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Abstract

Internet-based services, like cloud applications, increasingly become the target of cyber
attacks. These attacks can range from data breaches of personal information to loss of
data or severe financial damages. As a result, cybersecurity is a top priority for providers
and users of these services. The networking layer plays a critical role in achieving security.
Traditionally network functions that secure communications (for example firewalls or
traffic encryption) are dedicated hardware appliances. Network function virtualization
(NFV) is an emerging network architecture concept that utilizes virtualization to execute
software implementations of network functions on standard IT infrastructure. Virtual
Network Functions (VNFs) therefore become virtual software components that are usable
in conjunction with conventional cloud application components.

The Topology and Orchestration Specification for Cloud Applications (TOSCA) is an
OASIS standard to describe and manage cloud applications. A recent addition to the
standard explicitly targets NFV based topologies. However, the standard does not make
any assumptions on potential security problems and how to achieve enhanced security.

This thesis proposes a TOSCA based modeling concept to establish a connection between
security threats of application topologies and VNFs that can mitigate these threats. The
industry standard practice of threat modeling using the STRIDE method is employed to
assess threats in application topologies. Based on present threats and available VNFs,
automated recommendations can be made which VNFs should be used to enhance the
security of cloud applications. A prototypical implementation in the context of Eclipse
Winery, a modeling tool for TOSCA definitions, is used to validate the approach.
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1 Introduction

In today’s world, each day a vast number of new devices join the global connected world. As
much as 125 billion devices, composed of computers and servers, mobile phones, Internet of
Things (IoT) devices and other categories, are estimated to be connected to the internet by
2030 [IHS17]. Besides an exponentially growing number of connected devices, cybersecurity
has become a top priority for users and providers of internet services [Gou15]. The
WannaCry worm caused havoc in 2017 and infected over 200000 machines, encrypted their
data and demanded a ransom [Ehr17]. Financial service provider Equifax suffered from a
severe data leakage in 2017 due to an overseen security vulnerability in their application.
This resulted in the theft of 230 million customer data sets including social security data
[Ber17]. These two prominent examples are part of a rapidly expanding list of security
incidents that caused millions of dollars in damages.

Telecommunication Service Providers (TSPs) and Network Operators have to host and
manage large quantities of proprietary hardware appliances to be able to serve customers
network and security needs. The ever-growing number of connected devices and their
demand for new services poses multiple challenges to TSPs. These include (1) high
Capital Expenses (CAPEX) for the acquisition of more specialized hardware, finding
space to host the equipment (2) high Operational Expenses (OPEX) for setting it up and
maintaining it [CCW+12] (3) account for optimal security of the provided services. Network
Functions such as firewalls or Virtual Private Networks (VPNs), critically influence the
security properties of a network. This in return impacts the applications that run inside a
network and therefore the overall system security. The components of an application and
their interactions with each other and external entities govern the security requirements
the network has to take care of. This leads to the complex requirement to plan and
instantiate security-related network functions based on the needs of an application that
shall be protected. Due to the physical nature of hardware appliances, manual transport
and reconfiguration are needed to make any topological change to an existing network,
preventing agility regarding new services and service composition. The manual effort and
the need to acquire physical hardware can be greatly reduced by realizing these network
function purely in software and execute them on standard IT infrastructure instead of
proprietary hardware. This concept is known as Network Function Virtualization (NFV).

NFV is an emerging networking architecture and has gained significant attention from
academia and industry alike [MSG+15]. It builds upon the principle to segregate a network
function’s software from it’s proprietary hardware by utilizing standard IT virtualization
technology. This approach promises to significantly reduce both CAPEX and OPEX
for providers while increasing time-to-market for new services. Additionally it provides
the opportunity to instantiate and scale services dynamically where they are needed, for
example at a network’s edge or in the cloud. While offering these benefits, new challenges
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1 Introduction

arise concerning modeling, deployment and management of these Virtual Network Functions
(VNFs). The cloud computing domain faces similar challenges and closely relates to NFV
in terms of utilizing virtualization technology.

The OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA)
standard enables the description of the deployment and management of cloud applications.
An application’s components, their relations to each other and the processes that manage
them [OAS13] can be modeled. The generic nature of TOSCA allows to describe NFV
topologies in a similar fashion as cloud applications. This was recognized by OASIS and a
TOSCA profile for NFV was created to target the specific needs of NFV [OAS17]. Using
TOSCA for NFV implies that network functions become entities that can be used in
conjunction with regular application topologies. This results in a variety of new modeling
opportunities. Security remains an objective that is not yet addressed by TOSCA, since
the standard does neither make any assumptions on security [OAS13] nor provides any
predefined entities to enhance security.

The objective of this thesis is to develop a concept for security-aware modeling and
deployment of NFV topologies using TOSCA. It is necessary to investigate how TOSCA
principles can be applied to NFV in general and what the resulting consequences are.
Further, a security concept is developed and described to assist secure NFV utilization. The
proposed concept is validated based on a prototypical implementation in the OpenTOSCA
ecosystem, an open-source TOSCA implementation that enables modeling and deploying
TOSCA based applications (see Section 2.3). The prototype is used to demonstrate how
VNF can enhance application security. A demo use case is employed to validate the
concept.

The remainder of this document is structured in the following way:

Chapter 2 - Theoretical Background and Fundamentals explains required background infor-
mation and fundamentals this thesis is based on. It includes an introduction to NFV,
the concepts of TOSCA, description of the OpenTOSCA ecosystem and a primer on
security.

Chapter 3 - Related Work discusses the work related to this thesis regarding TOSCA based
NFV management and security-aware modeling concepts.

Chapter 4 - Concept describes the approaches to enable security-awareness in modeling and
deploying NFV topologies using TOSCA based on industry standard practices.

Chapter 5 - Implementation and Validation details the steps necessary to create a proof of
concept for the proposed approach. This prototype is then used to validate the
approach based on a demo use case.

Chapter 6 - Conclusion and Future Work summarizes the contributions of this thesis and
gives a brief outlook on possible future work.
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2 Theoretical Background and Fundamentals

The following chapter introduces terms and information required to understand the later
presented concepts (see Chapter 4). First a definition of NFV is given (Section 2.1) followed
by a brief introduction to the TOSCA standard (Section 2.2). The OpenTOSCA ecosystems
and its components are explained afterwards (Section 2.3). An overview of security in
context of the aforementioned topics concludes the chapter (Section 2.4).

2.1 Network Function Virtualization (NFV)

NFV is an emerging network architecture concept of how to design, deploy and manage
Network Functions utilizing virtualization. Traditionally network functions such as firewalls
or Network Address Translation (NAT) are realized by proprietary specialized hardware
appliances and set up at specific locations in a network. These appliances need to be
manually configured and connected by professionals to provide a service with certain
characteristics. Changes to existing services or instantiation of new services result in high
CAPEX and OPEX for providers. This is due to hardware that has to be acquired and
the manual labor involved in setup and maintenance. The static nature of this approach
prevents the TSP to react to demand in an agile fashion. The main concept of NFV is
to decouple the functionality of a network function from the proprietary hardware and
implement it in software. This software is then to be run on customer off-the-shelf (COTS)
hardware, such as high-volume servers, memory and switches by leveraging virtualization
technology. Thanks to virtualization many distinct network functions can be consolidated
on the same hardware and dynamically moved to different locations [MSG+15]. These
locations are determined by the presence of virtualization enabled hardware in the network.
So a network function can be moved from a TSP’s data center to the network’s edge.

