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Abstract

In this thesis, we investigate the general topic of computational natural language
understanding (NLU), which has as its goal the development of algorithms and
other computational methods that support reasoning about natural language by
the computer. Under the classical approach, NLU models work similar to computer
compilers (Aho et al., 1986), and include as a central component a semantic parser
that translates natural language input (i.e., the compiler’s high-level language) to
lower-level formal languages that facilitate program execution and exact reasoning.
Given the difficulty of building natural language compilers by hand, recent work
has centered around semantic parser induction, or on using machine learning to
learn semantic parsers and semantic representations from parallel data consisting
of example text-meaning pairs (Mooney, 2007a).

One inherent difficulty in this data-driven approach is finding the parallel data
needed to train the target semantic parsing models, given that such data does not
occur naturally “in the wild” (Halevy et al., 2009). Even when data is available,
the amount of domain- and language-specific data and the nature of the available
annotations might be insufficient for robust machine learning and capturing the
full range of NLU phenomena. Given these underlying resource issues, the se-
mantic parsing field is in constant need of new resources and datasets, as well as
novel learning techniques and task evaluations that make models more robust and
adaptable to the many applications that require reliable semantic parsing.

To address the main resource problem involving finding parallel data, we inves-
tigate the idea of using source code libraries, or collections of code and text docu-
mentation, as a parallel corpus for semantic parser development and introduce 45
new datasets in this domain and a new and challenging text-to-code translation
task. As a way of addressing the lack of domain- and language-specific parallel
data, we then use these and other benchmark datasets to investigate training se-
mantic parsers on multiple datasets, which helps semantic parsers to generalize
across different domains and languages and solve new tasks such as polyglot decod-
ing and zero-shot translation (i.e., translating over and between multiple natural
and formal languages and unobserved language pairs). Finally, to address the issue
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of insufficient annotations, we introduce a new learning framework called learning
from entailment that uses entailment information (i.e., high-level inferences about
whether the meaning of one sentence follows from another) as a weak learning
signal to train semantic parsers to reason about the holes in their analysis and
learn improved semantic representations.

Taken together, this thesis contributes a wide range of new techniques and
technical solutions to help build semantic parsing models with minimal amounts
of training supervision and manual engineering effort, hence avoiding the resource
issues described at the onset. We also introduce a diverse set of new NLU tasks
for evaluating semantic parsing models, which we believe help to extend the scope
and real world applicability of semantic parsing and computational NLU.
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Deutsche Zusammenfassung

Grundgegenstand dieser Arbeit ist das Problem des Sprachverstehens (Natural
Language Understanding, im folgenden NLU). Das Ziel dieses Teilbereichs der
maschinellen Sprachverarbeitung ist die Erforschung und Entwicklung von Algo-
rithmen zur Schlussfolgerung über natürliche Sprache durch Computer. Der klas-
sische Ansatz ähnelt methodisch dem des Compilerbaus (Aho et al., 1986). Die
zentrale Komponente ist dabei ein semantischer Parser, der die natürlichsprach-
liche Eingabe (beim Compiler also die Eingabe in einer höheren Programmier-
sprache) in eine formale Sprache auf niederer Ebene übersetzt, um die Ausführung
und Interpretation des Programms zu ermöglichen. Da Compiler für natürliche
Sprachen von Hand schwer zu bauen sind, konzentrieren sich neuere Arbeiten auf
die Induktion semantischer Parser oder auf das maschinelle Lernen semantischer
Parser und semantischer Repräsentationen aus parallelen Daten bestehend aus
Paaren von Text und Bedeutung (Mooney, 2007a).

Eine Schwierigkeit für diesen datengetriebenen Ansatz liegt in der Beschaf-
fung der parallelen Daten; diese kommen nicht “in der freien Natur” vor (Halevy
et al., 2009). Selbst wenn Daten verfügbar sind, ist die Verfügbare Menge an
sprach- und domänenspezifischen Daten möglicherweise nicht ausreichend, um
verlässliche Modelle zu trainieren und die gesamte Vielfalt der NLU-Phänomene
abzudecken. Diese Herausforderungen unterstreichen den ständigen Bedarf an
neuen Ressourcen und Datensätzen im Bereich des semantischen Parsings. Zudem
sind neue Lern- und Evaluierungsverfahren gefragt, um Modelle robuster und an-
passungsfähiger zu machen. Davon können wiederum Anwendungen profitieren,
in denen verlässliche semantische Parser notwendig sind.

Das Problem der Datenknappheit bildet die Motivation für eine Verwendung von
Programmcode-Bibliotheken als Parallelkorpora – also Sammlungen von Quell-
code in Programmiersprachen mit der darin enthaltenen natürlichsprachlichen
Dokumentation. Wir präsentieren 45 neue Datensätze in dieser Domäne- als
Grundlage für die neuartige, anspruchsvolle Aufgabenstellung der Text-in-Code-
Übersetzung (text-to-code). Zusammem mit weiteren Standarddatensätzen ver-
wenden wir dieses Korpus dazu, semantische Parser für verschiedene Domänen
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Deutsche Zusammenfassung

und Sprachen zu trainieren. Wir lösen dadurch neu entstandene Aufgaben wie
die sprachübergreifende Dekodierung (polyglot decoding) zwischen verschiedenen
natürlichen und formalen Sprachen sowie die Zero-Shot-Übersetzung (zero-shot
translation) zwischen ungesehenen Sprachpaaren. Speziell für den Umgang mit un-
zureichender Datenmengen setzen wir ein neues Lernverfahren, welches Entailment-
Information als ein schwaches Signal für das Training eines semantischen Parsers
ausnutzt: Die Information darüber, ob die Bedeutung eines natürlichsprachlichen
Satzes S aus der eines anderen Satzes folgt, wird verwendet, um über Lücken in
der bisherigen Analyse des Parsers zu schlussfolgern und auf dieser Basis bessere
semantische Repräsentationen zu lernen.

Der Gesamtbeitrag dieser Dissertation umfasst eine Vielzahl an neuen Methoden
und technischen Lösungen für das Training von semantischen Parsern mit einen
Minimum an Überwachung und manueller Anpassung. Dieser Ansatz hilft, die zu
Beginn beschriebene Ressourcenknappheit zu umgehen. Des Weiteren stellen wir
eine Reihe von neuen NLU-Problemstellungen zur Evaluation semantischer Parser
vor. Wir glauben, dass dadurch die Mächtigkeit und praktische Verwendbarkeit
von semantischen Parsern und NLU im Allgemeinen maßgeblich verbessert werden
kann.
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1 Introduction to Natural
Language Understanding

1.1 The Problem of Natural Language
Understanding

In this thesis, we investigate the general topic of Computational Natural Language
Understanding, which has as its goal the development of algorithms and other
computational methods that facilitate reasoning about natural language by the
computer. The extent to which the computer reasons or thinks about language is
determined by its ability to solve various natural language tasks, a small subset
of which we examine in this thesis and describe in this introduction. Under such
an approach, we subject the computer to various linguistic tests that probe the
computer’s knowledge of language and the world, knowledge that we assume is a
prerequisite for solving each problem.

One such test that has intimate connections to the methods investigated in this
thesis is automated question-answering, where the goal is to create programs that
can retrieve answers to questions posed in ordinary natural language. For example,
imagine that we have a background database such as the one in Figure 1.1 about
flight schedules and we encounter the following question (Allen, 1987):

Which flights to Chicago leave at 4PM?

The task for our question-answerer is to return all flights that satisfy the con-
straints expressed in the query. As we discuss in this chapter, this problem can
be broken down into several smaller sub-problems, and requires several levels of
knowledge, some that go beyond the linguistic level. Chief among them is knowl-
edge about how to translate this input query to an unambiguous formal represen-
tation with which the computer can reason exactly, in this case with the help of
other downstream components such as a database management system or inference
engine. Such a formal representation might take the following form:

15



1 Introduction to Natural Language Understanding

flight
f105677
f105678
f105691

...

arrive
(f105677, "chicago", 18:30)
(f105678, "boston", 19:30)
(f105691, "london", 10:30)

...

depart
(f105677, "miami", 16:00)
(f105678, "moscow", 10:30)
(f105691, "berlin", 11:30)

...

Figure 1.1: An example airline database for querying.

( print-all ?f (and ( flight ?f)

( arrive ?f ‘chicago ’ ?t)

( depart ?f ?s 16:00)))

where each symbolic expression (symbol arg1,...) maps either to some table in
the example database or a procedure in a database program or logical inference
engine. The final computation for finding the correct answer then requires sub-
stituting each variable ?v with values in the database that satisfy the constraints
of the formal query and returning the value of the variable ?f . In this case, the
system should minimally return the flight identified as f105677.

As this example shows, by doing such a translation we are eliminating the am-
biguity of ordinary language and making it possible to interface natural language
with more complex systems and modalities. Thus, the ability to robustly translate
natural languages to formal languages and representations in different domains,
which we henceforth refer to as Semantic Parsing (SP), is of central interest to
natural language understanding (NLU). This thesis focuses on the underlying algo-
rithmic properties underpinning SP, and asks a general empirical question related
to the practical learnability of NLU models of this type:

• Learnability and NLU: To what extent can we get the computer to learn
natural language understanding models and semantic parsers from examples
and minimal amounts of training supervision?

With this question, several new questions arise, such as the question of the types
of examples we expect the computer to learn from, what minimal means in this
case, and how we expect to find or collect such examples. The goal for this chapter
is to explore these questions in more detail. To start the discussion, we further

16



1.1 The Problem of Natural Language Understanding

motivate the symbolic NLU approach introduced above and give a brief overview
of its origins in linguistics and artificial intelligence research. While reviewing this
background, we identify more concretely the questions about learnability that are
of interest to our work and introduce the following two learning settings: 1) learning
from denotation and entailment and 2) learning from logical form.

1.1.1 Natural Language Understanding à la Montague

“There is in my opinion no important theoretical difference between nat-
ural languages and the artificial languages of logicians; indeed, I consider
it possible to comprehend the syntax and semantics of both kinds of lan-
guages within a single natural and mathematically precise theory.”

– Richard Montague (1970) Universal Grammar

The formal study of natural language understanding in linguistics has its origins
in the work of the mathematician Richard Montague, who advocated using the
tools of mathematical logic to study natural language syntax and semantics. As
the quote above indicates, he argued for studying natural languages with the same
rigor as one studies the formal languages of mathematics and logic, and rejected
any principled distinction between both types of languages.

While a full review of Montague semantics is beyond the scope of this chapter
(for a computational overview, see Hobbs and Rosenschein (1977)), we consider
the processing pipeline involved in his model of NLU. As shown in Figure 1.2a, for
a given textual input, one starts by performing a syntactic analysis, which is then
translated to a logical representation, specifically, a higher-order intensional modal
logic, and interpreted semantically using semantic models. While his work pre-
dates much of the modern work in programming language theory, such a division
of labor bears some resemblance to how modern computer compilers are designed
and implemented (see Figure 1.2b), or computer programs that translate high-level
programming languages to lower-level languages.

Pushing the analogy with programming languages further, we can think of a
NLU system in the Montague tradition as a kind of compiler that translates natural
language input (i.e., a high-level language) to lower-level programs that can be used
for exact reasoning or execution. The connection between NLU and compiler design

17



1 Introduction to Natural Language Understanding

NL text

Syntax

Intensional Logic

Model

Programs

Translation

Interpretation

pos := i + rate * 60

Syntax :=

+

*

60id3

id2

id1

Semantics :=

+

*

int2real

60

id3

id2

id1

Code
MOVF id2, R2
MULF #60.0, R2
MOVF id2, R1
ADDF R2, R1
MOVF R1,id1

Programs

lex: id1 := id2 + id3 * 60

Translation

Generation

a. b.

Figure 1.2: The Montague model of semantics (a) from Halvorsen (1986) and a
standard compiler processing pipeline in (b) from Aho et al. (1986).

is not only conceptual, since many of the underlying methods, from the level of
syntactic analysis to translation and semantics, rely on the same mathematics and
set of algorithms. Formally, the goal is to model some transduction between a high-
level input language Lin and output language Lout, which we can define as some
subset of Lin ×Lout (Harrison, 1978). The way Montague defined such a mapping
to logical languages, for example, works similar to how syntax-directed translators
are defined in compilers (e.g., see Knuth (1968); Aho and Ullman (1969)), and his
use of model theory and the lambda calculus to define a denotational semantics for
a fragment of English mirrors how one ordinarily defines a denotational semantics
for programming languages (Allison, 1986).

Beyond the technical contributions made by Montague, perhaps his most lasting
contribution is methodological in nature, and involves his use of truth-conditions
and entailment judgements as the primary data for semantics research. In Mon-
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1.1 The Problem of Natural Language Understanding

tague (1970), he describes the basic aim of semantics as the ability ‘to characterize
the notion of a true sentence (under a given interpretation) and of entailment.’ In
practice, when developing theories of semantics, semanticists use these judgements
to check that their resulting semantic models account for all known facts about
truth and entailment, and modify their assumptions and theories when certain
facts are not captured. Such a focus on truth-conditions and entailment relations
greatly expanded the adequacy criteria for semantics theories and the breadth of
research (Partee, 2005), in a way similar to Chomsky (1965)’s use of judgements
about grammaticality in syntax research.

It is instructive to consider how this approach to semantics works in practice. As
an illustration, consider the following linguistic example from Donald Davidson’s
work on event semantics (Davidson, 2001):

Jones buttered the toast slowly ... in the bathroom with a knife... (1.1)

which he uses to ask the question: how should the logical form for these types of
action sentences look like? The specific difficulty is how to represent the adverbial
modifiers slowly, in the bathroom,... while accounting for the following entailments
(marked using the |= symbol) 1.3-1.8 from 1.2:

Jones buttered the toast slowly in the bathroom with a knife (1.2)

(1.2) |= Jones buttered the toast slowly in the bathroom (1.3)

(1.2) |= Jones buttered the toast slowly (1.4)

(1.2) |= Jones buttered the toast (1.5)

(1.2) |= Jones did something that was in the bathroom (1.6)

(1.2) |= The thing that Jones was involved with was slow (1.7)

(1.2) |= The thing that Jones was involved with involved a knife (1.8)

On the basis of this evidence (i.e., the entailments), it is insufficient to represent
each adverbial modifier as a slot in the main predicate butter as shown in 1.9.
This approach also has the downside of requiring a large number of predicates with
a variable number of argument slots. The general observation is that one can drop
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1 Introduction to Natural Language Understanding

( define butter-denot ’(("jones" "toast" "e1")
("john" " cracker " "e2")))

;; the denotation of butter , or JbutterK
( define slow-denot ’("e1")) ;; JslowlyK

( define butter ( lambda (s)
( lambda (o)

( lambda (e)
( contained-in (list s o e)

butter-denot )))))
;; => λs.λo.λe. butter(s, o, e), in curried form

( define slowly ( lambda (e) ( contained-in e slow-denot )))
;; => λe.slowly(e)

((( butter "jones") "toast") "e1")
;; => λo.λe.butter(”jones”, o, e) => λe.butter(”jones”, ”toast”, e)... => True
( slowly "e2") ;; => False

Figure 1.3: An example functional interpreter for the Davidson fragment imple-
mented in the Lisp programming language.

the modifiers freely in this case without affecting the entailment relations, which
therefore requires representing each modifier separately from the main predicate.
For this reason, Donaldson argues for the existence of events and event entities, e,
and offers the logical form in 1.10:

butter(jones,toast,slowly,in bathroom,...)
(1.9)

∃e. butter(jones,toast,e) ∧ slowly(e) ∧ with(e,knife) ∧ ...
(1.10)

where the event variable e captures the general eventuality being described, which
is referred to in 1.7-1.8 as the thing that John was involved with, and the modifiers
are given as separate predicates over the event. Without this new variable and extra
level of abstraction, according to Davidson’s argument, the correct entailments do
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1.1 The Problem of Natural Language Understanding

not hold, which therefore makes the alternative analysis in 1.9 untenable. Using
the analogy with programming languages once more, we can think of these tests
of entailment as analogous to unit testing in software development, or when one
subjects one’s program semantics or code to example input and output to check
that the program behaves as expected. If such a test fails, then the programmer has
made a mistake that needs to be fixed, which might similarly involve introducing
more levels of abstraction into the associated program.

Given the formal connection between semantic theories in the Montague tra-
dition and the theories of computation and programming discussed above, the
practical implementation of such theories and fragments is well understood and
details can be found in several textbooks on the subject that commonly use tech-
niques from either logic programming (Blackburn and Bos, 2005) or functional
programming (Gazdar and Mellish, 1989; Allen, 1987; Van Eijck and Unger, 2010).
An extensional, Montague style implementation and functional interpreter for the
Davidson fragment is shown in Figure 1.3 using the Lisp language first introduced
in McCarthy (1960), which, like Montague’s theory, is based on the lambda calcu-
lus of Church (1932).

In all of the work cited above, computational semantics (i.e., the study of the
computational implementation of semantic theories) works top-down from linguis-
tic theories about representations, such as the analysis of events already intro-
duced, to explicit implementations or coding of these theories, such as the imple-
mentation in Figure 1.3. Van Eijck and Unger (2010) specifically describe two main
uses for machines in computational semantics, first to automate the construction
of meaning representations (largely with the help of linguist programmers), and
second to perform deductive inference on these generated representations. In this
thesis, we consider a third use of machines in this endeavor, which centers around
the inductive learning of semantic theories using machine learning.

One of the learning settings that we investigate in this thesis (Chapter 5) is
based on the following question:

1. Learning from Denotation and Entailment: Rather than starting with
an explicit implementation for a natural language fragment or set of data, can
we teach the computer to learn backwards from denotations and entailments
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to the correct representations?

For example, rather than translating our complete theory of events to code, we
might start by giving the computer the data in 1.1-1.8 and the deficient semantic
analysis in 1.9. By providing the computer with some additional facts about logic
and the target domain, we then can train the computer to find the correct repre-
sentations, within some constrained space of possible representations, that leads
to the correct entailments through some form of trial and error. In other words, we
want to train the computer to behave like a semanticist, and to ground decisions
about representations by working backwards from the target data. In this case,
the aim is to teach the computer to break the representation in 1.9 into more local
modifier predications. To test if the goal has been accomplished, we can subject
the computer to new examples to see if it makes the correct decisions.

The general motivation for this type of experimentation, which has gained some
traction in modern natural language processing (NLP) (Clarke et al. (2010); Artzi
and Zettlemoyer (2011); Liang et al. (2013); Berant et al. (2013)), is to see how
much the computer can learn about language and the world from minimal amounts
of explicit instructions, a motivation that is of more general scientific interest,
especially to the field of machine learning. A more practical motivation for this
type of automatic theory construction is to make it easier to design and implement
semantic theories by bootstrapping from data. As we discuss in the next subsection,
the engineering of such semantic models and knowledge resources has proven to
be a major bottleneck in AI research on NLU, which makes new methods that
replace the need for hand-engineering a valuable resource.

1.1.2 The View from AI and NLP

“I was searching for a method of semantic interpretation that would be
independent of particular assumptions about data base structure... The
method I developed was essentially an interpretation of Carnap’s notion
of truth conditions (Carnap, 1964a). I chose to represent those truth con-
ditions by formal procedures that could be executed by a machine.... This
notion, which I referred to as ‘procedural semantics,’ picks up the chain
of semantic specification from the philosophers at the level of abstract
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1.1 The Problem of Natural Language Understanding

truth conditions, and carries it to a formal specification of those truth
conditions as procedures in a computer language”

– William Woods (1978)

In classical AI and NLP research, one can find strong similarities between the
standard approach to NLU and the Montague program, even in work that predates
Montague’s seminal work (e.g., Bobrow (1964)). For most of AI’s relatively short
history, there has also been a strong focus on logic and reasoning, or symbolic AI.
This largely stems from early results on the limitations of rival connectionist (i.e.,
non-symbolic) models, most notably the work by Minsky and Papert (1969) on the
limitations of the single-layer perceptron model of Rosenblatt (1958). In contrast
to work in linguistics, however, much of this early research centers on concrete
applications such as automated question-answering and robot planning, among
others. The applied character of this early work is captured in the quote above by
William Woods when he talks about reinterpreting the philosopher’s or logician’s
abstract notion of truth in terms of formal procedures that can be executed by
a machine. This is a framework for semantics that he and others from that time
refer to as procedural semantics (Johnson-Laird, 1977; Woods, 1968).

An illustration of the LUNAR question-answering system of Woods (1973),
which is an example of this procedural approach, is shown in Figure 1.4. While
his system was not the earliest attempt at automated question-answering (for a
review of earlier attempts, see Simmons (1965) and Bobrow (1964)), it is of some
historical interest since, as Woods mentions above, his approach was perhaps the
first to be based on a more general theory; one in which the model of syntax and
semantics was not directly tied to the structure of the target data and domain.
Similar to the processing pipeline for Montague semantics introduced previously,
the system starts by performing a translation to a logical form, where predicates
are defined as executable Lisp procedures, and answers are retrieved by executing
these formal representations against a database, which plays the role of a world or
universe of discourse in more abstract theories of semantics.

At a lower level, Woods describes the pipeline model shown in Figure 1.5, where
he additionally assumes a syntactic component, which at the time was based on
his well-known work on context-free parsing using augmented transition network

23



1 Introduction to Natural Language Understanding

input sem

List samples that contain
every major element

database

JsemK ={S10019,S10059,...}

1. Semantic Parsing

3. Reasoning

(FOR EVERY X /
MAJORELT : T;
(FOR EVERY Y /
SAMPLE : (CONTAINS Y X);
(PRINTOUT Y)))

2. Knowledge Representation

Figure 1.4: An illustration of the LUNAR question-answering system and the dif-
ferent tasks involved in NLU.

Question Parser Interpreter Retriever Answer
syntactic
structure

semantic
meaning

syntactic analysis semantic interp. deduction

Figure 1.5: A more detailed processing pipeline in the Woods model.

grammars (Woods, 1970). While this approach appears to closely resemble the
compiler model already introduced, one additional detail is the interaction be-
tween the different levels of processing, as shown using the red dashed lines. The
idea is that the semantic or retrieval component might provide feedback to the syn-
tactic component when certain structural or semantic (or maybe even pragmatic)
ambiguities emerge, which is an idea that we return to in the next section.

Woods (1968, 1978) provides the technical details for the interpretation com-
ponent in his models, which maps syntactic structure to semantic representations
using a set of translation rules defined on top of these syntactic patterns. So far,
our discussion of such components has been high-level, so we consider one particu-
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Figure 1.6: An illustration of the semantic interpretation mechanism in the Woods
model for the input S10046 contains silicon.

lar example below, which Woods calls a pattern → action rule. Using a Lisp style
notation, the left hand side of the rule is a syntactic pattern to be matched, and
the right hand side shows the resulting semantic rule:

[S: CONTAIN

(S.NP (MEM 1 SAMPLE ))

(S.V (OR (EQU 1 HAVE)

(EQU 1 CONTAIN )))

(S.OBJ (MEM 1 ( ELEMENT OXIDE ISOTOPE )))

-> (QUOTE ( CONTAIN (# 1 1) (# 3 1)))]

Using a more modern presentation of this idea, we can describe this rule using tree
transformations as shown in Figure 1.6. Here, the first tree describes the abstract
rule template, where the terminating nodes in the tree specify general rules about
the semantic type of the target terminating nodes in an input tree. For example,
the first subject NP should contain a word that is a type of sample, and the main
verb in the VP should be either the word has or contains. The second tree shows
a parse tree that matches these set of rules, and the third tree is the resulting
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Figure 1.7: An illustration of two approaches to syntax-directed translation based
on synchronous grammar (a) and categorial grammar (b) in the ATIS
domain (Dahl et al., 1994).

semantic rule, which transforms the matching tree into the logical representation
(contains S10046 silicon).

When viewed in this way, his semantic interpreter has the appearance of a
syntax-based machine translation model (Williams et al., 2016). Under a transla-
tion approach, we can regard the output semantic representation as itself being a
language, an idea that we pursue throughout this thesis. Modern incarnations of
these models rely on formal methods that were not widely studied in NLP during
the time of of Woods’ work, such as tree automata and grammars, first looked at
by Rounds (1970) for developing formal models of transformational grammars and
later by researchers in theoretical computer science (Comon et al., 2007), as well
as related methods such as synchronous grammars (Shieber and Schabes, 1990),
term rewriting (Baader and Nipkow, 1999), categorial grammars (Steedman, 1996),
among many others (see Figure 1.7 for an illustration).

In terms of the practical implementation of these AI models, much subsequent
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work has focused on explicit hard-coding of the type of semantic interpretation
or transfer rules (Dorna and Emele, 1996) considered above. This includes work
in the context of large scale grammar development efforts, such as the LFG-based
ParGram project (Butt et al., 2002) and work on the LFG semantic transfer sys-
tem (Crouch, 2005; Crouch and King, 2006), and similar efforts in the HPSG
community (Copestake and Flickinger, 2000) on implementing minimal-recursion
semantics (Copestake et al., 2005). Another large-scale attempt at domain-general
NLU is work on the Boxer system (Bos, 2008), which implements a large fragment
of Discourse Representation Theory (Kamp and Reyle, 2013). Outside of these
large-scale efforts, the hand-engineering of semantic translation rules is still com-
monly pursued for small-scale application building (Popescu et al., 2003; Unger
et al., 2012; Waldinger et al., 2011; Condoravdi et al., 2015).

Recalling again our focus on learnability, we ask the following question related
more to the problem of learning semantic representations:

2. Learning from Logical Form: Rather than hand-coding semantic trans-
lation rules, can we learn semantic translations rules from parallel data con-
sisting of unaligned input text and the semantic representations?

For example, rather than hand-coding the rules described in Figure 1.6, we might
provide the computer with the input text S10046 contains silicon, with or with-
out its associated syntax tree, and the target semantic representation (contains
S10046 silicon). The computer is then expected to learn a hidden, or latent,
mapping between the two representations, which may or may not resemble the
rules considered previously. The ultimate test is then to measure the accuracy
with which the computer can generate correct representations for unseen exam-
ples, where the correctness of a representation can be evaluated in one of two
ways:

• Intrinsic Evaluation: Does this representation match a gold example, one
that is generated by a human or appears correct to a human?

• Extrinsic Evaluation: Can the representation be used to solve a down-
stream task: one in which the expected outcome is achieved?
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It is important to note that the evaluation methods listed above require different
amounts of human effort, which is an issue that motivates some of the decisions
made in our work. Doing an intrinsic evaluation on a question-answering system
such as Woods’ requires annotators to create gold annotations or representations.
This in turn requires finding annotators with considerable knowledge of logic or
database theory, not to mention expertise in the target domain. Another down-
side is that errors in the human annotation might in the end unfairly punish the
machine’s performance on the evaluation. In the extrinsic case, experts need only
provide the answers to the target questions, which removes the need for difficult
annotation, and might better reflect the machine’s performance since the machine
is free to find an alternative translation to the annotator’s.

Work on learning from logical forms, within the subfield known as data-driven
semantic parsing, is fairly new and was largely motivated by the difficulties of
hand-engineering the types of semantic translation models cited above. As dis-
cussed in Mooney (2007b), these approaches are explicitly in contrast to work
on learning intermediate or shallow semantic representations, such as semantic
role-labeling (Gildea and Jurafsky, 2002) or geometric/distributional approaches
to semantics (Widdows, 2004; Turney and Pantel, 2010). The ultimate goal of
semantic parsing is to learn complete, formal representations that resemble the
classical logical semantic representations discussed above. Early attempts looked
at learning transformation rules and learning from logical forms using somewhat
ad hoc formal methods (Kate et al., 2005), and later tools primarily from statistical
machine translation (SMT) and statistical parsing. We provide a brief summary
of the different approaches in Table 1.1, with self citations shown in red. At the
time of writing, there has been increased interest in approaches based on neural
sequence to sequence modeling (Sutskever et al., 2014) (see last row of Table 1.1),
following a more general embrace of deep learning techniques in NLP.

One important methodological assumption inherent in work on data-driven se-
mantic parsing is that the underlying methods being investigated and developed
should be generalizable, an idea that we can describe in the following way:

• Domain agnostic constraint: The underlying semantic parsing and trans-
lation methods should not be tied to any one target domain; they should be
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Approach/Framework References

Combinatory Categorial Grammar

Zettlemoyer and Collins (2009, 2012); Kwiatkowski
et al. (2010); Krishnamurthy and Mitchell (2012);
Artzi and Zettlemoyer (2013); Artzi et al. (2015);
Kushman and Barzilay (2013); Reddy et al. (2014)

Context-Free Grammar (CFG)

Angeli et al. (2012); Börschinger et al. (2011);
Liang et al. (2013); Berant et al. (2013); Berant and
Liang (2015); Kim and Mooney (2012); Zhang et al.
(2017); Richardson and Kuhn (2012, 2016)

Synchronous CFG/SMT

Wong and Mooney (2006, 2007); Li et al. (2015,
2013); Andreas et al. (2013); Arthur et al. (2015);
Haas and Riezler (2016); Richardson and Kuhn
(2017b,a); Zarrieß and Richardson (2013)

Tree/Graph Grammars and Related
Jones et al. (2012b,a); Quernheim and Knight
(2012); Koller (2015); Peng et al. (2015); Chiang
et al. (2018); Groschwitz et al. (2015)

Neural/RNN Approaches

Dong and Lapata (2016); Jia and Liang (2016);
Kočiský et al. (2016); Herzig and Berant (2017);
Cheng et al. (2017); Krishnamurthy et al. (2017);
Duong et al. (2017); Richardson et al. (2018)

Table 1.1: A brief survey of the various semantic parsing approaches from the
literature (with self citations in red).

applicable to new domains and semantic language types.

For example, when investigating semantic parsing in the domain of Lunar geology,
which is the domain investigated by Woods, the underlying methods that generate
semantic representations from text should work equally well when applied to other
domains, such as mapping to representations in the airline planning domain first
introduced or for non-procedural knowledge representation types. This constraint
is clearly violated in the case of Woods’ approach to semantic parsing, since the
interpretation rules that he devises, such as the one in Figure 1.6, are narrowly
tied to the domain of Lunary geology and cannot be ported to other domains. As
we discuss in the next section, the inability of methods in NLU to generalize has
perhaps been a main reason for why the classical methods have had limited success
in mainstream and commercial NLP.
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Sub-problem Problem Description
1. Semantic Parsing (SP) Translating input to sem, input → sem
2. Knowledge Representation Defining a sufficiently expressive sem language.
3. Reasoning and Execution Going from sem to denotations and data

Text Parser Interpreter Reasoning World
syntactic
structure

semantic
meaning

semantic parsing

Figure 1.8: A definition of the different sub-problems involved in NLU and the
relation to the Woods model below.

1.2 Towards a Modular Data-driven Approach

In this section, we describe our approach to NLU based on learnability, start-
ing with an examination of the different sub-tasks involved in our model and a
discussion of data resources for semantic parsing.

1.2.1 Defining the Sub-Tasks

1. Semantic Parsing Bringing together the ideas discussed in the previous
section, we break down the different tasks in NLU to those shown in Figure 1.8,
which is a somewhat simplified version of Woods’ description in Figure 1.5. The
first task, of primary interest to this thesis, is semantic parsing, which concerns
the task of translating input text to semantic representations. More specifically,
we are interested in learning these translations from data, a problem that we can
describe more concretely as follows:

• Data-driven Semantic Parser Induction: Given a parallel training dataset
D consisting of text-meaning pairs, learn a function that maps any given in-
put text x to its correct semantic representation z, or sp : x→ z
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challenge 1: Getting data?

Training challenge 2:
Missing data?

challenge 3:
Deficient LFs?
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Testing
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x decoding
(Finding the best z)
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world
reasoning
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Evaluation: Correct?

Figure 1.9: An illustration of the machine learning setup for data-driven semantic
parser induction.

When doing data-driven semantic parser induction, we will assume a rather con-
ventional machine learning setup as illustrated in Figure 1.9. During a training
phase, the goal is to train a machine learning model using parallel data consisting
of example input and output pairs. Such a model is then used at testing time in
combination with a decoding or search algorithm to generate semantic output from
input. In an experimental setting, we can then evaluate the resulting output using
either an intrinsic or extrinsic evaluation as discussed in the previous section.

Extending our notion of a semantic parser as formally modeling some transduc-
tion, in the data-driven case, the goal is to model some weighted transduction or
weighted relation:

sp :
(
Lin × Lout

)
→ R. (1.11)

Throughout this thesis, we will be interested in types of conditional probabilistic
relations that we can estimate using a statistical model that will often take the form
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Figure 1.10: A DAG representation of the search space for a fragment of the Geo-
query language from Andreas et al. (2013).

of a conditional probability distribution: p(z | x). While we investigate several such
models throughout the thesis, all involve solving the following general problems
(as shown in Figure 1.9):

• Estimation: How do we find the optimal parameters of a given model us-
ing example parallel data (i.e., the example inputs and outputs encountered
during the training phase)?

• Decoding: Given a model and an input x, how do we generate the best
output z∗ (or k-best outputs) within Lout? This will often involve solving:

z∗ = arg max
z∈Lout

{
p(z | x)

}
.

Given that semantic parsing involves translating to formal languages, most mod-
els, despite their differences, make the assumption that the output languages being
learned and generated are highly structured. One theme throughout this thesis
is using static graph representations, such as the one shown in Figure 1.10, to
represent the search space of semantic parsers (where each path in the graph is
associated with a possible translation). Under such a graph approach, estimation
can be described as finding a model that optimally associates correct paths (i.e.,
translations) with training inputs x. Decoding is then the problem of finding the
optimal path (within a large space of possible paths and translations) given an
estimated model and particular input x.
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input x What cities are located in Vermont?

sem z city ( loc ( stateid ( vermont ) ) )

database JzK
{

Burlington, Stowe, ...
}

y

Figure 1.11: Example semantic parsing data from the Geoquery domain.

Paradigm and Supervision Dataset D = Learning Goal
Learning from logical form {(input(d), LF (d))}|D|d=1 input

Trans.−−−−→ LF

Learning from denotation {(input(d), JLF (d)K)}|D|d=1 input
LF+Trans.−−−−−−−−→ JLF K

Figure 1.12: The different learning settings for semantic parser induction

To illustrate this, Figure 1.11 shows an example from one benchmark semantic
parsing dataset called the Geoquery (Zelle and Mooney, 1996), which consists of
pairs of English questions about American geography and formal Prolog database
queries. The goal is to learn a function that can translate examples such as x to the
representations in z (in this case, x to city(loc(...( vermont ))) which is a
single path in Figure 1.10). It is important to note that in the definition above, we
only specified that the dataset D must be parallel, but we did not specify the form
that meaning takes in such a parallel dataset. This is intentional, since different
learning settings make different assumptions about the type of supervision, or
evidence provided to the machine learner, that is needed to learn semantic parsers.

Using this new definition, we summarize in Figure 1.12 the different learning
settings discussed in Sections 1.1.1-1.1.2. In the learning from logical form setting,
we assume that D consists of example text input and fully annotated logical forms,
such as the pair (x, z) from Figure 1.11. The learning problem in this setting then
reduces to a translation problem, where the goal in each case is to learn a hidden
translation y that correctly derives z from x. In the learning from denotation or
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Dataset Size (# sentence pairs) Domain
ATIS (Dahl et al., 1994) 5,410 Airline planning
GeoQuery (Zelle and Mooney, 1996) 880 Geography
Jobs (Tang and Mooney, 2000) 640 Job listings
Sportscaster (Chen and Mooney, 2008a) 1,872 Sports commentary
SAIL (Chen and Mooney, 2011) 3,233 Navigation instructions
Freebase917 (Cai and Yates, 2013) 917 open domain questions
WebQuestions (Berant et al., 2013) 5,810 open domain questions
WikiTableQA (Pasupat and Liang, 2015) 22,033 open domain questions

Table 1.2: Brief survey of benchmark semantic parsing datasets (red highlighting
shows the datasets used in this thesis).

entailment setting, D consists of text and some representation of the semantic
denotation of the text. In the Geoquery case, this would be the answer to the
question, or { Burlington, Stowe,..} in Figure 1.11. Here, the learning task is
considerably harder, since not only is the translation y a latent variable, but so is
the correct logical form z. While learning a translation is still involved, the larger
learning problem takes the form of a program induction or program synthesis task
(Liang et al., 2013).

