węg13]. In this thesis, we concen-
trate on technology-independent anti-patterns, that are caused, for example, by a bad
software design or by wrong implementation approaches [Wer15].

The investigated anti-patterns in this thesis all have a negative impact on performance.
Throughout this thesis, we will try to detect performance anti-patterns automatically
only with the help of runtime data from systems, not with, for example, static code
analysis or manual analysis.

2.3. Related Work

There are existing works on the area of anti-pattern detection. Some of them are
described in the following.

Wert [Wer15] describes an approach for an automatic, experiment-based diagnosis of
performance problems in enterprise systems. The approach tries to detect performance
problems and performs a systematic search for the root causes of these performance
problems. For this purpose, a taxonomy on recurrent performance problems is used. The
approach is applied to 27 anti-patterns, which are described in this publication. However,
the approach does not consider runtime production data from systems. Nevertheless,
some of the presented anti-patterns will be considered for this thesis, since they can be
detected with performance measurements.

Trubiani [Tru11] describes how to give automated feedback on architectural level of
the software, when a performance problem occurs. This approach analyzes results from
performance analysis (predictive quantitative results) and then suggests the best suitable
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architectural reconfiguration. She proposes the framework PANDA (Performance Anti-
patterns and Feedback in Software Architectures), that performs three main activities. It
first specifies anti-patterns, then tries to detect them in software architecture models
and finally solves the anti-patterns. These anti-patterns can be the reason for a perfor-
mance problem and can be used for finding a solution for architectural alternatives. The
approach is model-based on the software architecture, and does not consider runtime
informations from systems. Therefore, her framework cannot detect anti-patterns by
analyzing performance measurements.

Parsons and Murphy [PM08] describe an approach for automatic anti-pattern detection
in componend based enterprise systems. Therefore, they introduce several monitoring
and analysis methods, that are for identifying relationships and patterns in the monitored
data. In order to detect anti-patterns, they use a rule engine that analyzes the system’s
design model. However, their approach is limited to JEE (Java Platform, Enterprise
Edition) performance anti-patterns.

The approach from Peiris and Hill [PH14] uses, like in this thesis, runtime data from
systems, when they were executed, to detect anti-patterns. They present a non-intrusive
machine learning approach, called NiPAD (Non-intrusive Performance Anti-pattern
Detecter). It operates on the monitored system’s performance metrics. The approach
analyzes the data and then can detect and classify anti-patterns. NiPAD receives two
data sets with system-level measurements, like CPU time, memory usage and network
usage. In one of the data sets a performance anti-pattern is manifested, and in the other
it is not. With machine learning techniques NiPAD learns over time in which data set an
anti-pattern is manifested. We do not use machine learning techniques, but a rule-based
detection approach. Therefore, our approach does not have to learn in which data set
an anti-pattern is manifested.

Heger et al. [HHO+15] describe the idea behind anti-pattern detection in diagnoseIT.
Rules from a rule engine are applied to problematic traces. The system can detect anti-
patterns by analyzing runtime data from monitored systems. The current diagnoseIT
approach has only a small set of rules to detect performance anti-patterns. It also cannot
detect anti-patterns, whose effects become visible over a longer observation period. This
disadvantage leads to the restriction that anti-patterns can only be detected by analyzing
a single trace. Therefore, important anti-patterns, like the Ramp [SW02a], cannot be
detected through the diagnoseIT analysis. For this purpose, throughout this thesis, we
propose a solution for this and extend the diagnoseIT.
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2.4. diagnoseIT

diagnoseIT [dIT15] is an APM tool that utilizes formalized APM expert knowledge to
detect and diagnose performance problems and isolate their root causes. It is designed
to be independent of specific APM tools, and can be connected with any APM tool to
receive execution traces for analysis. Figure 2.1 shows how the diagnoseIT analysis
works. The independence from a specific APM tool is achieved through the OPEN.xtrace.
More details about the OPEN.xtrace are provided in Section 2.5. A trace is automatically
analyzed by the diagnoseIT. diagnoseIT applies predefined rules to the trace, that are
executed using the rule engine [Nov16]. Each execution of a rule provides additional
insights to the analysis result. The result of the analysis process is a comprehensive
report for the user [HHO+15]. Summarized, the diagnoseIT analysis works as follows:

• diagnoseIT receives traces from connected APM tools in OPEN.xtrace format.

• The diagnosis of traces is performed using an extensible set of rules which are
applied to the traces.

• Each execution of a rule provides additional insights to the analysis result.

• Based on the insights diagnoseIT obtains by applying rules, it creates problem
instances, which hold the performance problem.

• diagnoseIT can alert and propose solutions, when an anti-pattern is detected.

Figure 2.1.: diagnoseIT approach [HHO+15]
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More implementation details concerning the diagnoseIT rule engine are provided in
Section 3.3.

2.5. OPEN.xtrace

The OPEN.xtrace [OHH+16] is an interface-based specification of a common trace
representation. Its intention is to provide a universal data format, that can contain
data from different APM tools. This allows the interchange of data and interoperability
between APM tools. Furthermore, it serves as an abstraction layer between diagnoseIT
and the APM tool diagnoseIT is connected to. As mentioned in the previous section,
diagnoseIT uses the data in the OPEN.xtrace for its analysis. The advantage of using the
OPEN.xtrace is that diagnoseIT can analyze traces from any APM tool. The traces only
have to be converted into the OPEN.xtrace using adapters [OHH+16].

Figure 2.2 shows a simplified class diagram of the OPEN.xtrace. Only the OPEN.xtrace
entities are pictured. A Trace consists of a tree structure of SubTrace instances. So the
root of a Trace is always a SubTrace. A SubTrace is executed in exactly one Location.
When the Location changes, another SubTrace instance for this Location exists.

SubTrace instances consist of a tree structure of Callable instances, which represent
the actual methods, that get executed. The root of a SubTrace is a Callable. If the
Callable can be a parent of further Callable instances, that are executed in the same
Location, then it is a NestingCallable. When the Callable calls further methods,
that are not executed in the same Location, it cannot be a NestingCallable. Only
MethodInvocations and HTTPRequestProcessings are NestingCallable instances.

A MethodInvocation can call further methods, that are in the same Location. In case of
a HTTPRequestProcessing instance, a service is requested. The service then can execute
further methods to satisfy an incoming request.

The RemoteInvocations, DatabaseInvocations and LoggingInvocations cannot be
NestingCallables. RemoteInvocations are methods, that call methods in other
Locations. Therefore, they also cannot be a NestingCallable. By executing a
RemoteInvocation, the SubTrace instance changes. A LoggingInvocation is a log event
in the monitored software and cannot call further methods. A DatabaseInvocation is a
method, that calls the database. Because the Location changes and no further methods
are called by this method, it is not a NestingCallable.
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Figure 2.2.: Simplified OPEN.xtrace class diagram

2.6. Time Series Database

Time series data [Mit10] consist of a series of data points, where one data point describes
a measurement sample. A data point is characterized by a timestamp, the name of the
measurement, e.g., response time and at least one value the measurement has, e.g., 10
ms. The data points are also known as time series data.

A time series database (TSDB) is a database that is optimized for operating on time
series data. It saves the data in a chronological order and provides classical database
operations like create, read, update and delete. Besides, a TSDB allows the user to
organize the time series data with the help of, for example, metadata. Metadata can
be placed into the data points. For analyzing time series data, the TSDB provides
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mathematical operations and queries. For example, a helpful query is to aggregate time
series data [inf16b].

InfluxDB

InfluxDB [inf16a] is a TSDB, that has a SQL-like database language. A data point in
InfluxDB consists of time (timestamp), a measurement and at least one measured value,
the field. It allows to save metadata, called tags, together with the data. This is
helpful for organizing the time series data. In InfluxDB, the measurement is the database
table, in which the time is the primary key. fields and tags are further columns of the
database table. The following line creates a database table and simultaneously inserts a
data point to it

INSERT someMeasurement,tag1=someTag,tag2=anotherTag timeValue=10

where someMeasurement is the database table and simultaneously the measurement
name of the data point, tag1 and tag2 are metadata, and timeValue is the measurement
value itself.

The written data can be queried as follows:

SELECT * FROM someMeasurement

Further possibilities all around the InfluxDB can be found in its documentation
[inf16b].

14



Chapter 3

Rule-based Approach of Anti-Pattern

Detection

In this chapter, we give an overview of the SPAs, that we will consider for the diagnoseIT
analysis. We also provide examples for anti-patterns, that cannot be detected in the
scope of this thesis. In this chapter, technical details about the diagnoseIT rule engine
are provided, so that in the following chapters we can present rules for the performance
anti-pattern detection.

In Section 3.1, the three diagnoseIT analysis approaches are shortly introduced and
then an overview of the anti-patterns, that will be considered for the next chapters, is
provided. Each anti-pattern is assigned to one of the three analysis approaches.

In Section 3.2, we provide examples for anti-patterns, than cannot be detected due to
the current diagnoseIT implementation or missing OPEN.xtrace data.

In Section 3.3, design and implementation details on the diagnoseIT rule engine are
provided. Besides, the schema for a rule that can be processed by the rule engine is
presented.

3.1. Overview of detectable Anti-Patterns

In this section, anti-patterns are presented, that will be investigated further in the
next chapters. As already described in Section 2.4, diagnoseIT can detect SPAs by
analyzing a single execution trace. We consider these anti-patterns for the detection
based on trace data approach in Chapter 4. Other anti-patterns cannot be detected
by analyzing single traces, and the analysis of more traces is necessary to detect them.
Such anti-patterns are considered for the detection based on time series approach
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in Chapter 5, where particular data from traces is saved into a TSDB. We call data
from execution traces, that were executed in the past, also historical data. By saving
trace-specific data into the TSDB, a sequence of traces (respectively trace data) can be
analyzed. For some anti-patterns, that need a longer observation period of trace data to
be detectable, it is meaningful to consider them for the third analysis approach, namely
the detection using combined approach, which is described in Chapter 6. Actually,
these anti-patterns belong to the detection based on time series approach. The difference
is, that a rule from the detection using combined approach can, beside detecting an
anti-pattern, assign data points from the time series data to a corresponding trace, that
can then be analyzed further in the detection based on trace data analysis. This gets
relevant, when an analyzed data point from the TSDB is a cause for an inconsistency
within the time series data, and therefore maybe shows a symptom of a performance
problem.

Considered Anti-Patterns

We only consider SPAs, that can be detected through performance measurements from
monitored systems, and not through, e.g., static code analysis or manual analysis. This
is because diagnoseIT analyzes data from the OPEN.xtrace, which holds performance-
relevant runtime informations from monitored systems. The detectable SPAs are re-
stricted to the data available in the OPEN.xtrace. For detecting a particular SPA specific
performance measurements, that match the anti-pattern’s characteristics, have to be
available. If the OPEN.xtrace does not provide these data, the anti-pattern cannot be
detected. Examples for not detectable anti-patterns are provided in Section 3.2.

In this section, the considered SPAs are shortly described and then we assign the
anti-patterns to one of the three analysis approaches. A more detailed description and
detection concepts for the performance anti-patterns is provided in the particular chapter
it belongs to. For all of the presented anti-patterns, except the Circuitous Treasure Hunt
anti-pattern [ap00], rules for the diagnoseIT rule engine will be implemented, so that
the rule engine automatically can detect the anti-pattern. The rules can also be found in
the particular chapter the anti-pattern belongs to.

Table 3.1 provides an overview of the following SPAs. The table shows to which approach
the anti-patterns are assigned.

In the following, when talking about traces, it is assumed that the trace is in OPEN.xtrace.
The considered anti-patterns are described now.
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Anti-pattern Considered Approach

N+1 Query Problem detection based on trace data
Circuitous Treasure Hunt detection based on trace data
The Stifle detection based on trace data
Expensive Computation detection based on trace data
Phantom Logging detection based on trace data
The Ramp detection based on time series
Traffic Jam detection based on time series
More is Less detection based on time series
Application Hiccups detection using combined approach
Garbage Collection Hiccups detection using combined approach

Table 3.1.: Considered anti-patterns

N+1 Query Problem: The N+1 Query Problem anti-pattern occurs, when an applica-
tion first makes an initial query to the database with a large result set (the ’1’ in ’N+1’)
and then performs a high amount of similar queries related to the items obtained by the
initial query (the ’N’ in ’N+1’) [SW03]. For investigating the monitored system with
regard to the N+1 Query Problem, the analysis of a single trace is sufficient, since a trace
holds all required performed queries from the monitored application for the diagnoseIT
analysis in DatabaseInvocations.

Circuitous Treasure Hunt: When an application communicates with the database to
obtain items from a first database table and then uses those results to obtain items from
a second database table and so on until the final needed results are on hand, then the
Circuitous Treasure Hunt anti-pattern exists in the application [ap00]. For investigating
the monitored system for the Circuitous Treasure Hunt anti-pattern, the analysis of a
single trace is sufficient, since a trace holds all required performed queries from the
monitored application for the diagnoseIT analysis in DatabaseInvocations.

The Stifle: In case of the Stifle anti-pattern, an application performs a high amount of
similar or equal fine-grained database queries to obtain data from a database [DAKW03].
For investigating the monitored system with regard to the Stifle anti-pattern, the analysis
of a single trace is sufficient, since a trace holds all required performed queries from the
monitored application for the diagnoseIT analysis in DatabaseInvocations.
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Expensive Computation: An expensive computation within a software is a method,
that causes CPU intensive computations [Wer15]. The Expensive Computation anti-
pattern reveals the method that spends most on the CPU. To detect such a method within
a trace, the analysis of one trace is sufficient, since the trace holds the executed methods
from a monitored application in Callables.

Phantom Logging: In an application a Phantom Logging anti-pattern [Nov08] is
manifested, when a trace holds a log message, that the application user actually did
not want to log. The analysis of a single trace is sufficient, since a trace holds logged
messages in LoggingInvocations.

The Ramp: When during the execution of a monitored software the time to satisfy
a request rises over time, then the Ramp anti-pattern occurs [SW02a]. Since a longer
observation period of performance data is necessary to detect the Ramp, more than one
traces have to be analyzed and therefore it is considered for the detection based on time
series approach.

Traffic Jam: When during the execution of a monitored software a high variance of
response times can be observed, then the Traffic Jam anti-pattern occurs [SW02b]. Since
a longer observation period of performance data is necessary to detect a Traffic Jam,
more than one traces have to be analyzed and therefore it is considered for the detection
based on time series approach.

More is Less: When a system is permanently busy with "thrashing", then it will not
accomplish real work. When more processes are active than resources exist, such
situations appear often within a system and lead to the More is Less anti-pattern
[SW02a]. Since a longer observation period of performance data is necessary to detect it,
more than one traces have to be analyzed and therefore it is considered for the detection
based on time series approach.

Application Hiccups: When during the execution of a monitored software periodically
a rise of response times can be observed, then the Application Hiccups anti-pattern
occurs [Ten14]. Since a longer observation period of performance data is necessary to
detect Application Hiccups, more than one traces have to be analyzed. The Application
Hiccups anti-pattern is as an example also considered for the detection using combined
approach, since data points, that cause the hiccups, have to be investigated further using
the data analysis.
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Garbage Collection Hiccups: In case of the Garbage Collection Hiccups anti-pattern,
the periodic increase of response times is caused by the garbage collector (GC) [Ten14].
Since a longer observation period of performance data is necessary to detect Garbage
Collection Hiccups, more than one traces have to be analyzed. The Garbage Collection
Hiccups anti-pattern is as an example also considered for the detection using combined
approach, since data points, that cause the hiccups, have to be investigated further using
the data analysis.

3.2. Not detectable Anti-Patterns

In the following, we give examples for anti-patterns, that cannot be detected in the scope
of this thesis. For each anti-pattern we provide a description and propose a solution. We
explain why the anti-pattern cannot be detected.

Large Temporary Objects

Description: Creating large objects in memory causes more memory management
activities like, for example, swapping. This can have a negative impact on the system’s
performance [Kop11].

Solution: One possible solution is to process big files with pipelining. This can prevent
that large objects are loaded into main memory [Wer15].

Discussion: The Large Temporary Objects anti-pattern is an example for an anti-
pattern, that cannot be detected by the diagnoseIT analysis. The OPEN.xtrace holds
no informations about sizes of objects for classifying them as ’large’. Furthermore, to
detect if the object is used temporarily, we need static code analysis, but the diagnoseIT
analysis is limited to the analysis of runtime data.