Figure 2.1 shows a traditional setup, composed of hardware network appliances on the left.
The illustrated scenario shows what is required to establish a connection to private and
public services from the perspective of a service provider and multiple customer sites. These
sites can for example represent branch offices of a company that need connectivity. The
traditional setup requires the same equipment on each customer premises, therefore aptly
named Customer Premise Equipment (CPE). The right side of the illustration presents
a possible NFV-based implementation. Here the necessary hardware CPE is reduced to
a bare minimum and the remainder of the required network functions are virtualized on
the service provider’s premises. Both solutions provide the same functionality while the
NFV-based approach can create more instances of functions when a new customer site is
required or deprovision instances when the are no longer needed.
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Figure 2.1: Comparison of traditional Customer Premise Equipment (CPE) (left) and
one possible solution using a NFV approach (right), adopted from [MSG+15]

The concept of NFV was born in October 2012 when a number of the worlds leading TSPs
authored a white paper calling for industrial and research action [CCW+12]. In November
2012 seven of these operators (AT&T, BT, Deutsche Telekom, Orange, Telecom Italia,
Telefonica and Verizon) selected the European Telecommunications Standards Institute
(ETSI) to be the home of the Industry Specification Group (ISG) for NFV (ETSI ISG
NFV) [MSG+15]

2.1.1 Network Functions

Popular examples of network functions include load balancers, firewalls, Intrusion Detection
System (IDS) or wide-area networking (WAN) optimization. A network function is a
functional block within a network infrastructure that has well defined external interfaces
and well-defined functional behavior [ETS14b]. As an example, when computers or
applications in a private network need to communicate with an external network such
as the internet multiple network functions are required. A router is used as a gateway
from one network to the other. A firewall is used to control who can communicate with
whom involving which protocols. Both functions need to expose external interfaces that
need to be connected. The same applies for VNFs. A VNF is an implementation of a
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2.1 Network Function Virtualization (NFV)

network function that is deployed on virtual resources such as a VM. A single VNF may
be composed of multiple internal components. Hence it can be deployed over multiple
VMs. In this case each VM hosts a single component of the VNF [ETS14a]. This is the
result of decomposing network functions into smaller components that make up the same
functionality when combined.

2.1.2 ETSI NFV reference architecture

ETSI specifies a NFV reference architecture[ETS14a] that is depicted in Figure 2.2. The
following explanations are based on the standard document [ETS14a]. This architecture
is used to define common components, the interfaces between them and to establish a
common nomenclature. NFV Infrastructure (NFVI) represents diverse hardware resources
that can be virtualized and exist in various locations. A location represents a so called
point of presence in the network and is therefore called NFVI-PoP. The NFVI is where
VNFs are executed. Element Management Systems (EMS) provide typical functionality to
manage one or multiple VNFs. The right side of the diagram shows the NFV Management
and Orchstration or in short MANO, which consists of the Orchestrator, one or more VNF
Manager (VNFM) and the Virtual Infrastructure Manager (VIM). A VIM is the component
that provides functionality that a VNF needs to interact with virtual compute, storage and
network. A prominent example of a VIM is OpenStack1, but alternatives like public cloud
providers such as Amazon Web Services (AWS) or Google Cloud Platform (GCP) can also
be considered. VNFM are used to manage the lifecycle operations such a instantiation
or update of a VNF. The orchestrator coordinates VNFM and VIM to realize a Network
Service. OSS/BSS, in the context of TSPs, stands for operations support system/business
support system. In terms of NFV the BSS would get an order for a network service from
a customer and the OSS fulfills the order and therefore connects to the NFV MANO.
Descriptors for services, VNFs and infrastructure are stored and accessible by MANO.
ETSI also proposes TOSCA (see Section 2.2) to be used as a descriptor for VNFs and
services[ETS17].

1https://www.openstack.org/
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Figure 2.2: NFV Reference Architecture specified by ETSI, adopted from [ETS14a]

2.1.3 Distinction to Software-defined Networking

Software-defined Networking (SDN) is a term that is often mentioned when NFV is
discussed and sometimes even incorrectly used interchangeably. The core principle of SDN
is to decouple the the control plane from the forwarding plane [Sco17]. Traditionally a
network is comprised of switches and routers and various other network appliances. As
Figure 2.3 shows on the left, in a non-SDN network, each switch or router has a (often
proprietary) integrated controller with an interface and needs to be addressed individually
for changes. SDN aims to first separate the forwarding functionality from control and
then centralize the control over multiple switches in a single controller that can address
all switches. This is considered the control plane. Switches are therefore degraded to
become simple packet forwarding devices that are programmable via an open interface (e.g.
OpenFlow[Sco17]) by the controller. This is called the forwarding plane. An example of an
SDN-based architecture is illustrated on the right side of Figure 2.3.

Virtualization comes into play since the controller can be realized in pure software and
run on COTS hardware. The forwarding switches can be virtualized as well but it is
not mandatory to do so[MSG+15]. While NFV and SDN both utilize virtualization and
leverage automation the approaches are complementary[Sco17]. The desired outcome of
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Figure 2.3: Traditional network architecture (left) compared to an SDN based approach
(right), adapted from [MSG+15]

SDN is to deliver unified programmability to create virtual networks while NFV aims to
virtualize network functions, deploy and scale them dynamically. Hence a combination
of both approaches leads to advantages that lets each approach benefit from the other.
One example of this is the ease of building service chains of VNFs by using SDN’s network
programmability concept [MSG+15].

2.2 Topology and Orchestration Specification for Cloud Applications
(TOSCA)

TOSCA is an OASIS standard language which was introduced in 2013 [OAS13]. TOSCA
defines a metamodel to describe the structure of composite cloud applications and the
corresponding management tasks in a standardized and provider neutral way. Automated
management, portability of applications and reusable application components are the three
main goals of TOSCA [BBKL14a]. TOSCA 1.0 is based on Extensible Markup Language
(XML) while more recent versions like the TOSCA SimpleProfile, that was introduced
in 2016 , are based on YAML Ain’t Markup Language (YAML) [OAS16]. The newer
versions extend the standard and are backward compatible to TOSCA 1.0 [OAS16]. The
XML-based notation of TOSCA 1.0 is therefore still valid and will be used throughout
this thesis. An application modeled according to the TOSCA language is intended to be
instantiated and managed by an TOSCA compatible orchestrator.

Figure 2.4 illustrates the topology of a cloud application based on WordPress and will
be considered as a running example throughout this thesis. WordPress is a blogging
application and used as a demo since it is a very commonly deployed scenario on the web
[w3t18]. The topology consists of two Ubuntu 14.04 virtual machines (VMs). The left side
represents the application code executed on a PHP runtime and served by an Apache web
server. The right side describes the database-tier. The database VM hosts a database
management system, namely MySQL and the actual database on top. Since WordPress
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Figure 2.4: Running example of the application topology of a WordPress deployment

needs a database to store user information and blog posts, there is a relation between both
VMs that indicates this requirement. Both VMs are bound to a separate port and linked
to the same network.

2.2.1 TOSCA Entities and Packaging

The TOSCA language introduces a set of special entities that are used to establish the
metamodel. Figure 2.5 illustrates and overview of these entities and their relations that
make up TOSCA definitions.

Node Types define properties and lifecycle interfaces for a reusable entity. A Node Type
can be derived from another Node Type. For example a VM Node Type can define
properties for the name of the image that should be used and lifecycle interfaces for
transferring a file to the VM.

Node Templates are instances of Node Types in the topology of a Service Template. A
Node Template defines concrete values for the properties defined in the corresponding
Node Type. In the case of the previously mentioned VM-Node Type example, Ubuntu
14.04 as image name.

Node Type Implementations define the actual implementations of Node Type lifecycle
interfaces. To be able to transfer a file to a VM Node Type a software artifact needs
to be present that can handle this specific functionality.

