
COMMUNICATIONS

N-Persubstituted 3,5-Diaminophenols and 1,3,5-Benzenetriamines and their Protonation

By F. Effenberger and R. Niess[*]

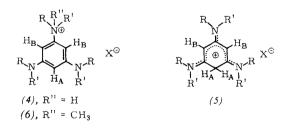
N-Persubstituted 3,5-diaminophenols (2) and 1,3,5-benzenetriamines (3) have not been described previously. We have prepared aminobenzenes (2) and (3) by heating phloroglucinol (1) with secondary amines in an autoclave^[1].

The reactions are carried out with an excess of amine (phloroglucinol : amine = 1:4), the molar ratio (2):(3) obtained depending solely on the reaction temperature. The products can be purified by fractional distillation or recrystallization.

Amine used	Temp. (°C)	(2)		(3)	
		Yield (%)	M.p. (°C) (b.p., °C/mm	Yield (%)	M.p. (°C) (b.p., °C/mm)
Pyrrolidine	20	100	174-185		
	180-200	-		95	179-181
Piperidine	180-200	98	154-156	-	
	280-300	- 1		40	184
Morpholine	180-200	91	185-187		
	280-300	-		37	308-312
Dimethylamine	130-150	68	(148/0.008)	22	
	220	14		69	(131/0.01)

With mineral acids the benzenetriamines (3) form definite salts containing 1, 2, or 3 moles of acid.

Depending on the substituents R and R', stable N- or Cprotonation products, (4) and (5) respectively, are formed on monoprotonation. N-protonation of tripiperidinobenzene [(3), R and R' = (CH₂)₅] for example leads to the formation of (4), whilst with tripyrrolidinobenzene [(3), R and R' = (CH₂)₄] a crystalline compound of the type (5) is produced. (Physical properties: e.g. (5), X = BF₄, yellow needles. m. p. 254-257 °C).


Angew. Chem. internat. Edit. / Vol. 6 (1967) / No. 12

Assignment of structure was based on ¹H-NMR-spectroscopic data. The ¹H-NMR spectrum of tripyrrolidinobenzene hydroiodide [(5), R and R' = (CH₂)₄, X = I] in CDCl₃ showd H_B as a singlet at $\tau = 5.17$ and H_A as a singlet at $\tau = 6.20$ (relative intensities 1:1).

Particular structural characteristics can be gleaned from the ¹H-NMR spectra of tripiperidinobenzene monoperchlorate [(4), R and R' = (CH₂)₅, X = ClO₄]. In polar solvents (e.g. $(CD_3)_2CO$ or $(CD_3)_2SO$ the three nuclear protons appear as a singlet $\tau \tau = 3.6$, whilst the proton attached to the nitrogen (whose presence can be seen only on integration) indicates rapid proton exchange among the amino groups. On the other hand, in CDCl₃ this proton is fixed on an amino function and the signals of the three nuclear protons are widely separated in the spectrum (1 H at $\tau = 2.10$ [N-H], 2 H at $\tau = 3.38$ and 1 H at $\tau = 4.63$). A meta coupling of the ring protons HA and HB was not observed. The comparable N-methyl compound [(6), R and R' = $(CH_2)_5$, X = CIO_4], however, shows only a small amount of splitting of the nuclear protons (7-values centered at 3.5) and a distinct meta coupling ($J_{AB} = 2 \text{ Hz}$).

We conclude from the NMR spectra that there is a strong electronic disturbance of the aromatic π -electron system in tripiperidinobenzene monoperchlorate. An alternative to the benzenoid structure (4) is a valence isomer with a "Dewar structure"; although this would certainly agree with the NMR spectrum, we have no other evidence to support this structure.

Further investigations, in particular X-ray structural analysis of the tripiperidinobenzene monoperchlorate, are in progress.

Received: August 11th, 1966; revised Sept. 9th, 1966 [Z 320 IE] German version: Angew. Chem. 78, 1100 (1967)

[*] Dr. F. Effenberger and R. Niess

Institut für Organ. Chemie

der Techn. Hochschule

Azenbergstr. 14/16

7 Stuttgart (Germany)

[1] The preparation of the aminobenzenes was reported at the *Chemiedozententagung* in Würzburg on April 29th, 1966.