Dormant References

Description: Dortmant References are pointers pointing to objects, that will not be
used anymore in the future. Due to missing clean-up operations, data structures are
steadily growing. This may also lead to increased GC activities [RM07].
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Solution: Remove pointers to data structures that will not be used anymore [Wer15].

Discussion: Dormant References lead to higher response times. These are provided
by the OPEN.xtrace and can be detected. However, the size of data structures has to be
tracked. Such information is missing in the OPEN.xtrace.

One Lane Bridge

Description: One Lane Bridges are points in the execution of software, where only
one or a few processes can continue to execute further. This is often due to database
locking or synchronization points [ap00].

Solution: One solution would be to decrease the time a thread holds a resource in a
synchronization point, so that other threads can access that resource faster. Another
solution is to find a way, so that multiple resources can access the resource simultaneously
[Clo15].

Discussion: The One Lane Bridge anti-pattern cannot be detected with the available
data in the OPEN.xtrace. What would be needed to detect it, is, for example, samplings
of thread status to analyze, what the thread is doing during execution.

Dispensable Synchronization

Description: The Dispensable Synchronization describes the problem of unnecessary
over-synchronization. Long code sequences, that are synchronized, can have a negative
impact on performance [Gra10].

Solution: Refactoring the code and removing unnecessary locking areas is one solution
to the Dispensable Synchronization. Another one is to reduce the holding time of a
resource [Wer15].

Discussion: The Dispensable Synchronization anti-pattern cannot be detected with
the current diagnoseIT approach, because static code analysis is required to identify
unnecessary locking areas.
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The Blob

Description: When there is one controller class in the software, that does everything,
then this class is the Blob. Other classes only serve as data containers [ap00].

Solution: The software design has to be refactored [ap00].

Discussion: The extreme message traffic between the one controller class and the
smaller classes leads to performance problems, like high response times. These can be
detected with the OPEN.xtrace. However, the controller class has to be detected with
static code analysis, but the diagnoseIT analysis is limited to the analysis of runtime
data.

Empty Semi Trucks

Description: In case of the Empty Semi Trucks anti-pattern, a software sends many
small messages to another communication point. Each message contains beside actual
payload, additional overhead, like message meta-data. The size of actual payload of
such small messages is low [SW03].

Solution: The solution is to aggregate many small messages into one message to save
processing overhead [Wer15].

Discussion: To detect the Empty Semi Trucks anti-pattern, we need the payload size
of sended messages. The OPEN.xtrace does not provide this data.

3.3. diagnoseIT Rule Engine

diagnoseIT uses a rule engine [Nov16] to systematically apply predefined rules on
incoming traces. The traces are obtained from the APM tool diagnoseIT is connected to.
In the diagnoseIT implementation, the rule engine is called DiagnosisEngine. Its core
element is a Session, that executes the rules on a trace. Each execution of a rule adds
additional insights to the analysis result. A Session can store these intermediate results
with the help of a SessionResultCollector and according to them it decides, which rule
to execute next. An execution of a rule can enrich a trace with a Tag, which represents
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such an intermediate result. An enrichment with a Tag can activate further rules, that
will be executed on that trace. This process can lead to a chain of rule executions in a
Session, which together form the final result of the trace analysis.

Annotations

Rules, tags and intermediate results from rules are implemented using annotations. An
annotation looks as follows

@annotation(param1, param2, ...),

where param is a parameter, that can be passed to the annotation. Table 3.2 provides
an overview of the available annotations with their parameters, that can be used in
connection with rules (optional parameters are marked with a �):

Annotation Parameters

@Rule
name: String �

description: String �

fireCondition: String[] �

@TagValue
type: String
injectionStrategy: InjectionStrategy �

@SessionVariable
name: String
optional: boolean �

@Condition
name: String �

hint: String �

@Action
resultTag: String
resultQuantity: Action.Quantity �

Table 3.2.: Rule annotations

The available annotations are described now in more detail.

Rule This annotation is for annotating a Java class as a rule, that can be executed
using the DiagnosisEngine. Parameters, that can be passed to this annotation are a
name, a description and a fireCondition for this rule. The first two are Strings and
the fireCondition is an array of Strings. The fireCondition parameter is a condition,
that can define at what time the rule will be fired through the rule engine, that means,
which Tags have to be already available.
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TagValue This annotation is for injecting results from previously executed rules to a
rule that is supposed to execute next. The results are stored in Tags. The rule can only
fire, if all requested Tags are available. The annotation has two parameters. The type

parameter must be passed to the annotation and is a String. It defines the type/name
of the Tag, that should be injected. The second parameter is the injectionStrategy,
that should be used. Two strategies are possible. The first strategy is the BY_VALUE

strategy, where only the value of a Tag is injected. The second strategy is the BY_TAG

strategy, where the Tag itself will be injected to the rule. The default injectionStrategy
is BY_VALUE. The type of the parameter is InjectionStrategy. Notice that the rule, that
should be executed, can only request results from rules, that are on the same execution
path.

SessionVariable Rules are executed in a Session. When the diagnoseIT analysis starts,
SessionVariables can be passed to the rule engine. This annotation is used to inject a
variable from the SessionVariables to a rule. The first parameter of the annotation is
the name of the variable, that should be injected to the rule and must be passed. Here, a
String is expected. A second parameter of boolean type, called the optional parameter,
can be passed to the annotation and defines, if the variable must be provided or not, so
that the rule can execute. Here, a boolean value is expected. When the value is false,
the variable must be provided. If this is not the case, the analysis will stop and the
rule engine throws an exception. The other possible value is true and defines, that the
existence of the variable is optional. The default value is false.

Condition The rule engine checks this annotation, after all requested Tags and
SessionVariables are injected to the rule. The method within the rule annotated
with this annotation represents a condition, that must be true in order to fire the rule. If
the condition fails, the rule will not be executed. The annotation has two parameters,
that are optional. The first is the name for the condition and the second parameter are
hints for how the condition can be passed. Both parameters are Strings.

Action A rule can specify only one method with this annotation. It is also called the
action method of the rule. The action method can be executed, when:

• the fireCondition of a rule is satisfied and

• all requested Tags and SessionVariables are available and

• all condition methods are satisfied.
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The annotation has two parameters. The first one, the resultTag parameter, must be
passed to the the annotation. It is a String. This is the Tag the rule can produce, when
it is executed. Any object or value can be returned by the rule, that is then wrapped
into the resultTag. A second parameter can be passed to the rule. It defines, if only a
single Tag can be produced by the rule, or multiple Tags. This is the resultQuantity

parameter, that is of type Action.Quantity. Two values are possible. When a single Tag

should be produced by this rule, the value of this parameter has to be SINGLE, otherwise
the value has to be MULTIPLE. When multiple Tags are produced by the rule, the return
type of the action method has to be either an array or a collection and for each produced
Tag an element within the array/collection with the type of the resultTag is created.
The default value of the resultQuantity parameter is SINGLE.

Rule Schema

After the different annotations for rules were discussed, the rule schema will be presented.
The reader of this thesis then should know, how he can write his own rules for analyzing
traces. Especially for future work on this topic this could be helpful.

Listing 3.1 shows the rule schema as Java code.

Listing 3.1 Rule schema
1 @Rule(name = "Rule name", description = "Some description", fireCondition = { "TagXY" })

public class RuleSchema {

// InjectionStrategy.BY_TAG also possible

5 @TagValue(type = "RequestedTag", injectionStrategy = InjectionStrategy.BY_VALUE)

private String ValueOfRequestedTag;

// optional = true also possible

@SessionVariable(name = "SomeVariableToInject", optional = false)

10 private String sessionVariableToInject;

@Condition(name = "SomeCondition", hint = "This condition can be passed by ...")

public boolean condition() {

return true;

15 }

// Action.Quantity.MULTIPLE also possible

@Action(resultTag = "resultOfThisRule", resultQuantity = Action.Quantity.SINGLE)

public String action() {

20 return "Some value, that is wrapped into the resultOfThisRule Tag";

}

}
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A rule is a Java class and is annotated with @Rule. An intermediate result is requested by
the rule by annotating a variable with @TagValue. The type parameter of the annotation
specifies the type/name of the requested Tag, whose value should be injected to the
variable. A session variable can be injected to the rule by annotating a variable with
@SessionVariable. The name parameter specifies, which session variable to inject. The
@Condition annotation annotates a method within the rule. The condition of the
annotated method must be true in order to fire the rule. A method annotated with
@Action contains the code the rule can execute. When the method is executed, the rule
can produce Tags.
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Chapter 4

Detection based on Trace Data

In this chapter, SPAs that can be detected based on a single trace data are presented. In
Section 4.1, a brief overview of the approach is presented.

In Section 4.2, generic rules for restricting the problem area within a trace are explained.
These rules exclude branches of the trace tree, that do not contribute to performance
problems. They exclude subtraces and callables, that do not cause high response times.
These rules were available before this thesis for an older diagnoseIT version and are
only adapted for the new diagnoseIT rule engine. We later describe in more detail
the rules for detecting SPAs. The rule for detecting the N+1 Query Problem and the
rule for detecting the Stifle anti-pattern make use of the results from the generic rules
described in this part, while the other rules for detecting anti-patterns are independent
from them.

In Section 4.3, first the investigated performance anti-patterns are described and then
solutions to the anti-pattern are proposed. We analyze, how the anti-pattern can be
detected with the current diagnoseIT implementation and the available data in the
OPEN.xtrace. For all anti-patterns, except the Circuitous Treasure Hunt anti-pattern, we
will implement a rule for detecting the anti-pattern. We propose a detection concept for
the implementation of the rule. Furthermore, implementation details for the detection
are provided. Java code excerpts for the rules are in Appendix A.

In the following, when talking about analyzing traces, it is assumed that the trace is in
OPEN.xtrace format.
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4.1. Approach

The detection based on trace data approach was already explained in large part in
Section 2.4, and Figure 2.1 shows the approach for detecting anti-patterns with single
traces.

When diagnoseIT receives a problematic trace from an APM tool, the detection based
on trace data analysis is automatically triggered. The diagnoseIT rule engine applies
rules to the trace to get insights. Beside performance problems, the rules also can detect
performance anti-patterns. Therefore, a rule can represent an anti-pattern by describing
its characteristics. The rule then tries to detect inconsistencies within the trace data and
investigates if the analyzed data matches the anti-pattern’s characteristics. If so, the
rule detects the anti-pattern. For example, if an anti-pattern is detected through high
response times, the high response times have to be manifested in the trace.

4.2. Narrowing down a Trace

The generic rules for restricting the problem area within a trace are implemented as
follows. diagnoseIT receives an incoming trace from a connected APM tool and starts
analyzing it. In Figure 4.1, we see an example trace. The trace has a response time of
5000 ms. In the first step the trace is narrowed down to its subtraces with a specific
rule. Thereby, problematic subtraces are marked with a tag. A subtrace is considered as
problematic, when the response time of the subtrace is equal or higher than a baseline
value, which is by default 1000 ms.

After marking the problematic subtraces, the condition of the next rule gets true and
the rule analyzes the problematic subtraces further. The problematic subtrace in this
example is the one with root A. The nodes in the subtrace represent callables. By
analyzing the subtrace, the rule begins at root A and traverses the tree to find the Global
Problem Context within the subtrace, finding the node E with a response time of 3800
ms. A node is the Global Problem Context within a subtrace, when its response time is
at least 1000 ms (default baseline value) and when the sum of the response times of all
other nodes on the same level with the same parent is under 1000 ms. For this purpose,
the rule searches the deepest level possible in the subtrace, for which this applies. In
Figure 4.1, the deepest level is the one with node D and E (with parent node B), because
in the level with node G, H and I, there exist two nodes with a response time >= 1000
ms. By defining a node as the Global Problem Context, other nodes on the same level
and on higher levels are not considered anymore for the analysis. That is the reason
why node H is not considered as the Global Problem Context. If that would be the case,
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node I would not be considered anymore for the analysis, because it is on the same level.
However, it has a response time of 1000 ms and therefore maybe contains a performance
problem, which would not be analyzed.

After finding the Global Problem Context within the subtrace (a tag was added to node
E), the next rule searches for the Root Causes of the high response times, thus for the
time wasting operations. Only node H calls further methods, namely 500 executeQuery()
methods. Each of these queries is a MethodInvocation, that holds a DatabaseInvocation

as its child. The DatabaseInvocation, in turn, holds the query to the database and each
of these queries has an exclusive time of 4 ms. The rule aggregates DatabaseInvocations
with same SQL Statements to a root cause object, when their summed up exclusive
time is high (>=1000ms exclusive time). Assuming that all DatabaseInvocations have
the same SQL statement, all of them are aggregated into the root cause object. When,
for example, there would be one DatabaseInvocation with a different SQL statement
that has a high exclusive time (>=1000ms exclusive time), and the exclusive times of
the other DatabaseInvocations are low, then only this DatabaseInvocation would be
aggregated into the root cause object. However, the exclusive times of the Root Causes
with same SQL statements in the tree are summed up. The total exclusive time of all
DatabaseInvocations behind the executeQuery() methods amounts 2000 ms. So the
exclusive time of node H amounts actually 0 ms, because it has a response time of 2000
ms and it calls only further methods that hold DatabaseInvocations as children, which
have the same amount of exclusive time. Node G is a leaf node and has an exclusive time
of 400 ms. Node I is also a leaf node with an exclusive time of 1000 ms. The exclusive
times are arranged:

1. The DatabaseInvocations behind the executeQuery() methods total 2000 ms

2. Node I total 1000 ms

3. Node G total 400 ms

4. Node H total 0 ms

The DatabaseInvocations behind the executeQuery() methods (>=1000ms exclusive
time) are tagged as Root Causes and node I is also tagged as root cause (>=1000ms
exclusive time), since it does not call further methods. Node G and node H both will not
be tagged as Root Causes (<=1000ms exclusive time).

After finding the Root Causes, the rule for finding the Local Problem Context within
the subtrace is applied. The node H is tagged as a Local Problem Context within the
subtrace, since in its subtree there are Root Causes and because of its high response
time (2000 ms). Since node I has no children, it will also be tagged as a Local Problem
Context, making it a root cause and a Local Problem Context at the same time. From the
nodes considered as a Local Problem Context, diagnoseIT builds problem instances.
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Figure 4.1.: Restricting the problem area within a trace

Summarized the steps for building problem instances are the following:

1. diagnoseIT receives a problematic trace, containing a performance problem

2. diagnoseIT narrows down from the trace to its subtraces and finds the problematic
subtraces

3. diagnoseIT searches for the Global Problem Context within the problematic
subtraces

4. diagnoseIT searches for the Root Causes within the problematic subtraces and
aggregates them to an object

5. diagnoseIT searches for the Local Problem Contexts within the problematic
subtraces and creates problem instances from them
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6. By further analyzing the Local Problem Context and its associated Root Causes
diagnoseIT can detect anti-patterns, like the N+1 Query Problem

diagnoseIT tells the user in its report what the Global Context (Global Problem Context),
Problem Context (Local Problem Context), Root Causes and the matching anti-pattern
for the performance problem of a trace is.

4.3. Considered Anti-Patterns

The following anti-patterns can all be detected by analyzing a single execution trace. For
each of them we provide a description, propose a solution, and describe how it can be
detected. For all anti-patterns, except the Circuitous Treasure Hunt anti-pattern, we then
propose a design for a rule that we are going to implement. How the rule is concretely
implemented is described after the proposed rule design. Simplified versions of Java
code from the rules are in Appendix A.

The first three presented anti-patterns are the N+1 Query Problem, the Stifle and the
Circuitous Treasure Hunt. We describe in the following that the communication with a
database leads to performance problems. However, the anti-patterns are not only related
to databases. The communication with other remote data sources can also cause one
of the anti-patterns. In this thesis, we are limited to databases as we can access SQL
statements from the OPEN.xtrace.

N+1 Query Problem

Description: The N+1 Query problem is a performance anti-pattern related to perfor-
ming many remote calls to a database. One database query with a larger result set is
followed by many small database queries to items in the initial query.

Listing 4.1 shows an example. The problem is that getStudents() issues one database
query and the call of getGrades(Student student) in the for loop issues n further
database queries, where each query adds some overhead to the processing. If the
getStudents() method loads a large result set into the Student_List, the overhead
could be not acceptable anymore [Pha].
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Listing 4.1 N+1 Query Problem example
1 // ...

// Database query behind getStudents(): ’SELECT * FROM Student’

Student_List = getStudents();

5
for (Student : Student_List) {

// Database query behind getGrades(Student student):

// ’SELECT * FROM grades WHERE matriculationNumber = ...’

