
Institute of Software Technology
Reliable Software Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit

Evaluating Mobile Monitoring
Strategies for Native iOS

Applications

Matteo Sassano

Course of Study: Softwaretechnik

Examiner: Dr.-Ing. André van Hoorn

Supervisor: Dr.-Ing. André van Hoorn
Dr. Dušan Okanović,
Dr.-Ing. Christoph Heger

Commenced: July 19, 2017

Completed: January 19, 2018

CR-Classification: C.4, H.3.4

Abstract

The success of a company is often influenced by the service and by a product they offer.
If the supplied service or the offered product is a software system, a good performance
will be essential to achieve desired goals such as high product sales. Slow applications
and server responses due to performance issues, may cause a negative chain reaction.
The amount of actual and potential users will probably decrease, and so does the users’
satisfaction and the number of product sales. Application Performance Management
(APM) is necessary to avoid these cases. The usage of APM could help detecting eventual
software problems and to remediate performance issues afterwards.

Meanwhile, the usage of mobile devices, e.g., smartphones and tablets, for access-
ing enterprise systems is increasing in every application category. This expands the
space where a potential software problem might be located in. Performance of mobile
applications is more influenced by external circumstances, e.g., user location and access
from bandwidth limited networks. APM tools not supporting mobile monitoring, are not
able to recognize the mentioned performance issues.

There are different implementation strategies for application monitoring agents such as
call stack sampling and full source code instrumentation. The goal of this thesis is to
research agent strategies for mobile devices, to develop an own version of each agent
type, to analyze and evaluate the different agent approaches in combination of various
mobile application types. The evaluation will be done with a series of experiments, by
measuring the outcoming overhead of the developed agents, integrated into previously
selected representative iOS open-source applications.

iii

Kurzfassung

Der Erfolg eines Unternehmens wird oft durch den angebotenen Service oder das
angebotene Produkt beeinflusst. Wenn der Dienst oder das Produkt in Form eines
Softwareprogramms bereitgestellt wird, dann ist gute Performance wichtig, um die
gewünschten Businessziele, wie hohe Verkaufszahlen, zu erreichen. Langsame Anwen-
dungen und Serverantworten aufgrund von Performancedefiziten, können eine negative
Kettenreaktion auslösen. Sowohl die Anzahl der aktuellen und potenziellen Nutzer,
als auch die Zufriedenheit der Nutzer und die Anzahl der Produktverkäufe wird sehr
wahrscheinlich sinken. Application Performance Management (APM) ist erforderlich, um
diese Fälle zu vermeiden. Die Verwendung von APM hilft, eventuelle Softwareprobleme
zu erkennen und anschließend Performanceprobleme zu beheben.

In der heutigen Zeit nimmt die Nutzung mobiler Geräte, z. B. Smartphones und
Tablets, für den Zugriff auf Enterprisesysteme in jeder Anwendungskategorie zu. Dies
erweitert den Raum, in dem sich ein potenzielles Softwareproblem befinden könnte. Die
Leistung von mobilen Applikationen wird stärker durch äußere Umstände beeinflusst, z.
B. sowohl durch den Benutzerort, als auch durch den Zugriff von bandbreitenbegrenzten
Netzwerken. APM-Tools, die keine mobile Überwachung unterstützen, können die
genannten Leistungsprobleme nicht erkennen.

Es gibt verschiedene Implementierungsstrategien für Softwareagenten, wie z. B. Call-
Stack Sampling, Byte-Code Intrumentation und die vollständige Quellcode Instrumen-
tierung. Das Ziel dieser Arbeit ist es, mobile Agentenstrategien zu erforschen, eine eigene
Version jedes Agententyps zu entwickeln und die verschiedenen Agentenansätze in Kom-
bination verschiedener mobiler Applikationstypen zu analysieren und auszuwerten. Die
Evaluation wird mit einer Reihe von Experimenten durchgeführt. Die entwickelten
Agenten werden in zuvor ausgewählte iOS-Open-Source-Anwendungen integriert, und
der entstehende Performanceoverhead wird gemessen.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Tasks . 3
1.4 Document Organization . 7

2 Foundations and Technologies 9
2.1 Terminology . 9
2.2 Strategies for developing monitoring agents 12
2.3 Available iOS Application Monitoring Agents 16
2.4 Software Development Introduction for iOS 20

3 Application Classification 25
3.1 Application Categories . 25
3.2 Mobile Application Architecture . 26
3.3 Summary . 32

4 Requirements for Monitoring Agents 33
4.1 Software Requirements Specification . 33

5 Architecture of Monitoring Agents 41
5.1 Mobile Agent Pipeline . 42
5.2 Data Collection Strategies . 42
5.3 Data Management Strategies . 48
5.4 Data Dispatch Strategies . 60

6 Implementation 67
6.1 Agent Architecture . 67
6.2 Agent Configurations . 89

vii

7 Evaluation 93
7.1 Evaluation Methodology & Goals . 93
7.2 Theoretical Evaluation . 97
7.3 Practical Evaluation . 102
7.4 Discussion of the Results . 128
7.5 Threats to Validity . 134

8 Conclusion 135
8.1 Summary . 135
8.2 Retrospective . 136

Bibliography 139

viii

List of Figures

1.1 APM for Monitoring Applications . 2
1.2 Tasks pipeline . 4

2.1 Building an end-to-end trace . 11
2.2 Flow of activities performed by the monitoring agent 12
2.3 Simplified illustration of call stack sampling 13
2.4 Spans example . 19

3.1 Hybrid Application Sample . 28
3.2 NSURLRequest Class . 30

4.1 Monitoring Agent Activity Pipeline . 35

5.1 Agent Working Phases . 41
5.2 Agent Invocations in Method Body . 43
5.3 Method Swizzling Usage for Instrumentation 44
5.4 Invocation Schedule . 46
5.5 iOS project selection . 47
5.6 Prototype of the Agent Invocations Writer Program 48
5.7 Data Management Pipeline . 49
5.8 Invocation Class . 50
5.9 Log Message Preset . 51
5.10 Span Tree representing a Sample Trace 53
5.11 Invocation Class adapting Opentracing 54
5.12 Log Message Preset with Opentracing Adaption 54
5.13 Span Stack without Organization . 55
5.14 Non-Deterministic Trace Options . 56
5.15 Multiple Stacks Organization . 56
5.16 Monitored Span Tree and currently running Span Stack 57
5.17 Organization with Dictionaries . 59
5.18 Dispatch Pipeline . 61

ix

5.19 Dispatch Pipeline . 63

6.1 Abstract Agent Class Diagram . 70
6.2 Feature Model for a Monitoring Agent 91

7.1 Response times change with tracing-based agent configurations 95
7.2 Performance overhead of the Stack Sampling-based agent 96
7.3 Test Results of the Organization Strategies 100
7.4 Second Results of the Organization Strategies Test 101
7.5 Instruments Profiling Plug-in . 104
7.6 Execution trace after performing the Use Case 105
7.7 Partial Execution trace with Method Swizzling 108
7.8 Execution trace with Call Stack Sampling 111
7.9 Execution trace with Use Case Mapping 113
7.10 Screen shot of the implemented Hybrid Application 114
7.11 Execution trace with Tracing . 115
7.12 Execution trace with Method Swizzling 117
7.13 Screen shot of the implemented Mobile Client 121
7.14 Execution trace after performing the Use Case 121
7.15 Execution trace with Tracing . 122
7.16 Execution trace with Method Swizzling 124
7.17 Execution trace with Call Stack Sampling (Main Thread) 126
7.18 Execution trace with Use Case Mapping 127
7.19 Integration Times . 130
7.20 Agent Initialization Times . 131
7.21 Response time Overhead . 132

x

List of Tables

1.1 Theoretical Tasks . 4
1.2 Practical Tasks . 6

2.1 Used approaches for collecting execution traces of available iOS APM
tools X*: Only used for tracing system library methods 20

3.1 iOS Application Categories . 25

4.1 Mandatory and Optional Metrics for Method Invocations 37
4.2 Mandatory and Optional Metrics for Use Cases 38
4.3 Mandatory and Optional Metrics for Remote Calls 38
4.4 List of Mandatory and Optional Metrics 39

6.1 Strategy Combination Matrix . 92

7.1 Execution times results summary of all Experiments 129

xi

List of Acronyms

AOP Aspect-oriented Programming

APM Application Performance Monitoring

CPU Central Processing Unit

EUM End-User Monitoring

RAM Random-Access Memory

xiii

List of Listings

2.1 Example of Tracing a Function . 14
2.2 Declaring Attributes in Swift . 21
2.3 Forced Type Assignment . 21
2.4 Declaring an Optional . 21
2.5 Declaring a Function (Factory Example) 22
2.6 Declaring Arrays . 22
2.7 Declaring a Dictionary . 23

5.1 Example of Invocation I . 57
5.2 Example of a JSON object with one Invocation 64
5.3 Example of a nested Invocation . 65
5.4 Example of a JSON object with nested Invocations 66

6.1 IITMAgent Singleton . 71
6.3 IITMAgent Singleton . 72
6.2 IITMAgent Constructor . 73
6.4 IITMAgent Instrumentation Methods . 74
6.5 IITMAgent Starting Use Case . 76
6.6 IITMAgent Closing Use Cases . 77
6.7 IITMAgent Call Stack Sampling Extension 78
6.8 IITMAgent Call Stack Sampling Extension 79
6.9 IITMAgent Call Stack Sampling Extension 80
6.10 Abstract Definition of IITMSpanOrganizer 81
6.11 IITMInvocationOrganizer Attributes . 82
6.12 IITMInvocationOrganizer Adding Spans 83
6.13 IITMInvocationOrganizer Adding Spans to a Map 84
6.14 IITMInvocationOrganizer Adding Spans to a Stack 85
6.15 IITMSpan Class . 86
6.16 IITMInvocation Class . 86
6.17 IITMRemoteCall Class . 87

xv

6.18 Automated Remote call Instrumentation 88

7.1 Test Program for retrieving the Instance Sizes 99
7.2 2048 ViewController Class . 106
7.3 Traced Remote call Span . 125

xvi

List of Algorithms

5.1 Basic correlation . 52

xvii

Chapter 1

Introduction

This document presents mobile agent design and implementation strategies for mobile
devices. For detecting performance problems in mobile applications, source-code and
device based data has to be collected, managed and maintained and sent for further
analysis. In each of the mentioned essential work stages of an agent, there are several
practicable approaches. The resulting approaches need to be evaluated in terms of
functionality, performance overhead and usability.

The motivation of this work is introduced in Section 1.1. Section 1.2 describes our goals
for this thesis. Section 1.3 lists a set of tasks that has to be performed in order to achieve
the defined goals. The last section, Section 1.4, of this chapter specifies notations for
this document and the organization.

1.1 Motivation

Slow enterprise systems, may negatively influence the end-user satisfaction and the
company success due to performance deficits. For instance, an increase of load times
may discourage the end-user to utilize the application. The consequence is the loss of
actual and potential clients. Being prepared for performance problems occurring on
mobile devices is even more difficult considering the high distribution of the application.
The application development team is only aware of the problems when it is too late.
This is the case when ratings become very low the application badly or the earnings
of the company are decreasing. To be prepared for performance problems we have to
recognize them as soon as possible. Therefore, we need to establish a bridge between the
application and the developer or problem analysts. Application performance monitoring
(APM) provides solutions for monitoring the application and for further investigating
performance problems. Figure 1.1 illustrates how to typically adapt the application

1

1 Introduction

in order to monitor the user activity. In the first phase, the application developer has
to choose an agent configuration to integrate in the application. Dependent on the
monitoring strategy, this task has a longer or shorter duration. After integrating the agent
configuration, the developer has to rebuild and to publish the application. Henceforward,
the agent runs within the core application and automatically sends collected monitoring
data to a monitoring server. At the end, the data can be requested and analyzed by a
monitoring client.

Figure 1.1: APM for Monitoring Applications

There are several mobile iOS application performance monitoring solutions on the market
using slightly different design and implementation approaches. In addition to that, new
automated approaches such as call stack sampling and automated instrumentation code
injection, which are known but not existent for iOS solutions, will be developed in
the course of this thesis. On the other hand we may have different application types
using hardware resources differently from each other. In this thesis we will investigate,
whether a perfect agent configuration exists for a certain application type.

1.2 Goals

In the following, we will list the goals of this thesis.

2

1.3 Tasks

Application classification: The application classification is an important task needed
for the evaluation. Each application type will be monitored with an agent configuration.
This is needed to determine the best setting between agent and application.

Research of important system libraries: For instrumenting iOS system libraries we
have the options to wrap them and to instrument the wrapped structure or to trace them.
If we think about automated measurement strategies, there needs to be a recognition of
certain class names and instance methods to place the instrumentation points on the
right position.

Design and implementation of the strategies: A mobile agent working pipeline is
made up of collecting data, manage data and dispatch data. Each strategy needs to be
designed and implemented for iOS mobile devices.

Experimental valuation of the strategies: Since we have many strategies for each
agent task, we have to select the implemented concepts for a set of agent configuration.
Each agent configuration will be practically evaluated with at least two representative
open source systems. By profiling the application we may notice differences in terms
of device resource usage. Additional criteria are noticed performance impacts and the
integration overhead of the agent configurations.

1.3 Tasks

The aim of the thesis is to research, to design and to implement different strategies for
the different task types of an mobile agent and to evaluate them on various native iOS
applications, to determine in which circumstances an agent concept is suitable for a
certain application class. The tasks fulfilling the requirements are split in theoretical
tasks and practical tasks. Figure 1.2 illustrates the task dependency graph. The following
subsections will describe in detail the necessary tasks and their dependencies. In this
section we will also present the work program containing all main tasks and subtasks.

1.3.1 Theoretical Tasks

This subsection lists all theoretical tasks needed for this work. Additionally, each task is
described and the necessity is explained.

3

1 Introduction

TT1:
Application

Classification

TT2:
Research of impor-

tant System Libraries

TT3:
Design of Strategies

TT4:
Agent Configurations

TT5:
Evaluation Plan

TT6:
Theoretical
Evaluation

PT1:
Implementation

of Strategies

PT2:
Integration of
Strategies to

Configurations

PT3:
Evaluation

Figure 1.2: Tasks pipeline

ID Theoretical Task Dependency

TT1 Application Classification -
TT2 Research of important System Libraries -
TT3 Design of Strategies TT2
TT4 Agent Configurations TT3
TT5 Evaluation Plan TT1, TT3, TT4, PT2
TT6 Theoretical Evaluation TT1, TT2, TT4, TT5

Table 1.1: Theoretical Tasks

4

1.3 Tasks

TT1 – Application Classification

Description: Research application types based on their resource and network usage,
the used frameworks and the application category on.

Goal: We want to minimize the set of different application types. Apple provides 24
selectable application categories [APC] and 72 frameworks [APF]. The aim of this task
is to reduce the set of application classes by finding common resource usage properties
between different categories and frameworks.

TT2 – Research of important System Libraries

Description: For this task we will research the most used iOS system libraries provided
by Apple. The results will be filtered by priority. A system method has a higher priority
then other ones if performance problems could occur by performing it.

Goal: The aim of this task is to provide a set of instrumentable methods. Method
swizzling allows to wrap these methods and to add instrumentation points. We could
use this advantage and prepare the agent to instrument important system methods out
of the box. If the developer uses the automated instrumentation approach, the code
parser also need to recognize system methods to add instrumentation points to them.

TT3 – Design of Strategies

Description: This task a specification of the possible approaches. It will present how
each strategy needs to work and the construction of it.

Goal: The result of this task is to clarify the structure of each strategy. This task forms
the base for implementing the defined strategies.

TT4 – Agent Configuration

Description: Each agent configuration is made of a conjunction of different strategies
but not all approaches can be combined together. Therefore, we need this task to analyze
possible configuration and to define them.

Goal: We will define a set of available agent configurations. The resulting configurations
are needed for the theoretical and the practical evaluation.

TT5 – Evaluation Plan

Description: The purpose of this task is to design an evaluation plan explaining how
we want to compare the monitoring strategies.

Goal: The resulting plan defines the evaluating methodology. This will help evaluating
the researched, defined and implemented monitoring strategies.

TT6 – Theoretical Evaluation

5

1 Introduction

Description: Monitoring strategies with the same purpose will be compared theoretically
in terms of efficiency and will be classified in a ranking list.

Goal: The theoretical evaluation will present a ranking list of agent configurations based
on a theoretic comparison. These results are independent of the results of the practical
evaluation and may not cohere to them.

1.3.2 Practical Tasks

This subsection lists all practical tasks needed for this work. Additionally each task is
described and the necessity is explained.

ID Theoretical Task Dependency

PT1 Implementation of Strategies TT3
PT2 Integration of Strategies to Configurations TT4, PT1
PT3 Evaluation TT1, TT4, TT5, PT2

Table 1.2: Practical Tasks

PT1 – Implementation of Strategies

Description: We will implement all defined mobile agent monitoring strategies for iOS
devices.

Goal: The implementations are needed to integrate them in an agent configuration.

PT2 – Integration of Strategies to Configurations

Description: The implemented strategies will be integrated in the configurations defined
in Section 1.3.1.

Goal: A set of different agent configurations is needed to perform the experimental
evaluation.

PT3 – Evaluation

Description: Preselected open-source applications will be profiled with predefined
use-cases. The different agent configurations will be integrated afterwards and the
applications will be profiled again. While integrating the agents to the applications, we
will measure the spent time of each integration. At the end the profiling results will be
compared to each other and respectively to the defined criteria and the gathered data
we will create a ranking list, which tells the application developer which configuration is
the most suitable for his developed app.

6

1.4 Document Organization

Goal: The evaluation result explains the application developer, which agent configura-
tion is the most suitable for his application.

1.4 Document Organization

This section describes the typographical formalia of this document and presents the
thesis structure.

1.4.1 Formalia

In the following paragraphs we introduce typographical conventions used to emphasize
certain passages or words of this document.

Paragraphs: Paragraph names are written in bold.

Emphasizing: To emphasize certain words or sentences in this document, we use the
italic font weight.

Classes/Methods/Attributes: Source code-based words such as class names, methods
or attributes are written with the typewriter font.

[Reference]: References are used for referring to external work such as papers, books,
theses and web pages. Each reference links to its bibliography entry.

1.4.2 Thesis Structure

This subsection describes the document structure by mentioning and summarizing each
chapter of this work.

Chapter 2 – Foundations and Technologies: For a better understanding, this chapter
is providing descriptions of terms mentioned throughout this document and de-
scribes the current development level of the application performance monitoring
tools focusing on mobile agents.

7

1 Introduction

Chapter 3 – Application Classification: In this chapter we are displaying differences
between iOS applications in terms of system properties and resource usage. By
recognizing those differences we are able to define a set of application classes.

Chapter 4 – Requirements for Monitoring Agents: This chapter describes the require-
ments needed to fulfill the conception and implementation of an agent configura-
tion (and for performing the evaluation). Additionally, this chapter describes the
necessary tasks to be performed for creating an agent configuration.

Chapter 5 – Architecture of Monitoring Agents: The pipeline of a working iOS agent
will be described in this chapter. Additionally we will present and explain in detail
all strategies for each working state of an agent.

Chapter 6 – Implementation: All various strategy implementations will be presented
and explained in detail in this chapter. Additionally we will present all agent
configurations which are possible to implement with the researched approaches.

Chapter 7 – Evaluation: The evaluation is the most important part of this thesis. The
outcome of the evaluation is a recommendation of an agent configuration for each
application class. In this chapter, we will describe our evaluation approaches, our
experimental settings and present the results.

Chapter 8 – Conclusion This chapter summarizes the results of this thesis and provides
ideas for future works.

8

Chapter 2

Foundations and Technologies

The introduction gave an overview about this topic and argued the essentiality to
evaluate the different agent approaches. Researching, developing, and evaluating
existing and new strategies for mobile agents are the main goals of this thesis.
For a better understanding, Section 2.1 is providing descriptions of terms mentioned
throughout this document. Section 2.2 describes the current development level of the
Application Performance Monitoring tools focusing on mobile agents. Currently available
iOS application monitoring agents are listed in Section 2.3. Section 2.4 introduces the
basics of the development language Swift, in order to understand the implementations
in Chapter 6.

2.1 Terminology

Application Performance Monitoring: End-user monitoring (EUM), runtime applica-
tion architecture discovery, transaction profiling, component deep-dive monitoring and
analytics are the five categories of application performance monitoring [GAR17]. The
aim of APM is to achieve a solid level of application performance. [HHMO17]

APM tool: APM tools manage and monitor the performance and availability of software
systems. Displaying application and resource information, requires run time data. In
most cases an agent, instrumenting the monitored system, is used to collect performance
measurements.

9

2 Foundations and Technologies

Agent: The APM agent is a software instance, which collects runtime application
information such as resource usage, invocation sequences, execution times and remote
call information. In addition to that agents’ tasks are to store and manage the collected
data and to transmit them to the central APM controller server. In the context of this
thesis, it describes agents for monitoring mobile applications.

Mobile agent: In this context, a mobile agent is an agent, tracing on mobile devices.
The difference between both agents is the collection of mobile based metrics of the
mobile agent.

Performance measurement: In the context of APM, a performance measurement
represents relevant data from a monitored software. Invoked method names, used
arguments, server response times, execution times, thrown errors or exceptions and
device information are examples which can be part of a performance measurement
[HWH12]. In the course of this thesis, these measurements are collected from mobile
devices. Therefore, it also contains cellular unique attributes, e.g., the geoloaction,
network connection type and the carrier.

Performance problem: A performance problem is represented by an undesired per-
formance decrease of the software, derivating from high hardware resource usage or
from high response times [IHE15].

Execution trace: An execution trace is an invocation sequence through the monitored
software. A trace composition is based on a tree structure of sub-traces [HRH+09]. This
thesis focuses on execution traces of mobile applications.

Use Case: In this context, a use case resembles a certain application activity per-
formable from the end user on the mobile device.

End-to-end trace: This term can be described with an associated use case, as rep-
resented in Figure 2.1. The end-user with a mobile device is able to perform certain
application operations. These inputs executed by the user will produce a mobile trace.
In case the user effectuates a remote call, for loading a specific content for the mobile
application, the back end system may perform various method invocations to respond

10

2.1 Terminology

the remote call. The execution trace tracked on the back end system and the mobile exe-
cution trace collected by the mobile agent can be connected and rebuilt to an end-to-end
trace [CMF+14].

Figure 2.1: Building an end-to-end trace

The terms below belong to the technical language of native iOS development. These
terms will often emerge in topics which are related to the agent concept or the agent
implementation.

Selector: A selector [APL115] holds the name of a method and is used to select its
associated method implementation for the execution.

Method swizzling: Method swizzling [NK14] refers to swapping a method implemen-
tation with another one at runtime. This makes it possible to change system functions,
even without knowing and possessing the implementation of them.

CocoaPods: CocoaPods [COC17] is a dependency manager for native iOS applications.
This service provides a Podfile, which one can link needed libraries with the specific
versions. Podfiles need to be installed, with the command pod install, afterwards to
make the changes effective. CocoaPods is providing more than 31,000 libraries.

11

2 Foundations and Technologies

2.2 Strategies for developing monitoring agents

In the following, we will review the state of the art with respect to the topic goals and
specifically focusing on the currently available monitoring strategies for the agent tasks,
existing mobile monitoring tools and the related APM tools. An agent needs to collect
invocation sequence and resource usage information, to store the data, to manage the
collected instances and to care about the measurements dispatches. For all these task,
there are several different design and implementation strategies.

Figure 2.2: Flow of activities performed by the monitoring agent

Figure 2.2 illustrates the flow of activities in cases the user interacts with the applica-
tion. In the first phase of the pipeline, the agent collects execution traces, recognizes
performed remote calls and measures time series data. For some monitoring strategies,
the agent has to reconstruct the execution trace from method invocation to method invo-
cation. The data management phase provides this functionality. Creating measurement
objects, correlating the measurement objects, in order to reproduce the execution trace,
and buffering the data are part of managing the data. At the end of the pipeline, the
monitoring agent waits for a dispatch event, serializes the collected data and sends them
to a monitoring back end. The following sections demonstrate general approaches of
the mentioned agent working phases by focusing on collecting and processing execution
traces. Section 2.2.1 focuses on how to collect source code-based data. In Section 2.2.2,
general approaches of managing collected data are explained and Section 2.2.3 focuses
on data dispatch strategy.

12

2.2 Strategies for developing monitoring agents

Figure 2.3: Simplified illustration of call stack sampling

2.2.1 Monitoring Strategies for collecting execution traces

Call Stack Sampling

The idea behind call stack sampling [BS14] is to run a timer-based process which has
the task to collect the actual stack trace information of every thread. The collected
data are going to be buffered and compared on the next iteration with the new stack
trace. With the stack trace itself it is possible to rebuild the invocation sequence. By
sampling and comparing the old stack trace buffer with the new one, the agent is able
to calculate an approximate duration of invocations. For instance, if an invocation is
tracked on three iterations on the same stack position, with the same parent invocations,
and this invocation disappears on the fourth iteration, the agent assumes that this
specific procedure’s duration was at least three timer periods long. The higher the timer
frequency is, the more accurate is the approximation of the execution time. On the
other hand, if the timer periods are too short, the task does not have enough time to
perform the buffering, the stack comparison, the invocation recognition and to set the
invocation relations and their properties. In addition to that, with a frequency this
small, the agent produces a huge overhead, which may affect the performance of the
application negatively.

Tracing

This approach is used to instrument the written source code of the application. By
manually invoking the agent at the beginning and the end of every method as shown in
Listing 2.1, the agent can determine the start time, the end time and the execution time
of any method.

13

2 Foundations and Technologies

Listing 2.1 Example of Tracing a Function
func doSomething() {

// The agent starts tracking the doSomething function

let invocationId = Agent.trackInvocation()

// ... do something

// The agent stops tracking the doSomething function

Agent.closeInvocation(id: invocationId)

}

When a function ends, the agent sets the end time of the invocation, calculates the
execution duration, by subtracting the start time from the end time.

Source Code-Level Instrumentation using AOP

The disadvantage of manual instrumenting function by tracing them, is the fusion of
instrumentation invocations with the application functionality. This reduces the under-
standability and the maintainability becomes more difficult. The mentioned problem
can be solved with aspect-oriented programming AOP, introduced by Kiczales et al.
[KLM+97]. With AOP one is able to encapsulating cross-cutting concerns such as agent
invocations, used for app monitoring, from core-level concerns but are automatically
calling each other in the normal program flow [HKGH11]. This means that a method is
wrapped when invoked and one is able to insert so called aspects to be executed before
or after the method execution.

2.2.2 Data Management Strategies

Storing measured and collected data on the mobile devices from the application agent
is not a trivial task performed by the mobile agent. One possibility is to save all
measured objects on RAM as invocation, remote call or metrics measurements. This
approach could cause application problems such as an overflow of memory, if we consider
that the application developers application can scale as desired. We have to consider
that low memory on a mobile iOS device causes an application crash [APL217]. The
operation system gives the developer a chance to deallocate objects, by directly calling
the didReceiveMemoryWarning [APL317] function on low memory. We could use this
delegate to manage the collected data and remove unimportant information to clear the
memory or to transfer objects on the hard disk. A disadvantage of this approach may be

14

2.2 Strategies for developing monitoring agents

the performance overhead generated by iterating through all objects and by removing
or passing them to another storage. Another disadvantage is the memory overhead
itself, which could cause content loading problems in the context of user experience. For
reducing memory overhead on the mobile device we have to mention the approach of
not saving all measured data. We could analyze the gathered information directly after
the collection and store it if important and revert it otherwise. Another aspect to be
considered is the retention of incomplete measurements. Incomplete measurements are
caused by an unusual application termination such as crash or the end user terminated
the app before the actual scope of the application ended.