Relationship Types define the properties and lifecycle interfaces for relations that can be
present between Node Templates. To indicate that one Node Type is hosted on
another a hostedOn Relationship Type needs to be defined.
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Figure 2.5: Hierarchy and entities of a TOSCA Service Template, adopted from [OAS13]

Relationship Templates are instances of Relationship Types in the topology of a Service
Template. A Relationship Template manifests the actual relation between two Node
Templates in the topology.

Requirement Types define requirements that a Node Type might have in regards to the
relation to another Node Type. For example a software component like an Apache
Web Server requires a compute node as a container to be hosted on in order to be
executed.

Capability Types defines capabilities a Node Type can have in terms of possible relations.
A capability of a Node Type can be seen as a feature it provides that satisfies the
requirement of another Node Type. A VM Node Type has the capability to be the
container, an Apache Web Server requires to be hosted on.

Artifact Types represent software artifacts as a reusable entity. Analogous to Node Types,
properties can be defined.

Artifact Templates represent instances of a given Artifact Type. It is distinguished between
Implementation Artifacts (iAs) and Deployment Artifacts (dAs). iAs materialize the
defined lifecycle interfaces of a Node Type or Relationship Type while dAs are files
or resources that are needed by a specific Node Type. The actual WordPress files
are a dA that needs to be transfered to a VM before the application can be run.
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Policy Types define properties analogous to Node Types, Relationship Types and Artifact
Types. Policy Types can be used express non-functional aspects regarding Quality of
Service or placement for example.

Policy Templates are instances of Policy Types and attachable to Node Templates or
Service Templates.

Service Templates describe the topology of an application as a graph where vertexes are
Node Templates and edges are Relationship Templates. Additionally it contains the
definition of all corresponding Types and Templates referenced in the topology.

In addition to the specified entities TOSCA allows to describe management plans and
reference or embed them in a Service Template. To ensure portability of applications
TOSCA introduces the Cloud Service Archive(CSAR) format. A CSAR is a zip encoded
directory with a well-defined and extendable structure that contains all required definitions
of an application [OAS13]. This results in a portable package that is fully self-contained
and can be used in any TOSCA compatible environment [BBKL14a].

2.2.2 Substitution of Node Templates

TOSCA has a built-in concept to substitute Node Templates in the topology of a Service
Template by the whole topology of another Service Template. A Service Template can
define a substitutable Node Type attribute that indicates for which Node Type it can be
used as a substitute. A Node Template is an instance of a Node Type and hence provides
values for properties and defines the actual capabilities and requirements. The same is
possible for Service Templates by defining so called boundary definitions. These boundary
definitions allow to express properties, requirements and capabilities that are present inside
the Service Template’s topology. When a Service Template is substituted for a Node
Template in another topology these boundary definitions are analyzed and used to correctly
handle and reconnect relations and define properties. This mechanism is useful to model
large and complex topologies in an abstract way and use substitutable Service Templates
as a means to express subsystems. Figure 2.6 show an example where Service Template A
is used as a substitution for the Node Template NT B 3 in Service Template B. This is
possible because Service Template A exposes a substitutable Node Type attribute of the
same type the Node Template NT B 3 is an instance of (Node Type X).

2.2.3 Policies

TOSCA allows to specify non-functional requirements of an application in the form of
policies [OAS13]. These policies are typically meant to express Quality of Service(QoS),
access control or placement aspects of Node Templates of a topology [OAS16]. Node
Templates can be associated with a set of policies which specify the actual properties of
these non-functional requirements. Analogous to Node Types, a Policy Type defines these
properties. A Policy Template defines the invariant set of properties. The policy itself
specifies the variant properties when a Policy Template is put to actual usage on a Node
Template. boundary definitions provide a mechanism to attach Policy Templates to Service
Templates to state that a certain policy is applied to the whole topology. Additionally the
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Figure 2.6: Substitution of Node Template by Service Template according to TOSCA
[OAS13]

standard does not make any assumptions of a specific policy language that has to be used.
Therefore policies can be utilized to express behavior that is not directly expressible via
the default components of TOSCA.

2.2.4 Networking in TOSCA

The original TOSCA standard does not make any assumptions how networking should
be modeled. The more recent versions of TOSCA provide dedicated networking sections
[OAS16]. The network modeling approach of the TOSCA Simple Profile 1.0 is therefore
used throughout this thesis. It defines that a physical or logical network can be modeled as
a network Node Type. To describe that a VM is part of a network it needs to be bound to a
port and this port is in turn linked to a network. Ports are modeled as Node Types too. To
better understand this concept a quick look at the real world is helpful. In order to connect
to a network a computer requires a Network Interface Card (NIC). This NIC is bound to a
computer. To establish a connection to a network the NIC needs to be connected (linked)
to a network via ethernet cables. In order to be connected to two separate networks at
the same time two NICs are required. A TOSCA port Node Type can be regarded as the
virtual equivalent of a NIC.
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2.2.5 TOSCA Simple Profile for Network Functions Virtualization

In 2017 a simple profile for NFV was introduced that specifies a NFV specific data model
using TOSCA language [OAS17]. As mentioned in Section 2.2 newer profiles are expressed
using YAML but compatible with the TOSCA 1.0 XML definition. At the time of writing,
the specification is still in draft state and no final version is available. TOSCA for NFV
introduces a few new default Node Types that mostly align with the ETSI definitions of
components in the NFV domain [OAS17] [ETS14b]. The profile is designed to be able
to express any required information to specify an individual VNF or a Network Service
composed of multiple VNFs in a vendor neutral fashion. This way, VNFs or complete NS,
can be defined in a Service Template and packaged into a self-contained CSAR. This CSAR
can then be handed to customers who in turn import it into their TOSCA compatible
runtime [OAS17]. The essential building blocks, defined as Node Types are the following:

Virtual Deployable Unit (VDU) is basically a VM that specifies requirements in terms of
compute resources(e.g number of CPUs and RAM) and the software image that
contains the actual VNF .

Connection Point (CP) are Node Types that bind to a VDU. Each CP represents a virtual
NIC of a VDU. For example a VDU of a virtual firewall needs at least two CPs
(NICs) to connect to two separate networks.

Virtual Link Descriptor (VLD) represents a direct connection between two or more CPs of
VDUs. This is the virtual representation of a manually built chain or sequence of
physical network functions, similar to the example in Section 2.1.

This list does not fully exhaust the Node Types and Relationship Types that are introduced
in TOSCA for NFV but is sufficient to express basic concepts in later chapters. A VNF
is composed of at least one VDU. Network Services are in turn composed of at least two
VNFs that can be linked with Virtual Link Descriptors. TOSCA for NFV can be seen as a
separate TOSCA profile that directly targets NFV. NFV semantics can indeed by modeled
in TOSCA without using the TOSCA profile for NFV. The remainder of this document
threats VDUs as regular VM Node Types and CPs as regular ports that can be linked to
networks.