10 Student_Grades = getGrades(Student);

//...

}

Solution: Two solutions are proposed. The first solution to avoid the communication
overhead is to use one query with a join operation to fetch all data at once, so that the
for loop in Listing 4.1 is not needed anymore [HHO+15].

The second solution is to first query all results, and then to iterate over the results.
Listing 4.2 shows the solution. There are no more database queries in the for loop in
Listing 4.1. All grades are fetched at once before the for loop, and then by iterating
through the results, the grades for a particlar student are selected [Pha].

In both solutions, the ’N’ part of the ’N+1’ is omitted.

Listing 4.2 N+1 Query Problem solution
1 // ...

// Database query behind getStudents(): ’SELECT * FROM Student’

Student_List = getStudents();

5
// Database query behind getGrades(List Student_List):

// ’SELECT * FROM grades WHERE matriculationNumber in (...)’

All_Student_Grades = getAllGrades(Student_List);

10 for (Student : Student_List) {

// getGrades selects the grades for a particular student

Student_Grades = getGrades(All_Student_Grades,

Student.matriculationNumber);

15
//...

}
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Detection: After the generic rules for restricting the problem area within a trace are
executed, the only OPEN.xtrace measurements that are needed for detecting the N+1
Query Problem are SQL statements. Therefore, the N+1 Query Problem can be detected.
When a method within a trace performs a lot of SQL statements, that are similar, it can
be assumed that the N+1 anti-pattern is manifested in the trace. But this approach is
not sophisticated enough. It would be better to check if the first query differs from the
remaining queries, which are similar to each other. The assumption then would be that
the first query is the one with the larger result set followed by the ’N’ remaining queries.
For a safe detection of the N+1 anti-pattern the SQL statements would have to be
analyzed to detect relationships betweeen them, but this would go beyond the scope of
this thesis.

Rule design: For this thesis, the N+1 Query Problem will be detected as follows.
When diagnoseIT receives a trace, the generic rules for restricting the problem area
within a trace are applied to it. The N+1 Query Problem rule then investigates, if
there is a NestingCallable that holds DatabaseInvocations as children. If so, the rule
analyzes the SQL statements from the DatabaseInvocations and checks, whether one
SQL statement is followed by many equal SQL statements, that differ from the first
query.

Implementation: The N+1 Query Problem Rule is fired after the generic rules to
restrict the problem area within a trace are executed (see Figure 4.2). The N+1 Query
Problem analyzes the DatabaseInvocations behind the executeQuery() methods from
Figure 4.1 further to check if the N+1 Query Problem can be indicated from them.
A snippet of Java code is provided in Listing A.1. The implementation is as follows.
The rule for detecting the N+1 Query Problem requests in line 8 the root causes, that
were aggregated to an object by the generic rules. We first check, whether the type of
the object is DatabaseInvocation. When not, the rule returns false. When the type is
DatabaseInvocation, the parent node of one of the root causes is accessed. This is an
executeQuery() method and it is from type MethodInvocation. Then, in turn, we access
the parent node of the executeQuery() method. Its children are all executeQuery()
methods on the same tree level. This step is important, since the aggregated root
cause object only holds DatabaseInvocations with same SQL statements. When the
executeQuery() method has no parent, the rule returns false. Otherwise, we use in line
21 of the rule the TreeIterator, to iterate over the subtree with the parent as the root
node. We check in line 26 for each Callable, if its type is DatabaseInvocation. If so,
the rule converts the Callable into DatabaseInvocation to access the getSQLStatement

method.
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After iterating through all nodes of the subtree, we have a list of DatabaseInvocations.
We then check in line 37, whether the second DatabaseInvocation holds another SQL
statement than the first DatabaseInvocation. If true, we count how many of the
remaining DatabaseInvocations in the list have the same SQL statement as the second
DatabaseInvocation. We compare in line 50 the amount of the ’N’ queries with a
predefined threshold. If the amount exceeds the value of the threshold, the rule returns
true and has detected with high probability the N+1 Query Problem. The default value
for the threshold is set to 10.

Figure 4.2.: Execution of the N+1 Query Problem rule

The Stifle

Description: In case of the Stifle anti-pattern, an application performs a lot of small
similar fine-grained database queries to obtain data from the database. The problem is
that each query adds a certain amount of a data overhead. The higher the amount of
these small queries, the higher the risk that the performance of the system decreases.

Solution: The solution to the Stifle is to aggregate the small queries to one larger
or just a few database queries, so that the overhead for the database communication
reduces.

Detection: The Stifle anti-pattern can be detected in a similar way to the N+1 Query
Problem. The N+1 Query Problem is also a Stifle, since a lot of small queries are
performed from the system. After the generic rules prepared the trace, the only needed
data from the OPEN.xtrace are SQL statements to detect it. Therefore, this anti-pattern
can be detected by the diagnoseIT. To detect if the performed queries are fine-grained,
the analysis of the SQL statements is required. So we choose a simplified implementation
and check if the monitored system performs a high amount of similar SQL statements.

Rule design: For this thesis, The Stifle will be detected as follows. The Stifle rule is
executed after the rule for detecting the N+1 Query Problem within a trace. When
the result of the N+1 Query Problem rule is true, then the Stifle rule immediately
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stops executing and also returns true. Otherwise the Stifle rule investigates, if there
is a NestingCallable that holds DatabaseInvocations as children. When yes, the rule
counts how many of the DatabaseInvocations hold equal SQL statements. If there is
particular amount of same statements, then the rule detects with high probability the
Stifle anti-pattern.

Implementation: The idea of the Stifle rule is to count the DatabaseInvocations

behind the executeQuery() methods from Figure 4.1 to check, if there are many equal
queries. A snippet of Java code is provided in Listing A.2. The implementation is as
follows. The rule for detecting the Stifle anti-pattern requests in line 12 the result of the
N+1 Query Problem rule and in line 8 an aggregated root cause object from the generic
rules executed before (see Figure 4.3). When the N+1 Query problem was detected
within the aggregated object, then the Stifle rule immediately stops executing for that
object and returns in line 19 true, since the N+1 Query Problem is more specific than
the Stifle anti-pattern. However, if the N+1 Query Problem was not detected within that
object, the rule executes further.

The rule accesses the parent node of the root causes. This is an executeQuery() method
and it is from type MethodInvocation. Then, in turn, we try to access the parent node of
the executeQuery() method. Its children are all executeQuery() methods on the same
tree level. This step is important, since the aggregated root cause object only holds
DatabaseInvocations with same SQL statements. We use the TreeIterator to iterate
over the subtree with the parent as the root node. We check for each Callable, if its type
is DatabaseInvocation. If so, the rule converts the Callable into DatabaseInvocation

to access the getSQLStatement method. After iterating through all nodes of the subtree,
we have a list of DatabaseInvocations.

If the executeQuery() methods have no parent, the rule works with the available root
causes, converts them into DatabaseInvocations and puts them into the list.

We create in line 28 of the rule a HashMap with key SQL statement and a amount
value. For each DatabaseInvocation, that has a different SQL statement, in line 41 an
entry in the HashMap is created and the amount value is set to one. If then a next
DatabaseInvocation holds a SQL statement that is already considered in the HashMap,
the HashMap does not create a new entry, but in line 37 the associated amount value to
that SQL statement is increased by one. After this process for all DatabaseInvocations is
finished, the rule iterates through the entries of the HashMap, and compares the amount
value for each SQL statement with a predefined threshold. The default value for the
threshold is set to 10. If one of the amount values exceeds the threhold, then the rule
detected with high probability the Stifle anti-pattern.
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Figure 4.3.: Execution of the Stifle rule

Circuitous Treasure Hunt

Description: The Circuitous Treasure Hunt anti-pattern is similar to the N+1 Query
Problem. An application communicates with a database to retrieve data from one of the
database tables. The results then are used to retrieve data from another database table.
This process repeats as long as the final results are on hand.

The Circuitous Treasure Hunt anti-pattern is a N+1 Query Problem, when the application
only uses one query that is followed by n further queries to items in the initial result.

Solution: The solution to this anti-pattern is to refactor the data organization of the
application. The refactoring should ensure that connected data from the database is
obtained in a simpler way [Wer15].

Detection: The Circuitous Treasure Hunt anti-pattern can be detected in similar way
to the N+1 Query Problem and the Stifle anti-pattern. After the generic rules prepared
the trace, the only needed data from the OPEN.xtrace are SQL statements to detect it.
Therefore, this anti-pattern can be detected by the diagnoseIT rule engine. However, to
differentiate from the N+1 anti-pattern, for the Circuitous Treasure Hunt analysis of
SQL statements is needed to detect relationships between the statements. The analysis
of SQL statements would go beyond the scope of this thesis and therefore there will be
no implementation for the detection of this anti-pattern.

Expensive Computation

Description: If an application has methods with CPU intensive computations, the
detection of the Expensive Computation anti-pattern reveals the method, that executed
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most on the CPU. An Expensive Computation is more like a generalization of other anti-
patterns, like the Tower Of Babel [SW03] or the Insufficient Caching anti-pattern [NR09],
which lead to CPU intensive applications. However, the detection of an Expensive
Computation can be helpful, because the performance problem can be restricted to
one problematic method, which then can be further analyzed for more concrete anti-
patterns.

Solution: The solution to the Expensive Computation anti-pattern depends on concrete
root causes. Root causes are, for example, the Tower Of Babel or Insufficient Caching
anti-pattern. The Tower of Babel is caused by processes in a system that exchange a lot
of data between each other, but internally use different representation formats for their
data. Since translation of formats is expensive and problematic paths are used frequently,
Smith and Williams [SW03] propose to use the Fast Path performance pattern [SW].

To save overhead when performing repeated database queries, a cache should be used.
Insufficient Caching means the improperly usage of a cache. The cache should be
properly set up for an efficient usage of data [Wer15].

Detection: Expensive Computations can be detected by the diagnoseIT. Required data
from the OPEN.xtrace are exclusive CPU times. Exclusive CPU time describes the time a
method spends on the CPU itself and excludes the CPU time from the methods it calls.
The CPU bound slowest method is then found through a comparison of the exclusive
CPU times from all methods an application executes.

Rule design: The rule for detecting an Expensive Computation within a trace is always
fired, when the detection based on trace data analysis is triggered. The diagnoseIT
rule engine receives a trace and investigates if the trace is problematic. The trace is
considered as problematic, when its response time is equal or higher than 1000 ms. If so,
the rule compares all exclusive CPU times of the trace Callables to find the Callable

with the highest exclusive CPU time. The rule considers this Callable as an Expensive
Computation, when the ratio of its exclusive CPU time to the trace response time is
high.

Implementation: The Java code of this rule is provided in Listing A.3. When the
diagnoseIT rule engine receives a trace for analysis, the rule checks in line 23, whether
its response time is equal or higher than 1000 ms. If so, the rule iterates in line 35
through the trace and compares for each MethodInvocation their exclusive CPU times
(only MethodInvocation provides CPU times). The rule then takes the MethodInvocation
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with the highest exclusive CPU time, and calculates in line 44 the ratio of its exlusive
CPU time to the trace response time. If the ratio exceeds a threshold, the rule returns
the MethodInvocation. The default value for the threshold is 0.10.

Phantom Logging

Description: When during the execution of an application log messages are created,
which actually do not have to be created in the current log level, then in the application
the Phantom Logging anti-pattern is manifested. For example, when in the info log level,
the following String is created, but is not logged:

logger.debug("Example log message" + var)

If the String consists of high amount of characters and the application creates many of
them, the performance of a system can seriously decrease [Nov08].

Solution: The solution to the Phantom Logging anti-pattern is easy [Nov08]:

if (logger.isDebugEnabled()) logger.debug("Example log message" + var)

The String is not built until the logger is in debug mode.

Detection: The Phantom Logging anti-pattern in its classical meaning cannot be de-
tected by the diagnoseIT analysis, because a trace only holds messages, that were really
logged by the monitored system. Therefore, for this thesis, the meaning of this anti-
pattern is modified, but is still relevant. The OPEN.xtrace provides the LoggingLevel

of a LoggingInvocation. When the trace contains a LoggingInvocation with debug
LoggingLevel, but the user of the monitored application assumed that the logger of his
application is in info mode, then he logged a message which he actually did not want to
log. Or perhaps such a message was logged due to a bug in the system. We will call this
also a ’Phantom Log’.

Rule design: When the diagnoseIT receives an incoming trace, the rule engine iterates
through the Callables of the trace and searches for LoggingInvocations. A threshold
describes the assumption in which log mode the monitored system was when the trace
was created. If now a LoggingInvocation with a LoggingLevel lower than the threshold
is found, the Phantom Logging anti-pattern is detected.
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Implementation: The Java code of this rule is provided in Listing A.4. The Phantom
Logging Rule is always fired, when diagnoseIT receives a trace to analyze. With the help
of an enum the different LoggingLevel are described. In the constructor of the enum an
integer value, called level, is passed to the different LoggingLevels to define in line
38 that ALL is level zero, TRACE is level one, DEBUG is level two, INFO is level three, WARN
is level four, ERROR is level five, FATAL is level six and OFF is level seven. The threshold
in line 5 describes the assumption in which of the LoggingLevel the monitored system
was when the trace was created. The rule works as follows: It iterates in line 14 over
all Callables of the trace and searches for LoggingInvocations. If one is found, in line
22 the LoggingLevel of that LoggingInvocation is accessed. To get the level behind
the LoggingLevel the current analyzed LoggingInvocation has, it is compared to the
LoggingLevel enum and in line 25 the integer value is calculated. If now the current
analyzed LoggingInvocation has a lower level than the theshold level, the Phantom
Logging anti-pattern is detected.
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Chapter 5

Detection based on Time Series

Before this thesis, diagnoseIT could not detect performance anti-patterns, that get visible
in a longer observation period, as they cannot be detected with the analysis of a single
trace and therefore the analysis of more traces is needed.

In this chapter, we propose a new approach to detect anti-patterns, that get visible over
a longer observation period. The new approach will be applied to three performance
anti-patterns, that can now be detected by the diagnoseIT and is called from now
on detection based on time series. More details on the approach are provided in
Section 5.1.

In Section 5.2, the considered anti-patterns for the new diagnoseIT approach are in-
vestigated. First, they are briefly described and then a solution to the anti-pattern is
proposed. Because all investigated anti-patterns in this chapter are detectable through
the new approach, for each of the anti-patterns a rule for detecting the anti-pattern is
implemented. Code snippets for the rule are attached in Appendix A.

5.1. Approach

Figure 5.1 visualizes, how this part of diagnoseIT analysis works. The idea of the de-
tection based on time series approach is to save particular trace metrics from monitoring
tools into a TSDB (see Section 2.6). One database table contains required anti-pattern
specific information, that is needed for the detection. For example, when an anti-pattern
is detected through response times and CPU times, these measures will be saved from
incoming traces into one table. The primary key of the table is the timestamp. The
chronological order of the measured values describes an observation period of the moni-
tored system. When the detection based on time series analysis is periodically triggered,
data is fetched from the database and rules are applied to the data. By analyzing the
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data, the rule engine obtains insights concerning the state of the monitored system at a
particular time and anti-patterns can be diagnosed. For example, if from time to time
the response time of the monitored system changed, the diagnoseIT can notice that by
applying rules.

Figure 5.1.: Detection based on time series approach

5.2. Considered Anti-Patterns

In this section, rules for detecting the Ramp, Traffic Jam and More is Less anti-patterns
are described. To detect them, the analysis of a series of traces is required. For the
concrete implementation, InfluxDB [inf16a] (see Section 2.6) is used for the TSDB and
is integrated to the diagnoseIT. For the implementations of the anti-pattern detection
some assumptions are necessary:

1. One database table holds performance measurements from one particular sequence
of actions. An example for a sequence is to search for a DVD within the DVD Store
and then to add the DVD to shopping cart. This excludes the possibility that high
values, e.g. high response times, are not caused by performance problems, but by
other sequences.

2. It is assumed, that the data from the traces is already in the database table. So
when the detection based on time series analysis is triggered, there is already data
that can be analyzed.

Methods for fetching particular data from the TSDB are implemented, but are not further
explained. Fetching of data from the InfluxDB is shown in its documentation [inf16b].
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For each of the following presented anti-patterns we provide a description, propose a
solution, and describe how it can be detected. For all anti-patterns we then propose a
design for a rule that we are going to implement. How the rule is concretely implemented
is described after the proposed rule design. Concrete Java code for the rules can be
found in Appendix A.