Management processes are the next steps after data collection and retention. Data man-
agement is considering the data model of collected measurements, and the maintenance
of the agent data. The data model represents the blueprint of agent measurements. We
have firstly to consider approaches such as raw object storage and data serialization.
Afterwards we have to analyze the management performance of such object types in
terms of data comparison, data filtering and data size. These mentioned data tasks
are important due to limited device memory and limited mobile data volume. High
memory objects may have more analysis information than low memory objects, but
are allocating more memory and are increasing the network usage of the end user. We
face the same issues with a huge set of data and a reduced one. A strategy for data
filtering is to run a background process, which analyzes the collected measurements
with predefined performance criteria and marks them as important measurements and
unimportant ones. For instance measurements with detected software anti patterns
are important measurements. In the case a measurement is unimportant, it can be
deleted. This would save memory and reduce the network usage afterwards. We have to
take in consideration that the filtering process should not affect the performance of the
application processes in the foreground. Therefore, this approach could be problematic
for applications with high usage of hardware resources.

2.2.3 Data Dispatch Strategies

Collected data needs to be sent to a back end for data monitoring and further data and
performance analysis. In the previous section we mentioned the limited mobile network
data volume of an end user. This task is not a problem in cases the user is connected
via Wifi. Data packages could be sent without mobile data volume utilization. The
main challenge of this agent task is to reduce the network usage overhead as much as
possible, if the application user is not connected to the Internet via Wifi. On the other
hand important measured data could be lost, when not sent, due to clearing the storage
in cases the device has low memory. The agent has the possibility to wait until the user
is connected via Wifi or to reduce the amount of data for the dispatch and to store the

15

2 Foundations and Technologies

rest on the hard drive. We have also to consider that some user may not be connected to
a stable network at the moment the agent would be ready to send measured data. In
this case the agent could store the mobile measurements and try the data dispatch later.
This depends on how long the data are stored. For instance data collected months ago
are not as important as actual measurements, therefore the agent could decide to clear
the storage on this term.

2.3 Available iOS Application Monitoring Agents

Commercial Application Performance Monitoring tools like AppDynamics [APP17],
New Relic [NEW17] and Dynatrace [DYN17] are supporting iOS mobile application
monitoring. In the context of a development project [DEVP17] we implemented a mobile
agent for the open-source APM tool inspectIT. The strategy used for the inspectIT mobile
agent may differ from approaches used by other companies. The core of this thesis is
to research strategies utilized by commercial tools, to create an overview of the used
approaches and implement new iOS Agents, for evaluating the results on different kind
of iOS applications. The following paragraphs list and describe commercial as well as
open source mobile iOS APM tools with the focus on how these tools collect execution
traces. Table 2.1 recapitulates the used concepts for monitoring execution traces.

AppDynamics Mobile Application Monitoring for iOS: AppDynamics [APP17] is
providing an iOS Agent as a framework, written in Objective-C, that allows performance
and activities monitoring of applications at runtime. To make the Agent operative,
the framework has to be included in the project manually or by adding a CocoaPods
dependency. AppDynamics offers the developer to manually instrument methods of
the application. By instrumenting a method the agent counts the invocations and
measures the execution time. Developers are able to instrument a method, by placing
an instrumentation call, that starts tracing, at the start and one or more agent calls, to
stop the measurement, at the exit points of the method. In addition, the agent allows to
trace over more than one method. This feature can be used to trace a certain use case of
the application. In the intervening time, the agent collects metric values such as carrier
name, network connection, geolocation, application as well as device information and
execution time. For monitoring system-based instructions or remote calls, AppDynamics
uses method swizzling. The Agent is able to automatically detect and instrument HTTP
requests done via NSURLConnection or NSURLSessions. To correlate back end traces
with mobile traces (End to End Monitoring), the back end application adds and sends
precalculated trace variables in the response header.

16

2.3 Available iOS Application Monitoring Agents

New Relic Mobile App Monitoring for iOS: New Relic [NEW17] offers their iOS
mobile Agent as a framework, as was the case for AppDynamics. The Agent could
be included in the project manually or by a CocoaPods installation. An automatic
classes and methods instrumentation comes out of the box for some methods of classes
such UIViewController, UIImage, NSJSONSerialization and NSManagedObjectContext.
They allow users to trace self implemented methods, by calling the class methods
startTracingMethod for starting tracing and endTracingMethodWithTimer for closing a
trace. New Relic traces can be tagged with different categories, e.g., View Loading, UI
Layout, Database, Images, JSON and Network.

Dynatrace iOS App Monitoring: Dynatrace [DYN17] offers their iOS mobile Agent as
a framework, as was the case for AppDynamics and New Relic. The Agent supports a Co-
coaPods installation. The Dynatrace iOS Agent provides user-based data and recognizes
new users, and HTTP request data such as the amount of calls, the error rate and the
request time. The agent is also capable of reporting crashes of the application. They are
offering a feature named Auto-Instrumentation. This feature traces automatically life
cycle phases of the iOS application. The agent tracks for instance moments of starting
the application, closing an application or loading a new view controller. This feature
can be achieved by providing an instrumentation code injected application delegate
file, which holds listener invoked when the application is entering in certain life cycle
phases. In addition to that, they probably use method swizzling for instrumenting view
controller based function such as the viewWillAppear method. Dynatrace’s iOS agent
collects the following application metrics:

• Agent Version

• Application Name

• Application Version

• Application Build Version

• Battery Status

• Connection Type

• Network Protocol

• Device Name

• Device Manufacturer

• Total Memory in megabytes

• Percentage of Free Memory

17

2 Foundations and Technologies

• Number of Running Processes

• The operating system

• Screen Resolution

• Device Orientation

• Device Carrier

• CPU Information

• Rooted/Jailbroken Device

Lightstep: Lightstep [LIG17] is providing an iOS tracer for tracing certain parts of a
source code. This is based on the Opentracing [OPT17] framework, which offers to
instrument code fragments as Spans. This framework is an open source project located
on Github (https://github.com/lightstep/lightstep-tracer-objc) and can be imported to
an application with CocoaPods. The Lightstep tracer communicates with the Lightstep
collector back end to send and persist the collected data from the mobile device. To
fulfill this task an access token is needed to have the rights for connecting with the
collector back end.

inspectIT Mobile iOS Agent: In the course of a development project we implemented
a monitoring agent for iOS applications. [DEVP17] The agent is implemented, as well
as the other solutions, as a Singleton to provide one single instance to the application.
The whole public API is provided by the Agent class. From here the developer can start
as many spans as desired. Spans are an abstract representation of a certain amount
of code. In the context of this specific agent one can see a span as a use case. Each
span is identified by a unique 64 bit integer and by its name. In addition they store the
identifier of the corresponding trace and parent. UseCases and RemoteCalls are used
representations of a span. Those can be created, started and closed by the developer not
only sequentially but also in parallel and they might be encapsulated (nested) in other
spans. This allows the developer to start a span although another one is already running
in the current execution. A graphical illustration of spans can be seen in Figure 2.4.

18

2.3 Available iOS Application Monitoring Agents

Figure 2.4: Spans example

To complete the mobile measurement, the agent also handles a pool filled with various
metrical values of the device, such as CPU usage, memory and hard disk usage and
battery power. The measurement values are retrieved in specific time intervals. By
default the time interval is set to five seconds. The Agent also handles the serialization
of gathered data, stores the result of executed use cases and prepares them to be sent to
the monitoring back end.

Summary of the available iOS Monitoring Agents

This section reviews the available iOS monitoring agents in a tabular form with the focus
on strategies for collecting execution traces.

19

2 Foundations and Technologies

Tr
ac

in
g

M
et

ho
d

Sw
iz

zl
in

g

U
se

ca
se

M
ap

pi
n

g

C
al

ls
ta

ck
Sa

m
pl

in
g

AppDynamics X X* X -
New Relic X - X -
Dynatrace X X* X -
Lightstep X - - -
inspectIT - - X -

Table 2.1: Used approaches for collecting execution traces of available iOS APM tools
X*: Only used for tracing system library methods

As shown in Table 2.1 most of the available monitoring tools are using the method
level or the use case level tracing approach. Method Swizzling is used for monitoring
system library based methods. For instance, for monitoring executed remote calls or
the application life cycle. None of the mentioned iOS APM tools are using the call stack
sampling approach for collecting execution traces.

2.4 Software Development Introduction for iOS

Since we will implement different mobile agent configurations, it is useful to have an
introduction in the iOS development. This section will describe the most basic and
important constructs for developing an iOS application. The focus of this section will
be the programming language Swift. On top of that, when describing different data
structure, this section will focus only on the ones that are used later on for the agent
configurations. Swift forces the application developer to initialize attributes before
using them. Attributes can be initialized as variables or as constants. A variable can be
declared with the keyword var. A constant with the keyword let. Since Swift supports
type inference there is no need to dictate the type of a variable. Listing 2.2 shows how
to declare constants and variables.

20

2.4 Software Development Introduction for iOS

Listing 2.2 Declaring Attributes in Swift
// Declaring a constant

let a = 1

// Declaring a variable

var b = 1

If the developer wants to force a different class type for a variable, he is able to do it by
using the : syntax. By default, passing an integer numeric value will assign the Int type.
Listing 2.3 shows a forced type assignment. Instead of an integer, the constant a is now
an unsigned integer.

Listing 2.3 Forced Type Assignment
// Declaring a constant as unsigned integer

let a: UInt = 1

As mentioned before, before utilizing an attribute, the attribute has to be initialized. In
cases we not able to do this, and we want to assign an attribute no value, the attribute
can be defined as an optional with the ? syntax. [SOP17]

Listing 2.4 Declaring an Optional
var a: Any? = nil

Methods known in the programming language Java, are named functions in Swift. In
order to declare a function the developer has to write an optional modifier, the function
identifier, an optional argument list and an optional return type. Listing 2.5 shows an
example of declaring a function in Swift. The argument list is given within the round
braces and the return type exists with the -> syntax. [SFU17] One may noticed that the
declared function was also called in line 8.

21

2 Foundations and Technologies

Listing 2.5 Declaring a Function (Factory Example)
func factory(n: Int) -> Int {

if n < 0 {

return -1

} else if n == 0 {

return 1

} else {

return n * factory(n: n - 1)

}

}

In the following, we will introduce the data structures utilized for the mobile agent
implementations. The following parts focus on arrays and dictionaries. Initializing an
array as a variable means that the object is mutable. In other words, a variable array
is a mutable list. In order to initialize a real array, the developer has to declare the
attribute as a constant and define the array length when initializing the object or passing
an entire array as shown in the example. Listing 2.6 illustrates how to firstly initialize
a list and how to create an array. As shown in below, in order to declare a list or an
array the [] syntax is needed. Within the braces the developer has to define the array
type. In our example we created integer arrays. Array values can be retrieved and set
through subscripts. The subscript type for an array is an integer, which is correlated to
the position of a certain element in the array. For instance array[0] returns the first
value of the array and array[0] = 1 sets the first value of the array to 1. [SAR17]

Listing 2.6 Declaring Arrays
// Declaring a list

var list = [Int]()

// Declaring an array

let array = [1, 2, 3, 4]

In the scope this thesis, we also required a dictionary in order to organize collected data.
A Swift dictionary is mutable. In order to create a dictionary, the developer has to define
the key and value type of the dictionary. In the example below, Listing 2.7, we declared
a dictionary with String as key type and Int as value type. Similar to an array, a value
can be retrieved through the key. For instance, dictionary["a"] returns the value, if
existing, mapped for the string "a".

22

2.4 Software Development Introduction for iOS

Listing 2.7 Declaring a Dictionary
var dictionary = [String:Int]()

23

Chapter 3

Application Classification

This chapter presents differences between mobile applications. Additionally, it will argue
if an application can be distinguished between other ones by the application category,
the application architecture, the resource usage or the used system frameworks. The
mentioned points are often coherent to each other. At the end of this chapter we will list
the resulting application classes with their respective descriptions.

3.1 Application Categories

The most naive approach to classify applications would be to group application categories,
since categories themselves are defined to group different apps dependent on the core
concerns. Table 3.1 presents a set of application categories selectable from the developer
for the implemented and publishing project provided by Apple [APC]. This section
will review each category and research the average resource and network usage. The
resource usage will be split in CPU, Memory and disk or database usage.

Books Food & Drink Medical Reference
Business Games Music Shopping
Catalogs Health & Fitness Navigation Social Networking
Education Lifestyle News Sports
Entertainment Kids Photo & Video Travel
Finance Magazine & Newspapers Productivity Utilities

Table 3.1: iOS Application Categories

25

3 Application Classification

Classifying mobile applications by their category, selected when deploying the application
on the AppStore, will not result as a proper classification strategy. In the following
we will demonstrate an example which proves that applications located in the same
category set, often have different architecture properties and hardware resource usages.
For this instance we chose the first category Books.

This category includes apps visualizing usual printed contents. Other apps included in
this category are book portals such as, e.g., Audible which are also providing audio-book
in a streaming format. In the most cases these apps are not high power consuming.
Down-loadable reading content might be buffered in RAM or stored on disk. While
e-books’ average file sizes are around 2-3MB, audio-books recorded in high quality and
published on the Audible platform could amount up to 28MB for an hour of audio
[AUDA17]. For instance the popular audio-book Harry Potter and the Goblet of Fire has a
recording length of 21 hours and 12 minutes [AUDB17]. The approximate file size of
this book would be 610MB. Requesting files that big would highly affect the memory
usage of the mobile device network connectivity.

Summary: Considering the mentioned instances, we are not able to attribute a class
for all applications of a category. In the case of Books apps, the absolute memory and
network usage depends on the amount of the requested files, which can fluctuate from a
small amount to a huge amount depending on the usage of the user and depending on
the core of the program. In conclusion we have to consider the application architectures
themselves and focus on underlying system frameworks, to be the more accurate in
defining mobile application classes.

3.2 Mobile Application Architecture

For developing a mobile application there are three main options. The first is to build
a full native application. This option requires from the developer team a certain know
how of the programming language, in this case Swift or Objective-C, used for build native
applications. The advantage of using this option is that the programming languages
and the provided frameworks are optimized for the specific operating system and are
therefore in the most cases more performant. If the mobile application requires to
access to hardware components such as the accelerometer or the built-in camera, there
is no option to avoid a native program. An application ready to deploy, has to be
uploaded to the related application store. The pipeline for uploading an application to
the Apple AppStore requires an application to pass a review before the will be published
application. In general the duration of the deployment process is in between two or five
days, depending on how many applications have to be reviewed [APR17]. The same

26

3.2 Mobile Application Architecture

process is also performed when the application has to be updated. Native applications
itself is not suitable to consider as an application class in our context, since there are
further differences between them in terms of performance usage. As mentioned in
the section above, focusing on used system frameworks is essential for defining native
application classes. An other option is building a web application. A web application is
callable through a browser from each device, nonindependent which operating system
is running. Common technologies used for modeling the application front end are
HTML, CSS and JavaScript. The advantage of building a web application compared with
implementing a native one lays on its portability and deployment velocity. Since native
applications have to pass a review which takes several days to conclude, web applications
can be deployed instantly by using other servers instead of the Apple AppStore platform.
The main focus of this work is to evaluate monitoring strategies for native iOS mobile
applications, therefore we will not take in consideration this application class. The
last option is to build an hybrid application. By implementing hybrid applications, the
developer is able to take the advantages of web applications and to bridge them into a
native application.

In the following sections we focusing on three main native application classes. Sec-
tion 3.2.1 explains the foundations of hybrid applications and describes the necessary
components. In Section 3.2.2 we focus on native clients of a distributed system, and in
Section 3.2.3 we review stand alone mobile applications.

3.2.1 Mobile Hybrid Applications

As mentioned above, by implementing hybrid applications the developer team is able to
distribute the complete system and to take the advantages of native and web applications.
For instance components which are expected to be updated often, may be migrated
into a web application. Figure 3.1 illustrates a model of an hybrid application sample.
The sample application includes native components at the top of the screen, which
may allow the user to navigate through the app for instance by searching an article.
The native application is also able to request and display a web application through
a the web view, which is located under the native components in our example. A
web view basically has the functionalities of an embedded browser. Apple provides
the classes WKWebView, UIWebView and WebView for embedding web content in a native
application. Considering monitoring hybrid applications, instrumenting web view based
methods such as load(Data, mimeType: String, characterEncodingName: String,

baseURL: URL), load(URLRequest) and ones used for navigation is essential. Therefore
we have to analyze the WKWebView class and its instance methods, for selecting the
appropriate functions that should be instrumented out of the box by implementing
a wrapping preset. For assuring the instant instrumentation without work overhead,

27

3 Application Classification

Figure 3.1: Hybrid Application Sample

the preset is made of a set of swizzled functions and it has to be integrated in the
agent configuration. Method Swizzling is described in detail in Section 5.2.2. In the
following, we are describing the functionalities of a WebView instance. Additionally
we are mentioning methods which has to be instrumented to obtain enough diagnosis
information for further analysis in cases of raised errors.

After instantiating a web view through the storyboard or programmatically, we need to
load the web content. The developer is able to choose between loading local files, loading
contents from the web or loading a web page by passing an HTML string. The methods
providing loading content for web views are loadFileURL(URL, allowingReadAccessTo:

URL), load(Data, mimeType: String, characterEncodingName: String, baseURL:

URL), load(URLRequest) and loadHTMLString(String, baseURL: URL?). The WebKit
framework also provides functions for reloading contents such as reload(Any?) and
reloadFromOrigin(Any?). Additionally the developer is able to stop the loading process
by performing stopLoading(Any?) [WKW17]. All iOS web views contain a UI delegate
and a navigation delegate. The UI delegate provides the functionality of for presenting na-
tive user interface elements regarding to the web page. For instance webView(WKWebView,

runJavaScriptAlertPanelWithMessage: String, initiatedByFrame: WKFrameInfo,

completionHandler: () -> Void) displays a JavaScript alert view [WKU17]. The
navigation delegate contains functions that are triggered at specific navigation oc-
casions. If the load progress of the web page is complete, the delegate will
fire the webView(WKWebView, didFinish: WKNavigation!) method. Navigation er-
rors can be caught by overriding webView(WKWebView, didFail: WKNavigation!,

28

3.2 Mobile Application Architecture

withError: Error) and loading failures can be recognized when webView(WKWebView,

didFailProvisionalNavigation: WKNavigation!, withError: Error) is invoked
[WKN17].

3.2.2 Native Client of a Distributed System

A mobile hybrid applications, which was described in Section 3.2.1, is a special type
of a distributed system. While hybrid applications contain one or more web views,
native clients do not. This means that the application is able to request data from other
distributed systems, but it is only allowed to render them using native user interface
elements. Since distributed systems are made off more than one system, communication
between the different peer instances is an important task of applications of this type. For
instance the mobile client may requests data from an external server or performs a web
service. In consequence, this section has to concentrate on possibilities of performing
remote calls. In our case a remote call is a URL request. In the following we will
describe options for performing remote requests for iOS applications. For performing
URL requests on iOS mobile devices, the developer need to instantiate an NSURLRequest

object and send the request through an URLSession. The NSURLRequest instance en-
capsulates the request URL and the behavior to use when with cached responses. In
Figure 3.2 the NSURLRequest class is specified in a class diagram. The httpMethod at-
tribute stores HTTP request type. Dependent on the request task, the developer is able
to assign GET, HEAD, POST, PUT, DELETE, CONNECT, OPTIONS, TRACE and PATCH as a string to
the httpMethod attribute. The request URL is hold and provided by the url attribute.
The data, which has to be provided to the receiver in order to get a response are stored
in httpBody. The application developer is also able to set a request timeout by setting
a time interval for the timeoutInterval attribute [URR17]. TimeInterval is public
type alias for Double. The value(forHTTPHeaderField: String): String returns the
value for a certain header attribute, which has to be passed by an argument. As one
may notice NSURLRequest only provides to edit the HTTP body and only allows to read
header fields but not to set ones. If the developer needs to add or set header variables,
the developer has to use an NSMutableURLRequest instance. NSMutableURLRequest is
a subclass of NSURLRequest, which adds the functionality to add header attributes.
Figure 3.2 also shows the inheritance of NSMutableURLRequest. Header attributes
can be added or set by calling addValue(String, forHTTPHeaderField: String) or
setValue(String, forHTTPHeaderField: String). The first argument will be set as
value for the header attribute passed by the second argument. The constraint for adding
new header attributes is not to use Authorization, Connection, Host, Proxy-Authenticate,
Proxy-Authorization and WWW-Authenticate as attribute identifiers [MUR17].

29

3 Application Classification

NSURLRequest

- httpMethod: String
- url: URL
- httpBody: Data
- httpBodyStream: InputStream
- mainDocumentURL: URL
- allHTTPHeaderFields: [String : String]
- timeoutInterval: TimeInterval
- httpShouldHandleCookies: Bool
- httpShouldUsePipelining: Bool
- allowsCellularAccess: Bool
- cachePolicy: NSURLRequest.CachePolicy
- networkServiceType: NSURLRe-
quest.NetworkServiceType

+ value(forHTTPHeaderField: String): String

NSMutableURLRequest

+ addValue(value: String, forHTTPHeaderField: String)
+ setValue(value: String, forHTTPHeaderField: String)

Figure 3.2: NSURLRequest Class

The next step, after setting the URL request, is to pass the NSURLRequest instance
through a URL session. The URLSession class and the related classes are providing the
functionality of requesting data from a back end and provides various download possi-
bilities of the URL responses [USE17]. The NSURLRequest instance need to be converted
into a data task. This operation is performable by calling dataTask(with: URLRequest,

completionHandler: (Data?, URLResponse?, Error?) -> Void). The passed URL
request will be converted in a data task. Additionally, the developer is able to pass a
callback function which will be called in the case the URL session receives a complete
response from the back end. Created data tasks start in a suspended state. For changing

30

3.2 Mobile Application Architecture

the state to active, the task need to be started by calling resume(). After starting a
task, the URL session calls various delegate methods step by step. If a connection-
level challenge is required, when performing the first handshake with the back end, the
URLSession instance will call urlSession(_:task:didReceive:completionHandler:) or
urlSession(_:didReceive:completionHandler:) on its delegate for requesting creden-
tials. During the upload of the request body to the back end, a routine calls periodically
urlSession(_:task:didSendBodyData:totalBytesSent:totalBytesExpectedToSend:)

for reporting the actual progress of the upload operation. When the server responds,
the mobile application receives an initial reply from the back end. In that case the
session calls urlSession(_:dataTask:didReceive:completionHandler:). During the
download of the requested data, the urlSession(_:dataTask:didReceive:) display-
ing the actual fragments of the requested data. When any kind of task is finished,
urlSession(_:task:didCompleteWithError:) will be called to alert the end of the re-
mote call. If an error occured during the download process, didCompleteWithError
stores the error to catch the problem, otherwise it is set to nil. Additionally, we have to
mention the existing different types of tasks. The process explained above is generally
provided for a URLSessionDataTask [USD17]. A data task returns the downloaded data
to the app memory. The URLSessionDownloadTask class is also provided. A download
task normally wraps the downloaded data into a file. In addition, it has the ability to
check the download status by comparing the written bytes with the expected amount
of bytes [USL17]. The mentioned method is called periodically automatically from
the URL session delegate. The last URL session task is the URLSessionUploadTask.
The upload task also provides a function to check the current status of the up-
load. Developers are able to retrieve the upload status by overriding urlSession(_

:task:didSendBodyData:totalBytesSent:totalBytesExpectedToSend:) [USU17]. As
soon as the requested data arrive, the specific data task will perform its completion
handler. The completion handler receives the remote call response as a URLResponse

object. By instrumenting the mentioned instance methods of the different classes used to
perform HTTP requests, the agent is able to recognize remote calls, to measure remote
call-based metrics such as the upload or download status, to notice whether the remote
call was timed out, to check the response code and to intercept occurred errors.

3.2.3 Standalone Mobile Application

A standalone mobile application is not dependent from an external back end to provide
the core concerns. In the most cases these types of applications neither require a network
connection. An instance of this application class is a calculator app. A calculator has no
need to request specific data from a server. The core concerns of the application are all
stored locally. An other instance is a to-do application without sharing functionalities.

31

3 Application Classification

The contents of the application are managed and stored locally. In some cases stan-
dalone mobile application are providing a local database to executing the mentioned
tasks. Apple provides the CoreData framework for handling persistent object storage.
Standalone apps could also display advertisements. Apple declared the iAd App Network
form December 31 2016 as no longer available, and suggests to rely on third party
networks and advertising sellers for this task [IAD17].

3.3 Summary

Since we focus on native iOS applications, for the further course of this thesis we will
consider the following application classes:

• Hybrid Application

• Native Client of a Distributed System

• Standalone Mobile Application

The main difference between the listed application classes depends on the underlying
system libraries. Each class uses different system classes than the other. As a result the
agent has to be capable of monitoring the respective system methods. The next chapter
argues in detail with the requirements of a monitoring agent.

32

Chapter 4

Requirements for Monitoring Agents

This chapter lists the requirements of an agent configuration and the prerequisites
to perform the evaluation. Additionally, we will present a detailed view of our work
program. Our work program consists of theoretical work packages and practical work
packages. To fulfill a certain work package, various tasks need to be performed. Some
tasks are dependent from other ones and need to be completed first. The detailed view
of our work program includes the listing of the work packages, the presentation of the
tasks and their aims of each work package and the dependencies of the tasks and of the
work packages.

4.1 Software Requirements Specification

As illustrated in Figure 2.2, in order to monitor an agent-based instrumented application
the agent requires at least three main working stages. Collecting monitoring data is
the primary working stage of an agent. Monitoring data consist of runtime source
code-based information such as method invocations with their invocation time and
execution time. Further on time-series measurements of hardware resource usages
such as CPU, memory and network usage are also included in monitoring data. The
working phase after collecting data is managing data. Data management is considering
the data model of the collected measurements, and the maintenance of the measured
data. The last work phase of the agent is the data dispatch. Collected data needs to be
sent to a back-end to be displayable on a monitoring client and for a further data and
performance analysis.

33

4 Requirements for Monitoring Agents

4.1.1 Requirements of a Mobile Agent Configuration

Since we want to evaluate monitoring strategies for native iOS applications, we also
need to consider mobile device specific metrics such as the network connection, the
carrier name and the battery status. We also have to mention that in general mobile
devices are less powerful in terms of hardware specification than personal computer or
servers. Therefore the agent concepts and implementations needs to be as performant
as possible in the context of memory usage and running time. The following subsections
will present lists of functional, non-functional and external interface requirements.