2.3 OpenTOSCA Ecosystem

OpenTOSCA is a collection of open source software modules to model, deploy and manage
cloud applications using TOSCA. The three main components are Eclipse Winery, the
OpenTOSCA container and Vinothek [BBKL14b]. While Winery provides functionality to
model TOSCA definitions in a graphical way the container provides the runtime to deploy
and manage application instances. A self-service portal to enable users to instantiate and
terminate instances is enabled through Vinothek.
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2.3.1 Eclipse Winery

Since manual editing of complex and cross-referenced XML documents is error-prone,
Winery provides a modern graphical interface to abstract such complexity away. For
all entities defined in TOSCA, special forms and interfaces exist to edit corresponding
properties and attributes. In addition to greater comfort for the user, this also allows for
automatic validation to avoid incorrect input. The Topology Modler supports the user in
creating and editing topologies based on the defined types and templates. This is achieved
by rendering an editable graph of Node Templates as vertexes and Relationship Templates
as edges. Node Templates automatically expose fields to enter values for their Node
Type’s defined properties. Additionally policies, capabilities, requirements and deployment
artifacts can be assigned. Based on this graph additional validation and further processing
can be done. The backend of Winery is implemented in Java and equipped with a JAX-RS
based REST-API. Both previously mentions UI components (repository UI and topology
modler) are modern HTML5 web applications and accessible via standard web browsers.
Also both frontends are implemented as Single-Page-Applications using angular2. As the
architecture diagram in figure 2.7 shows, all interaction between the separate frontends
and the backend that processes and persists the information is solely done via the exposed
REST-API. Winery uses a well-defined directory structure to store all data related to
TOSCA definitions in a file-based manner instead of utilizing a separate database system.
This structure is based on similar principles as the csar packing format. To encompass the
storage and management of multiple Service Templates the use of encoded namespaces as
directory names is employed. As TOSCA definitions are packaged as CSAR-files Winery
provides designated import and export mechanisms.

2.3.2 Container

The OpenTOSCA Container provides the runtime necessary to create a running instance
of a modeled service. To achieve this the container first needs to import a service in form
of a CSAR file. The accompanying UI allows users to either import a new CSAR-file
from their local filesystem or import a CSAR from a connected Winery repository. When
a desired service is selected all files are extracted to be parsed, validated and stored. If
the desired services does not bring imperative plans for building and managing itself, the
container needs to generate plans. This is done by deriving an imperative workflow from
the declarative topology definition [BBK+14]. Implementation artifacts are then deployed
to the implementation artifacts engine (Tomcat Webserver). The resulting endpoints are
then bound to the specific calls in the plans that reference these implementation artifacts.
Finally the bound plans are deployed to the plan engine(Apache ODE). When the service
is to be started, the container calls the endpoint of the build plan and tracks all resulting
procedures and the instance’s state. Ultimately an instance with a unique id is created
and available management plans can be triggered or the instance can be terminated using
the termination plan [BBH+13].

2https://angular.io/
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Figure 2.7: OpenTOSCA ecosystem architecture diagram

2.4 Security

The Oxford dictionary defines security as “the state of being free from danger or threat”
[Oxf18]. This definition does apply to computer systems and networks alike but needs to
be specified in greater detail to account for the domains.

2.4.1 Security Properties

There are many attributes that are essential to a computer system’s security. A widely
used metaphor to express a system’s security is the CIA-Triangle [TC08] consisting of:

Confidentiality: Keeping things that are supposed to be private non-disclosed to other
party [Sta11]

Integrity: Guarding against destruction or altering of information [Sta11]

Availability: Ensuring reliable access to ab information system [Sta11]

These three properties can be seen as the baseline for a secure system. However, the list
is often extended with the following three additional properties to further define desired
behavior of a system.

Non-repudiability Preventing sender or receiver from denying a message that was transmit-
ted. This also includes to have a proof a message was sent or received [Sta11]

Authenticity: Verifying that users are who they say they are. Additionally the verification
that exchanged information comes from a trusted source [Sta11]
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Authorization: Granting access to specific services or resources based on permission [Sta11]

It is mandatory that a system addresses all of these properties to be considered secure. It
is important to note that security is not regarded as a one time task. Each change to any
given system can potentially influence one or more of these properties. Security therefore
becomes a recurring task. The wide variety of different systems imposes that not all
applications are created equally regarding security. Obviously military operations require a
higher level of security than a simple blogging application on the internet. Nonetheless, a
baseline of security is more important then ever for any kind of connected system.

2.4.2 Threats, Vulnerabilities and Risk

As the original definition of the term security in Section 2.4.1 implies the absence of threats.
The term threat need to be defined accordingly. The National Institute of Standards and
Technology (NIST) defines a threat as “any circumstance or event with the potential to
adversely impact operations, assets, or individuals through an information system” [RKJ06].
It is important to distinguish between threat, risk and vulnerability. A vulnerability is a
weaknesses in a program or software that can be exploited by threats to gain unauthorized
access to an asset. Risk is the potential loss, damage or destruction of an asset as the result
of a threat exploiting a vulnerability. A threat agent or threat source is an entity that
has the intention of exploiting a vulnerability of a system, for example a hacker [RKJ06].
Regarding web applications there exists a wide range of typical vulnerabilities. Every year
the Open Web Application Security Project (OWASP) Top Ten Project releases a list of the
most common risks. These include injections, security misconfiguration, cross-site-scripting,
the usage of components with known vulnerabilities and many more [OWA17].

Injections attacks are described as the top risk. Injection attacks are a form of code or data
confusion [Sho14]. An attacker supplies a control character, followed by commands.
For example, in Structured Query Language (SQL) injection, a single quote will
often close a dynamic SQL statement and appends a second statement. This can
potentially alter stored data, create new data or delete all data. Unix shell scripts can
be targeted as well. These attacks are very common when user input is not validated
or sanitized.

Cross Site Scripting vulnerabilities can be discovered in almost two third of applications
[OWA17]. User input is not validated or sanitized and ends up in rendered HTML
for example. This can result in the rendering of potentially malicious scripts in the
HTML. These scripts are controlled by the attacker.

Security misconfiguration can happen at any level of an application stack, including the
network services, platform, web server, application server, database, frameworks,
custom code, and pre-installed virtual machines, containers, or storage [OWA17].
Automated scanners are useful for detecting misconfigurations, use of default accounts
or configurations. These scanners are used by attackers too to check if potential
misconfigurations can be automatically exploited.
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Model System Find Threats Address Threats Validate

Figure 2.8: The Four Step Framework Threat Modeling approach according to [Sho14]

Using Components with Known Vulnerabilities is one of the most widespread risks. Com-
ponent based development that uses external components like pre made software
images such as databases need to be regularly updated. The same applies if the
application uses legacy software that can not easily be updated or upgraded.

As NFV promises to bring advantages in terms of cost optimization and agility, the fact
that network functions now run in a virtual environment imposes new threats by itself
[ETS14c]. The hypervisor is a software layer between the underlying hardware platform
and the virtual machines. It provides additional attack surface for hackers to gain access
to VMs. Another scenario is that an infected VM can gain access to the hypervisor to
compromise other VMs or randomly create new instances [BB11]. Network traffic is very
hard to monitor when virtualization is used since there is no guarantee that VMs that need
to communicate are placed on actual different hardware. When multiple VMs are placed
on the same physical resource, communication can be handled on the hypervisor layer and
therefore not involve an actual wire transfer that can be monitored easily to spot malicious
anomalies [Sco17]. A noisy neighbor is a common problem on shared virtualized resources.
In this scenario a malicious VM consumes all available resources to perform a Denial of
Service (DoS) attack on a target VM [Sco17]. All these threats are directly related to the
core idea of virtualization and therefore don’t target NFV specifically. The remainder of
this thesis recognizes the existence of this problem but focuses on the investigation of the
security benefits that can be achieved by utilizing NFV.

2.4.3 Threat Modeling

Threat Modeling enables the assessment of threats in a structured way. The OWASP
describes Threat Modeling as the task to identify, communicate, and understand threats
and mitigations within the context of protecting something of value [OWA18]. According
to Shostask, Threat Modeling is conducted using the Four Step Framework (depicted in
Figure 2.8) that maps to four key questions that need to be asked [Sho14]:

What are we building? Model the system that needs to be built, deployed or changed.

What can go wrong? Find threats using that model.

What are we going to do about that? Address these threats.