Semantic Parsing Resources Similar to the discussion about evaluation in
the last section, these different learning settings assume differing levels of human
annotation effort. Learning from logical forms requires having a dataset of anno-
tated logical forms, whereas learning from denotation requires having higher-level
representations of meaning not necessarily tied to logic. Doing annotation for the
latter type of learning is usually easier than the former, but at the cost of making
the learning problem harder. Despite these differences, however, finding data of
either type without involving considerable manual engineering effort is often one
of the first bottlenecks encountered when building data-driven semantic parsers, a
problem that we look closely at throughout the thesis and refer to as the resource
problem:

• The Resource Problem for Semantic Parsing: How can we create par-
allel data for developing robust semantic parser methods with minimal en-
gineering and annotation effort?
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Figure 1.13: An example derivation in one of the earliest semantic parsers from
Burton (1976) in the domain of electronics.

In the history of machine translation (MT) research, developments in statisti-
cal MT have been facilitated by the availability of naturally occurring parallel
datasets largely coming from the domain of political proceedings in countries or
regions where such proceedings are translated into multiple languages. Examples
include the Canadian parliament proceedings (Gale and Church, 1993), and the
European Parliament proceedings (Koehn, 2005). As Halevy et al. (2009) argue,
the “biggest successes” in NLP have been in statistical speech recognition and sta-
tistical machine translation largely because “a large training set of input-output
behavior that we seek to automate [in these tasks] is available to us in in the wild”
(see discussion in Riezler (2014)). The essence of the resource problem for SP is
that the main data of interest does not naturally occur in the wild. To date, most
benchmark datasets tends to be limited in size and scope (see Table 1.2 for details).

Looking again at the sub-tasks listed in Figure 1.8, we point out that in our
model, the semantic parsing task subsumes the task of syntactic analysis discussed
previously. In other words, when translating to a logical form, a syntactic analysis
of the source text is assumed to be part of the underlying translation process.
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Studies differ in terms of how directly traditional syntax information is used; earlier
studies assume access to a full syntactic parser (Ge and Mooney, 2005; Kate et al.,
2005), whereas later studies use more domain-specific syntax representations based
on semantic grammars (Wong and Mooney, 2006; Börschinger et al., 2011), or
syntax models in which the non-terminal syntactic categories are replaced with
semantic or conceptual categories (see Figure 1.13 for an example from Burton
(1976)). Even later studies in the statistical machine translation tradition (Andreas
et al., 2013; Jia and Liang, 2016; Dong and Lapata, 2016) treat both the input and
output as linear sequences. At the time of writing, the latter approach has become
dominant and is one of the primary approaches we pursue throughout this thesis.

Knowledge Representation (2) and Reasoning (3) Moving down the sub-
problem pipeline, we have the problem of knowledge representation (problem num-
ber 2 in Figure 1.8), which concerns the study of the formal languages and rep-
resentations we use to capture the target semantics. Given our domain agnostic
constraint, this tends to receive less focus in the semantic parsing literature since
the goal is to develop semantic parsing methods that can be applied to any rep-
resentation type. Consequently, we often rely on the insights and best practices
from linguistic semantics, which largely concerns itself with problems of knowl-
edge representation and has traditionally relied on tools such a first-order logic.
The same is true for the reasoning or executation problem (problem number 3 in
Figure 1.8). When, say, building a natural language interface to a database, we as-
sume the normal tools for querying the database once we have mapped to a formal
representation. In some learning settings, however, understanding the interaction
between the different sub-problems (shown in Figure 1.8 using the red lines) is
important, a issue that we describe as follows:

• Sub-task Interaction and Learning: How do the different NLU sub-
components interact under different learning settings?

When learning from logical forms, the interaction between the semantic parser
and the decisions about knowledge representation are less connected, and both
components can be studied in a modular fashion. However, when learning from
denotation and other higher-level annotation types, the interaction between the
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(PRINTOUT Y)))
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Figure 1.14: The basic model of NLU with machine learning added to the semantic
parsing component (shown in red).

different levels is much more direct; since the target representation is latent in this
case, more complex representations can seriously complicate the learning problem,
a topic looked at in Liang et al. (2013).

1.2.2 Combining Statistical and Logical Semantics

“Machines and programs which attempt to answer English questions have
existed for only about five years. But the desire to translate language
statements into symbols which can be used in a calculus has existed as a
long as formal logic. Attempts to build machines to test logical consistency
date back to at least Roman Lull in the thirteenth century... Only in recent
years have attempts been made to translate mechanically from English
into logical formalisms”

– R.F. Simmons (1965) Answering English Questions by Computer

As described in the quote above (and throughout this chapter), semantic parsing
is an old task that can be traced to the beginnings of AI research and logic. The
dream of semantic parsing is to mechanically translate natural language text to
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1 Introduction to Natural Language Understanding

unambiguous formal languages with which one can reason exactly and interface
with other modalities. Given that semantic parsing is largely placed within a sym-
bolic approach to AI, the integration with a statistical approach has not always
been obvious. Under the statistical approach, one works according to the following
principle:

• Statistical Semantics Hypothesis: Statistical patterns of human word
usage can be used to figure out what people mean. (Turney and Pantel, 2010)

In classical natural language understanding, it is not on the basis of statistical
patterns of words alone that one arrives at an analysis of meaning, but rather
through a translation from words to an unobserved formal language. Hence, it
is the unobserved nature of this formal language that has created problems for
integrating the two approaches.

The statistical approach to NLU and semantic parsing outlined in this chapter
offers the following solution (as illustrated in Figure 1.14): by providing the com-
puter with clues about these formal languages (either directly, by providing an
explicit parallel corpus, or indirectly by providing information about denotations)
we can then use statistical modeling to try to robustly translate between the two
and in the end, capture the meaning in accordance with the classical approach to
NLU. As described by Liang and Potts (2015), “the divide [between logical and
statistical approaches] is rapidly eroding with the development of statistical [se-
mantic parsing] models that learn compositional semantic theories from corpora
and databases.” Based on this approach, we can state the following hypothesis (as
a version of the statistical semantics hypothesis above):

• Statistical Semantic Parsing Hypothesis: Statistical patterns of word
usage paired with formal representations or other grounded formal systems
can be used to figure out what people mean by learning the translation from
text into these formal systems.

As already stated, one of the main bottlenecks in this approach is the Resource
Problem outlined in the previous section (i.e., the problem of how we find these
target formal representations and formal systems), which will figure rather cen-
trally into the content of this thesis, and we integrate this problem into the list of
sub-problems in Table 1.3.
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challenge 1: Getting data?

Training
challenge 2:
Missing data?

challenge 3:
Deficient LFs?

Parallel Training Set
D =

{
(x(d), z(d))

}|D|
d=1

Machine Learner/Estimation

Testing

input Semantic Parsing sem

x decoding
(Finding the best z)

z

world
reasoning

model

Evaluation: Correct?

Figure 1.15: An illustration of the three resource issues addressed in this thesis.

1.3 Thematic Overview of Thesis and
Contributions

In this thesis, we focus on three underlying challenges (all variants of the re-
source issue described previously) that one encounters when developing robust
data-driven semantic parsers in the setting shown in Figure 1.9. These challenges
are illustrated in Figure 1.15 and include: 1) the challenge of finding new paral-
lel datasets given that semantic parsing data is traditionally expensive and time
consuming to build and annotate; 2) the challenge of having missing data for a
particular domain or having an insufficient amount of data for training robust se-
mantic parsing models; and 3) the challenge of having parallel data in which the
annotations are deficient, or fail to help us solve downstream NLU tasks.

As suggested by the title of this thesis, we focus on the following two overarching
themes throughout the thesis:
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1 Introduction to Natural Language Understanding

• New resources: Finding new types of parallel datasets for benchmarking
and developing new semantic parsing algorithms and methods.

• New ideas: Investigating the interface between semantic parsing and other
components in the NLU pipeline, and developing new tasks and evaluation
metrics for semantic parsing that solve larger NLU problems.

Below we provide a more detailed description of each chapter.

1.3.1 Chapter Overviews

In Chapters 2-4 we address a different challenge from Figure 1.15 (listed above
each description), and in Chapter 5 looks look at applications of the new resources
and techniques developed in Chapters 2-3.

challenge 1: Getting data?

• Chapter 2: We address the issue of building new datasets by looking at
using source code documentation as a resource for building parallel
datasets for semantic parsing. In doing this, we introduce 43 new automat-
ically generated datasets, and establish a number of new baseline models on
the new task of text-to-code semantic parsing.

challenge 2: Missing Data?

• Chapter 3: As a way of addressing the issue of missing or insufficient
amounts of parallel data, we look at learning semantic parsers from mul-
tiple datasets using our initial source code datasets and other benchmark
datasets. To do this, we develop a novel graph-based decoding framework
that we use to improve on the results in Chapter 2 and to do transfer learn-
ing across different languages and domains. We also introduce new tasks such
as mixed language parsing and zero-shot translation for semantic parsing.

challenge 3: Insufficient LFs?

40



1.3 Thematic Overview of Thesis and Contributions

Sub-problem Problem Description
1. Semantic Parsing (SP) Translating input to sem, input → sem
2. Knowledge Representation (KR) Defining a sufficiently expressive sem language.
3. Reasoning (and Execution) Going from sem to denotations and data
4. Semantic Parsing Resources Finding parallel data for training semantic parsers.

thematic content and sub-problems addressed
Chapters and Topics Semantic Parsing KR Reasoning SP Resources

2. Semantic Parsing in Technical Docs × ×
3. Learning from Multiple Datasets × ×
4. Learning from Entailment × × × ×
5. Applications: QA on Source Code × ×

Table 1.3: Thematic overview of thesis chapters (bottom) classified in terms of the
full list of sub-problems (above).

• Chapter 4: We look at integrating reasoning about entailment into a
data-driven semantic parsing pipeline and a new learning framework called
learning from entailment. This new approach is motivated by cases where
the logical forms being learned fail to capture basic facts about inference
and entailment. We examine this issue and the effectiveness of our approach
on an extended version of the benchmark Sportscaster dataset (Chen and
Mooney, 2008b) annotated with entailment information and a novel recog-
nizing textual entailment (RTE)-style evaluation.

Applications

• Chapter 5: We look at formalizing the source code representations being
learned in Chapter 2 and 3 in terms of classical logic, and discuss some
applications of the source code datasets investigated in Chapters 2-3,
including code retrieval and API question-answering (QA). In the latter case,
we describe our prototype QA system called Function Assistant.

While each chapter focuses primarily on the task of semantic parsing and a dif-
ferent variant of the resource problem, we also look at the interaction between the
different sub-problems discussed in the previous section. In Table 1.3, we themat-
ically classify each chapter according to the different sub-problems encountered.
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Appendices In place of an explicit theoretical overview chapter, we include ap-
pendices to supplement the technical content covered in the chapters. This includes
further descriptions of model features, theoretical questions about the underlying
models, as well as other content that goes beyond the main content in each chap-
ter. Given that existing reviews of semantic parsing (Mooney, 2008; Liang, 2016;
Liang and Potts, 2015) focus exclusively on machine learning (and hence gloss
over the problems of knowledge representation and reasoning), we provide a brief
overview of symbolic knowledge representation and logic in Appendix C. Readers
who are familiar with the technical content in each chapter can safely skip over
much of the content in the appendices.

In an effort to make the technical content in each chapter self-contained, we also
include additional technical details throughout each chapter that cover general
machine learning and semantics concepts that are not explicitly discussed in our
published work.

1.3.2 Publications

The content from these chapters is based on the following peer-reviewed publica-
tions (ordered according to chapter content):

• Richardson and Kuhn (2014)[Unixman: A Resource for Language Learning
in the Unix Domain. In Proceedings of Ninth International Conference on
Language Resources and Evaluation (LREC). Chapter 2]

• Richardson and Kuhn (2017b)[Learning Semantic Correspondences in Tech-
nical Documentation. In Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics (ACL). Chapter 2]

• Richardson and Kuhn (2017a)[Function Assistant: A tool for NL Querying
of APIs. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP). Chapters 2,5]

• Richardson et al. (2018)[Polyglot Semantic Parsing in APIs. In Proceedings
of 16th Annual Conference of the North American Chapter of the Association
for Computational Linguistics (NAACL). Chapter 3]
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• Richardson and Kuhn (2016)[Learning to Make Inferences in a Semantic
Parsing Task. In Transactions of the Association for Computational Linguis-
tics (TACL). Chapter 4]

We also use material from the following unpublished technical report:

• Richardson (2018)[A Language for Function Signature Representations. arXiv
preprint:1804.00987. Chapter 5]

Resources and Reproducibility To encourage reproducibility and further ex-
perimentation, all of the data and code reported in this thesis are available through
the author’s GitHub account: https://github.com/yakazimir. This includes
all code datasets reported in Chapters 2-3: https://github.com/yakazimir/
Code-Datasets as the associated Zubr semantic parsing toolkit: https://github.
com/yakazimir/zubr_public (more details in Chapter 5).
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2 Semantic Parsing in Technical
Documentation

2.1 NLU in Technical Documentation

2.1.1 The Idea

Technical documentation in the computer domain, such as source code documen-
tation and other how-to manuals, provide high-level descriptions of how lower-
level computer programs and utilities work. Often these descriptions are coupled
with formal representations of these lower-level features, expressed in the target
programming languages. For example, Figure 2.1-1 shows the source code docu-
mentation (in red/bold) for the max function in the Java programming language
paired with the representation of this function in the underlying Java language:

public static long max(long a,long b)

This formal representation captures the name of the function, the return value, the
types of arguments the function takes, among other details related to the function’s
place and visibility in the overall source code collection or API.

Given the high-level nature of the textual annotations, modeling the meaning of
any given description is not an easy task, as it involves much more information than
what is directly provided in the associated documentation. For example, capturing
the meaning of the description the greater of might require having a background
theory about quantity/numbers and relations between different quantities. A first
step towards capturing the meaning, however, is learning to translate this descrip-
tion to symbols in the target representation, in this case to the max symbol. By
doing this translation to a formal language, modeling and learning the subsequent
semantics becomes easier since we are eliminating the ambiguity of ordinary lan-
guage. Similarly, we would want to first translate the description two long values,
which specifies the number and type of argument taken by this function, to the
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1. Java Documentation

* Returns the greater of two long values
*
* @param a an argument
* @param b another argument
* @return the larger of a and b
* @see java.lang.Long#MAX VALUE
*/
public static Long max(long a, long b)ww� extraction

text Returns the greater of two long values.

code lang.Math long max( long a , long b )

2. Clojure Documentation

(ns ... clojure.core)

(defn random-sample
"Returns items from coll with random
probability of prob (0.0 - 1.0)"
([prob] ...)
([prob coll] ...))ww� extraction

text Returns ... with random probability...

code (clojure.core.random-sample prob coll)

3. Python Documentation

# zipfile.py
"""Read and write ZIP files"""
class ZipFile(object):

"""Class to open ... zip files."""
def write(filename,arcname,....):
"""Put the bytes from filename
into the archive under the name.."""ww� extraction

text Put the bytes from filename into...

code zipfile.ZipFile.write(filename,...)

4. PHP Documentation in French

/*Ajoute une valeur comme dernier
élément
*
* @param value La valeur á ajouter
* @see ArrayIterations::next()
*/
public void append(mixed $value)ww� extraction

text Ajoute une valeur comme dernier...

code void ArrayIterator::append(mixed $value)

Figure 2.1: Example source code documentation across 4 programming languages
and an illustration of parallel data extraction.

sequence long a,long b.
By focusing on translation, we can automatically create new datasets by mining

these types of source code collections for sets of parallel text-representation pairs
(as illustrated in Figure 2.1). Given the wide variety of available programming
languages, many such datasets can be constructed, each offering new challenges
related to differences in the formal representations used by different programming
languages. Figure 2.1-2 shows example documentation for the Clojure program-
ming language, which is part of the Lisp family of languages. In this case, the
description Returns random probability of should be translated to the function
name random-sample since it describes what the overall function does. Similarly,
the argument descriptions from coll and of prob should translate to coll and prob.
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2.1 NLU in Technical Documentation

Unix Utility Manual

NAME : dappprof
profile user and lib function usage.

SYNOPSIS dappprof [-ac] -p PID | command
DESCRIPTION

-p PID examine the PID ...

EXAMPLES

Print elapsed time for PID 1871
dappprof -p PID =1871

SEE ALSO: dapptrace(1M), dtrace(1M), ...

Figure 2.2: An example computer utility manual in the Unix domain. A description
of an example use is shown in red.

Given the large community of programmers around the world, many source
code collections are available in languages other than English. Figure 2.1-4 shows
an example entry from the French version of the PHP standard library, which was
translated by volunteer developers. Having multilingual data raises new challenges,
and broadens the scope of investigations into this type of semantic translation.

Other types of technical documentation, such as utility manuals, exhibit similar
features. Figure 2.2 shows an example manual in the domain of Unix utilities. The
textual description in red/bold describes an example use of the dappprof utility
paired with formal representations in the form of executable code. As with the
previous examples, such formal representations do not capture the full meaning of
the different descriptions, but serve as a convenient operationalization, or transla-
tional semantics, of the meaning in Unix. Print elapsed time, for example, roughly
describes what the dappprof utility does, whereas PID 1871 describes the second
half of the code sequence.

In both types of technical documentation, information is not limited to raw pairs
of descriptions and representations, but can include other information and clues
that are useful for learning. Java function annotations include textual descriptions
of individual arguments and return values (shown in green), and the Python ex-
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challenge 1: Getting data?

Training
challenge 2:
Missing data?

challenge 3:
Deficient LFs?

Parallel Training Set
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Figure 2.3: An illustration standard semantic parsing setup and the first resource
challenge (from Section 1.3).

ample (in Figure 2.1.3) contains additional textual descriptions of the associated
class ZipFile. Taxonomic information and pointers to related functions or utili-
ties are also annotated (e.g., the @see section in Figure 2.1, or SEE ALSO section
in Figure 2.2). Structural information about code sequences, and the types of ab-
stract arguments these sequences take, are described in the SYNOPSIS section of
the Unix manual. This last piece of information allows us to generate abstract code
templates, and generalize individual arguments. For example, the raw argument
1871 in the sequence dappprof -p 1871 can be typed as a PID instance, and an
argument of the -p flag.

2.1.2 Addressing the Resource Problem

Given this type of data, a natural experiment is to see whether we can build pro-
grams that translate high-level textual descriptions (i.e., short sentence descrip-
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tions) to correct formal representations (in this case, to formal function signatures).
In aiming to solve this general problem, we treat the translation from text to code
as a type of semantic parsing (or sequence prediction) task. More broadly, we
propose using technical documentation as a general resource for building robust
semantic parsing models. In doing this, we address the first resource challenge dis-
cussed in Chapter 1 (see Figure 2.3), or the problem that building parallel datasets
consisting of text and formal representations usually requires considerable manual
annotation effort, hence the lack of resources in the semantic parsing field. Accord-
ingly, we can regard a source code library, or API, as a kind of naturally occurring
parallel corpus consisting of text and example code representations, where, in our
semantic parsing context, each code representation can be thought of as analogous
to a logical form.

Summarizing the discussion above, below are some consequences of treating
source code libraries as a parallel corpus and resource for semantic parsing:

1. Automatic: Parallel pairs of text and code are easy to extract automatically
(see again Figure 2.1), obviating the need for manual annotation effort.

2. Many datasets: The vast quantity of programming languages and software
projects makes it easy to create new semantic parsing datasets that offer
unique challenges across a wide range of domains.

3. Multilingual: The availability of documentation in languages other than
English make it possible to build multilingual parallel datasets.

4. Background Knowledge: Beyond raw pairs of text and code, software
libraries provide lots of additional structure that can be can be used as a
signal for learning.

In this chapter, we describe experiments involving 43 new software datasets that
span a wide range of target programming languages and source natural languages.
To our knowledge, our work is the first to look at translating source code de-
scriptions to formal representations using such a wide variety of programming and
natural languages. We also introduce several baseline models for this data that
build on the language modeling and translation approach of Deng and Chrupa la
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Gets the total cache size

× string APCIterator::key(void)
× int APCIterator::getTotalHits(void)
× int APCterator::getSize(void)
int APCIterator::getTotalSize(void)
× int Memcached::append(string $key)
...

Accuracy @i? (exact match)

int APCIterator::getTotalSize(void)
× int APCterator::getSize(void)
× string APCIterator::key(void)
× int Memcached::append(string $key)
× int APCIterator::getTotalHits(void)
...

SMT ModelDescription/specification

Task specific decoder

Discriminative Model

Evaluation

Evaluation

reranked k-best

k-best signature translation list

Figure 2.4: Our main code translation model and our evaluation at test time.

(2014). Technically, our main approach, as illustrated in Figure 2.4, has the fol-
lowing two components: a simple SMT model and custom decoder (described in
Section 3.2.1 alongside other types of baseline language models) and discrimina-
tive reranking model (described in Section 3.2.1) that, in part, exploits additional
features about the global API.

In doing these experiments, we aim to address the following research questions:

• Translation Difficulty: How hard is the text-to-code translation problem
(when treated as a semantic parsing or translation problem) using these
datasets, and what types of models work/do not work?

• Domain Information: Can background knowledge about the target source
code library be used to improve the translation?

In general, our experiments (discussed in Section 2.4-3.5) show that simple SMT
baseline models perform the best, and that modest improvements can be achieved
using a conventional discriminative model (Zettlemoyer and Collins, 2009) that,
in part, exploits document-level features from the underlying software libraries.
(Given our ultimate interest in doing NLU in the source code domain, we later
describe in Chapter 5 ways of formalizing the source code representations being
learned in this chapter in terms of classical logic).
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2.2 Related Work

Our work is situated within research on semantic parsing (SP), which focuses on
the problem of generating formal meaning representations from text for natural
language understanding applications (for a full overview, see Chapter 1). This
chapter focuses primarily on new resources for SP, since, to date, most benchmark
datasets are limited to small controlled domains, such as geography and navigation.
While attempts have been made to do open-domain SP using larger, more complex
datasets (Berant et al., 2013; Pasupat and Liang, 2015), such resources are still
scarce. In Figure 2.1, we compare the details of one widely used dataset, GeoQuery
(Zelle and Mooney, 1996), to our new datasets. Our new resources are on average
much larger than GeoQuery in terms of the number of example pairs, and the size
of the different language vocabularies. Most existing datasets are also primarily
English-based, while we focus on learning in a multilingual setting using several
new moderately sized datasets.

Within SP, there has also been work on situated or grounded learning, that in-
volves learning in domains with weak supervision and indirect cues (Liang, 2016;
Richardson and Kuhn, 2016). This has sometimes involved learning from auto-
matically generated parallel data and representations (Chen and Mooney, 2008a)
of the type we consider in this chapter. Here one can find work in technical do-
mains, including learning to generate regular expressions (Manshadi et al., 2013;
Kushman and Barzilay, 2013) and other types of source code (Quirk et al., 2015),
which ultimately aim to solve the problem of natural language programming. We
view our work as one small step in this general direction.

Our work is also related to software components retrieval and builds on the
approach of Deng and Chrupa la (2014). Robustly learning the translation from
language to code representations can help to facilitate natural language querying
of API collections (Lv et al., 2015). As part of this effort, recent work in machine
learning has focused on the similar problem of learning code representations us-
ing resources such as StackOverflow and Github. These studies primarily focus on
learning longer programs (Allamanis et al., 2015) as opposed to function repre-
sentations, or focus narrowly on a single programming language such as Java (Gu
et al., 2016) or on related tasks such as text generation (Iyer et al., 2016; Oda
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Dataset #Pairs #Descr. Symbols #Words Vocab. Example text-code pairs (x, z)

Java 7,183 4,804 4,072 82,696 3,721
x :Compares this Calendar to the specified Object.
z : boolean util.Calendar.equals(Object obj)

Ruby 6,885 1,849 3,803 67,274 5,131
x :Computes the arc tangent given y and x.
z : Math.atan2(y,x) → Float

PHPen 6,611 13,943 8,308 68,921 4,874
x :Delete an entry in the archive using its name.
z : bool ZipArchive::deleteName(string $name)

Python 3,085 429 3,991 27,012 2,768
x :Remove the specific filter from this handler.
z : logging.Filterer.removeFilter(filter)

Elisp 2,089 1,365 1,883 30,248 2,644
x :This returns the total height of the window.
z : (window-total-height window round)

Haskell 1,633 255 1,604 19,242 2,192
x :Extract the second component of a pair.
z : Data.Tuple.snd :: (a, b) -> b

Clojure 1,739 – 2,569 17,568 2,233
x :Returns a lazy seq of every nth item in coll.
z : (core.take-nth n coll)

C 1,436 1,478 1,452 12,811 1,835
x :Returns the current file position of the stream.
z : long int ftell(FILE *stream)

Scheme 1,301 376 1,343 15,574 1,756
x :Returns a new port with type port-type and state.
z : (make-port port-type state)

Unix 921 940 1,000 11,100 2,025
x :To get policies for a specific user account.
z : pwpolicy -u username -getpolicy

GeoQuery 880 – 167 6,663 279
x :What is the tallest mountain in America?
z :(highest(mountain(loc 2(countryid usa))))

Table 2.1: Description of our English Stdlib corpus collection (with example sig-
natures shown in a conventionalized format)

et al., 2015). To our knowledge, none of this work has been applied to languages
other than English or such a wide variety of programming languages.

2.3 Text-to-Component Translation: Problem
Description

We use the term technical documentation to refer to two types of resources: textual
descriptions inside of source code collections and computer utility manuals. The
first type includes high-level descriptions of functions in source code. The second
type includes a collection of Unix manuals, also known as man pages. Both types
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include pairs of brief sentence descriptions and code representations.
We will refer to the target representations in these resources as API components,

or components. In source code, components are formal representations of functions,
or function signatures (Deng and Chrupa la, 2014). The form of a function signa-
ture varies depending on the resource, but in general gives a specification of how a
function is named and structured. The example function signatures in Figure 2.1.
for example, all specify a function name, a list of arguments, and other optional
information such as a return value and a namespace. Components in utility man-
uals are short executable code sequences intended to show an example use of a
utility. We assume typed code sequences following Richardson and Kuhn (2014),
where the constituent parts of the sequences are abstracted by type.

Given a training set of example text-component pairs, D = {(x(d), z(d))}|D|d=1, the
goal is to learn how to generate correct, well-formed components z ∈ C for each
input x, or some function (or weighted relation) sp:

sp : x→ z

Viewed as a SP problem, this treats the target components as a kind of formal
meaning representation, analogous to a logical form. In our experiments, we assume
that the complete set of output components are known. In the API documenta-
tion sets, this is because each source library contains a finite number of defined
function representations, roughly corresponding to the number of pairs as shown
in Figure 2.1. For a given input, therefore, the goal is to find the best candidate
function translation within the space of the total API components C (Deng and
Chrupa la, 2014) (see Figure 2.4).

Given these constraints, our setup closely resembles that of Kushman et al.
(2014), who learn to parse algebra word problems using a small set of equation
templates. Their approach is inspired by template-based information extraction,
where templates are recognized and instantiated by slot-filling. Our function sig-
natures and code templates have a similar slot-like structure, consisting of slots
such as return value, arguments, function name and namespace (see 3.6 for a for-
malization of the signature representations).
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2.3.1 Language Modeling Baseline Formulation

Existing approaches to SP formalize the mapping from language to formal lan-
guages using a variety of formalisms including CFGs (Börschinger et al., 2011),
CCGs (Kwiatkowski et al., 2010), synchronous CFGs (Wong and Mooney, 2007)
(see review in Chapter 1). Deciding to use one formalism over another is often
motivated by the complexities of the target representations being learned. For
example, recent interest in learning graph-based representations such as those in
the AMR bank (Banarescu et al., 2013) requires parsing models that can gener-
ate complex graph shaped derivations such as CCGs (Artzi et al., 2015) or HRGs
(Peng et al., 2015). Given the simplicity of our API representations, we opt for a
simple SP model that exploits the finiteness of our target representations.

We formulate the problem of component translation as a general language mod-
eling problem following Deng and Chrupa la (2014) (henceforth DC). For a given
query sequence or text x = (x1, .., x|x|) and component sequence z = (z1, .., z|z|),
the probability of the component given the query is defined as follows:

p(z | x) ∝ p(x | z)p(z) (2.1)

By ignoring the denominator and assuming a uniform prior over the probability
of each valid component z ∈ C, the problem reduces to computing p(x | z), which
is where language modeling is used (Zhai and Lafferty, 2004). Given each word xi
in the query, a unigram model is defined as:

p(x | z) =
|x|∏
i=1

p(xi | z). (2.2)

Using this formulation, we can then define different models to estimate p(xj | z)
(i.e., the probability of each word xj in x given a candidate signature z).

Term Matching As a baseline for p(xi | z), DC define a term matching approach
that exploits the fact that many queries in our English datasets share vocabulary
with the target component vocabulary. A smoothed version of this baseline is
defined below, where f(xi | z) is the frequency of matching terms in the target
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1. Haskell component and tree 2. PHP component and tree
Data.Tuple.fst :: (a, b) -> a

a3

a

(a, b)2

batuple 2

fst1
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Data.Tuple0

Tuples

Tuple

Datas

Data

Extract the first component of a pair

bool ZipArchive::deleteName(string $name)

bool3

bool

string $name2

namestring

deleteName1

namedelete

ZipArchive0

ZipArchive

Delete entry in an archive using its name

Figure 2.5: Example tokenized components with tree representations and align-
ments with text.

signature, f(xi | C) is frequency of the term word in the overall documentation
collection, and λ is a smoothing parameter (for Jelinek-Mercer smoothing):

p(x | z) =
|x|∏
x=1

[
(1− λ)f(xi | z) + λf(xi | C)

]
(2.3)

Translation Model In order to account for the co-occurrence between non-
matching words and component terms, DC employ a word-based translation model,
which models the relation between natural language words xi and individual com-
ponent terms zj. In this chapter, we limit ourselves to sequence-based word align-
ment models (Och and Ney, 2003), which factor in the following manner:

p(x | z) =
|x|∏
i=1

|z|∑
j=0

[
pt(xi | zj)pd(j | i,x, z)

]
(2.4)

Here each pt(xi | zj) defines an (unsmoothed) multinomial distribution over a given
component term zj for all words xj. The function pd includes additional parameters
about the relative length of each alignment and the size of the input and output.
This function assumes different forms according to the particular alignment model
being used. We consider three different types of alignment models each defined in
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the following way:

pd(j | i,x, z) =


1
|z|+1 1. IBM Model 1
a(j | i, |x|, |z|) 2. IBM Model 2
a(t(j) | i, |x|, tlen(z)) 3. Tree Model

(2.5)

Models 1-2 are the classic IBM word-alignment models of Brown et al. (1993).
IBM Model 1 assumes a uniform distribution over all positions, and is the main
model investigated in DC. For comparison, we also experiment with IBM Model 2,
where each j is the string position of the alignment in the component input, and
a(..) defines a multinomial distribution such that ∑|z|j=0 a(j | i, |x|, |z|) = 1.0.

We also define a new tree based alignment model (3) that takes into account
the syntax associated with the function component representations. Each t(j) is
the relative tree position of the alignment point and tlen(z) is the length of the
tree associated with z. This approach assumes a tree representation for each z. We
generated these trees heuristically by preserving the information that is lost when
components are converted to a linear sequence representation. Two example trees
are shown in Figure 2.5 for Haskell and PHP, where the red solid lines indicate
the types of potential alignment errors that this model aims to avoid.

Learning and the EM Algorithm

For our translation models, learning is done by applying the standard training
procedure of Brown et al. (1993). This algorithm is based on the expectation
maximization (EM) algorithm (Dempster et al., 1977) (see also Neal and Hin-
ton (1998); Bishop (2006)), which is an iterative maximum likelihood estimation
technique designed for estimating models with hidden variables. Since the EM al-
gorithm is encountered in different parts of this thesis, we describe the basic theory
behind the algorithm using our translation models as an example.

Word-based translation models (of the type considered above) compute the con-
ditional probability in Equation 2.4 by summing over the probability of all many-
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Algorithm 1 Expectation-Maximization for IBM Model 1
Input: Parallel corpus D = {(x(d), z(d))}|D|d=1, for each x = x1, .., x|x| with each xj ∈ Σnl and

z = z0 = nil, z1, .., z|z| with each zj ∈ Σsem
Output: lexical probability function pt
1: pθ0 ← 0.0, t← 0 . Initialize parameters at initial step 0
2: repeat
3: c(x | z)← 0,∀x ∈ Σnl,∀z ∈ Σsem . Initialize counters to collect expected counts
4: b(z)← 0,∀z ∈ Σsem
5: for (x(d), z(d)) from d = 1 up to | D | do . Start of E-Step: evaluate pθt(a | x, z)
6: for i from 1 up to | x(d) | do . Compute normalization n

7: ni ←
∑|z(d)|
j pθt(x(d)

i | z
(d)
j )

8: for i from 1 up to | x(d) | do
9: for j from 0 up to | z(d) | do

10: c(x(d)
i | z

(d)
j )← c(x(d)

i | z
(d)
j ) + pθt(x(d)

i | z
(d)
j )/ni . Update expect. counts

11: b(z(d)
j )← c(x(d)

i | z
(d)
j ) + pθt(x(d)

i | z
(d)
j )/ni

12: for all z ∈ Σsem do . The M-Step, find θt+1 = arg maxθQ(θ | θt)
13: for all x ∈ Σnl do
14: pθt+1(x | z)← c(x | z)/b(z)
15: t← t+ 1
16: until converged
17: return pθt

to-one word alignments from x→ z (denoted as A):

p(x | z) =
∑
a∈A

p(x, a | z) (2.6)

where |A| is equal to (|z|+ 1|x|). Given such a large space, doing this computation
for some word-based models is intractable. In the case of IBM Models 1-2 and our
tree model, however, such a computation can be done using Equations 2.6-2.7 (via
some algebraic manipulation not shown) in time O(|z||x|).

The goal of learning is to find the set of parameters θ that maximize the (log)
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likelihood of our training data D, expressed as follows:

θ∗ = max
θ

log
|D|∏
d=1

[
pθ(x(d) | z(d))

]
(2.7)

= max
θ

|D|∑
d=1

log
[ ∑
a∈A

pθ(x(d), a | z(d))
]

(2.8)

The difficulty in finding such a model is that the alignments a that drive the trans-
lation process are not directly observed in D, and hence are latent variables. The
general EM algorithm breaks the problem into two steps. The first step, or E-step,
involves finding the expected value of the latent variables (i.e., the different align-
ments a) using an auxiliary posterior distribution pθt(a | x, z) defined over some
(possibly random) parameters θt. The idea is to then use these expected values
and initial parameters (which provide a lower bound on the likelihood function)
to compute the complete data likelihood in Equation 2.10 using an additional set
of parameters θ, as shown below:

Q(θ | θt) =
|D|∑
d=1

∑
a∈A

[
pθt(a | x(d), z(d)) log pθ(x(d), a | z(d))

]
(2.9)

=
|D|∑
d=1

∑
a∈A

[[
pθt(x(d), a | z(d))
pθt(x(d) | z(d))

]
log pθ(x(d), a | z(d))

]
(2.10)

The second step, or M-Step, then involves finding in particular the parameters θt+1

that maximize Equation 2.11:

θt+1 = arg max
θ

Q(θ | θt) (2.11)

After the M-step, the algorithm returns to the E-step and the overall process
repeats until a convergence point is reached.