Functional Requirements

FSR1 The agent collects data

FSR1.1 Agent collects invoked source code-based data

FSR1.2 The agent stores the timestamp referring to its method invocation

FSR1.3 Remote calls are recognized by the agent

FSR1.4 The agent tracks the users location when he allows it

FSR1.5 The agent collects metric values with a timer-based process in a specific
frequency

FSR1.6 The collection frequency of the timer-based process should be editable by
the developer

FSR2 The agent manages data

FSR2.1 The agent reconstructs the right execution tree with the collected data

FSR2.2 The agent buffers the collected data locally

FSR2.3 Monitored back-end traces working with the Opentracing structure would
recognize the caller invocation

FSR3 The agent sends the managed data to an APM back end

FSR3.1 The back end address can be edited

FSR3.2 The agent sends time-series measurements and trace information in a
proper format

FSR3.3 The agent has a unique ID

34

4.1 Software Requirements Specification

Figure 4.1: Monitoring Agent Activity Pipeline

Figure 4.1 illustrates the expected activity of the monitoring agent in detail. First of all,
the agent has to collect trace data. Trace data comprehends the invoked source code
data and the respective execution time. Remote calls are also included in trace data.
This agent task has to fulfill FSR1.1, FSR1.2, FSR1.3 and FSR1.4. In order to monitor
the hardware resource workload, the agent performs periodical measurements of the
hardware metrics. In addition to that, the collection frequency has to be editable in
cases the application developer requires more data in a smaller time interval. When
trace data is measured, the agent creates a data object and correlates it with the caller
object. This produces an hierarchical structure of trace data and ensures that the agent
reconstructs the right execution trace. At the end, the collected monitoring data has
to be send to a monitoring back end for further analysis. Therefore, the agent needs
to serialize the measurements in a proper format. Since multiple agents are spread for
the same application, the agent has to provide an id in order to distinguish the send
monitoring data.

Non-Functional Requirements

NFSR1 The performance overhead produced by the agent is minimal

NFSR1.1 The operational times of the agent tasks are as low as possible

NFSR1.2 The memory overhead produced by the agent is as low as possible

NFSR2 The agent does not affect the functionality of the monitored application

NFSR3 The agent does not affect the usability of the monitored application

35

4 Requirements for Monitoring Agents

4.1.2 Optionals of an Agent Configuration

Optional requirements may improve the functionality of an agent configuration, but are
not necessary for the base tasks. An additional module for an agent configuration might
be a built in data analysis. This intelligence could be able to analyze the collected data
locally on the mobile device and determine whether some collected and stored data
are important and useful or not. For instance if the device runs out of memory due to
the huge amount of collected measurements, the agent could start an analysis process
which deallocates unimportant data from the memory. An other optional might be the
integration of proactive elements. While the agent collects data, its intelligence could
detect a specific error type. In this case the agent could notify the end-user by displaying
an alert mentioning the occurring error type. This may improve the end-user experience
and the mobile application user might be able to fix the problem himself. For instance
if the user requests some content in a problem zone, the user would be aware of this
problem due to the proactive error notification. At that point the end-user could solve
this problem by moving to an other position with a better network connectivity.

4.1.3 Required Metrics

For a further analysis of performance problems, the agent has to provide a set of
important metrics. In this section we will mention mandatory and optional metrics
collectible from iOS mobile devices by an agent configuration running within an applica-
tion. In addition we will differentiate between execution information and time-series
measurements.

Trace Data (Single Measurements)

A number of bad performance in software systems is often related to high execution
times. Application monitoring tools have to recognize these kind of performance
problems and have to visualize them to make the application analysts or developer
aware of performance issues. To accomplish the mentioned awareness, it is important
that the mobile application agent measures the execution times while tracking method
invocations or remote calls. In the context of this thesis, the iOS mobile agents should
be able to detect method invocations, defined use cases and performed remote calls as
spans. Since each of the three span types have different attributes which are important
for their respective span type, we decided to split this sub section to argue with the
different metrics separately.

36

4.1 Software Requirements Specification

Method invocation: Important attributes to be collected while tracking a method
invocation are the execution times, the method name and the span correlation with
other spans. The method execution duration and the method name are important for
identifying and analyzing slow methods. Recognizing the span correlation is important
to detect relations in different method calls. In order to assure the span correlation, we
decided to use the opentracing strategy. Spans the opentracing format, are holding three
different ids in order to establish the relations: id, parent id and trace id. The parent
id references to the span id of the span which invoked the current span. The trace id
references to the execution trace the measured span is related to.

Metrics Mandatory Optional

Execution Time X
Method Name X
Correlation IDs X
Thread ID X
Thread Name X

Table 4.1: Mandatory and Optional Metrics for Method Invocations

Table 4.1 displays mandatory metrics and optional metrics for method invocations. The
mandatory metrics have been already explained in the section above. Optional metrics
are the thread name and the thread id. Since collected spans are organized in different
execution traces, it is not required to additionally store the thread information of the
spans.

Use cases: The execution time of a use case is as important as the duration for methods
invocations. Instead of method names, the use case structure has to store the defined
use case name. As shown in Table 4.2 it is not essential to additionally store the method
names, where the use case started or ended considering that these information are not
essential for recognizing performance problems. Use Cases might be related to other
ones, therefore it is important to store the correlation attributes.

37

4 Requirements for Monitoring Agents

Metrics Mandatory Optional

Execution Time X
Use Case Name X
Correlation IDs X
Thread ID X
Thread Name X
Method Names X

Table 4.2: Mandatory and Optional Metrics for Use Cases

Remote calls: When requesting a back end, many unknown problems could occur. A
problem instance is an high loading time when requesting required application content.
In order to firstly detect high loading times, the mobile agent has to measure the duration
between the request and response time. In the case the agent detects a high loading
time, it is still possible to understand the reason for this problem. In consequence the
agent has to store more information about the remote call. Problems for high loading
times could be that the user is requesting content from a problem location, that the
end user is not connected to the network, that the user tries to request content from a
problem router or the back end system is slow.

Metrics Mandatory Optional

Duration X
Request URL X
Geo-location X
Network Connectivity X
Mobile Provider X
Router SSID X
Response Code X
Correlation IDs X
Thread ID X
Thread Name X
Method Names X

Table 4.3: Mandatory and Optional Metrics for Remote Calls

In order to cover all the mentioned cases, the mobile agent has to collect additional
information about the geo-location, the network connectivity and the used provider of

38

4.1 Software Requirements Specification

the end users device, and how the back end responded, as shown in Table 4.3. Apart
from that, it would be useful to store the request URL, in cases the back end is slow.

Time-series Measurements

Time-series measurements are repeatedly collected measurements in a certain frequency.
Each measurement point stores its collection timestamp. This subsection presents the
collectible mobile device hardware metrics in a tabular form and explains whether a
certain metric is necessary to be collected from an agent or not.

Metrics Mandatory Optional

CPU usage X
RAM Memory usage X
Disk Memory usage X
Battery usage X
Geo-location X

Table 4.4: List of Mandatory and Optional Metrics

One of the main task of an application monitoring tool is to recognize performance
problems in a running application. Another reason for slow applications is high usage of
hardware resources. In cases the device runs out of memory the running application
crashes. As a consequence the agent has measure the hardware resource workload, in
order to monitor these data. These metrics values are measured periodically in a specific
time. This helps to relate an increase of hardware workload, which probably provocates
a problem, to a performed method. Since the geo-location is only important for tracking
remote calls, it is not necessary to retrieve this information periodically.

39

Chapter 5

Architecture of Monitoring Agents

This thesis investigates which agent properties fit best to a certain application class. For
answering this question it is necessary to define which monitoring concepts are possible
to model for each mobile agent phase. This chapter describes and explains the main
functionalities available for monitoring an iOS application. It will start by presenting the
regular working pipeline of a monitoring mobile agent. The following sections describe
possible concepts of each agent working phase in detail in terms of functionality and
idea. The agent working phases are illustrated in Figure 5.1. The first phase concerns
collecting monitoring data. This chapter focuses on source code-based data. Managing
the measured data is part of the second work phase of the agent. The last part concerns
deploying the buffered information and to send them to a monitoring back end, in
order to be further used for the monitoring client. Section 5.2 names and explains all
performance data collection strategies. The processing and management concepts for
collected measurements are presented in Section 5.3. Section 5.4 describes sending
strategies of buffered traces and device metrics measurements. Additionally, reasons of
using certain data structure and algorithms will be discussed.

Figure 5.1: Agent Working Phases

41

5 Architecture of Monitoring Agents

5.1 Mobile Agent Pipeline

This section describes the functionalities of a mobile agent in general. Figure 5.1 presents
the pipeline of the working phases of the agent. Collecting fundamental analysis data
such as execution traces and metrics measurements is the principal task of an agent.
The second work phase is the data management, where the agent buffers the collected
data locally and merges correlated traces. The last stage is dispatching the managed
data to an APM back end.

Optionally, an agent may include an analysis module which is able to filter out unim-
portant data. The analysis module may integrate a set of rules helping detecting
performance problems based on the collected performance measurements.

5.2 Data Collection Strategies

This section lists performance data collection approaches for monitoring agents. Perfor-
mance data need to be separated in source code-based data, resource usage and device
information. Important for source code-based data are at runtime executed methods.
The agent needs to recognize the executed method, to buffer the method name and
invocation time and to measure the duration of the executing method. These properties
are needed for a proper presentation of the execution traces on the APM monitoring
client. Instead of instrumenting methods the agent could instrument a complete defined
use-case of the mobile application. In terms of application monitoring a use-case may
be formed in one or more method executions. Both options require from the agent to
recognize an instrumentation starting point and an instrumentation end point.

5.2.1 Tracing on the Source Code-Level

This approach is used to instrument the written source code of the application. By
manually invoking the agent at the beginning and the end of every method, as shown in
Figure 5.2, the agent can determine the start time, the end time and the execution time
of any method.

42

5.2 Data Collection Strategies

Method A

Trace Invocation

Actual
Method Body

Close Invocation Agent Instrumentation Points

New Method Body

Figure 5.2: Agent Invocations in Method Body

By tracing a method invocation the agent should store the method name and the actual
timestamp for remembering the execution start-time. Closing an invocation by the agent
means to collect again the actual timestamp which defines the end-time of the method
execution. The calculated difference between the two collected timestamps defines the
execution duration of the instrumented method. Relations between traced invocations
may be established though ids. Each measured invocation generates a unique id. For
recognizing encapsulated calls the agent has to correlate the caller and the called method.
This is realizable by adding a parent id attribute to each invocation measurement. The
parent id relates to the id of the caller invocation. By using this approach the application
developer has to deal with several problems. The first problem to mention is the manual
setting of the instrumentation end-points. Methods may include return statements in
their method body, therefore the termination of the method is not always at the end of
the method body. To solve this problem the application developer needs to recognize the
method termination points and to add the instrumentation end-points right before them.
Otherwise an agent working with this approach would not be able to recognize the end of
certain methods. Due to the fact that the developer necessarily adds the instrumentation
points before return statements the agent would not be able to recognize recursive
functions, calling themselves in return statements, without additional input.

5.2.2 Source Code-Level Instrumentation with Method Swizzling

One disadvantage emerging with manual source code-level instrumentation with tracing
is that monitoring invocations are merges with the application code which reduces
the understandability of the program code. Using aspect-oriented programming (AOP)
would solve this problem. With AOP one is able to encapsulating cross-cutting con-
cerns such as agent invocations, used for app monitoring, from core-level concerns
but are automatically calling each other in the normal program flow [HKGH11]. In

43

5 Architecture of Monitoring Agents

Objective-C or Swift aspect-oriented programming (AOP) is realizable through Method
Swizzling. Method swizzling allows application developer to swap the implementation
of a certain selector with another one [NK14]. One could use this advantage to wrap
methods he wants to instrument. This is performable by creating a new method which
calls the original implementation. The new method can be injected with provided
calls such as start tracing and end tracing to be invoked before and after a the real
function call. After swizzling two methods, the implementation of the new one is
executable by calling the old signature and vice versa. For instance we swizzle the
didReceiveMemoryWarning() function which is called by the application on low memory,
with instrumentedDidReceiveMemoryWarning() function. Assuming that the state of
the device is on low memory, the application will call didReceiveMemoryWarning(),
but the implementation of instrumentedDidReceiveMemoryWarning() will be exe-
cuted. In this case we could inject the instrumentation calls in the method body
of instrumentedDidReceiveMemoryWarning() as shown in Figure 5.3.

didReceiveMemoryWarning

memoryBlocks = nil
...

instrumented
DidReceiveMemoryWarning

Trace Invocation

instrumented
DidReceiveMemoryWarning()

Close Invocation

Agent Instrumentation Points

swap

calls

Figure 5.3: Method Swizzling Usage for Instrumentation

Method swizzling is programmatically achievable by creating two selectors holding both
function names. Afterwards we have to distinguish whether we want to swizzle instance
or class/static methods. Swizzling instance methods requires to retrieve the method
implementation with the public class_getInstanceMethod method. Class methods
implementations are accessible with class_getClassMethod. At last the implementations
need to be swapped with the method_exchangeImplementations method.

44

5.2 Data Collection Strategies

5.2.3 Source Code-Level Instrumentation with Use Case Mapping

This instrumentation concept is similar to the source code-level instrumentation of
invocations strategy. This approach is also used to instrument the written source code
of the application, by manually invoking the agent. The difference between both
strategies is the different mapping of the gathered data. While the source code-level
instrumentation of invocations strategy creates invocation objects based on a single
method invocation, the source code-level instrumentation with use case mapping creates
span objects, which can cover more than a single method call. In general one can see a
span as a use case. Since more than one use case can exist at the same time, a single
stack is not sufficient. A dictionary, which maps the id of a root span to its span stack, is
required. Starting a span as a root span requires only a name. Starting it as a sub span,
the agent needs to know, which span is its parent and its root span, to be mapped on the
right position. This is the reason, why span objects can be created, started and closed by
the developer not only sequentially but also in parallel and they might be encapsulated
(nested) in other spans. This allows the developer to start a span although another one
is already running in the current execution.

5.2.4 Call Stack Sampling on iOS

The Problem with call stack sampling on iOS, is that there is no native method,
which returns the call stack of all threads for iOS such as Thread.getAllStackTraces()
for Java. Instantiating a scheduled timer for the sampling, returns a timer object,
which executes a specific block of code on a sub-thread. The computed property
Thread.callStackSymbols returns only the call stack symbols of the timer invocation
thread, which does not help for further analysis. One may can try to force the timer
invocation to run on the main thread with DispatchQueue.main.async. Letting the
timer perform the code block on the main thread actually works, the agent misses all
invocation information from all other threads. Therefore the needs an other approach
for collecting all data. Since the agent has only the opportunity to get the stack trace of
the current thread he was invoked from, we need to implement a routine which forces
all threads on their own to call Thread.callStackSymbols periodically. The agent has to
fetch all current running threads. Afterwards, the agent iterates through all threads and
sets a signal action for each thread. A signal action is a callback method which is per-
formed when the thread receives a specific signal. The callback method will be invoked
on the same thread, the signal was sent to. This means that if thread 1 sends a signal to
thread 2, the signal action will be called on thread 2. In our approach the signal action
retrieves the stack trace of the current thread by calling textttThread.callStackSymbols.
Afterwards, the same routine, which fetches all threads and sets the signal actions, sends

45

5 Architecture of Monitoring Agents

a signal to all threads. This approach makes possible to read the stack traces of all
threads. In order to perform this task periodically, the agent starts a new thread which
invokes the explained function and sleeps for a certain time period repeatedly. This
approach works only with a constraint. The signal action can only be performed, when
the state of the thread is safe. For instance if a method is currently performed in a
specific thread, the signal action has to wait until the end of the method invocation,
before it gets pushed on the call stack. As a result the agent would always miss the
last invocation of the current stack trace. As illustrated in Figure 5.4, the signal action
would wait until the end of method B. The light gray block visualizes that the method
is running. The signal action will be pushed only afterwards on the call stack and
Thread.callStackSymbols will be called. At the end, the signal action will be popped
from the call stack, the invocation of method A continues and the normal code flow will
be resumed.

paused

paused

Method B

Method A

Signal Action

Figure 5.4: Invocation Schedule

The described issue leads to losing important information about the call stack and the
agent is not able to reproduce the right invocation sequence. In the worst case a problem
occurs on the latest invocation, which does not perform other nested calls.

An other option is to simulate the concept of call stack sampling by appending a call stack
invocation on every written function at the start and at the end. If the time passed from
one call stack invocation to the other one is less than the predefined time period, we
ignore the last invocation, and wait for the next one. Fast methods as getter and setter
will be ignored in this case, which reduces the overhead of the agent and resembles the
real call stack sampling.

5.2.5 Automatic Source Code-Level Instrumentation of Invocations

The manual source code-level instrumentation strategies are producing high overhead
in terms of integrating the agent in the project. The application developer needs to
manually rewrite all starting and end points of all methods, in order to make them
traceable by the agent. This reduces the code quality for reading and costs time. Since
this concept is based on tracing functions, we could write a precompile process program.

46

5.2 Data Collection Strategies

Figure 5.5: iOS project selection

For this strategy we implemented instrumentit. This process is built up of two parts.
The first part performs a static analysis of the source code. It comprehends parsing the
source code and the recognition of Objective-C and Swift specific keywords such as func,
class and static. Afterwards by analyzing the parsed signatures, instrumentit is able
to convert them into selectors needed for method swizzling. Optionally it stores the
eventual instrumentation position for automated tracing. The second part comprehends
the instrumentation code generation and placement. For each recognized and selected
method to instrument, the process performs the swizzling of methods with help of a
template. The template defines the source code grammar used for method swizzling. At
the end the generated source code will be added in an appropriate place in the project
to be compiled and executed later on.

In below there is a walk-through describing the usage of the instrumentit concept. As
shown in Figure 5.5 the developer initially needs to select the iOS project. By clicking on
the Continue button the instrumentation view, illustrated in Figure 5.6, appears. At this
point the developer has the possibility to decide, whether he wants to trace all methods
or only specific ones by selecting them on the user interface. In addition to that, he is
able to decide the instrumentation strategy for each selected method.

47

5 Architecture of Monitoring Agents

Figure 5.6: Prototype of the Agent Invocations Writer Program

After the method selection, the instrumentation application will modify the iOS source
code automatically, in order to make the selected methods traceable.

5.3 Data Management Strategies

This section concerns about management approaches performable by mobile agents. It
includes the various data model blueprints, Span Instance and Span Message, the data
holding and controlling structures, dictionary, stacks and tree organization, and presents
the correlation possibilities between measurement probes. In order to understand which
functionalities the data management phase has to implement, the data management
pipeline is provided in below.

48

5.3 Data Management Strategies

Figure 5.7: Data Management Pipeline

As illustrated in Figure 5.7, after collecting measurement probes, the agent creates an
object related to the source code measurement, provides correlation settings between
related spans and buffers the instance for further processing. Invocation instances as
explained in Section 5.3.1 or log strings as demonstrated in Section 5.3.2 may be used
as information blueprints. The emerging problem of correlating trace data is explained
in Section 5.3.3. Opentracing provides a solution, which is explained in Section 5.3.4,
for correlating measured spans. The following sections, Section 5.3.5 and Section 5.3.6,
describe how to integrate the opentracing solution to the presented data models. In the
last section we will present data organization strategies needed to buffer the measured
trace data. Apart from buffering data, the organization strategies have also to be able
to speed up the correlation between spans. This section additionally demonstrates and
explains the expected running time of each methodology.

5.3.1 Model: Invocation Instance

As mentioned in Section 5.2 apart from executed source-code blocks we need to measure
the execution duration and the starting time. The first possibility for the information
model is to create an invocation object holding the mentioned attributes. For storing
the execution start time one can use an unsigned 64-Bit UNIX timestamp, describing
the time from the 1. January 1970 to now in milliseconds. The execution duration is
the difference of the ending timestamp and the stored start timestamp in milliseconds.
This attribute can be stored in an unsigned int. An unsigned 32-Bit int can store values
from zero to 232 − 1. This would mean that we assume the maximum duration not to
be more than (232−1)ms

1000 s = 4, 294, 967.295s = 71, 582.78825min. A unsigned 16-Bit short
may not suffice the hold the duration. The maximum duration before a roll-back would
be (216−1)ms

1000 s = 65.536s = 1.09226min. An other argument for using a 32-Bit integer
instead of an 16-Bit is the stack spacing. The size of one word of 32-Bit machines
is 4 bytes. If the compiler pushes a 16-Bit variable on the stack, which is a normal
occurrence when a object is invoked, it reserves 32 bits instead of 16. The reason for

49

5 Architecture of Monitoring Agents

that is to maintain the stack aligned. On 64-Bit machines the compiler performs an 8
byte alignment, due to the fact that words are 64 bit long. Therefore we allowed to
use an unsigned 32-Bit integer on a 32-Bit architecture and an unsigned 64-Bit long
on a 64-Bit architecture with the same memory usage. The primitive types NSUInteger
[NSUI17] for objective-C and UInt [UIN17] for Swift are able to distinguish whether
the compiled code is running on a 32 or 64-Bit machine. For the first option NSUInteger

or UInt is an unsigned 32-Bit integer otherwise 64-Bit. The name of the execution is
stored as a String. The Invocation class holds the string reference, which is the size
of a word of the device architecture. The invocation properties may be set with the
startInvocation method a the beginning and closeInvocation method at the end. To
summarize the mentioned facts from above, Figure 5.8 illustrates the invocation class in
a UML diagram with Swift types. The defined minimalistic construct allocates 40 bytes
on 64-Bit architecture in total. Eight bytes for the name property, eight for the startTime

attribute, eight for the duration variable and 16 bytes for the object meta-data. On
32-Bit machines the allocated space for an invocation object amounts to 28 bytes in
total. Four bytes for the name property, eight for the startTime attribute, four for the
duration variable and 12 bytes for the object meta-data. Additionally we have to add
the string size which the name pointer references to in order know the exact amount of
memory allocated by an invocation object.

Invocation

- name: NSString
- startTime: UInt64
- duration: UInt

+ startInvocation(): void
+ closeInvocation(): void

Figure 5.8: Invocation Class

5.3.2 Model: Log

Instead of having a real invocation model the mobile agent could log occurred events.
In this case, creating objects for each invoked procedure is not a necessary task. Alterna-
tively, the agent could use strings as event protocols which are buffering the invocation
name, the execution start time and the duration of each invocation. A log message
needs a certain pattern to distinguish the various invocation attributes from each other.
Therefore, we need to introduce a rule for positioning and separating the different

50

5.3 Data Management Strategies

attributes as presented in Figure 5.9. We define the space symbol as the separator. The
positioning order of the attributes is: invocation name, starting time and end time.

name startTime duration

Figure 5.9: Log Message Preset

The ranking order of the mentioned attributes was established es defined to incrementally
append new information. The first information the mobile agent might receive is the
performing function name and the execution start time. At the end of the method
execution the mobile agent calculates the duration and appends the result at the end of
the log message.

The memory usage of this construct will amount up to at least 146 bytes on 64-Bit
machines. Two bytes are required for the separators, 128 bytes to binary represent the
execution starting time and the execution duration and 16 bytes (8 bytes for 32-Bit)
are required to hold the string address. We could optimize the log message in terms of
memory usage by converting the numeric attributes in hexadecimals. This convenience
would reduce the amount of memory to at least 50 bytes for 64-Bit architectures and to
34 bytes for 32-Bit systems.

5.3.3 Correlation of Locally Instrumented Invocations

The sections before discussed how to collect information about invoked methods and how
to model them. At this point the mobile agent would collect measurements separately
from each other without establishing relations between each other. As mentioned in
Section 2.1 an execution trace is a monitored sequence of method invocations. A method
may be called within an other method. Considering the ignorance of setting relations
between instrumented invocations may lead to false information description. The agent
could have the possibility to recognize the execution trace based on the collected start
time and duration of each method. The agent could recognize the caller of other methods
as shown in Algorithm 5.1 if the start time of the callee is more than the start time
but less than the start time added with the duration of the potential caller. One contra
argument for this approach is the bad operational time. The algorithm with quadratic
operational time O(n2) has to be repeated after every closed invocation. An other
problem is that the described approach will even fail due to an other lack of awareness
of the agent: parallel execution-traces. On multi-threaded systems there might still exist
more than one running execution trace. The iOS architecture supports multi-threads
[ATH14], therefore it is obvious to find an other solution. Opentracing [OPT17] defines

51

5 Architecture of Monitoring Agents

Algorithmus 5.1 Basic correlation

procedure CORRELATEINVOCATIONS

for all p ∈ Iclosed do // Iclosed is the set of closed invocations
for all c ∈ Iclosed do

if p ̸= c then
if p.startT ime < c.startT ime then

if c.startT ime < p.startT ime + p.duration then
p.PARENTOF(c)

end if
end if

end if
end for

end for
end procedure

a structural solution for the mentioned problems. The following section will describe
the Opentracing model construct and explain its benefits.

5.3.4 Opentracing

For bypassing the problems mentioned above, Opentracing [OPT17] defined a model
for helping establishing relations between invocation measurements. Execution-traces
are defined by their so called spans. One can imagine a span as a source code-based
measurement, independent if it only a method measurement or a measurement expand-
ing more than one invocation. A trace is than defined as a tree of spans. In Figure 5.10
one can see a sample trace with span nodes. In this case Span A is the caller of Span B,
Span C and Span D. The three callee might have other child spans. In our case, Span B
calls Span E. The edges of the tree are representing the relation between the spans. If a
span above is related to a span below, the upper one is the parent span of the lower one.
For providing this functionality, Opentracing expanded the span model. In addition to
an operation name, the start time and the end time, their model holds a map, named
span tags, for storing custom information, a so called SpanContext and references over
the SpanContext. The SpanContext holds a unique id of the respective span and a
trace id. The trace id correlates an amount of spans that were executed in the same
execution-trace. The other reference property is the ability to set a span as a parent
of another one. The benefit of this model structure is the ability to set the relations
at the span creation. Dependent on the organization of the spans, the agent could
look up whether there is a running trace and a parent span and set those properties
when instantiating a new span. By performing the correlation in this way, the agent

52

5.3 Data Management Strategies

Sample Trace

Span A

Span B
childOf A

Span C
childOf A

Span D
childOf A

Span E
childOf B

Figure 5.10: Span Tree representing a Sample Trace

avoids to repeatedly run the poorly performant Algorithm 5.1. The performance of this
correlation strategy is highly dependent on the organization structure of the collected
spans. The following sections [REEF] will describe the adaption of the Opentracing
structure in our models defined in Section 5.3.1 and in Section 5.3.2. The sections
[REEEF] will additionally define organization and management strategies and discuss
the performance of the correlations.

5.3.5 Model: Invocation Instance with Opentracing Adaption

The model defined in Section 5.3.1 need to be extended to fulfill the requirements defined
for the Opentracing construct. The invocation class has to include properties such as id,
parentId and traceId. These three attributes are resembling the SpanContext defined
in the Opentracing format, used for establishing relations between invocations or spans.
As the id of each span has to be unique we suggest to use an 64-Bit unsigned numeric
long for the mentioned id properties. The invocation class can optionally hold a map
holding the span tags for storing additional information regarding to the measured
span. In terms of memory usage, the amount of allocated memory for an invocation
object grows to 72 bytes on a 64-Bit architecture and 56 bytes on a 32-Bit architecture.
The three ids are allocating three times eight bytes. The span tags map is stored by
reference, therefore it consumes eight bytes on a 64-Bit machine and four bytes on a 32-
Bit. Figure 5.11 presents the new invocation class which is adapting the functionalities
of the Opentracing format.