Did we do a good enough job? Validate the approach.
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Threat category Violated property

Spoofing Authenticity

Tampering Integrity

Repudiation Non-repudiability

Information disclosure Confidentiality

Denial of Service Availability

Elevation of Privilege Authorization

Table 2.1: STRIDE: threats and desired security properties

STRIDE is a mnemonic and framework for threat modeling. The acronym that stands for
Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service and Elevation
of Privilege. Each threat type violates a corresponding security property (see Section 2.4.1).
A mapping between the threat types of STRIDE and the violated security properties is
displayed in Table 2.1. The STRIDE approach to threat modeling was invented by Loren
Kohnfelder and Praerit Garg [KG99]. It was designed to help people developing software
identify the types of attacks that software tends to experience [Sho14]. Variants of STRIDE
are STRIDE-per-element and STRIDE-per-interaction. STRIDE-per-element focuses on
the threats of each element in the model while STRIDE-per-interaction focuses on the
interaction between elements.

A combination of both is desirable. Using the STRIDE approach a security expert can
enumerate the things that might go wrong on each element of the model. The result of
this assessment is then captured and assigned to the element or interaction. Alternatives
to STRIDE include attack trees [Sch99] or the usage of attack libraries. The attack tree
approach represents the attacks against a system in a tree structure where the root node
represents the goal and all leafs represent different ways to achieve that goal [Sch99]. Attack
libraries such as Common Attack Pattern Enumeration and Classification (CAPEC) consist
of a large set of detailed threat descriptions. CAPEC currently holds 577 individual attack
patterns [Bar08]. Due to the fact that STRIDE is more abstract than attack libraries it
provides more freedom in regards of threat modeling and can be used to express any kind
of threat, present in a library or not.

2.4.4 Network Security Requirements

The importance of deriving network security requirements from the application that needs
to be secured is best explained by looking at a modified version of the running example. The
original running example depicts a typical cloud application where different components of
the application can be scaled individually. The modified version, illustrated in Figure 2.9
of the topology consists of the same software components but all are hosted on a single
VM instead of being distributed over two VMs. Both versions need to publicly expose the
HTTP port (typically port 80) of the web server to the internet in order to allow users to
connect to the site. Although the same software components are used it has vastly different
implications for the network. Considering the modified version, basic network security can
be achieved by simply blocking all inbound traffic that targets any port except 80. This is
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Figure 2.9: Modified version of the running example where all software components are
hosted on a single VM

due to the fact that communications between the WordPress app and the database happen
inside the same VM. The original version instead relies on two VMs communicating over a
network. If both VMs would publicly expose all ports that are needed for communicating
this would result in a publicly exposed database attackers can target. In order to achieve
basic security for the original version, traffic between VMs has to be allowed while traffic
entering the network has to be limited. This is a trivial example where it is assumed that
both VMs exist on the same network. The whole process becomes more complex if the
more services and networks are involved. It is a common practice to start with multiple
services on a single VM and later decompose an application in order to scale services
independently. This also underlines the point made in Section 2.4 that keeping a system
secure is a recurring task.
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Achieving secure NFV utilization but also enabling security by means of TOSCA are
approaches that are targeted in current research. The following chapter acknowledges the
work that was done prior to this thesis.

3.1 Management and Orchestration

A variety of Management and Orchestration(MANO) systems already exist that align with
the ETSI NFV specification and NFV reference architecture (see Section 2.1.2). Namely
OpenBaton1, ETSI’s own Open Source Mano(OSM)2, ONAP3, T-NOVA4 or the Tacker
plugin5 for Openstack. Tacker represents the only project that supports TOSCA for VNF
on-boarding and export. TOSCA is used just as a means of exchanging VNFs in a vendor
independent way and not for actual instantiation. Tacker uses an translator that translates
TOSCA definitions to HEAT6, Openstack’s internal orchestration format. Since Tacker
is a part of the Openstack ecosystem, NFV orchestration benefits from the integrated
tenant-isolation that Openstack provides natively. In therms of security, all of these projects
focus on securing the deployment and management of NFs and VNFs. Basic measures are
employed like user accounts and passwords. T-NOVA provides a module called Gatekeeper
that ensures secure access to interfaces of all kind of VNFs[t-nova].

The SecMANO

3.2 Security-aware Modeling and Deployment

The authors of [WWB+13] introduce Policy4TOSCA, a framework that enables security-
aware modeling and deployment of cloud applications based on TOSCA policies. A formal
policy definition based on a taxonomy defining the stage, layer, and effect of policies
is introduced. Multiple policies are combined into an offering together with a formal
TOSCA Cloud service definition. An offering represents a specific level of security of an
application. The authors provide an example consisting of a demo application that has the
following offerings: full security, encrypted database and default(no security enhancement).

1https://openbaton.github.io/
2https://osm.etsi.org/
3https://www.onap.org/
4http://www.t-nova.eu/
5https://wiki.openstack.org/wiki/Tacker
6https://wiki.openstack.org/wiki/Heat-Translator
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Each offering achieves the level of enhanced security by providing either a set of modified
plans (build, management and termination) which enforces the necessary additional steps
or by deploying modified implementation artifacts that implement the security features.
According to the individual security requirements of the use case a customer can then
choose a fitting offering.

Kepes et al. expand on Policy4TOSCA[WWB+13] by leveraging policies of the TOSCA
standard to generate policy-aware imperative build plans [KBF+17]. Components need to
be annotated with policies, for example a secure password policy that should be used on
a database component. The model containing components and corresponding policies is
then processed by a plan generator. Policies are used to determine which additional steps
need to be taken while the desired provisioning of an application. The secure password
policy example needs to verify that a password for a database is secure enough. Since this
password is or can be set during runtime, the generated plan can check that just in time
when the component is about to be provisioned. This way different levels of security can
be achieved by annotating security-related policies on components that are enforced during
provisioning. This approach lays the groundwork for investigating automated security
enhancement of application topologies in the realm of TOSCA.

3.3 NFV as a Security Enabler

Farris et all. present a framework for integrating security features enabled by NFV and SDN
in an IoT scenario [FBT+17]. The authors investigate the utilization of SDN/NFV-based
security function that can manage malicious traffic and in turn enable zoned networks.
This is achieved by a custom designed orchestration layer that is used to specify network
policies that need to be enforced by different security technologies. The research was
conducted in the scope of the ANASTACIA project7 that aims to bring security to IoT
and cyber-physical systems.

The authors of [RK18] introduce the concept of so called complex services. These services
are composed of cloud application components and NFV components. They imply that
such combined services can benefit the actors that use these services in forms of cost
reduction and security. It is highlighted that topologies that include components from
separate families (NFV and cloud applications) are currently hard to provision. This
is due to the fact that both types of components impose different requirements. For
example, traditional cloud applications don’t have packet processing as a main concern
while it’s the main subjective of NFV. Besides that, application components need to be
orchestrated in a specific order to ensure connectivity and NFV topologies have the need for
the chaining of services in a predefined order. The authors propose a candidate solution to
accommodate the problems by combining the functionality of the SONATA project8 with
of Terraform9. Here SONATA is used as network service development and orchestration

7http://anastacia-h2020.eu
8http://www.sonata-nfv.eu/
9https://www.terraform.io/
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platform while Terraform supplies a structured multi-cloud orchestration solution that can
handle cross-cloud dependencies. Finally the authors conclude that the combination of
NFV and application topologies is a viable but currently widely overlooked approach.
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4 Concept

First an overview of the concept is presented. A list of requirements that need to be
satisfied is compiled in Section 4.2. The concept leverages threat modeling as a base for
security assessment of application topologies and describes how the required information
can be expressed using TOSCA in Section 4.3. NFV based threat mitigation is detailed in
Section 4.4. Section 4.5 explains the benefits that can be achieved by utilizing abstraction.
Subsequently, limitations regarding the proposed concept are discussed. A summary of the
concept concludes the chapter.