We note that Equations 2.11-2.13 only show the general form of the EM al-
gorithm for our translation model, and the particular computation required for
correctly collecting the expected counts and performing updates requires solving
the general arg max in Equation 2.11 for each individual model. Recalling that
alignments rely on individual word translation probabilities, computing the esti-

58
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Algorithm 2 Linear Rank Decoder
Input: Input x, Components C, rank k, model M, sort function K-Best
Output: Top k components ranked by A model score p
1: Scores← [ ] . Initialize list of scored components
2: for each component z ∈ C do
3: p← ScoreM(x, c) . Score pair (x, c) using M
4: Scores ← Scores + (z, p) . Add component and score to candidate list
5: return K-Best(Scores,k) . Return the k best components

mation involves counting the expectation of individual word pair occurrences (us-
ing a count function c) as shown below (Och and Ney (2003), for a full derivation
of this counting technique from the EM objective, see Brown et al. (1993)):

c(x | z;D) =
|D|∑
d=1

[ ∑
a∈A

pθt(a | x(d), z(d))
|x(d)|∑
j

δ(x, x(d)
j )δ(z, z(d)

a(j)
)
]

Algorithm 1 shows the full EM algorithm for IBM Model 1. By applying Equations
2.6 and 2.7, the E-step in this case takes the following form (as shown in line 11
of Algorithm 1):

c(x | z;D) =
|D|∑
d=1

[
pθt(x | z)∑|z(d)|

i pθt(x | zi)

|x(d)|∑
j=1

δ(x, x(d)
j )

|z(d)|∑
i=0

δ(z, z(d)
i )

]
(2.12)

Then pθt is re-estimated to find pθt+1 as follows (lines 16-20 in Algorithm 1):

pθt+1(x | z) = c(x | z;D)∑
x′ c(x′ | z;D) (2.13)

While the general form of Q might seem arbitrary at first glance, it comes with the
guarantee that each iteration (up to a convergence point) will produce a new set
of parameters that increase the likelihood of the training data D (see Appendix A
for more details).

59



2 Semantic Parsing in Technical Documentation

Ranking and Constrained Decoding

Algorithm 2 shows how to rank API components. For a text input x, we iterate
through all known API components C and assign a score using a modelM. We then
rank the components by their scores using a K-Best function. For our translation
models, this method serves as a type of word-based decoding algorithm, which in
part solves the following decoding problem (i.e., the problem of finding the most
likely output z∗ given an input x):

z∗ = arg max
z

{
p(z | x)

}
(2.14)

= arg max
z

{p(x | z)p(z)
p(x)

}
Bayes’ Theorem (2.15)

= arg max
z

{
p(x | z)p(z)

}
constant p(x) (2.16)

Even given our simplified model with a uniform prior, this problem is known to
be intractable in the general case for the translation models under consideration
(Knight, 1999). Our approach, however, exploits the the finiteness of the target
prediction space, and is designed to do k-best decoding in order to accommodate
reranking and our evaluation method introduced below. The complexity of the
scoring procedure (lines 2-4) is linear over the number components |C| in the
target library. In practice, we implement the K-Best sorting function on line 5
as a binary insertion sort, resulting in an overall complexity of O(|C| log |C|) (we
note that this can be improved to linear time by using a min-heap or the order
statistic algorithm (Blum et al., 1973) in place of our insertion sort).

While iterating over |C| components might not be feasible given large APIs or
more complicated formal languages with compositionality, a more clever decoding
algorithm could be applied, e.g., one based on the lattice decoding approach of Dyer
et al. (2008). We consider a more efficient decoder model of this type (i.e., one that
does not bind the complexity of the search to the size of out the output space) in
the next chapter, but nonetheless use the above method to establish initial baseline
results and note that for the datasets and experiments under consideration in this
chapter, we did not encounter efficiency issues since our APIs on average contain
only a few thousand functions.
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2.3.2 Discriminative Approach

In this section, we introduce a more informed model that aims to improve on the
previous baseline methods. While the previous models are restricted to word-level
information, we extend this approach by using a discriminative reranking model
over our translation model output that captures phrase information to see if this
leads to an improvement. This model can also capture document-level information
from the APIs, such as the additional textual descriptions of parameters, see also
declarations or classes of related functions and syntax information.

Modeling

Building on previous work in SP (Zettlemoyer and Collins, 2009; Liang et al.,
2011), our model is defined as a conditional log-linear model over components
z ∈ C (akin to derivations in a traditional grammar-based semantic parser) with
parameters θ ∈ Rb, and a set of feature functions φ(x, z):

pθ( z | x) = eθ·φ(x,z)∑
z’ eθ·φ(x,z’) (2.17)

where each θ · φ(x, z) is defined as follows (for individual feature weights θj and
feature values φj):

θ · φ(x, z) =
b∑
i=1

θiφi(x, z) (2.18)

Formally, our training objective takes the same form as Equation 2.9, with the im-
portant difference that our log-linear models do not have the same latent variables
a as our translation models. One of the technical difficulties in optimizing objec-
tives like the one in Equation 2.10 is that the log gets stuck outside the sum over
the latent variables, which makes it hard for the log to decompose the rest of the
likelihood term (Daumé III, 2012). Without these latent variables, such as in the
case above, we can instead decompose the likelihood directly and use stochastic
gradient ascent (LeCun et al., 1998) to optimize our objective, as described later
in this section.
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z: function float cosh float $arg

x: Returns the hyperbolic cosine of arg

c4 ={ cosh ,acosh,sinh.} ’the arg of..’

φ(x,z) =

Model score: is it in top 5..10?
Pairs/Alignments: (hyperbolic, cosh) = 1, (cosine, cosh) = 1, ...
Phrases: (hyperbolic cosine, cosh) = 1, (of arg, float $arg) = ...

See also: (hyperbolic, c4 = {cos,..}) = 1, (arg, c4) = 1, ...
In Descr.: (arg, , $arg) = 1, (arg , float) = 0, ...
Trees/Matches (hyperbolic, cosh, name node) = 1, number of matches= ...

Figure 2.6: An illustration of the features used for our reranker.

Features

Our model uses word-level features, such as word match, word pairs, as well as
information from the underlying aligner model such as Viterbi alignment informa-
tion and model score. Two additional categories of non-word features are described
below. An illustration of the feature extraction procedure is shown in Figure 2.6
and a full list of features with some analysis is included in Appendix A.

Phrase Features We extract phrase features (e.g., (hyper. cosine, cosh) in Fig-
ure 2.6) from example text component pairs by applying standard word-level
heuristics on top of our word alignment models. As standardly done in phrase-
based translation, we derive many-to-many alignments between each x and z by
using symmetric translation models trained in both directions (i.e., x → z, as
above, and z → x) (Koehn et al., 2003). With these many-to-many alignments,
phrase extraction works by finding all phrase pairs (xji , z

j′

i′ ) (where i, i′, j, j′ indicate
the start and end spans in x, z) that are consistent with the underlying alignment
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bool ZipArchive::deleteName(string $name)

boolr

bool

ZipArchive::DeleteName string namename+fun+arg

string $namearg

namestring

ZipArchive::DeleteNamename+fun

deleteNamefun

namedelete

ZipArchivename

ZipArchive

Delete entry in an archive using its name

Xname+fun+arg →
〈

X
name+fun

X arg , X
name+fun

X arg bool
〉

Xname+fun →
〈

X
fun

in an X name , X name X
fun

〉
Xfun →

〈
Delete X

fun
, delete X

fun

〉
Xfun →

〈
entry, name

〉
Xname →

〈
archive, ZipArchive

〉
Xarg →

〈
using its X arg , X arg

〉
Xarg →

〈
name, string $name

〉
Figure 2.7: An example hierarchical phrase-based grammar extracted from an

aligned component tree and text pair (top).

A, where consistency is defined in the following way (Koehn, 2009):

(xji , z
j′

i′ ) is consistent with A

⇔

∀xi in xji : (xi, zi′) ∈ A⇒ zi′ in zj
′

i′

∧ ∀zi′ in zj
′

i′ : (xi, zi′) ∈ A⇒ xi′ in xji
∧ ∃xi in xji , zi′ in zj

′

i′ : (xi, zi′) ∈ A

Additional features, such as phrase match/overlap, tree positions of phrases (see
again Figure 2.5), are defined over the extracted phrases.
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We also extract hierarchical phrase (Chiang, 2007) features using a variant of the
SAMT method of Zollmann and Venugopal (2006) and the component syntax trees.
In general, hierarchical phrase-based translation extends ordinary phrase-based
translation by formalizing phrase rules in terms of synchronous rewrite rules (in-
spired by syntax-directed translation in compiler design (Aho and Ullman, 1969))
that take the following form:

X →
〈
ψ, ρ,∼

〉
whereX is a non-terminal in a given grammar, ψ, ρ are sequences of words and non-
terminals from x and z (respectively), and ∼ is some one-to-one correspondence
between the non-terminals in ψ and ρ. Accordingly, for each consistent phrase pair
(xji , z

j′

i′ ) where zj
′

i′ corresponds to a subtree in the component tree with label l, the
following is an initial rule:

Xl →
〈
xji , z

j′

i′

〉
More complex rules are then constructed by replacing sub-phrases in these initial
rules with non-terminals from rules elsewhere in our rule set. For example, assum-
ing a rule Xl →

〈
ψ, ρ

〉
and a phrase pair (xji , z

j′

i′ ) with label l such that ψ = ψ1xji
and ρ = ρ1zj

′

i′ ρ2, we create a new unary expansion rule:

Xl →
〈
ψ1X l

ψ2, ρ1X l
ρ2
〉

The same procedure is also used for finding binary rule patterns (i.e., cases in
which ψ and ρ contain two non-terminal patterns) that are consistent with a given
glue grammar. An binarized version of the component tree in Figure 2.5-2 and
description pair is show in Figure 2.7, along with an example hierarchical phrase
grammar. Glue rules in this case dictate that fun constituents (e.g., deleteName)
can be combined with namespace, or name constituents (e.g., ZipArchive), and
that the resulting name+fun constituent can be combined with argument con-
stituents arg (e.g., string $name) Given a text and candidate component pair,
we use a CKY-style chart filling procedure (see Algorithm 8) to find candidate
rules subject to the underlying alignment and these glue rules.
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Algorithm 3 Online Learner for Reranking
Input: Dataset D, components C, iterations T , rank k, learning rate α, model A, ranker function

Rank
Output: Weight vector θ
1: θ ← 0 . Initialize the weight vector
2: for t ∈ 1..T do
3: for pairs (x(d), z(d)) for d ∈ 1...|D| do
4: S ← Rank(x(d), C, k,A) . Score and rank candidate components
5: ∆← φ(x(d), z(d))− Ez’∈S∪{z(d)}∼p(z’|x(d);θ)

[
φ(x(d), z’)

]
. Compute gradients

6: θ ← θ + α∆ . Perform an online update
7: return θ

Document Level Features Document features are of two categories. The first
includes additional textual descriptions of parameters, return values, and mod-
ules. One class of features is whether certain words under consideration appear in
the @param and @return descriptions of the target components. For example, the
arg token in Figure 2.6 appears in the textual description of the $arg parameter
elsewhere in the documentation string.

Other features relate to general information about abstract symbol categories,
as specified in see-also assertions, or hyper-link pointers. By exploiting this infor-
mation, we extract general classes of functions, for example the set of hyperbolic
functions (e.g., sinh, cosh, shown as c4 in Figure 2.6), and associate these classes
with words and phrases (e.g., hyperbolic and hyperbolic cosine, see Appendix A for
more details).

Learning

To optimize our objective, we use Algorithm 3, which is a variant of stochastic
gradient ascent (or descent, SGD). In the general case, SGD works according to
the following online update rule applied to each data point d in our dataset D:

θ ← θ + α
(
∇O(d)(θ)

)
(2.19)

where θ ∈ Rb are our parameters, α is step size or learning rate parameter, O is our
objective, and ∇ is a gradient, or vector of partial derivatives [∂O(d)

∂θ1
, ..., ∂O

(d)

∂θb
]. We
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estimate the model parameters θ using a k-best approximation (using the k-best
list S computed at line 4) of the standard SGD updates (lines 5-6). Accordingly,
differentiating the objective function (as shown in line 5) with respect to each
individual feature θj and pair (x, z) leads to the following:

∂ log pθ(z | x)
∂θj

= φj(x, z)−
∑

z’∈S∪{z}

[
φj(x, z’)pθ(z’ | x)

]
(2.20)

We note that while we use the ranker described in Algorithm 2, any suitable ranker
or decoding method could be used here.

2.4 Experimental Setup

We experiment with a total of 43 API datasets drawn from the Stdlib dataset
(detailed in Table 2.1 and Table 2.3, from Richardson and Kuhn (2014, 2017b))
and the Py27 dataset (detailed in Table 2.2, from Richardson and Kuhn (2017a)).
In each case, datasets are quantified in terms of number of total sentence/signa-
ture pairs (# Pairs), number of target symbols (# Symbols), number of natural
language tokens (# Words) and natural language vocabulary size (# Vocab).
In the Stdlib case, we also include information about the number of additional
textual descriptions provided (# Descr.). In this section, we describe these dif-
ferent datasets and our general experimental setup that follows Deng and Chrupa la
(2014); Richardson and Kuhn (2017b,a).

As discussed above, in Table 2.1 we compare against one benchmark SP dataset
called GeoQuery, which is on average considerably smaller than most of our datasets
(both in terms of number of pairs as well as scope and content). One motivation
for this work is to provide a larger set of resources for SP development in order to
attack the resource problem for SP discussed at the onset. In the next chapter, we
provide a closer comparison of results on GeoQuery and our code datasets.

2.4.1 Datasets

Stdlib Dataset Our Stdlib collection consists of the standard library for nine
programming languages, which are listed in Table 2.1. We also use the translated
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version of the PHP collection for six additional languages, the details of which are
shown in Table 2.3. The Java dataset was first used in DC, while we extracted
all other datasets for this work. In addition, we use a collection of man pages
from Richardson and Kuhn (2014) that includes 921 text-code pairs that span 330
Unix utilities and man pages. Using information from the synopsis and parameter
declarations, the target code representations are abstracted by type. The extra de-
scriptions are extracted from parameter descriptions, as shown in the DESCRIPTION
section in Figure 2.2, as well as from the NAME sections of each manual.

Additional details about the individual datasets are provided in Appendix A
and Figure A.2. In terms of extracting the individual datasets, we build custom
documentation parsers for each target project, which were usually applied over
HTML renderings of each documentation set.

Py27 Dataset The Py27 dataset consists of 27 popular Python projects docu-
mented in English, as shown in Table 2.2. Datasets were extracted automatically
using the Zubr toolkit detailed in Chapter 5.

Code Preprocessing Following standard practices in machine learning research
on software (Allamanis et al., 2014), all component representations are linearized,
lowercased and tokenized to remove constructs such as camelcase (e.g., myFunction
to my function), underscores (e.g., my function to my function), hyphens (e.g.,
my-function to my function). The idea is that by using subword tokens that
results from this tokenization process, the model can then generalize across dif-
ferent function and variable names. To see more details about this conversion,
all datasets and relevant code are publicly available at https://github.com/
yakazimir/Code-Datasets.

2.4.2 Evaluation

For evaluation, we split all datasets into separate training, validation and test sets.
For Java in the Stdlib collection, we reserve 60% of the data for training and the
remaining 40% for validation (20%) and testing (20%). For all other datasets, we
use a 70%-15%-15% split. From a retrieval perspective, these left out descriptions
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Project # Pairs # Symbols # Words Vocab.
scapy 757 1,029 7,839 1,576
zipline 753 1,122 8,184 1,517
biopython 2,496 2,224 20,532 2,586
renpy 912 889 10,183 1,540
pyglet 1,400 1,354 12,218 2,181
kivy 820 861 7,621 1,456
pip 1,292 1,359 13,011 2,201
twisted 5,137 3,129 49,457 4,830
vispy 1,094 1,026 9,744 1,740
orange 1,392 1,125 11,596 1,761
tensorflow 5,724 4,321 45,006 4,672
pandas 1,969 1,517 17,816 2,371
sqlalchemy 1,737 1,374 15,606 2,039
pyspark 1,851 1,276 18,775 2,200
nupic 1,663 1,533 16,750 2,135
astropy 2,325 2,054 24,567 3,007
sympy 5,523 3,201 52,236 4,777
ipython 1,034 1,115 9,114 1,771
orator 817 499 6,511 670
obspy 1,577 1,861 14,847 2,169
rdkit 1,006 1,380 9,758 1,739
django 2,790 2,026 31,531 3,484
ansible 2,124 1,884 20,677 2,593
statsmodels 2,357 2,352 21,716 2,733
theano 1,223 1,364 12,018 2,152
nltk 2,383 2,324 25,823 3,151
sklearn 1,532 1,519 13,897 2,115

Table 2.2: A description of our Py27 dataset.

are meant to mimic unseen queries to our model. More generally, we can think of
our evaluation as simulating a code retrieval system: given an input specification
of a function, find the function signature that matches our specification (see Fig-
ure 2.4). After training our models, we evaluate on these held out sets by ranking
all known components in each resource using Algorithm 2. A predicted component
is counted as correct if it matches exactly a gold component.

We report the accuracy of predicting the correct representation at the first posi-
tion in the ranked list (Accuracy @1) and within the top 10 positions (Accuracy
@10). We also report the mean reciprocal rank MRR, or the multiplicative in-
verse of the rank of the correct answer as defined below (where rank(x(d), z(d))
denotes the rank of the correct component z given an input x at point d in the
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Dataset # Pairs #Descr. Symbols Words Vocab.
PHPfr 6,155 14,058 7,922 70,800 5,904
PHPes 5,823 13,285 7,571 69,882 5,790
PHPja 4,903 11,251 6,399 65,565 3,743
PHPru 2,549 6,030 3,340 23,105 4,599
PHPtr 1,822 4,414 2,725 16,033 3,553
PHPde 1,538 3,733 2,417 17,460 3,209

Table 2.3: The non-English PHP datasets.

dataset D):

MRR = 1
|D|

|D|∑
d=1

1
rank(x(d), z(d))

As an example, Figure 2.4 shows our model with the input Gets the total cache
size, which corresponds to the PHP signature representation shown below:

int APCIterator::getTotalSize(void)

In our first SMT model, this signature is generated in the fourth position (or
within the top 10 results, @10), whereas it is generated in the first position in the
subsequent reranking model (related to @1).

Additional Baselines For comparison, we trained a bag-of-words classifier (the
BOW Model in Table 2.4). This model uses the occurrence of word-component
symbol pairs as binary features, and aims to see if word co-occurrence alone is
sufficient to for ranking representations. In the setup described above, our dis-
criminative models use more data than the baseline models in the form of ad-
ditional textual descriptions and document-level features from elsewhere in each
API, which therefore makes the results not directly comparable. We therefore train
a more comparable translation model, shown as M1 Descr. in Table 2.4, by adding
the additional textual data (i.e. parameter and return or module descriptions) to
the model’s parallel training data.
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2.5 Experimental Results and Discussion

Main Results The full set of test results are shown in Table 2.4 across all
datasets, including a summary of the results averaged over Stdlib and Py27 on
the bottom. Across all 43 datasets and baseline models, IBM Model 1 (IBM
M1) outperforms virtually all other models and is in general a strong baseline.
Of particular note is the poor performance of the higher-order translation models
based on Model 2 (IBM M1) and the Tree Model. While Model 2 is known
to outperform Model 1 on more conventional translation tasks (Och and Ney,
2003), it appears that such improvements are not reflected in this type of semantic
translation context.

Throughout all datasets, the bag-of-words (BOW) and Term Match (which is
more of an information retrieval based method) baselines are outperformed by
all other models. This shows that translation in this context is more complicated
than simple word matching, and perhaps provides some justification more generally
for treating the underlying task as a sequence prediction or SP problem. In some
cases the term matching baseline is competitive with other models, suggesting that
API collections differ in how language descriptions overlap with component names
and naming conventions. It is clear, however, that this heuristic only works for
English, as shown by results on the non-English PHP datasets and the generally
lower number on the Stdlib dataset (i.e., average 12.8% Accuracy @1).

We achieve improvements on many datasets by adding additional data to the
translation model (M1 Descr.). We achieve further improvements on all datasets
using the discriminative model (Reranker), with most increases in performance
occurring at how the top ten items are ranked. This last result suggests that phrase-
level and document-level features can help to improve the overall ranking and
translation, though in some cases the improvement is rather modest (see Appendix
A for more analysis).

Discussion In addressing our initial research questions, we find that achieving
high accuracy on these datasets is difficult. While the SMT models in particular
perform rather well, there is a still much room for improvement, especially on
achieving better Accuracy @1. While one might expect better results when mov-
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Stdlib Test Results
Method Java Scheme PHPen PHPfr Python PHPes

BOW Model 16.4 63.8 31.8 06.1 58.1 21.4 08.0 40.5 18.1 06.1 36.9 16.0 04.1 33.3 13.6 05.9 37.8 15.8
Term Match 15.7 41.3 24.8 25.5 61.2 37.4 15.6 37.0 23.1 04.0 15.8 07.7 16.6 41.7 24.8 02.9 10.4 05.4
IBM M1 34.3 79.8 50.2 32.1 75.5 46.2 35.5 70.5 47.2 32.1 65.1 43.5 22.7 61.0 35.8 29.5 63.7 41.2
IBM M2 30.3 77.2 46.5 29.5 71.4 43.9 33.2 67.7 45.0 30.6 62.2 41.2 21.4 58.0 34.4 26.7 59.8 38.3
Tree Model 29.3 75.4 45.3 26.1 71.2 40.3 28.0 63.2 39.8 27.9 59.3 38.6 17.5 55.4 30.7 25.9 61.0 37.6
M1 Descr. 33.3 77.0 48.7 33.1 75.5 47.1 34.1 71.1 47.2 31.0 64.8 42.7 22.7 62.3 35.9 28.6 64.9 41.1
Reranker 35.3 81.5 51.4 34.6 77.5 48.9 36.9 74.2 49.3 32.7 66.8 44.2 25.5 66.0 38.7 30.6 66.3 42.6

Method Haskell PHPja Clojure PHPru Ruby PHPtr

BOW Model 05.6 55.6 21.7 04.7 33.2 13.8 03.0 49.2 16.4 04.4 43.6 16.6 07.0 38.0 16.9 05.4 43.4 17.6
Term Match 15.4 41.8 24.0 02.3 11.2 05.2 20.7 49.2 30.0 01.0 09.3 03.6 23.1 46.9 31.2 01.4 08.7 03.6
IBM M1 22.3 70.3 39.6 23.0 58.1 34.9 29.6 69.2 41.6 20.3 58.4 33.3 31.4 68.5 44.2 25.9 61.6 38.6
IBM M2 13.8 68.2 31.8 22.2 56.1 33.3 26.5 64.2 38.2 18.5 54.5 30.6 27.9 66.0 41.4 23.3 57.6 35.8
Tree Model 17.8 65.4 35.2 22.6 57.8 34.1 23.0 60.3 34.4 20.6 59.0 32.9 27.1 63.3 39.5 18,9 55.1 32.0
M1 Descr. 23.9 69.5 40.2 25.4 60.4 37.0 29.6 69.2 41.6 21.1 62.6 34.5 32.5 70.0 45.5 29.1 62.0 41.4
Reranker 24.7 73.9 43.0 25.8 61.8 37.8 35.0 76.9 47.9 21.1 66.8 35.9 35.1 72.5 48.0 29.9 63.8 41.2

Method Elisp PHPde C Unix
BOW Model 09.9 54.6 23.5 04.3 39.2 15.3 08.8 48.8 20.0 08.6 49.6 21.0
Term Match 29.3 65.4 41.4 03.8 09.4 06.2 13.1 37.5 21.9 15.1 33.8 22.4
IBM M1 30.6 67.4 43.5 22.8 62.5 36.8 21.8 63.7 34.4 30.2 66.9 42.2
IBM M2 28.1 66.1 40.7 19.8 58.6 33.0 23.7 60.9 34.6 23.0 60.4 36.0
Tree Model 26.8 63.2 39.7 18.5 56.0 30.6 18.1 56.2 29.4 23.0 58.2 34.3
M1 Descr. 30.3 73.4 44.7 26.7 62.0 38.8 21.8 62.7 33.9 34.5 71.9 47.4
Reranker 37.6 80.5 53.3 28.0 65.9 40.5 29.7 67.4 40.1 34.5 74.8 48.5

Py27 Test Results
Method renpy zipline biopython kivy ansible pyglet
BOW Model 06.6 41.1 16.6 01.7 38.3 12.9 05.8 54.8 20.4 07.3 53.6 22.0 17.9 55.3 30.5 05.7 52.3 19.2
Term Match 25.7 59.5 38.7 28.5 50.8 36.2 23.5 48.1 31.7 30.0 62.6 41.3 24.8 54.0 35.8 20.4 50.9 31.2
IBM M1 25.0 62.5 37.4 23.2 58.0 36.2 29.6 75.6 46.2 35.7 70.7 47.4 36.7 72.3 48.8 26.6 70.9 41.5
IBM M2 23.5 52.9 34.4 23.2 50.8 34.1 27.2 75.4 43.7 28.4 65.0 41.7 31.1 65.7 42.8 23.3 62.8 35.7
M1 Descr. 30.8 61.7 42.0 27.6 62.5 40.7 29.6 75.6 45.8 33.3 67.4 45.3 35.5 71.6 47.5 26.1 69.5 41.3
Reranker 38.9 73.5 48.9 30.3 70.5 45.3 32.3 79.1 48.6 35.7 75.6 49.1 40.5 77.0 53.1 29.0 77.1 45.5

Method rdkit pip twisted vispy orange sympy
BOW 05.3 40.6 17.1 06.2 40.9 17.1 06.6 38.8 16.9 07.3 48.7 18.6 13.4 60.5 29.1 06.4 44.4 18.5
Term Match 13.3 46.6 23.9 19.1 50.2 30.7 17.6 44.1 26.2 29.2 64.0 41.1 37.9 69.7 49.3 20.2 44.9 28.8
IBM M1 22.6 58.0 35.2 15.0 56.4 29.4 26.8 61.8 38.8 29.8 68.2 43.4 40.3 79.8 53.7 32.6 70.5 45.2
IBM M2 16.0 48.0 27.5 15.0 48.7 26.5 22.4 55.9 34.0 20.7 63.4 34.6 31.2 71.1 45.1 28.6 65.4 40.9
M1 Descr. 25.3 60.6 37.2 18.6 56.4 32.3 27.7 61.4 39.4 28.6 70.1 42.3 40.3 78.3 54.0 32.8 70.2 45.5
Reranker 25.3 63.3 39.6 25.9 65.8 39.9 28.8 65.8 42.2 33.5 80.4 50.3 45.1 84.1 59.9 32.1 75.0 46.6

Method pandas sqlalchemy pyspark nupic astropy tensorflow
BOW 03.7 40.6 15.6 07.3 45.0 18.4 07.5 50.9 20.8 06.4 55.0 22.8 07.7 52.0 21.1 09.4 47.4 21.2
Term Match 19.3 43.7 27.9 17.3 48.4 26.6 20.5 46.9 29.1 23.6 51.0 33.1 26.1 49.1 34.3 25.2 48.7 33.5
IBM M1 28.4 63.3 40.5 24.2 71.1 39.7 34.6 78.7 50.1 30.1 71.4 44.0 27.8 66.9 41.2 34.3 70.7 47.4
IBM M2 25.0 58.3 36.8 20.0 62.3 34.3 33.9 74.3 48.1 22.4 67.0 38.4 25.0 62.6 37.7 30.7 66.3 43.2
M1 Descr. 29.1 62.7 41.0 28.8 70.3 43.0 37.1 78.7 52.1 30.9 69.8 44.6 30.7 66.6 43.4 35.3 71.5 48.0
Reranker 31.1 66.1 43.1 35.0 76.1 49.7 41.5 81.5 55.3 29.3 76.7 45.6 33.9 74.4 47.4 38.4 77.7 51.8

Method ipython orator obspy scapy django statsmodels
BOW 01.9 41.2 13.9 10.6 66.3 28.6 06.7 49.5 20.2 00.0 51.3 17.4 04.5 40.9 16.2 05.6 46.1 18.6
Term Match 23.8 56.7 33.8 31.9 64.7 43.7 19.9 46.6 30.0 21.2 43.3 28.7 19.3 48.0 29.1 16.7 39.9 25.1
IBM M1 23.8 61.9 36.3 31.1 78.6 46.2 32.6 72.4 47.1 17.6 61.0 33.5 23.6 57.8 35.5 25.2 64.0 37.9
IBM M2 20.6 52.9 32.8 23.7 70.4 38.3 29.6 64.8 41.7 16.8 58.4 31.0 20.5 53.3 31.0 19.8 61.4 33.6
M1 Descr. 24.5 59.3 36.5 32.7 79.5 47.5 33.8 75.8 48.3 20.3 61.9 34.7 22.9 57.8 34.6 25.4 64.8 37.8
Reranker 29.6 66.4 42.3 32.7 82.7 49.7 37.7 80.0 52.3 21.2 67.2 37.2 25.8 64.5 39.4 28.8 69.1 41.7

Method theano nltk sklearn
BOW 03.2 43.7 16.2 05.0 44.2 16.3 05.2 45.8 17.7
Term Match 16.3 37.1 24.0 19.8 45.6 28.4 24.4 50.6 32.5
IBM M1 22.9 56.2 35.2 21.8 64.7 35.6 26.2 65.9 39.0
IBM M2 22.4 50.8 33.8 18.4 59.1 31.3 20.9 61.5 34.1
M1 Descr. 26.2 58.4 37.8 28.2 68.0 41.5 27.9 67.6 41.3
Reranker 27.3 66.1 39.9 31.6 72.5 45.7 29.2 75.5 44.5

Results Summary (averaged over all datasets)
Method Stdlib Py27
BOW 6.8 45.4 18.7 6.5 47.8 19.5
Term Match 12.8 32.5 19.5 22.9 50.6 32.4
IBM M1 27.8 66.4 40.8 27.8 67.1 41.2
IBM M2 24.9 63.1 37.8 23.8 61.1 36.6
M1 Descr. 28.6 67.5 41.7 29.3 67.4 42.5
Reranker 31.1 71.0 44.5 32.3 73.5 46.5

Accuracy @1 Accuracy @10 Mean Reciprocal Rank (MRR)

Table 2.4: Test results for the Stdlib and Py27 datasets according to Accuracy@1,
Accuracy@10 and MRR.
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ing from a word-based model to a model that exploits phrase and hierarchical
phrase features (as used in the reranker model), the sparsity of the component
vocabulary is such that most phrase patterns in the training are not observed in
the evaluation. In many benchmark SP datasets, such sparsity issues do not occur
(Cimiano and Minock, 2010), suggesting that state-of-the-art methods will have
similar problems when applied to our datasets. Regarding the question of whether
adding background knowledge about the API helps to build more robust transla-
tion models, we see that this can help to increase accuracy via the reranker model,
though the gains are rather modest.

We note that pure SMT approaches, including the SMT methods pursued here,
are somewhat non-standard relative to other methods used in SP (see review in
Chapter 1). We believe that the main reason for this is that the decoding problem
is considerably harder to solve for SP as compared with ordinary machine trans-
lation, since SP requires translating to a correct and well-defined formal language.
In work that uses SMT for SP (Andreas et al., 2013; Haas and Riezler, 2016),
post-processing tricks are often employed at decoding time (e.g., pruning out can-
didate translations in a k best list that are ungrammatical) that failed to work in
our setting. Under our approach, the underlying decoding strategy is modified to
consider only valid output translations, in order to solve a problem that we define
in the following way:

• Constrained Decoding: How can we ensure that our MT models guarantee
well-formed SP output at test/decoding time?

We found alternative grammar-based SP approaches (e.g., Zettlemoyer and
Collins (2009); Börschinger et al. (2011)) to be equally problematic in our set-
ting, given that such methods rely on rule extraction techniques (i.e., to construct
the underlying semantic grammars) that are hard to scale to domains larger than
those encountered in benchmark tasks (cf. Cai and Yates (2013)). Such methods
also often assume a one-to-one mapping between words and semantic concepts (of-
ten taking the form of pre-terminal rules), which is hard to deal with in the code
setting where certain constructs (e.g., variables, namespace information) remain
implicit in the text descriptions (cf. Quirk et al. (2015)).

In general, we see two possible use cases for this data. First, for benchmarking SP
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Figure 2.8: Erroneous function predictions by documentation category for Scheme
and Elisp.

models on the task of semantic translation. While there has been a trend towards
learning executable semantic parsers (Berant et al., 2013; Liang, 2016), there has
also been renewed interest in supervised learning of formal representations in the
context of neural SP models (Dong and Lapata, 2016; Jia and Liang, 2016). We
believe that good performance on our datasets should lead to better performance
on more conventional SP tasks, and raise new challenges involving sparsity and
multilingual learning.

Model Errors We performed analysis on some of the incorrect predictions made
by our models. For some documentation sets, such as those in the GNU docu-
mentation collection, information is organized into a small and concrete set of
categories/chapters, each corresponding to various features or modules in the lan-
guage and related functions. Given this information, Figure 2.8 shows the confusion
between predicting different categories of functions, where the rows show the cat-
egories of functions to be predicted and the columns show the different categories
predicted. We built these plots by finding the categories of the top 50 non-gold (or
erroneous) representations generated for each validation example.

The step-like lines through the diagonal of both plots show that alternative
predictions (shaded according to occurrence) are often of the same category, most
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Figure 2.9: General erroneous function prediction trend for the Ruby standard
library (with lighter colors indicating stronger confusion).

strikingly for the corner categories. This trend seems stable across other datasets,
even among datasets with large numbers of categories (see Figure 2.9 for the
same trend observed in the Ruby standard library). Interestingly, many confusions
appear to be between related categories. For example, when making predictions
about Strings functions in Scheme, the model often generates functions related
to BitStrings, Characters and IO. Again, this trend seems to hold for other
documentation sets, suggesting that the models are often making semantically
sensible decisions.

Looking at errors in other datasets, one common error involves generating func-
tions with the same name and/or functionality. In large libraries, different mod-
ules sometimes implement the same core functions, such the genericpath or
posixpath modules in Python. When generating a representation for the text
return size of file, our model confuses the getsize(filename) function in one
module with others. Similarly, other subtle distinctions that are not explicitly ex-
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pressed in the text descriptions are not captured, such as the distinction in Haskell
between safe and unsafe bit shifting functions.

2.6 Conclusions

In this chapter, we introduced 43 new datasets for SP development based on the
standard library documentation for 10 popular programming languages and num-
ber of open source Python projects. As part of an effort to address the resource
problem for SP, we propose using such source code documentation as a kind of
parallel translation corpus, consisting of text description and code pairs (i.e., for-
mal representations of functions, or function signatures), the latter of which we
regard a proxies for logical forms. In order to establish baseline results of our new
text to function signature SP task, we introduce several new models based largely
on SMT. These baselines indicate that the task is not easy, and while simple SMT
models with specialized decoders tend to perform best, there is still a lot of room
for improving accuracy. Relative to other benchmark tasks, these datasets appear
to raise new challenges largely related to the large scope and sparsity of the target
code vocabulary, which appear to create challenges for more sophisticated SMT
models and SMT-based decoding to SP more generally.