The Ramp

Description: The Ramp anti-pattern occurs, when the response times rise over time.
Due to increasing response times, the performance of the system decreases. Often cause
of the Ramp is an increase of the amount of the data the longer the application executes.
Root causes for the Ramp can be other anti-patterns, especially the Sisyphus Database
Retrieval [DGS02] and the Dormant References anti-pattern. In case of the Sisyphus
Database Retrieval, the increasing amount of the data are due to growing database tables
over time and, in case of the Dormant References, growing data structures [Wer15].

Solution: Solutions to the Ramp depend on concrete root causes. In case the Ramp
is actually caused by the Sisyphus Database Retrieval anti-pattern, a proposed solution
is to formulate proper SQL queries [Wer15]. A solution for the Dormant References
anti-pattern is provided in Section 3.2. Smith and Williams [SW02a] propose to use
algorithms or data structures based on maximum size, when the amount of data increases
over time. Algorithms that adapt to the increasing amount of data also can be helpful.

Detection: To detect this SPA, only timestamps and corresponsing response times are
needed. These values are stored into the TSDB.

Rule design: Using the linear regression [ZSNS09], we put a regression line through
the data points of the TSDB. Figure 5.2 shows an example of a regression line through
data points with positive slope. For the rule implementation, on the x axis are the
timestamps and on the y axis are the data points’ response times. When the slope of the
regression line is positive, then there is a rise of response times within the time series
data. To detect the Ramp anti-pattern, the slope has to be above a setted threshold.
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Figure 5.2.: Regression line through data points [Wik10]

Implementation: The concrete Java code for this rule is provided in Listing A.5. When
the detection based on time series analysis is triggered, the rule for detecting a Ramp
fetches in line 17 the data from the TSDB and puts them into a list. The analysis of
the data is performed using in line 20 the SimpleRegression class from the Apache
Commons Mathematics Library [The16]. SimpleRegression provides statistical methods
for regression lines. The regression line is calculated with the ordinary least squares
[CI11] algorithm. The formula that describes the regression line is in Equation (5.1):

(5.1) y = a + b ∗ x

where y is the dependent variable, in our case the response time, a is the intercept of the
regression line, b is the slope of the regression line and x is the independent variable, in
our case the corresponding timestamp to y.
The addData(double x, double y) method of SimpleRegression adds data points to
the SimpleRegression, so that the regression line can be put through data points.
By iterating in line 23 through the list of data points for each object, the times-
tamp is passed as the x parameter and the response time is passed as the y para-
meter to the addData(double x, double y) method. The call of getSlope() on the
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SimpleRegression instance returns the slope of the regression line. When the slope is
above a predefined threshold, then the Ramp is detected. The default value for the slope
threshold is set to 0.05.

Traffic Jam

Description: In case of the Traffic Jam anti-pattern, a high variance of response times
can be observed in the monitored system. This is often due to overload situations, where
some requests cannot access resources and therefore have to wait. Other requests can
process and so the variance of response times is observed. Other performance anti-
patterns can also be a cause for the Traffic Jam, like the One Lange Bridge anti-pattern,
where a lock for resources only lets one or few processes to access a resource. Other
causes are also a CPU intensive application or a congestion on the database.

Solution: Solutions to the Traffic Jam anti-pattern within a software depend on
concrete root causes. A solution to the One Lane Bridge anti-pattern is provided in
Section 3.2. Smith and Williams [SW02a] propose to provide enough processing power,
so that some requests do not get stuck by accessing resources.

Detection: To detect this SPA, only response times are needed. These values are stored
into the TSDB.

Rule design: Using the linear regression, we put a regression line through the data
points of the TSDB. On the x axis are the timestamps and on the y axis are the data
points’ response times. To distinguish from the Ramp anti-pattern detection, the slope of
the regression line has to be below or equal a predefined threshold. If so, we calculate
the variance and the standard deviation [KK54] of all response times. The higher the
value of the standard deviation, the more the response times vary from each other. To
get a variance value, that is independent from the mean of response times, we calculate
the coefficient of variation [Eve98], where we divide the standard deviation by the mean
of response times. If the value of the coefficient of variation exceeds a threshold, the
Traffic Jam anti-pattern is detected.
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5. Detection based on Time Series

Implementation: The concrete Java code for this rule is attached in Listing A.6. The
rule for detecting a Traffic Jam fetches in line 20 the data from the TSDB and puts them
into a list. The analysis of the data is performed using SimpleRegression class from the
Appache Commons Mathematics Library. SimpleRegression provides statistical methods
for regression lines. The addData(double x, double y) method of SimpleRegression
adds data points to the SimpleRegression, so that the regression line can be put through
data points. The regression line is calculated with the least squares algorithm. By
iterating through the list of data points, for each object the timestamp is passed as the x

parameter and the response time is passed as the y parameter to the addData(double x,

double y) method. The call of getSlope() on the SimpleRegression instance returns
the slope of the regression line. To differentiate from the Ramp anti-pattern detection,
the slope of the regression line has to be equal or below a predefined threshold. The
default value for the slope threshold is 0.05.

When the slope is below this threshold, then the response times from the data points
are analyzed. First of all, we calculate in line 30 of the rule the sum of response times.
In line 33, we divide the sum by the amount of data points to calculate the mean of
response times. The result is used for calculating the variance of the response times. The
equation for the variance V 2 that is used for the implementation is in Equation (5.2):

(5.2) V 2 = (x1 − x)2 + (x2 − x)2 + ... + (xn − x)2

n − 1

where x is the mean of all response times, x1...xn are the response times and n is the
amount of response times.

Then, in line 43 the standard deviation of the response times is calculated. The equation
for the standard deviation S, that is used for implementation, is in Equation (5.3):

(5.3) S =
√

V 2

where V 2 is the variance of response times that was calculated before.

Because a higher mean of response times directly leads to a higher standard deviation,
in the next step the coefficient of variation is calculated, so that the standard deviation
is independent of the mean of response times. The formula to calculate the coefficient
of variation cv that is used for the implementation is in Equation (5.4):

(5.4) cv = S

x
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where S is the standard deviation of response times and x is the mean of response times.
The higher the value of the coefficient of variation, the higher the variance of response
times. When the value of the coefficient of variation exceeds in line 48 the predefined
threshold, the Traffic Jam anti-pattern is detected. The default value for the threshold is
0.3.

More is Less

Description: The More is Less anti-pattern occurs, when a system tries to accomplish
more work than resources allow. When too many processes run within a system, its
operation system is permanently busy with communicating with hard disk, because
of, e.g., paging, so that it accomplishes no useful work. This process is also called
"thrashing" and can lead to high response times, because the hard disk is in general
slower than the systems’ main memory.

Solution: It has to be assessed, with the help of thresholds, to a which degree thrashing
is acceptable [Tru11]. If the system architecture cannot satisfy its performance goals,
while not exceeding the thresholds, the system architecture has to be reconsidered.

Detection: Overload situations, where the system spends more time doing other
things than accomplishing real work, can be detected by the diagnoseIT. CPU times and
response times are required from the TSDB.

Rule design: A data point from the TSDB is analyzed, if it has a considerable higher
response time than the average. If that is the case, we calculate the ratio of its CPU time
to its response time, and compare it with the average ratio of all data points. When the
data point’s ratio is considerable lower than the average, we assume that the data point
represents an overload situation of the system.

Implementation: The concrete Java code for this rule is attached in Listing A.7. The
More is Less rule first fetches in line 17 the data from the TSDB and puts them into a
list. We calculate the sum of response times and the sum of CPU times. Then, in line
27 and line 28, the mean of response times and the mean of CPU times is calculated by
dividing the sum by the amount of data points.

Afterwards, the rule iterates through the list of data points, and compares in line 34
the response time of the current data point with the average response time. When the
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response time multiplied by a predefined percent is higher than the average, the rule
investigates the data point further. The default value for the percent is set to 0.4. The
rule divides the current data point’s CPU time by its response time to get its CPU time to
response time ratio. We apply the same process to calculate the average ratio of all data
points. The rule checks in line 40, whether the current data point’s ratio is lower than
the average ratio multiplied by another predefined percent (default value is 0.5). If this
is true, the rule alerts and an overload situation is detected.
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Chapter 6

Detection using combined Approach

In this chapter, we combine the detection based on trace data analysis and the detection
based on time series analysis. This is the third analysis part of diagnoseIT and we call it
from now on detection using combined approach. The third analysis approach links a
data point from the TSDB to a corresponding trace, which then can be analyzed further
using the detection based on trace data analysis.

In Section 6.1, more details on the detection using combined approach are provided. It
is explained, how a data point from the TSDB can be linked to a corresponding trace.

Two anti-patterns, that can be considered for the detection using combined approach,
are shown in Section 6.2. Actually, these anti-patterns also can be considered for the
second approach, the detection using time series, since their detection needs a longer
observation period of trace data.

6.1. Approach

As mentioned in the introduction, both approaches, the detection based on trace data
and detection based on time series approaches, can be combined. The combination
gets accessible through a unique trace identifier, the TraceID (Section 2.5). Beside the
timestamp and particular OPEN.xtrace metrics, the TSDB stores also the TraceID into
the tables. When detecting inconsistencies in the time series data, e.g., when at some
point an undesirable high response time is detected, the affected data can be connected
to traces. The traces then can be analyzed further using the detection based on trace
data analysis.

The rules implemented in this chapter analyze the time series data and try to detect anti-
patterns from it. When the rule detects inconsistencies within the data, the problematic
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data points are saved into a list with their corresponding TraceID. Another rule from the
detection based on trace data analysis can access this list. Traces have to be also stored,
so that they can be retrieved. The retrieval of traces is not covered by this thesis. We
only detect inconsistencies in the TSDB and do not analyze them further.

Figure 6.1 shows an overview of the detection using combined approach.

Figure 6.1.: Detection using combined approach

6.2. Considered Anti-Patterns

In this section, we implement rules for detecting the Application Hiccups and Garbage
Collection Hiccups anti-patterns. As they are also considered as anti-patterns, that need
historical data, the assumptions from Section 5.2 also apply here. Beside the required
performance metrics from the OPEN.xtrace, the TraceID is also saved into the InfluxDB,
to link a problematic data point with a trace. The trace then can be analyzed further
in the detection based on trace data analysis. Further analysis of problematic traces
is not covered by this thesis. The following rules collect problematic data points and
return them with their TraceID, so that another rule from the detection based on trace
data analysis can fetch these data points and link them to traces with corresponding
TraceIDs.
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For both of the following presented anti-patterns we provide a description, propose a
solution, and describe how it can be detected. For both anti-patterns we then propose a
design for a rule that we are going to implement. It is also explained how inconsistent
data points will be detected. How the rule is concretely implemented is described
after the proposed rule design. The Concrete Java codes of the rules can be found in
Appendix A.

Application Hiccups

Description: The Application Hiccups anti-pattern is a SPA, where periodic increase
in response times of the monitored software can be observed. When the increase of
the response times settles down, the system performance becomes acceptable again.
The causes for Application Hiccups are often periodic tasks like GC activities, which
temporary block other threads from further executing. Other root causes are synchro-
nization points or database locking, and also other anti-patterns, like the Dispensable
Synchronization anti-pattern.

Solution: Solutions for Application Hiccups within an applications software depend
on concrete root causes. If Application Hiccups are actually caused by a Dispensable
Synchronization, a solution is provided in Section 3.2. When the cause are GC activities,
then actually the Application Hiccups are caused by Garbage Collection Hiccups, which
are described in Section 6.2.

Detection: To detect this SPA, only response times are needed. These values are stored
into the TSDB.

Rule design: We use a box plot [MTL78] for the detection of outliers within the
response times of the TSDB. Figure 6.2 shows an example diagram of a box plot. A box
plot describes a box with two whiskers. Inside the box the average 50 percent of the
values is located. The lower threshold of the box is called lower quartile and the upper
threshold of the box is called upper quartile. Typically the lower quartile is a percentile
set to 25 percent and upper quartile is a percentile set to 75 percent. The range between
those quartiles is called interquartile range, where the average fifty percent of the data
is located. For this thesis, inside the box the average 50 percent of all time series data
points’ response times is included. The whiskers describe a range for data that is outside
the box, but is still not considered as an outlier. Data, that exceeds the threshold of
the whiskers, is considered as an outlier. We only need the upper whisker to detect
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an Application Hiccup. The range of the upper whisker is defined as a line from the
upper quartile till the largest value of all data points’ response times, that is within
1.5 interquartile ranges from the upper quartile [MTL78]. This defines the range for
response times which are not inside the box, but still are not considered as outliers.
When one of the data points’ response times exceeds the threshold of the upper whisker,
then the data point is an outlier. That means that its response time is much higher than
the other data points’ response times and represents a inconsistency within the data.
The rule saves outliers, that are also considered as hiccups, into a list. The size of the
list tells how many Application Hiccups could be detected in the time series data, and is
provided by the rule. Since it is meaningful to investigate a trace that causes an outlier
further, the rule returns the outliers with corresponding TraceIDs, so that they can be
requested from another rule in the detection based on trace data analysis.

Figure 6.2.: Box plot

Implementation: The concrete Java code for this rule is provided in Listing A.8. The
Application Hiccups rule is always fired, when the detection based on time series analysis
is triggered. The rule fetches in line 13 the data from the TSDB and puts them into a list.
GC times are included in the data. The GC times are not needed to detect Application
Hiccups, but are needed later for the Garbage Collection Hiccups rule, that is executed
after this rule.

For calculating quartiles we use the Apache Commons Mathematics Library [The16]
that allows us to calculate percentiles. Therefore, we instantiate an object from the class
Percentile, on which we can call the evaluate(double[] values, double p) method.
The method takes an array values and for the second parameter a percent p and returns
an estimate of the pth percentile of the values. For the values parameter we pass the
data points’ response times to the method, but the response times have to be first put
into an array of type double.
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After iterating in line 20 through the list of data points and putting their response
times into an array, we calculate first the lower quartile, by instantiating in line 23 a
Percentile object and call on it the evaluate(double[] values, double p) method,
passing the response times array as first parameter and for the second parameter we
pass 25 percent. The upper quartile is calculated almost in the same way, but we pass
75 percent for the p parameter.

We calculate in line 29 the interquartile range by subtracting the lower quartile value
from the upper quartile value. Since we only want to find outlier response times, we do
not have to calculate the exact value of the upper whisker threshold. This would require
to find the largest value within the response times, that is within 1.5 interquartile ranges
from the upper quartile. So we calculate the threshold in line 31 only by adding 1.5
interquartile ranges to the upper quartile value. The response times, that exceed the
threshold, are the outliers. We then iterate in line 34 through the list of data points
and compare, if a data point’s response time has a higher value than the upper whisker
threshold value. If so, the data point that holds the response time is saved into a list. The
number of elements in the list describe how many Application Hiccups are manifested in
the time series data. The rule returns the list with outliers, which can then be analyzed
further.

Alternative rule design: When the detection based on time series analysis is triggered,
the diagnoseIT rule engine fetches the data from the TSDB and puts them into a list. By
iterating through the list the rule investigates how often the response times are crossing
a threshold. Thereby, two crossings of the threshold describe one hiccup.

Figure 6.3 shows one hiccup and the crossing threshold, which is the red line. The rule
saves response times, that are above the crossing threshold, with their corresponding
TraceIDs into a list. The rule returns the list.
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Figure 6.3.: Application Hiccup

Alternative implementation: The concrete Java code for this rule is provided in
Listing A.9. The rule for detecting Application Hiccups fetches in line 16 the data from
the TSDB. The rule detects one hiccup, when a data point’s response time first exceeds
a predefined crossing threshold value (default value is set to 50000 ms) and then it is
followed later by another data point’s response time that is below the crossing threshold.
This describes the temporary increase and decrease of response times.

The rule initializes in line 22 a variable numberOfCrossings with zero to count how
often the predefined crossing threshold is crossed by response times. A boolean variable
isLastTimeAboveThreshold is also initialized. It is initialized in line 25 with true, when
the response time from the first data point is above the crossing threshold, otherwise
with false. The rule iterates in line 28 through the data points and for the current data
point’s response time it checks in line 36, if either the isLastTimeAboveThreshold is
true and the current data point’s response time is below the crossing threshold, or if
the isLastTimeAboveThreshold is false and the current data point’s response time is
above the crossing threshold. If one of the conditions is true, the numberOfCrossings

variable is increased by one and in line 40 the isLastTimeAboveThreshold is negated.
For example, when the current data point’s response time is above the crossing threshold,
for a crossing of the threshold the previous data point’s response time had to be below
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the threshold, and therefore the isLastTimeAboveThreshold must be false. Because the
current data point’s response time is now above the crossing threshold, the value from
isLastTimeAboveThreshold must be set to true.