53

5 Architecture of Monitoring Agents

Invocation

- id: UInt64
- parentId: UInt64
- traceId: UInt64
- name: NSString
- startTime: UInt64
- duration: UInt
- spanTags: [NSString: Any]

+ startInvocation(): void
+ closeInvocation(): void

Figure 5.11: Invocation Class adapting Opentracing

5.3.6 Model: Log with Opentracing Adaption

If one decides to utilize log messages as span model, it is also necessary to include
Opentracing specific properties. The log message can be extended with four more
values: the three ids as hexadecimals and the span tag reference address as hexadecimal.
Figure 5.12 illustrates the structure of the new log message.

name startTime id parentId traceId spantag-address duration

Figure 5.12: Log Message Preset with Opentracing Adaption

On 64-Bit architectures, this constructs’ memory usage will amount up to 118 bytes (94
bytes on 32-Bit). The log message need four more separators (four bytes), includes
three 64-Bit hexadecimal values for the ids (three times 16 bytes) and stores the span
tag address as an hexadecimal value (16 bytes on 64-Bit architectures, eight bytes on
32-Bit). The memory size of the string is equivalent to the number of characters in the
string. Searching the required property would be performable in expected linear time
O(n), by reason of scanning each property position. Since the length of the log message
is static, we can optimize the estimated lookup for each attribute. The lookup consists of
searching the right string position and scanning the right amount of bytes. The agent
could start scanning a certain amount of characters of the log message at a predefined
index offset. For instance scanning the invocation id would require to start scanning
16 bytes from index 34. The described lookup methodology is only performable if the
attribute indices are stored at some point of the source code.

54

5.3 Data Management Strategies

5.3.7 Management: Span Organization and Span Correlation

Spans are normally instantiated when the instrumentation start point is invoked. Those
spans need to be buffered locally in order to add and calculate the missing attributes
of each invocation. The instrumentation source code point at the start creates the
invocation object, generates a unique id, declares the name and measures the start
execution time of the invocation. The end point measures the end time and calculates
the duration of the invoked method. The setting of the attributes parentId and traceId

is not automatically performable without a well defined span organization. Assuming
the opposite case and the agent detected four spans as illustrated in Figure 5.13 and
just stored them in a stack, the invocation sequence is not trivial. On one hand the stack
could resemble the execution sequence, as shown on the right hand-side of Figure 5.14,
on the other hand certain spans may be invoked in an other thread than other ones. For
instance the left hand-side of Figure 5.14 shows that Span A was invoked on the main
thread and invoked Span C and Span C invoked Span D and Span B was called in an
other thread. Considering the cases, presented on Figure 5.14, the agent is not able to
automatically set the parent span and the trace id.

Span D

Span C

Span B

Span A

Figure 5.13: Span Stack without Organization

The only opportunity for setting the proper ids is to manually inject them. The agent
could easily be extended to perform this task. The problem emerging using this kind
of correlation strategy is the increase of work overhead. Manually setting the relation
properties is requiring a huge understanding of the written source code. An other
problem is the delivery of the span id in cases of nested calls. The span id is generated
at the start of each method invocation. If the invoked method calls an other method the
span id of the caller somehow has to be passed to the callee method. One possibility is
to rewrite the method signatures to provide other arguments such as the parentId and
the traceId. This approach will increase the workload even more considering that the
developer would be obligated to edit every method signature he wants to instrument. The
solution for avoiding the increase of workload is to utilize a proper organization structure.
The other benefit emerging using a defined organization is the automated correlation

55

5 Architecture of Monitoring Agents

between spans. The next subsections present possible organization strategies usable for
mobile agents. Each approach is described and analyzed in terms of functionality and
performance.

Span	A

Span	B

Span	C

Span	D

Span	A

Span	B

Span	C

Span	D

t

Thread 1

Thread 2

t

Thread
1

Figure 5.14: Non-Deterministic Trace Options

Organization in Stacks

As described in Section 5.3.4, an organization with a single stack would not fulfill the
functional requirement FSR2.1 defined in Section 4.1.1. A possible option to solve the
mentioned problems is the organization of the spans in multiple stack. Invocations
measured in different threads are buffered in different stacks.

Figure 5.15: Multiple Stacks Organization

By using the organization structure as illustrated in Figure 5.15, the mobile agent has
the possibility to check and retrieve the thread id or name and afterwards to select

56

5.3 Data Management Strategies

Span	A

Span	G

Span	I

Span	K

Span	A

Span	B

Span	C

Span	D

Span	E Span F

Span	G

Span	H Span	I

Span	J Span	K

Figure 5.16: Monitored Span Tree and currently running Span Stack

the proper stack to push invocation object into. The moment snapshot of the different
stacks resemble the various existent execution-traces with the running invocations.
Pushing a span object in a stack means that a certain method was invoked. Popping
an invocation element from the stack means that the invocation is closed. The stacks
are not holding the complete execution tree, but only the currently running execution
path. In Figure 5.16 one can see a monitored sample execution-trace as a tree with the
respective trace stack on the right hand-side. The currently running execution path is
marked red. As one can see, the last element of the stack is equivalent to the deepest
currently running invocation of the execution trace, not trivially the deepest from all.
This important fact can be used to set the correlations between spans. Assuming the
methods identifier correspond to the span names and that invocation K does not perform
any nested calls while its life span, ending the invocation would imply popping Span K
from the stack. As result the parent Span I will become the last element of the stack. If
the invocation I calls an other method after method K, for instance method L as shown
in Listing 5.1, the stack organization would automatically correctly assume that Span I
is the caller or the parent of Span L.

Listing 5.1 Example of Invocation I
func I() {

// Span I is parent (caller) of J, K and L

J()

K()

L()

}

57

5 Architecture of Monitoring Agents

The agent could therefore take the advantage of the multiple stack organization to set
the correlations of the spans at the creation time. Before pushing the span into the stack,
the agent retrieves the id and the trace id of the last element of the stack and copies
the retrieved id as the parent id of the new span and sets the trace id identically to
the trace id of the last span. An execution trace is complete, if all elements have been
popped from the stack. At that point, a new trace id will be generated as well as each
time the stack becomes empty. Since we do not know which and how many threads the
application would use at runtime, the agent is not able to recognize how many statically
defined stacks are required. The solution for this problem, is to use a dictionary of stacks.
The dictionary key is defined as the thread id, which can be retrieved calling the static
attribute Thread.current.description. The current description returns the name and
the number (id) of the current thread. In this case, the agent uses the thread number
as the dictionary key. Using the defined dictionary will allow the agent to dynamically
allocate multiple stacks for each currently running thread. The agent checks, whether
the key exists. If it is the case, the agent accesses the corresponding stack, if not a new
key would be added and the corresponding stack would be instantiated. In terms of
performance the stack accesses are performable in expected O(1) [CFD98]. The stack
provides O(1) for accessing, pushing and popping the last element. This increases the
overall performance of the agent, considering that each open span can be organized and
correlated to its parent span in O(1). Dependent on the data dispatch strategy, there are
cases where the closed spans need to be buffered locally. For the local buffer the agent
could use an other stack, since it is irrelevant which span is serialized and sent first. In
this case, popping an invocation from the running stack would mean to push the closed
invocation into the other stack holding the closed spans. The overall memory usage of
this approach could maximal amount to the count of all spans, therefore O(n).

Organization in a Dictionary

Rather than using multiple stacks this approach uses two dictionaries to organize
measured spans. The first dictionary is to hold all spans. The key is the span id and the
value returns the span object containing the span id. The second dictionary (correlation
dictionary) is used to establish the correlations between spans. The basic task of this
dictionary is to hold the deepest currently running span (running child) of each currently
running execution-trace. Therefore the keys of the second dictionary are the thread ids
and returns as value a span object.

58

5.3 Data Management Strategies

Figure 5.17: Organization with Dictionaries

Figure 5.17 illustrates the mentioned dictionaries with, containing sample objects.
Monitoring an invocation with this organization would mean creating a span object,
retrieving the current thread id and looking up whether the thread id is existent as a
key in the correlation dictionary. If the key is existent, the agent will access the span
object and copy the id as the parent id of the new span. Additionally the old span will
be replaced by the new one, considering that the new one became the currently running
most deepest child of the trace. If the key is not existent, the new span will be marked
as a root span, so the trace id, the parent id and the span id have the same value, and
mapped with the thread id key on the correlation map.

In both cases the new span will be mapped on the first dictionary, which holds all spans.
This is important considering that method invocations could end without performing
other nested calls. The consequence is that the correlation dictionary has to work also in
the back direction. Closing a span which is hold by the correlation dictionary, would
mean that the currently running deepest child is changed. At that moment the caller,
which is the parent span, becomes the deepest running child. To perform this task, the
agent can retrieve the parent span by getting the parent id of the old running child and
collect the object stored with the copied parent id as key. As the agent uses a dictionary
as the data structure for holding all spans this task is performable in expected O(1). The
memory consumption of this organization strategy is dependent from the amount of

59

5 Architecture of Monitoring Agents

measured spans. The size of the second dictionary is also dependent of the count of the
running thread multiplied by one span object. Assuming that the running threads are
constant the overall memory consumption would be O(n)

Organization in a Tree

Since an execution-trace is composed based on a tree structure, as defined in Section 2.1,
the mobile agent has the possibility to organize the trace as it is in a tree. The root node
of the tree would resemble the root span of the trace and children of a specific node are
the callee of the node. For making the traversal of the tree possible, each node object
has to hold the corresponding span object, a stack holding its children and its parent
node. To support multi-threading, the agent has to adapt a dictionary which maps each
thread to its execution tree. Since we store the hole tree for each thread, the agent
is only able to trivially recognize the currently running invocation sequence. For this
problem we have to find a correlation between the tree and the invocation sequence
currently running. We could add the convenience that child elements are sorted by
its execution time. In that case only spans located on the most right hand side of the
tree are possible spans contained by the currently running invocation sequence, but not
consistently all. The agent has to check at each level, whether the child node is closed
or not. The other remaining nodes are all closed. Since we need the currently running
invocation sequence or the last element of the sequence, the agent has to propagate
through the tree to set the parent properties of the new measured span. Considering
that the tree is not balanced, the worst case of finding the running child is O(n). The
absolute amount of comparisons are equal than the amount of elements in the invocation
sequence which makes this organization strategy less performant than the other ones in
terms of execution times.

5.4 Data Dispatch Strategies

This section presents and discusses the various dispatch strategies for mobile agents.
Since this work should evaluate monitoring strategies for iOS mobile devices, we have
to take certain constraints in consideration, which normally can be ignored when
programming an other agent monitoring enterprise application running on non mobile
devices. The mobile agent has to consider the network connectivity of the mobile device
and the network usage overhead has to be as minimal as possible. The reason for that is
the possible slow bandwidth connection and the mobile data volume is usually limited.
This section is separated in dispatch time strategies, dispatch circumstances and failure
handling. Further more, serializing the buffered spans and hardware information is also

60

5.4 Data Dispatch Strategies

Figure 5.18: Dispatch Pipeline

part of the data dispatch phase. As shown in Figure 5.18, the mobile agent receives a
certain dispatch signal, which is related to the dispatch options, collects the buffered
spans, serializes them and sends them to the monitoring back end. In cases a failure
occurs, when sending the data, the serialized spans will be re-buffered in their serialized
state. For dispatching measured data to an appropriate back end, a communication
interface has to be established. This includes planning and defining the data model and
the communication interface composition itself. The used data model is specified in
Section 5.4.3.

5.4.1 Dispatch Options

This section regards to approaches for sending monitoring data to an APM back end.
The focus of this section lays on the different possible events which are conducting
to dispatch the data. The dispatch options, the following subsections will analyze,
are Dispatching each Single Span, Dispatching complete Execution Traces and Periodical
Dispatching.

Single Span Dispatching

When utilizing this span dispatch strategy, the agent waits until it finished monitoring
the method. Afterwards the agent gets the signal to serialize the span object and to send
it to the back end right away.

61

5 Architecture of Monitoring Agents

Complete Trace Dispatching

The event for this dispatch strategy is fired in the case the agent closes a complete
execution trace. Closing a complete trace means that the agent reached the root span
when closing a monitored invocation. Each time the agent closes a span, it checks
whether the id of the closing span is identical to its parent id and trace id. If this is the
case, the agent recognizes that it is closing a root span. The consequence is that the
agent collects the buffered elements, serializes them and sends them to the monitoring
back end.

Periodical Dispatching

If the agent implements the periodical dispatching, the agent checks, each time it takes
measurement probes of hardware resource workloads, if the span buffer contains closed
spans, the agent collects them, serializes them and sends the serialized spans to the
monitoring back end.

5.4.2 Dispatch Constraints

Considering that the various events of dispatching monitoring data are not influencing
the total amount of sent bytes to the back end, it is more important to focus on the
dispatch constraints. The dispatch options are only ruling the distribution of sending
the data. For instance, if we compare the first option, Single Span Dispatching and the
second one, Complete Trace Dispatching, in total the agent will send nearly the same
amount of data but in different iterations. Therefore it is more important to focus on
dispatch constraints. Dispatch constraints are defining whether the agent is allowed to
send the serialized data, independently on which dispatch option it uses. The defined
dispatch constraints are Send Always and Send only via Wifi. Rather than a constraint,
Send Always is a flag that allows the agent to send monitoring data to the back end,
independently on the connectivity of the mobile device. The constraint, Send only via
Wifi, forces the mobile agent holding the serialized data and not sending them to a
monitoring server, in the case the mobile device is not connected to the network via
Wifi. This constraint helps reducing the overhead of the network usage performed over
the mobile bandwidth. In addition to that, in this case the agent would not affect the
provided data volume of the end-user, which is often limited. An other benefit of this
constraint is, that usually slow bandwidth connections, due to problem locations or
limited data volume of the end-user, are not utilized by the mobile agent. Counter
arguments for activating this constraint is the deferred dispatch of monitoring data, the

62

5.4 Data Dispatch Strategies

Figure 5.19: Dispatch Pipeline

increased memory usage of the local span buffer and lose of information in case memory
allocated for buffer has to be freed, due to memory resource shortage.

5.4.3 Back end Communication

If the back end integrates a REST API, the agent would be able to submit the monitoring
data with HTTP post requests. Therefore, the agent and the back end need to establish
a proper model to exchange the data. Figure 5.19 shows the traditional pipeline for
dispatching collected data. The agent on the mobile device collects and serializes code
and device-based data and sends them through a REST interface to the monitoring
server. Afterwards, the monitoring server stores the data and provides the monitoring
client with data. For the purpose of this thesis we will use the data export model
defined in the development project Mobile-aware Diagnosis of Performance Problems
in Enterprise Applications [DEVP17]. Listing 5.2 displays the equivalent JSON object,
which is sent, when the agent has traced one invocation. The JSON objects contains
three main parts. The first part is a list of spans with the identifier spans. Spans are
containing their identification ids, the execution time of an invocation, the method name
and other span based properties. In this example, the method that was invoked was
viewDidLoad(). The key operationName holds the name of the invoked method. The
execution time of the method was 200 micro seconds. This value is hold by the key
duration. The inner object named tags holds span-based properties. For instance if a
method execution was traced from a mobile device, the span kind is from a client. In
addition to that, the key ext.propagation.type stores, which operating system runs on
the caller device. The span context object holds the id, parent id and the trace id. The

63

5 Architecture of Monitoring Agents

key startTimeMicros holds a UNIX timestamp in micro seconds. The second part of the
export object contains the device id. The device id is important to distinguish different
mobile devices from each other. The last section of the JSON object is the mobile device
resource measurement list. Each object of this list holds a UNIX timestamp in micro
seconds. The key cpuUsage holds the percentage usage of the CPU at timestamp time.
In below the RAM memory usage and the persistent memory usage are also stored in
percentage. The last resource metric is the battery power. The value of batteryPower is
also stored in percentage.

Listing 5.2 Example of a JSON object with one Invocation
{

"spans" : [

{

"operationName" : "viewDidLoad()",

"duration" : 200,

"tags" : {

"ext.propagation.type" : "IOS",

"span.kind" : "client"

},

"spanContext" : {

"id" : 10965962947820502759,

"parentId" : 10965962947820502759,

"traceId" : 10965962947820502759

},

"startTimeMicros" : 1506257375819915

}

],

"deviceID" : 12167283130449148877,

"measurements" : [

{

"cpuUsage" : 0.001375,

"memoryUsage" : 0.9234822,

"storageUsage" : 0.4457262502440192,

"timestamp" : 1506257376826065,

"batteryPower" : 0.90,

"type" : "MobilePeriodicMeasurement"

}

]

}

64

5.4 Data Dispatch Strategies

The second example shows the object difference, when the notices nested calls. In this
case, we consider that viewDidLoad() calls loadContent() as shown in Listing 5.3. As a
result the agent should notice two functions and create two spans. Since viewDidLoad()

is the caller of loadContent(), the viewDidLoad span has to be the parent span of the
loadContent span.

Listing 5.3 Example of a nested Invocation
override func viewDidLoad() {

let id = IITMAgent.getInstance().trackInvocation()

self.loadContent()

IITMAgent.getInstance().closeInvocation(id: id)

}

func loadContent() {

let id = IITMAgent.getInstance().trackInvocation()

// load some content

IITMAgent.getInstance().closeInvocation(id: id)

}

The difference of the exporting JSON object is shown in Listing 5.4. The spans list holds
an other span object. As one would assume, the id of both spans is different. The parent
relation is set trough the span context. As one can see, the parent id of the loadContent
span is the id of the viewDidLoad span. As shown in the second example, a nested span
is also allowed to be a remote call. A remote call can be distinguished from a method
invocation through ext.propagation.type value. The value for remote call at that point
is HTTP. As one may also notice, a remote call has more tags attributes. It holds request
and response properties of the actual network connectivity, the geolocation, the router
SSID and the mobile carrier name. In addition to the mentioned properties a remote
call span tag also holds the URL which the mobile device requests data from.

65

5 Architecture of Monitoring Agents

Listing 5.4 Example of a JSON object with nested Invocations
{ "spans" : [

{ "operationName" : "viewDidLoad()",

"duration" : 255,

"tags" : {

"ext.propagation.type" : "IOS",

"span.kind" : "client" },

"spanContext" : {

"id" : 13174449888346817415,

"parentId" : 13174449888346817415,

"traceId" : 13174449888346817415 },

"startTimeMicros" : 1506260131052448 },

{ "operationName":"loadContent",

"duration":12000,

"tags":{

"http.request.networkConnection":"4G",

"http.response.longitude":"48.321",

"http.request.latitude":"13.12345",

"http.response.networkConnection":"4G",

"http.response.timeout":"false",

"span.kind":"client",

"http.request.ssid":"1234-5678",

"http.request.networkProvider":"MyProvider",

"http.response.latitude":"13.52345",

"http.request.responseCode":"200",

"http.url":"localhost:8080/callRest",

"http.response.networkProvider":"MyProvider",

"http.request.timeout":"false",

"http.request.longitude":"48.421",

"http.response.ssid":"1234-5678",

"ext.propagation.type":"HTTP" },

"spanContext" : {

"id" : 13633138442564838767,

"parentId" : 13174449888346817415,

"traceId" : 13174449888346817415 },

"startTimeMicros" : 1506260131052666 }

], ...

}

66

Chapter 6

Implementation

In this chapter we will introduce the implementations of the various strategies used
for this thesis and explain the selected implementation decisions. The implementation
of the agent concepts are mostly written in Swift. In beginning of this chapter we
introduce the architecture of the mobile agent module. We will show and describe the
relations between the agent classes abstractly. In addition to that, we will comment the
used classes and explain their purpose in these projects. In the following subsections,
we will walk through the defined agent strategies and explain, with more details, the
respective implementations. First of all, we will demonstrate and analyze the written
code especially for the tracing approach. Afterwards, we will describe the important
implemented parts for method swizzling. Above that, we will expose the instrumentation
presets used for instrumenting system library-based methods. The implementation for
the use case mapping approach will be described next. In the end of this chapter we will
present the implementations of the automated approaches call stack sampling and the
automated code injector.

6.1 Agent Architecture

Implementation approaches used for Java enterprise applications can not fully used as a
reference for implementing an iOS mobile agent. The operating system iOS does neither
allow to manipulate and change an already compiled and built application nor to request
or manipulate data from an other local installed application. In consequence, the agent
implementations had to follow an other approach. The concept behind our iOS mobile
agent implementations is, that the application developer imports the agent modules into
the developing application that has to be monitored. By following this approach, we
ensure that the agent functionalities are compiled at the same time, the core application

67

6 Implementation

is compiled. Therefore the agent has no need to manipulate an already compiled appli-
cation. Since the agent configuration has to be imported as a framework to the original
iOS application project, each agent bundle files and classes are conventionally named
with a prefix. This is useful to avoid intersections in the name-spaces of used classes. Our
file and class name prefix is IITM which is an acronym for InspectIT Mobile. In general
all agent bundles contain an agent class. The IITMAgent class is the core of every agent
configuration. Each application, that has to be instrumented, contains one instance of
IITMAgent. This means one agent instance per application and not per device, since the
operating system iOS does not allow to retrieve external application-based information
from an other application. IITMAgent provides methods for tracking invocations or
use cases. For allowing a global access to the agent, the IITMAgent class provides a
static shared instance of the agent as a singleton. The singleton is accessible by calling
the class method IITMAgent.getInstace() or by accessing to the static variable itself
sharedAgent. All agent configurations also provide an opt out function. The opt out
function disables the agent from instrumenting the application source code when toggled.
To support this functionality, Agent provides an attribute optOut as a boolean value. The
default value of optOut is false. If optOut is set to true, the agent will stop measuring
source code-based data and will also stop measuring hardware resource-based data.
This can be achieved by accessing to optOut through the singleton, or by calling the
class method Agent.disable(). Agent properties are stored in a dictionary named
agentProperties. In the actual state of the implementations, agentProperties is only
holding the UUID of the agent running on a specific device. The reason why we decided
to choose a dictionary for the agent properties is to improve the maintainability of the
agent source code. In the case we need to add new agent attributes or properties, we will
be able to add with less work overhead by mapping them on the dictionary. In addition
to the mentioned attributes, the Agent class relates to all other modules. As mentioned
in Section 5.1, an agent configuration has also to manage the collected data. For this
task the agent relates to a data organizer named IITMDataOrganizer. Dependent on the
management strategy, IITMDataOrganizer has a dictionary, stack or a tree to buffer the
collected spans at runtime. IITMDataOrganizer also provides methods for establishing
correlations and dependencies between spans. If the developer choses to work with
invocation instances, defined in Section 5.3.1, the agent bundle needs have a blueprint
for invocation instances. In our implementations supporting this model, we named the
span class IITMInvocation for tracing and IITMUseCase for model used for the use case
mapping. Additionally, we implemented IITMRemoteCall for holding a span regurding
to a remote call. Hardware resource metrics are collected and buffered from an other
module mapped in a class named IITMMetricsController. IITMMetricsController

references to class and file methods defined in IITMNativeRessource, IITMBatteryLife
and IITMDiskMetric. The c file IITMNativeRessource provides global file methods for
retrieving the current CPU and RAM workload. IITMBatteryLife implements class
methods regarding to the actual battery status and IITMDiskMetric offers methods

68

6.1 Agent Architecture

in relation to the current persistent memory status of the iOS mobile device. The
metrics controller contains an own ring buffer implementation to hold the measured
metrics values. The ring buffer is technically a list where the list objects are linked
to each other mono directional. Apart from the already mentioned metrics collectors,
our implementations additionally contain IITMNetworkReachability, IITMSSIDReader
and IITMLocationHandler. IITMNetworkReachability methods return information re-
garding to the mobile carrier, if existent, and regarding to the network connectivity
to the web. The agents are distinguishing between a Wi-Fi connection and a mobile
connection, which is specified in 2G, 3G and 4G. If the mobile device is connected to
the web via Wi-Fi, IITMSSIDReader is able to read the router ID. This metric value is
important for analyzing in cases of connectivity failures, depending on the WLAN router.
The IITMLocationHandler reads the current geolocation of the mobile device user. The
geolocation is fetched, when the user performs an action which is requesting data from a
back and as consequence. The last part of the agent working pipeline is to send the gath-
ered analytics data to a monitoring back end. As mentioned in Section 5.4.3, the agent
bundle needs a REST interface to communicate with the REST interface of the monitor-
ing back end. For this task, which is needed for all agent configurations we implemented
IITMRestManager. The back end URL can be set by calling Agent.setBackEndUrl(url:

String). The developed rest manager is able to perform HTTP post requests in order to
send monitoring data. The measured data has to be serialized in a JSON object with
the structure defined in Listing 5.2 and Listing 5.4. The data serialization is done by
IITMInvocationSerializer. For cases, the mobile device is not able to send the data
to a monitoring back end, each agent configuration implements a local storage client
for saving gathered data persistently. The persistent memory interface is controlled by
IITMDataStorage. IITMDataStorage is able to store agent-based properties and to store
measured instrumentation data.

In the following, in Figure 6.1, we demonstrate an abstract class diagram of the
an overall agent implementation. The abstract class diagram illustrates all the re-
lations between the agent classes and highlights optional parts of the implementa-
tions in dashed rectangles. As described in the section above, classes describing a
span model are marked as optional, dependent on the span model strategy. In ad-
dition to that, IITMProactive is also an optional module. IITMProactive contains
functionalities such as to inform the end user, if an error occurred or to re-manage
collected data in cases the mobile device runs out of memory, RAM as well as per-
sistent memory. In Figure 6.1, one is also able to see the one to one relations
of IITMAgent with IITMDataOrganizer, IITMMetricsController, IITMDataSerializer
and IITMRestManager. IITMMetricsController is related to IITMNativeRessource,
IITMBatteryLife and IITMDiskMetric.

69

6 Implementation

T
ra

ci
n

g
,

M
e

th
o

d
 S

w
iz

zl
in

g
 &

S
ta

ck
 S

a
m

p
lin

g

U
se

 c
a

se
 M

a
p

p
in

g

M
e

ss
a

g
e

 M
o

d
e

l
S

ta
ck

 S
a

m
p

lin
g

S
ta

ck
 S

a
m

p
lin

g

II
T

M
S

ym
b

o
lM

a
p

p
e

r
II

T
M

T
h

re
a

d
C

o
n

tr
o

lle
r

II
T

M
D

is
kM

e
tr

ic

II
T

M
L

o
ca

tio
n

H
a

n
d

le
r

II
T

M
N

a
tiv

e
R

e
so

u
rc

e
s

IIT
M

S
S

ID
S

ni
ffe

r

II
T

M
N

e
tw

o
rk

R
e

a
ch

a
b

ili
ty

II
T

M
B

at
te

ry
Le

ve
l

II
T

M
R

e
m

o
te

M
e

ss
a

g
e

U
til

II
T

M
M

e
ss

a
g

e
U

til
II

T
M

C
o

lle
ct

io
n

T
h

re
a

d

II
T

M
In

vo
ca

tio
n

S
e

ri
a

liz
e

r
II

T
M

R
e

st
M

a
n

a
g

e
r

IIT
M

U
se

C
as

e

II
T

M
R

e
m

o
te

C
a

ll

II
T

M
In

vo
ca

ti
o

n

IIT
M

S
pa

n
II

T
M

M
e

tr
ic

sC
o

n
tr

o
lle

r
II

T
M

S
p

a
n

O
rg

a
n

iz
e

r
II

T
M

A
g

e
n

t

Fi
gu

re
6.