In contrast to traditional SP tasks, it must be emphasized that the target code
representations being learned deviate in several important respects from traditional
logical forms. Chief among these differences is that the target representations have
limited compositionality and lack a clearly defined semantics. This is not altogether
problematic, since our main idea is to use these representations (which resemble
atomic predicate logic representations) to study the more general translation and
lexicon learning problem encountered in SP. Nonetheless, given that these signature
representations are formal languages, we can further formalize them and define a
formal semantics in terms of classical logic, which is an idea that we pursue in
Richardson (2018) and discuss in Chapter 5.

One exciting aspect of the source code domain is that much of the declarative
knowledge needed for doing deep reasoning about code can be easily extracted
directly from information in the underlying libraries (e.g., information about types,
class hierarchies, related functions). For this reason, we see source code libraries
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as an interesting domain for experimenting with end-to-end SP and reasoning
(i.e., according to the NLU model introduced in Chapter 1). Under this approach,
we might further think of a source code library as a kind of knowledge base for
reasoning. Our working assumption, however, is that any such efforts at deep NLU
first relies on being able to robustly translate text to the underlying source code
representations, which is the main task investigated in this chapter. Given that the
proposed translation models still have a lot of room for improvement, we return
to this underlying task in the next chapter and explore the idea of training SPs
on multiple code datasets as way to improve on the baselines introduced here.
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3.1 Learning from Multiple Datasets

3.1.1 The Idea

In the previous chapter, we considered the problem of translating source code
documentation to lower-level code template representations as part of an effort to
model the meaning of such documentation. Example documentation for a number
of programming languages is shown in Figure 3.1, where each docstring description
in red describes a given function (blue) in the library. For example, given the
description Returns the greater of two long values (as already introduced), we
want to translate this to the following code representation:

public static long max(long a, long b)

While capturing the semantics of docstrings is in general a difficult task, learning
the translation from descriptions to formal code representations (e.g., formal rep-
resentations of functions) is proposed as a reasonable first step towards learning
more general natural language understanding models in the software domain. Un-
der this approach, one can view a software library, or API, as a kind of parallel
translation corpus for studying text→ code or code→ text translation.

In pursuing this idea, we extracted the standard library documentation for 10
popular programming languages across a number of natural languages to study
the problem of text to function signature translation. Initially, these datasets were
proposed as a resource for studying semantic parser induction (Mooney, 2007b), or
for building models that learn to translate text to formal meaning representations
from parallel data. In our follow-up work (Richardson and Kuhn, 2017a), we also
look at using the resulting models to do automated question-answering (QA) and
code retrieval on target APIs (a topic that we discuss more in Chapter 5), and
experimented with an additional set of software datasets built from 27 open-source
Python projects.
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1. (en, Java) Documentation

*Returns the greater of two long values
public static long max(long a, long b)

2. (en, Python) Documentation

max(self, a, b):
"""Compares two values numerically
and returns the maximum"""

3. (en, Haskell) Documentation

--| "The largest element of a non-empty
structure"
maximum :: forall z. Ord a a => t a -> a

4. (de, PHP) Documentation

*gibt den größeren dieser Werte zurück.
max (mixed $value1, mixed $value2)

Figure 3.1: Example source code documentation.

(en,PHP)
(en,Lisp)
(de, PHP)

(ja, Python)
(en, Haskell)

...

θen → PHP
θen → Lisp

θde → PHP
θja → Python

θen → Haskell

(en,PHP)
(en,Lisp)
(de, PHP)

(ja, Python)
(en, Haskell)

...

θpolyglot

Figure 3.2: Building individual API models (left) versus polyglot modeling (right).

As traditionally done in semantic parsing (Zettlemoyer and Collins, 2012), the
approach we introduced so far involves learning individual models for each parallel
dataset or language pair, e.g., (en, Java), (de, PHP), and (en, Haskell), as illus-
trated on the left side of Figure 3.2. Looking again at the examples in Figure 3.1,
we notice that while programming languages differ in terms of representation con-
ventions, there is often overlap between the functionality implemented and naming
in these different languages (e.g., the max function), and redundancy in the associ-
ated linguistic descriptions. In addition, each English description (Figure 3.1.1-4)
describes max differently using the following synonyms:

greater, maximum, largest

In this case, it would seem that training models on multiple datasets, as opposed to
single language pairs, might make learning more robust, and help to capture var-
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Training
challenge 2:
Missing data?

challenge 3:
Deficient LFs?

Parallel Training Set
D =

{
(x(d), z(d))

}|D|
d=1

Machine Learner/Estimation

Testing

input Semantic Parsing sem

x decoding
(Finding the best z)

z

world
reasoning

model

Evaluation: Correct?

Figure 3.3: The standard semantic parsing setup and the second resource challenge
(from Section 1.3).

ious linguistic alternatives. In this chapter, we investigate the following question:
does training semantic parsers on multiple datasets indeed lead to more robust
translation models?

3.1.2 Addressing a Different Resource Problem

With the software QA application in mind, one limitation of our initial approach
is that it doesn’t allow one to freely translate a given description to multiple out-
put programming languages, which would be useful for comparing how different
programming languages represent the same functionality. The model also cannot
translate between natural languages and programming languages that are not ob-
served during training (what we refer to in Chapter 1 as missing data). While
software documentation is easy to find in bulk, if a particular API is not already
documented in a language other than English (e.g., Haskell in German or de),
it is unlikely that such a translation will appear without considerable effort by
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Figure 3.4: The amount of documentation extracted from 461 Python and Java
projects from GitHub.com.

experienced translators.
Similarly, many individual APIs may be too small or poorly documented to build

individual models or QA applications, and will in some way need to bootstrap off
of more general models or resources. More generally, finding targeted data specific
to a particular source code project or programming language can sometimes be
difficult. To quantify this, we show in Figure 3.4 the size of different datasets
constructed from 461 influential Python and Java source code projects hosted on
GitHub. While we would ideally want to find datasets that contains thousands of
documented functions, we find that most projects contain 500 or less data points.

To deal with these issues, which are again summarized in Figure 3.3 using the
setup from Chapter 1, we aim to learn more general text-to-code translation models
that are trained on multiple datasets simultaneously, as shown in Figure 3.2. Our
ultimate goal is to build polyglot translation models (cf. Johnson et al. (2016)),
or models with shared representations that can translate any input text to any
output programming language, regardless of whether such language pairs were
encountered explicitly during training. We specifically ask the following research
questions:

• Multiple Datasets: Does training semantic parsing models on multiple
datasets lead to more robust translation models?
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• Language crossing: Can we learn to translate between different language
pairs, including pairs not observed during training?

Inherent in this task is the challenge of building an efficient polyglot decoder,
or a translation mechanism that allows such crossing between input and output
languages. A key challenge is ensuring that such a decoder generates well-formed
code representations, which is not guaranteed when one simply applies standard
decoding strategies from SMT and neural MT (cf. Cheng et al. (2017); Krishna-
murthy et al. (2017)). Given our ultimate interest in API QA, such a decoder must
also facilitate monolingual translation, or being able to translate to specific output
languages as needed. This issue, which we first discussed in the previous chapter,
concerns the following general problem:

• Constrained Decoding: How can we control the output space for SP de-
coding and ensure well-formedness of the output?

To solve this constrained decoding problem, we introduce a new graph-based
decoding and representation framework that reduces to solving shortest path prob-
lems in directed graphs. We investigate several translation models that work within
this framework, including traditional SMT models and models based on neural
networks, and report state-of-the-art results on datasets introduced in the last
chapter. To show the applicability of our approach to more conventional SP tasks,
we apply our methods to the GeoQuery domain (Zelle and Mooney, 1996) and
the Sportscaster corpus (Chen et al., 2010). These experiments also provide in-
sight into the main technical documentation task and highlight the strengths and
weaknesses of the various translation models being investigated.

3.2 Related Work

Our approach builds on the baseline models introduced in the previous chap-
ter. This work is positioned within the broader semantic parsing (SP) literature,
where traditionally SMT (Wong and Mooney, 2006) and parsing (Zettlemoyer and
Collins, 2009) methods are used to study the problem of translating text to formal
meaning representations, usually centering around QA applications (Berant et al.,
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2013). More recently, there has been interest in using neural network approaches
either in place of (Dong and Lapata, 2016; Kočiský et al., 2016) or in combina-
tion with (Misra and Artzi, 2016; Jia and Liang, 2016; Cheng et al., 2017) these
traditional models, the latter idea we look at in this chapter.

Work in NLP on software documentation has accelerated in recent years due in
large part to the availability of new data resources through websites such as Stack-
Overflow and GitHub (cf. Allamanis et al. (2017)). Most of this recent work focuses
on processing large amounts of API data in bulk (Gu et al., 2016; Miceli Barone
and Sennrich, 2017), either for learning longer executable programs from text (Yin
and Neubig, 2017; Rabinovich et al., 2017), or solving the inverse problem of code
to text generation (Iyer et al., 2016; Richardson et al., 2017). In contrast to our
work, these studies do not look explicitly at translating to target APIs, or at
non-English documentation.

The idea of polyglot modeling has gained some traction in recent years for a
variety of problems (Tsvetkov et al., 2016) and has appeared within work in SP
under the heading of multilingual SP (Jie and Lu, 2014; Duong et al., 2017). A
related topic is learning from multiple knowledge sources or domains (Herzig and
Berant, 2017), which is related to our idea of learning from multiple APIs. When
building models that can translate between unobserved language pairs, we use the
term zero-shot translation from Johnson et al. (2016).

3.3 Baseline Semantic Translator

Problem Formulation Throughout the chapter, we refer to target code rep-
resentations as API components. In all cases, components will consist of formal
representations of functions, or function signatures, e.g.

long max(int a, int b)

which include a function name (max), a sequence of arguments (int a, int b),
and other information such as a return value (long) and namespace (for more
details, see Richardson (2018)). For a given API training dataset D = {(xi, zi)}di=1

of size d, the goal is to learn a model that can generate exactly a correct com-
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ponent sequence z = (z1, .., z|z|), within a finite space C of signatures (i.e., the
space of all defined functions), for each input text sequence x = (x1, ..., x|x|). This
involves learning a probability distribution p(z | x). As such, one can think of this
underlying problem as a constrained MT task.

In this section, we describe the baseline approach from the last chapter. Tech-
nically, our initial approach has two components: a simple word-based translation
model and task specific decoder, which is used to generate a k-best list of candidate
component representations for a given input x. We then use a discriminative model
to rerank the translation output using additional non-world level features. The goal
in this section is to provide the technical details of our translation approach, which
we improve in Section 3.4.

3.3.1 Word-based Translation Model

The translation models investigated in the last chapter use a noisy-channel formu-
lation where p(z | x) ∝ p(x | z)p(z) via Bayes rule. By assuming a uniform prior on
output components, p(z), the model therefore involves estimating p(x | z), which
under a word-translation model is computed using the following formula:

p(x | z) =
∑
a∈A

p(x, a | z)

where the summation ranges over the set of all many-to-one word alignments A
from x→ z, with |A| equal to (|z|+1)|x|. We investigated various types of sequence-
based alignment models (Och and Ney, 2003), and find that the classic IBM Model
1 outperforms more complex word models. This model factors in the following way
and assumes an independent word generation process:

p(x | z) = 1
|A|

|x|∏
j=1

|z|∑
i=0

pt(xj | zi) (3.1)

where each pt defines a multinomial distribution over a given component term z

for all words x.
The decoding problem for the above translation model involves finding the most

likely output ẑ, which requires solving an arg maxz over Equation 3.1. In the general
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Figure 3.5: A DAFSA representation for a portion of the component sequence search
space C that includes math functions in C and Clojure, and an ex-
ample path/translation (in bold): 2C numeric math ceil arg.

case, this problem is known to be NP-complete for the models under consideration
(Knight, 1999) largely due to the large space of possible predictions z. We avoided
these issues by exploiting the finiteness of the target component search space (an
idea we also pursue here and discuss more below), and developed a constrained
decoding algorithm that runs in time O(|C| log |C|) (i.e., the RankDecoder in Al-
gorithm 2). While this works well for small APIs, it becomes less feasible when
dealing with large sets of APIs, as in the polyglot case, or with more complex
semantic languages typically used in SP (see Liang (2013)).

3.4 Shortest Path Framework

To improve the baseline translation approach used previously, we pursue a graph
based approach. Given the formulation above and the finiteness of our prediction
space C, our approach exploits the fact that we can represent the complete compo-
nent search space for any set of APIs as a directed acyclic finite-state automaton
(DAFSA), such as the one shown graphically in Figure 3.5. The underlying graph is
constructed by concatenating all of the component representations for each API
of interest and applying standard finite-state construction and minimization tech-
niques (Mohri, 1996). Each path in the resulting compact automaton is therefore
a well-formed component representation.

Using an idea from Johnson et al. (2016), we add to each component representa-
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Algorithm 4 Standard DAG Shortest-Path Search Algorithm
Input: Labeled DAG G = (V,E), weight function w, source node b
Output: Shortest path
1: d[V [G]]←∞ . Initializes Shortest-Path estimate at each node
2: π[V [G]]← Nil . Initializes backwards pointers
3: d[b]← 0 . Initializes source node score to 0
4: for each node u ≥ b ∈ V [G] in sorted order do . Search graph adjacency
5: for each labeled edge (v, z) ∈ Adj[u] do
6: if d[v] > d[u] + w(u, v, z) then . The relaxation step
7: d[v]← d[u] + w(u, v, z) . Update score to this shortest path
8: π[v]← u . Record the node with current shortest path
9: return FindPath(π, |V |, b) . Retrieve the shortest path by backtracking

tion an artificial token that identifies the output programming language or library.
For example, the two edges from the initial state 0 in Figure 3.5 are labeled as 2C
and 2Clojure, which identify the C and Clojure programming languages respec-
tively. All paths starting from the right of these edges are therefore valid paths in
each respective programming language. The paths starting from the initial state
0, in contrast, correspond to all valid component representations in all languages.

Decoding reduces to the problem of finding a path for a given text input x. For
example, given the input the ceiling of a number, we would want to find the paths
corresponding to the following component translations:

2C numeric math ceil arg
2Clojure algo math ceil x

in the graph shown in Figure 3.5. Using the trick above, our setup facilitates both
monolingual decoding, i.e., generating components specific to a particular output
language (e.g., the C language via the path shown in bold), and polyglot decoding,
i.e., generating any output language by starting at the initial state 0 (e.g., to C
and Clojure languages).

We formulate the decoding problem using a variant of the well-known single
source shortest path (SSSP) algorithm for directed acyclic graphs (DAGs) (Johnson
(1977)). This involves a graph G = (V,E) (nodes V and labeled edges E, see
graph in Figure 3.5), and taking an off-line topological sort of the graph’s vertices.
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Using a data structure d ∈ R|V | (initialized as ∞|V |, as shown in Figure 3.5),
the standard SSSP algorithm (which is the forward update variant of the Viterbi
algorithm (Huang, 2008); see Algorithm 4) works by searching forward through
the graph in sorted order (starting line 4) and finding for each node v an incoming
labeled edge u, with label z, that solves the following recurrence (line 6):

d(v) = min
(u,z):(u,v,z)∈E

{
d(u) + w(u, v, z)

}
(3.2)

where d(u) is shortest path score from a unique source node b to the incoming node
u (computed recursively) and w(u, v, z) is the weight of the particular labeled edge.
The weight of the resulting shortest path is commonly taken to be the sum of the
path edge weights as given by w, and the output translation is the sequence of
labels associated with each edge. This algorithm runs in linear time over the size
of the graph’s adjacency matrix (Adj) and can be extended to find k SSSPs. In the
standard case, a weighting function w is provided by assuming a static weighted
graph. In our translation context, we replace w with a translation model, which is
used to dynamically generate edge weights during the SSSP search for each input
x by scoring the translation between x and each edge label z encountered.

Given this general framework, many different translation models can be used
for scoring. In what follows, we describe two types of decoders based on lexical
translation (or unigram) models and neural sequence models. Technically, each
decoding algorithm involves modifying the standard SSSP search procedure by
adding an additional data structure s to each node (see Figure 3.5), which is used
to store information about translations (e.g., running lexical translation scores,
RNN state information) associated with particular shortest paths. By using these
two very different models, we can get insight into the challenges associated with
the technical documentation translation task. As we show in Section 3.6, each
model achieves varying levels of success when subjected to a wider range of SP
tasks, which reveals differences between our task and other SP tasks.
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Algorithm 5 Lexical Shortest Path Search
Input: Input x of size n, DAG G = (V,E), lexical translation function pt, source node b with

initial score o.
Output: Shortest component path
1: d[V [G]]←∞, π[V [G]]← Nil, d[b]← o
2: s[V [G], n]← 0.0 . Shortest path sums at each node
3: for each vertex u ≥ b ∈ V [G] in sorted order do
4: for each vertex and label (v, z) ∈ Adj[u] do
5: score← −log

[ ∏n
i pt(xi | z) + s[u, i]

]
6: if d[v] > score then
7: d[v]← score, π[v]← u
8: for i in 1, .., n do . Update scores
9: s[v, i]← pt(xi | z) + s[u, i]

10: return FindPath(π, |V |, b)

3.4.1 Lexical Translation Shortest Path

In our first model, we use the lexical translation model and probability function
pt in Equation 3.1 as the weighting function, which can be learned efficiently off-
line using the EM algorithm (see details in Section 2.3.1). When attempting to
use the SSSP procedure to compute this equation for a given source input x,
we immediately have the problem that such a computation requires a complete
component representation. As Knight and Al-Onaizan (1998) observe:

Notice that in .. [Equation 3.1].. there is no notion of consuming the
source sentence word by word and producing the target sentence. In-
stead, all source words must remain available for consultation.... These
properties make [IBM] Model 1 unattractive for finite-state [and graph]
modeling.

We use an approximation that involves ignoring the normalizer |A| and exploiting
the word independence assumption of the model, which allows us to incrementally
compute translation scores for individual source words given output translations
corresponding to shortest paths during the SSSP search.

The full decoding algorithm in shown in Algorithm 5, where the red highlights
the adjustments made to the standard SSSP search as presented in Cormen et al.
(2009) (shown in Algorithm 4). The main modification involves adding a data
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structure s ∈ R|V | × |x| (initialized as 0.0|V |×|x| at line 2) that stores a running
sum of source word scores given the best translations at each node, which can be
used for computing the inner sum in Equation 3.1. For example, given an input
utterance ceiling function, s6 in Figure 3.5 contains the independent translation
scores for words ceiling and function given the edge label numeric and pt. Later on
in the search, these scores are used to compute s7, which will provide translation
scores for each word given the edge sequence numeric math. Taking the product
over any given sj (as done in line 7 to get score) will give the probability of
the shortest path translation at the particular point j. Here, the transformation
into − log space is used to find the minimum incoming path. Standardly, the data
structure π (or predecessor) can be used to retrieve the shortest path back to the
source node b (done via the FindPath method). An illustration of an example
run of this algorithm is shown in Figure 3.6.

3.4.2 Neural Shortest Path

Our second set of models use neural networks to compute the weighting function
in Equation 3.2 (for a general overview of neural networks and the notation used
below, see Appendix B). We use an encoder-decoder model with global attention
(Bahdanau et al., 2014; Luong et al., 2015), which has the following two compo-
nents (as shown in Figure 3.7):

Encoder Model The first is an encoder network, which uses a bi-directional
recurrent neural network (RNN) architecture with LSTM units (Hochreiter and
Schmidhuber, 1997) to compute a sequence of forward annotations or hidden states
(−→h 1, ...,

−→
h |x|) and a sequence of backward hidden states (←−h , ...,←−h |x|) for the input

sequence (x1, ..., x|x|). Each word is then represented as the concatenation of its
forward and backward states:

hj =
[−−→
LSTM(−→h j−1,Ein

xj
) ; ←−−LSTM(←−h j+1,Ein

xj
)
]
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]
)

7.95
s0 = [0.05, 0.35, 0.4, 0.05]

4.79 s1 = [0.6, 0.55, 0.5, 0.05]

6.60

s2 = [0.15, 0.44, 0.4, 0.05]

1.74
s3 = [0.7, 0.55, 0.7, 0.65]

6.13 s5 = [0.7, 0.55, 0.7, 0.65]/3

1.67 s4 = [0.75, 0.55, 0.7, 0.65]

fun1

fun2

x

x
y *end*

*end*

Node: 5

score3→5 = − log

∏
s3

34

score4→5 = − log

∏
s4

44

7.95 4.79 1.74 6.13
fun1 x *end* Back traversal to source node 0 and path discovery

pt(· |fun1) pt(· |fun2) pt(· |x) pt(· |y) pt(· |λ)
function 1 0.6 0.1 0.1 0.05 0.05
function 2 0.1 0.8 0.1 0.05 0.05
applied 0.2 0.1 0.0 0.0 0.35
to 0.1 0.0 0.2 0.0 0.4
arg x 0.0 0.0 0.6 0.0 0.05
and 0.0 0.0 0.0 0.2 0.05
arg y 0.0 0.0 0.0 0.7 0.05

Figure 3.6: An illustration of the lexical SSSP algorithm for the text input x =
function 1 applied to arg x. The table for pt is on the bottom, where λ
denotes an artificial NULL word token on the target side.
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decoder

c z1 z2 z3 ... z|z|

...

...

...

x1 x2 x3 ... x|x|
encoder

Figure 3.7: An illustration of the encoder decoder model architecture.

Decoder Model The second component is a decoder network, which directly
computes the conditional distribution p(z | x) as follows:

p(z | x) =
|z|∑
i=1

log pΘ(zi | z<i,x) (3.3)

pΘ(zi | z<i,x) ∼ softmax(f(Θ, z<i,x)) (3.4)

where f is a non-linear function that encodes information about the sequence z<i
(i.e., all decisions z0, ..., zi−1 made previously) and the input x given the model
parameters Θ. We can think of this model as an ordinary RNN language model
that is additionally conditioned on the input x using information from our encoder.
We implement the function f in the following way:

f(Θ, z<i,x) = Woηi + bo (3.5)

ηi = MLP(ci, gi) (3.6)

gi = LSTMdec(gi−1,Eout
zi−1

, ci) (3.7)

where MLP is a multi-layer perceptron model with a single hidden layer, Eout ∈
R|Σdec|×e is a randomly initialized embedding matrix, gi is the decoder’s hidden
state at step i, and ci is a context-vector that encodes information about the input
x and the encoder annotations. Each context vector ci in turn is a weighted sum
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of each annotation hj against an attention vector αi,j, or ci = ∑|x|
j=1 αi,jhj, which

is jointly learned using an additional single layered multi-layer perceptron defined
in the following way:

αi,j ∝ exp(ei,j) (3.8)

ei,j = MLP(gi−1, hj) (3.9)

Lexical Bias and Copying In contrast to standard MT tasks, we are dealing
with a relatively low-resource setting where the sparseness of the target vocabulary
is an issue. For this reason, we experimented with integrating lexical translation
scores using a biasing technique from Arthur et al. (2016). Their method is based
on the following computation for each token zi:

biasi =


pt′(z1 | x1) . . . pt′(z1 | x|x|)

...
. . .

...
pt′(z|Σdec| | x1) . . . pt′(z|Σdec| | x|x|)



αi,1

...
αi,|x|


The first matrix uses the inverse (pt′) of the lexical translation function pt already
introduced to compute the probability of each word in the target vocabulary Σdec

(the columns) with each word in the input x (the rows), which is then weighted
by the attention vector from Equation 3.8. biasi is then used to modify Equation
3.5 in the following way:

fbias(Θ, z<i,x) =
[
Woηi + bo

]
+ log(biasi + ε)

where ε is a hyper-parameter that helps to preserve numerical stability and biases
more heavily on the lexical model when set lower.

We also experiment with the copying mechanism from Jia and Liang (2016),
which works by allowing the decoder to choose from a set of actions, aj, that in-
cludes writing target words according to Equation 3.4, as done standardly, or copy-
ing source words from x, or copy[xi] according to the attention scores in Equation
3.8. A distribution is then computed over these actions using a softmax function
and particular actions are chosen accordingly during training and decoding.
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Algorithm 6 Neural Shortest Path Search
Input: Input x, DAG G, neural parameters Θ and non-linear function f , beam size l, source

node b with init. score o.
Output: Shortest component path
1: d[V [G]]←∞, d[b]← o, π[V [G]]← Nil
2: s[V [G]]← Nil . Path state information
3: s[b]← InitState() . Initialize source state
4: for each vertex u ≥ b ∈ V [G] in sorted order do
5: if isinf(d[u]) then continue
6: p← s[u] . Current state at node u, or z<i
7: L1

[l] ← arg max
(v1,...,vk)∈Adj[u]

softmax(f(Θ, p,x))

8: for each vertex and label (v, z) ∈ L do
9: score ← − log pΘ(z | p,x) + d[u]

10: if d[v] > score then
11: d[v]← score, π[v]← u
12: s[v]← UpdateState(p, z)
13: return FindPath(π, |V |, b)

Decoding and Learning The full decoding procedure is shown in Algorithm 6,
where the differences with the standard SSSP are again shown in red. We change
the data structure s to contain the decoder’s RNN state at each node. We also
modify the scoring (line 7, which uses Equation 3.4) to consider only the top l

edges or translations at that point, as opposed to imposing a full search. When
l is set to 1, for example, the procedure does a greedy search through the graph,
whereas when l is large the procedure is closer to a full search.

In general terms, the decoder described above works like an ordinary neural de-
coder with the difference that each decision (i.e., new target-side word translation)
is constrained (in line 7) by the transitions allowed in the underlying graph in order
to ensure wellformedness of each component output. Standardly, we optimize these
models using stochastic gradient descent with the objective of finding parameters
Θ∗ that minimize the negative conditional log-likelihood of the training dataset
(see details in Section 2.3.2).
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Algorithm 7 k-SSSP Decoding via Yen’s Algorithm
Input: Input x, DAG G, SSSP method SP, number of paths K, translation mode θ, starting

node b.
Output: K shortest paths A
1: A[k]← Nil . Initialize the k-best list A
2: B ← [ ] . Initialize the k-best candidate list B
3: A[0]← SP(x,G, θ, b) . Find initial SSSP starting from b
4: for k ∈ 1..K do
5: for i ∈ 0 to len(A[k − 1])− 1 do . Run through each node in recent SSSP
6: new start← A[k − 1][i]
7: root← A[k − 1][: i]
8: for each path p ∈ A do . Find all paths in A matching root
9: if root = p[0 : i] then

10: G ← Block(G, p[i], p[i+ 1])
11: branching← SP(x,G, θ, new start) . Find new SSSP from new start
12: candidate← root + branching
13: B ← HeapPush(B,candidate) . Add candidate as a candidate shortest path
14: G ← UnBlock(G)
15: A[k]← HeapPop(B) . Add best candidate to A
16: return A

3.4.3 Monolingual vs. Polyglot Decoding

Our framework facilitates both monolingual and polyglot decoding. In the first
case, the decoder requires a graph associated with the output semantic language
(more details in next section) and a trained translation model. The latter case
requires taking the union of all datasets and graphs (with artificial identifier tokens)
for a collection of target datasets and training a single model over this global
dataset. In this setting, we can then decode to a particular language using the
language identifiers or decode without specifying the output language. The main
focus in this chapter is investigating polyglot decoding, and in particular the effect
of training models on multiple datasets when translating to individuals APIs or
SP datasets.

When evaluating our models and building QA applications, it is important to
be able to generate the k best translations. This can easily be done in our frame-
work by applying standard k SSSP algorithms. We use an implementation of the
algorithm of Yen (1971) shown in Algorithm 7. As detailed in Brander and Sinclair
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Figure 3.8: Test Acc@1 for the best monolingual models (in yellow/left) compared
with the best lexical polyglot model (green/right) across all 45 technical
documentation datasets.

(1995) (see also Eppstein (2008)), this method is one of many k Shortest Path al-
gorithms that works by finding deviating or branching paths from an initial SSSP
(computed in Line 3). For each k starting on Line 4, the method then dissects the
most recent shortest path and again uses the single shortest path method to find
an alternative path from each point new node that hasn’t been observed in the
current list A (as checked starting on line 8). See Appendix B for more details.

3.5 Experimental Setup

We experimented with two main types of resources: 45 API documentation datasets
and two multilingual benchmark SP datasets. In the former case, our main objec-
tive is to test whether training polyglot models (shown as polyglot in Tables
3.1-3.2) on multiple datasets leads to an improvement when compared to train-
ing individual monolingual models (shown as monolingual in Tables 3.1-3.2).
Experiments involving the latter datasets are meant to test the applicability of
our general graph and polyglot method to related SP tasks, and are also used for
comparison against our main technical documentation task.
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3.5.1 Datasets

Technical API Docs The first dataset includes the Stdlib and Py27 datasets
of Richardson and Kuhn (2017b,a) (from the last chapter), which are publicly
available via Richardson (2017). Stdlib consists of short description and function
signature pairs for 10 programming languages in 7 languages, and Py27 contains
the same type of data for 27 popular Python projects in English mined from
GitHub. We also built two new datasets from the Japanese translation of the
Python 2.7 standard library, as well as the Lua stdlib documentation in a mixture
of Russian, Portuguese, German, Spanish and English.

Taken together, these resources consist of 79,885 training pairs, and we exper-
iment with training models on Stdlib and Py27 separately as well as together
(shown as + more in Table 3.1). We use BPE subword encodings (Sennrich et al.,
2015) of both input and output words to make the representations more similar
and transliterated all datasets (excluding our Japanese datasets) to an 8-bit latin
encoding. Graphs were built by concatenating all function representations into a
single word list and compiling this list into a minimized DAFSA. For our global
polyglot dataset, this resulted in a graph with 218,505 nodes, 313,288 edges, and
112,107 paths over an output vocabulary of 9,324 words.

Mixed GeoQuery and Sportscaster We run experiments on the GeoQuery
880 corpus using the splits from Andreas et al. (2013), which includes geography
queries for English, Greek, Thai, and German paired with formal database queries,
as well as a seed lexicon or NP list for each language. In addition to training
models on each individual dataset, we also learn polyglot models trained on all
datasets concatenated together. We also created a new mixed language test set
that was built by replacing NPs in 803 test examples with one or more NPs from a
different language using the NP lists mentioned above (see example in Figure 3.11).
The goal in the last case is to test our model’s ability to handle mixed language
input. We also ran monolingual experiments on the English Sportscaster corpus,
which contains human generated soccer commentary paired with symbolic meaning
representation produced by a simulation of four games.

For GeoQuery graph construction, we built a single graph for all languages by
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## entities
define NUMBERS [ 1 | 2 | 3 | 4 | 5 | 6 | 7 | ... | 11 ];
define PURPLE [ purple NUMBERS ];
define PINK [ pink NUMBERS ];
define PPAIRS [ PURPLE PURPLE ];
define PKPAIRS [ PINK PINK ];
define TEAMS [ [ pink_ | purple_ ] team ];
define PLAYS [ free_ kick_ | kick_ in_ | goal_ | ... ];

## relations
regex [ pass@r [ PKPAIRS | PPAIRS ] ];
regex [ kick@r [ PURPLE | PINK ] ];
regex [ defense@r [ PURPLE | PINK ] ];
regex [ block@r [ PURPLE | PINK ] ];
regex [ turn@@ over@r [ PURPLE PINK | PINK PURPLE ] ];
regex [ bad@@ pass@r [ PURPLE PINK | PINK PURPLE ] ];
regex [ steal@r [ PURPLE | PINK ] from@l player@l ];
regex [ ball@@ stopped@r ball@l ];
regex [ play@@ mode@r PLAYS TEAMS ];
regex [ play@@ mode@r play_ on ];

union net

Figure 3.9: An example implementation of the Sportscaster language and graph
expressed in the Xerox finite-state language.
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ε

Figure 3.10: A DAG representation of the search space for a fragment of Geoquery.
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Method Acc@1 Acc@10 MRR

st
d

li
b mono. RK Trans + rerank 29.9 69.2 43.1

Lexical SP 33.2 70.7 45.9
poly. Lexical SP + more 33.1 69.7 45.5

Neural SP + bias 12.1 34.3 19.5
Neural SP + copy bias 13.9 36.5 21.5

py
27

mono. RK Trans + rerank 32.4 73.5 46.5
Lexical SP 41.3 77.7 54.1

poly. Lexical SP + more 40.5 76.7 53.1
Neural SP + bias 8.7 25.5 14.2
Neural SP + copy bias 9.0 26.9 15.1

Table 3.1: Test results on the Stdlib and Py27 tasks averaged over all datasets
and compared against the best monolingual results from Richardson
and Kuhn (2017b,a), or RK

extracting general rule templates from all representations in the dataset, and ex-
ploited additional information and patterns using the Geobase database and the
semantic grammars used in Wong and Mooney (2006) (see Figure 3.10 for an ex-
ample). This resulted in a graph with 2,419 nodes, 4,936 edges and 39,482 paths
over an output vocabulary of 164. For Sportscaster, we directly translated the se-
mantic grammar provided in Chen and Mooney (2008a) to a DAFSA, which resulted
in a graph with 98 nodes, 86 edges and 830 paths (an example implementation of
this graph is shown in Figure 3.9).

3.5.2 Evaluation

For the technical datasets, the goal is to see if our model generates correct signature
representations from unobserved descriptions using exact match. We follow exactly
the experimental setup and data splits from Richardson and Kuhn (2017b), and
measure the accuracy at 1 (Acc@1), accuracy in top 10 (Acc@10), and MRR.

For the GeoQuery and Sportscaster experiments, the goal is to see if our mod-
els can generate correct meaning representations for unseen input. For GeoQuery,
we follow Andreas et al. (2013) in evaluating extrinsically by checking that each
representation evaluates to the same answer as the gold representation when exe-
cuted against the Geobase database using a Prolog reasoner. For Sportscaster, we
evaluate by exact match to a gold representation.
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3.5.3 Implementation and Model Details

We use the Foma finite-state toolkit of (Hulden, 2009), which is an open source
version of the well-known Xerox finite-state toolkit (Beesley and Karttunen, 2003),
to construct all graphs used in our experiments. We also use the Cython version
of Dynet (Neubig et al., 2017) to implement all the neural models (see Appendix
B for more details).

In the results tables, we refer to the lexical and neural models introduced in
Section 4 as Lexical Shortest Path and Neural Shortest Path, where models that
use copying (+ copy) and lexical biasing (+ bias) are marked accordingly. We
also experimented with adding a discriminative reranker to our lexical models (+
rerank), using the approach from Section 2.3.2, which uses additional lexical (e.g.,
word match and alignment) features and other phrase-level and syntax features.
The goal here is to see if these additional (mostly non-word level) features help
improve on the baseline lexical models.

3.6 Experimental Results and Discussion

Technical Documentation Results Table 3.1 shows the results for Stdlib and
Py27. In the monolingual case, we compare against the best performing models in
Richardson and Kuhn (2017b,a) (i.e., last chapter). As summarized in Figure 3.8,
our experiments show that training polyglot models on multiple datasets can lead
to large improvements over training individual models, especially on the Py27
datasets where using a polyglot model resulted in a nearly 9% average increase in
accuracy @1. In both cases, however, the best performing lexical models are those
trained only on the datasets they are evaluated on, as opposed to training on all
datasets (i.e., + more). This is surprising given that training on all datasets doubles
the size of the training data, and shows that adding more data does not necessarily
boost performance when the additional data is from another distribution.

The neural models are strongly outperformed by all other models both in the
monolingual and polyglot case (only the latter results shown), even when lexical
biasing is applied. While surprising, this is consistent with other studies on low-
resource neural MT (Zoph et al., 2016; Östling and Tiedemann, 2017), where
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Method Acc@1 Acc@10
UBL Kwiatkowski et al. (2010) 74.2 –
TreeTrans Jones et al. (2012b) 76.8 –
nHT Susanto and Lu (2017) 83.3 –

S
ta

n
d

ar
d

G
eo

Q
u

er
y m

on
ol

in
gu

al

Lexical Shortest Path 68.6 92.4
Lexical Shortest Path + rerank 74.2 94.1
Neural Shortest Path 73.5 91.1
Neural Shortest Path + bias 78.0 92.8
Neural Shortest Path + copy bias 77.8 92.1

p
ol

yg
lo

t Lexical Shortest Path 67.3 92.9
Lexical Shortest Path + rerank 75.2 94.7
Neural Shortest Path 78.0 91.4
Neural Shortest Path + bias 78.9 91.7
Neural Shortest Path + copy bias 79.6 91.9

M
ix

ed

p
ol

y. Best Monolingual Model 4.2 18.2
Lexical Shortest Path + rerank 71.1 94.3
Neural Shortest Path + copy bias 75.2 90.0

m
on

o.