After counting all crossings, they are in line 44 divided by two. This provides the actual
amount of hiccups. The amount of hiccups is provided by the rule. The rule returns a
list with data points, whose response times are above the crossing threshold, since they
represent inconsistent high values, that should be analyzed further.

Garbage Collection Hiccups

Description: The Garbage Collection Hiccups anti-pattern is a cause for Application
Hiccups and occurs when the periodic increase of response times in a monitored software
is caused by GC activities. When the GC periodically executes, the virtual machine (VM)
gets temporary blocked. During GC activities the VM cannot satisfy other requests.
When the GC tasks are finished and the VM is free again, the VM starts now to satisfy a
backlog of requests leading to increased response times.

Solution: Concrete solutions to the Garbage Collection Hiccups depend on concrete
root causes, since it is often caused by other anti-patterns. Some examples are Large
Temporary Objects, Sisyphus Database Retrieval, Session as a Cache [Kop11] and
Wrong Cache Strategy [Gra10] anti-patterns. In case the hiccups are caused by Large
Temporary Objects, a solution is provided in Section 3.2. A solution to the Sisyphus
Database Retrieval is provided in the Ramp solution (Section 5.2).

The misusage of a HTTP session as a cache to store data leads to the Session as a Cache
anti-pattern. The solution is to use a cache instead of a HTTP session [Wer15].

The Wrong Cache Strategy anti-pattern is caused by a strategy that caches too many
objects, which can lead to increased GC activities. The solution is to investigate first
which objects to cache and then to implement a appropriate caching strategy [Gra10].

Detection: Garbage Collection Hiccups can be detected in the same way as detecting
the Application Hiccups anti-pattern, since it is a special case of the Application Hiccups.
Both rule designs and implementations from the detection of Application Hiccups can
be also considered for the Garbage Collection Hiccups detection. Instead of analyzing
response times, the GC times have to be analyzed. Therefore, the only required data
from the OPEN.xtrace are GC times. Because the implementation would be the same as
for the Application Hiccups anti-pattern detection, for this thesis, we choose another
approach. We investigate Application Hiccups further to check, whether they are caused
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by the GC. The rule design and implementation of this rule corresponds to the general
rule design of the Application Hiccups rule, not to its alternative.

Rule design: The rule for detecting Garbage Collection Hiccups requests the proble-
matic data points that were returned by the Application Hiccups rule. The data points
hold, beside TraceID and response times, also the corresponding GC times. So the rule
checks, whether the GC time of an outlier is high. If yes, the outlier was likely caused
by the GC, and therefore it can be assumed that the Application Hiccup is actually a
Garbage Collection Hiccup.

Implementation: The concrete Java code for this rule is provided in Listing A.10.
The Garbage Collection Hiccups rule is fired after the Application Hiccups Rule. The
Application Hiccups rule returned a list of outliers, that are requested in line 11 by
the Garbage Collection Hiccups rule (see Figure 6.4). The rule first checks in line 18,
whether the amount of outliers is higher than zero. If not, the rule immediately stops
executing, because when there are no Application Hiccups there also cannot be Garbage
Collection Hiccups.

The rule iterates in line 27 through the Application Hiccups outliers, and compares the
response time with the GC time of an outlier. If the GC time is in line 34 higher than
the certain percentage of the response time (default value is 50 %), then we assume
that the hiccup is caused by the GC. The corresponding data point is then saved into a
list. The list is returned later by the rule. The rule tells the user how many hiccups are
caused by the GC by returning the size of the GC times outlier list.

Figure 6.4.: Execution of the Garbage Collection Hiccups rule
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Chapter 7

Evaluation

In this chapter, we evaluate the rules we implemented in the previous chapters. We use
different approaches for the evaluation of the detection based on trace data rules and
the evaluation of the detection based on time series rules. Since the considered rules for
the detection using combined approach are actually rules that analyze time series data,
we consider them also for the second evaluation approach.

For both evaluation approaches we introduce first evaluation goals. Afterwards, we
describe the experiment setup. The experiment is then conducted in several test cases.
For each test case, the results are documented. Besides, test cases include a result
discussion, where we analyze the results.

In Section 7.1, we evaluate the rules that analyze a single trace to detect anti-patterns.

In Section 7.2, we evaluate the rules that analyze a series of trace data to detect
anti-patterns.

We investigate if our evaluation is valid. We consider internal threats, external threats,
construct threats and conclusion threats in Section 7.3.

7.1. Evaluation of Rules based on Single Traces

In this section, we evaluate the implemented rules from Section 4.3. The rules try to
detect anti-patterns by analyzing a single trace. The anti-patterns we want to detect
are the N+1 Query Problem, the Stifle, the Expensive Computation and the Phantom
Logging anti-pattern.
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Evaluation Goals

By evaluating the rules, we especially want to investigate if the rules correctly detect
SPAs. That means, when in a trace an anti-pattern is manifested, then a rule, that
describes the characteristics of that anti-pattern, should detect it. Hence, the first
research question is

RQ1: Do the implemented rules correctly detect anti-patterns?

When the rule wrongly detects not an anti-pattern, it would deliver a false negative
result. Vice versa, when there is no anti-pattern in a trace manifested, the rule should
not detect a SPA and should not thereby deliver a false positive result. False negative
results are more critical, since they suggest false safety. However, we want to uncover
both, false positive and false negative results from the rules.

The second research question is

RQ2: How can we improve the implemented rules?

We will answer both research questions based on the evaluation results. For RQ2, we will
try to identify shortcomings of the rules and how they can be improved by optimizing
the analysis algorithm.

Experiment Setup

We investigate the N+1 Query Problem rule and the Stifle rule as follows. We apply the
rules on the trace data, which we received through the monitoring of a real application.
We use the NovaTec DVD Store (Section 2.1) application and monitor it with the APM
tool CA Introscope [CA16]. The DVD Store allows us to enable different performance
problems. In this case, we inject the N+1 Query Problem into the application. We export
execution traces from CA Introscope and convert them into the OPEN.xtrace with an
adapter. How traces from the APM tool can be exported and how they can be converted
into the OPEN.xtrace with the help of adapters, is shown in [OHH+16]. To show the
limitations of the N+1 Query Problem rule, we generate synthetic traces with a class
TraceCreator. The results are shown in the tests 1-3.

The Expensive Computation rule is applied to synthetic traces to investigate whether the
rule correctly detects the method within a trace, that executes most on the CPU.

For the Phantom Logging rule, we use a exported dashboard file from the APM tool
Dynatrace [Dyn16], that was provided by the NovaTec GmbH. These traces include log
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messages from monitored applications. Test 4 presents the results of the evaluation of
this rule.

All tests are structured as follows. The test begins with a description, where we describe
exactly how the rules are tested. Afterwards we present what results we expect. Then,
we present the results of the test and analyze them.

Test 1 - Detection of the N+1 Query Problem

Description: With the loadIT tool [Nov] we generate load for the DVD Store applica-
tion. We simulate 300 users simultaneously access the store. In the application itself,
we enable the "Slow Search" function, where the N+1 Query Problem is injected to the
application. The DVD Store is monitored using CA Introscope. We pick 20 problematic
traces (with high response times) from the tool, where the N+1 Query Problem is
manifested. Then, we convert the traces into the OPEN.xtrace and apply the N+1 Query
Problem rule on the traces.

Figure 7.1 shows an excerpt of a trace from CA Introscope with manifested N+1 Query
Problem, that is converted into the OPEN.xtrace.

----------------- SubTrace (108783130626980) : [ Response Time (ms)| Execution Time (ms)|
CPU Time (ms)] ----------------
# HTTP Optional[POST] (/dvdstore/browse.seam) [ 19626 | 0 ]

# HTTP Optional[POST] (/dvdstore/browse.seam) [ 19626 | 0 ]
Optional[LifecycleImpl].Optional[execute] [ 19480 | 35 ]
Optional[ActionListenerImpl].Optional[processAction] [ 17224 | 0 ]

Optional[FullTextSearchAction].Optional[doSearch] [ 17224 | 6259 ]
Optional[PerformanceSettingsBean].Optional[getSlowLongSearch] [ 0 | 0 ]
Optional[WrappedConnection].Optional[prepareStatement] [ 1398 | 0 ]

Optional[JdbcConnection].Optional[prepareStatement] [ 1398 | 1398 ]
Optional[WrappedPreparedStatementJDK6].Optional[executeQuery] [ 1252 | 0 ]

# SQL (SELECT PRODUCT0_.PRO) [ 1252 | 1252 ]
Optional[WrappedResultSet].Optional[close] [ 0 | 0 ]

Optional[JdbcResultSet].Optional[close] [ 0 | 0 ]
Optional[WrappedConnection].Optional[close] [ 0 | 0 ]
Optional[WrappedConnection].Optional[prepareStatement] [ 0 | 0 ]

Optional[JdbcConnection].Optional[prepareStatement] [ 0 | 0 ]
Optional[WrappedPreparedStatementJDK6].Optional[executeQuery] [ 3 | 0 ]

# SQL (SELECT INVENTORY0_.I) [ 3 | 3 ]
Optional[WrappedResultSet].Optional[close] [ 0 | 0 ]

Optional[JdbcResultSet].Optional[close] [ 0 | 0 ]
Optional[WrappedConnection].Optional[close] [ 0 | 0 ]
Optional[WrappedConnection].Optional[prepareStatement] [ 0 | 0 ]

Optional[JdbcConnection].Optional[prepareStatement] [ 0 | 0 ]
Optional[WrappedPreparedStatementJDK6].Optional[executeQuery] [ 2 | 0 ]

# SQL (SELECT INVENTORY0_.I) [ 2 | 2 ]
Optional[WrappedResultSet].Optional[close] [ 0 | 0 ]

Optional[JdbcResultSet].Optional[close] [ 0 | 0 ]
Optional[WrappedConnection].Optional[close] [ 0 | 0 ]
Optional[WrappedConnection].Optional[prepareStatement] [ 0 | 0 ]

Optional[JdbcConnection].Optional[prepareStatement] [ 0 | 0 ]
...

Figure 7.1.: Example trace (excerpt) with N+1 Query Problem
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We let the rule also execute on traces, where the N+1 Query Problem is not manifested.
For this purpose, we turn off the injection of the N+1 Query Problem and let the rule
execute on 10 traces.

We build also synthetic traces with a class TraceCreator, that we implemented to show
the limitations of the rule. We build one trace, where one different query is followed
by 11 equal queries, but actually the 11 equal queries have nothing to do with the first
query. In one further synthetic trace, we let the N+1 Query Problem appear not at the
beginning of the investigated subtree, but after some other queries.

Expectations: The rule detects problematic N+1 Query Problems, that are manifested
within traces, in all 20 traces correctly. The traces also contain N+1 queries that are
causing no performance problems, but these are excluded by the generic rules.

The rule detects in the 10 traces without N+1 Query Problem correctly not the anti-
pattern. Nevertheless, the synthetic traces will show the limitations of the rule. It will
detect wrongly the N+1 Query Problem within the trace, where one different query
is followed by 11 equal queries, that have nothing to do with the first query. For the
second synthetic trace, the rule will not detect the N+1 Query Problem, but actually it is
manifested within the synthetic trace.

Results: Once the generic rules provide an aggregated root cause object with type
DatabaseInvocation, the N+1 Query Problem rule detects in all 20 traces the N+1 Query
Problem anti-pattern from the aggregated object correctly.

The rule detects no N+1 Query Problem within the 10 traces, where the anti-pattern is
not manifested.

The rule delivers a false positive result for the first synthetic trace. It detects wrongly the
N+1 Query Problem. The rule delivers a false negative result for the second synthetic
trace. It detects wrongly not the N+1 Query Problem.

Result discussion: The rule detected the N+1 Query Problem correctly in all traces
from the monitored DVD Store application. Therefore, when in a trace the N+1 Query
Problem is manifested and the generic rules provide an aggregated root cause object,
then the rule will always detect the anti-pattern, except when the ’N+1’ queries do
not start at the root of the investigated subtree, as we have seen in the results for the
synthetic traces.

We have a false positive result for the first synthetic trace, because the rule does not
analyze the SQL statements of the DatabaseInvocations. As long as one different query
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is followed by more than 10 equal queries, the rule detects the N+1 Query Problem,
no matter if it is manifested in the trace or not. For a safe detection of the N+1 Query
Problem, the SQL statements have to be analyzed and is a recommended work for the
future.

We get the false negative result for the second synthetic trace, because the rule can only
detect N+1 Query Problems, when the first query starts at the top of the investigated
subtree, and the ’N’ queries follow right after the first query. When the N+1 Query
Problem is nested between other database queries at the same subtree level, the rule
does not detect it. The analysis algorithm of the rule should be improved in future
work.

Test 2 - Detection of the Stifle

Description: A Stifle anti-pattern is always detected, when the generic rules executed
before provide a particular amount of same database queries. In test 1, every time a
N+1 Query Problem was detected, the Stifle rule immediately also detected a Stifle
anti-pattern within the traces (see Listing A.2, line 18 and 19). The main part of the
rule (after line 20) did not execute. Therefore, we modify the code of the Stifle rule
(remove line 18, 19 and 20), and let the rule completely execute on the same traces,
where a N+1 Query Problem was detected in test 1. The traces contain more than 10
equal database queries. Besides, we execute the rules on the 10 traces, where no N+1
Query Problem is manifested (these contain less than 10 equal database queries).

Expectations: The rule detects correctly the Stifle anti-pattern in each trace containing
more than 10 equal database queries. The rule detects no Stifle anti-pattern in traces
with less than 10 equal queries.

Results: In all 20 traces with more than 10 equal database queries, the Stifle anti-
pattern was detected. In the 10 traces with less than 10 equal queries, the Stifle
anti-pattern was not detected.

Result discussion: When the generic rules provide an aggregated root cause object
with a high amount of equal queries, the Stifle rule always alerts. It detects that there
are many equal queries, which cause a performance problem. What the rule cannot
detect is, if the queries are small and fine-grained. It would also consider queries for a
Stifle, when they have a larger result set obtained by same SQL statements. Therefore,
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the SQL statements have to be analyzed and this is a recommendation for the future
work.

Test 3 - Detection of Expensive Computations

Description: We let the rule execute on 10 synthetic traces. The traces are built with
the class TraceCreator. We create a Trace and set a SubTrace as its root. We create
a MethodInvocation, and set it as the root of the SubTrace. The MethodInvocation

serves as a parent for further MethodInvocations. For each MethodInvocation, we set a
corresponding CPU time.

We cannot use real traces for evaluation, since we have no adapter to convert traces
from APM tools, that measure CPU times, into the OPEN.xtrace.

Expectations: The rule always detects the method within the trace, that has the
highest exclusive CPU time. It correctly detects an Expensive Computation, where the
ratio of its exclusive CPU time to the trace response time exceeds a predefined threshold
(default value is 0.10).

Results: For all synthetic traces, the rule correctly detected all methods with the
highest exclusive CPU time. The rule thereby detects correctly Expensive Computations
in the context of this thesis (exclusive CPU time to trace response time ratio has to be
higher than 0.1, so that the method is considered as an Expensive Computation).

Result discussion: The rule worked as expected. A trace with an Expensive Computa-
tion should be investigated further to find the cause of the high computation. This is a
recommended work for the future, as the cause can be other SPAs. Furthermore, it is
not sophisticated enough to consider a method as an Expensive Computation, when the
ratio of its exclusive CPU time to the trace response time exceeds a predefined threshold.
The rule surely can be improved in this regard.

Test 4 - Detection of Phantom Logs

Description: For the Phantom Logging rule, we use a XML [Wor16] file with exported
dashboard from Dynatrace, that is provided by the NovaTec GmbH. Dynatrace captures
logging events from the monitored application. The file contains traces with captured
logging events. We modify for this test real traces. We search for locations in the file,
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where we have log events, and manually set the level of a log message lower than
its current level. In our example in Figure 7.2, we changed the log level from the log
message in the middle from ERROR to DEBUG. Then, we convert the trace into OPEN.xtrace
with a Dynatrace adapter and execute the rule on the trace.