1:
A

bs
tr

ac
t

A
ge

nt
C

la
ss

D
ia

gr
am

70

6.1 Agent Architecture

The following sections will describe the classes, implemented for the agent bundles,
in detail. Their respective subsections, if available, will concentrate in the differences
between the different approaches. For instance, if an agent class has to implement an
other behavior, dependent on a different agent collection, management or dispatch
strategy, the subsections will explain the differences. A practical example is the class
IITMAgent, when using the invocation tracing approach and when using the use case
mapping approach. As described above IITMAgent provides methods for tracking source
code-based data. In both cases, invocation tracing and use case mapping, the tracking
invocations has to behave in a different way from each other. In that case, the subsections
will describe and explain the logical differences between the implementations.

6.1.1 IITMAgent

The IITMAgent is the core of our iOS agent configurations. The agent itself is im-
plemented as a singleton and can be globally accessed by calling the static method
Agent.getInstance() or by referring to the static attribute sharedAgent. Referring
to sharedAgent is not advised, considering that instance is not checked if it is a nil
pointer. Listing 6.1 shows the realization of the agent singleton. IITMAgent holds a
static variable named sharedAgent of the type IITMAgent: the singleton. The method
getInstance() checks whether sharedAgent pointer is nil or not. If sharedAgent is nil
pointer, getInstance() returns a new shared instance of IITMAgent, otherwise it returns
the current singleton. The agent singleton and the method to retrieve the actual instance
of the agent has to be public. Otherwise, since the agent will be integrated as an addition
framework project, the application developer will not be able to access to the agent
methods. The default access modifier for Swift function is internal. The internal access
modifier prohibits to use declared and implemented methods from the outside of the
defining module.

Listing 6.1 IITMAgent Singleton
public static var sharedAgent: IITMAgent?

public static func getInstance() -> IITMAgent {

if IITMAgent.sharedAgent == nil {

return IITMAgent()

} else {

return IITMAgent.sharedAgent

}

}

71

6 Implementation

As mentioned above, if sharedAgent points to nil, a new agent object will be instantiated.
In that case the constructor of IITMAgent will be invoked. Listing 6.2 presents all agent
attributes and the agent constructor. The application developer is able to pass optionally
a dictionary populated with agent setting values. In the case of Listing 6.1, in line five,
we are not passing any arguments, which means that the properties argument is nil.

The first line of the constructor body initializes an empty dictionary. The key type is
String and the values can be any type of objects. In line 15 until line 21, the agent
attributes are initialized as default. If the optional argument does not reference to nil,
the agentProperties dictionary will be populated in line 25 until line 31 of the shown
source code. By calling loadAgentId(), the id gets assigned to the agent. In Listing 6.3,
one is able to see, that the agent checks, whether an agent id is already stored. If it is
the case, the agent id is set to the loaded value, otherwise the agent will generate a new
id and store the calculated value persistently through the data storage.

Listing 6.3 IITMAgent Singleton
func loadAgentId(){

if let agentid = dataStorage.loadAgentId() {

self.agentProperties["id"] = agentid

} else {

let id = generateAgentId()

self.agentProperties["id"] = id

self.dataStorage.storeAgentId(id: id as! UInt64)

}

}

The next instruction, IITMAgent.sharedAgent = self, sets the singleton object. Since
the constructor should be called only once in the application lifetime, the single-
ton reference remains always the same. The following location handler instruction,
locationHandler?.requestLocationAuthorization(), requests the authorization for
fetching the geolocation of the device from the user. Otherwise, the agent is not allowed
to retrieve the current location of the user, when required.

IITMAgent - Tracing & Method Swizzling

In the agent bundles, which are supporting tracing or method swizzling as a source code
data collection strategy, the agent class implements methods for instrumenting the writ-
ten source code. Since the functionality of both approaches is to intersect instrumenta-
tion calls in the beginning and the and of methods, for method swizzling in hooked meth-
ods, the agent class needs to provide two functions for instrumenting methods. In our

72

6.1 Agent Architecture

Listing 6.2 IITMAgent Constructor
var agentProperties: [String: Any]

static var sharedAgent: IITMAgent?

var invocationOrganizer: IITMInvocationOrganizer

var locationHandler: IITMLocationHandler?

var networkReachability: IITMNetworkReachability?

var dataStorage: IITMDataStorage

var invocationSerializer: IITMInvocationSerializer

var metricsConrtoller: IITMMetricsController

var restManager: IITMRestManager

var optOut: Bool = false

// IITMAgent Constructor

// Optional Argument: properties

init(properties: [(String, Any)]? = nil) {

agentProperties = [String: Any]()

invocationOrganizer = IITMInvocationOrganizer()

dataStorage = IITMDataStorage()

metricsConrtoller = IITMMetricsController()

invocationSerializer = IITMInvocationSerializer(invocationMapper:

invocationMapper, metricsConroller: metricsConrtoller)

restManager = IITMRestManager()

locationHandler = IITMLocationHandler()

networkReachability = IITMNetworkReachability()

super.init()

if let properties = properties {

for (property, value) in properties {

if Agent.allowedProperty(property: property) {

agentProperties[property] = value

}

}

}

loadAgentId()

IITMAgent.sharedAgent = self

locationHandler?.requestLocationAuthorization()

}

73

6 Implementation

implementations we implemented trackInvocation(function: String = #function,

file: String = #file) -> IITMInvocation? and closeInvocation(invocation:

IITMInvocation). Since both methods should be accessible by the application de-
veloper, the access modifier is set to public. The following listing demonstrate the
implementation of both methods.

Listing 6.4 IITMAgent Instrumentation Methods
public func trackInvocation(function: String = #function, file: String =

#file) -> IITMInvocation? {

if self.optOut == false {

let invocation = IITMInvocation(name: function, holder: file)

invocationOrganizer.addInvocation(invocation: invocation)

return invocation.id

} else {

return nil

}

}

public func closeInvocation(invocation: IITMInvocation) {

if self.optOut == false {

invocationOrganizer.removeInvocation(invocation: invocation)

}

}

First of all, the functions check whether the agent is opted out. If it is the case, these
invocations has no effects. In the other case, assuming that trackInvocation() was
called, the agent creates an IITMInvocation object. The instantiated object requires
the automatically assigned arguments of the method. The argument function, holds
the name of the method that is currently instrumented. The variable file retrieves the
file name, where the function is located in. The invocation constructor sets span-based
attributes to the instance. The details of the IITMInvocation class are described in
Section 6.1.6. The next instruction, passes the invocation object to the invocation
organizer. Dependent on the chosen management strategy, the invocation organizer
distributes the invocation object to the data structures which are implemented and the
correlations between already collected spans are established. In the case, the developer
chooses to save only invocation logs instead of the whole object, the invocation organizer
converts the instance to a String. At the end, the invocation object is returned, which
is needed to finish the instrumentation when calling closeInvocation(invocation:

IITMInvocation). By closing an invocation, the agent notifies the invocation organizer

74

6.1 Agent Architecture

to remove the invocation from the data structure. Furthermore, the removed invocation
passes other stages, if required, such as data serialization and eventual data dispatch.

IITMAgent - Use Case Mapping

In cases the application desires to instrument whole use cases, the agent class needs
to implement an other functionality for the code-based instrumentation. The reason
for a different approach, is that use cases can be defined globally and could contain
more than one method invocation. An other reason, is that several uses cases may be
defined and instrumented sequentially, nested and parallel, and the agent is not able to
recognize the dependencies between different use cases, due to the fact that use cases
can be defined in many different ways from the application developer. As a consequence
the agent is not able, to start a use case for instance from method A() and to close it
from methodB(), with the tracing approach, by using the local instantiation values of
methodA() without passing them to methodB(). The IITMAgent class for the use case
mapping strategy provides two solutions for these problems.

The first solution is to create and identify use cases through their names. For this solution
the developer needs firstly to create a root use case, by calling trackRootUseCase(name:

String) -> IITMUseCase and passing a name. Nested use cases can be created
and monitored by calling trackUseCase(name: String, root: String). Since a
nested use case could contain an other nested use case, the agent has to pro-
vide an other method for realizing the deeper span correlation. In that case the
developer calls, trackUseCase(name: String, parent: String, root: String) ->

IITMUseCase. In all three cases, the agent creates an IITMUseCase instance and passes
it to the organizer which holds the spans and establishes correlations, based on the
passed arguments, between other use case spans. The following source code part,
Listing 6.6 demonstrates the implementation of the mentioned methods. Since we are
tracking uses cases in this case, we renamed the IITMInvocationOrganizer instance to
spanOrganizer. For stop tracking a use case, the developer also has to pass the defined
names for the use cases. Dependent on the organization of the buffered use cases,
passing more information for closing a use case would improve the performance of
the agent. The reason is, that the agent may be able to fetch the use case in a more
targeted way instead of propagating through all buffered spans. The negative aspect
of this approach is that root use cases are not allowed to have the same name. This
restriction emerges, when closing use cases. If two or more use cases are named the
same, the agent would probably close the wrong use case, because use cases are only
recognizable from their names with this approach. The other solution bypasses this
constraint, but requires from the user to store the use case ids in global variables.

75

6 Implementation

Listing 6.5 IITMAgent Starting Use Case
func trackRootUseCase(name: String) -> IITMUseCase? {

retrun trackUseCase(name: name, parent: name, root: name)

}

func trackUseCase(name: String, root: String) -> IITMUseCase? {

retrun trackUseCase(name: name, parent: root, root: root)

}

func trackUseCase(name: String, parent: String, root: String) ->

IITMUseCase? {

if self.optOut == false {

let useCase = IITMUseCase(name: name, parent: String, root: root)

spanOrganizer.addUseCase(useCase: useCase)

return useCase

}

return nil

}

Assuming that trackRootUseCase(name: String), trackUseCase(name: String,

root: String) and trackUseCase(name: String, parent: String, root: String)

are returning the id of the created use case instance, the developer could have a different
opportunity to close the opened spans. In this case, the developer saves the returned
value, which is the UUID of the use case, in a global variable to reuse the id afterwards.
Instead of passing strings related to the use case names, the application developer could
pass the stored use case ids for stop tracking a use case. As a result, the agent or the
span organizer has the ability to select a use case to close, without reading the name
of it. Consequently, with this solution, the developer is allowed to create different use
cases named the same.

76

6.1 Agent Architecture

Listing 6.6 IITMAgent Closing Use Cases
func closeUseCase(useCase: IITMUseCase) {

if self.optOut == false {

spanOrganizer.removeUseCase(useCase: useCase)

}

}

func closeUseCase(useCase: IITMUseCase) {

if self.optOut == false {

spanOrganizer.removeUseCase(useCase: useCase)

}

}

func closeUseCase(name: String, parent: String = "", root: String) {

if self.optOut == false {

if parentName == "" {

spanOrganizer.removeUseCase(name: name, root: root)

} else {

spanOrganizer.removeUseCase(name: name, parent: parent, root:

root)

}

}

}

IITMAgent - Call Stack Sampling

While tracing, method swizzling and the use case mapping approaches require in-
strumentation methods, call stack sampling follows an other approach as defined in
Section 5.2.4. In order to realize the functionality of this approach, we had to extend
the IITMAgent class. For this approach we need to collect repeatedly the call stack
of all threads in a specific time interval. For this reason we added a data collector,
named IITMDataCollector, in our agent configuration. The data collector has the task
to make sure that the call stacks are retrieved periodically. Listing 6.7 demonstrates
the extension of IITMAgent in order to perform call stack sampling. The agent starts
collecting instrumentation data, when start(period: Double) is invoked.

77

6 Implementation

Listing 6.7 IITMAgent Call Stack Sampling Extension
var dataCollector: IITMDataCollector

func start(period: Double = IITMDataCollector.DEFAULT_PERIOD) {

self.dataCollector.startCollection(period: period)

}

The following sections describe the IITMDataCollector and the IITMThreadSignalHandler
classes in detail, which are only used, but essential, when the agent performs call stack
sampling for gathering source code-based data.

6.1.2 IITMDataCollector

The data collector instance has the task to perform a call stack call repeatedly. As
mentioned in Section 5.2.4 iOS does not provide a native method for printing the stack
traces of all threads. We implemented an approach that has nearly the same result as the
original call stack sampling approach invented from Jyoti Bansal and Bhaskar Sunkara
[BS14]. The data collector starts a new thread, which executes a while loop. The boolean
value of the condition of the while loop is dependent from the attribute loopCondition.
By default, loopCondition is set to true, which means that the new thread starts an
endless loop. Since the sampling of the call stack should be performed in a certain fre-
quency, the while loop implements Thread.sleep(forTimeInterval: TimeInterval).
The type TimeInterval is a type alias of Double, and defines as argument, the time in
seconds the current thread has to sleep. The developer is able change the sleep duration,
by changing the value of the class variable PERIOD. Within the while loop, the data
collector, collects all current running threads as pthreads and informs the signal handler,
to set a specific signal for each of the collected threads. The collection of the call stacks
can be stopped by calling stopCollection(). Stopping the data collection means, to set
loopCondition to false. In consequence, when loopCondition is set to false, the thread
hold by IITMDataCollector will be set to nil. The source code containing the explained
methods and required attributes is shown in Listing 6.8.

78

6.1 Agent Architecture

Listing 6.8 IITMAgent Call Stack Sampling Extension
var thread: Thread?

static var LOOP_CONDITION = true

static var PERIOD = 0.03

static let DEFAULT_PERIOD = 0.03

func startCollection(period: Double) {

IITMDataCollector.PERIOD = period

thread = Thread(block: {

let threadController = IITMSCThreadController()

Calling_Thread = pthread_self()

while IITMDataCollector.LOOP_CONTIDION {

let threads = threadController.fetchThreads()

for var t in threads {

threadController.setSignal(pthread: &t)

}

Thread.sleep(forTimeInterval: IITMSCCollectionThread.PERIOD)

}

self.thread = nil

})

thread?.start()

}

6.1.3 IITMThreadSignalHandler

The signal handler has the ability to fetch all currently active threads with
fetchThreads() -> [pthread_t]. The threads can be fetched through the ker-
nel related port of the Mach operating system. The function task_threads(_

target_task:task_inspect_t,_act_list:UnsafeMutablePointer<thread_act_array_

t?>!,_act_listCnt:UnsafeMutablePointer<mach_msg_type_number_t>!) retrieves the
running threads as mach threads, and buffers them in the reference passed for the argu-
ment act_list as an array of mach threads. Afterwards, the signal handler, traverses
all threads an converts them to pthread_t thread references by calling pthread_from_

mach_thread_np(_:mach_port_t)->pthread_t?. The converted pthreads are added to
the local variable threadList, which is returned at the end of the method. The signal
handler class has also the ability to set a signal action. First of all, for making sure a
thread reacts to a certain signal, we have to adapt the signal info of the thread and define
on which signal the thread has to react. In our implementation we chose the signal
SIGALRM. Afterwards the handler sets a signal function, which should be invoked, in cases

79

6 Implementation

of a raised signal, to the thread. At the end setSignal(pthread: inout pthread_t)

sends SIGALRM signal to the passed thread.

Listing 6.9 IITMAgent Call Stack Sampling Extension
func setSignal(pthread: inout pthread_t) {

Target_Thread = pthread

var sinfo = siginfo_t()

sinfo.si_signo = SIGALRM

var sAction = sigaction()

sAction.__sigaction_u.__sa_sigaction = signalFunction(sig:siginfo:p:)

sAction.sa_flags = SA_SIGINFO

let _ = withUnsafeMutablePointer(to: &sAction) {

sigaction(SIGALRM, $0, nil)

}

if pthread != pthread_self() && pthread_kill(pthread, SIGALRM) == 0 {

// SIGALRM signal sent, otherwise print pthread reference

print(pthread)

}

}

As one can see, in line six of Listing 6.9, setSignal() passes the call back function as
signal action named signalFunction(sig:siginfo:p:). This function is defined in the
same file, but as a global public function. The reason for this is that the pthread signal
function needs to conform to a C function.

6.1.4 IITMSpanOrganizer

Managing tasks of collected measurements are mostly performed by the invocation
organizer. The instance of this class contains the desired data structure for buffering
the collected spans and the functionalities to establish intelligent relations between
different spans. This subsection will also argue with implementation strategies used
for specific data collection approaches, since the data holding and correlation logic has
to differ for certain circumstances. We decided to implement the complete logic for
all possible management strategies, since a data collection strategy can refer to one or
more organization concepts, for each bundle. At the end of the evaluation, the default
organization strategy will be the most suitable one dependent on the evaluation results.
Other possible strategies should then be usable by calling the extended constructor of
this class and by passing the respective enumeration. To accomplish the mentioned
functionality we extended IITMSpanOrganizer with two enumerations. The first one

80

6.1 Agent Architecture

describes the possible data structures. The other one the data type, which has to
be buffered. Since the span organizer has to populate the given buffer, this class
needs to contain methods such as addSpan(span: IITMSpan) and removeSpan(span:

IITMSpan). When the organizer adds a span, it has to set relations between spans if
possible. For this reason, the organizer also has to contain a method to set relations
such as setRelation(child: IITMSpan, parent: IITMSpan). In the case a span is
recognized as a root invocation, the organizer has to set the given span as a root span. For
this case the organizer also has to implement setRoot(span: IITMSpan). To summarize
the mentioned functionalities, Listing 6.10 demonstrates an abstract implementation of
IITMSpanOrganizer.

Listing 6.10 Abstract Definition of IITMSpanOrganizer
class IITMSpanOrganizer: NSObject {

var dataModel: IITMSpanOrganizer.IITMDataModel

var dataStructure: IITMSpanOrganizer.IITMDataStructure

enum IITMDataModel {}

enum IITMDataStructure {}

func addSpan(span: IITMSpan) {}

func removeSpan(span: IITMSpan) {}

func setRelation(child: IITMSpan, parent: IITMSpan) {}

func setRoot(span: IITMSpan) {}

}

Each agent bundle organization class extends from IITMSpanOrganizer. In the following
subsections, we present in detail the extensions related to each data collection strategy.
In addition to that, we will argue with the possible and implementable management
concept dependent on the collection strategy.

IITMInvocationOrganizer - Tracing & Method Swizzling

Agent bundles supporting tracing for collection source code-based data are implement-
ing IITMInvocationOrganizer as extension of IITMSpanOrganizer. Tracing is able to
support a data buffers as a map or stack. The tree data structure was excluded, due
to performance deficits based on the operational time. The supported data types to
be buffered are both invocation messages as strings or invocation instances. Since the

81

6 Implementation

invocation container supports two different data structure approaches and two different
data model types, it has to contain by default four different buffer with different types.

Listing 6.11 IITMInvocationOrganizer Attributes
class IITMInvocationOrganizer: NSObject {

var dataModel: IITMInvocationOrganizer.IITMDataModel

var dataStructure: IITMInvocationOrganizer.IITMDataStructure

enum IITMDataModel {

case message, instance

}

enum IITMDataStructure {

case map, stack, tree

}

// Map data structure

map: [UInt64: IITMSpan]?

mapMessage: [UInt64: String]?

childMap: [UInt: IITMSpan]?

childMapMessage: [UInt: String]?

// Stack data structure

stacks: [UInt: [IITMSpan]]?

stacksMessage: [UInt: [String]]?

}

Listing 6.11 demonstrates the implementation of the needed attributes for buffering
spans. In the following we describe the implementations of the abstract methods defined
in Section 6.1.4. Each method has to recognize the used organization option and perform
different functionalities than other ones. For instance, adding a new span has to perform
a lookup for determining which strategy is used to buffer the new span.

82

6.1 Agent Architecture

Listing 6.12 IITMInvocationOrganizer Adding Spans
func addSpan(span: IITMInvocation) {

switch dataStructure {

case .map:

addSpanToMap(span: IITMInvocation)

break

case .stack:

addSpanToStack(span: IITMInvocation)

break

}

}

Each of the nested methods called from addSpan(span: IITMInvocation) defined in
Listing 6.12 are checking which data model is used for buffering. Listing 6.13 shows the
implementation of organizing spans to a map. This strategy is only performable by using
a separate child object. The agent needs this object in order to correlate spans and to
recognize which invocation is the one deepest on the active execution trace. The child
objects are hold in a map to differentiate the child spans for each active thread. If the
child reference is nil, the agent sets the span to a root span. Otherwise it correlates both
spans, and changes the child object with the new span.

83

6 Implementation

Listing 6.13 IITMInvocationOrganizer Adding Spans to a Map
func addSpanToMap(span: IITMInvocation) {

switch dataModel {

case .instance {

if var parent = childMap?[span.threadId] {

setRelation(child: &span, parent: &parent)

} else {

setRoot(span: &span)

}

childMap?[span.threadId] = span

map?[span.id] = span

break

}

case .message {

var spanMessage = ""

if var parent = childMapMessage?[span.threadId] {

spanMessage = getSpanMessage(span: span)

setMessageRelation(child: &spanMessage, parent: &parent)

} else {

setRootMessage(span: &spanMessage)

}

childMapMessage?[span.threadId] = spanMessage

mapMessage?[span.id] = spanMessage

break

}

}

}

The following listing, Listing 6.14, demonstrates the approach when the agent buffers
the measured spans in stacks. This approach is similar to the one described before. Each
stacks are hold in a map to be differentiated between their respective threads. As done
when buffering on a map, the agent has to look, whether it has to store messages of
spans or the span instance. Afterwards, the agent tries to access to the last object of
the stack. If there is no stack to be retrieved, the agent will create a new stack for the
current thread. In case the retrieved stack is empty, the new span will be set as root.
Otherwise, the accessed span will be set as the parent of the new one.

84

6.1 Agent Architecture

Listing 6.14 IITMInvocationOrganizer Adding Spans to a Stack
func addSpanToStack(span: IITMInvocation) {

switch dataModel {

case .instance:

if var stackTrace = stacks?[span.threadId] {

if var parent = stackTrace.last {

setRelation(child: &span, parent: &parent)

} else {

setRoot(span: &span)

}

} else {

stacks?[span.threadId] = [IITMInvocation]()

setRoot(span: &span)

}

stacks?[span.threadId].append(span)

break

case .message:

var spanMessage = ""

if var stackTrace = stacksMessage?[span.threadId] {

var parentMessage = stackTrace.last

spanMessage = getSpanMessage(span: span)

setMessageRelation(child: &spanMessage, parent: &parentMessage)

} else {

stacksMessage?[span.threadId] = [String]()

setRootMessage(span: &spanMessage)

}

stacksMessage?[span.threadId].append(spanMessage)

break

}

}

6.1.5 IITMSpan

This class represents a simplified span object based on opentracing. A span object holds
a unique id, a parent id which refers to the span caller and a trace id which refers to the
execution trace. In addition to that each span object possess the creation time and the
duration of the span execution.

85

6 Implementation

Listing 6.15 IITMSpan Class
public class IITMSpan: NSObject {

var id : UInt64

var parentId : UInt64

var traceId : UInt64

var startTime : UInt64

var duration : UInt64

}

6.1.6 IITMInvocation

An invocation object inherits from a span object. Beside span attributes, an invocation
objects hold method-based attributes such as the method name, the thread name where
the method was invoked and the related thread id. Listing 6.17 shows a snippet of the
IITMInvocation class.

Listing 6.16 IITMInvocation Class
public class IITMInvocation: IITMSpan {

var name : String

var threadName : String

var threadId : UInt

}

6.1.7 IITMUseCase

A use case object inherits from a span. Since use cases can be traced globally, the thread
id is not an important attribute in order to trace use cases. The only additional attribute
a use case holds is the use case name.

6.1.8 IITMRemoteCall

A remote call object inherits from an invocation or a use case, dependent on the agent
configuration. Remote call objects are defined in order to trace back end requests. In

86

6.1 Agent Architecture

addition to that, we have to take in account, that a remote call instance has to collect
important data for further analysis. Important attributes are the geo location of the end-
user, the used mobile provider, the connectivity and the SSID. The mentioned metrics
are collected in request and response time. Additional attributes are the response code,
the request URL, if a timeout was fired and the HTTP method.

Listing 6.17 IITMRemoteCall Class
public class IITMRemoteCall: IITMInvocation {

var url : String

var timeout: Bool

var responseCode: Int

var startPosition: CLLocationCoordinate2D

var endPosition: CLLocationCoordinate2D

var startProvider: String

var endProvider: String

var startConnectivity: String

var endConnectivity: String

var startSSID: String

var endSSID: String

var httpMethod : String

}

6.1.9 Automated Remote call Instrumentation

This section describes how the agent configurations are able to monitor remote calls
out of the box. In Section 3.2.2 we explained which processes are performed in the
background for a remote call. In order to instrument remote calls, the agent hooks
URLSession methods, which are responsible for remote calls. The new implementation of
URLSession.dataTask(with:completionHandler:) is shown in Listing 6.18. In the first
part of this function, a the URLRequest object is converted to a NSMutableURLRequest

object in order to add header attributes. The new header attributes are needed
for the back end correlation of the measured spans. Afterwards, a remote call ob-
ject is created, which starts tracing the remote call. The next step is to call the
real implementation of URLSession.dataTask(with:completionHandler:) by calling
URLSession.iitmDataTask(request:completionHandler:). This invocation starts the
real remote call. When the server responds, the created remote call will be closed.

87

6 Implementation

If the application developer passed a callback function, this function will be invoked
afterwards and the nested invocations will be traced.

Listing 6.18 Automated Remote call Instrumentation
func iitmDataTask(request: URLRequest, completionHandler: ((Data?,

URLResponse?, Error?) -> Void)? = nil) -> URLSessionDataTask {

let agent = IITMAgent.getInstance()

var req: NSMutableURLRequest = (request as NSURLRequest).mutableCopy()

as! NSMutableURLRequest

var remotecall: IITMRemoteCall? = nil

if req.url?.absoluteString != IITMAgentConstants.HOST {

remotecall = agent.trackRemoteCall(url: (req.url?.absoluteString)!)

agent.injectHeaderAttributes(remotecall: remotecall!, request: &req)

}

let dataTask = iitmDataTask(request: req as URLRequest,

completionHandler: {data, response, error -> Void in

var invocation: IITMInvocation? = nil

if remotecall != nil || req.url?.absoluteString !=

IITMAgentConstants.HOST {

agent.closeRemoteCall(remotecall: remotecall!, response:

response, error: error)

}

if completionHandler != nil {

if req.url?.absoluteString != IITMAgentConstants.HOST {

invocation = IITMAgent.getInstance().trackInvocation()

}

completionHandler!(data, response, error)

if req.url?.absoluteString != IITMAgentConstants.HOST {

agent.closeInvocation(invocation: invocation!)

}

}

})

return dataTask

}

88

6.2 Agent Configurations

6.2 Agent Configurations

This chapter summarizes all the developed agent strategies and defines the combination
of various approaches, in terms of data collection, management and dispatch, as an agent
configuration. The following section lists the implemented agent strategies. Section 6.2.2
illustrates all developed mobile agent modules and integrates them into a feature model.
The feature model describes which agent concept is combinable and suitable with other
ones. The last section of this chapter defines the agent configuration set AC and lists all
resulting agent configuration instances aci ∈ AC with a short explanation of the used
modules.

6.2.1 Agent Strategies

This section lists all the implemented mobile agent concepts. The strategies are divided
in the various working phases of the agent software. The first sub section argues with
data collection strategies. The second sub section with data management approaches
and the last one with data dispatch concepts. Additionally, the following subsections
will mention the related class which implements the named strategy.