PCFG Börschinger et al. (2011) 74.2 –
wo-PCFG Börschinger et al. (2011) 86.0 –

S
p

or
ts

ca
st

er

Lexical Shortest Path 40.3 86.8
Lexical Shortest Path + rerank 70.3 90.2
Neural Shortest Path 81.9 94.8
Neural Shortest Path + bias 83.4 93.9
Neural Shortest Path + copy bias 83.3 90.5

Table 3.2: Test results for the standard (above) and mixed (middle) Geo-
Query tasks averaged over all languages, and results for the English
Sportscaster task (below).

datasets of comparable size to ours (e.g., 1 million tokens or less) typically fail
against classical SMT models. This result has also been found in relation to neural
AMR semantic parsing, where similar issues of sparsity are encountered (Peng
et al., 2017). Even by doubling the amount of training data by training on all
datasets (results not shown), this did not improve the accuracy, suggesting that
much more data is needed (more discussion below).

Beyond increases in accuracy, our polyglot models support zero-shot translation
as shown in Figure 3.11, which can be used for translating between unobserved
language pairs (e.g., (es,Clojure), (ru,Haskell) as shown in 1-2), or for finding
related functionality across different software projects (as shown in 3). These re-
sults were obtained by running our decoder model without specifying the output
language. We note, however, that the decoder can be constrained to selectively
translate to any specific programming language or project (e.g., in a QA setting).
Future work will further investigate the decoder’s polyglot capabilities, which is
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1. Source API (stdlib): (es, PHP) Input: Devuelve el mensaje asociado al objeto lanzado.
O

ut
pu

t Language: PHP Function Translation: public string Throwable::getMessage ( void )
Language: Java Function Translation: public String lang.getMessage( void )
Language: Clojure Function Translation: (tools.logging.fatal throwable message & more)

2. Source API (stdlib): (ru, PHP) Input: konvertiruet stroku iz formata UTF-32 v format UTF-16.

O
ut

pu
t Language: PHP Function Translation: string PDF utf32 to utf16 ( ... )

Language: Ruby Function Translation: String#toutf16 => string
Language: Haskell Function Translation: Encoding.encodeUtf16LE :: Text -> ByteString

3. Source API (py): (en, stats) Input: Compute the Moore-Penrose pseudo-inverse of a matrix.

O
ut

pu
t Project: sympy Function Translation: matrices.matrix.base.pinv solve( B, ... )

Project: sklearn Function Translation: utils.pinvh( a, cond=None,rcond=None,... )
Project: stats Function Translation: tools.pinv2( a,cond=None,rcond=None )

4. Mixed GeoQuery (de/gr) Input: Wie hoch liegt der höchstgelegene punkt in Αλαμπάμα?
Logical Form Translation: answer(elevation 1(highest(place(loc 2(stateid(’alabama’))))))

Figure 3.11: Examples of zero-shot translation when running in polyglot mode (1-
3, function representations shown in a conventionalized format), and
mixed language parsing (4).

currently hard to evaluate since we do not have an annotated set of function equiv-
alences between different APIs.

Semantic Parsing Results SP results are summarized in Table 2. In contrast,
the neural models, especially those with biasing and copying, strongly outperform
all other models and are competitive with related work. In the GeoQuery case,
we compare against two classic grammar-based models, UBL and TreeTrans, as
well as a feature rich, neural hybrid tree model (nHT). We also see that the poly-
glot Geo achieves the best performance, demonstrating that training on multiple
datasets helps in this domain as well. In the Sportscaster case we compare against
two PCFG learning approaches, where the second model (wo-PCFG) involves a
grammar with complex word-order constraints.

The advantage of training a polyglot model is shown on the results related to
mixed language parsing (i.e., the middle set of results). Here we compared against
the best performing monolingual English model (Best Mono. Model), which
does not have a way to deal with multilingual NPs. We also find the neural model
to be more robust than the lexical models with reranking. One conclusion therefore
is that polyglot models can effectively facilitate mixed language decoding.

While the lexical models overall perform poorly on both tasks, the weakness of
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this model is particularly acute in the Sportscaster case. We found that mistakes
are largely related to the ordering of arguments, which these lexical (unigram)
models are blind to. For example, the target LF translation for the sentence purple
player 2 kicks to purple 5 is the following (more details about this dataset are
provided in the next chapter):

pass(purple2,purple5)

We found that in such cases the lexical models often confuse the ordering of ar-
guments like purple2 and purple5. That these models still perform reasonably
well on the GeoQuery task shows that such ordering issues are less of a factor in
this domain (and perhaps that the underlying sequence prediction problem is less
difficult when the general syntax of the output language is known).

Algorithmic Analysis: RankDecoder versus Lexical SSSP As already dis-
cussed, the rank decoding strategy (or RankDecoder, as defined in Algorithm 2)
that we started with in the last chapter has the disadvantage of binding the
search complexity to the size of the output target language C, and runs in time
O(|C| log |C|). The lexical SSSP (LexDecoder) decoder developed here (which re-
lies on the same underlying SMT model) improves on this by using a more general
DAG k-SSSP search strategy that runs in time O(k |V | (|V | + |E|)) (for more
theoretical analysis, see Appendix B), which in theory scales better to larger lan-
guages. Despite this, the lexical SSSP is an approximate search strategy (unlike
the RankDecoder), since it ignores the normalization constant |A|, and might not
scale well in practice for large graphs G. Figure 3.12 shows the average decoding
times for these two different strategies as a function of the beam k for our largest
datasets (recall that the RankDecoder ranks all signatures, hence the flat line),
along with a comparison of accuracy. Here we see that for individual datasets (i.e.,
Figure 3.12.a-d) the LexDecoder does not scale well for larger k relative to the
RankDecoder, though in terms of matching accuracy, only a small k seems needed
in most cases. For larger datasets (Figure 3.12e-f), however, the LexDecoder is
much more efficient, even despite requiring a larger beam k (e.g., in the case of
GeoQuery) to achieve comparable performance.
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Figure 3.12: Average decode time as a function of k for rank decoders (RankDe-
code) and lexical SSSP decoders (LexDecoder) (log-log scale, triangles
show point at which the accuracy@1 either matches (green) or is com-
parable (red) with rank decoder).
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In terms of system building, one takeaway is that the RankDecoder appears to
be sufficiently efficient for small API projects, though using our graph model can
lead to considerable speed improvements for small sizes of k (which generally ap-
pear to achieve comparable accuracy). For larger collections of APIs and semantic
languages, however, the RankDecoder can become prohibitively slow, and the use
of our graph decoder becomes essential. Therefore, the choice of either method
should be tailored to the nature and size of the target API.

Discussion Having results across related SP tasks allows us to reflect on the
nature of the main technical documentation task. Consistent with recent findings
(Dong and Lapata, 2016), we show that relatively simple neural sequence models
are competitive with, and in some cases outperform, traditional grammar-based
methods on benchmark SP tasks. However, we find that using the exact same
neural models in the technical documentation domain does not deliver the same
positive results. This asymmetry appears related to the fact that in the technical
docs, each code representation being predicted is almost entirely unobserved and
unique (owing to the fact the developers do not often define redundant factors
with identical parameters), which makes generalization hard for complex sequence
models. In contrast, the representations being learned in GeoQuery are much more
redundant (see Table 2.1 for a comparison), to the extent that virtually all testing
representations are observed in the training phase.

For this reason, we believe our datasets provide new challenges for neural-based
SP and serve as a cautionary tale about the applicability of these models to lower-
resource tasks. One natural question to ask is the following: how much additional
data is needed to improve the neural models on this task? In looking at the re-
sults, we observe that the one place where the neural models do well is with the
PHP datasets, which are translated in 7 languages (hence, we might say that our
PHP dataset is 7 times larger than all other datasets). Despite being competi-
tive, however, the polyglot neural models are still outperformed in all cases by the
SMT models, showing that even with 7 times more data, the system still might
not be able to learn effectively. Rather than focusing on building more data, one
alternative approach might be to develop sequence models that exploit more ab-
stract structure in the code representations, such as type sequences or abstract
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sketches (Dong and Lapata, 2018), which can be coupled together with simpler
lexical models to predict code words (as looked at in Herzig and Berant (2018)).

Turning to our initial research question, however, we see that training on mul-
tiple datasets (i.e., polyglot modeling) can be an effective technique for learning
more robust translation models (assuming that the appropriate translation model
is used) and for learning across multiple domains. Beyond improving translation
quality, one main benefit of the polyglot approach is its ability to support mixed
language decoding, which we introduce as a new evaluation task in the GeoQuery
domain, as well as translating to multiple programming languages. We find these
new types of evaluation to be more revealing than only considering translation
accuracy, since they reveal fundamental differences between what different models
(which might achieve comparable accuracy) are capable of doing. We hope that
our work helps to motivate more diverse evaluations of this type for SP.

In terms of our second research question about building decoding models that
support zero-shot translation, we find that doing zero-shot translation (and other
types of polyglot decoding) follows rather straightforwardly by our graph-based
decoder, which was initially developed as an improvement over the constrained
decoding methods used in the last chapter. In general, our basic idea of constrain-
ing translation search using graphs has close similarity with recent methods in
neural SP on using decoders that generate grammar representations (Krishna-
murthy et al., 2017; Cheng et al., 2017; Yin and Neubig, 2017). While our graph
approach is limited to acyclic graphs, largely due to the nature of the component
representations, one could extend this basic method to more expressive graphs
(e.g., cyclic graphs or tree structure hypergraphs) by simply employing a more
expressive SSSP search. We believe, therefore, that our shortest path decoding
strategy could serve as a more general search framework for constrained decoding.

3.7 Conclusions

In this chapter, we looked at learning from multiple API libraries and datasets
in the context of learning to translate text to code representations and other SP
tasks. The central intuition is that by building single models over multiple datasets
with shared parameters (i.e., polyglot models), such models are able to capture
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certain redundancies across different datasets, and hence facilitate more robust
translation and SP. To support polyglot modeling of this type, we introduced a
novel graph-based decoding and search framework and experimented with various
SMT and neural MT models that work in this framework.

In conclusion, we found polyglot modeling to be a useful technique for improving
translation and for transfer learning across different (sometimes disparate) domains
and languages. Using this method, we achieved large improvements on the 43
(+2) technical documentation tasks first introduced in the last chapter, and also
demonstrated the usefulness of this technique on two additional benchmark SP
tasks, on which we achieved results competitive with the state-of-the-art. In order
to highlight the benefit of polyglot modeling, we also introduced a novel mixed
language SP task and GeoQuery test set, on which our polyglot models achieved
large improvements over training monolingual (language specific) models.

These positive results, however, come with certain caveats. Building on a theme
from the last chapter, we found that the technical documentation datasets provide
new challenges for SP largely due to their large scope and sparsity, and that the
positive results mentioned above are dependent on the particular models being
employed. By experimenting with additional benchmark SP tasks, we were able
to directly compare the performance of recent state-of-the-art neural sequence
models on these benchmark tasks to results on our technical documentation task.
We found that such neural models fail to achieve comparable results to simpler
SMT models, which, we believe, highlights the limitations of these models for more
general SP tasks and the need for developing more robust neural SP architectures.

Moving ahead, we see a lot of potential for using polyglot modeling to do more
complex types of transfer learning (e.g., data augmentation and modeling para-
phrasing and entailment across domains), and for doing knowledge acquisition in
the source code domain (which is a topic that we return to in Chapter 5).
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4 Learning from Entailment for
Semantic Parsing

“The basic aim of semantics is to characterize the notion of a true sen-
tence (under a given interpretation) and of entailment.”

– Richard Montague, Universal Grammar (1970)

4.1 Modeling Entailment for Semantic Parsing

4.1.1 The Idea

Throughout this thesis, we have treated semantic parsing as primarily a translation
problem, which we have studied independently of the other subtasks (i.e., knowl-
edge representation and symbolic reasoning) associated with the general NLU pro-
gram outlined in Chapter 1. It is worth bearing in mind, however, that the ultimate
goal, as described in the quote above by Montague, is to generate formal meaning
representations that capture facts about truth and entailment and facilitate deep
symbolic reasoning. In this chapter, we examine the following question: do the for-
mal representations being learned for semantic parsing actually help us to model
entailment, and if not, how can we learn representations that do?

To illustrate this idea, Figure 4.1 shows a variant of the pipeline model intro-
duced in Chapter 1 that includes the following sentence (in red) that is logically
entailed by the first sentence (for details about entailment, see Appendix C):

Find some sample that contains a major element. (4.1)

A consequence of this logical entailment is that the denotation of the second sen-
tence (i.e., the set of answers that make this sentence true) should always be a
subset of the denotation of the first sentence, regardless of the target dataset or
knowledge source being used. Linguists in the Montague tradition have long used

107



4 Learning from Entailment for Semantic Parsing

input sem

Find all samples that
contain a major element

→
Find some sample that
contains a major element

database

JsemK ={S10019,S10059,...} ⊇ {S10019}

1. Semantic Parsing

3. Reasoning

(FOR EVERY X /
MAJORELT : T;
(FOR EVERY Y /
SAMPLE : (CONTAINS Y X);
(PRINTOUT Y)))

2. Knowledge Representation

Figure 4.1: The global NLU picture with entailment.

judgements about entailment as the main tool for motivating and evaluating dif-
ferent theories of semantics. Using an analogy with programming and software, we
can think about tests of entailment in semantics as a kind of unit test for system
development, as described below:

• Entailment as a Unit Test: For a set of target sentences, check that our
semantic model accounts for particular entailment patterns observed between
pairs of sentences; modify our model when such tests fail.

The question investigated here is: what happens when we subject our semantic
parsers to such a unit test? In doing this, we adopt the loose definition of entailment
used in the recognizing textual entailment challenges (RTE), where entailment is
defined in terms of the following task (Dagan et al., 2005): given a text t and
hypothesis h, determine if h is entailed by t where say that t entails h if a
human reading t would typically infer that h is most likely true. Figure 4.2 shows
example sentence pairs and logical forms (or LFs, generated by a semantic parser)
from the Sportscaster corpus (Chen and Mooney, 2008a) already encountered in
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Entailments
Text t and gold LF Hypothesis h and gold LF Human Näıve

1. Pink 3 quickly kicks to Pink 7
pass(pink3,pink7)

Pink 3 kicks over to Pink 7
pass(pink3,pink7)

t (entail) h
h (uncertain) t entail

2. Purple 10 kicks the ball
kick(purple10)

Purple 10 shoots for the goal
kick(purple10)

t (uncertain) h
h (entail) t entail

3. Pink 10 kicks the ball
kick(pick10)

Pink 10 passes over to Pink 7
pass(pink10,pink7)

t (uncertain) h
h (entail) t contr.

4. Pink 7 makes a long kick
kick(purple7)

Purple team scores another goal
playmode(goal l)

t (uncertain) h
h (uncertain) t contr.

Figure 4.2: Example sentence pairs and entailments in the Sportscaster domain.

Chapter 3. Each example is marked with an entailment judgement provided by
humans in both the t→ h and h→ t directions. For example, in Figure 4.2-1, we
can paraphrase the entailment from t→ h in the following way:

In all scenarios (e.g., possible game events) in which ‘pink 3 quickly
kicks to pink 7’ is true, it is always simultaneously true (or nearly
always true) that ‘pink 3 kicks over to pink 7’

Subjecting our semantic parsers to an RTE test involves seeing if the semantic LF
representations being generated can be used to derive and identify such correct
entailments (i.e., entailments that are consistent with human judgements).

4.1.2 Yet Another Resource Problem!

The problem with the corpus LFs in Figure 4.2, however, is that while they capture
the general events being discussed, they often fail to capture other aspects of
meaning. Here, the näıve judgement is the entailment generated by comparing
the LFs associated with t and h (i.e., by assigning entail when the LFs match,
and contradict when they mismatch), which captures the full inferential power
of the target LFs. In several cases, the näıve inferences result in judgements that
are inconsistent with the human judgements. Therefore, some of the semantic
representations provided in the corpus fail to pass the test described above.

In considering these examples, we identify the following two issues:
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4 Learning from Entailment for Semantic Parsing

1. Imprecise Corpus Representations: The corpus representations fail to
account for certain aspects of meaning. For example, the first two sen-
tences in Figure 4.2-1 map to the same formal meaning representation (i.e.,
pass(pink3,pink7)) despite having slightly different semantics and diver-
gent entailment patterns. This shift in meaning is related to the adverbial
modifier quickly, which is not explicitly analyzed in the target representation.
The same is true for the modifier long in example 4, and for all other forms of
modification. For a semantic parser or generator trained on this data, both
sentences in 1 are treated as having an identical meaning.

As shown in the example 2, other representations fail to capture important
sense distinctions, such as the difference between the two senses of the kick
relation. While shooting for the goal in general entails kicking, such an entail-
ment does not hold in the reverse direction. Without making this distinction
explicit at the representation level, such inferences and distinctions cannot
be made.

2. Missing Domain Knowledge Since the logical representations are not
based on an underlying logical theory or domain ontology, semantic rela-
tions between different symbols are not known. For example, computing the
entailments in example 3 requires knowing that in general, a pass event
entails or implies a kick event (i.e., the set of things kicking at a given mo-
ment includes the set of things passing). Other such factoids are involved in
reasoning about the sentences in example 4: purple7 is part of the purple
team, and a score event usually entails a kick event (but not conversely).

The more general resource problem involved here can be described in the follow-
ing way: while we have a sufficient amount of parallel data for training a semantic
parser in a given domain (thus solving the initial resource problems discussed in
Sections 2.1.2 and 3.1.2), the gold LFs provided in the corpus are deficient and not
able to capture the full range of NLU phenomena. Recalling our setup from Chap-
ter 1, as shown again in Figure 4.3, this issue also touches on the shortcomings of
how we evaluate our semantic parsing models.

One common way to deal with such resource problems is to re-annotate the cor-
pus representations and the relevant background knowledge (Toledo et al., 2013).
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Training
challenge 2:
Missing data?

challenge 3:
Deficient LFs?

Parallel Training Set
D =

{
(x(d), z(d))

}|D|
d=1

Machine Learner/Estimation

Testing

input Semantic Parsing sem

x decoding
(Finding the best z)

z

world
reasoning

model

Downstream Evaluation?

Figure 4.3: The standard semantic parsing setup and the third resource challenge
(from Section 1.3).

We instead investigate whether this missing information can be learned, in particu-
lar by using example entailment judgements as a weak form of training supervision,
which is a new learning framework that we call learning from entailment. Similar
to the idea of learning from denotation in semantic parsing (Clarke et al., 2010;
Liang et al., 2013; Berant et al., 2013), the intuition behind learning from entail-
ment is that entailments give general information about denotations (i.e., the set
of possible scenarios associated with entities and events), and that asymmetries in
entailment judgements can be used for finding holes in the target representations
and learning better representations. For example, given the mismatch in the entail-
ments in Figure 4.2-1, one can infer that t has more specific information than h (or
that its denotation is a subset of the denotations of h), which then requires learn-
ing a model that can identify this additional information and ultimately derive the
semantics of this missing information.

To experiment with this idea, we introduce a new semantic parsing model that
learns jointly using structured meaning representations (as done in previous ap-
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proaches) and raw textual inference judgements between random pairs of sentences.
In order to learn and model entailment phenomena, our model integrates natural
logic (symbolic) reasoning (MacCartney and Manning, 2009) directly into our se-
mantic learner. We perform experiments on the Sportscaster corpus (Chen and
Mooney, 2008a), which we extend by annotating pairs of training sentences in the
original dataset with inference judgements. On a new RTE-style inference task
based on this extended dataset, we achieve an accuracy of 73%, which is an im-
provement of 13 percentage points over a strong baselines. As a separate result,
part of our approach outperforms previously published results (from around 89%
accuracy to 96%) on the original Sportscaster semantic parsing task.

4.2 Related Work

As reviewed in the last several chapters, work in semantic parsing has focused on
learning semantic parsers from parallel data, often in the form of raw collections of
text-meaning pairs. The earliest attempts (Kate et al., 2005; Wong and Mooney,
2006; Zettlemoyer and Collins, 2009) focused on learning to map natural language
questions to simple database queries for database retrieval using collections of
target questions and formal queries (e.g., in the GeoQuery domain studied in the
last chapter). A more recent focus has been on learning representations using
weaker forms of supervision that require minimal amounts of manual annotation
effort (Clarke et al., 2010; Liang et al., 2011; Krishnamurthy and Mitchell, 2012;
Artzi and Zettlemoyer, 2013; Berant et al., 2013), which includes work on learning
from denotation (see Liang and Potts (2015); Liang (2016)).

Most work done on learning from denotation, and indeed in semantic parser
induction more generally, has centered around question-answering (QA) applica-
tions. For example, Liang et al. (2011); Berant et al. (2013) train semantic parsers
in QA domains using the denotations (or answers, represented as discrete sym-
bolic entities) of each question as the primary supervision. One can regard this
approach as the simplest form of learning from entailment; given a fixed database
(or a model of all known scenarios) and symbolic representations of all answers,
the aim is to learn a semantic parser given information that that each question is
entailed by its associated answer. Under this scenario, however, entailment is lim-
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ited to entailments between questions and simple answers (often existential values
of some kind), and does not involve entailments that involve abstract relations
between generic events and predicates, as we consider in this work. In general,
entailment and symbolic reasoning has played a marginal role in existing work in
semantic parsing, perhaps largely due to the primary focus on simple QA.

One inherent difficulty in modeling entailment (especially in RTE settings) and
learning more complex semantic parsing representations is the need for consider-
able amounts of background knowledge (LoBue and Yates, 2011; Clark, 2018). At-
tempts to integrate more general knowledge into semantic parsing pipelines have of-
ten involved additional hand-engineering or external lexical resources (Wang et al.,
2014; Tian et al., 2014; Beltagy et al., 2014). As discussed above, our approach
looks at learning background knowledge indirectly from scratch by optimizing our
models to predict the correct entailments, which to our knowledge has not been
done before in semantic parsing work.

4.3 Problem Description and Approach

In this section, we given a high-level description of the original Sportscaster se-
mantic parsing task and our approach to learning from entailment. While we define
each task separately, we train our semantic parsing models jointly and in an end-
to-end fashion using a grammar-based approach. A key technical innovation in our
approach is the integration of formal symbolic reasoning into our semantic parsing
model, which we describe in the next section and sketch out in Section 4.3.2.

4.3.1 The Sportscaster Task

Figure 4.4 shows a training example from the original Sportscaster corpus, con-
sisting of a text about a sports event x paired with a set of formal meaning
representations Z. In this case, each text was collected by having human partic-
ipants watch a 2-d simulation of several Robocup soccer league games (Kitano
et al., 1997) and comment on events in the game. Rather than hand annotating
the associated logical forms, sentences were paired with symbolic renderings of
the underlying simulator actions that occurred around the time of each comment.
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x: pink3 quickly kicks to pink7

y: (latent)

Z:
{

pass( pink3 pink7 ),...
}

JZK 2

3

4

1

6

7

8

9

10

11
4

2

3

1

5

67
8

9
10

Figure 4.4: The original Sportscaster training setup.

These representations therefore serve as a proxy for the denotation of the event
context and the individual events (shown as JZK).

The goal is to learn a semantic parser sp given a training set D consisting
of example sports descriptions and LFs, D = {(x(d),Z(d))}|D|d=1, that can translate
unseen descriptions to the correct LFs, as expressed below:

sp : description→ LF (z) (4.2)

In contrast to other work on learning from logical forms (e.g., in Chapter 2), the
learning problem in this case is harder since the training data contains sets of
possible LFs, as opposed to only gold LFs, which requires learning from ambiguous
supervision (Mooney, 2008). The underlying idea is that these ambiguous contexts
simulate the broader perceptual context associated with each comment, and hence
provide a more realistic learning scenario.

The provided LFs (see examples in Figure 4.2) are expressed as atomic formu-
las in predicate logic defined over a small set of domain-specific predicates (e.g.,
kick, pass, block) and terms (e.g., pink team, pink1, purple11). While our pri-
mary semantic parsing model generates exactly the representations provided in
the original corpus, we reinterpret the semantics of these formulas in a way that it
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input: (t,h) t pink3 λ passes to pink1
a

h pink3 quickly kicks λ

y
pink3 ≡ pink3

assert
pink3 ≡ pink3

λ wvc
assert

λ w quickly

pass v kickassert pink1 v λ
infer.

passes to pink1 v kicks
infer.

passes to pink 1 # quickly kicks
infer.

pink3 passes to pink1 # pink3 quickly kicks

EI Z
{

uncertain
}

world

pink3/pink3

λ/wc

pass/kick

pink1/λ

Figure 4.5: An example of learning from entailment.

makes it easier to model entailment. Specifically, terms are interpreted as separate
predicates and the original event predicates are interpreted in a Neo-Davidsonian
fashion (Parsons, 1990), as in the following example:

Jpass(pink3,pink7)K = ∃e.∃x.∃y.pass(e) ∧ pink3(x) ∧ pink7(y)

∧ arg1(x,e) ∧ arg2(y,e)

where the terms pink3 and pink7 are treated as separate predicates (which makes
it easier to model abstract relationships such as Jpink1K ⊂ Jpink teamK) and event
predicates and predicate argument information apply over event variables e (in the
first case, making it easier to model relationships such as JpassK ⊂ JkickK).

4.3.2 Learning from Entailment

The problem with the approach described above, as discussed in Section 4.1.2, is
that the representations being learned do not always capture the types of informa-
tion needed for modeling entailment. The general idea of learning from entailment
is to extend a given semantic parsing dataset D with pairs of training sentences
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annotated with inference judgements (as shown in Figure 4.2). While training an
ordinary semantic parser sp, we then use such pairs to train a model infer that
can generate certain types of entailments from example pairs of descriptions, as
shown below:

infer :
(
description1 = t, description2 = h

)
→ entailment (z) (4.3)

where entailments can be of the following three types (Cooper et al., 1996; Ben-
tivogli et al., 2011): {entail, contradict, uncertain/compatible}. The ap-
proach pursued here involves integrating a logical reasoning system into our se-
mantic parser that can reason about the target symbols being learned and prove
theorems about the target entailments. The key idea is that the resulting proofs
reveal distinctions not captured in the original representations, and can be used
to improve the semantic parser’s internal representations and acquire knowledge.

An illustration of this is shown in Figure 4.5, where the input consists of a
text t and hypothesis h, and and a set of entailment judgements Z (in this case,
a single uncertain judgement, which we represent using the variable z, as with
LFs). y shows an example proof, or explanation, of how the model arrives at an
uncertain inference based on a set of local inferences about relationships between
aligned (via a) parts of t and h. For example, the model reasons that pass to pink1
entails kicks (based on some assertion or axiom between pass and kick), whereas
uncertainty is introduced with the modifier quickly in the hypothesis and passes
to pink1 and quickly kicks; this uncertainty then propagates up the proof using
generic inference rules infer defined in the model (to be described in Section 4.4.2).
Since example proofs are not provided at training time, the learning problem is to
find the correct proofs within a large latent space of possible proofs.

This particular proof gives rise to several new assertions or facts: the pass
symbol is found to forward entail or imply (shown using the set inclusion symbolv)
the kick symbol. The adverbial modifier, which is previously unanalyzed, is treated
as an entailing modifier vc, which results in a reverse entailment or implication
(shown using the symbol w) when inserted (or substituted for the empty symbol λ)
on the hypothesis side. The first fact can be used for building a domain theory, and
the second for assigning more precise labels to modifiers in the semantic parser.
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In the latter case, we might assign the following improved representation to the
input pink3 quickly kicks (using the semantics described in the previous section):

∃e.∃x.kick(e) ∧ quickly(e) ∧ pink3(x) ∧ arg1(x, e)

in which we have a new predicate quickly derived from its use as a forward
entailing modifier in the example proof.

Computing entailments in our approach is specifically driven by learning the
correct semantic assertions between primitive domain symbols, as well as the se-
mantic effect of deleting/inserting symbols. We focus on learning the following
very broad types of linguistic inferences (Fyodorov et al., 2003):

• construction-based: inferences generated from specific (syntactic) con-
structions or lexical items in the language

• lexical-based: inferences generated between words or primitive concepts
due to their inherent lexical meaning

Construction-based inferences are inferences related to modifier constructions:
quickly(pass) v pass, goal w nice(goal), gets a(free kick) ≡ (equivalence)
free kick, where the entailments relate to default properties of particular mod-
ifiers when they are added or dropped. Lexical-based inferences relate to general
inferences and implications between primitive semantic symbols or concepts: kick
w score, pass v kick, and pink1 v pink team.

4.4 Grammar-based Semantic Parsing

To model sp and infer, we use a grammar-based approach based on probabilistic
context-free grammars (PCFG). In both cases, the target model assigns to each
input a tree structured representation corresponding either to an LF representa-
tion or an entailment z. Grammar models build such structures using a finite set
of (probabilistic) rewrite rules, which are created via a rule extraction process de-
fined over the target parallel data described in the previous sections (as illustrated
in Figure 4.6). In this section, we discuss the general PCFG formalism and ex-
plain its use in semantic parsing, then describe our rule extraction procedure (Sec-
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(
x : purple 10 quickly kicks,Z :

{
kick(purple10), block(purple7),...

})
↓ (rule extraction → grammar)

y1X y2X y3× y4×
Rep

in transitive

kickc

kickw

kicks

λc

quickly

arg1

purple10c

purple10w

purple 10

Rep

arg1×

purple10c

purple10w

kicks

λc

quickly

in transitive×

kickc

kickw

purple 10

Rep

in transitive

blockc

blockw

kicks

λc

quickly

arg1

purple7c

purple7w

purple 10

Rep

in transitive

blockc

blockw

kicks

blockw

quickly

arg1

purple9c

purple9w

purple 10

Jy1KG=kick(purple10) Jy2KG=kick(purple10) Jy3KG=block(purple7) Jy4KG=block(purple9)

Figure 4.6: Semantic grammar rule extraction and example derivations.

tion 4.4.1) and the integration of logical reasoning into this model (Section 4.4.2).
In Section 4.4.3 we finish by describing how we estimate our models from parallel
data using a simple EM bootstrapping approach.

Modeling Preliminaries: Translating with PCFGs

Formally, a PCFG defines a 5-tuple Gθ = (Σ, N, S,R, θ) consisting of a set of
terminal (i.e., source language) symbols Σ, a set of non-terminal grammar symbols
N , a start symbol S ∈ N , a set of rewrite rules R = {N → β | β ∈ (N ∪ Σ)∗}
and a parameter vector θ ∈ R|R| (without θ, this defines a CFG). Using θ, each
rule N → β (consisting of a left hand side (lhs) N and a right hand side (rhs) β)
is assigned a score θN→α subject to the following constraints (where RN is used to
denote the set of rules from R that share the same lhs N):

∀N → β 0 ≤ θN→β ≤ 1

∀RN

∑
(N→α)∈RN

θN→α = 1

A derivation y over an input x is any application of rules that results in a tree
rooted by S such that yield of the tree (i.e., the sequence of terminal nodes in the
tree) is equal to x. For example, Figure 4.6 shows an example derivation y for the
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sentence purple 10 quickly kicks (shown below in a standard Lisp format):

(Rep

(arg1 ( purple10c ( purple10w purple 10)))

( in_transitive (λc quickly )

(kickc
(kickw kicks ))))

where rules include {Rep → arg1in transitive, arg1 → purplec, ...} ⊆ R with
the start node Rep, and the yield of the derivation is the left-to-right sequence of
terminal symbols purple 10 quickly kicks (i.e., the input sentence). Imagining that
probabilities are associated with rules, the score of this derivation y is computed
as a product over the individual rule probabilities Nj → βj in that derivation:

pθ(y) =
|y|∏
i

θNi→βi (4.4)

As a generative model, PCFGs can be used to model the joint distribution
p(x, y), which allows us to compute the probability of a given input x by marginal-
izing over all derivations over x, or Yx (where computing each joint probability
reduces to computing the probability of each derivation):

p(x) =
∑
y∈Yx

p(x, y) (4.5)

=
∑
y∈Yx

pθ(y) via Equation 4.4 (4.6)

Under this formulation, one natural application of PCFGs is language modeling,
or assigning scores (in this case, probabilities) to input sentences (Jurafsky et al.,
1995). For most NLP applications, however, it is not the probability of the string
that is of interest but rather the best derivation (or set of derivations) associated
with input, since the particular grammar rules in each derivation often contain
important details about linguistic structure.

The trick involved with using PCFGs for semantic parsing is that we associate
each derivation with a unique LF, as shown in Figure 4.6 (on the bottom of each
derivation). For example, in the derivation considered above, the interpretation of
this derivation, which we express as JyKG (see Section 4.4.1 for more details about
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Algorithm 8 CKY Recognition Algorithm
Input: CFG G in Chomsky Normal Form, input x = (x1, .., x|x|), start symbol S
Output: True if x is accepted, False otherwise
1: T ← ∅ . Initialize chart data structure
2: for j from 1 up to | x | do
3: for all terminal rules A→ α ∈ GR do . Search for terminal rule matches
4: if rule is A→ xj then
5: T ← T + [j − 1, A, j]
6: for i from j − 2 down to 0 do . Search for binary rule matches
7: for k from i+ 1 to j − 1 do
8: for all binary rules A→ BC ∈ GR do
9: if [i, B, k] and [k,C, j] ∈ T then

10: T ← T + [i, A, j]
11: return [0, S, |x|] ∈ T

how this interpretation is computed), is the following LF:

z = kick(purple10)

In doing this, we can then define a conditional distribution over LF outputs z (or
entailments when modeling entailment) given inputs x, as in the following:

pθ(z | x) ∝
∑

y∈Yx | JyKG=z
pθ(y) (4.7)

which allows us in effect to use the PCFG as a special kind of constrained transla-
tion model (with which we can model weighted relations between natural languages
and semantic languages as first discussed in Section 1.2).

One inherent difficulty with PCFGs and the computations described above is
that the space of derivations Yx can be exponential over the size of each input x
(this is similar to the issue of computing all alignments in the translation models
from Section 2.3.1). Often these issues can be overcome by applying standard
dynamic programming techniques (as described in the next section), however not
all such techniques can be applied when using our model in the manner described
above for semantic parsing, as we discuss next.
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16

[0, Rep, 4]

12[0, arg1, 2] 13 [2, in tran.1, 4] 14 [0, in tr., 2] 15 [2, arg1, 4]

6[0, purple10c, 2] 8
[3, kickc, 4]

7
[2, λc, 3]

9 [0, kickc, 2] 11 [3, purple10c, 4]

1[0, purple 10, 2]

3[2, quickly, 3]

5 [3, kicks, 4]

0

Figure 4.7: An acyclic hypergraph representation of the first two derivations in
Figure 4.6, with the shortest path (or tree) shown in bold.