<node method="log4j [ERROR]"
class="dummy.url.jif.presentation.ivas.DialogSteuerung"

<attachment type="LoggingNodeAttachment">
<property key="logger"
value="dummy.url.jif.presentation.ivas.DialogSteuerung" />
<property key="severity" value="40000"/>

</attachment>
</node>
<node method="log4j [DEBUG]"
class="dummy.url.jif.presentation.ivas.DialogSteuerung"

<attachment type="LoggingNodeAttachment">
<property key="logger"
value="dummy.url.jif.presentation.ivas.DialogSteuerung" />
<property key="severity" value="40000"/>

</attachment>
</node>
<node method="log4j [ERROR]"
class="dummy.url.jif.common.context.TechnicalContext"

<attachment type="LoggingNodeAttachment">
<property key="logger" value="dummy.url.jif.common.context.TechnicalContext" />
<property key="severity" value="40000"/>

</attachment>
</node>

Figure 7.2.: Log events in the XML file

Expectations: When the rule detects a log message with a log level lower than the
predefined threshold, the rule always correctly detects a Phantom Log.

Results: The rule works as expected. When changing nothing in the file, no Phantom
Log is detected. As soon we set the level of a log message lower, the Phantom Logging
rule correctly detects the anti-pattern.

Result discussion: The rule always detects log messages, that are lower than the
predefined threshold. If the rule detects a Phantom Log, the user knows that he logged
a message he actually did not want to log.
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7.2. Evaluation of Rules based on Time Series

This section is for evaluating rules, that analyze time series data. The assumption from
Section 5.2 is, that the TSDB is already filled with trace data from traces. So when the
detection based on time series analysis is periodically triggered, there is always trace
data to analyze. Therefore, the idea for the evaluation of the rules is to fill the InfluxDB
first with synthetic trace data and then to execute the rules.

After testing the rules on synthetic trace data, we use the NovaTec DVD Store as a real
application, that we monitor with the APM tool inspectIT [NTC16a]. inspectIT allows us
to export more than one trace at once. Trace data from the exported traces is then saved
into the TSDB. How traces from inspectIT can be exported is described in [OHH+16].

We check for both, synthetic trace data and real trace data, what the output of the rules
is.

Evaluation Goals

By evaluating the rules, we especially want to investigate if the rules correctly detect
SPAs. That means, when in the time series data an anti-pattern is manifested, then a
rule, that describes the characteristics of that anti-pattern, should detect it. Hence, the
first research question is

RQ1: Do the implemented rules correctly detect anti-patterns?

When the rule wrongly detects not an anti-pattern, it would deliver a false negative
result. Vice versa, when there is no anti-pattern in the time series data manifested, the
rule should not detect a SPA and should not thereby deliver a false positive result. False
negative results are more critical, since they suggest false safety. We want to uncover
both, false positive and false negative results from the time series rules.

The second research question is

RQ2: How can we improve the implemented rules?

We will answer both questions based on the evaluation results. For RQ2, we will try
to identify shortcomings of the rules and how they can be improved by optimizing the
analysis algorithm.
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Experiment Setup

For the Ramp rule, Traffic Jam rule and the Application Hiccups rule, we first fill the
InfluxDB for the test cases 1-6 with different synthetic trace data. Then, for the test
cases 7-11, we fill the InfluxDB with the real trace data from a monitored application.
According to the principle of equivalence partitioning [Bur06], we cover with all test
cases that a particular anti-pattern is manifested at least once in the time series data
and at least once not.

For the test cases 1-6, we test the rules on 100 synthetic data points. The 100 data
points are saved into the TSDB with a time distance of 1 second between each point.
The only rule that is affected by the time distance is the Ramp rule, because the slope of
the regression line is dependent on the length of an observation interval. The threshold
for the slope then can be adapted to correspond to the timestamps within the time series
data.

For the real trace data, we use the NovaTec DVD Store application, and monitor it with
the inspectIT. The DVD Store lets us enable different peformance problems and we can
export more than one trace at once from inspectIT. The trace data is then saved into the
TSDB.

For the Garbage Collection Hiccups rule, we manifest with synthetic trace data Applica-
tion Hiccups into the time series data and also save synthetic corresponding GC times
to the response times into the database. Thereby, we test, if the rule detects that the
Application Hiccups are actually caused by the GC. The inclusion of corresponding GC
times is in test case 6.

For the More is Less rule, we fill the TSDB again with the real trace data from the
NovaTec DVD Store and try to detect overload situations within the data. We save from
traces with high response times their response times and corresponding CPU times into
the database. The inclusion of CPU times to the InfluxDB is performed in the test cases
10 and 11.

The test cases are structured as follows. A test case begins with a description, where we
describe the detailed setup for the execution of the rules. Afterwards we present what
results we expect. Then, we present the results of the test case and analyze them.

Grafana [ÖR15] is used for visualization of data. On the x axis are timestamps, and on
the y axis are measurements in ms.
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Test Case 1 - Vertical Line through Data Points

Description: We put a perfect horizontal line through the time series data. That means
all data points have the same response time. For the response time we set 5000 ms.
Figure 7.3 shows the InfluxDB for the 100 data points.

Response Times

Figure 7.3.: Vertical line through data points

Expectations: Since the response times do not change over time, none of the anti-
patterns should be detected.

Results: None of the rules detected anti-patterns. We have no slope for the regression
line and the value of the coefficient of variation is 0. Both Application Hiccups rules
detected 0 hiccups.

Slope Coeff. of Var. App. Hiccups (ALT) App. Hiccups SPA

0.0 0.0 0 0 -

Table 7.1.: Test Case 1 - Results

Result discussion: The rules worked as expected.

Test Case 2 - Perfect Ramp

Description: We fill the InfluxDB with response times. The response time for each
data point is higher than the prior data point’s response time. The data points’ response
times are all positioned on one straight line. For the response times we start at 3000 ms.
The next data point then has the prior data point’s response time increased by 100 ms.
Figure 7.4 shows the InfluxDB for the 100 data points.
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Response Times

Figure 7.4.: Perfect Ramp of data points’ response times

Expectations: The Ramp rule should detect the Ramp anti-pattern. There should be
no Application Hiccups, since there is no outlier data point. The Traffic Jam rule should
not execute, since the slope is to high, when the Ramp anti-pattern is detected.

Results: The slope of the regression line is ∼ 0.1. Since the default value for the slope
threshold is set to 0.05, the rule detects the Ramp anti-pattern.

Slope Coeff. of Var. App. Hiccups (ALT) App. Hiccups SPA

∼ 0.1 - 0 0 The Ramp

Table 7.2.: Test Case 2 - Results

Result discussion: The results match our expectations. The rules worked correctly.

Test Case 3 - Rise of Response Times

Description: We fill the InfluxDB with response times, that rise over the time. The
data points are not on the same straight line, but are distributed around a regression line
with positive slope. For the response times we start at 3000 ms. One data point has the
prior data point’s response time increased by a random number between 3500 ms and
7000 ms, and the next data point has the prior data point’s response time decreased by
a random number between 300 ms and 3000 ms. This alternating pattern is continued
through entire data. It provides a rise of response times, but adds some variance to the
response times. Figure 7.5 shows the InfluxDB and a curve that goes through the 100
data points.

67



7. Evaluation

Response Times

Figure 7.5.: Rise of response times

Expectations: The Ramp rule should detect the Ramp anti-pattern. There should be
no Application Hiccups, since there is no outlier data point. The Traffic Jam rule should
not execute, since the slope is to high when the Ramp anti-pattern is detected.

Results: We have a high slope for the regression line. Its value is ∼ 1.7. Thereby,
the Ramp anti-pattern is detected. Neither the general Application Hiccups rule nor its
alternative detected an outlier data point.

Slope Coeff. of Var. App. Hiccups (ALT) App. Hiccups SPA

∼ 1.7 - 0 0 The Ramp

Table 7.3.: Test Case 3 - Results

Result discussion: The results match our expectations. The slope in this test case is
higher than the slope from the prior test case. This is because the last data point in the
InfluxDB has nearly a response time of 200000 ms. There is also some variance in the
response times, but the high slope prevents the Traffic Jam rule from further executing.
This is what we wanted to achieve.

Test Case 4 - Rise of Response Times with Outliers

Description: We fill the InfluxDB with response times, that rise over the time. The
data points are not on the same straight line, but are distributed around a regression
line with positive slope. For the response times we start at 3000 ms. One data point has
the prior data point’s response time increased by a random number between 600 ms
and 1000 ms, and the next data point has the prior data point’s response time decreased
by a random number between 100 ms and 500 ms. This alternating pattern is continued
through entire data. It provides a rise of response times, but adds also some variance
to the response times. For the 25th, the 50th and the 75th data point we set an outlier
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response time. For the outlier values we set a random value between 50000 ms and
100000 ms. Figure 7.6 shows the InfluxDB and a curve that goes through the 100 data
points.

Response Times

Figure 7.6.: Rise of response times with outliers

Expectations: The Ramp rule should detect the Ramp anti-pattern. There should be
also Application Hiccups, since there are outlier data points. The Traffic Jam rule should
not execute, since the slope is to high when the Ramp anti-pattern is detected.

Results: The slope of the regression line is ∼ 0.24. The Ramp is detected. Both of the
Application Hiccups rules detect three hiccups. The values for the outlier data points are
98481 ms, 57329 ms and 76601 ms for the third outlier.

Slope Coeff. of Var. App. Hiccups (ALT) App. Hiccups SPA

∼ 0.24 - 3 3 The Ramp
Appl. Hiccups

Table 7.4.: Test Case 4 - Results

Result discussion: The results match our expectations. The rules correctly did detect
the Ramp anti-pattern and Application Hiccups. But here we notice the limitation of the
alternative Application Hiccups rule. When we set the value of the crossing threshold to
a value higher than one of the values of the three outlier data points, the rule detects
less Application Hiccups than the general Application Hiccups rule. The default value
for the crossing threshold is 50000 ms and therefore it detects also all three hiccups.
So the disadvantage of the alternative Application Hiccups rule is, that the value of the
crossing threshold has to be adapted to correspond to the current values in the TSDB.

The Ramp rule does not remove outliers before calculating the slope. The slope is
higher because of them. The rule should be modified to exclude outliers first. This is a
recommended work for the future.
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Test Case 5 - Variance of Response Times

Description: We fill the InfluxDB with random values between 1000 ms and 10000
ms. For this purpose, we use the class ThreadLocalRandom [Jav16]. With the following
Java code, we can generate a random Integer value.

ThreadLocalRandom.current().nextInt(int origin, int bound)

where origin is the least value generated and bound is the maximum value generated.
After filling the InfluxDB with the 100 random values, there should be a high variance
of response times. Figure 7.7 shows the InfluxDB and the distribution of the 100 data
points.

Response Times

Figure 7.7.: Variance of response times

Expectations: There should be no Ramp detected, since the slope of the regression
line is to low. Thereby, the Traffic Jam rule executes and should detect a high variance of
response times, because the data points are distributed between 1000 ms and 10000 ms.
There could be Application Hiccups, if the Application Hiccups rule detects an outlier
response time.

Results: The slope of the regression line is ∼ 0.0. The coefficient of variation has a
value of ∼ 0.48 and therefore the Traffic Jam anti-pattern is detected. The default value
for the coefficient of variation threshold is 0.3. None of the Application Hiccups rules
detected hiccups.

Slope Coeff. of Var. App. Hiccups (ALT) App. Hiccups SPA

∼ 0.0 ∼ 0.48 0 0 Traffic Jam

Table 7.5.: Test Case 5 - Results
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Result discussion: The Traffic Jam rule correctly detects a high variance of response
times. The alternative Application Hiccups rule did not detect a hiccup, since all response
times are below 50000 ms. The general Application Hiccups rule did also not detect any
hiccup, since high and low response times are distributed similar.

Test Case 6 - Detecting Garbage Collection Hiccups

Description: We fill the InfluxDB with 100 random response times between 3000 and
5000 ms. We modify the 25th, the 50th and the 75th data point to become an outlier
with the values between 50000 ms and 75000 ms. This time, we add to each data point
also a synthetic corresponding GC time beside the response times into the the database.
The GC time is for each data point a random value between 500 and 3000 ms, except
for the 25th, the 50th and the 75th data point, where we have outlier response times.
We here choose a random value between 25000 ms and 50000 ms. Figure 7.8 shows the
InfluxDB and the distribution of the 100 data points’ response times and GC times.

Response Times GC Times

Figure 7.8.: Time series that contains also GC times

Expectations: When an Application Hiccup is caused by the GC, then the GC time
is higher than 50 percent of the hiccups’ response time. We expect that from three
Application Hiccups at least one is caused by the GC. There should be no Ramp, since
the regression line through the data points is horizontal. There should be Traffic Jam,
because the random outlier response times are way higher than the other response times.
This causes a high standard deviation.

Results: The slope of the regression line is ∼ 0.0. The value of the coefficient of
variation is ∼ 1.74, so the Traffic Jam anti-pattern is detected. From three Application
Hiccups, two are caused by the GC. This applies to the second and the third hiccup.
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Slope Coeff. of Var. App. Hiccups GC Hiccups SPA

∼ 0.0 ∼ 1.74 3 2 Application Hiccups
Garbage Collection Hiccups
Traffic Jam

Table 7.6.: Test Case 6 - Results

Result discussion: We detected a Traffic Jam, although Figure 7.8 shows no high
variance of response times. There are only three outliers that lead to the high value
of the coefficient of variation. The rule therefore detects wrongly a Traffic Jam and
thereby delivers a false positive result. What would be better for the Traffic Jam rule is
to exclude outlier data points. This is recommended work for the future.

The rule for detecting Garbage Collection hiccups worked as expected. Two of the outlier
response times have a corresponding GC time value, that is higher than 50 percent of the
response time. Since the predefined percent in the end decides, whether an Application
Hiccup is a Garbage Collection Hiccup, the rule can be improved by reconsidering its
concept and thereby making the rule independent of such a value.

Test Case 7 - Random Real Trace Data with Performance Problems

Description: For the first test case considering real trace data, we fill the InfluxDB with
random trace data from the monitored DVD Store. We enabled performance problems
within the store, like the ’Slow Search’ function, where unnecessary complicated database
queries are performed, and the ’Slow Display of Latest Orders Page’ function, where an
inefficient sorting algorithm is used. We set the threshold for the alternative Application
Hiccups rule to 10000 ms, otherwise some of the hiccups would not be detected.
Figure 7.11 shows the InfluxDB with the response times.

Response Times

Figure 7.9.: Time series that contains real trace data
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Expectations: There should be Application Hiccups, since there are outlier response
times. In the TSDB there is no rise of response time visible, but a high variance of
response times. Therefore, the Traffic Jam anti-pattern should be detected.

Results: The slope of the regression line is ∼ 0.0, so no Ramp is detected. The value
of the coefficient of variation is ∼ 1.54 and therefore the Traffic Jam anti-pattern is
detected. The general Application Hiccups rule detects 9 hiccups, whereas the alternative
Application Hiccups rule detects 5 hiccups.

Slope Coeff. of Var. App. Hiccups (ALT) App. Hiccups SPA

∼ 0.0 ∼ 1.54 9 5 Application Hiccups
Traffic Jam

Table 7.7.: Test Case 7 - Results

Result discussion: Our expectations are fulfilled, except that the alternative Applica-
tion Hiccups rule detected less hiccups than the general Application Hiccups rule. This
is because some of the outlier response times follow right after an outlier value, that
already exceeded the crossing threshold. The general Application Hiccups rule, however,
counts all outliers as hiccups. The approach of the alternative Application Hiccups rule
is relating to this aspect better, because a hiccup is defined as a rise of response times
followed by a down of response times. The disadvantage of the alternative Application
Hiccups rule is that the value of the crossing threshold has to be adapted to correspond
to the current values in the TSDB.

Test Case 8 - Real Trace Data with Ramp

Description: To manifest the Ramp anti-pattern within the NovaTec DVD Store, we
enable several performance problems within the store, like the ’Slow Search’ function,
where unnecessary complicated database queries are performed, and the ’Slow Display
of Latest Orders Page’ function, where an inefficient sorting algorithm is used. We let
inspectIT collect traces in a longer observation period, since the longer LoadIT produces
load on the DVD Store, the more the response times rise over time. We take an excerpt
of traces and save them into the TSDB. For the alternative Application Hiccups rule, we
set the crossing threshold value to 10000 ms. Figure 7.11 shows the InfluxDB for the
rise of response times.
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Response Times

Figure 7.10.: Time series that contains Ramp anti-pattern

Expectations: The rules should detect the Ramp anti-pattern, since the slope of the
regression line is high enough. Thereby, no Traffic Jam anti-pattern should be detected.
There could be Application Hiccups, when an outlier response time is detected.