Data Collection Strategies

1. Tracing
(related classes: IITMAgent)

2. Method Swizzling
(related classes: IITMAgent and files performing method swizzling)

3. Use Case Mapping
(related classes: IITMAgent)

4. Call Stack Sampling
(related classes: IITMAgent, IITMCollectionThread and IITMThreadController)

Data Management Strategies

1. Data Organization

a) Map & Last Child Object
(related classes: IITMInvocationOrganizer or IITMSpanOrganizer)

89

6 Implementation

b) Stacks
(related classes: IITMInvocationOrganizer or IITMSpanOrganizer)

2. Data Model

a) Span Instance
(related classes: IITMInvocationOrganizer or IITMSpanOrganizer, IITMInvoca-
tion, IITMRemoteCall)

b) Message & Remote Call Instance
(related classes: IITMInvocationOrganizer or IITMSpanOrganizer, IITMMes-
sageUtil, IITMRemoteCall)

c) All Message
(related classes: IITMInvocationOrganizer or IITMSpanOrganizer, IITMMes-
sageUtil, IITMRemoteMessageUtil)

Data Dispatch Strategies

1. Single Span
(related classes: IITMAgent, IITMInvocationOrganizer or IITMSpanOrganizer, IITM-
DataSerializer and IITMRestManager)

2. Closed Trace
(related classes: IITMAgent, IITMInvocationOrganizer or IITMSpanOrganizer, IITM-
DataSerializer and IITMRestManager)

3. Periodical Check
(related classes: IITMAgent, IITMMetricsController, IITMInvocationOrganizer or
IITMSpanOrganizer, IITMDataSerializer and IITMRestManager)

6.2.2 Agent Feature Model

As shown in the feature model [FEA90], illustrated in Figure 6.2, collecting, managing
and dispatching monitoring data are mandatory features. Analyzing the collected and
locally buffered monitoring data is an optional. In order to collect monitoring data,
an agent developer can choose between tracing, hooking methods or sampling the call
stack. The data manager has to implement a data creator and a buffer in order to
hold the collected measurements locally and establish correlations between monitored
invocations. The options to dispatch monitoring data are sending single spans, sending
complete traces or sending a various amount of spans periodically.

90

6.2 Agent Configurations

Figure 6.2: Feature Model for a Monitoring Agent

6.2.3 Combination of Strategies

In the following table, Table 6.1, we present the combination possibilities of our agent
strategy implementations. Two strategies are allowed to be combined for an agent
configuration if the cell of both strategies contains the value X.

91

6 Implementation

Tr
ac

e
D

at
a

C
ol

le
ct

io
n

D
at

a
M

an
ag

em
en

t

D
at

a
D

is
pa

tc
h

M
et

ho
d

Sw
iz

zl
in

g
(S

ys
te

m
Li

br
ar

ie
s)

In
st

an
ce

M
es

sa
ge

St
ac

ks

M
ap

Si
n

gl
e

M
ea

su
re

m
en

t

C
lo

se
d

Tr
ac

e

Pe
ri

od
ic

Tracing X X X X X X X X
Method
Swizzling

- X X X X X X X

Call Stack
Sampling

X X - X - X X X

Use Case
Tracing

- X X X - X X X

Table 6.1: Strategy Combination Matrix

92

Chapter 7

Evaluation

This chapter will firstly introduce the evaluation approaches for the various iOS mobile
monitoring strategies. The evaluation chapter is mainly made of five parts. The first
part of this chapter, Section 7.1, describes the evaluation goals. The second part of
this chapter, Section 7.2, argues with the theoretical evaluation. For the theoretical
evaluation we will compare the different monitoring concepts defined in Chapter 5
in terms of runtime complexity and memory usage theoretically. For this task we will
rely on the used algorithms for the various mobile agent tasks and on the calculated
memory allocation of the utilized agent and monitoring data objects. The third part
of this chapter, Section 7.3, presents the experimental evaluation. The first part of
the experimental evaluation section describes the experimental settings of the various
practical evaluation experiments. Afterwards, the results of the different experiments
are presented. The fourth part of the evaluation chapter, Section 7.4, will discuss about
the evaluation results and the Section 7.5, Threats to Validity, completes this chapter.

7.1 Evaluation Methodology & Goals

For instrumenting the source code of a mobile application, the mobile agent has to
be imported to the application that has to be monitored. Source code-based data and
resource usage data of the mobile application can be fetched by the mobile agent.
Through agent invocations, the mobile agent is able to collect method invocations and
the respective execution times, to correlate the invocations in an execution tree, to collect
the hardware workload and to serialize the measured probes for the later data dispatch.
Since the iOS mobile agent runs within the mobile application that is monitored, the
performance of the application itself will decrease. One has to take in consideration that
by adding the agent framework and by adding instrumentation points, the execution

93

7 Evaluation

times of methods will probably increase. Therefore the resource workload of the agent
itself has to be as low as possible.

In the phase of the theoretical evaluation we will argue with the theoretical operational
time of the used algorithms and with the memory usage of the theoretically calculated
object sizes that has to be buffered locally. The theoretical evaluation is needed to reduce
the number of experiments for the practical evaluation.

For the phase of the experimental evaluation, we have to define the experimental setup.
The practical evaluation requires a set of open source applications which belong to the
application classes defined in Chapter 3. In addition to that, the practical evaluation
also requires an implemented set of various agent configurations, which are defined
in Section 6.2. In the phase of the practical evaluation, we will profile the selected
open-source applications by performing specific predefined use cases firstly without
and afterward with the integrated iOS mobile agent configurations. In this phase,
we will document the source-code based information retrieved from the mobile agent
configuration and compare the outcome with the expected one. In addition to that
we will document the execution times of the instrumented methods and compare
them with the execution times of the same methods but without instrumentation. We
will also document the amount of memory overhead produced by the various agent
configurations.

A more detailed experimental setup definition is presented in Section 7.3.

With the evaluation we want to investigate whether certain agent properties are more
suitable for specific application types. Therefore the research question is:

RQ1: Does an agent function with a certain strategy perform better on different applica-
tion types?

Since the produced overhead of the agent configuration is measurable it is also important
to question:

RQ2: How much does each strategy affect the application performance?

Both questions will be answered based on the evaluation results. We will measure the
overhead produced by the agent configurations based on the listed criteria:

• Agent integration time

• Agent initialization time

• Hooking overhead per invocation

• Tracking time of methods or use cases

• Tracking time of the complete stack trace

94

7.1 Evaluation Methodology & Goals

• Closing time of the tracked invocation

• Span serialization time

• Increased application size

• Additional memory usage

The agent integration time measures the time spent by the developer in order to integrate
the agent configuration. Integrating an agent includes to add the agent framework to
the application and to re-factor the source code to ensure that the agent is working.
Spending more time for integrating the agent means that it is more difficult to monitor
the application with this agent strategy.

Criterion two, agent initialization time, argues with the time spent in order to build the
agent within the application. Since it done one once in the application life time, the
importance of this criterion is lower than other ones.

The response time of the monitored application is affected by the following criteria:
hooking overhead per invocation, tracking time of methods or use cases, tracking time
of the complete stack trace, closing time of the tracked invocation and span serialization
time. Tracing based monitoring strategies are increasing the application response time
when start tracing and when end tracing methods or use cases. In some cases, the
agent has also to serialize a number of measurements when some methods are traced.
As shown in Figure 7.1, the mentioned agent activities are producing the overhead in
response times.

Figure 7.1: Response times change with tracing-based agent configurations

95

7 Evaluation

Stack sampling based approaches affects the application response time periodically. In
the case of the stack sampling strategy we implemented, the performed user interaction
with the application get enqueued until the sample iteration is finished.

Figure 7.2: Performance overhead of the Stack Sampling-based agent

In the case the user interaction gets enqueued, the application does not respond for a
certain time as illustrated in Figure 7.2. If the response time for a certain action exceeds
one time period of the active phase, the response time is increased by the duration of
collecting and processing the call stack. Therefore, the time of collecting the stack trace
and of processing the data should be as minimal as possible.

The last two criteria, increased application size and additional memory usage argue with
the memory overhead produced agent configurations. Since we are adding a framework
to our application it is trivial that the application size increases. More important is to
look how much memory the agent allocates in runtime. We have also to mention that
the amount of used memory is related to the amount of measurements done by the
agent.

96

7.2 Theoretical Evaluation

7.2 Theoretical Evaluation

This part of the evaluation argues with different agent strategies of the same working
phase. The results of this evaluation will influence the practical part of the evaluation.
Since the amount of the configurable iOS agents is too high, the results of the theoretical
evaluation will minimize the number of agent configurations to be considered in the
practical evaluation. The theoretical evaluation can and will only confront strategies
derivating from the same working phase of the agent. For instance, considering the
phase of which object type has to be buffered, the strategy which are compared will be
span instances, span messages, and span messages with remote call objects. The main
evaluation criteria for this part are the usability, the memory usage and the execution
times of the utilization of the compared structures or objects. The first part of this
evaluation compares the data model options. The second part confronts the buffering
structures. The following section argues with the data dispatch strategies and the end of
this section summarizes the results.

7.2.1 Evaluation of Data Model Options

In total three different approaches are defined. The first option is to store span instances.
The second one is to map the span instances to string messages. The last option is to
buffer string messages of method invocation spans and to buffer span objects for remote
calls.

Considering all monitoring approaches there are three different span instances to be
examined. The agents differ between method invocation spans, remote call spans
and use case spans. The respective classes of those three data models are inherit-
ing from IITMSpan. We defined the four classes in Section 6.1.5. The absolute in-
stance size of a class can be measured by calling the Objective-C runtime function
class_getInstanceSize(_ cls: AnyClass?) -> Int, which returns the allocated
size in bytes. In order to perform this measurements, we created a new project which
implements the mentioned classes and which retrieves the object sizes.

When running the test project, as shown in Listing 7.1, the console prints that an
IITMInvocation instance requires 80 bytes, a IITMRemoteCall object 296 bytes and a
IITMUsecase instance 72 bytes.

A complete invocation message buffered as a string with the format shown in below, will
allocate at least 102 bytes in the case we convert the numeric values in hexadecimals.

97

7 Evaluation

16 (id)
+ 16 (start time)
+ 16 (parent id)
+ 16 (trace id)
+ 16 (thread id)
+ 16 (duration)
+ 6 (spaces)
+ n (span name)
> 102 bytes

The amount of allocated bytes for a remote call message would be at least 192 bytes.

16 (id)
+ 16 (start time)
+ 16 (parent id)
+ 16 (trace id)
+ 16 (thread id)
+ 16 (request longitude)
+ 16 (request latitude)
+ 4 (request network connection)
+ 1 (request timeout)
+ s1 (request SSID)
+ p1 (request provider)
+ 16 (response longitude)
+ 16 (response latitude)
+ 4 (response network connection)
+ 1 (response timeout)
+ s2 (response SSID)
+ p2 (response provider)
+ 3 (response code)
+ 16 (duration)
+ 19 (spaces)
+ n (span name or URL)
> 192 bytes

For a use case message at least 85 bytes are required.

98

7.2 Theoretical Evaluation

16 (id)
+ 16 (start time)
+ 16 (parent id)
+ 16 (trace id)
+ 16 (duration)
+ 5 (spaces)
+ n (span name)
> 85 bytes

Listing 7.1 Test Program for retrieving the Instance Sizes
override func viewDidLoad() {

super.viewDidLoad()

print(class_getInstanceSize(IITMInvocation.self))

print(class_getInstanceSize(IITMRemoteCall.self))

print(class_getInstanceSize(IITMUsecase.self))

}

Invocation Message format:
id startTime parentId traceId threadId name duration

Remote call Message format:
id startTime parentId traceId threadId url requestLongitude

requestLatitude requestNetworkConnection requestTimeout requestSsid

requestNetworkProvider responseLongitude responseLatitude

responseNetworkConnection responseTimeout responseSsid

responseNetworkProvider responseCode duration

Use case Message format:
id startTime parentId traceId name duration

In addition to the allocated space we have to consider the execution times of further
processes for data conversion and data parsing. Spans are utilized by the agent when
starting a span, when correlating with other spans and when closing spans.

To sum up, since buffering spans as messages will not bring up benefits, on the
contrary it will increase the execution times of the agent, it is not recommended
to utilize invocation string messages.

99

7 Evaluation

7.2.2 Evaluation of Data Organization Strategies

Section 5.3.7 explained three different organization strategies. The first concept is using
stacks, the second one is using a map with child objects and the third one a tree. Since the
span organization is important for span correlation, we need a fast and performant look
up, at least for the last child span. In addition to that, the expected amount of memory
allocation dependent of the amount of buffered spans is also important. By considering
the first criterion, we can exclude the organization with trees for the practical evaluation.
The look up for the last child when using stacks is expected O(1), when using a map
O(1) and when using a tree in worst case O(n). The next criterion to be considered is
the memory usage of the remaining data structures. In order to analyze the amount of
used memory and the execution performance of both remaining organization structures,
we implemented an other test project. The test project implements the functionalities to
add spans to stacks or directly to a map like the span organizer does. On top of buffering
the span objects, the tests also implement the functionality of correlating the mapped
spans. For our test cases, we initialize in total 100,000 invocation objects split in 10
active execution traces. The first test buffers the objects into stacks, the second one into
a map.

Figure 7.3: Test Results of the Organization Strategies

Figure 7.3 is demonstrating the profiling results of the tests. The amount of memory
usage utilizing a map for storing active spans is 5.3MB higher than using the multiple
stacks approach. On the other side, the population of the single map executed four times
faster, which is noticeable by looking at the CPU workloads in Figure 7.3. Both tests were
executed on an iPhone 8 Plus. We performed an other test, which simulates monitoring
a single threaded application. Monitoring a single threaded application means that the
span organization holds a single active execution trace at a time. For this second test we
initialized again 100,000 spans all with the same trace and thread ID.

100

7.2 Theoretical Evaluation

Figure 7.4: Second Results of the Organization Strategies Test

Figure 7.4 presents the profiling results for the second tests. The memory usage of the
organization with a map is 2.8MB higher than using the multiple stacks strategy. On the
other hand, mapping data to map took 3 seconds and populating the stacks 3 minutes,
which means that utilizing the dictionary data structure is 60 times faster than using
multiple stacks.

Considering that the amount of memory overhead utilizing a dictionary over mul-
tiple dynamic stacks is ignorable small for the current technological time, it is
recommended to provide an iOS agent which organizes the spans in a dictionary.
It is also recommended due to its execution performance over the long propagation time
required with multiple stacks. For the mentioned reasons, we will focus on the span
organization with a map when performing the experiments for practical evaluation.

7.2.3 Evaluation of Data Dispatch Strategies

The dispatch options declared in Section 5.4.1 are performing all the same type of
conversion process. The conversion process is explained in Section 5.4.3. The only
difference between them is the dispatch signal. The dispatch signal determines indirectly
the amount of spans that have to be serialized and sent to a monitoring back end. There
are pro and contra arguments for all options. For instance, if the agent processes each
span singularly the performance overhead for serializing and dispatching is split in small
parts. If the agent waits for the signal for dispatching a complete trace, the agent has
more spans to process but the size of the span document will be smaller than when
creating multiple ones. The periodical span dispatch is a middle way of the first two
options. It is expected that this option, will not process each single span but also will
not wait until a span is completely executed. Performing the span dispatch periodically
requires a parallel process in order to firstly determine whether there exists spans to
be processed and sent. As a result, the execution times of the core application would
not be affected directly from the dispatch process. In addition to that, the mobile agent
could use the metrics sampling process in order to perform this task. Since a root span
is always the last span of an execution trace that is closed, we have to consider that

101

7 Evaluation

created documents from dispatching single spans and from the periodical dispatch often
will miss a root span. In that case the monitoring back end has to recognize this deficit
and buffer the data until the root span arrives. In other cases the monitoring back end
will probably pass wrong data sets to the client, and the monitoring client would render
wrong execution traces. Since the dispatch options are dependent on the functionality of
the monitoring back end, it is more important to focus on the document size, rather than
on the dispatch options in future. If we consider the example JSON-object of Listing 5.4
and append five metrics measurement probes, the size of the document that has to be
sent to the monitoring back end will reach around than 2.5kB. The size of a serialized
invocation or use case span is around 350 bytes. Serialized remote calls, with the
defined format of Section 5.4.3, are reaching one kilobyte. Even tough it is not strongly
required to activate the dispatch constraint. If we scale the amount of spans up to 1,000,
900 invocations and 100 remote calls, which is a huge scale for an application session,
the size of the document will reach less than 0.5MB. Due to time reasons and by taking
account of that the differences between the span options are not enormous, we will
focus on the dispatch option of complete traces without constraint for the practical
evaluation.

7.3 Practical Evaluation

This section describes, in Section 7.3.1, the experimental setup of the practical evaluation
in detail and presents the experiments and the corresponding results. The evaluation ex-
periments are divided in main experiments and sub experiments. The main experiments
are arguing with different applications of different classes. Each experiment presents
the results based on the criteria defined in Section 7.1. One has to consider that due to
time reasons and due to the huge scale of different agent configuration, it is not possible
to practical evaluate each agent configuration. In Section 7.2, we theoretically excluded
some agent strategies for some agent working phases in order to reduce the amount of
tests and to focus only on the most performant implementations. The remaining main
agent configurations (MAC), we focus on in the experimental part of the evaluation, are
listed in the following:

1. MAC I: Tracing
https://github.com/sassanmo/InstrumentITMobileTracer

2. MAC II: Method Swizzling (AOP)
https://github.com/sassanmo/InstrumentITMobileAspects

3. MAC III: Call Stack Sampling
https://github.com/sassanmo/InstrumentITMobileStackSampling

102

https://github.com/sassanmo/InstrumentITMobileTracer
https://github.com/sassanmo/InstrumentITMobileAspects
https://github.com/sassanmo/InstrumentITMobileStackSampling

7.3 Practical Evaluation

4. MAC IV: Use Case Mapping
https://github.com/sassanmo/InstrumentITMobileUseCase

The main agent configurations will map spans as span instances. The Tracing and
Method Swizzling approach will use a dictionary for organizing the spans. Main agent
configuration III and IV will use special stack based constructs. For serializing and
dispatching the monitoring data all configurations will use the complete trace dispatch
without constraints. On top of these configurations, the most performant one will be
combined with the instrumentation source code injector instrumentIT, which should
improve the integration of the mobile agent by decreasing the integration time. This
agent configuration is declared as:

1. MAC V: MAC X with Source Code Data Processor (instrumentIT)
https://github.com/sassanmo/instrumentIT

7.3.1 Experimental Setup

This section describes the used approach for the practical evaluation. Overall, the
practical evaluation is made of main experiments and sub experiments. Each main
experiment is related to in sub experiments. The difference between each other is
that main experiments rely on the application that has to be monitored and the sub
experiments on the different mobile agent configuration. A main experiment presents
the used application and defines the use case that is performed while profiling the
application. Therefore the amount of main experiments is dependent on the number of
the different application classes. In the case of this thesis, three. The sub experiments
are their main experiment. The sub experiments will document the evaluation results
based on the application class of the profiled application, on the predefined use case
and based on the integrated agent configurations.

For instance we define an experiment named Experiment I: Application Class A as a
main experiment. Experiment I holds a short description of the application, presents the
use case that will later be performed by the application profiler and holds the expected
execution traces by performing the use case. The sub experiments of Experiment I would
be for instance, Experiment I.I MAC I, Experiment I.II MAC II, Experiment I.III MAC III
and so on. Each sub experiment will present the documentation of the profiling results.
In addition to that, sub experiments relying on agent configurations, will argue with data
output of the agent, with the execution times of the monitored and agent methods and
argue with the CPU, memory workload overhead produced by the agent configuration
and also with the time spent to integrate the agent bundle into the application and the
additional work that has to be performed by the developer.

103

https://github.com/sassanmo/InstrumentITMobileUseCase
https://github.com/sassanmo/instrumentIT

7 Evaluation

Figure 7.5: Instruments Profiling Plug-in

The required steps for the mentioned approach are the followings:

In the first stage we will define use-cases for each of the selected applications. In the next
stage we will profile these application with the Xcode [XCO17] IDE and the Instruments
[INS17] plug-in. These programs will help us monitoring performance data of each
application without an agent integrated. Figure 7.5 presents the user interface of the
profiling plug-in Instruments. As also shown in Figure 7.5, we will use the Time Profiler,
the Activity Monitor and we will measure the Allocations. The Time Profiler samples
the call stack of the profiling application, measures the execution times of the caught
methods and calculates the percentage of the spent CPU workload. The Activity Monitor
monitors the total CPU workload of the application in percentage and the absolute used
physical memory. Allocations measures the amount and the size of all allocated objects
on the heap while running the application and performing the use cases. In the next
phase we will integrate each agent configuration to each application. In addition we
will measure the spent time for this task. The fourth phase of the practical evaluation is
made of profiling the applications with the same use-cases again. The difference lies in
the fact that there is an agent configuration integrated in the application. Therefore we
should detect a notable performance overhead while profiling.

The following sections will represent the various experiments and present the evaluation
results.

104

7.3 Practical Evaluation

7.3.2 Experiment I: Stand-alone mobile application

Used application: swift-2048 (https://github.com/austinzheng/swift-2048/)

Application description: The open-source iOS application, swift-2048, is a game
playable by performing swipe gestures. The application is made of two view controllers.
The first one introduces the user to the game. By clicking on the Start game button, the
application loads and displays the second view controller. The view holds a squared
field with 16 equal sized fields. In fields there are tiles with numbers. Swiping in one
direction, let the tiles move to the swipe direction. If two neighbor tiles are containing
the same number, they will be combined in one and the number will be doubled. When
combining tiles, the value of the new tile will be added to the total score of the player.

Use case: The profiling use case is to start the application, to press the Start game
button and to swipe three times in three different directions.

Expected execution trace: As shown in Figure 7.6 the overall absolute operational
time to perform the experimental use case was 140.50ms. In line three of Figure 7.6
one can see that is the caller for initializing the new view controller. The view controller,
NumberTileGameViewController, initializes the game model and loads the view. The
function viewDidLoad() calls setUpGame(). In complete, the duration of the mentioned
function was 10.6ms. Afterwards, after the first swipe, a timer handles the animation
for the tiles. The profiling tool recognized a closure for the up, left and down swipe.

Figure 7.6: Execution trace after performing the Use Case

105

https://github.com/austinzheng/swift-2048/

7 Evaluation

Runtime memory usage: 1.78MB

7.3.2.1 Experiment I.I: Main Agent Configuration I

Agent Integration Time: 16min 30sec

Agent overhead for invoked methods:
ViewController.init(coder:): The constructor of ViewController initializes the view
controller object and initializes all global variables contained in ViewController. As
shown in Listing 7.2, we added an attribute holding the agent reference. Since the
iOS agent is nil at the beginning, the method getInstance() -> IITMAgent will create
a new agent instance. As shown in Figure 7.6, the duration for creating an agent
instance is 16.30ms. Since the agent lives as a singleton, the initialization of the agent is
performed only once. In the normal case when starting the application.

Listing 7.2 2048 ViewController Class
import UIKit

import InstrumentITMobileTracer

class ViewController: UIViewController {

let agent = IITMAgent.getInstance()

...

}

IITMAgent.trackInvocation(function:file:): This method starts tracing a method
invocation. It comprehends instantiating a span object, which takes 0.8ms to 0.9ms,
mapping the span object to the dictionary and establishing correlation between spans
which takes 0.1ms to 0.2ms. In total, the execution times of this method are around
0.9ms to 1.1ms.

IITMAgent.closeInvocation(invocation:): This method ends tracing a method invo-
cation. The execution time of this method is dependent on the closing invocation. If
the closing invocation is a root span, the agent serializes the whole trace and tries to
send the monitoring data to a back end. Therefor the execution time of this method
is highly dependent on how many spans has to be serialized. Closing a non-root span
is very performant. The high frequency profiler estimates the duration under 0.1ms.
In the other cases, for instance in case NumberTileGameViewController.upCommand(_:)

was called, the duration for closing the span, serializing the trace and trying to send it
was 25.20ms. In that case 46 spans were serialized, because a root span was closed. We

106

7.3 Practical Evaluation

noticed that the duration for serializing and preparing to send the trace is split in nearly
equal parts.

Overall memory usage: The measured memory overhead of the integrated and com-
piled agent module is 0.3MB. This probe was measured after integrating, building and
running the agent within the application without allocating spans. While performing
the experimental use case the instrumented application allocated in total 28.34MB, but
only 2.37MB were allocated persistently afterwards.

7.3.2.2 Experiment I.II: Main Agent Configuration II

Agent Integration Time: 1hour 10min 30sec

Integration notes: In the process of swizzling methods, we recognized that methods
using full native Swift constructs such as tuples can not be swizzled with other methods.
In addition to that, all hooked methods needed to be manually marked with the @objc

attribute. For this reason, methods using tuples or Swift full native enumerations will
not be recognized by the mobile iOS agent. This is a huge constraint for the developer
in terms of implementing a project.

Configuration notes: Since the architecture of this agent configuration is the same
as the main agent configuration I, the execution times of the agent invocations are
not different. The difference between both configuration is that, MAC II is hooking
the instrumented methods. For this reason we will focus on the overhead created in
hooking the monitored methods in this experiment. We have also to consider that this
agent configuration hooks instance methods each time when an object of a specific
class is initialized. If there exists instrumented methods for a certain instance, the
method initialize() is called. As shown in the execution trace in Figure 7.7, the
profiling application recognized the invocation of initialize(), which handles the
method swizzling, each time an object is created.

Agent overhead for invoked methods:
As described in the configuration notes, the execution times of the invoked agent
methods are the same due to the fact that the agent architectures of both configurations
are the same.

Overhead for hooking methods:
ViewController.initialize(): In this experiment, we swizzled the function

107

7 Evaluation

Figure 7.7: Partial Execution trace with Method Swizzling

viewDidLoad() which belongs to the ViewController class. Swizzling this function
took 1.40ms.

NumberTileViewController.initialize(): The next instance created after a ViewController

instance, is a NumberTileViewController instance. For this class the agent configuration
was able to hook eleven methods. The duration of the swizzling process was 26.40ms

GameBoardView.initialize(): Afterwards, a GameBoardView instance was created. The
agent configuration was able to hook three methods for this class. The duration of the
swizzling process was 2.60ms

108

7.3 Practical Evaluation

GameModel.initialize(): This function swizzled three methods. The duration of this
process was 4.8ms.

TileView.initialize(): A game model objects handles to insert new tiles. Therefore
new TileView objects are created. The agent swizzled only one function of this object in
0.7ms.

ScoreView.initialize(): The agent configuration was able to hook two methods of a
ScoreView instance. The duration of the swizzling process was 2.40ms.

AppearenceProvider.initialize(): The agent hooked three AppearenceProvider

methods and took for this 2.40ms.