4.1 Overview

An overview of the proposed concept is described using the following scenario, involving all
relevant entities, domains, processes. Additionally the assumptions that were made are
detailed. We assume that an application architect (further referred to as architect) is tasked
to design an application. The application should be complemented with VNFs to enhance
the security. We further assume a repository with concrete VNF implementations and
configurations exists. This repository will be referred to as solution space and represents
a library of potentially deployable VNFs. It is assumed the architect does not have the
required domain knowledge, which VNF should or can be utilized to mitigate a security
threat. However the architect is able to identify security threats present in the application
and it’s components. We assume there is a security expert that has the required knowledge
to classify a concrete VNF implementation as an appropriate countermeasure to one or
more given threats. To be able to recommend VNFs to the architect on how to mitigate
the present threats in the application a convenient mechanism is required. The proposed
concept aims to establish a relation between the potential threats in an application and the
concrete VNFs in the solution space. In order to do so the security expert is required to
create a catalog of threats. Subsequently VNFs in the solution space are marked as potential
countermeasures to one or more threats of this catalog. This way the architect is enabled
to annotate the components of the application with corresponding threats from the catalog.
The annotated threat can then be compared to the solution space in order to recommend
an appropriate VNF. When new potential threats are discovered by the architect or security
expert the catalog needs to be extended. This in turn requires the security expert to assess
the solution space for VNFs that can mitigate the newly discovered threat and mark them
accordingly. In the case no existing VNF can mitigate a threat, additional VNFs need
to be imported to the solution space or the threat must be accepted or resolved using a
different approach. Abstraction of concrete VNF implementations allows for the usage of
VNFs in application topologies without taking the implementation details into account.
The security expert therefore groups similar concrete VNFs that share the same semantics
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or just differ in configuration in an abstract VNF. For example a virtual firewall, with
different configurations available, represents multiple entries in the solution space. All
variants can be expressed as the same abstract VNF. The resulting abstract VNF only
exposes the information relevant to the architect when modeling. Modeling application
topologies with abstract VNF components additionally allows for easy substitution of
concrete implementations without changing the original topology. The combination of
information thus created gains all involved parties to gain the following insights: It is
assessable which threats are present in the application if components are annotated with
threats from the catalog. Based on these threats recommendations can be made which
abstract VNF should be used in the topology to mitigate these threats. When abstract
VNFs are used in the topology it can be derived if a corresponding concrete VNF renders
the present threats mitigated.

4.2 Requirements

The following list of requirements is compiled to guide the creation of a valid proposal.
Later the concept is evaluated based on the same requirements.

Requirement 1 (R1): The concept must be conform with the TOSCA standard and hence
only use already available entities and mechanisms

Requirement 2 (R2): The concept must respect the proposed TOSCA for NFV draft

Requirement 3 (R3): The concept must use NFV in a way that enhanced security can be
achieved

Requirement 4 (R4): Security requirements need to be directly derived from the application
that shall be protected

Requirement 5 (R5): The concept shall employ a structured approach to solve the problem
employing industry standard practices

4.3 Finding Threats in Application Topologies

This concept leverages threat modeling as a means to assess threats of applications in a
structured manner. Threat modeling represents an industry standard practice and is widely
used by security professionals to determine the current security state of an application. The
Four Step Framework (see Section 2.4.3) is applied and appropriate means are investigated
to express all required information using TOSCA.

4.3.1 Modeling the System

TOSCA and threat modeling are both based on the principle to model the components
of a system. TOSCA uses a model to describe the structure of an application in order to
deploy and manage the application. Threat modeling uses a model to assess the application
components and their interactions for possible threats. Threat modeling software tools
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like OWASP threat dragon1 or Microsoft’s Threat Modeling Tool2 provide graphical user
interfaces to assist the user to create a model of an application. The user can add processes
or components, interaction between these components, so-called trust boundaries and threat
agents to the diagram. This diagram can then be assessed for threats. Using this approach
a user that currently uses TOSCA for modeling would need to create a separate diagram
of all components in such a software tool. A TOSCA Service Template already consists of
a topology template that describes all components of an application and the relationships
between them. A topology template can be used to graphically render a topology graph
[KBBL13]. This allows to use the actual components that make up the deployment of an
application as the model for threat modeling. Using the TOSCA model as the source for
threat modeling eliminates the possibility of having a possibly mismatching separate model.
This has the benefit of no required additional effort to create redundant diagrams.

4.3.2 Finding and Describing Threats

When threat elicitation should be performed on a model using the STRIDE approach the
findings need to be assigned to the model’s components and interactions. We define the term
threat descriptor as a means to capture the required information of a threat present in the
model. Each threat needs to have a unique name to be distinguishable from other threats.
The type of a threat needs to be defined according to STRIDE. A description is required
to provide detailed information how a threat imposes risk on a system. Additionally, as
it’s common practice, the severity of a threat needs to be expressible. A component or
interaction of the model is the target of a threat, so this needs to be captured as well.
Summarizing these findings a threat descriptor can be defined as the following set:

threatdescriptor B {Name, ST RIDE − T ype,Description, Severity,Target}

The threat descriptor needs to be expressed using TOSCA language to be used in a TOSCA
based model. TOSCA does not have the concept of a threat, but TOSCA does have policies
that can be used to express non-functional aspects (Section 2.2.3). A threat represents
a non-functional aspect. A Policy Type is a reusable entity with properties definition to
account for required information. Policy Templates are instances of a Policy Type and are
used to annotate Node Templates in a topology. To be able to express a threat descriptor
using TOSCA we first introduce a new Policy Type with the name Security.Threat. We use
a subset of the threat descriptor to define the Policy Type’s properties. Only the STRIDE
type, description and severity need to be defined here. In TOSCA properties of an entity
can be defined as custom XML elements. Listing 4.1 shows how the properties for the
Security.Threat Policy Type are defined. Enumeration is used to restrict the possible values
for STRIDE and severity. For description string based input is allowed.

The XML-based definition of the introduced Security.Threat Policy Type that uses the
custom XML element as properties definition is shown in Listing 4.2.

1https://threatdragon.org
2https://docs.microsoft.com/de-de/azure/security/azure-security-threat-modeling-tool
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Listing 4.1 XML-based definition for the properties definition of the Security.Threat
Policy Type

<xs:simpleType name="strideEnum" final="restriction" >

<xs:restriction base="xs:string">

<xs:enumeration value="Spoofing" />

<xs:enumeration value="Tampering" />

<xs:enumeration value="Repudiation" />

<xs:enumeration value="Information disclosure" />

<xs:enumeration value="Denial of Service" />

<xs:enumeration value="Elevation of Privilege" />

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="severityEnum" final="restriction" >

<xs:restriction base="xs:string">

<xs:enumeration value="low" />

<xs:enumeration value="middle" />

<xs:enumeration value="high" />

</xs:restriction>

</xs:simpleType>

<xs:element name="ThreatProperties">

<xs:complexType>

<xs:sequence>

<xs:element name="STRIDE" type="strideEnum"/>

<xs:element name="Severity" type="severityEnum"/>

<xs:element name="Description" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Listing 4.2 XML-based TOSCA definition for the Security.Threat Policy Type

<PolicyType

name="Security.Threat"

abstract="no"

final="yes"

targetNamespace="http://opentosca.org/security/threat">

<PropertiesDefinition element="ThreatProperties" />

</PolicyType>
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Security.Threat