Recognition and Decoding Given a generic PCFG Gθ and an input x, the
decoding problem involves finding the most probable derivation y∗ associated with
the input, as expressed below:

y∗ = arg max
y∈Yx

{
p(y | x)

}
(4.8)

which can be reformulated in the following way via the decoding rule (Smith, 2011),
which is based on the fact that p(x) remains fixed for each candidate y:

y∗ = arg max
y∈Yx

{
p(y | x)

}
Eq. 4.8

= arg max
y∈Yx

{p(x, y)
p(x)

}
Definition

= arg max
y∈Yx

{
p(x, y)

}
constant p(x)
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Algorithm 9 Directed Acyclic Hypergraph (DAH) Shortest-Path Search
Input: DAH H, edge labels parameters θ (probabilities, e.g., grammar rule parameters)
Output: Shortest hyperpath
1: d[V [H]]←∞ . Standard initialization (i.e., for DAG SSSP)
2: π[V [H]]← Nil
3: d[0]← 0
4: for each node v ∈ V [H] in sorted order do
5: for each hyperedge e =

(
{u1, u2, ..., u|e|}, v, l

)
∈ BS(v) do

6: score ← − log(θl) +
∑|e|
i d[ui] . hyperedge score computation via θ

7: if d[v] > score then . Standard relaxation step
8: d[v]← score
9: π[v]← e

10: return FindPath(π, | V |, 0) . Backtrace to find shortest hyperpath

Again, the difficulty here involves efficiently computing all the derivations in Yx.
One way do this is to use a variant of the CKY algorithm shown in Algorithm 8
(Kasami, 1965; Nederhof and Satta, 2010). As presented, the CKY solves the more
fundamental problem of recognition, or determining if an input string x is in the
language defined by a CFG, which similarly involves searching through all possible
derivations. This is done efficiently by using a chart data structure T and dynamic
programming to efficiently search and store all applications of rules in intermediate
derivations (lines 4 and 9, see Manning and Schütze (1999) for more details).

The chart data structure T that results from the CKY search can be interpreted
as a special type of directed graph called a directed hypergraph (Gallo et al., 1993),
which extends ordinary directed graphs by allowing edges to connect to multiple
nodes. In the parsing case, nodes are associated with particular rule applications
(i.e., each [i, R, j] from lines 5 and 10 in Algorithm 8) and edges are associated with
production rules, as shown in Figure 4.7. With this graph, one can then do decoding
by extending the shortest path algorithms for directed graphs (Section 3.4) to
hypergraphs (Knuth, 1977; Klein and Manning, 2004; Huang, 2008).

Formally, a directed hypergraph H = (V,E) consists of a set of nodes V and
directed hyperedges E, where each hyperedge e takes the following form (see Huang
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(2008) for a more general overview and notation):

e =
(
{u1, u2, ..., u|e|}, v, l

)
and consists of a set of tail nodes t(e) = {u1, .., u|e|} ⊆ V , a head node h(e) = v ∈ V
and (for convenience) a label l. In the case of the CKY algorithm, the hypergraph
that is generated is an acyclic directed hypergraph, which has the property (as with
DAGs) that nodes can be sorted into numerical (topological) order. The associated
shortest path algorithm, therefore, is nearly identical to the one for DAGs (see
Algorithm 4), and is shown in Algorithm 9 (where BS(v) = {e ∈ E | h(e) = v}1

and in the parsing case, labels are used to identify grammar rules R associated
with each e). The shortest path (or best derivation tree) can then be constructed
by moving backwards (via the FindPath routine) from the final node (or the start
node S) to the source node using the predecessor π.

Returning to the use of our PCFG as a semantic parser, the decoding problem
(i.e., finding the best LF or entailment z∗ given x) can be described in the following

z∗ = arg max
z

{
pθ(z | x)

}
(4.9)

and is at first glance more difficult than Equation 4.8 given that computing this
requires finding all valid derivations {y | z = JyKG} as per Equation 4.7. The prob-
lem is that computing each valid derivation often requires a non-local combination
of rules in the target tree, which cannot be accomplished using dynamic program-
ming. For example, computing the LF kick(purple10) from the first derivation
tree in Figure 4.6 requires combining information from the two subtrees rooted by
purple10c and kickc, which are not adjacent in T . Therefore, computing valid
trees requires enumerating an intractable number of trees and interpreting them.

One way to get around this is to approximate this search by taking z∗ to be the

1The backwards star BS(v), which in ordinary directed graphs denotes the set of incoming edges
to v, has a forward variant FS = {e | v ∈ t(e)} that is analogous to Adj in Algorithm 4.
We note that for DAG SSSP search, either type of traversal order can be used, whereas BS
traversal is more straightforward for hypergraphs (see discussion in Huang (2008)).
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Rep

in transitive

kickc

kickw

ball

kickc

kickw

the

kickc

kicks

λc

λw

quickly

arg1

purple10c

purple 10

Figure 4.8: An example derivation (simplified) in the base semantic grammar with
a gap rule λc applied over the modifier quickly.

interpretation of the most probable derivation:

z∗ ≈ JyKG = arg max
y∈Yx

{
pθ(y)

}
(4.10)

which is what we do when evaluating our models. While this works well for de-
coding at test time, it is still a problem when estimating our models (i.e., finding
the expected counts of rules in valid derivations during the training phase). We
discuss this more in Section 4.4.3, and propose a simple EM bootstrapping method
that similarly involves sampling the best derivations via k-shortest path decoding
(using variations of the DAG k-SSSP algorithms used in Section 3.4).

4.4.1 Rule Extraction and J·KG

As already discussed, rule extraction is the process of constructing the grammar
rules R needed for generating z’s from input x. We start by describing rule con-
struction for grammars that generate LFs (or what we call base semantic grammars)
and return to how rule extraction works for modeling inference in Section 4.4.2
(the inference grammars). In this first case, such rules are constructed automati-
cally using a small set of rule templates defined over the target set of LFs, as done
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in Börschinger et al. (2011) (BB). The basic idea in BB is to break down all LFs
in the target corpus of the form R(x, y) into the following production rules:

S→ R(x, y)

R(x,y)→
{
Rc xc yc

}
where the lhs of the second rule is a representation of the full LF, and the rhs
consists of all orderings (as indicated by {·}) of the constituent parts of the LF
expressed as grammar symbols (i.e., the relation name R and the arguments, all
marked here as Xc). Each non-terminal Xc is then associated with a word rule Xw,
that rewrites to all unigrams in the target corpus via a left-recursive rule that
models a unigram Markov-process (Johnson and Goldwater, 2009) (e.g., the rule
sequence for kicks the ball in Figure 4.8):

Xc → Xw

Xc → XcXw

Xw → w | w ∈ Corpus

Using this basic idea, additional structure and information can be added into
the grammar as needed. For example, BB use word order rules that make explicit
the different orderings of constituent rules in {·}, as well as more complex word
rules that allow for modeling empty (or skip) words λw. We adopt both of these
ideas, and pad all nodes Xc with a gap rule λc that allows the model to learn
larger spans of unanalyzed text. For example, in Figure 4.8 the model learned that
quickly is not analyzed in the target LF, which is information that can be used by
our inference model (described in Section 4.4.2) to reason about the semantics of
these gaps. Rather than representing full LFs in the grammar as atomic symbols,
we also assign more abstract role types to the concepts Xc (e.g., arg1, in transitive
in Figure 4.8), to make the rules more generalizable (see Appendix C for a full
description of the rule templates we use in our experiments).

As discussed above, each derivation tree y can be interpreted to a unique LF via
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an interpretation function J·KG:

J·KG : y (derivation)→ z (4.11)

In our case, this function works by deterministically mapping each grammar sym-
bol Xc to an atomic logical symbol, and combining these symbols in a way that is
consistent with the assigned roles. For example, kickc in Figure 4.8 is mapped to
the symbol kick and assigned to the main predicate slot given the in transitive
role, and purple10c is mapped to purple10 as assigned as the first argument slot
given the arg1, which results in the LF representation kick(purple10).

An important feature of the resulting grammars is that they overgenerate (as
shown in Figure 4.8); given a text input, the grammar will generate a large space of
possible derivations, many of which interpret to incorrect LFs. By assigning weights
to these rules and formalizing the model as a PCFG, the learning problem reduces
to a grammatical inference problem, or finding a grammar Gθ with parameters
θ that is able to distinguish correct derivations (i.e., derivations that have the
correct interpretations) from incorrect derivations. Under a hypergraph approach,
we can equivalently describe the learning problem as finding a model that is able
to identify the correct paths through graphs such as the one in Figure 4.7 (see
Section 4.4.3 for more details about learning).

4.4.2 Natural Logic and Inference Grammars

Given the base semantic grammars described in the previous section, we can build
a semantic parser that (standardly) translates text to output LFs, however the
resulting derivation trees still have gaps (i.e., unanalyzed spans of text as shown
in Figure 4.8) and our model continues to lack the background knowledge needed
for reasoning about entailment. As already proposed, we aim to learn this missing
information by extending our training corpus to include pairs x = (t,h) annotated
with entailment information. With this information, our approach works in the
following way: align the related spans of text in t and h and apply logical reasoning
over these spans to construct a proof of an entailment, as sketched below:
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a:

Semsv

play-intr.

steal

steals the ball

playerarg1

pink5

5

5
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λc
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play-intr
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y:
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join

(wc ./vplay-intran.) = #play-intr.

modifier
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substitute

wc

λ/ vc
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≡playerarg1

pink5/pink5

pink 5 / pink 5

substitute

(
(t = pink 5 steals the ball, h = good defense at the goal by pink 5), z = Uncertain

)

Figure 4.9: An end-to-end example produced by our inference grammar model.

t h

LFt LFh entailment

text alignment

logical reasoner

This idea is further illustrated in Figure 4.9, where an alignment a between t
and h is computed by heuristically matching related roles in the semantic parse for
each sentence (generated using the base semantic grammars described above). The
associated spans of aligned text are then provided to a logical reasoner that remaps
the aligned spans to logical symbols, then generates a structured proof y over
these symbols that corresponds to a unique entailment judgement. Importantly,
gap rules in t or h (e.g. at the goal by in h, marked as λc) and unaligned arguments
are matched to the empty string λ so that the logical model can reason about the
semantics of inserting or deleting expressions in h and t.
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Relation Symbol Set Definition First-order Logic RTE label
forward entail R v S R ⊂ R ∀x.

[
R(x)→ S(x)

]
entail

reverse entail R w S R ⊃ S ∀x.
[
S(x)→ R(x)

]
uncertain

equivalence R ≡ S R = S ∀x.
[
R(x)↔ S(x)

]
entail

alternation (negation) R | S R ∩ S = ∅ ∧R ∪ S 6= D ∀x.¬
[
R(x) ∧ S(x)

]
contradict

independence R # S (all other cases) – uncertain

Sports Examples (with denotation illustration)

3

2

3 4
5
61 7

8

1
2

3 4
5
61 7

8

purple3 v purple team pass w bad pass pink1 ≡ pink1 block | kick

Figure 4.10: A description of relations used from the natural logic calculus (top)
with examples (bottom) from Sportscaster.

Natural Logic Calculus

In order to do modeling of this kind, we need a logical calculus that can per-
form reasoning over spans of text. Since our main goal is to learn proofs and the
background knowledge that drives the proofs, such a model should also support
uncertainty. Given these constraints, we use a fragment of the natural logic calcu-
lus defined in MacCartney and Manning (2009, 2008). In our simplified version,
the model has two components: 1) a set of relations that define abstract semantic
relationships between concepts (i.e., primitive symbols in our target LF represen-
tations) and 2) a set of inference rules that can compose relations. The full set of
semantic relations are shown in Figure 4.10, along with a definition of their mean-
ing in set theory and first-order logic (or FOL, following Pavlick et al. (2015)). For
example, the following relation between pass and kick:

pass v kick

can be read in FOL as a general implication (van Benthem, 1986): for all events
e involving passing, e also involves kicking. Assuming that we are given two pairs
of relations, pink5 v pink team and pass v kick, the join rule ./ defined in
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Figure 4.11 then composes these two relations to derive a new relation:

(
pink5 v pink team

)
./
(
pass v kick

)
= v

which in this case allows us to conclude that pink5 passed (forward) entails that
the pink team kicked (on the assumption that pink5 forward entails pink team and
pass forward entails kick). Joins can be applied an arbitrary number of times; for
example, we might continue by adding λ w quickly to model in the RTE context
the insertion of a modifier quickly on the h side:

(
pink5 pass v pink team kick

)
./
(
λ w quickly

)
= #

which results in a new relation #. This process can continue further until all target
relations have been consumed, which will result in a final semantic relation and
entailment (see Figure 4.10 to see the mapping from relations to RTE labels).

We note that our simplified model uses only a subset of the seven relations from
MacCartney and Manning (2009), since these additional relations were not needed
to model the types of inferences we encountered in the Sportscaster domain. As a
cautionary note, we also point out that our model fails to capture various complex
inferences. For example, assuming every ≡ every and company w small company,
our model cannot generate the following entailment using the join inference rule:

every company v every small company

since this particular inference is related to special properties of every, which con-
vert w inferences to v when doing composition in this context. To handle this,
the full natural logic calculus has a projectivity mechanism that defines how cer-
tain constructions alter the inferences of arguments in such contexts. In our simple
mode and domain, projectivity is limited to a single rule that always projects nega-
tions | up the proof tree in order to capture the following inferences:

pink5 kick | purple team pass

where under the assumption that pink5 | purple team and kick w pass, our
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./ ≡ v w | #
≡ ≡ v w | #
v v v # | #
w w # w # #
| | # | # #
# # # # # #

Figure 4.11: The join inference rule ./ table for the set of relations in Figure 4.10.

join rule would incorrectly assign # (or an uncertain entailment). This is again
motivated by the types of predicates we model in the Sportscaster domain, which
all tend to have the projectivity properties of functional relations (Russell (1995),
see MacCartney (2009)[Chapter 6.2.5] for more discussion).

Inference Grammars and Alignment

Given the tree-like nature of the natural logic proofs described above, our idea is
to represent the inference steps as CFG rewrite rules, as shown in Figure 4.122.
Under this approach, relations between pairs of concepts are rules where the rhs
contains the pair of ordered concepts (delimited by /) and the lhs contains their
resulting relation. The same idea applies to our inference rule ./: the rhs consists
of two relations and the lhs contains the result of joining these relations. As before,
additional structure can be added to the grammar as needed, such as information
about the types of concepts being compared and composed (see Appendix C for a
complete list of the rules we use, as well as Figure 4.15).

In particular, we use an additional set of gap rules, as shown in Figure 4.12, that
model whether certain types of insertions/deletions are forward-entailing (repre-
sented using vc) or non-entailing (≡c). In the first case, this includes adverbial
modifiers such as quickly in quickly kicked which modify entailment, whereas the

2This particular grammar formulation can be regarded as a type of inversion transduction
grammar (Wu, 1997), or a simple transduction grammar (Lewis II and Stearns, 1968), where
each terminal rule is marked with an input and output symbol and non-terminals are the same
as in ordinary CFGs. Recognition and decoding with these models is equivalent to ordinary
CFG parsing as described above (Melamed, 2004; Lopez, 2008).
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entailment −→I {v , ≡}
uncertain −→I {w , #}
contradict −→I |
R = (X ./ Y ) −→./ X Y
1.0 ≡arg −→I pink3c / pink3c
0.9 varg −→I pink1c / pink teamc
0.1 varg −→I pink teamc / pink1
1.0 w −→I λ / vc
1.0 v −→I vc / λ
1.0 ≡ −→I ≡c / λ
1.0 ≡ −→I λ / ≡c
0.8 vrel −→I passc / kickc
0.2 vrel −→I kickc / passc
0.7 wrel −→I kickc / passc
0.3 wrel −→I passc / kickc
0.1 |rel −→I passc / kickc

· · ·

Figure 4.12: An example inference grammar for the Sportscaster domain with gap
rules shown in red.

ball in kick the ball does not appear to effect entailment. To model the subtle dif-
ferences between different concept senses, we also mark symbols with latent sense
labels. For example, in the following rule:

vrel→ kickc1 / kickc2

we have two senses for kick, which we can use to model entailments between kick
the ball and score a goal (which are both annotated as kick in Sportscaster).

As discussed at the onset, given a pair x = (t,h), we can generate trees in this
grammar by heuristically aligning related spans in t and h (see again Figure 4.9,
and Appendix C for more details), then by labeling each part of the the spans
with concept labels and applying the grammar rules. The interpretation of a given
derivation (proof tree) JyKG is the entailment provided at the top node of each
tree. As shown in the grammar in Figure 4.12, the concept labels Xc are the same
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as in our LF semantic parser, which allows us to create a single grammar by com-
bining the inference rules with the base semantic grammar (and therefore use the
same learned concept mapping rules as in our main semantic grammar). In our
experiments, the decision to jointly train the sem and infer models using a single
grammar is based on the following modeling assumption:

• Joint entailment modeling: When learning a semantic parser, improve-
ments on learning the correct entailments should help improve (and are tied
to) learning translations to LFs, and vice versa.

As with the base semantic grammars, an important feature of the inference
grammars described above is that they overgenerate; given an input, the grammar
will generate a large space of possible proofs, many of which interpret to the
wrong entailment. This is largely due to the fact that we do not know the correct
relations between the underlying concepts and modifiers and start by assuming all
possibilities. For example, since we do not know the relation between pass and
kick, we start with the following three rules:

vrel→ passc / kickc

wrel→ passc / kickc

|rel→ passc / kickc

The key idea is that by interpreting these grammars as PCFGs, we can then
associate weights with individual rules of this type and learn the correct relations
by training our grammar on example entailments. In this case, the goal is to learn
that the first rule should have a higher weight than the other two rules since pass
forward entails kick as inferred from its appearance in example proofs. Given
that particular orderings of join inferences can effect the resulting entailments
(MacCartney, 2009), the PCFG approach also allows for learning optimal inference
combinations.

Under the PCFG formulation, our model can therefore handle probabilistic in-
ference, which distinguishes it from most other formulations of natural logic (for a
similar idea, see Angeli and Manning (2014)). While our particular rule templates
might seem arbitrary at first glance, we note that the probabilistic logic that re-
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sults from this formulation seems to have a sensible semantics. In addition, our
use of grammar representations allows us to apply efficient search strategies from
parsing to the problem of entailment search. For example, the probability of an
entail using Equation 4.7 is given by the following:

pθ(z = entail | x = (t,h)) =
∑

y∈Yx|JyKG=entail

p(y | x)

and is interpreted as all proofs between t and h that evaluate to entailment (within
the space of all possible proofs and across all individual semantic interpretations of
t and h). Since our approach involves a heuristic alignment between t and h (and
hence is not burdened by having to search all possible alignments), the basic proof
search is therefore bound to the complexity of ordinary recognition (e.g., using the
CKY algorithm), or O(|x|3 · |GR|). Since the interpretation in these grammars only
requires reading a single node, computing the above equation can be done exactly
with the same complexity using the inside algorithm (Lari and Young, 1990).

4.4.3 Learning

As discussed in the previous section, we model sem and infer using a joint PCFG
model that uses the rules described above. To learn this model, we perform maxi-
mum likelihood estimation (MLE) over our parallel dataset D = {(x(d),Z(d))}|D|d=1,
consisting both of parallel semantic parsing data and parallel inference data. For-
mally, the objective is to find grammar parameters θ∗ that maximize the following
(where we use C(d) to denote the set of valid (interpretable) derivations relative to
each training annotation Z(d) and input x(d): {y | y ∈ Yx(d) ∧ JyKG ∈ Z(d)}):

θ∗ = max
θ

log
|D|∏
d=1

[
pθ(z(d) | x(d))

]
(4.12)

= max
θ

|D|∑
d=1

log
[ ∑
y∈C(d)

pθ(y)
]

via Eq. 4.7 (4.13)

To optimize this objective, we use a variant of the EM algorithm (for a review of
EM, refer back to Section 2.3.1). As in normal EM for PCFGs (Lari and Young,
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Algorithm 10 EM Grammar Boostrapping
Input: Grammar G with parameters θ, dataset D, interp. function J KG , KBest function with k
Output: Learned parameters θ
1: θ0 ←uniform initialization
2: t← 0
3: repeat
4: c(N → β)← 0,∀N → β ∈ GR . Initialize counters to collect rule counts
5: b(N)← 0,∀N → β ∈ GR
6: for (x(d),Z(d)) from d = 1 up to | D | do . E-Step: evaluate pθ(Z | x) ∼ KBest
7: v ← [ ], n← 0
8: for (y, p) ∈ KBest(d)(x(d),G, θt, k) do. Find candidate derivation y, p = pθ(y | x)
9: if JyKG ∈ Z(d) then

10: n← n+ p . Add valid derivations with scores
11: v ← v + (y, p)
12: for (y, p) ∈ v do . Count rules in valid derivations
13: for Ni → βi from i = 1 up to |y| do
14: c(Ni → βi)← c(Ni → βi) + p

n . Normalize using n to create prob. distr.
15: b(Ni)← b(Ni) + p

n

16: for N → β ∈ GR do . M-step: perform MLE updates
17: θt+1

N→β ←
c(N→β)
b(N)

18: t← t+ 1
19: until converged

return θt

1990; Lafferty, 2000), the E-step involves finding the expected counts of individual
production rules R in all latent derivations (or in our case, all valid derivations
C(d)) given D and some posterior distribution pθt(y | x(j)):

c(R;D) =
|D|∑
d=1

[ ∑
y∈C(d)

pθt(y | x(d))
|y|∑
i

δ(ri, R)
]

(4.14)

Using these counts, the M-Step then involves performing ordinary MLE updates,
and the process then repeats until a convergence point:

θt+1
N→β = c(N → β;D)∑

β′ c(N → β′;D) (4.15)

As before, the main problem involves efficiently computing the set of valid deriva-
tions C(d), since our interpretation function J·KG involves non-local combinations
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Figure 4.13: An illustration of EM bootstrapping for semantic parsing and learning
from entailment, where green shows the valid derivations.

of derivation rules. We get around this by approximating each Yx in C(d) with a
k-best list of derivations KBest(d) ≈ Yx (Angeli et al., 2012). Under the hyper-
graph approach outlined in Section 4.4, sampling the k-best derivations can be
achieved by extending the branching k−SSSP method used in Algorithm 7 and
Section 3.4.3 for DAGs to hypergraphs, as done in Nielsen et al. (2005). Given
special features of parsing, however, more efficient methods based on hypergraphs
have been developed, notably the lazy k-best algorithm from Huang and Chiang
(2005), which is what we use in our experiments.

The full training algorithm is shown in Algorithm 10, along with an illustration
in Figure 4.13 of detecting the valid derivations (line 9) and computing new param-
eters θt+1 based on collected rule counts (lines 16-17). As discussed in Liang et al.
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(2011), the idea is that learning starts in an unguided manner and improves over
time by bootstrapping off of the easy examples. When training with the entailment
pairs, the distinctions being made for modeling inference (e.g. sense distinctions,
modifier types) and the word rules being used inform and reinforce the learning
of the base semantic grammar. As the quality of the semantic parser improves, so
should the quality of the background knowledge (i.e. semantic relations) used to
generate the natural logic proofs.

4.5 Experimental Setup

In this section, we provide more details about the Sportscaster dataset and a new
Sportscaster inference corpus that we created for modeling and evaluating entail-
ment. We also describe our main experimental setup, which consists of two tasks:
1) the standard Sportscaster semantic parsing task, and 2) a new RTE-style entail-
ment recognition task. We end the section by providing additional implementation
and model details (for more information, see also Appendix C).

4.5.1 Datasets

Sportscaster The Sportscaster corpus (Chen and Mooney, 2008a) consists of 4
simulated Robocup soccer games annotated with human commentary. The English
portion includes 1,872 sentences paired with sets Z of logical meaning represen-
tations. On average, each training instance is paired with 2.3 meaning represen-
tations. The representations have 46 different types of concepts, consisting of 22
entity types and 24 event (and event-like) predicate types (see Figure 3.9 for a
description and implementation of the Sportscaster language).

While the domain has a relatively small set of concepts and limited scope, rea-
soning in this domain still requires a large set of semantic relations and background
knowledge. From this small set of concepts, the inference grammar described in
Section 4.4.2 encodes around 3,000 inference rules. Since soccer is a topic that most
people are familiar with, it is also easy to get non-experts to provide judgements
about entailment.
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Task 1: Semantic Parsing Match F1(%)
LexDecoder (Chapter 3) 40.3
Kim and Mooney (2010) 74.2
Chen et al. (2010) 80.1
Best Seq2Seq model (Chapter 3) 83.4
Börschinger et al. (2011) 86.0
Gaspers and Cimiano (2014) 88.7
base semantic grammar (BSG) only 95.7
BSG + inference grammar (IG) 95.8
BSG + IG + More Data 96.3

Task 2: Inference Task Accuracy (%)
Majority Baseline 33.1
RTE classifier 52.4
Näıve Inference 59.6
SVM Flat Classifier 64.3
inference grammar (Lex. Inference Only) 72.0
inference grammar (Full) 73.4
inference grammar + More Data 72.3

Table 4.1: Results on the semantic parsing (top) and inference (bottom) cross val-
idation experiments (averaged over all folds)

Extended Inference Corpus The extended corpus consists of 461 unaligned
pairs of texts from the original Sportscaster corpus annotated with sentence-level
entailment judgements (as first shown in Figure 4.2). We annotated 356 pairs
using local human judges an average of 2.5 times using a version of the elicitation
instructions for RTE from Snow et al. (2008). Following (Dagan et al., 2005),
we discarded pairs without a majority agreement, which resulted in 306 pairs (or
85% of the initial set). We also annotated an additional 155 pairs using Amazon
Mechanical Turk, which were mitigated by a local annotator.

In addition to this core set of 461 entailment pairs, we separately experimented
with adding unlabeled data (i.e., pairs without inference judgements) and ambigu-
ously labelled data (i.e., pairs with multiple inference judgements) to train our
inference grammars (shown in the results as More Data in Table 4.1) and test the
flexibility of our model. This included 250 unlabeled pairs taken from the origi-
nal dataset, as well as 592 (ambiguous) pairs created by deriving new conclusions
from the annotated set. This last group was constructed by exploiting the transi-
tive nature of various inference relations and mapping pairs with matching labels
in training to {Entail,Unknown}.
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4.5.2 Evaluation

We perform two types of experiments: first, a semantic parsing experiment (Task
1 in Table 4.1) to test our approach on the original task of generating Sportscaster
LF representations. In addition, we introduce a new inference experiment (Task 2)
to test our approach on the problem of detecting entailments between unobserved
sentence pairs using our inference grammars.

For the semantic parsing experiment, we follow exactly the setup of Chen and
Mooney (2008a): 4-fold cross validation is employed by training on all variations
of 3 games and evaluating on a left out game. Each representation produced in the
evaluation phrase is considered correct if it matches exactly a gold representation
and (standardly) F1 score is reported3.

The second experiment imitates an RTE-style evaluation and tests the quality
of the background knowledge being learned using our inference grammars. Like in
the semantic parsing task, we perform cross-validation on the games using both
the original data and sentence pairs to jointly train our models, and evaluate on
left-out sets of inference pairs. Each proof generated in the evaluation phrase is
considered correct if the resulting inference label matches a gold inference. We
report on the accuracy of predicting the correct entailment label (within the set {
entail, contradict, unknown/compatible}).

4.5.3 Implementation and Model Details

As already discussed, we implemented the learning algorithm shown in Algo-
rithm 10 using the k-best algorithm of Huang and Chiang (2005) (i.e., for the
KBest computation in line 8) with a uniform beam size k of 1,000. Following An-
geli et al. (2012), we also smoothed rule counts (line 10) by using an additive prior
α set to 0.05 for lexical word rules and 0.3 for non-lexical rules. To get good ini-
tial estimates of word and concept mapping rules, we pre-trained the joint LF and
inference grammars by first training the base semantic grammars on the original
semantic parsing data for 3 iterations. Lexical rule probabilities were also initial-
ized using co-occurrence statistics estimated using an IBM Model1 word aligner

3As with Börschinger et al. (2011), since our grammar model parses every sentence, precision
and recall are identical, making F1 identical to accuracy.
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(uniform initialization otherwise).
In the inference grammars, 5 additional senses were added to the most frequent

event predicates. In terms of other added background knowledge, we made the
default assumption that player terms (i.e., purple1,pink1,...) have a negation
relation | with other player terms that they do not match, and assumed all possible
semantic relations between all other types (see Appendix C for more details).

4.6 Experimental Results and Discussion

In this section, we detail the main results featured in Table 4.1 for both tasks, and
provide some qualitative analysis on the resulting models.

Task 1: Semantic Parsing

We compare the results of our base semantic parser model with previously pub-
lished semantic parsing results (including some of the experiments from Section 3.5).
While our grammar model simplifies how some of the knowledge is represented in
grammar derivations (e.g., in comparison to Börschinger et al. (2011)), the set of
output representations or interpretations is restricted to the original Sportscaster
formal representations making our results fully comparable. As shown, our base
grammar (shown as base semantic grammar (only) in Table 4.1) strongly outper-
forms all previously published results even without the additional inference data
and rules. Since our approach is similar to Börschinger et al. (2011), one takeaway
is that better rule extraction seems to go a long way in improving accuracy, and
might help to improve models such as the Seq2Seq model from the last chapter.

We also show the performance of our inference grammars on the semantic parsing
task after being trained with additional inference sentence pairs. This was done
under two conditions: when the inference grammar was trained using fully labeled
inference data and unlabeled/ambiguously labeled data (more data). While not
fully comparable to previous results, both cases achieve nearly the same results
as the base grammar, indicating that our additional training setup does not lead
to an improvement on the original task (but nonetheless has minimal effect of the
resulting accuracy).
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1a.
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play-transitive

playerarg2

purple6c

6c
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purple 9

1b.
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vp
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passr

passc
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2a.
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playerarg2

purple2c
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passr

passc
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purple9c

purple 9

2b.

Semsv
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playerarg2

purple2c

purple 2

passr

passp

passw

to

passphx

≡w

out

passw

passes

playerarg1

purple9c

purple 9

Figure 4.14: Example parse trees (1,2) before (a) and after (b) training on the
extended inference corpus (new inferences shown in gray boxes).

Task 2: Inference Task

The main result of this chapter is the performance of our inference grammars on
the inference task. For comparison, we developed several baselines, including a
Majority Baseline (i.e., guess the most frequent inference label from training).
We also use an RTE (max-entropy) classifier that is trained on the raw text
inference pairs to make predictions. This classifier uses a standard set of RTE
features (e.g., word overlap, word entity co-occurrence/mismatch). Both of these
approaches are strongly outperformed by our main inference grammar (or inference
grammar (Full)).

The Näıve Inference baseline compares the full Sportscaster representations gen-
erated by our semantic parser for each sentence in a pair and assigns an entail
for representations that match and a contradict otherwise (as first discussed in
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vplay-tran

./

≡play-tran.

pass/pass

“pass to’/“passes to”

vc

vc /λ

“a beautiful”/λ

a. beautiful(X) v X

≡game-play

./
≡game-play

freekick/freekick

“free kick” / “freekick from”

≡c

≡c /λ

“gets a”/λ

b. get(X) ≡ X

vplay-tran

./

≡play-tran.

pass/pass

“passes to”/“kicks to”

vc

vc /λ

“yet again”/λ

c. yet-again(X) v X

|teamarg1

substitute

pink team/purple9

“pink team’/“purple 9”

d. pink team | purple9

vplay-tran

substitute

bad pass/turnover

“bad pass picked off by”/“loses the ball”

e. bad pass v turnover

|game-play

substitute

free kick/steal

“free kick for”/“steals the ball from”

f. free kick | steal

Figure 4.15: Example proof trees involving construction-based (top) and lexical-
based (bottom) inferences generated by our model.

Section 4.3.2). This baseline compares the inferential power of the original repre-
sentations (without background knowledge and more precise labels) to the inferen-
tial power of the inference grammars. The strong increase in performance suggests
that important distinctions that are not captured in the original representations
are indeed being captured in the inference grammars.

We tested another classification approach using a Flat Classifier, which is a
multi-class SVM classifier (Joachims, 2002) that makes predictions using features
from the input and part of the inference model. Such input includes both sentences
in a pair, their parse trees and predicted semantic labels, and the alignment be-
tween the sentences. In Figure 4.9, for example, this includes all of the information
excluding the proof tree in y. This baseline aims to test the effect of using hierar-
chical, natural logic inference rules as opposed to a flat or linear representation of
the input, and to see whether our model learns more than the just the presence
of important words that are not modeled in the original representations. Features
include the particular words/phrases aligned or inserted/deleted, the category of
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sense/context error:
1. t: pink9 shoots

h: pink9 shoots for the goal
z: entail (model prediction: uncertain)

semantic parser and alignment error:
2. t: purple8 steals the ball back

h: purple8 steals the ball from pink6
z: uncertain (model prediction: contradict)

alignment and modifier error:
3. t: A goal for the purple team

h: And the purple team scored another goal
z: uncertain (model prediction: entail)

Figure 4.16: Example cases where our inference grammars fail.

these words/phrases in the parse trees, the rules in both parse trees and between
the trees, the types of predicates/arguments in the predicted representations and
various combinations of these features. This is also strongly outperformed by our
main model, suggesting that the natural logic system is learning more general
inference patterns.

Finally, we also experimented with removing insertions and deletions of mod-
ifiers from alignment inputs to test the effect of only using lexical knowledge to
solve the entailment problems (Lexical Inference Only). In Figure 4.9 this involves
removing “at the goal” from the alignment input and relying only on the gram-
mars knowledge about how steal (or “steals the ball”) relates to defense (or good
defense by) to make an entailment decision. This only slightly reduced the accu-
racy, which suggests that the real strength of the grammar lies in its knowledge of
lexical relationships or lexical-based inferences.

Qualitative Analysis and Discussion

One benefit of our grammar-based approach is that we can inspect how the system
reasons by looking at example derivation trees generated by the model. While our
experiments show that the inference grammar does not increase accuracy on the
original semantic parsing task, a manual inspection indicates that the model is
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nonetheless learning improved representations, as we shown in Figure 4.14. In
example 1, for example, the parser learns after being trained on the inference data
that the modifier under pressure should be treated as a separate constituent in the
parse tree. The particular analysis also captures the correct semantics by treating
this phrase as forward-entailing, which allows us to predict how the entailment
changes if we insert or delete this constituent. Similarly, the parser learns a more
fine-grained analysis for the phrase passes out to by treating out as a type of
modifier that does not affect entailment.

Figure 4.15 shows the types of knowledge learned by our system and used in
proofs. The top row shows example construction-based inferences, or modifier con-
structions. For example, the first example treats the word beautiful in a beautiful
pass as a type of modifier that changes the entailment or implication when it is
inserted (forward-entails) or deleted (reverse-entails). In set-theoretic terms, this
rule says that the set of beautiful passes is a subset of the set of all passes. The
bottom row show types of lexical-based inferences, or relations between specific
symbols. For example, the model learns that the pink team is disjoint from a
particular player from the purple team, purple9, and that a bad pass implies a
turnover event.

Figure 4.16 shows three common cases where our system fails. The first error
(1) involves a sense error, where the system treats shoots as having a distinct sense
from shoots for the goal. This can be explained by observing that shoots is used
ambiguously throughout the corpus to refer to both shooting for the goal and
ordinary kicking. The second example (2) shows how errors in the semantic parser
(which is used to generate an alignment) propagate up the processing pipeline. In
this case, the semantic parser erroneously predicted that pink6 is the first argument
of the steal relation (a common type of word-order error), and subsequently
aligned purple 8 to pink6. Similarly, the semantic parse tree for the hypothesis
in the last (3) failed to predict another as a modifier, which would generate an
alignment with the empty string λ. The last two cases show the limitation of our
approach to generating alignments, and suggests that allowing the model to reason
about different possible alignments might help avoid these errors.