As one may notice, there is no exact absolute duration for swizzling a method. In our
experiment it took from 700 microseconds to 2.4ms to hook a method. In the following
we list the relative duration for hooking one method with the given results:

ViewController.initialize() 1.40ms/1 = 1.40ms

NumberTileViewController.initialize(): 26.40ms/11 = 2.40ms

GameBoardView.initialize(): 2.60ms/3 = 0.90ms

GameModel.initialize(): 4.80ms/3 = 1.60ms

TileView.initialize(): 0.70ms/1 = 0.70ms

ScoreView.initialize(): 2.40ms/2 = 1.2ms

AppearenceProvider.initialize(): 2.40ms/3 = 0.8ms

In the results discussion we will suppose that hooking a method takes 1.2ms which is
the median of the collected relative values. The relative average for hooking a method
is 1.28ms, which is not far from the calculated median.

Overall memory usage: The measured memory overhead of the integrated and com-
piled agent module is 1.1MB. This probe was measured after integrating, building and
running the agent within the application without allocating spans. While performing the
experimental use case the instrumented application allocated in total 14.38MB. 2.48MB
from the total were allocated persistently.

7.3.2.3 Experiment I.III: Main Agent Configuration III

Agent Integration Time: 1min 15sec

109

7 Evaluation

Integration notes: This agent configuration does not require from the user to edit
much of the source code. The configuration has to be included in the project an the
agent has to be started with one line of code.

Configuration notes: The sample rate of this agent configuration was set to 0.03
seconds. The agent configuration has not tried to dispatch any spans, because no span
was recognized within the sampling rate.

Experiment notes: We manually measured the duration of the agent method
signalFuntion(sig:siginfo:p:)) in order to retrieve the exact execution time of the
mentioned method, since the agent does not count how often the call stack is sampled.
In addition to that, we noticed a memory ramp while performing the use case. This
is also related to the high execution times of the signal function. Since the function is
called often repeatedly, before the last invocation is finished, the call stack is raising.
Therefore the memory usage is increasing. We have to also mention that in some cases
the application crashed after some seconds for this reason.

110

7.3 Practical Evaluation

Figure 7.8: Execution trace with Call Stack Sampling

Agent overhead for invoked methods:
ViewController.init(coder:): The constructor of ViewController initializes the view
controller object and initializes all global variables contained in ViewController. We
added an attribute holding the agent reference. Since the iOS agent is nil at the
beginning, the method getInstance() -> IITMAgent will create a new agent instance.
As shown in Figure 7.8, the duration for creating an agent instance of this configuration is
14.00ms. Since the agent lives as a singleton, the initialization of the agent is performed
only once. In the normal case when starting the application.

111

7 Evaluation

signalFuntion(sig:siginfo:p:)): This function is called for every thread in each
sampling iteration. The total duration of this function in the run loop was 346.70ms.
This function includes creating the span stack which took 262.30ms in that instance.
In addition to that, the symbols has to be filtered. This process took 63.70ms in this
instance. Afterwards, the gathered symbols are mapped to spans which took 185.60ms.
The stack comparison took 4.30ms and the span correlation 0.7ms. In a manual test we
measured the execution time of this methods for one iteration. The results were from
4ms to 135ms

IITMThreadController.startCollection(): Fetching the active threads is included by
this function. In order to measure each iteration, we added a measurement which
calculates the duration of the thread collection iterations. The highest duration of a
collection iteration 28.05ms.

Overall memory usage: The measured memory overhead of the integrated and com-
piled agent module is 2.3MB. This probe was measured after integrating, building and
running the agent within the application without allocating spans. While performing the
experimental use case the instrumented application allocated in total 22.04MB. 4.03MB
from the total were allocated persistently.

7.3.2.4 Experiment I.IV: Main Agent Configuration IV

Agent Integration Time: 6min 30sec

Integration notes: This agent configuration requires a huge knowledge of the written
source code. The framework user has to know which functions are starting a certain use
case and which functions are ending a certain use case. For this experiment we spent
around 6 minutes to instrument five root use cases needed for our experiment.

Agent overhead for invoked methods:
ViewController.init(coder:): The constructor of ViewController initializes the view
controller object and initializes all global variables contained in ViewController. We
added an attribute holding the agent reference. Since the iOS agent is nil at the
beginning, the method getInstance() -> IITMAgent will create a new agent instance.
As shown in Figure 7.6, the duration for creating an agent instance is 16.10ms.

Agent.startRootUsecase(name:filename:line:funcname:)): This function starts trac-
ing a root use case. As mentioned in the integration notes, we defined five root use cases
within the application. The duration of buffering the first use case was 20ms, as shown
in Figure 7.9 in line five. The reason for this, is the instantiation of the special data

112

7.3 Practical Evaluation

Figure 7.9: Execution trace with Use Case Mapping

structures to buffer the use cases. In addition to that, the timer for retrieving hardware
resource workloads is initialized and started. In other cases, when the organization
structure is initialized, start tracing a root use case takes 0.7ms to 0.8ms. For the further
results discussion, we will add the creation time for the organization structure to the
agent initialization time.

Agent.closeRootUsecase(name:filename:line:funcname:)): This function ends trac-
ing a root use case. Closing a root use case has as a consequence that all use cases of the
same trace are being serialized. Since we only defined root use cases, closing each use
case will raise the serialization process. Serializing a use case takes 1.80ms with this
configuration. Only closing a use case takes 1.70ms.

Overall memory usage: The measured memory overhead of the integrated and com-
piled agent module is 2.3MB. This probe was measured after integrating, building and
running the agent within the application without allocating spans. While performing the

113

7 Evaluation

experimental use case the instrumented application allocated in total 5.03MB. 1.22MB
from the total were allocated persistently.

7.3.3 Experiment II: Hybrid Application

Used application: HybridApplication (https://github.com/sassanmo/HybridApplication-
iOS-Example)

Application description: Since we were not able to find any iOS based hybrid appli-
cation, we decided to implement one ourself. The application represents a small web
browser. The end-user is able to type in a link and load the web page by pressing on the
load button. In addition to that, we provided two buttons in order to navigate forwards
and backwards through the visited pages and one to reload the page. Figure 7.10 shows
a screen shot of the application.

Figure 7.10: Screen shot of the implemented Hybrid Application

Use case: The profiling use case is to start the application, to load a web page by
pressing on the load button and to reload the web page.

7.3.3.1 Experiment II.I: Main Agent Configuration I

Agent Integration Time: 4min 30sec

114

https://github.com/sassanmo/HybridApplication-iOS-Example
https://github.com/sassanmo/HybridApplication-iOS-Example

7.3 Practical Evaluation

Integration notes: In order to trace the remote calls performed from the web view,
the web view has to be registered once by the agent.

Configuration notes: As shown in Figure 7.11 all performed web view methods were
traced as expected. The performed remote calls were traced.

Figure 7.11: Execution trace with Tracing

Agent overhead for invoked methods:
ViewController.init(coder:): The constructor of ViewController initializes the view
controller object and initializes all global variables contained in ViewController.W
e added an attribute holding the agent reference. Since the iOS agent is nil at the
beginning, the method getInstance() -> IITMAgent will create a new agent instance.
As shown in Figure 7.6, the duration for creating an agent instance is 13.50ms. Since
the agent lives as a singleton, the initialization of the agent is performed only once. In
the normal case when starting the application.

115

7 Evaluation

IITMAgent.trackInvocation(function:file:): This method starts tracing a method
invocation. The execution times of this method for this experiment were from around
0.5ms to 1.0ms.

IITMAgent.closeInvocation(invocation:): This method ends tracing a method invo-
cation. The execution time of this method is dependent on the closing invocation. For
this experiment the execution times were low, due to the reduced amount of traced
spans. The execution times of this method for this experiment were from around 4ms to
7.70ms.

UIWebView.initialize(): Since for this experiment the mobile agent had to trace
a system library, UIWebView, the agent hooked the web view methods on instantia-
tion. UIWebView.initialize() handled the method swizzling and the duration was
3.00ms.

IITMAgent.registerWebView(webview:): In order to trace the performed remote calls
from the web view, the web view has to be registered. In that case, a delegate is created
which hooks the performed remote calls. The registration took 0.10ms.

IITMAgent.trackRemoteCall(function:file:url:): This method starts tracing a re-
mote call. It comprehends instantiating a remote call object, which takes 0.5ms and
setting the start remote call properties, which took 2.50ms. The total execution time
was 3ms.

IITMAgent.closeRemoteCall(remotecall:response:error:): This method ends trac-
ing a remote call. The execution time was 1.6ms.

Overall memory usage: This probe was measured after integrating, building and
running the agent within the application without allocating spans. While performing
the experimental use case the instrumented application allocated in total 16.75MB, but
only 3.61MB were allocated persistently afterwards.

7.3.3.2 Experiment II.II: Main Agent Configuration II

Agent Integration Time: 9min 10sec

116

7.3 Practical Evaluation

Configuration notes: For this experiment we will follow the same approach as experi-
ment I.II. We will focus on the overhead created in hooking the monitored methods in
this experiment. We have also to consider that this agent configuration hooks instance
methods each time when an object of a specific class is initialized. As shown in the
execution trace in Figure 7.12, the profiling application recognized the invocation of
initialize(), which handles the method swizzling, each time an object is created.

Figure 7.12: Execution trace with Method Swizzling

Agent overhead for invoked methods:
As described in the configuration notes, the execution times of the invoked agent
methods are the same due to the fact that the agent architectures of both configurations
are the same.

Overhead for hooking methods:
ViewController.initialize(): In this experiment, we swizzled the functions
viewDidLoad(), loadWebSitePressed(_:), reloadPage(_:), goForwardPressed(_:),
goBackwardsPressed(_: which belong to the ViewController class. Swizzling the men-
tioned functions took 2.60ms.

UIWebView.initialize(): Hooking the web view methods on instantiation took
1.50ms.

As one may notice, there is no exact absolute duration for swizzling a method also in
this experiment. In the following we list the relative duration for hooking one method

117

7 Evaluation

with the given results:

ViewController.initialize() 2.60ms/5 = 0.52ms

UIWebView.initialize(): 1.50ms/6 = 0.25ms

In the results discussion we will suppose that hooking a method takes 0.39ms which is
the average of the collected relative values. We selected the average this time, due to a
small measurement set.

Overall memory usage: This probe was measured after integrating, building and
running the agent within the application without allocating spans. While performing the
experimental use case the instrumented application allocated in total 16.53MB. 3.60MB
from the total were allocated persistently.

Experiment II.III: Main Agent Configuration III

Agent Integration Time: 1min 15sec

Integration notes: This agent configuration does not require from the user to edit
much of the source code as in experiment I.III. The configuration has to be included in
the project an the agent has to be started with one line of code.

Configuration notes: The sample rate of this agent configuration was set to 0.06
seconds, due to application crashes with lower sampling rates. The agent configuration
unexpectedly did not recognize any performed remote calls.

Experiment notes: We manually measured the duration of the agent method
signalFuntion(sig:siginfo:p:)) in order to retrieve the exact execution time of the
mentioned method, since the agent does not count how often the call stack is sampled.
In addition to that, we noticed a memory ramp while performing the use case. This
is also related to the high execution times of the signal function. Since the function is
called often repeatedly, before the last invocation is finished, the call stack is raising.
Therefore the memory usage is increasing. We have to also mention that in some cases
the application crashed after some seconds for this reason.

118

7.3 Practical Evaluation

Agent overhead for invoked methods:
ViewController.viewDidLoad(): The duration for creating an agent instance of this
configuration is 12.30ms. Since the agent lives as a singleton, the initialization of the
agent is performed only once. In the normal case when starting the application.

signalFuntion(sig:siginfo:p:)): This function is called for every thread in each
sampling iteration. This function includes creating the span stacks, correlating the spans,
comparing the new span stack with the old ones and to adjust the execution times of the
spans. The execution time of this function varied from 4.60ms to 222.70ms.

IITMThreadController.startCollection(): Fetching the active threads is included by
this function. In order to measure each iteration, we added a measurement which
calculates the duration of the thread collection iterations. The highest duration of a
collection iteration 258.36ms.

Overall memory usage: This probe was measured after integrating, building and
running the agent within the application without allocating spans. While performing the
experimental use case the instrumented application allocated in total 16.30MB. 3.82MB
from the total were allocated persistently.

Experiment II.IV: Main Agent Configuration IV

Agent Integration Time: 35min 30sec

Integration notes: This agent configuration requires a huge knowledge of the written
source code. The framework user has to know which functions are starting a certain use
case and which functions are ending a certain use case. For this experiment we spent
around over 30 minutes to instrument two root use cases and one remote call needed for
our experiment. In addition to that this agent configuration requires a huge refactoring
of the source code. In order to fetch the remote call and the real duration for the use
case, the developer is forced to implement a web view delegate.

Agent configuration notes: The agent successfully, traced the first use case and the
remote call as a sub span of the root use case. The second one could not be traced by
the agent.

Agent overhead for invoked methods:
ViewController.init(coder:): The constructor of ViewController initializes the view
controller object and initializes all global variables contained in ViewController. We

119

7 Evaluation

added an attribute holding the agent reference. The duration for creating an agent
instance is 16.00ms.

Agent.startRootUsecase(name:filename:line:funcname:)): This function starts trac-
ing a root use case. As mentioned in the integration notes, we defined two root use
cases within the application. The duration for buffering the first use case was 1.7ms, as
shown in Figure 7.9. The second one 0.5ms.

Agent.closeRootUsecase(name:filename:line:funcname:)): This function ends trac-
ing a root use case. Closing a root use case has as a consequence that all use cases of
the same trace are being serialized. Since we only defined root use cases, closing each
use case will raise the serialization process. Serializing a use case takes 1.10ms with
this configuration. In total closing a use case, which also includes to set the ending
properties takes 1.70ms.

Agent.startRemoteCall(name:root:parent:url:httpMethod:request:): This function
starts tracing a remote call. The execution time of this method was 2.0ms

Agent.closeRemoteCall(name:root:responseCode:timeout:): This function ends trac-
ing a remote call and serializes the remote call. The execution time of this method was
1.2ms.

Overall memory usage: The measured memory overhead of the integrated and com-
piled agent module is 2.3MB. This probe was measured after integrating, building and
running the agent within the application without allocating spans. While performing the
experimental use case the instrumented application allocated in total 5.03MB. 1.22MB
from the total were allocated persistently.

7.3.4 Experiment III: Native Client of a Distributed System

Used application: MobileClient (https://github.com/sassanmo/MobileClient-Demo)

Application description: Due to time reasons we decided to implement a mobile
client, which requests data from a foreign back end, for ourself. The application
implements the standard functionality of requesting content from a back end. The
end-user is able to load an image by pressing on the load content button. Figure 7.13
shows a screen shot of the application.

120

https://github.com/sassanmo/MobileClient-Demo

7.3 Practical Evaluation

Figure 7.13: Screen shot of the implemented Mobile Client

Use case: The profiling use case is to start the application and to load an image by
pressing on the Load Content button.

Expected execution trace: As shown in Figure 7.14 the overall absolute operational
time to perform the experimental use case was 271.10ms on the main thread and 4.10ms
in a sub thread. In the main thread The sub thread handled the performed remote call.

Figure 7.14: Execution trace after performing the Use Case

Runtime memory usage: 1.73MB

121

7 Evaluation

7.3.4.1 Experiment III.I: Main Agent Configuration I

Configuration notes: The performed remote call was traced.

Figure 7.15: Execution trace with Tracing

Agent overhead for invoked methods:
ViewController.init(coder:): The constructor of ViewController initializes the view
controller object and initializes all global variables contained in ViewController.We
added an attribute holding the agent reference. Since the iOS agent is nil at the
beginning, the method getInstance() -> IITMAgent will create a new agent instance.
As shown in Figure 7.15, the duration for creating an agent instance is 13.10ms. Since
the agent lives as a singleton, the initialization of the agent is performed only once. In
the normal case when starting the application.

IITMAgent.trackInvocation(function:file:): This method starts tracing a method
invocation. The execution times of this method for this experiment were from around
0.5ms to 1.0ms.

IITMAgent.closeInvocation(invocation:): This method ends tracing a method invo-
cation. The execution time of this method is dependent on the closing invocation. For
this experiment the execution times were low, due to the reduced amount of traced
spans. The execution times of this method for this experiment were from around 0.1ms
to 6.6ms.

122

7.3 Practical Evaluation

IITMAgent.trackRemoteCall(function:file:url:): The duration for tracking this spe-
cific remote call was 6.8ms. The most time was spent retrieving the SSID (4.2ms) and
the network connection type (1.5ms). The duration for crating a remote call instance
was 0.5ms.

IITMAgent.closeRemoteCall(remotecall:response:error:): This method ends trac-
ing a remote call. The execution time was 6.1ms. Closing a remote call also includes
the serialization of the remote call and the measurement dispatch.

Overall memory usage: The measured memory overhead of the integrated and com-
piled agent module is 0.2MB. This probe was measured after integrating, building and
running the agent within the application without allocating spans. While performing
the experimental use case the instrumented application allocated in total 6MB, but only
1.47MB were allocated persistently afterwards.

7.3.4.2 Experiment III.II: Main Agent Configuration II

Agent Integration Time: 5min 15sec

Configuration notes: For this experiment we will follow the same approach as exper-
iment I.II and II.II. We will focus on the overhead created in hooking the monitored
methods in this experiment. We have also to consider that this agent configuration hooks
instance methods each time when an object of a specific class is initialized. As shown in
the execution trace in Figure 7.12, the profiling application recognized the invocation of
initialize(), which handles the method swizzling, each time an object is created.

123

7 Evaluation

Figure 7.16: Execution trace with Method Swizzling

Agent overhead for invoked methods:
As described in the configuration notes, the execution times of the invoked agent
methods are the same due to the fact that the agent architectures of both configurations
are the same.

Overhead for hooking methods:
ViewController.initialize(): In this experiment, we swizzled the functions
viewDidLoad(), loadContent() and loadContentButtonPressed(_:) which belong to
the ViewController class. Swizzling the mentioned functions took 2.0ms. We also
swizzled URLSession methods.

ViewController.initialize() 1.8ms/3 = 0.6ms

URLSession.initialize() 1.1ms/2 = 0.55ms

In the results discussion we will suppose that hooking a method takes 0.58ms which is
the calculated average value of swizzling a method in this experiment.

Overall memory usage: The measured memory overhead of the integrated and com-
piled agent module is 0.5MB. This probe was measured after integrating, building and

124

7.3 Practical Evaluation

running the agent within the application without allocating spans. While performing the
experimental use case the instrumented application allocated in total 5.97MB. 1.45MB
from the total were allocated persistently.

7.3.4.3 Experiment III.III: Main Agent Configuration III

Agent Integration Time: 1min 15sec

Integration notes: This agent configuration does not require from the user to edit
much of the source code as in experiment I.III and II.III. The configuration has to be
included in the project an the agent has to be started with one line of code.

Configuration notes: The sample rate of this agent configuration was set to 0.06
seconds, due to application crashes with lower sampling rates. The agent configuration
has only tried to dispatch the measured remote call span as shown in Listing 7.3. Other
invocation measurements were not caught by the monitoring agent.

Listing 7.3 Traced Remote call Span
...

{

"operationName" : "iitmDataTask(request:completionHandler:)",

"duration" : 99998,

"tags" : {

"http.request.ssid" : "eduroam",

"http.request.networkConnection" : "WLAN",

"http.response.networkConnection" : "WLAN",

"http.response.ssid" : "eduroam",

"span.kind" : "client",

"http.url" : "https:\/\/www.the...\/content.jpg",

"http.response.networkProvider" : "",

"ext.propagation.type" : "HTTP",

"http.request.networkProvider" : ""

},

"spanContext" : { ...

}

}

...

125

7 Evaluation

Experiment notes: We manually measured the duration of the agent method
signalFuntion(sig:siginfo:p:)) in order to retrieve the exact execution time of the
mentioned method, since the agent does not count how often the call stack is sampled.
In addition to that, we noticed a memory ramp while performing the use case. This
is also related to the high execution times of the signal function. Since the function is
called often repeatedly, before the last invocation is finished, the call stack is raising.
Therefore the memory usage is increasing. We have to also mention that in some cases
the application crashed after some seconds for this reason.

Figure 7.17: Execution trace with Call Stack Sampling (Main Thread)

Agent overhead for invoked methods:
IITMAgent.getInstance(): The duration for creating an agent instance of this configu-
ration is 13.60ms. Since the agent lives as a singleton, the initialization of the agent is
performed only once. In the normal case when starting the application.

signalFuntion(sig:siginfo:p:)): This function is called for every thread in each
sampling iteration. This function includes creating the span stacks, correlating the spans,
comparing the new span stack with the old ones and to adjust the execution times of the
spans. The execution time of this function varied from 2.93ms to 21.26ms.

IITMThreadController.startCollection(): Fetching the active threads is included by
this function. In order to measure each iteration, we added a measurement which
calculates the duration of the thread collection iterations. The highest duration of a
collection iteration 33.94ms.

Overall memory usage: The measured memory overhead of the integrated and com-
piled agent module is 2.3MB. This probe was measured after integrating, building and
running the agent within the application without allocating spans. While performing the
experimental use case the instrumented application allocated in total 5.03MB. 1.22MB
from the total were allocated persistently.

7.3.4.4 Experiment III.IV: Main Agent Configuration IV

Agent Integration Time: 15min 15sec

126

7.3 Practical Evaluation

Integration notes: As mentioned in the related experiments before, this configuration
requires a huge knowledge of the written source code. The framework user has to know
which functions are starting a certain use case and which functions are ending a certain
use case. In addition to that this agent configuration requires a huge refactoring of the
source code.. Since the selected application does not provide a lot of functions, the
number of traceable use cases is also low. Therefore integrating this agent configuration
for this experiment required less time. We defined two root use cases and added a nested
remote call to a use case.

Agent configuration notes: The agent successfully, traced the root use case when the
view appeared, the root use case when pressing the Load Content button and the nested
remote call as a sub span of the root use case. The performed agent invocation are
included in the execution trace shown in Figure 7.18.

Figure 7.18: Execution trace with Use Case Mapping

Agent overhead for invoked methods:
ViewController.init(coder:): The constructor of ViewController initializes the view
controller object and initializes all global variables contained in ViewController. We
added an attribute holding the agent reference. The duration for creating an agent
instance is 14.30ms.

Agent.startRootUsecase(name:filename:line:funcname:)): This function starts trac-
ing a root use case. As mentioned in the integration notes, we defined two root use
cases within the application. The duration for buffering the first use case was 1.4ms, as
shown in Figure 7.18. The second one 0.5ms.

Agent.closeRootUsecase(name:filename:line:funcname:)): This function ends trac-
ing a root use case. Closing a root use case has as a consequence that all use cases of

127

7 Evaluation

the same trace are being serialized. Since we only defined root use cases, closing each
use case will raise the serialization process. The first use case was closed in 1.40ms.
The duration for closing the second one was 1.20ms even though more spans were
serialized.

Agent.startRemoteCall(name:root:parent:url:httpMethod:request:): This function
starts tracing a remote call. The execution time of this method was 8.0ms

Agent.closeRemoteCall(name:root:responseCode:timeout:): This function ends trac-
ing a remote call and serializes the remote call. The execution time of this method was
1.4ms.

Overall memory usage: The measured memory overhead of the integrated and com-
piled agent module is 0.2MB. This probe was measured after integrating, building and
running the agent within the application without allocating spans. While performing the
experimental use case the instrumented application allocated in total 5.9MB. 1.3MB
from the total were allocated persistently.

7.4 Discussion of the Results

We summarized the results of all experiments in Table 7.1. After the summary of the
results, we will discuss the results for each criterion.

128

7.4 Discussion of the Results

A
ge

n
t

C
on

fi
gu

ra
ti

on

In
te

gr
at

io
n

ti
m

e

A
ge

n
t

In
it

ia
li

za
ti

on
ti

m
e

H
oo

ki
n

g
O

ve
rh

ea
d

/
In

vo
ca

ti
on

Tr
ac

ki
n

g
M

et
ho

d/
U

se
ca

se
(R

em
ot

e
ca

ll
)

Tr
ac

ki
n

g
St

ac
k

Tr
ac

e

C
lo

se
In

vo
ca

ti
on

/U
se

ca
se

(R
em

ot
e

ca
ll

)

Sp
an

Se
ri

al
iz

at
io

n
/

Sp
an

MAC I 16min 16ms -
1ms

-
-

1ms
-

0.6ms

MAC II 1h 10min 16ms 1.2ms
1ms

-
-

1ms
-

0.6ms

MAC III 1min 14ms
-
-

- 135ms
-
-

-

MAC IV 6min 16.1ms -
0.7ms

-
-

1.4ms
-

0.4ms

MAC I 4min 13.5ms 0.5ms
1ms
3ms

-
1ms

1.6ms
0.6ms

MAC II 9min 13.5ms 0.39ms
1ms
3ms

-
1ms

1.6ms
0.6ms

MAC III 1min 12.3ms -
-
-

222.7ms
-
-

-

MAC IV 35min 16ms -
1.7ms
2ms

-
1.4ms
1.2ms

1.4ms

MAC I 2.5min 13.1ms 0.5ms
1ms
6ms

-
1ms

2.4ms
2ms

MAC II 5min 13.1ms 0.58ms
1ms
6ms

-
1ms

2.4ms
2ms

MAC III 1min 13.6ms 6.1ms
-

6ms
55.2ms

-
3.8ms

-

MAC IV 15min 14.3ms -
1.4ms
8ms

-
1.4ms
1.4ms

1.4ms

Table 7.1: Execution times results summary of all Experiments

129

7 Evaluation

The first criterion of the practical evaluation was the agent integration time. Integrating
an agent consists of including the agent framework to the application project, linking
the binaries and activating the agent by adding instrumentation source code. Some
strategies require more code refactoring other ones less. A diagram of the integration
times is illustrated in Figure 7.19.

16

4 2,5

70

9
5

1 1 1

8

35

15

0

10

20

30

40

50

60

70

80

Experiment	 I Experiment	 II Experiment	 III

Stand	Alone	Mobile	Application Hybrid	Application Mobile	Client	of	a	Distributed	System

tim
e	
(m

in
)

Agent	integration	time

MAC	I MAC	II MAC	III MAC	IV

Figure 7.19: Integration Times

The given bar chart is divided in three parts. Each part is related to an executed experi-
ment. At first sight it seems that integrating MAC II in stand alone mobile application
takes long time. For this case we have to mention the sizes of the application projects.
The application selected for experiment I had the most lines of code, more precisely
the selected application had more methods to instrument than other applications. The
application used for the second experiment the second most, and the third one the
less. Considering the mentioned facts, one can observe a pattern for method invocation
tracing-based agent configurations (MAC I & MAC II). The more methods are imple-
mented in the given application, the more instrumentation code has to be added and
therefore more time is required. Integrating MAC II took more time over MAC I because
more lines of code has to be added. An other point explaining the long integration of
MAC II is that the developer firstly has to check whether the method can be set as an
@objc method. In cases the developer is not allowed to, even a refactoring of the method
has to be performed. In that context, refactoring means replacing native Swift con-
structs with bridgeable Objective-C objects. MAC III was integrated for all experiments
in constant time. This result was expected since only one line of code has to be added
for each environment. Tracing remote call with MAC IV was more problematic than
with other ones. The reason is that URLRequest objects has to be manually converted to
NSMutableURLRequest and the flow of the remote call has to be caught by the developer

130

7.4 Discussion of the Results

manually. As a result, the developer spends a lot of time in recognizing the entry end
exit points of the remote calls.