Description: String
STRIDE: String
Severity: String

Policy Types

MyThreat

Description
   A text based description
STRIDE
   Tampering
Severity
   Low

Policy Tem
plates
inherits

Figure 4.1: Security.Threat Policy Type and an exemplary Policy Template instance

The threat descriptor mandates a unique name for each threat. TOSCA uses a XML
qualified name (QName) to uniquely define and reference a TOSCA definition. When a
Policy Template is created this QName needs to be specified. This fact is leveraged to
account for unique names of threats. This enables the creation of a Policy Template that
is an instances of the Security.Threat Policy Type. This Policy Template contains the
information of a unique name, the STRIDE type, a severity rating and a textual description.
A graphical representation of an example Policy Template that defines this is illustrated in
Figure 4.1

The last missing piece of information to fully qualify as threat descriptor is the target.
The Policy Template intentionally does not contain any information about the target of a
specific threat. This way the Policy Template becomes a reusable entity in itself. Policy
Templates are meant to be attached to Node Templates. To indicate that a Node Template
is targeted by a threat, a Policy Template of the predefined Security.Threat Policy Type is
attached to a Node Template. This way all required information of the threat descriptor is
supplied by the resulting model.

For each threat present in an application it is now possible to create a corresponding Policy
Template that is attached to the targeted Node Template. To illustrate the result of this
process the running example is annotated with potential threats (see Figure 4.2). Threat
Policy Templates are visualized as warning signs. Only the names of the threats are shown,
the rest is omitted for brevity.
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Figure 4.2: Running example topology assessed using the STRIDE method with annotated
threats

Algorithm 4.1 Finding all threats in a Service Template

1: function getThreats(serviceTemplate)
2: threats← ∅
3: for all policies in NodeTemplates of serviceTemplate do
4: for all policy in polcies do
5: policyT ype← policy.type
6: if policyT ype = Security.T hreat then
7: policy.target ← NodeTemplate
8: threats← add(policy.template, threats)
9: end if

10: end for
11: end for
12: return threats
13: end function

As a result of this phase, all threats present in a application topology can be retrieved as
valid threat descriptors. A simple iteration over all Node Templates and determining if a
Node Template is annotated with a Policy Template of the Policy Type Security.Threat is
sufficient to do so. Algorithm 4.1 describes this procedure in a pseudo code notation.
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4.4 Mitigating Threats with NFV

NFV uses a component based approach to network functions. Each network function is
expressed as a virtual component. We assume that a specific network function can have
the ability to mitigate one or more specific threats. For example we found that the running
example has the threat of unencrypted web traffic targeting the web application. A VNF
that encrypts web traffic is therefore a potential mitigation for this threat. This raises
the need to describe the relation between a specific threat and VNF components that
potentially mitigate the threat. The TOSCA for NFV draft defines that each deployable
VNF is stored in a separate Service Template. This represents the need to establish a
relation between a Threat described as Policy Template and a specific Service Template
containing a VNF.

We can not attach the same threat Policy Template to the Service Template to indicate
that a Service Template is an appropriate mitigate for this threat. This is due to the
intended use of threat Policy Templates to represent present threats.

To describe the relation between a threat and a concrete VNF we introduce a new Se-
curity.Mitigation Policy Type. There is no dedicated mechanism to define relationships
between Policy Templates like it’s the case with Node Templates. To circumvent this a
ThreatReference property that is represented by a QName is defined. The Policy Type
definitions is described in Listing 4.3 and the corresponding properties definition XML
element is shown in Listing 4.4.

Listing 4.3 XML-based TOSCA definition for the Security.Mitigation Policy Type

<PolicyType name="Security.Mitigation" abstract="no" final="yes" targetNamespace="http://

opentosca.org/security/mitigation">

<PropertiesDefinition element="MitigationProperties" />

</PolicyType>

Listing 4.4 XML-based definition for the properties definition of the Security.Mitigation
Policy Type

<xs:element name="MitigationProperties">

<xs:complexType>

<xs:sequence>

<xs:element name="ThreatReference" type="xs:QName"/>

</xs:sequence>

</xs:complexType>

</xs:element>

For each threat Policy Template there needs to be a mitigation Policy Template that
references the threat. Referencing is achieved by providing the QName of the threat Policy
Template for the ThreatReference property on the mitigation Policy Template. A naming
convention is established regarding mitigations. The name of a mitigation Policy Template
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Security.Threat

Description: String
STRIDE: String
Severity: String

Security.Mitigation

ThreatReference: QName
Policy Types
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Severity
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MITIGATE_MyThreat

ThreatReference
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Policy Tem
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Figure 4.3: Security.Mitigation Policy Type and a corresponding Policy Template that
references a threat

VNF_1

VNF_2

MyThreat MITIGATE_MyThreat

MyThreat_2 MITIGATE_MyThreat_2

Policy Templates

Referenced by QName Attached via boundary definitions

Service Templates

Figure 4.4: VNF Service Templates with attached mitigation Policy Templates and
referenced threat Policy Template

should be the same as the threat Policy Template prepended with “MITIGATION ”. An
example of all this is illustrated in Figure 4.3. The naming convention allows for easier
handling of pairs of Policy Templates without looking at the individual defined properties.

To put the created mitigation Policy Template to use it needs to be attached to a VNF. Since
a VNF is stored in a Service Template this is achieved by defining according boundary
definitions. These boundary definitions allow to attach Policy Templates to Service
Templates exactly like it’s the case for Node Templates inside a topology. Figure 4.4 shows
an example of two VNF Service Templates. Here “VNF 1” is able to mitigate “MyThreat”
while “VNF 2” can mitigate “MyThreat” and “MyThreat 2”.
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4.5 Abstracting Network Function Details

The application architect should be able to use a VNF without knowing about its implemen-
tation details. TOSCA allows to substitute an abstract Node Template with the topology
of a Service Template. In order for this to work a Service Template needs to expose the
information for which Node Type it can be used as a substitute (see Section 2.2.2).

A naive approach would be to create an abstract Node Type for each VNF implementation.
This is highly inefficient and defeats the purpose of abstraction because each Service
Template is tightly coupled to exactly one corresponding abstract Node Type.

This concept mandates that abstract Node Types should be used as a grouping mechanism
for similar implementations. For example an abstract Firewall Node Type can be used as
an umbrella to define properties, requirements and capabilities that account for typical
implementations. Gateway firewalls for example need to be correctly connected to an
external network and an internal network to properly function. This is required to be
expressed by two separate requirements in the boundary definitions of a Service Template
that map to the correct internal ports.

An abstract Node Type with the name of S-VNF is introduced. S-VNF stands for security
relevant VNF. S-VNF will be used as a root entity which all security relevant VNFs
derive from. This has the drawback that a single abstract Node Type can not accurately
express all possible requirements any VNF might expose. To account for a greater degree
of freedom this concept introduces the convention that abstract Node Types need to be
created for capturing grouping semantics and inherit from S-VNF. This provides a middle
ground between S-VNF and actual VNF implementation. Users are free to model these
Node Types however they want as long they are abstract and inherit from S-VNF.

As a result, inheritance of S-VNF indicates that the all VNF implementations, that define a
substitutable Node Type of a S-VNF group are indeed security relevant functions. Figure 4.5
depicts the resulting structure of the relation between S-VNF, S-VNF groups and VNF
implementations.

4.6 Recommending S-VNF Groups for Threat Mitigation

Based on the threat Policy Templates present in an application topology and properly
described VNFs (attached mitigation Policy Templates and S-VNF group Node Type as
substitutable Node Type) recommendations can be made.