Looking ahead, we note that while we use a simplified version of the full natural
logic calculus (owing to the simplicity of the Sportscaster domain), our general
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approach is amendable to more complex logical systems. For example, we could
implement complex projection rules for quantifiers and other linguistic operators
by simply introducing new symbols in our grammar with specially designed join
rules. In introducing more complex rules that go beyond simple joins, however, we
would be greatly expanding the space of possible proofs; whether learning in such a
large space (with only minimal background assumptions) is feasible is an empirical
question. It also remains to be seen whether using entailment as a learning signal
might help to learn other types of complex linguistic structure, which is a question
that we leave for future work.

4.7 Conclusions

In this chapter, we considered the problem of training semantic parsers in do-
mains where the target logical forms are underspecified and fail to capture basic
facts about entailment and inference. As a general solution to this problem, we
introduced a new learning framework called learning from entailment that involves
adding pairs of sentences annotated with entailment information to the semantic
parser’s training data. With this added data, we then force the semantic parser to
generate explanations of the provided entailments, which forces the model to learn
more about the target domain and find holes in the provided annotations.

To experiment with this idea, we performed experiments on the benchmark
Sportscaster corpus from Chen and Mooney (2008a), which we expanded to include
a corpus of sentence pairs annotated with entailments. As a way of operationalizing
this idea of forcing the semantic parser to generate explanations, we created a novel
grammar-based semantic parsing architecture and learning strategy that includes a
probabilistic reasoning component based on the natural logic calculus (MacCartney
and Manning, 2009). With this added machinery, the resulting model is able to
jointly learn to generate logic forms, as well as perform symbolic reasoning over
symbols in the target learning and solve entailment tasks.

Using our general approach, we achieved state-of-the-art results on the original
Sportscaster semantic parsing task. To demonstrate the effectiveness of our model
on modeling entailment, we also introduced a new RTE-style evaluation task based
on the extended Sportscaster corpus, on which our main inference model strongly
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outperformed several strong baselines (with around 73% accuracy). In conclusion,
we found that learning from entailment can be an effective technique for improving
the representations being learned for semantic parsing, and for making the learning
of semantic parsers more robust.
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5 Function Signature Semantics
and Code Retrieval

“I like the direction of this work, and I definitely think that there is poten-
tial for an interesting semantic correspondence dataset in the relationship
between code and its documentation, but I was a little disappointed that
the dataset was essentially just (javadoc, function prototype) pairs. With
that data only, I don’t see how it be used for building a model that has a
practical application...”

– Reviewer #3, ACL 2017 Blind Reviews

In this chapter, we briefly consider the semantics of the function signature rep-
resentations being learned in Chapters 2-3. The general idea is to define a formal
semantics for these function signature representations in terms of classical logic, as
first proposed in Richardson (2018). We also discuss the application of our models
to the task of code retrieval and API question-answering, and provide a system
description of the Function Assistant and Zubr tool from Richardson and Kuhn
(2017a). While the first two chapters of this thesis focus exclusively on the task
of text to code translation (which we assume is a necessary first step towards
deeper NLU for source code), the aim of this chapter is to describe more general
applications and example uses of these datasets.

5.1 The Semantics of Function Signatures

When learning the component representations introduced in Chapter 2 (for exam-
ples, see Figure 5.1), one natural question to ask is: what do these representations
actually mean? Unlike in conventional semantic parsing tasks, the function signa-
ture representations lack a well-defined semantics and other features such as com-
positionality. This is not altogether problematic in our early experiments, since
our main idea is to use these representations (which resemble atomic predicate
logic representations) to study the more general translation and lexicon learning
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Docstring Returns the greater of two long values
Signature (Java) lang Math long max(long a,long b)
Docstring Compares two values numerically and returns the maximum
Signature (Python) decimal Context max(a b)
Docstring gibt den größeren dieser Werte zurück
Signature (PHP) mixed max(mixed $value1, mixed $value2, ..)

Figure 5.1: Example function docstring and signature pairs from Chapter 2 (in a
conventionalized format) for the max function.

problem encountered in semantic parsing. Nonetheless, we can further formalize
the signature representations being learned and define a semantics for the resulting
language.

Under this approach, we define a simple domain-specific language and unified
syntax for function signature representations across different programming lan-
guages and software projects, as well as a systematic mapping from this language
into first-order logic and a small subject domain model (for a similar idea, see Bos
(2016), see also Appendix C.1 for a technical overview of the logical notation used
here). By recasting the learned representations in terms of classical logic, we aim
to broaden the applicability of existing code datasets to studying more complex
natural language understanding and reasoning problems in the software domain.
In what follows, we define this general syntax and translation, and discuss the
various applications that motivate our particular approach and subject domain
model.

5.1.1 A Unified Syntax for Function Signatures

Definition 1. (Syntax of Function Signatures)
Signature ::= l N C :: f(t1:p1, ..., tn:pn) -> r

As discussed in Section 3.3, function signature representations across different
programming languages consist of the following components: a namespace N (indi-
cating the position or path in the target API), a class or local name identifier C, a
function name f, a sequence of (optionally typed t) named parameters p, and an
(optional) return value r. Below shows the different parts of the Java max function
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first encountered in Figure 2.1:

lang︸ ︷︷ ︸
N

Math︸ ︷︷ ︸
C

long︸ ︷︷ ︸
r

max︸︷︷︸
f

( long a, long b )︸ ︷︷ ︸
t1 p1, t2, p2

In languages or software projects where some of this information is missing, we
can mark the positions using special tokens, such as UNK, or unknown, for types in
dynamically typed languages, or core and builtin in cases where the namespace
and class information are missing. In Definition 1, we define a generic syntax
for function signature representations in order to eliminate superficial differences
between different programming languages. This definition includes an additional
token l that identifies the particular programming language or software project
from which the function f is drawn (see Figure 5.2 for a normalized version of our
Java example).

5.1.2 Semantics and Translation to Logic

In order to provide a model theoretic semantics of these signature representations,
we define a systematic mapping from Signature to logic. We also use a small in-
ventory of domain specific predicates to define the semantics, which are motivated
by some of the applications that we discuss in the concluding subsection.

Definition 2. (Function Semantics)
Jl N C::f(t1:p1,...,tn:pn) -> rK =
λx1..λxn∃v∃f fun(f, f) ∧ eq(v, f(x1...xn)) ∧ lang(f, l) ∧ type(v, r) ∧
JCK ∧ JNK ∧ Jt1:p1K ∧ ...Jtn:pnK

The semantics can be described in the following way: for a given function f with
some set of function variables x1, .., xn (bound here using lambda abstraction),
there should exist a value v which is equal to (shown here using using a special
predicate eq) the value that results when the particular function constant fun is
applied to said variables. For example, the variable v in the following example
(where lambda conversion is performed on the input 4L, 5L):

Jjava lang Math::max(long:a,long:b) -> longK(4L)(5L)
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Returns the greater of two long valuesy
Signature (informal) lang Math long max(long a,long b)
Normalized java lang Math::max(long:a,long:b) -> long

Jjava lang Math::max(long:a,long:b) -> longK
m

Expansion to Logic

λx1λx2∃v∃f∃n∃c eq(v, max(x1, x2)) ∧ fun(f, max) ∧ type(v,long)
∧ lang(f ,java)
∧ var(x1,a) ∧ param(x1,f ,1) ∧ type(x1,long)
∧ var(x2,b) ∧ param(x2,f ,2) ∧ type(x2,long)
∧ namespace(n,lang) ∧ in namespace(f ,n)
∧ class(c,Math) ∧ in class(f ,c)

Figure 5.2: A normalized version of the Java example and its translation to logic.

takes the value of 5L, or the result of applying max(4L,5L). In order to capture
additional constraints about typing, naming, and the language from which the
function is drawn, we use the following domain specific predicates: fun (associates
the function variable f with the function constant or name f, e.g., max), lang (the
language or project associated with f), and type (the type of a given variable, in
this case relating the function return variable v with the return type constant r,
e.g., long).

Arguments Definition 3 shows the semantics of function arguments.

Definition 3. (Argument Semantics)
Jtj:pjK = var(xj, pj) ∧ type(xj, tj) ∧ has param(f, xj, j)

The same naming and typing constraints are expressed using similar predicates
for variables. The predicate var associates a given variable assignment xj with an
argument name pj. In addition, the predicate has param explicitly associates a
given argument or parameter and its position with a function f .

Namespace and Classes Definition 4 shows the semantics of namespaces and
classes (or local names):
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Definition 4. (Namespace and Class Semantics)
JNK = ∃n.namespace(n, N) ∧ in namespace(f,n)
JCK = ∃c.class(c, C) ∧ in class(f, c)

Here, we use the predicates namespace and class to identify the type of the
variables n and c. As with arguments, two additional predicates, in namespace
and in class, are introduced in order to associate particular namespaces and
classes with particular function values.

Figure 5.2 shows a full translation from an ad hoc signature representation
to a normalized representation and finally to a representation in logic using the
definitions introduced above. We note that while we use a specific, and seemingly
arbitrary, set of domain predicates, new predicates and information can be added
as needed. In the next subsubsection, we motivate the particular predicates chosen
above by describing some possible applications of our formulation.

5.1.3 Applications of the Logical Approach

In any application of logic, logical formulas can be used either to reason extension-
ally (i.e., about the particular real-world entities denoted by or involved in a given
formula) or intensionally (i.e., about abstract relationships and consequences be-
tween concepts). Taking the example in Figure 5.2 and its expansion to logic, we
could reason extensionally using pure logic about the exact value that this function
will return given a particular input. In contrast, we could also, with the help of
additional domain specific knowledge, reason intensionally about abstract relation-
ships between different programming languages, class and namespace structures,
and so on.

While we think that there is value in the first type of reasoning, especially for
building executable models of functions, our primary focus is on reasoning ab-
stractly about programming language constructs and relationships across different
programming languages and projects. One benefit of the source code domain (as
described in Chapter 2) is that much of the declarative knowledge needed for rea-
soning can be extracted straightforwardly from the target libraries directly, includ-
ing information about class containment and subsumption relations, lists of related
utilities (e.g., via see-also annotations and documentation hyperlinking), function
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1. Source (en, Haskell) Input: Shift the argument left by the specified number of bits.
O

ut
pu

t Language: Haskell Trans: Haskell Data.Bits builtin::shiftL(UNK:a,Int:UNK) -> UNK
Language: Java Trans.: Java java.math BigInteger::shiftLeft(int:n) -> BigInteger
Language: Clojure Trans: Clojure clojure.core builtin::bit-shift-left(UNK:x,UNK:n) -> UNK

Figure 5.3: Polyglot translation output (in a normalized form) for the input Shift
the argument left by the specified number of bits.

naming alternatives or aliases, and the relative position or distance between dif-
ferent functions and namespaces. Having such knowledge and an expressive logical
language can in general facilitate more complex forms of API question-answering
and code retrieval (a topic we discuss in the next section). As an example, we
might might use the following notation (in which each v? expands to an existential
variable in Definition 2):

java N? C?::f?(long:a,long:p?) -> long

to request the following: Find some java function somewhere (i.e., in some class
and namespace), that takes two long values as arguments (with the first value
having the name a) and returns a long value. Such a request might be used for
finding structurally related functions or for mining software clones (Rattan et al.,
2013).

Our primary focus is on building models that can robustly translate high-level
natural language descriptions to code, and hence to the logical representations
proposed above. We believe that under this scenario, natural language can prove
to be a useful tool for deriving new forms of declarative knowledge. In Chapter
3, we looked at polyglot translation, where our semantic parsers translate descrip-
tions into multiple programming languages. An example is provided in Figure 5.3,
where the model translates the description about bit-shifting operations (originally
drawn from the Haskell standard library) to equivalent function translations in
the Haskell, Java and Clojure standard libraries. With this output, one could
straightforwardly extract rules about function equivalences in different languages
(e.g., bit-shift-left in Clojure is the same function as shiftLeft in Java), and
learn further relationships between the associated function names and variables.
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Using the notation introduced above, we can express cross language queries
about equivalent functions in the following way:

java java.math BigInteger::EquivIn(

shiftLeft,haskell)(long:a, long:b) -> long

where the special predicate EquivIn is used to request the Haskell equivalent
of the shiftLeft function in Java. The semantics of EquivIn can therefore be
defined in the following way (where background knowledge about the eq predicate
can be derived from the output of our polyglot model as discussed above):

Jl N C::EquivIn(f,lang)(t1 :p1,...,tn:pn) -> rK
m

Jl N C::f(t1 :p1,...,tn:pn)-> rK ∧ J lang N? C?::f’?(?)-> r? K ∧ eq(f,f’)

One interesting direction is using general knowledge about software libraries
and logic reasoning to help learn more robust translation models. The formalism
introduced above is part of an effort to move in this direction, and we hope that
integrating symbolic reasoning more generally will open the doors to new ideas
and approaches.

5.2 Question Answering and Code Retrieval

As discussed above, one natural application of having a robust text to code se-
mantic parser is question-answering over target software libraries or API. To some
extent, the evaluation introduced in Chapter 2 already simulates a kind of code
retrieval system: given an input text (or specification) at test time, the goal is to
find the formal signature representation, within the space of all valid functions,
that matches the specification. In this section, we motivate this application and
discuss a simple prototype code retrieval system called Function Assistant.
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## from nltk.parse. dependencygraph .py

class DependencyGraph ( object ) :
"""A container .... for a dependency structure """

def remove by address ( s e l f , address ) :
"""
Removes the node with the given address.
"""
# => implementation

def add arc ( s e l f , head address , mod address ) :
""" Adds an arc from the node specified by
head_address to the node specified by
the mod address ....
"""

Figure 5.4: Example function documentation in Python NLTK about dependency
graphs.

5.2.1 Motivation

Software developers frequently shift between using different third-party software
libraries, or APIs, when developing new applications. Much of the development
time is dedicated to understanding the structure of these APIs, figuring out where
the target functionality lies, and learning about the peculiarities of how such soft-
ware is structured or how naming conventions work. When the target API is large,
finding the desired functionality can be a formidable and time consuming task.
Often developers resort to resources like Google or StackOverflow to find (usually
indirect) answers to questions.

We illustrate these issues in Figure 5.4 using two example functions from the
well-known NLTK toolkit. Each function is paired with a short docstring, i.e., the
quoted description under each function, which provides a user of the software a
description of what the function does. While understanding the documentation
and code requires technical knowledge of dependency parsing and graphs, even
with such knowledge, the function naming conventions are rather arbitrary. As an
example, the function:

add arc(self,head address,mod address)
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could just as well be called create arc. An end-user expecting another nam-
ing convention might be left astray when searching for this functionality. Simi-
larly, the available description might deviate from how an end-user would describe
such functionality. Understanding the remove by address function, in contrast,
requires knowing the details of the particular DependencyGraph implementation
being used. Nonetheless, the function corresponds to the standard operation of
removing a node from a dependency graph. Here, the technical details about how
this removal is specific to a given address might obfuscate the overall purpose of
the function, making it hard to find or understand.

At a first approximation, navigating a given API requires knowing correspon-
dences between textual descriptions and source code representations. For example,
knowing the following English descriptions corresponds (somewhat arbitrarily) to
the following code fragments in Figure 5.4:

Adds an arc⇒ add arc, address⇒ address

One must also know how to detect paraphrases of certain target entities or actions,
for example that adding an arc means the same as creating an arc in this context.
Other technical correspondences, such as the relation between an address and the
target dependency graph implementation, must be learned.

In the next subsection, we provide a system description of a code retrieval proto-
type we built called FunctionAssistant. Similar to the experiments in Chapters
2-3, the tool works in the following way: given a target API, we learn a MT-based
semantic parser that translates text to code representations in the API. End-users
can formulate natural language queries to the background API, which our model
will translate into candidate function representations with the goal of finding the
desired functionality. In this section, we focus on using the tool as a blackbox
pipeline for building directly from arbitrary API collections.

5.2.2 Function Assistant Tool

The Function Assistant tool is a prototype code retrieval engine that natively
implements all of the models introduced in Chapter 2. The tool is part of the
companion semantic parsing toolkit Zubr that was used to implement virtually
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## pipeline parameters
params = [

(”−baseline” ,”baseline” , False , ”bool” ,
”Use baseline model [ default=False ] ” ,”GPipeline” )

]

## Zubr pipeline tasks
ta sk s = [

”zubr . doc extractor . DocExtractor” , # extract docs
”process data” , # custom function.
”zubr .SymmetricAlignment” , # learn trans. model.
”zubr . Dataset” , # build dataset obj.
”zubr . FeatureExtractor” , ## build extractor obj.
”zubr . Optimizer” , ## train reranking model
”zubr . QueryInterface” , # build query interface
”zubr .web.QueryServer” , # launch HTTP server

]

def proce s s da ta ( c o n f i g ) :
""" Preprocess the extracted data using a custom
function or outside library (e.g., nltk)

:param config: The global configuration
"""
p r e p r o c e s s f u n c t i o n ( con f i g , . . . )

Figure 5.5: An example pipeline script for building a parallel API dataset, trans-
lation model and query server.

all of the content in this thesis. For efficiency, the core functionality is written in
Cython (Behnel et al., 2011)4, which is a compiled superset of the Python language
that facilitates native C and C++ integration. Function Assistant is designed
to be used in one of two ways: first, as a black-box pipeline to build custom
translation pipelines and API query engines. The tool can also be integrated with
other components using our Cython and Python API. We focus on the first type
of functionality.

Library Design and Pipelines

The underlying Zubr library uses dependency-injection OOP design principles. All
of the core components are implemented as wholly independent classes, each of
which has a number of associated configuration values. These components interact

4for more information, see http://cython.org/
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via a class called Pipeline, which glues together various user-specified components
and dependencies, and builds a global configuration from these components. Sub-
sequent instantiation and sharing of objects is dictated, or injected, by these global
configurations settings, which can change dynamically throughout a pipeline run.

Pipelines instances are created by writing pipeline scripts, such as the one shown
in Figure 5.5 (a more general Zubr pipeline for training neural models is shown
in Figure 5.6). This file is an ordinary Python file, with two mandatory variables.
The first params variable specifies various high-level configuration parameters as-
sociated with the pipeline. In this case, there is a setting --baseline, which can
be evoked to run a baseline experiment, and will effect the subsequent processing
pipeline. The second, and most important, variable is called tasks, and this spec-
ifies an ordering of subprocesses that should be executed. The fields in this list are
pointers to either core utilities in the underlying Zubr toolkit (each with the prefix
zubr.), or user defined functions.

This particular pipeline starts by building a dataset from a user specified source
code repository, using DocExtractor, then builds a symmetric translation model
SymmetricAlignment, a feature extractor FeatureExtractor, a discriminative
reranker Optimizer, all via various intermediate steps. It finishes by building a
query interface and query server, QueryInterface and QueryServer, which can
then be used for querying the input API. Our current DocExtractor implementa-
tion supports building parallel datasets from raw Python source code collections.
Internally, the tool reads source code using the abstract syntax tree utility, ast5,
in the Python standard library, and extracts sets of function and description pairs.
In addition, the tool also extracts class descriptions, parameter and return value
descriptions, and information about the API’s internal class hierarchy. This last
type of information is then used to define document-level features.

As noted already, each subprocesses has a number of associated configuration
settings, which are joined into a global configuration object by the Pipeline in-
stance. For the translation model, settings include, for example, the type of transla-
tion model to use, the number of iterations to use when training models, and so on.
All of these settings can be specified on the terminal, or in a separate configuration
file. As well, the user is free to define custom functions, such as process data, or

5https://docs.python.org/2.7/library/ast.html
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params = [
(”−wdir” ,”wdir” , ’ ’ ,”str” ,

”The working directory [ default = ’ ’]” ,”NeuralRunner” ) ,
(”−name” ,”name” , ’ ’ ,”str” ,
”The name of the dataset [ default = ’ ’]” ,”NeuralRunner” ) ,

(”−make subword” ,”make subword” , False , ”bool” ,
”subword representations for english side [ default=False ] ” ,”NeuralRunner” ) ,
. . .

]

d e s c r i p t i o n = {”NeuralRunner” : ”settings for running neural model”}

ta sk s = [
”setup data” , ## create initial data for Seq2Seq taining
”zubr .wrapper . foma” , ## build graphs
”zubr . neural . run” ## train and run neural decoder

]

def se tup data ( c o n f i g ) :
. . .

Figure 5.6: An example pipeline for running the neural models from Chapter 3.

classes which can be used to modify the default processing pipeline or implement
new or additional machine learning features.

Web Server The last step in this pipeline builds an HTTP web server that
can be used to query the input API. Internally, the server makes calls to the
trained translation model and discriminative reranker, which takes user queries
and attempts to translate them into API function representations. These candi-
date translations are then returned to the user as potential answers to the query.
Depending on the outcome, the user can either rephrase his/her question if the
target function is not found, or look closer at the implementation by linking to the
function’s source code.

An example screen shot of the query server is shown in Figure 3. Here, the
background API is the NLTK toolkit, and the query is:

Query: Train a sequence tagger model

While not mentioned explicitly, the model returns the method train(...) and
other related methods for the HiddenMarkovModelTagger, thus inferring that a
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Figure 5.7: An example screen shot of the Function Assistant web server.

hidden markov model is a type of sequence tagger. The right side of the image
shows the hyperlink path to the original source in Github for the train function.

Deployment and Future Work A public version of the Function Assistant
web server has been running at http://zubr.ims.uni-stuttgart.de/ with a
number of example library models since September 2017. These models were
trained on the datasets introduced in Chapter 2. As such, they only simulate
potential user queries, and more work needs to be done to evaluate the collected
queries and determine the accuracy of finding the correct methods.

The current version of Function Assistant does not yet include the polyglot
features discussed in Chapter 3, as well as the mapping to logic described at the
beginning of this chapter. One future direction is to provide this additional func-
tionality, and provide a reasoning mechanism that can be evoked to reason across
APIs using abstract knowledge about the underlying structure of the provided li-
braries. More work should be done also to allow for more abstract types of queries
(e.g., querying about generic sets of functions, or abstracting over variables).
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5.3 Conclusions

In this chapter, we consider several applications of the source code datasets in-
troduced in Chapters 2-3, largely centering around different types of automated
question-answering. Our proposal to define a formal semantics of function signa-
tures in terms of classical logic aims to broaden the scope of how these representa-
tions can be used to reason more generally about API libraries and programming
constructs. The use of logical representations also aligns our general with more
conventional semantic parsing tasks and the NLU approach introduced in Chapter
1. We also discuss an initial attempt at building and deploying a code retrieval pro-
totype called Function Assistant that allows for building models on arbitrary
source code projects.

Moving ahead, we see a lot of potential in code retrieval and API question-
answering as an application of the ideas pursued in this thesis. While our current
approach and implementation uses simple components, we hope that our tools and
ideas will serve as a benchmark for future work in this area, and ultimately help
to solve everyday software search and reusability issues.
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In this chapter, we provide a brief summary of the contributions made in this the-
sis, and discuss some high-level technical themes that emerged from the different
chapters. We end by reflecting on the overall program for natural language under-
standing (NLU) first introduced in Chapter 1, and describe what we see as some
of the challenges that lie ahead.

6.1 Thesis Contributions

The ultimate goal of this thesis is to develop new techniques and resources for
building robust semantic parsing models that require minimal amounts of hand
engineering. In doing this, we tackled several of the underlying resource problems
that one inevitably encounters when trying to do this (as described at the begin-
ning of each chapter). In this section, we again summarize each problem and our
proposed solutions and contributions.

Source Code as Parallel Data (Chapters 2,5) The most fundamental re-
source problem for data-driven semantic parsing is finding the parallel data needed
to train the underlying models given that such data does not naturally occur in
the wild. To get around this, we proposed using automatically extracted source
code documentation, or collections of text and formal code representations, as a
parallel corpus for benchmarking and developing new semantic parsing models. We
introduced 45 new datasets in this domain that span a wide range of natural lan-
guages and programming languages, as well as a new and challenging text-to-code
semantic parsing task and code retrieval application.

On this new task, we encountered several technical challenges, largely related to
the broad scope of the target datasets and the sparsity of the formal representations
being learned, which made it hard to apply standard semantic parsing techniques.
This required us to develop several new baseline models, based primarily on sta-
tistical machine translation (SMT) techniques, and new decoding strategies that
take into account the structure of the output languages being generated (which is
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a topic that we refer to throughout the thesis as constrained decoding; more about
this below).

Training on Multiple Datasets (Chapter 3) Even when parallel data is
available, the amount of domain- or language-specific data might still be insufficient
for learning a robust model. To address this issue, we looked at learning semantic
parsers from multiple datasets, and building polyglot models that can translate
between arbitrary language pairs (including language pairs not observed during
training). To facilitate modeling of this kind, we develop a novel graph-based
decoding framework and experimented with several types of translation models
that work within this framework.

Using polyglot modeling, we improved our initial results on the technical doc-
umentation datasets, and achieved results competitive with the state-of-the-art
of two additional benchmark tasks. We also introduced a novel mixed language
semantic parsing task that highlights the benefits of polyglot modeling versus
monolingual modeling (i.e., training models over a single language or domain).

Learning to Make Inferences (Chapter 4) Even when the first two resource
problems have been solved, the formal representations provided in a given dataset
might fail to capture all aspects of language meaning. To deal with this issue,
we developed a new learning framework called learning from entailment that uses
entailment information (i.e., high-level inferences about whether the meaning of
one sentence follows from another) as a weak learning signal to train semantic
parsers to reason about the holes in their analysis and learn improved semantic
representations.

To accomplish this, we developed a new semantic parsing and reasoning model
that jointly learns from logical forms and sentence pairs annotated with entailment
information. With this model, we achieve state-of-the-art results on one benchmark
semantic parsing tasks, and introduced a new entailment task evaluation for mea-
suring the ability of semantic parsers to model inference and reasoning.
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Discussion: The Need for Better Evaluation

Beyond using the new ideas and resources described above to improve on stan-
dard tasks, we were also motivated by a need for more diverse task evaluations
in semantic parsing. There is a common tendency to evaluate semantic parsing
intrinsically in terms of translation accuracy, which largely concerns determining
whether a generated representation is correct or not. One theme throughout the
thesis is using more complex extrinsic tasks to evaluate model performance, which
focus more on the the types of complex problems that the representations being
learned help to solve. For example, our use of mixed language and entailment test-
ing involves seeing whether a semantic parser’s output representations can be used
to effectively model code-mixing and simple types of symbolic reasoning.

Moving forward, we still see a large need for developing more diverse task evalu-
ations, especially ones involving entailment and inference modeling, which despite
being the raison d’être of semantics, has received little attention in the literature.
As discussed in Chapter 5, we think that our software datasets could prove to be a
valuable resource for experimenting with end-to-end language understanding given
their broad scope and highly structured nature. While they have the benefit of be-
ing automatically extracted, therefore not requiring manual annotation of formal
representations, a remaining question is whether the target code representations
are sufficient for modeling deeper types of natural language semantics.

Discussion: Technical Themes and Structured Decoding

To investigate the different topics outlined above, we experimented with several
different types of probabilistic semantic parsing models, ranging from models based
on classical statistical machine translation (SMT, Chapters 2-3), conditional log-
linear models (Chapter 2) and probabilistic grammars (Chapter 4) to more recent
neural translation models (Chapter 3). In all cases, the modeling objective is to
learn some conditional probability distribution p(z | x) of semantic outputs z ∈
Lout given text input x, and the decoding problem involves solving the following
(given a particular input x):

z∗ = arg max
z∈Lout

p(z | x)
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In solving any such decoding problem, a natural question to ask is: what as-
sumptions can we make about the scope of the arg max and Lout? One funda-
mental difference between semantic parsing and ordinary translation is that the
former involves translating to formal languages, which allows us to make strong
assumptions about the structure of Lout. The topic of how one does decoding in a
way that takes advantage of this structure, which we have referred to throughout
the thesis as constrained decoding, is therefore a core topic in semantic parsing and
one that has recently attracted interest in the context of neural semantic parsing
(Krishnamurthy et al., 2017; Yin and Neubig, 2017; Rabinovich et al., 2017), where
standard formulations of decoding assume a rather unconstrained search space.

A unifying feature of all the models we considered is the use of (labeled) di-
rected graph representations to constrain and represent the output translation
space and Lout (where paths in these graphs correspond to valid output expres-
sions and labeled edges correspond to individual output words z) and the use of
shortest-path search over these graphs as a way to efficiently solve the associated
decoding problems. This includes our use of DAG representations in Chapter 3 for
constraining SMT (see Algorithm 5) and neural (see Algorithm 6) decoding (what
we call shortest-path decoding). In the general case, shortest-path search for DAGs
involves the following procedure (see Algorithm 4 for more details):

0: d[0]← 0.0
1: for each graph vertex v ∈ V in sorted order
2: do d(v) = min

(u,v,z)∈E

{
d(u) + w(u, v, z)

}
Under our translation approach, where we start with an input text x to be trans-
lated, the intuition is the following: the role of the edge weight function w is to
assign a translation score to each edge label z conditioned on x. Our main idea,
therefore, is to replace w with translation models that dynamically generate edge
weights during the ordinary search procedure. As we describe in some technical
detail in Section 4.4, this idea has strong connections with classical hypergraph
decoding for grammar-based models (see Algorithm 9), of the type we use in Chap-
ter 4. Given these connections, we think that shortest-path decoding can provide
a more general search framework for unifying the different approaches to seman-
tic parsing, in particular grammar-based approaches and neural-based translation
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approaches.
Beyond providing a high-level framework for describing and unifying different

semantic parsing approaches, such a framework could also help to understand
deeper theoretical questions about the complexity of constrained decoding for se-
mantic parsing and provide a uniform toolset for helping to solve the underlying
search-related problems.

6.2 Looking Ahead

“...language comprehension from an AI point of view assumes that lan-
guage understanding depends on a lot of “real-world knowledge’ and that
our programs must have it if they are ultimately succeed. Fortunately,
there is a branch of AI–knowledge representation–whose purpose in life is
to provide this knowledge... thus we in AI-NLP go about our business not
worried unduly by the fact that we do not actually have the knowledge base
required by our most basic assumptions.... There is nothing wrong with
this model as far as it goes. But at the same time anyone familiar with AI
must realize that the study of knowledge representation... is not going any-
where fast. This subfield of AI has become notorious for the production of
countless non-monotonic logics...none of the work shows any obvious ap-
plication to actual knowledge representation problems... Thus many of us
in AI-NLP have found ourselves in the position of basing our research on
the successful completion of others’ research–a completion that is looking
more problematic. It is therefore time to switch paradigms...’

– Eugene Charniak (1996) Statistical Natural Language Learning

In this final section, we make some high-level remarks about the general pro-
gram for data-driven natural language understanding introduced in Chapter 1 and
assumed throughout the thesis. As emphasized from the beginning, our approach
largely follows the classical symbolic approach (what Charniak above calls the AI-
NLP approach), within which semantic parsing plays the vital role of translating
natural language into symbolic representations that can be used for symbolic rea-
soning and program execution (we have elsewhere referred to this as the compiler
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model for NLU). The novelty of recent work on data-driven semantic parsing is
the attempt to learn such translations from data as way of getting around the
difficulty of hand-engineering translation rules.

One problem with our general approach, however, is that solving the semantic
parsing problem is only one step in solving the bigger language understanding
problem, since the overall success of our research program also requires solving the
associated knowledge representation and reasoning (KR&R) problems (i.e., prob-
lems associated with how we generally use formal representations to efficiently
compute inference and solve real-world tasks, which involves a whole new set of
bottlenecks and resource problems). It must be acknowledged, therefore, the ul-
timate success of our research program depends on the successful completion of
others’ research in KR&R, as Charniak discusses in the quote above.

For Charniak, this reliance on others’ success is reason to abandon the AI-
NLP program altogether. In this thesis, we take a middle ground and propose
investigating the extent to which AI-NLP systems and theories can be modeled
empirically and inferred from data using machine learning. As discussed in Chapter
1, Liang and Potts (2015) argue that recent developments in semantic parsing on
learning ‘compositional semantic theories from corpora and databases’ are quickly
eroding the divide between logical and statistical approaches to language, thus
putting part of the AI-NLP approach within the purview of statistical modeling.
Given the success of semantic parsing, we believe that other components in the
end-to-end AI-NLP pipeline can benefit from machine learning in a similar fashion.

Moving forward, we see the following general research themes as important in
the endeavor to build more robust end-to-end models:

• More General and Robust Models: As described in Chapter 1, the goal
in most semantic parsing research is to build models that are domain ago-
nistic, or not tied to particular domains and language types. We believe that
we need more of this, especially related to building models that generalize
well in low-resource or sparse settings, such as the technical documentation
domain we consider in this thesis. What’s currently missing is a systematic
study into how semantic parsing models perform over a wide and diverse
range of domains and knowledge representation types.
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Given the success of neural sequence to sequence (Seq2Seq) modeling tech-
niques in semantic parsing, we suspect that more general and robust Seq2Seq
methods will need to be discovered to make this possible. However such mod-
els will likely need to respect the constrained nature of semantic parsing task
and the peculiarities of translating to formal languages. Our work on con-
strained decoding assumes that we can make neural models more robust by
supply them with more explicit information about the output prediction
space, thus making them more like classical grammar-based models. The ex-
tent to which models need this information and can learn such structure is
an open question.

• Looking at Semantic Parsing Holistically As discussed at the beginning,
many semantic parsing evaluations are intrinsic in nature, and one theme
throughout this thesis is to look at semantic parsing more holistically. For
example, in Chapter 4 we observe the tight connection between reasoning and
semantic parsing, and propose a model that jointly solve both tasks. This
required us to consider the interface between these two different modeling
components, and in the end led to a novel approach to doing KR&R.

Therefore, we believe that having a systematic understanding of the relation-
ship between semantic parsing and KR&R, as well as developing new tasks
that evaluate on entailment and reasoning, will also be needed for building
more robust natural language understanding models. We also think that by
linking KR&R with learning semantic representations, we might discover new
and interesting formalisms and learning techniques for data-driven KR&R.
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A Code Datasets, Reranker
Features, EM

A.1 Dataset Information

We report additional details about our dataset collection.

Standard Library Documentation Figure A.2 shows additional details of
the different standard library datasets used in Chapter 2-3, including pointers to
the original source of the documentation, the standard library version numbers,
and other details. To our knowledge, none of these datasets, excluding the Java
Standard Library set from Deng and Chrupa la (2014), have been used for the types
of NLP experiments that we describe in the thesis.

Technical Manuals We also show information about the Unix dataset first
reported in Richardson and Kuhn (2014). While we introduced the dataset in
Richardson and Kuhn (2014), Richardson and Kuhn (2017b) is our first attempt
as using these datasets for semantic parsing.

A.2 Reranking Features

Figure A.3 shows the full feature set used by our reranking models.

Class information Some documentation sets include assertions about related
functions or utilities, in the form of see also sections or links to other parts of
the API (see examples in Figure A.1). Such information can also be found in quick
reference manuals or language cheat sheets available online, as well as from html
structure.This information is used to define features in our discriminative model.

Parameter descriptions In many datasets, the function documentation include
additional textual descriptions of the function parameters. For the baseline trans-
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Language Example Classes
Ruby {logger.info, logger.warn, logger.fatal, logger.debug, ... }
Elisp {sin, cos, tan, asin, acos, atan, exp, log, log10, ... }
Unix {iotop,iosnoop,iopattern,iopending, ... }
PHP {ps close image, ps open image file, ps place image, ... }

C {UINT8 MAX UINT16 MAX UINT32 MAX UINT64 MAX UINT FAST8 MAX, ... }

Figure A.1: Example classes, or abstract groupings of symbol types, extracted us-
ing document-level information in target APIs.

lation models, these can add these fragmented pairs to the parallel training data.
We also use this information as features in our reranking model.

Return descriptions Similarly, some documentation also contains textual de-
scriptions of return values, which can be used in the same way as described above.

Section descriptions Section descriptions are module or class level textual de-
scriptions.