0

2

4

6

8

10

12

14

16

18

Experiment	 I Experiment	 II Experiment	 III

Stand	Alone	Mobile	Application Hybrid	Application Mobile	Client	of	a	Distributed	System

tim
e	
(m

s)

Agent	Initialization	time

MAC	I MAC	II MAC	III MAC	IV

Figure 7.20: Agent Initialization Times

In the normal case, the monitoring agent is initialized only once within the application
life cycle. Therefore, this criterion is not weighted as much as the other ones. The bar
chart displayed in Figure 7.20 shows the initialization times in milliseconds of each
agent configuration dependent on the monitored application type. As one can notice the
execution times of creating an agent instance do not fluctuate much. This result was
expected due to the similarity of the agent architectures. Since initializing the agent
does not require application-based data we did not expect to notice a pattern dependent
on the experiments in the diagram.

131

7 Evaluation

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

10
0
10

5
11

0
11

5
12

0
12

5
13

0
13

5
14

0
14

5
15

0
15

5
16

0
16

5
17

0
17

5
18

0
18

5
19

0
19

5
20

0
20

5
21

0
21

5
22

0
22

5
23

0
23

5

M
AC

	I

M
AC

	II

M
AC

	II
I

M
AC

	IV

M
AC

	I

M
AC

	II

M
AC

	II
I

M
AC

	IV

M
AC

	I

M
AC

	II

M
AC

	II
I

M
AC

	IV

tim
e	
(m

s)

Ex
pe
ct
ed
	R
es
po
ns
e	
tim

e	
O
ve
rh
ea
d	
pe
r	M

on
ito

re
d	
In
vo
ca
tio

n	
or
	U
se
	c
as
e

M
et
ho

d	
H
oo

ki
ng
	ti
m
e

M
et
ho

d/
U
se
	c
as
e	
Tr
ac
in
g	
tim

e	
M
et
ho

d/
U
se
	c
as
e	
Cl
os
in
g	
tim

e
Sp
an
	S
er
ia
liz
at
io
n	
tim

e
St
ac
k	
tr
ac
e	
re
tr
ie
ve
m
en
t	
&
	p
ro
ce
ss
in
g

M
ob

ile
	C
lie
nt
	o
f	a
	

D
is
tr
ib
ut
ed
	

Sy
st
em

H
yb
rid

	
Ap

pl
ic
at
io
n

St
an
d	
Al
on

e	
M
ob

ile
	

Ap
pl
ic
at
io
n

Fi
gu

re
7.

21
:

R
es

po
ns

e
ti

m
e

O
ve

rh
ea

d

132

7.4 Discussion of the Results

The stacked bar chart of Figure 7.21 shows the measured overhead in response times
when monitoring method invocations or use cases. As mentioned in Figure 7.1 the
overhead is made of occasionally hooking a method, tracking an invocation, correlating
and processing the measured span and serializing it. In Figure 7.2 we explained how the
overhead for stack sampling-based approaches differ from tracing-based ones. Since our
sampling-based agent injects instrumentation code on top of the call stack periodically,
the response time increases at each iteration by the execution time of the instrumentation
code. As one may notice the overhead produced by MAC III is the biggest in relation
to the other ones. The peek monitoring overhead (222,7ms) was measured when
monitoring an hybrid application. The other monitoring configurations were more
performant. In two out of the three experiments MAC I increased the response times
less. MAC IV was slightly more performant (0.1ms faster) in the first experiment. This
can be explained that only root use cases were monitored. The subsequent experiments
show that as soon as the developer wants to monitor nested use cases, the processing
increases and becomes higher than the processing time measured for MAC I or MAC
II. The second agent configuration is less performant than MAC I due to the method
hooking process. The average time of hooking a method varied from 0.39ms to 1.20ms.
We did not notice any dependencies between agent configuration and application type.
Overall MAC I performed better than other configurations.

In order to conclude the discussion of the results we sum up the gained results. As
one may notice, the results are merely the same for each application class. As a result
we are able to say that an agent configuration is not more suitable than an other one
dependent on the application type. The different application types do not influence
the performance of the agent. This can be explained with the base architecture of the
different application types and the functionality of the agents. The difference between
the different application types lays in the usage of different system libraries. Since all
the agent configurations, apart from MAC III (only for remote calls), are hooking system
library-based functions in order to monitor them, there is no difference in terms of
performance. We can only suppose that while monitoring applications using system
libraries, the number of measured spans is higher. In that case the performance overhead
increases proportionally for all agent configurations.

The main research question (RQ1) for this evaluation was, whether there exist an agent
configuration with certain strategies perform better on certain application types than
other ones. The answer to this question, based on the gathered, presented and explained
results, is that in general, and with the actual state of the implementations, the tracing-
based approach with an implemented dictionary organization performs better than
other agent configurations, independent on which application they are running on.
In order to respond to the second research question (RQ2) we have to calculate the
additional spent time to monitor an invocation. Based on the gained results, tracing,
closing and serializing a span in total takes from 2.6ms to 4.0ms.

133

7 Evaluation

The integration time of the method invocation tracing-based agent can be decreased
by using the implemented tool InstrumentIT. The application developer has to add and
link the binaries of the agent, start InstrumentIT, choose the project that has to be
monitored and to click on the instrument all button. After the mentioned steps the
application is ready to be monitored. We added an experiment for this pipeline. The
original application project, which was used for the first experiment, has been copied
and instrumented again by utilizing InstrumentIT. In this experiment the agent was
integrated in 45 seconds instead of 15 minutes.

7.5 Threats to Validity

Threats to Conclusion Validity: When repeating the experiments a certain amount
of time, we recognized that the profiling application returns different measurements.
In order to bridge this problem we performed the tests several times until the results
became stable. Even though we can not guarantee that the results are fully correct.

Threats to Internal Validity: The reliability of the agent configuration was not tested,
therefore we cannot guarantee that the measurements and processes performed by
the agent configurations are true. We can only assume that the processes of the agent
configurations are well performed. Apart from that, we assumed in the theoretical
evaluation that some strategies are in general less performant than other ones and
excluded them for the experimental evaluation.

Threats to Construct Validity: For the mobile hybrid application type experiment,
we implemented an own application in order to test this application class. We did not
test the agent configurations with other open-source hybrid applications, therefore we
cannot guarantee for the results retrieved of this experiment. We also implemented a
mobile client in order to test this application class.

Threats to External Validity: The evaluation results might not be reliable because the
tested agent configurations were implemented by ourselves and might be optimized. For
two main experiments we also used self implemented applications.

134

Chapter 8

Conclusion

This chapter recapitulates what we did in the course of this thesis. Section 8.1 summa-
rizes the work of the thesis. Section 8.2 argues with the defined goals of Section 1.2. In
the last section of this chapter, Section 8.2, we list recommended work for the future
that could not be done in the course of this thesis.

8.1 Summary

In the context of this thesis we researched and documented various mobile application
classes. Considering the presented classes, we listed the software requirements for
implementing a monitoring agent for mobile devices. In order to implement various
agent configurations we researched the state of the art and other possibilities to monitor
monitoring applications. For the three important working phases of the agent such
as collecting, managing and dispatching monitoring data we discussed and presented
various applicable strategies. As a result we implemented four main agent configurations.
The first one is tracing-based on method level. The second configuration traces methods
by exchanging the original method implementation with the instrumented one. With this
approach the application developer is able to separate the cross cutting concerns from the
core concerns of the application. The third agent configuration we implemented is call
stack sampling-based. The last one is able to trace predefined use cases of the application.
Some attributes of each of the implementations can be modified at runtime. The first
and second agent configuration are able to organize trace data in a dictionary as well as
in multiple stacks. Apart from that, the dispatch option and the dispatch constraint can
be changed in each implementation. At the end of this thesis we evaluated the different
monitoring strategies in two phases. The first phase consisted of comparing various
strategies of the same working phase theoretically. In the second phase of the evaluation
we performed several practical experiments where we profiled applications of different

135

8 Conclusion

classes with integrated monitoring agents in order to compare the performance in terms
of execution times. The results indicate, with the actual state of the implementations,
that the tracing-based approach with an implemented dictionary organization holding
span objects performs better than other agent configurations, independent on which
application they are running on.

8.2 Retrospective

The goals of this thesis were defined in Section 1.2. This section argues whether we
reached the goals and how.

The fist goal of this thesis was to define a set of application classes. We researched
topic related literature without appropriate results. Additionally, we searched for similar
topics on the web. The only application classification we found were the categories
defined by Apple. In Section 3.1 we explained that in the context of this thesis it is
not proper to distinguish applications dependent on the application category. Rather
than that we had to distinguish them through the used libraries and the application
architecture. As a result we defined three main mobile application classes.

The second goal was to research important system libraries for the context of APM. This
goal was reached simultaneously with the first one. In order to define a set of mobile
application classes we had to deep dive in the used system libraries for this kind of
application types.

The third goal was to design and implement the defined agent configurations. We
successfully reached this goal. Chapter 5 describes all the agent strategies we focused
on. Furthermore the functionality and the core concerns of the agent concepts were
explained. The implementations of the agent strategies, based on the designs, are listed
in Chapter 6. A huge challenge was to design and implement the agent strategy Call
Stack Sampling, but we also managed to achieve this goal.

The last goal was to evaluate the mobile monitoring strategies based on different
application types. In order to achieve this goal, we firstly evaluated general monitoring
strategies theoretically in order to filter unimportant and less performant concepts for
the practical evaluation. For the practical evaluation, we selected three different mobile
applications with different application classes. Afterward we defined profiling use cases
and profiled the application with the different monitoring configurations, in order to
read out the performance overhead produced by the agents.

136

8.2 Retrospective

Future Work

This sections presents possible future work topics, which we were not able to focus on
in the scope of this thesis.

• Architecture refactoring: In order to reduce the execution times of the agent
configurations, especially when organizing spans, a refactoring of the implemented
classes is needed. Instead of many switch-blocks within a method, a more modular
framework can be implemented. This task would also have positive impacts in
terms of runtime configuration.

• Refactoring of the call stack sampling implementation: Implementing the Call
Stack Sampling Strategy was a challenge in this thesis. Even though, this strategy
was less performant than expected. In order to accelerate the data collection and
management process, it might be useful to analyze and re-factor unperformant
methods in future.

• Compression of the serialized data: In order to save memory and to reduce the
network connectivity usage, it might be useful to focus on minimizing the size of
serialized data in future.

• Local measurement analysis: Filtering application monitoring data would reduce
the overall memory usage of the monitoring agent. On the other hand, it may
increase the response times of the application. It is essential to figure out how to
deploy the filtering process in order to hold the application response time on the
same level.

• Class versus structure: The programming language Swift also allows the application
developer to create structures for custom data types. It would be important to
analyze the performance of both options and to adapt the agent configurations in
order to increase the performance.

137

Chapter 8

Bibliography

[APC] A. Inc. Application Categories. URL: https://developer.apple.com/app-
store/categories/ (cit. on pp. 5, 25).

[APF] A. Inc. iOS Frameworks. URL: https://developer.apple.com/app-store/
categories/ (cit. on p. 5).

[APL115] A. Inc. Guides and Sample Code - Selector. 2015. URL: https://developer.
apple . com / library / content / documentation / General / Conceptual /
DevPedia-CocoaCore/Selector.html (cit. on p. 11).

[APL217] A. Inc. Understanding Low Memory Reports. 2017. URL: https://developer.
apple.com/library/content/technotes/tn2151/_index.html#//apple_
ref/doc/uid/DTS40008184-CH1-UNDERSTANDING_LOW_MEMORY_
REPORTS (cit. on p. 14).

[APL317] A. Inc. Memory Warning. 2017. URL: https : / / developer. apple . com /
documentation/uikit/uiviewcontroller/1621409-didreceivememorywarning?
preferredLanguage=occ (cit. on p. 14).

[APP17] A. Inc. AppDynamics iOS SDK. 2017. URL: https://docs.appdynamics.com/
display/PRO43/Instrument+iOS+Applications (cit. on p. 16).

[APR17] S. Development. 2017. URL: http://appreviewtimes.com (cit. on p. 26).

[ATH14] A. Inc. Threads. 2014. URL: https://developer.apple.com/library/content/
documentation / Cocoa / Conceptual / Multithreading / AboutThreads /
AboutThreads.html#//apple_ref/doc/uid/10000057i-CH6-SW2 (cit. on
p. 51).

[AUDA17] A. Inc. Audible audio-books file sizes. 2017. URL: http://www.audible.com/
audioformats (cit. on p. 26).

139

https://developer.apple.com/app-store/categories/
https://developer.apple.com/app-store/categories/
https://developer.apple.com/app-store/categories/
https://developer.apple.com/app-store/categories/
https://developer.apple.com/library/content/documentation/General/Conceptual/DevPedia-CocoaCore/Selector.html
https://developer.apple.com/library/content/documentation/General/Conceptual/DevPedia-CocoaCore/Selector.html
https://developer.apple.com/library/content/documentation/General/Conceptual/DevPedia-CocoaCore/Selector.html
https://developer.apple.com/library/content/technotes/tn2151/_index.html#//apple_ref/doc/uid/DTS40008184-CH1-UNDERSTANDING_LOW_MEMORY_REPORTS
https://developer.apple.com/library/content/technotes/tn2151/_index.html#//apple_ref/doc/uid/DTS40008184-CH1-UNDERSTANDING_LOW_MEMORY_REPORTS
https://developer.apple.com/library/content/technotes/tn2151/_index.html#//apple_ref/doc/uid/DTS40008184-CH1-UNDERSTANDING_LOW_MEMORY_REPORTS
https://developer.apple.com/library/content/technotes/tn2151/_index.html#//apple_ref/doc/uid/DTS40008184-CH1-UNDERSTANDING_LOW_MEMORY_REPORTS
https://developer.apple.com/documentation/uikit/uiviewcontroller/1621409-didreceivememorywarning?preferredLanguage=occ
https://developer.apple.com/documentation/uikit/uiviewcontroller/1621409-didreceivememorywarning?preferredLanguage=occ
https://developer.apple.com/documentation/uikit/uiviewcontroller/1621409-didreceivememorywarning?preferredLanguage=occ
https://docs.appdynamics.com/display/PRO43/Instrument+iOS+Applications
https://docs.appdynamics.com/display/PRO43/Instrument+iOS+Applications
http://appreviewtimes.com
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/Multithreading/AboutThreads/AboutThreads.html#//apple_ref/doc/uid/10000057i-CH6-SW2
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/Multithreading/AboutThreads/AboutThreads.html#//apple_ref/doc/uid/10000057i-CH6-SW2
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/Multithreading/AboutThreads/AboutThreads.html#//apple_ref/doc/uid/10000057i-CH6-SW2
http://www.audible.com/audioformats
http://www.audible.com/audioformats

Bibliography

[AUDB17] A. Inc. Audible Harry Potter and the Goblet of Fire, Book 4. 2017. URL:
https://www.audible.com/pd/Kids/Harry-Potter-and-the-Goblet-of-Fire-
Book-4-Audiobook/B017V4NUPO/ref=a_search_c4_1_4_srTtl?qid=
1501240285&sr=1-4 (cit. on p. 26).

[BS14] J. Bansal, B. Sunkara. Performing call stack sampling. US Patent
App. 14/071,523. 2014. URL: http : / / www. google . com / patents /
US20140068068 (cit. on pp. 13, 78).

[CFD98] A. C. Inc. CFDictionary Header. 1998. URL: https://opensource.apple.com/
source/headerdoc/headerdoc-8.9.5/ExampleHeaders/CFDictionary.h.
auto.html (cit. on p. 58).

[CMF+14] M. Chow, D. Meisner, J. Flinn, D. Peek, T. F. Wenisch. “The Mystery Ma-
chine: End-to-end Performance Analysis of Large-scale Internet Services.”
In: 11th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 14). USENIX Association, 2014, pp. 217–231 (cit. on p. 11).

[COC17] B. Asher, D. Koutsogiorgas, D. Tomlinson, O. Therox, T. C. D. Team. Co-
coaPods. 2017. URL: url (cit. on p. 11).

[DEVP17] K. Angerbauer, T. Angerstein, A. Hidiroglu, S. Lehmann, M. Palenga,
O. Röhrdanz, M. Sassano, C. Völker. Mobile-aware Diagnosis of Performance
Problems in Enterprise Applications. 2017 (cit. on pp. 16, 18, 63).

[DYN17] D. LLC. Dynatrace iOS app monitoring. 2017. URL: https://www.dynatrace.
com/technologies/mobile/ios-monitoring/ (cit. on pp. 16, 17).

[FEA90] K. K. C., C. S. G., H. J. A., N. W. E., P. A. S. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. 1990 (cit. on p. 90).

[GAR17] G. Inc. Application Performance Monitoring (APM). 2017. URL: http://www.
gartner.com/it-glossary/application-performance-monitoring-apm (cit. on
p. 9).

[HHMO17] C. Heger, A. van Hoorn, M. Mann, D. Okanović. “Application Performance
Management: State of the Art and Challenges for the Future.” In: Pro-
ceedings of the 8th ACM/SPEC on International Conference on Performance
Engineering. ICPE ’17. L’Aquila, Italy: ACM, 2017, pp. 429–432 (cit. on
p. 9).

[HKGH11] A. van Hoorn, H. Knoche, W. Goerigk, W. Hasselbring. “Model-Driven
Instrumentation for Dynamic Analysis of Legacy Software Systems.” In:
Proceedings of the 13. Workshop Software-Reengineering (WSR 2011). Also
appeared in Softwaretechnik-Trends 31(2) (2011) 18?19. 2011, pp. 26–27
(cit. on pp. 14, 43).

140

https://www.audible.com/pd/Kids/Harry-Potter-and-the-Goblet-of-Fire-Book-4-Audiobook/B017V4NUPO/ref=a_search_c4_1_4_srTtl?qid=1501240285&sr=1-4
https://www.audible.com/pd/Kids/Harry-Potter-and-the-Goblet-of-Fire-Book-4-Audiobook/B017V4NUPO/ref=a_search_c4_1_4_srTtl?qid=1501240285&sr=1-4
https://www.audible.com/pd/Kids/Harry-Potter-and-the-Goblet-of-Fire-Book-4-Audiobook/B017V4NUPO/ref=a_search_c4_1_4_srTtl?qid=1501240285&sr=1-4
http://www.google.com/patents/US20140068068
http://www.google.com/patents/US20140068068
https://opensource.apple.com/source/headerdoc/headerdoc-8.9.5/ExampleHeaders/CFDictionary.h.auto.html
https://opensource.apple.com/source/headerdoc/headerdoc-8.9.5/ExampleHeaders/CFDictionary.h.auto.html
https://opensource.apple.com/source/headerdoc/headerdoc-8.9.5/ExampleHeaders/CFDictionary.h.auto.html
url
https://www.dynatrace.com/technologies/mobile/ios-monitoring/
https://www.dynatrace.com/technologies/mobile/ios-monitoring/
http://www.gartner.com/it-glossary/application-performance-monitoring-apm
http://www.gartner.com/it-glossary/application-performance-monitoring-apm

Bibliography

[HRH+09] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller, J. Ehlers, S. Frey,
D. Kieselhorst. Continuous Monitoring of Software Services: Design and
Application of the Kieker Framework. Research Report. Kiel University,
2009 (cit. on p. 10).

[HWH12] A. van Hoorn, J. Waller, W. Hasselbring. “Kieker: A Framework for Ap-
plication Performance Monitoring and Dynamic Software Analysis.” In:
Proceedings of the 3rd ACM/SPEC International Conference on Performance
Engineering. ICPE ’12. ACM, 2012, pp. 247–248 (cit. on p. 10).

[IAD17] A. Inc. Apple iAd App Network. 2017. URL: https://developer.apple.com/
support/iad/ (cit. on p. 32).

[IHE15] O. Ibidunmoye, F. Hernández-Rodriguez, E. Elmroth. “Performance
Anomaly Detection and Bottleneck Identification.” In: ACM Comput. Surv.
48.1 (2015), 4:1–4:35 (cit. on p. 10).

[INS17] A. Inc. Instruments. 2017. URL: https : / / developer . apple . com /
library / content / documentation / DeveloperTools / Conceptual /
InstrumentsUserGuide/ (cit. on p. 104).

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
J. Irwin. “Aspect-oriented programming.” In: ECOOP’97 — Object-Oriented
Programming: 11th European Conference Jyväskylä, 1997 Proceedings. Ed.
by M. Akşit, S. Matsuoka. Springer Berlin Heidelberg, 1997, pp. 220–242
(cit. on p. 14).

[LIG17] L. Inc. LightStep iOS app monitoring. 2017. URL: http://lightstep.com
(cit. on p. 18).

[MUR17] A. Inc. NSMutableURLRequest. 2017. URL: https://developer.apple.com/
documentation/foundation/nsmutableurlrequest (cit. on p. 29).

[NEW17] N. R. Inc. New Relic iOS SDK. 2017. URL: https://docs.newrelic.com/docs/
mobile-monitoring/new-relic-mobile-ios/install-configure/work-ios-sdk-
api (cit. on pp. 16, 17).

[NK14] R. Napier, M. Kumar. IOS 7 Programming Pushing the Limits: Develop
Advance Applications for Apple IPhone, IPad, and IPod Touch. 2014 (cit. on
pp. 11, 44).

[NSUI17] A. Inc. NSUInteger. 2017. URL: https : / / developer . apple . com /
documentation/objectivec/nsuinteger (cit. on p. 50).

[OPT17] B. Cronin, B. Sigelman, B. Gonzalez, D. Kuebrich, M. Sembwever,
P. Sharma, S. Gutekanst, W. Schottdorf Tobias Sheng, Y. Shkurom. Open-
tracing framework. 2017. URL: http://opentracing.io (cit. on pp. 18, 51,
52).

141

https://developer.apple.com/support/iad/
https://developer.apple.com/support/iad/
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/
http://lightstep.com
https://developer.apple.com/documentation/foundation/nsmutableurlrequest
https://developer.apple.com/documentation/foundation/nsmutableurlrequest
https://docs.newrelic.com/docs/mobile-monitoring/new-relic-mobile-ios/install-configure/work-ios-sdk-api
https://docs.newrelic.com/docs/mobile-monitoring/new-relic-mobile-ios/install-configure/work-ios-sdk-api
https://docs.newrelic.com/docs/mobile-monitoring/new-relic-mobile-ios/install-configure/work-ios-sdk-api
https://developer.apple.com/documentation/objectivec/nsuinteger
https://developer.apple.com/documentation/objectivec/nsuinteger
http://opentracing.io

[SAR17] A. Inc. 2017. URL: https://developer.apple.com/documentation/swift/
array (cit. on p. 22).

[SFU17] A. Inc. 2017. URL: https : / / developer. apple . com / library / content /
documentation / Swift / Conceptual / Swift _ Programming _ Language /
Functions.html#//apple_ref/doc/uid/TP40014097-CH10-ID158 (cit. on
p. 21).

[SOP17] A. Inc. 2017. URL: https : / / developer. apple . com / library / content /
documentation / Swift / Conceptual / Swift _ Programming _ Language /
OptionalChaining.html#//apple_ref/doc/uid/TP40014097-CH21-ID245
(cit. on p. 21).

[UIN17] A. Inc. UInt. 2017. URL: https://developer.apple.com/documentation/
swift/uint (cit. on p. 50).

[URR17] A. Inc. NSURLRequest. 2017. URL: https : / / developer . apple . com /
documentation/foundation/nsurlrequest (cit. on p. 29).

[USD17] A. Inc. URLSessionDataTask. 2017. URL: https://developer.apple.com/
documentation/foundation/urlsessiondatatask (cit. on p. 31).

[USE17] A. Inc. URLSession. 2017. URL: https : / / developer . apple . com /
documentation/foundation/urlsession (cit. on p. 30).

[USL17] A. Inc. URLSessionDownloadTask. 2017. URL: https://developer.apple.com/
documentation/foundation/urlsessiondownloadtask (cit. on p. 31).

[USU17] A. Inc. URLSessionUploadTask. 2017. URL: https://developer.apple.com/
documentation/foundation/urlsessionuploadtask (cit. on p. 31).

[WKN17] A. Inc. 2017. URL: https://developer.apple.com/documentation/webkit/
wknavigationdelegate (cit. on p. 29).

[WKU17] A. Inc. 2017. URL: https://developer.apple.com/documentation/webkit/
wkuidelegate (cit. on p. 28).

[WKW17] A. Inc. 2017. URL: https://developer.apple.com/documentation/webkit/
wkwebview (cit. on p. 28).

[XCO17] A. Inc. Xcode. 2017. URL: https://developer.apple.com/xcode/ (cit. on
p. 104).

All links were last followed on January 02, 2018.

https://developer.apple.com/documentation/swift/array
https://developer.apple.com/documentation/swift/array
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/Functions.html#//apple_ref/doc/uid/TP40014097-CH10-ID158
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/Functions.html#//apple_ref/doc/uid/TP40014097-CH10-ID158
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/Functions.html#//apple_ref/doc/uid/TP40014097-CH10-ID158
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/OptionalChaining.html#//apple_ref/doc/uid/TP40014097-CH21-ID245
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/OptionalChaining.html#//apple_ref/doc/uid/TP40014097-CH21-ID245
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/OptionalChaining.html#//apple_ref/doc/uid/TP40014097-CH21-ID245
https://developer.apple.com/documentation/swift/uint
https://developer.apple.com/documentation/swift/uint
https://developer.apple.com/documentation/foundation/nsurlrequest
https://developer.apple.com/documentation/foundation/nsurlrequest
https://developer.apple.com/documentation/foundation/urlsessiondatatask
https://developer.apple.com/documentation/foundation/urlsessiondatatask
https://developer.apple.com/documentation/foundation/urlsession
https://developer.apple.com/documentation/foundation/urlsession
https://developer.apple.com/documentation/foundation/urlsessiondownloadtask
https://developer.apple.com/documentation/foundation/urlsessiondownloadtask
https://developer.apple.com/documentation/foundation/urlsessionuploadtask
https://developer.apple.com/documentation/foundation/urlsessionuploadtask
https://developer.apple.com/documentation/webkit/wknavigationdelegate
https://developer.apple.com/documentation/webkit/wknavigationdelegate
https://developer.apple.com/documentation/webkit/wkuidelegate
https://developer.apple.com/documentation/webkit/wkuidelegate
https://developer.apple.com/documentation/webkit/wkwebview
https://developer.apple.com/documentation/webkit/wkwebview
https://developer.apple.com/xcode/

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Tasks
	1.4 Document Organization

	2 Foundations and Technologies
	2.1 Terminology
	2.2 Strategies for developing monitoring agents
	2.3 Available iOS Application Monitoring Agents
	2.4 Software Development Introduction for iOS

	3 Application Classification
	3.1 Application Categories
	3.2 Mobile Application Architecture
	3.3 Summary

	4 Requirements for Monitoring Agents
	4.1 Software Requirements Specification

	5 Architecture of Monitoring Agents
	5.1 Mobile Agent Pipeline
	5.2 Data Collection Strategies
	5.3 Data Management Strategies
	5.4 Data Dispatch Strategies

	6 Implementation
	6.1 Agent Architecture
	6.2 Agent Configurations

	7 Evaluation
	7.1 Evaluation Methodology & Goals
	7.2 Theoretical Evaluation
	7.3 Practical Evaluation
	7.4 Discussion of the Results
	7.5 Threats to Validity

	8 Conclusion
	8.1 Summary
	8.2 Retrospective

	Bibliography