Results: The slope of the regression line is ∼ 0.14 and therefore the Ramp anti-pattern
is detected. The general Application Hiccups rule detected no hiccup, whereas the
alternative Application Hiccups rule detected one hiccup.

Slope Coeff. of Var. App. Hiccups (ALT) App. Hiccups SPA

∼ 0.14 - 0 1 The Ramp

Table 7.8.: Test Case 8 - Results

Result discussion: The Ramp anti-pattern is detected correctly within the time series
data, like expected. The alternative Application Hiccups rule detected one hiccup, since
one data point exceeds the value of the crossing threshold and is followed by a data
point that is below the value. It appears open to interpretation, whether the result we
obtained here is wrong, since Figure 7.11 shows a periodic rise of response times and
is followed by a down of response times just before the response times rise again. For
future work it would be good to define exactly, what an Application Hiccup is.

Test Case 9 - Real Trace Data with Ramp and Application Hiccups

Description: We enable the ’Slow Search’ function in the DVD Store, where unneces-
sary complicated database queries are performed to the database. For this test case, we
only let 6 users access the store, whereas in the other test cases with real trace data 300
users access the store. With this test case, we only want to show limitations of the Ramp
rule and the Traffic Jam rule. Figure 7.11 shows the InfluxDB with filled trace data. We
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set the threshold for the alternative Applications Hiccups rule to 5000 ms, otherwise it
would not detect a single hiccup.

Response Times

Figure 7.11.: Time series that contains Ramp and Application Hiccups

Expectations: There should be Application Hiccups, since there are existing outlier
response times. There should be no Ramp, since the slope of the regression line is to
low. There should be Traffic Jam, because of the high variance of response times.

Results: The slope of the regression line is ∼ 0.1. The Ramp is detected. Therefore,
we have no Traffic Jam. Both Application Hiccups rules detected 4 hiccups.

Slope Coeff. of Var. App. Hiccups (ALT) App. Hiccups SPA

∼ 0.1 - 4 4 Application Hiccups
The Ramp

Table 7.9.: Test Case 9 - Results

Result discussion: Contrary to our expectations, we detected the Ramp anti-pattern
and not the Traffic Jam anti-pattern. When we set the slope threshold to a value higher
than 0.1, than we detect the Traffic Jam anti-pattern with a coefficient of variation
value of ∼ 1.56. The problem for both rules is, that sometimes the thresholds have to
be adapted to correspond to the current data points in the TSDB. In Figure 7.11, we
see rather a Traffic Jam than a Ramp in the time series data and therefore both rules
deliver a wrong result. The Ramp rule provides a false positive result, and the Traffic
Jam rule provides a false negative result. The problem is also, that the Traffic Jam rule
is dependent from the Ramp rule. We recommend in future work to improve the rules,
so that the differentiation of both anti-pattern detections is more sophisticated.

As already discussed in test case 4, the slope of the regression line would be lower if the
Ramp rule would exclude outliers before calculating the slope.
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Test Case 10 - Real Trace Data with Overload Situations

Description: Enabling performance problems within the DVD Store leads to high
response times, where in the most cases the system does not execute much on the CPU.
Figure 7.12 shows the InfluxDB with filled data from inspectIT traces. Response times
are high, and CPU times are low. We set the threshold for the alternative Application
Hiccups rule to 5000 ms, otherwise it would not detect a single hiccup.

Response Times CPU Times

Figure 7.12.: Time series that contains overload situations

Expectations: Several anti-patterns should be detected. There must be Application
Hiccups, since the InfluxDB contains outlier data points. The variance of response times
is also high, so there should be Traffic Jam. The More is Less rule should detect an
overload situation, since there are high response times with corresponding low CPU
times.

Results: The alternative Application Hiccups rule detected 11 hiccups, the general
Application Hiccups rule 14. The coefficient of variation is ∼ 0.83, and the Traffic Jam
anti-pattern is detected. The More is Less rule detected an overload situation, where the
problematic data point has a response time of ∼ 20783.64 ms and only a CPU time of
93.75 ms, whereas the average response time within the time series data is ∼ 8034.18
ms and the average CPU time is ∼ 665 ms. The CPU time to response time ratio from
the problematic data point is ∼ 0.005, the ratio within the time series data is ∼ 0.04.

Slope Coeff. of Var. App. Hiccups (ALT) App. Hiccups SPA

∼ 0.0 ∼ 0.83 14 11 Application Hiccups
Traffic Jam
More is Less

Table 7.10.: Test Case 10 - Results
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Result discussion: The rules worked as expected. The alternative Application Hiccups
rule detected less hiccups than the general rule. This is because some of the outlier
response times follow right after an outlier value, that already exceeded the crossing
threshold. The general Application Hiccups rule, however, counts all outliers as hiccups.
The approach of the alternative Application Hiccups rule is relating to this aspect better,
because a hiccup is defined as a rise of response times followed by a down of response
times.

The More is Less rule detected an overload situation. The rule worked as expected, since
we have a high response time, that is higher than the average response time, with a very
low corresponding CPU time to response time ratio, that is lower than the average ratio
of all data points.

Test Case 11 - Real Trace Data with no Overload Situations

Description: Enabling performance problems within the DVD Store leads to high
response times, where in the most cases the system does not execute much on the CPU.
In contrast to test case 10, we let the DVD Store execute longer, so that we have more
load on the Store. Figure 7.13 shows the InfluxDB with filled data from inspectIT traces.
Response times are high, and CPU times are low. This time we do not change the value
for the threshold of the alternative Application Hiccups rule (default value is 50000
ms).

Response Times CPU Times

Figure 7.13.: Time series that contains no overload situations

Expectations: Several anti-patterns should be detected. There must be Application
Hiccups, since the InfluxDB contains outlier data points. The variance of response times
is also high, so there should be Traffic Jam. The More is Less rule should detect an
overload situation, since there are high response times with corresponding low CPU
times.
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Results: The general Application Hiccups rule detected 7 hiccups, whereas the alterna-
tive Application Hiccups rule detected 4 hiccups. The value of the coefficient of variation
is ∼ 0.83, so the Traffic Jam anti-pattern is detected. The More is Less rule detected no
overload situation. The average response time of the monitored system is ∼ 28298.74
ms and the average CPU time is ∼ 542.97 ms.

Slope Coeff. of Var. App. Hiccups (ALT) App. Hiccups SPA

∼ -0.07 ∼ 0.83 7 4 Application Hiccups
Traffic Jam

Table 7.11.: Test Case 11 - Results

Result discussion: The alternative Application Hiccups rule detected less hiccups than
the general rule. This is because some of the outliers do not exceed the threshold of
50000 ms. When improving the general Application Hiccups rule relating to the aspect,
that it counts all outliers as hiccups, then the rule definitely is better than its alternative,
since it is independent from a threshold.

The More is Less rule this time did not alert. The reason is that the average CPU time
to response time ratio from all data points is only ∼ 2 percent. There are very high
response times with a duration of over 100000 ms and corresponding low CPU times,
as we can see in Figure 7.13. There is for example a data point, that has a response
time of ∼ 131544.28 ms and a CPU time of 2093.75 ms, but the rule did not detect it as
an overload situation, since the average CPU time of all data points is only ∼ 542.97
ms. The rule could not fulfill our expectation, but worked correctly, because all data
points have a low corresponding CPU time. However, the predefined percent of the
More is Less rule finally decide, whether there is an overload situation in the monitored
system or not. For future work, we recommend to elaborate a More is Less rule, that is
independent from such predefined values.

7.3. Threats to Validity

Internal threats: For the evaluation of the N+1 Query Problem, in addition to traces
from the sample application, we used self made synthetic traces to show its limitations.
With the real traces we could not show the limitations, since they do not cover the
following cases. The first case is a trace, that contains one different query followed by
n equal queries, but actually the first query has nothing to do with the other queries.
The second case is a trace, where the N+1 Query Problem does not start right at the
beginning of a subtree, but is followed by some other queries.
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To obtain realistic traces instead of the synthetic traces, problem injection can be used.
With the injection it can be defined, which SQL queries the application performs. The
present problem injection to the DVD Store leads to the traces we already used for
evaluation, but cannot show the limitations of the rule.

For the Expensive Computation rule evaluation, and for test cases 1-6 in the evaluation of
rules based on time series, we used synthetic traces or synthetic trace data for evaluation.
The results should be the same when applying the rule on real traces or real trace data,
but this cannot be guaranteed. For a better evaluation, the tests should be reconsidered
and real traces or real trace data should be used.

For the Expensive Computation rule, traces from inspectIT can be used, since they
include CPU time data. To do this, an OPEN.xtrace adapter for the tool has to be
implemented. For the test cases 1-6 of the evaluation of rules based on time series,
instead of using synthetic trace data, problem injection and then to export traces from
inspectIT would be more appropriate.

External threats: Since we obtained in some tests wrong results when using particular
sample traces or sample trace data, the results cannot be generalized to populations.
Wrong results are obtained when detecting an anti-pattern, although it is not manifested
in a trace or trace data (false positive), and not detecting an anti-pattern, although it is
manifested in a trace or trace data (false negative). For the rules that delivered these
wrong results, the analysis algorithm has to be optimized.

Construct threats: Since we obtained wrong results in some tests when using particu-
lar sample traces or sample trace data, the results cannot be generalized. Wrong results
are obtained when detecting an anti-pattern, although it is not manifested in a trace or
trace data (false-positive), and not detecting an anti-pattern, although it is manifested
in a trace or trace data (false-negative). For the rules that delivered these wrong results,
the analysis algorithm has to be optimized.

Conclusion threats: The number of data points within the TSDB may not be sufficient
to reflect real use cases. The rules have to be executed on the monitoring data obtained
over longer time intervals, where more data points are obtained.
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Chapter 8

Conclusion

In this chapter, we summarize what we did throughout this thesis and discuss, whether
we have reached our goals. The summary is in Section 8.1, and the discussion about
reaching the goals is in Section 8.2. Furthermore, we recommend work for the future in
Section 8.3, that could not be done in the scope of this thesis.

8.1. Summary

Throughout this thesis, we developed approaches for detecting SPAs in enterprise
applications. The approaches are based on analyzing runtime data from the application.
We get the runtime data with the help of APM tools, that are coupled with the tool
diagnoseIT. We split the diagnoseIT analysis into three analysis parts.

The first part deals with the detection of SPAs based on a single execution trace and
is called detection based on trace data. diagnoseIT receives a problematic trace and
starts a root cause analysis by applying rules to the trace to get insights. The rules
are stored inside the diagnoseIT rule engine. A rule describes the characteristics of an
anti-pattern and when the analyzed runtime data matches the characteristics, the rule
detects the anti-pattern. We investigated several anti-patterns. Some of them can be
detected by the analysis of a single trace, and others cannot. We implemented the rules
for detecting the N+1 Query Problem, the Stifle, Expensive Computation and Phantom
Logging anti-pattern.

For anti-patterns, that cannot be detected by analyzing a single trace, we introduced a
completely new approach. These anti-patterns become visible over a longer observation
period and require the analysis of a series of data. We integrated a TSDB into the
diagnoseIT, so we can save particular trace data. This detection, based on time series
analysis, is triggered periodically. The time series data is fetched from the database and
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rules are applied to the data. Through this new approach, we now can detect the Ramp,
Traffic Jam and More is Less anti-pattern.

The detection using combined approach combines the previous analysis parts, where
a problematic data point from the TSDB can be linked to a trace, that can then be
analyzed further. For this purpose, we use the TraceID, that is assigned to each incoming
trace for analysis by the diagnoseIT. We implemented two rules based on this approach.
One detects Application Hiccups within the time series. Data points, that cause the
hiccups, can be analyzed further in the detection based on trace data analysis. The rule
returns a list with problematic data points with corresponding TraceIDs. The second
rule investigates Application Hiccups further and checks, whether they are caused by
the GC. Like the Application Hiccups rule, the rule returns data points, that cause the
Garbage Collection Hiccups.

Finally, we evaluated the implemented rules to check, whether they correctly detect
SPAs. The evaluation showed the applicability of the rules, but has also uncovered
limitations of the rules. We used different evaluation approaches for the rules that work
on single traces, and the rules that work on time series. For the rules that work on single
traces, we applied the rules simply on trace data from a real application or synthetic
trace data, and investigated, whether the rules correctly detect an anti-pattern. For the
rules that work on time series data, we filled the TSDB first with synthetic trace data,
and then with trace data from a real application. We then applied the rules on the time
series data and checked, whether the results did match our expectations.

8.2. Retrospective

In Section 1.2, we described the goals for this thesis. Here we discuss whether we have
reached the goals.

The first goal was to evaluate the diagnoseIT approach and the OPEN.xtrace. We
investigated the structure of the OPEN.xtrace and described it in Section 2.5. For
the implementation of the rules, we defined which metrics from the OPEN.xtrace are
necessary to detect the anti-patterns. We investigated the diagnoseIT rule engine and
how it works. Results from this task are in Section 3.3.

The second goal of this thesis was to access historical data in diagnoseIT. That means,
we wanted to find a way to detect anti-patterns, that can be detected by analyzing a
series of trace data. We successfully reached this goal. We extended the diagnoseIT
with a TSDB, to save particular trace data from incoming traces to the diagnoseIT into a
database.
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The third goal of this thesis was to research SPAs in literature. Furthermore, we wanted
to investigate, whether the anti-pattern can be detected with the current diagnoseIT
approach and the available data in the OPEN.xtrace. We reached this goal, since we did
find out, which anti-patterns can be detected and which not. Detectable anti-patterns
are listed in Section 3.1, and not detectable anti-patterns are listed in Section 3.2. We
explained for each anti-pattern, why it can be detected or not.

The fourth goal of this thesis was to develop concepts and rules for the detectable
anti-patterns. Furthermore, they had to be implemented in Java code. In Chapter 4,
Chapter 5 and in Chapter 6, we presented concepts and rules for the detection of the
anti-patterns. We split the diagnoseIT analysis intro three parts, where each of them
describes another concept of the diagnoseIT analysis. Thereby, we implemented rules
for each analysis part, that can all be found in Appendix A.

The last goal of this thesis was the evaluation of the rule implementations. We created a
test plan, where we used different approaches for the evaluation of rules, that work on
single traces and for the evaluation of rules, that work on time series data. We applied
the rules to synthetic traces as well as to traces, that we obtained by monitoring a real
application. We saw that the rules, in the majority of tests, work as expected, but we
saw also some limitations of the rules, where false positive or false negative results are
delivered. For each test, where we saw wrong results, we made recommendations how
the rules can be improved, so that the rules in all scenarios work as expected. Therefore,
the evaluation of the rules was successful.

8.3. Future Work

In this section, we present possible future work, that could not be done in the scope of
this thesis.

The first recommended work is to improve the implemented rules from this thesis. In
Chapter 7, we proposed how the rules can be improved. We summarize for the rules in
the following, how an improvement can be achieved. Table 8.1 provides the possible
improvements.
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Rule Improvement

N+1 Query Problem
Analyze SQL statements
Detect also N+1 Query Problems, that do not start
right at the beginning of a subtree

The Stifle Analyze SQL statements

Expensive Computation
Redefine, what an Expensive Computation is
Investigate further Expensive Computations

The Ramp
Clear distinction from Traffic Jam rule
Exclude outlier data points

Traffic Jam
Clear distinction from the Ramp rule
Exclude outlier data points

More is Less
Reconsider the rule concept and make it
independent from predefined values

Application Hiccups Do not consider each outlier as a hiccup

Alternative Application Hiccups
Detect hiccups independent from a threshold
Redefine, what a hiccup is

Garbage Collection Hiccups
Detect hiccups independent from a
predefined value

Table 8.1.: Possible improvements

If SQL statements can be analyzed, a rule for detecting the Circuitous Treasure Hunt
anti-pattern can be implemented, since by analyzing the SQL statements it can be
differentiated from the N+1 Query Problem. Furthermore, the rules should provide
solutions, when they detect an anti-pattern. In the previous chapters, we proposed
solutions to a particular anti-pattern, but the rules do not consider these.

If using the combined approach detects a problematic data point, it is not further
analyzed in the detection based on trace data analysis. It is recommended, to analyze
problematic data points further, since they are the cause for the performance problems
within the time series data.

Furthermore, the evaluation of the rules that work on time series data was not performed
on the data from longer observation periods. The investigated time periods were really
short and did not last longer than few minutes. Therefore, the rules should be tested on
trace data, that is collected over hours or even days of observations.