Feature Selection A greedy, backward search selection method was employed
for some datasets where overfitting seemed to be an issue. This is done in the
following way: after training a complete model, features or templates that lead
to incorrect predictions on the validation are greedily removed, and those whose
removal increases the accuracy on the validation are shut off. The model is then
retrained used the resulting selected set of features or templates. More details are
documented in our source code release.

A.3 Justification of EM Updates

As detailed in the chapter, the goal of the expectation maximization (EM) algo-
rithm is to maximize the likelihood of the target training corpus D, where we can
represent the likelihood of our parameters θ in the following way for our word-based

170



A.3 Justification of EM Updates

models:

`(θ) = log
|D|∏
d=1

pθ(x(d) | z(d)) (A.1)

=
|D|∑
d=1

log
∑
a∈A

pθ(x(d), a | z(d)) (A.2)

Recall also that the general form of the EM algorithms is the following:

Q(θ | θt) =
|D|∑
d=1

∑
a∈A

[
pθt(a | x(d), z(d)) log pθ(x(d), a | z(d))

]
(A.3)

with which the E-step involves collecting the expected counts of alignments (i.e.,
the latent variables) using the posterior distribution pθt(a | x, z) and parameters
θt, and the M-step involves finding new parameters θ that solve an arg maxθ over
this equation.

As remarked in Bishop (2006), the general form of the expectationQ in Equation
A.3 might seem arbitrary at first glance, and one question is whether this approach
is guaranteed to increase our data likelihood after each iteration. In the general
case, such a guarantee does hold, and proving this and deriving Q involves a result
about concave functions called Jensen’s inequality (Jensen, 1906). This result states
that for any concave function f and set of variables xj, λj s.t. ∑n

i λi = 1, the
following inequality holds (where equality holds when xi takes the form xi

λi
and λi

is held constant):

f
( n∑

i

λixi

)
≥

n∑
i

λif(xi) Jensen’s Inequality (A.4)

Given that log(·) is concave function, the general idea is that the likelihood in
Equation A.2 serves as the left side of the inequality, and the posterior in Equation
A.3 plays the role of λ. In order to see this and to move the posterior, or λ, into
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the likelihood computation, we can do the following:

`(θ) =
|D|∑
d=1

log
∑
a∈A

pθ(x(d), a | z(d)) (A.5)

=
|D|∑
d=1

log
∑
a∈A

pθt(a | x(d), z(i))
pθt(a | x(i), z(d))pθ(x

(i), a | z(d)) Mult. by 1 (A.6)

=
|D|∑
d=1

log
∑
a∈A

pθt(a | x(d), z(d)) pθ(x
(d), a | z(d))

pθt(a | x(d), z(d)) (A.7)

≥
|D|∑
d=1

∑
a∈A

pθt(a | x(d), z(d)) log pθ(x(d), a | z(d))
pθt(a | x(d), z(d)) Jensen’s Inequality (A.8)

=
|D|∑
d=1

∑
a∈A

pθt(a | x(d), z(d)) log pθ(x(d), a | z(d))

−
|D|∑
d=1

∑
a∈A

pθt(a | x(d), z(d)) log pθt(a | x(d), z(d))
(A.9)

The first part of expanded fraction in Equation A.9 is equivalent to our expectation
Q. Given the second half of the equation does not involve θ and our objective is
to find θ that maximizes the complete data likelihood, it suffices to only maximize
the first part of the equation. Finally, to see that optimizing Q increases the data
likelihood, we observe the following:

`(θt+1) ≥
|D|∑
d=1

∑
a∈A

pθt(a | x(d), z(d)) log pθt+1(x(d), a | z(d))
pθt(a | x(d), z(d)) Jensen’s Ineq.

≥
|D|∑
d=1

∑
a∈A

pθt(a | x(d), z(d)) log pθ
t(x(d), a | z(d))

pθt(a | x(d), z(d)) θt+1 is arg max
θ

Q

= `(θt) via equality constraint

While these set of equations are specific to the word translation models investigated
in Chapter 2, the general result holds for any such model with latent models. The
main challenge, however, often involves finding a way to compute the posterior in
Q, which for some models does not have a closed-form solution.
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Figure A.2: Further details of our corpus collection, including any background re-
sources (background) or third party libraries (shown under double
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tures used in our experiments. Class refers to information about gen-
eral classes of functions, and param and return specify if the addi-
tional textual description of parameter values and return values (re-
spectively) are included.
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in the best performing English models in the Stdlib experiments found
during an ablation and feature selection study.
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B Neural Network Primer,
Graph Decoder Details

B.1 Neural Network Definitions

In this section, we give a brief overview of the neural network notation used in the
Chapter 3, following the reviews from Goldberg (2016); Neubig (2017). Standardly,
we use linear algebra notation where bold upper case letters denote matrices (W)
and bold lowercase letters (b) denote vectors, with subscripts added accordingly
to distinguish between different components. The vector x (using variations of
the letter x) will be used throughout to denote an input vector,

[
x1; x2

]
is used

to denote vector concatenation, and Wb and b + b’ will denote matrix-vector
multiplication and vector addition, respectively.

B.1.1 Multi-layer Perceptrons

A 1-layer multi-layer perceptron (MLP) (see example in Figure B.1), can be defined
in terms of the following operations (we will sometimes use multiple variables
MLP(x1, ..,x2) which will implicitly denote vector concatenation of x1, ..,xn):

MLP1(x) = W2(s(W1x + b1)) + b2 (B.1)

where s(·) denotes a non-linear activation function (e.g., tanh), x is an input
vector of dimension d (denoted as x ∈ R|d|), W1 is a matrix with outer dimension
d2 (∈ R|d2|×|d|), W2 is a second matrix ∈ R|d3|×|d2|, and b1 and b2 are both vectors
called bias terms (b1 ∈ Rd2 ,b2 ∈ Rd3). Using this basic form, more layers can be
added as needed (to create deeper n-layer MLPs) by creating additional matrices,
bias terms, and non-linear transformations. In contrast, by removing the non-linear
function s and the hidden layer W2, the resulting model would be a linear model
similar to the log-linear model used in Chapter 2.

When using these networks for classification, the final layer will have an outgoing
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Exi−2

Exi−1

....

R|d|

input d

b1 b2

R|h|×|d|

W1

R|h|

s

h

• • •

R|Σ|×|h|

W2

p(w|Σ| | xi−1, xi−2)

• • •

p(w3 | xi−1, xi−2)

p(w2 | xi−1, xi−2)

p(w1 | xi−1, xi−2)

[0, 1]|Σ|

softmax(W2)

Figure B.1: An example multi-layer perceptron (MLP) network applied to lan-
guage modeling.

dimensions equal to the size of the target classes. For example, Figure B.1 shows
a MLP used for bigram language modeling, where the goal is to predict a new
word given the previous two words within the class space of all possible output
words (shown as Σ). In this scenario, one common output transformation is called
softmax (a type of vector-to-vector transformation, also referred to as a softmax
layer):

softmax(xi) = exi∑k
j=1 e

xj
(B.2)

which in the end will create a discrete probability distribution over the output
words or classes, with which we can find the most likely output class or compute
the likelihood of some data.

One innovation in recent work on neural networks is the use of low-dimensional
vector representations for discrete entities such as words (also referred to as embed-
dings). In the example above, for example, the previous words on the input side,
xi−1, xi−2, are represented not as single discrete points in the input vector x (as
we might have done using our log-linear model in Chapter 2), but as the concate-
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nation of two vectors taken from some embedding matrix E ∈ R|Σin|×b (with inner
dimension b). By treating words as vectors, the subsequent vector representations
(which are learned parameters in the model) allows the model to generalize across
related words.

Learning Similar to the log-linear models covered in Chapter 2, we can train
these models using stochastic gradient-descent, which will involve defining some
loss function L, and solving the following gradients w.r.t. this loss function and
individual network parameters: ∂L

∂W1
, ∂L
∂W2

, ∂L
∂b1
, ∂L
∂b2

,... The technique of backpropoga-
tion allows for solving this efficiently by working backwards from the output and
exploiting the chain rule (for more details, see Goodfellow et al. (2016)).

B.1.2 Recurrent Neural Networks

Recurrent neural networks (RNN) are a generalization of the MLP model intro-
duced above that allow for sequence modeling. In the most basic form, they work
by feeding the output state of each previous input in a sequence gj−1 (starting from
some initial state g0) when evaluating a new input xj, as given by the following
recursive definition:

gj = RNN(gj−1,xj) (B.3)

= s(W1xj + W1′gj−1 + b) (B.4)

where a probability distribution at time j (pj) can be obtained (again, in the
context of classification and model training) by doing the following:

pj ∼ softmax(W2gj + b2) (B.5)

One of the benefits of the RNN model is that the recurrent states allow for condi-
tioning each decision on the full sequence history. For tasks such as language mod-
eling, this eliminates the need to make Markov assumptions (i.e., deciding how far
back in the sequence to look, as we did in the MLP example in Figure B.1). Train-
ing these models can also be done efficiently using a variant of backpropagation
called backpropagation through time (Werbos, 1990) that involves backpropagating
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a global loss for a given input sequence through all the time steps in that sequence.
The difficulty with vanilla RNNs, however, is that backpropagating through long

sequences can sometimes have the effect of making the later gradients vanish, or
become so small that they have little effect on the parameter updates (Pascanu
et al., 2013). To deal with this vanishing gradient problem, several specialized
architectures have been proposed, most notably variants of the Long Short-Term
memory (LSTM) architecture of Hochreiter and Schmidhuber (1997). The basic
idea is change the standard RNN architecture to include a memory cell c that
preserves gradients over time and uses a set of gating mechanisms (analogous to
logic gates) that determine how much of an given input to store in memory. The
LSTM state g′ is defined recursively in the following way:

g′j = LSTM(g′j−1,xj) (B.6)

= oj � s(cj) (B.7)

which in turn relies on the following set of equations (where � denotes pointwise
multiplication, and σ(x)(the sigmoid or logistic function) = 1

1+e−x ):

cj = ij � uj + fj � cj−1 (B.8)

uj = s(W1xj + W1′gj−1 + b1) (B.9)

oj = σ(W2xj + W2′g′j−1 + b2) (B.10)

fj = σ(W3xj + W3′g′j−1 + b3) (B.11)

ij = σ(W4xj + W4′g′j−1 + b4) (B.12)

Here uj in Equation B.9 is the same as the vanilla RNN in Equation B.15, and
ci, oi, and fj are input, output, and forget gates that either allow or block certain
types of information. Intuitively, the sigmoid function will transform each vector
value to a value between 0 and 1, such that values closer to 1 will open the gate
and allow information to pass through, whereas values closer to 0 will close the
gate and block information (for more details, see Neubig (2017)).
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B.2 Graph Decoder

B.2.1 General Decoder Complexity

As detailed in the chapter, our decoder uses the k-shortest path procedure of Yen
(1971). In the case of DAGs, this algorithm has a time complexity of O(k |V | (|V |+
|E|)) for k > 1. This complexity can be explained in the following way: O(|V |+|E|)
(where V and E are the graph nodes and edges respectively) is the complexity of
the DAG single shortest path procedure (or for k = 1). For each k, we consider l
number of new start positions in the most recent k−1 SSSP (starting on Line 5),
which in the worst case can be of size |V |. Each branching path j ∈ l then requires
a run of the SSSP procedure of complexity O(|V |+ |E|) (as stated above).

In Algorithm 7, we show several optimizations that improve the runtime (though
not the complexity) of the procedure, including starting each nested call to SP at
new start as opposed to searching through the full graph, and using a min heap to
store candidate shortest path in Lines 2,13 and 15 as opposed to having to re-sort
B each time at line 15. Another frequently used optimization trick (not shown
here), known as Lawler’s trick (Lawler, 1972), involves keeping track of already
computed branching paths so as to avoid solving for duplicate candidates shortest
path in B and having to make repeated calls to the SP procedure (line 11). This
last trick significantly improved the running time of our decoders (see Brander and
Sinclair (1995) for more details and analysis).

B.2.2 Lexical Decoder Properties

One important detail is that we approximate the IBM Model 1 computation in
the SSSP search by ignoring the normalizer A (i.e., the number of all many-to-one
alignments from x→ z, shown in Equation 3.1). We do, however, use an additional
data structure l ∈ N|V | to store the length of the translation corresponding to the
shortest path at each node from the source b (the importance of this is shown in
final computation of our decoding example in Figure 3.6). Accordingly, the source
node will have a length of 0, each adjacency node from the source with have a
length of 0 + 1, or 1, and so on. This information can then be used for normalizing
the final score when a terminating node is reached (in our case, our graphs have a
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s1 = [0.65]
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fun1
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x *end*

Method − log p(λ fun1 x | function 1) − log p(λ fun1 | function 1)
Exact 1.38 1.20
Graph SSSP 1-best 1.38 ?

Figure B.2: An example graph and decoding run where the lexical SSSP search
does not find the correct 1-best translation (involving the excluded
red edge) of the input function 1 (uses pt from Figure 1).

unique terminating node).
Due to this approximation, our decoder as implemented and described above

is not exact, as proved by the simple counter example shown in Figure B.2 (and
as already shown empirically in the chapter). In general, since the normalizer is
computed at the terminating node (as opposed to during the SSSP search), longer
sequences can block shorter sequences with higher (post normalized) probability.
Despite this, we found this method to be empirically optimal for k > 1 when
compared against our previous work (Richardson and Kuhn, 2017b) (as detailed
in Figure 3.12). An additional implementation trick is that after each candidate
SSSP is found (line 15 in Algorithm 7), we run our translation model on the input
and full candidate again to compute the correct score.
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Rule Extraction

In this section, we give a brief overview of symbolic logic notation used throughout
Chapters 5-6 using examples from the air travel domain and question-answering
application first discussed in Chapter 1. In Section C.2, we give a full description
of the grammars used to model the Sportscaster domain in Chapter 4, using the
rule set defined in Richardson and Kuhn (2016).

C.1 Knowledge Representation: How to
Formally Represent Meaning

“The reason logic is relevant to knowledge representation and reasoning is
simply that, at least according to one view, logic is the study of entailment
relations – languages, truth conditions, and rules of inference. Not sur-
prisingly, we will borrow heavily from the tools and techniques of formal
symbolic logic. Specifically we will use as our first knowledge representa-
tion language a very popular logical language, that of .. first order logic
(FOL) ... [which] was invented by Gottlob Frege ... for the formalization
of mathematical inference, but has been co-opted by the AI community
for knowledge representation purposes.. It must be stressed, however, that
FOL itself is just a starting point. We will have good reasoning to con-
sider subsets and supersets of FOL, as well as knowledge representation
languages quite different in form and meaning..”

– Brachman and Levesque (2004)

The problem of knowledge representation in our setting concerns the following
question: what is the nature of the output languages (shown here as Lsem) we
generate when doing NLU and SP? As discussed and motivated in Chapter 1, our
output languages will often take the form of a formal logical language. In studying
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t ::= x | c | f(t1, ..., tn) (Terms)
α ::= P (t1, ..., tn) | ≈ (t1, t2) | ⊥ | > (Atomic Formulas)
α ::= (¬α) | (α1 ∨ α2) | (α1 → α2) | (∀x.α) | (∃x.α) (Complex Formulas)

Figure C.1: The syntax of first-order logic (FOL) formulas

such languages, we might ask: what types of formal languages do we need to define
in order to capture the type of semantics we aim to model? While this question
is often tied to the particular experiment or application under consideration, a
reasonable starting point is the language of first-order logic (henceforth FOL),
which has long been the de facto formal language for expressing natural language
semantics in both linguistics and artificial intelligence research.

In the next section, we give a brief overview of the syntax and semantics of FOL
following the review from Brachman and Levesque (2004). As pointed out in their
quote above, FOL is only a starting point and most applications will require either
enriching or restricting the power of the full and rather broad FOL language (for
a more in-depth review, see Schubert (2015)).

C.1.1 Syntax of FOL

The FOL language consists of two types of symbols: logical symbols and non-logical
symbols all defined in Σsem. Logical symbols include auxiliary variables, such as
(, ), ’,’, the boolean connectives ¬(”not”),∧(”and”),∨(”or”),→ (”if .. then”),
the existential quantifier ∃ (”there exists”) and universal quantifier ∀ (”for all”),
the equality relation ≈, boolean symbols >,⊥ (or True, False), and variables
x1, x2, ..., xn ∈ X . In all applications of FOL, these symbols have a fixed mean-
ing and use. In contrast, nonlogical symbols are application specific, and include
predicate relation symbols P1, .., Pn ∈ P (e.g., the relations Flight, Arrive and
Depart), function symbols f1, ..., fn ∈ F (e.g., FlightName), and constants c1, c2, ..., cn

∈ C (e.g., individual flight names such as f105677).
The full set of well-formed FOL formulas are those defined by the grammar
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in Figure C.1, which distinguishes between terms and formulas. Function and
predicate relations apply over either constant or variable arguments, where the
arity of each relation refers to the number of arguments it takes. The Flight
relation, for example, predicates over individual flights, such as in the formula
Flight(f105677), and has a single argument or an arity of one. Quantifiers ap-
ply over individual variables x in atomic formulas, such as in the following more
complex formula (which we might translate into the English assertion All flights
that depart today arrive in Chicago):

∀x.∃y.∃z.∃w.Flight(x) ∧ Depart(x, y, z) ∧ Contains(today, z)

→ Arrive(x, chicago, w)

Here the universal ∀ and existential ∃ quantifiers bind the variables x, y, z, w. We
use the predicate Contains to indicate that the variable z (related to a flight time)
is included in the time period today, where today is represented discretely as the
constant today. We also represent concept Chicago as a constant called chicago.
The example above is an instance of a FOL sentence, or a FOL formula that
contains no free or unbound variables (i.e., every argument is either a constant or
bound to a quantifier). In the next section, we define a general semantics for FOL
sentences.

C.1.2 Semantics and Logical Inference

FOL sentences are interpreted against models, or abstract set-theoretic descrip-
tions of possible situations. Formally, a model is a tupleM = (D, I) consisting of
a set D called the domain or universe of discourse, and an interpretation function
IM, or a mapping from nonlogical symbols in Σsem to values in D. Two example
models for part of the airline domain are shown in Figure C.2, where D in both
cases is the set {a, b, c, d} and the constants in Σsem are italicized. The general
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M1 M2

Flight

f105677

f105679

Miami

Chicago

City

a

b

c

d

Σsem

DIM1 Flight

f105677

f105679

Miami

Chicago

City

a

b

c

d

Σsem

DIM2

Figure C.2: An illustration of two semantic models M1,M2 for the airline domain.

interpretation function I is defined as follows:

I(P a) ⊆ D ×D...×D︸ ︷︷ ︸
a times

(predicates P a ∈ P of arity a)

I(fa) ∈ D ×D...×D︸ ︷︷ ︸
a times

→ D (functions fa ∈ F of arity a)

I(c) ∈ D (constants c ∈ C)

The symbol × is used to defined the Cartesian power of D, or the set {(d1, ..., da) |
di ∈ D for all i = 1, ..., a}. The denotation of a given nonlogical symbol τ ac-
cording to a given model M, shown as JτKM,I , is the interpretation of τ accord-
ing to the particular interpretation function IM defined for that model M. For
example, the denotations of the unary predicate Flight in models M1,M2 are
identical: JFlightsKM1,IM1 = {a, b} and JFlightsKM2,IM2 = {a, b}, whereas the
denotation of the constants differ markedly, for example Jf105677KM1,IM1 = a,
JchicagoKM1,IM1 = d and Jf105677KM2,IM2 = c, JchicagoKM2,IM2 = b.

Given anyM and a valuation function µ : X → D (i.e., a function from variables
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to values in D), we can further define the denotation of any arbitrary term t in a
FOL sentence under a valuation µ, or JtKM,µ, using the following recursive rules:

JtKM,µ = µ(t) iff t ∈ X (variables)

JtKM,µ = JtKM,I iff t ∈ C (constants)

Jf(t1, .., tn)KM,µ = JfKM,I(Jt1KM,µ, ..., JtnKM,µ) ifff ∈ F (functions)

With this background in place, it becomes possible to define the notion of satis-
fiability of a FOL sentence φ given a model and function µ, written as M, µ |= φ

(with the negation of |= written as 6|=):

M, µ |=P (t1, ..., tn) iff (Jt1KM,µ, ..., JtnKM,µ) ∈ JP KM,I

M, µ |= ≈ (t1, t2) iff Jt1KM,µ = Jt2KM,µ

M, µ |=φ1 → φ2 iff not M, µ |= φ1 or M, µ |= φ2

M, µ |=φ1 ∧ φ2 iff M, µ |= φ1 and M, µ |= φ2

M, µ |=φ1 ∨ φ2 iff M, µ |= φ1 or M, µ |= φ2

M, µ |=¬φ iff M, µ 6|= φ

M, µ |=φ1 → φ2 iff not M, µ |= φ1 or M, µ |= φ2

M, µ |=∃x.φ iff M, µ |= φ for some µ(x) ∈ D

M, µ |=∀x.φ iff M, µ |= φ for all µ(x) ∈ D

Satisfiability is important because it allows us to rigorously define the conditions
under which sentences are true (or false) in a model. A FOL sentence φ is true
w.r.t. to a model M iff it is satisfied in that model, i.e., there exists evaluation
functions IM, µ for the particularM such that the above conditions are met, and
false otherwise. The denotation of a FOL sentence φ according to a model, or
JφKM, is then an evaluation of the truth or falsity of the sentence. For example,
JFlight(f105677)KM1 = 1 (i.e., is true) given that Jf105677KM1 = a and a ∈
JFlightKM1 , whereas the same sentence is false in M2.

One of the main benefits of FOL, and the logical approach more generally, is
that it facilitates logical inference and entailment. Formally, a FOL sentence ψ
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entails another FOL sentence φ (or ψ |= φ) if the following condition is met:

ψ |= φ iff M, µ |= φ for all models M, µ of ψ

As a simple example, the sentence ψ = Flight(f105677) ∧ Flight(f105679) en-
tails φ = Flight(f105679) since φ can never be false when ψ is true given the
semantics of ∧. More generally, entailments can also hold between sets of FOL
sentences Γ and individual sentences φ, or Γ |= φ.

An important property of FOL entailment is that it is monotonic, meaning that
entailments always persist when new information is introduced. More formally,
assuming a set of sentences Γ and an entailment relation Γ |= φ, the following
holds Γ ∪ Γ′ |= φ for any new set of sentences Γ′. It is important to note that
not all inferences involving language and ordinary reasoning are monotonic, as
illustrated by the following famous example:{

∀x.bird(x)→ fly(x), bird(tweety)
}
|= fly(tweety)

Such an entailment does not hold when we add that tweety is a penguin and the
rule that penguins do not fly. The difficulty is that encoding all of this information
and allowing for exceptions and new information goes beyond FOL (c.f. McCarthy
(1980)). In NLP, semantic inference tasks such as recognizing textual entailment
(Dagan et al., 2005) (as looked at in Chapter 4) sometimes involve non-monotonic
or defeasible inferences of this type, so FOL inference certainly has its limits in
empirical NLP.

C.1.3 Lambda Notation

It is common in linguistics to enrich the FOL language defined above with con-
structs from the lambda calculus (Church, 1932). The lambda calculus is a general
language and model of computation first studied in relation to natural language
semantics in Montague (1970, 1973). At its core, it has an operator λ and a mecha-
nism called lambda abstraction. Similar to the FOL quantifiers already introduced,
λ is a kind of variable binding operator that is used to construct functions. Syntac-
tically, lambda abstraction works in the following way: given a variable x of type
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a and an expression α (e.g., a FOL formula) of type b, λx.α returns a function
(sometimes called an anonymous or unammed function) f : a→ b. For example:

λx.Flight(x) (C.1)

returns a function e → bool, where we assume that x is is of type e (written
as De, which includes all entities in D already discussed), and formulas are of
type bool (Db = {true, false}), which relates to the resulting evaluation of the
constituent FOL formula. In an informal sense, the lambda operator abstracts over
and identifies the missing pieces needed to evaluate a FOL formula.

Lambda conversion replaces lambda variables with specific values, and as such
performs function application. For example, the following replaces the value f1005677
with all occurrences of the the lambda variable x:

λx.
[
Flight(x)

]
(f105677) = Flight(f105677)

which produces a FOL sentence that can then be evaluated accordingly.
In linguistics, the lambda calculus has one of two uses. In compositional theo-

ries of meaning, it is used as a glue language or ‘special programming language’
(Blackburn and Bos, 2005) for constructing complex logical sentences, as illus-
trated above. In SP and question-answering applications, it can also be used for
describing the semantics of questions and requests. In the latter case, lambda ab-
straction is used to abstract over the target answers and lambda conversion is
then used to evaluate candidate answers. For example, the denotation of the re-
quest Find Flights to Chicago can be expressed as follows using the semantics of
lambda abstraction:

Jλx.Flight(x) ∧ To(x, chicago)KM,I =

x | JxKM,µ ∈ JFlightKM,I and

(JxKM,µ, JchicagoKM,I) ∈ JToKM,I


The lambda calculus is so ubiquitous in linguistic semantics that the famed se-
manticist Barbara Partee once famously remarked that “lambdas changed my life”
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(Partee, 2008).

C.2 Rule Extraction in Sportscaster

C.2.1 Rule Templates

The full set of grammar rules (for both the base semantic grammars and inference
grammars) used for the experiments in Chapter 4 are defined in Figure C.3 using
notation from Börschinger et al. (2011)6.

Base Semantic Grammars

The rule templates for the base semantic grammar (i.e., the grammar for generating
Sportscaster LFs from sentences) are shown on top. As mentioned in the chapter,
this grammar uses abstract role symbols, marked as variables E (for event predicate
roles) and A (for argument roles), to glue together basic representations (according
to certain word order constraints {sv,vw..}, see Börschinger et al. (2011) for more
details). R and I then denote the associated events predicates and term predicates
(respectively). Below we detail each role type:

Events: E includes the following roles: player-event-intr (which includes
defense,block,steal event predicates), player-event-intr2 (kick event pred-
icate), player-event-tran (pass,badPass,turnover, and block event predicates
∈ R), ball-event (the ballstopped event predicate), and playmode (corner kick,
kick in, goal, kick off, goal kick, free kick,and offside event predicates).

Arguments: A includes the following: player-arg1 and player-arg2 (which
includes all player terms purple 1-11 and pink 1-11), game-arg1 (which includes
team terms purple-team, pink-team), and ball-arg1 (which contains a latent
term ball). The combinations of these abstract argument types with predicates
R and event types E is dictated by the original Sportscaster representation.

6To see the full grammars being discussed here, go to https://github.com/yakazimir/zubr_
public/blob/master/datasets/tacl_sportscaster.zip
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Each relation and term instance X is then associated with a concept rule Xc (as
discussed in the chapter), which is then map to a set of phrase and phx rules Xp,
Xphx (as defined in Börschinger et al. (2011)). In contrast to Börschinger et al.
(2011), we also use atomic rules that break down some of the original Sportscaster
symbols into small subconcepts C. This includes breaking down player terms into
color (purple, pink) and number (1,..,11) concepts, and play events into play and
team concept (e.g., free kick l to free kick and purple team = l). In these
cases, the original representations can be recovered by recombining the split up
pieces.

Inference Grammars

The full set of inference grammar rules are shown on the bottom of Figure C.3.
Relations between semantic concepts are described here as substition rules, and
insertions/deletions as modifier rules. The function relations enforces the single
projection rule we describe in the chapter, and joins works as already described.
Importantly, relations S are marked according to roles, and joins rules are restricted
to the same role combinations as in the base semantic grammar (this is in order
to avoid arbitrary joins that don’t build grammatical structure in the end).

C.2.2 Alignment Computation

As described in the chapter, the inference grammar assumes as input a word/phrase
alignment between sentence pairs. Such an alignment is done in a heuristic fash-
ion by parsing each sentence individually using the base semantic grammar and
aligning nodes in the resulting parse trees that have matching roles. A string is pro-
duced by pairing the yield of each matching subtree using a delimiter /. Subtrees
that do not have a matching role in the other tree or are modifier expressions are
isolated and aligned to the empty symbol λ. The underlying recognition algorithm
for parsing was then adjusted to deal with alignment constraints.
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Figure C.3: The full set of rule templates for building semantic grammars for
Sportscaster.
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Kočiský, T., Melis, G., Grefenstette, E., Dyer, C., Ling, W., Blunsom, P., and
Hermann, K. M. (2016). Semantic Parsing with Semi-Supervised Sequential
Autoencoders. In Proceedings of EMNLP.

Koehn, P. (2005). Europarl: A Parallel Corpus for Statistical Machine Translation.
In Proceedings of MT summit.

Koehn, P. (2009). Statistical Machine Translation. Cambridge University Press.

Koehn, P., Och, F. J., and Marcu, D. (2003). Statistical Phrase-based Translation.
In Proceedings of NAACL.

Koller, A. (2015). Semantic Construction with Graph Grammars. In Proceedings
of IWCS, pages 228–238.

Krishnamurthy, J., Dasigi, P., and Gardner, M. (2017). Neural Semantic Parsing
with Type Constraints for Semi-structured Tables. In Proceedings of EMNLP.

Krishnamurthy, J. and Mitchell, T. M. (2012). Weakly Supervised Training of
Semantic Parsers. In Proceedings of EMNLP.

Kushman, N., Artzi, Y., Zettlemoyer, L., and Barzilay, R. (2014). Learning to
Automatically Solve Algebra Word Problems. In Proceedings of ACL.

Kushman, N. and Barzilay, R. (2013). Using Semantic Unification to Generate
Regular Expressions from Natural Language. In Proceedings of NAACL.

199



Bibliography

Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., and Steedman, M. (2010). In-
ducing Probabilistic CCG Grammars from Logical form with Higher-Order Uni-
fication. In Proceedings of EMNLP.

Lafferty, J. D. (2000). A Derivation of the Inside-Outside Algorithm from the EM
Algorithm. IBM TJ Watson Research Center.

Lari, K. and Young, S. (1990). The Estimation of Stochastic Context-free Gram-
mars using the Inside-Outside Algorithm. Computer Speech and Language,
4(1):35–56.

Lawler, E. L. (1972). A Procedure for Computing the k Best Solutions to Dis-
crete Optimization Problems and its Application to the Shortest Path Problem.
Management science, 18(7):401–405.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based Learning
Applied to Document Recognition. Proceedings of the IEEE, 86(11):2278–2324.

Lewis II, P. M. and Stearns, R. E. (1968). Syntax-Directed Transduction. Journal
of the ACM, 15(3):465–488.

Li, J., Zhu, M., Lu, W., and Zhou, G. (2015). Improving Semantic Parsing with
Enriched Synchronous Context-Free Grammar. In EMNLP, pages 1455–1465.

Li, P., Liu, Y., and Sun, M. (2013). An Extended GHKM Algorithm for Inducing
Lambda-SCFG. In AAAI.

Liang, P. (2013). Lambda Dependency-Based Compositional Semantics. arXiv
preprint arXiv:1309.4408.

Liang, P. (2016). Learning Executable Semantic Parsers for Natural Language
Understanding. Communications of the ACM, 59(9):68–76.

Liang, P., Jordan, M. I., and Klein, D. (2011). Learning Dependency-Based Com-
positional Semantics. In Proceedings of ACL.

Liang, P., Jordan, M. I., and Klein, D. (2013). Learning Dependency-based Com-
positional Semantics. Computational Linguistics, 39(2):389–446.

Liang, P. and Potts, C. (2015). Bringing Machine Learning and Compositional
Semantics Together. Annual Review of Linguistics, 1(1):355–376.

LoBue, P. and Yates, A. (2011). Types of Common-sense Knowledge Needed for
Recognizing Textual Entailment. In Proceedings of ACL-HLT.

200



Bibliography

Lopez, A. (2008). Statistical Machine Translation. ACM Computing Surveys,
40(3):8.

Luong, M.-T., Pham, H., and Manning, C. D. (2015). Effective Approaches to
Attention-Based Neural Machine Translation. arXiv preprint arXiv:1508.04025.

Lv, F., Zhang, H., Lou, J.-g., Wang, S., Zhang, D., and Zhao, J. (2015). Code-
how: Effective Code Search based on API Understanding and Extended Boolean
Model (e). In Automated Software Engineering (ASE), 2015 30th IEEE/ACM
International Conference on. IEEE.

MacCartney, B. (2009). Natural Language Inference. PhD thesis, Department of
Computer Science,Stanford University.

MacCartney, B. and Manning, C. (2008). Modeling Semantic Containment and
Exclusion in Natural Language Inference. In Proceedings of COLING.

MacCartney, B. and Manning, C. D. (2009). An Extended Model of Natural Logic.
In Proceedings of IWCS.

Manning, C. D. and Schütze, H. (1999). Foundations of Statistical Natural Lan-
guage Processing. MIT press.

Manshadi, M. H., Gildea, D., and Allen, J. F. (2013). Integrating Programming
by Example and Natural Language Programming. In AAAI.

McCarthy, J. (1960). Recursive Functions of Symbolic Expressions and their Com-
putation by Machine, Part I. Communications of the ACM, 3(4):184–195.

McCarthy, J. (1980). Circumscription—a Form of Non-monotonic Reasoning. Ar-
tificial intelligence, 13(1):27–39.

Melamed, I. D. (2004). Statistical Machine Translation by Parsing. In Proceedings
of ACL.

Miceli Barone, A. V. and Sennrich, R. (2017). A Parallel Corpus of Python Func-
tions and Documentation Strings for Automated Code Documentation and Code
Generation. arXiv preprint arXiv:1707.02275.

Minsky, M. and Papert, S. (1969). Perceptrons. MIT press.

Misra, D. K. and Artzi, Y. (2016). Neural Shift-Reduce CCG Semantic Parsing.
In EMNLP.

Mohri, M. (1996). On Some Applications of Finite-State Automata Theory to
Natural Language Processing. Natural Language Engineering, 2(1):61–80.

201



Bibliography

Montague, R. (1970). Universal Grammar. Theoria, 36(3):373–398.

Montague, R. (1973). The Proper Treatment of Quantification in Ordinary English.
In Philosophy, Language, and Artificial Intelligence, pages 141–162. Springer.

Mooney, R. (2007a). Learning for Semantic Parsing. In Proceedings of CICLing.

Mooney, R. (2007b). Learning for Semantic Parsing. In Proceedings of CICLing.

Mooney, R. (2008). Learning to Connect Language and Perception. In Proceedings
of AAAI.

Neal, R. M. and Hinton, G. E. (1998). A View of the EM Algorithm that Justifies
Incremental, Sparse, and other Variants. In Learning in Graphical Models, pages
355–368. Springer.

Nederhof, M.-j. and Satta, G. (2010). Theory of Parsing. The Handbook of Com-
putational Linguistics and Natural Language Processing, pages 105–130.

Neubig, G. (2017). Neural Machine Translation and Sequence-to-Sequence Models:
A Tutorial. arXiv preprint arXiv:1703.01619.

Neubig, G., Dyer, C., Goldberg, Y., Matthews, A., Ammar, W., Anastasopoulos,
A., Ballesteros, M., Chiang, D., Clothiaux, D., Cohn, T., et al. (2017). Dynet:
The Dynamic Neural Network Toolkit. arXiv preprint arXiv:1701.03980.

Nielsen, L. R., Andersen, K. A., and Pretolani, D. (2005). Finding the k shortest
hyperpaths. Computers & Operations Research, 32(6):1477–1497.

Och, F. J. and Ney, H. (2003). A Systematic Comparison of Various Statistical
Alignment Models. Computational Linguistics, 29(1):19–51.

Oda, Y., Fudaba, H., Neubig, G., Hata, H., Sakti, S., Toda, T., and Nakamura,
S. (2015). Learning to generate pseudo-code from source code using statistical
machine translation (t). In Automated Software Engineering (ASE), 2015 30th
IEEE/ACM International Conference on, pages 574–584. IEEE.
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