What the thesis did not consider is the detection of technology-dependent anti-patterns,
where technologies are misused during the implementation of a software. All inves-
tigated anti-patterns throughout this thesis are technology-independent. Examples
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for technology-dependent anti-patterns are Hibernate anti-patterns [Węg13]. For the
detection of such anti-patterns further rules can be implemented.

The literature can be researched further for SPAs, that can be detected with the help of
the APM tool diagnoseIT. When an anti-pattern cannot be detected due to unavailable
data in the OPEN.xtrace, the OPEN.xtrace could be extended by including the missing
data. Some of the listed anti-patterns in Section 3.2 cannot be detected due to missing
data in the OPEN.xtrace, like the Empty Semi Trucks or the Dormant References anti-
pattern.

85





Appendix A

Rules

In this chapter, we provide Java codes of the rule implementations to detect SPAs. For
some of the rules, we provide only excerpts with the main part of the rule.
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Listing A.1 N+1 Query Problem rule
1 @Rule(name = "NPlusOneRule")

public class NPlusOneRule {

// Threshold for the ’N’ queries

5 private static final int NUMBER_OF_CALLS_THRESHOLD = 10;

// Requesting aggregated object with root causes

@TagValue(type = rootCauses)

private AggregatedObject cause;

10
@Action(resultTag = N+1_Tag)

public boolean action() {

...

// Check, if type of root causes is DatabaseInvocation.

15 // If so, parent of root causes is accessed. This is an executeQuery() method.

// To get all executeQuery() methods on the same tree level, again the

// parent of an executeQuery() method is accessed.

...

LinkedList<DatabaseInvocation> listDatabaseInvocations = new

20 LinkedList<DatabaseInvocation>();

TreeIterator<Callable> callableIterator = parent.iterator();

// Iterate over all Callables and search for DatabaseInvocations

while (callableIterator.hasNext()) {

25 Callable current = callableIterator.next();

if (current instanceof DatabaseInvocation) {

DatabaseInvocation databaseInvocation = (DatabaseInvocation)

current;

listDatabaseInvocations.add(databaseInvocation);

30 }

}

DatabaseInvocation firstInvocation = listDatabaseInvocation.get(0);

DatabaseInvocation secondInvocation = listDatabaseInvocation.get(1);

long amountOfNQueries = 0;

35
// First query has to differ from the other queries

if (!(secondInvocation.getSQLStatement().equals(firstInvocation

.getSQLStatement()))) {

40 // Count amount of the ’N’ queries

for (int i = 2; i < causeInvocations.size(); i++) {

DatabaseInvocation databaseInvocation = (DatabaseInvocation)

causeInvocations.get(i);

if (databaseInvocation.getSQLStatement().equals(

45 secondInvocation.getSQLStatement())) {

amountOfNQueries++;

}

}

}

50 if (amountOfNQueries > NUMBER_OF_CALLS_THRESHOLD) {

return true;

}

return false;

}

55 }
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Listing A.2 The Stifle rule
1 @Rule(name = "TheStifleRule")

public class TheStifleRule {

// Threshold for amount of queries

5 private static final int NUMBER_OF_CALLS_THRESHOLD = 10;

// Requesting aggregated object with root causes

@TagValue(type = rootCauses)

private AggregatedObject cause;

10
// Requesting result of N+1 Query Problem rule

@TagValue(type = N+1_Tag)

private boolean resultOfNPlusOneRule;

15 @Action(resultTag = Stifle_Tag)

public boolean action() {

if(resultOfNPlusOneRule == true){

return true;

20 }

...

// Check, if type of root causes is DatabaseInvocation. If not, return false.

// Parent of a root cause is an executeQuery() method. Try to access

// parent of executeQuery() method, to get all children on the same tree level

25 // and put the children into listDatabaseInvocations. If executeQuery()

// has no parent, put available root causes into listDatabaseInvocations.

...

HashMap<String, Long> queryMap = new HashMap<String, Long>();

30 for (DatabaseInvocation invocation : listDatabaseInvocations) {

String sqlCommand = invocation.getSQLStatement();

// Check, if HashMap already contains the SQL statement

if (queryMap.containsKey(sqlCommand)) {

35
// Increase amount value by one

queryMap.put(sqlCommand, queryMap.get(sqlCommand) + 1);

} else {

// Create new entry and set amount value to one

40 long amount = 1;

queryMap.put(sqlCommand, amount);

}

}

...

45 // Check, if one of the entries’ amount value exceeds the threshold.

// If so, the rule returns true

...

return result;

}

50 }
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Listing A.3 Expensive Computation rule
1 @Rule(name = "ExpensiveComputationRule")

public class ExpensiveComputationRule {

// Threshold ratio of exclusive CPU time to trace response time

5 private static final double CPU_TIME_RATIO = 0.10;

// Requesting a trace to analyze

@TagValue(type = Tags.ROOT_TAG)

private Trace trace;

10
// The baseline value is 1000 ms, problematic traces exceed this value

@SessionVariable(name = VAR_BASELINE, optional = false)

private double baseline;

15 @Action(resultTag = ExpensiveComputation_Tag)

public TimedCallable action() {

long traceResponseTime = trace.getResponseTime();

MethodInvocation methodInvoHighestExclCPUTime = null;

20 long highestExclusiveCPUTime = 0l;

List<MethodInvocation> methodInvocations = new LinkedList<MethodInvocation>();

if (traceResponseTime >= baseline) {

for (Callable callable : trace) {

25
// Find MethodInvocations that provide excl. CPU times

if (callable instanceof MethodInvocation) {

MethodInvocation methodInvo = (MethodInvocation) callable;

if (methodInvo.getCPUTime().isPresent()) {

30 methodInvocations.add(methodInvo);

}

}

}

if (methodInvocations.size() >= 1) {

35 for (int i = 0; i < methodInvocations.size(); i++) {

if (methodInvocations.get(i).getExclusiveCPUTime().get() >

highestExclusiveCPUTime) {

highestExclusiveCPUTime = methodInvocations.get(i)

.getExclusiveCPUTime().get();

40 methodInvoHighestExclCPUTime =

methodInvocations.get(i);

}

}

double CPUTimeRatio = ((double) methodInvoHighestExclCPUTime

45 .getExclusiveCPUTime().get())

/ ((double) traceResponseTime);

if (CPUTimeRatio > CPU_TIME_RATIO) {

return methodInvoHighestExclCPUTime;

50 }

}

}

return null;

}

55 }
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Listing A.4 Phantom Logging rule
1 @Rule(name = "PhantomLoggingRule")

public class PhantomLoggingRule {

// The assumed log level of the monitored system

5 private static final LoggingLevel LOG_THRESHOLD = LoggingLevel.DEBUG;

// Requests trace to analyze

@TagValue(type = Root_Tag)

private Trace trace;

10
@Action(resultTag = PhantomLogging_Tag)

public boolean action() {

for (Callable callable : trace) {

15
if (callable instanceof LoggingInvocation) {

LoggingInvocation loggingCallable = (LoggingInvocation) callable;

if (loggingCallable.getLoggingLevel().isPresent()) {

20
// Get the log level of current LoggingInvocation

String logLevel = loggingCallable.getLoggingLevel().get();

// Access integer value of log level

25 LoggingLevel level = LoggingLevel.valueOf(logLevel);

if(level.level < LOG_THRESHOLD.level){

return true;

}

30 }

}

}

return false;

}

35
// The enum assigns an Integer value to each of the log levels

enum LoggingLevel {

ALL(0), TRACE(1), DEBUG(2), INFO(3), WARN(4), ERROR(5), FATAL(6), OFF(7);

int level;

40
LoggingLevel(int level) {

this.level = level;

}

}

45 }
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Listing A.5 The Ramp rule
1 @Rule(name = "TheRampRule")

public class TheRampRule {

// Threshold for the slope of the regression line

5 private static final double SLOPE_THRESHOLD = 0.05;

@TagValue(type = Root_Tag)

// Connection to the InfluxDB

private InfluxDBConnector connector;

10
@Action(resultTag = Ramp_Tag)

public boolean action() {

List<DataPoint> dataPoints = new LinkedList<DataPoint>();

15
// Fetches data points from InfluxDB

dataPoints = getDataPoints();

// Regression line

20 SimpleRegression regression = new SimpleRegression();

// Add data points

for (DataPoint dataPoint : dataPoints) {

long timestamp = (long) dataPoint.getTimestamp();

25 long responseTime = (long) dataPoint.getResponseTime();

regression.addData(timestamp, responseTime);

}

// Slope of regression line has to be higher than threshold

30 if (regression.getSlope() > SLOPE_THRESHOLD) {

return true;

}

return false;

35 }

}
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Listing A.6 Traffic Jam rule
1 @Rule(name = "TrafficJamRule")

public class TrafficJamRule {

// Threshold for coefficient of variation

5 private static final double COEFFICIENT_OF_VARIATION_THRESHOLD = 0.3;

// Threshold for the slope of the regression line

private static final double SLOPE_THRESHOLD = 0.05;

10 @TagValue(type = Root_Tag)

// Connection to the InfluxDB

private InfluxDBConnector connector;

@Action(resultTag = TrafficJam_tag)

15 public boolean action() {

List<DataPoint> dataPoints = new LinkedList<DataPoint>();

// Fetches data points from InfluxDB

20 dataPoints = getDataPoints();

...

// To differentiate from the Ramp rule first check, whether slope

// of the regression line is below the SLOPE_THRESHOLD.

25 // If so, rule executes further.

...

double sumOfResponseTimes = 0;

for(DataPoint dataPoint : dataPoints){

30 sumOfResponseTimes += dataPoint.getResponseTime();

}

// Calculates the mean of response times

double meanResponseTime = sumOfResponseTimes / dataPoints.size();

35 // Calculates the variance of response times

double tempVar = 0;

for (DataPoint dataPoint : dataPoints)

tempVar += (dataPoint.getResponseTime() - meanResponseTime)

* (dataPoint.getResponseTime() - meanResponseTime);

40 double variance = tempVar / (dataPoints.size() - 1);

// Calculates standard deviation of response times

double standardDeviation = Math.sqrt(variance);

45 // Calculates coefficient of variation

double coeffOfVariation = standardDeviation / meanResponseTime;

if (coeffOfVariation > COEFFICIENT_OF_VARIATION_THRESHOLD) {

return true;

50 }

return false;

}

}
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Listing A.7 More is Less rule
1 @Rule(name = "MoreIsLessRule")

public class MoreIsLessRule {

private static final double PERCENT_ONE = 0.4;

5 private static final double PERCENT_TWO = 0.5;

@TagValue(type = Root_Tag)

// Connection to the InfluxDB

private InfluxDBConnector connector;

10
@Action(resultTag = MoreIsLess_Tag)

public boolean action() {

List<DataPoint> dataPoints = new ArrayList<DataPoint>();

15
// Fetches data points from InfluxDB

dataPoints = getDataPoints();

double sumOfResponseTimes = 0;

20 double sumOfCPUTimes = 0;

for (DataPoint dataPoint : dataPoints) {

sumOfResponseTimes += dataPoint.getResponseTime();

sumOfCPUTimes += dataPoint.getCPUTime();

25 }

// Calculate average response time and average CPU time

double avgResponseTime = sumOfResponseTimes / dataPoints.size();

double avgCPUTime = sumOfCPUTimes / dataPoints.size();

30 // Iterate through all data points and search for overload situations

for (int i = 0; i < dataPoints.size(); i++) {

DataPoint currentObject = dataPoints.get(i);

if (currentObject.getResponseTime * PERCENT_ONE > avgResponseTime) {

35
double currentObjectCPUTimeRatio = currentObject.getCPUTime()

/ currentObject.getResponseTime();

double avgCPUTimeRatio = avgCPUTime / avgResponseTime;

40 if (currentObjectCPUTimeRatio < avgCPUTimeRatio * PERCENT_TWO) {

return true;

}

}

}

45 return false;

}

}
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Listing A.8 Application Hiccups rule
1 @Rule(name = "ApplicationHiccupsRule")

public class ApplicationHiccupsRule {

@TagValue(type = Root_Tag)

5 // Connection to the InfluxDB

private InfluxDBConnector connector;

@Action(resultTag = ApplicationHiccups_Tag)

public List<DataPoint> action() {

10
// Fetches data points from InfluxDB

List<DataPoint> dataPoints = new LinkedList<DataPoint>();

dataPoints = getDataPoints();

15 // List for saving later outlier data points

List<DataPoint> problematicDataPoints = new LinkedList<DataPoint>();

// From list to array

double[] responseTimesArray = new double[dataPoints.size()];

20 for (int i = 0; i < dataPoints.size(); i++)

responseTimesArray[i] = dataPoints.get(i).getResponseTime();

double lowerQuartile = new Percentile()

.evaluate(responseTimesArray, 25);

25
double upperQuartile = new Percentile()

.evaluate(responseTimesArray, 75);

double interquartileRange = upperQuartile - lowerQuartile;

30
double upperWhiskerThreshold = upperQuartile + interquartileRange * 1.5;

// Outlier detection

for (int i = 0; i < dataPoints.size(); i++) {

35 if (dataPoints.get(i).getResponseTime() > upperWhiskerThreshold) {

problematicDataPoints.add(dataPoints.get(i));

}

}

// return Application Hiccups

40 return problematicDataPoints;

}

}
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Listing A.9 Alternative Application Hiccups rule
1 @Rule(name = "ApplicationHiccupsRule")

public class ApplicationHiccupsRule {

// Crossing threshold

5 private static final double CROSSING_THRESHOLD = 50000;

@TagValue(type = Root_Tag)

// Connection to the InfluxDB

private InfluxDBConnector connector;

10
@Action(resultTag = ApplicationHiccups_Tag)

public List<DataPoint> action() {

// Fetches data points from InfluxDB

15 List<DataPoint> dataPoints = new LinkedList<DataPoint>();

dataPoints = getDataPoints();

// List for saving later data points, that are above the CROSSING_THRESHOLD

List<DataPoint> problematicDataPoints = new LinkedList<DataPoint>();

20
// The number of crossings of the CROSSING_THRESHOLD

long numberOfCrossings = 0l;

// Check, if first response time is already above the CROSSING_THRESHOLD

25 boolean isLastTimeAboveThreshold = (dataPoints.get(0).getResponseTime() >

CROSSING_THRESHOLD);

for (int i = 1; i < dataPoints.size(); i++) {

double currentTime = dataPoints.get(i).getResponseTime();

30
if (currentTime > CROSSING_THRESHOLD) {

problematicDataPoints.add(dataPoints.get(i));

}

35 // Algorithm to calculate the amount of crossings

if ((isLastTimeAboveThreshold && currentTime < CROSSING_THRESHOLD)

|| (!isLastTimeAboveThreshold && currentTime >

CROSSING_THRESHOLD)) {

numberOfCrossings++;

40 isLastTimeAboveThreshold = !isLastTimeAboveThreshold;

}

}

// Application Hiccups:

long actualHiccups = numberOfCrossings / 2;

45 ...

// Do something with actualHiccups

...

return problematicDataPoints;

}

50 }
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Listing A.10 Garbage Collection Hiccups rule
1 @Rule(name = "GarbageCollectionHiccupsRule")

public class GarbageCollectionHiccupsRule {

private static final double PERCENT = 0.5;

5
@TagValue(type = Root_Tag)

// Connection to the InfluxDB

private InfluxDBConnector connector;

10 // Requesting results from Application Hiccups rule

@TagValue(type = ApplicationHiccups_Tag)

private List<DataPoint> appHiccupsDataPoints;

@Action(resultTag = GarbageCollectionHiccups_Tag)

15 public List<DataPoint> action() {

// When there are no Application Hiccups, there cannot be GC Hiccups

if (appHiccupsDataPoints.size() < 1) {

return null;

20 }

List<DataPoint> outliersCausedByGarbageCollector = new

LinkedList<DataPoint>();

25 // Iterate through Application Hiccups and check, which one is caused

// by the GC

for (int i = 0; i < appHiccupsDataPoints.size(); i++) {

double currentResponseTime = appHiccupsDataPoints.get(i)

30 .getResponseTime();

double currentGCTime = appHiccupsDataPoints.get(i)

.getGCTime();

if (currentGCTime > currentResponseTime * PERCENT) {

35 outliersCausedByGarbageCollector.add(appHiccupsDataPoints.get(i));

}

}

return outliersCausedByGarbageCollector;

}

40 }
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