First a list of threats present in an application is compiled. How this can be achieved is
detailed in Section 4.3.2. Subsequently a list of all VNFs is gathered. A Service Template
qualifies as a VNF if it exposes a substitutable Node Type that is an ancestor of S-VNF.
Both lists are then analyzed for intersections of matching pairs of threats and mitigations.
This results in a list of abstract S-VNF group Node Types that can be used in the application
topology to mitigate present threats. Algorithm 4.2 shows a pseudo code implementation of
this approach and returns all present threats with corresponding possible mitigation Node
Types. Finally the abstract S-VNF Node Template in the topology can be substituted
with VNF implementations to get a deployable model.
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Figure 4.5: VNF Service Templates as substitutable Node Types for an abstract S-VNF
group

If VNF implementations exist that are able to mitigate a present threat we can say that a
threat can be mitigated by including a corresponding S-VNF group in the topology. If this
specific S-VNF is somehow present in the topology we can a assume a threat is successfully
mitigated when the abstract S-VNF group is substituted before deployment.

4.7 Limitations

The proposed concept has some limitations due to the structure of TOSCA, the nature of
NFV and the wide range of possible threats. Policies do provide a possibility to describe
non-functional semantics, such as threats, in the context of TOSCA, but only Node Types
and Service Templates (via boundary definitions) can be targeted. Relationships between
components, such as connects to can therefore not be annotated. Since relations can only
exist between components, one way to circumvent this is to annotate the target or source
of the relation to express the presence of a threat.

Threat modeling software such as the options discussed in Section 4.3.1 provide a way to
graphically represent trust boundaries and threat agents in the model to assist the user
to understand the system. This concept uses the topology template of a TOSCA Service
Template as a model. A topology that is modeled using TOSCA is intended to be deployed.
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Algorithm 4.2 Compiling a VNF candidate list for threat mitigation

1: function findAbstractMitigations(serviceTemplate)
2: candidateVNFs← GetAllVNFServiceTemplates()
3: threats← getThreats(serviceTemplate)
4: for all threat in threats do
5: threat.mitigations← ∅
6: for all V NF in candidateV NFs do
7: if V NF .policy references threat then
8: threat.mitigations← Add(threat.mitigations,V NF .substitutableNodeT ype)
9: end if

10: end for
11: end for
12: return threats
13: end function

Threat agents represent non-deployable entities. It is possible to create Node Types and
Relationship Types that don’t do anything in regards to orchestration and use these to
represent entities and their relations to the components just for modeling purposes. This
approach would defeat the general purpose of TOSCA and results in topologies where it
has to be determined what is deployable and what isn’t.

To determine if a threat is mitigated it is currently checked if an instance with a matching
mitigation Policy Template is present in the topology. The sheer presence of a mitigation
does not guarantee the right placement in the topology. For example a proxy firewall needs
to be placed between two components. If this firewall is placed at the perimeter of the
network instead, the functionally is different than intended.

VNFs can be utilized as components that secure other components as stated in Section 2.4.1.
This is only applicable to threats that involve the networking layer. If an application
component stores sensitive information in an insecure way, no VNF is capable of changing
this fact. This is just an example to show that a lot of threats can’t directly be mitigated
by simply using a NFV based approach to enhance security.

4.8 Summary

The proposed concept utilizes the STRIDE approach to threat modeling. Therefore a
Security.Threat Policy Type is introduced to create reusable threat Policy Templates.
These threat Policy Templates are instances of Security.Threat and are attachable to Node
Templates of an application topology. This indicates which Node Templates are targets of
which threats. To establish a connection between threats and VNF implementations that
could potentially mitigate these threats, a Security.Mitigation Policy Type is introduced.
Each mitigation Policy Template references a single corresponding threat Policy template.
These mitigation Policy Templates are then attached to the Service Templates of appropriate
VNF implementations via boundary definitions.
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Figure 4.6: Summary of all introduced Node Types, Policy Templates and their relations

A S-VNF Node Type is introduced to act as an umbrella of all possible abstract VNF groups.
A VNF group needs to be an abstract Node Type that captures the properties, requirements
and capabilities of VNF implementations that share the same external attributes. A S-VNF
group is required to inherit from S-VNF. A VNF Service Template needs to expose matching
properties, requirements and capabilities via boundary definitions and declare that is can
be used as a substitute for a certain VNF group by defining a substitutable Node Type.

The resulting construct of all introduced Node Types, Policy Types, exemplary Policy
Templates and their intended relations, is illustrated in Figure 4.6.
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This chapter first details the prototypical implementation of the concept. A validation of
concept and reference implementation are done.

5.1 Eclipse Winery Extensions

Since the proposed concept concerns the modeling aspects, the proof of concept is imple-
mented in the context of Eclipse Winery (see Section 2.3.1). The Java based backend of the
Winery, described in Section 2.3, was extended to allow for the consumption of user input
to generate valid pairs of threats and mitigations. Additionally the logic to find Service
Templates that satisfy the mitigation requirements for threats of an application topology
was implemented. The following work was done in a newly created, independent module
and all data that is exposed or consumed is done so by following RESTful semantics to
comply with current practices. Winery provides two frontend components for users to
interact with the backend in a graphical way. To allow for interactions with the newly
created backend extensions the frontend components were modified accordingly.

5.1.1 Backend: Creating Threat Mitigation Pairs

The possibility to manually create Policy Types and Policy Templates is already present
in the current Winery version to comply with basic TOSCA functionality. To be able to
threat model and find appropriate VNFs we defined the need to have pairs of threats and
mitigations, where the mitigation references the threat. Since the creation of a mitigation
Policy Template can be error-prone because the correct threat has to be manually referenced
by it’s QName, it was opted to create a custom REST-API-Endpoint that handles the
synchronous creation of both, the threat Policy Template and the corresponding Mitigation
Policy Template. The endpoint expects values for the defined property definition of a
threat and the desired name. This allows for input validation to enforce correct and
required properties. The given name is sanitized to have a valid QName later. A Policy
Template of type Security.Threat is created, the desired properties assigned and stored.
The generated QName is used to create a Policy Template of type Security.Mitigation and
the local part of the QName is prepended with “MITIGATION ” to satify the proposed
naming convention. The resulting REST-API-Endpoint is accessible at “/winery/threats/”
of a winery instance. A POST request to the resource with the required parameters creates
a threat and corresponding mitigation.
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5.1.2 Backend: Threat Catalog

A threat catalog ensures that threats that were modeled in the scope of other applications
become accessible and reusable. Since all threat Policy Templates are instances of the
predefined Policy Type Security.Policy all available threats can be easily discovered by
iterating over all Policy Templates in a given repository and check if they are instances
of the said type. The threat catalog is accessible at the same endpoint mentioned in
Section 5.1.1 but with a HTTP GET request to comply with REST semantics. Finally
a list of all threats is rendered as JavaScript Object Notation (JSON) to allow for easy
consumption in the frontend of the application.

5.1.3 Backend: Threat Assessment and Mitigation Recommendation

Threats are annotated to Node Templates in the form of Policy Templates. To assess the
security state of a Service Template there needs to be an endpoint that lists all threats
present in a Service Template . This is achieved by iterating over all available Node
Templates in a Service Template and compiling a list of Policy Templates that match
the criteria. Afterwards all Service Templates in the repository are filtered for matching
mitigation Policy Templates defined in the boundary definitions and it is checked for proper
inheritance. This results in a list of concrete implementations of VNFs. To make a recom-
mendation what abstract category of VNF can be used to mitigate threats the substitutable
Node Type is referenced. The API endpoint that returns all computed results is put under
the Service Template REST resource since threat assessment is done regarding a specific
Service Template at “winery/servicetemplates/<namespace>/<ID>/threatassessment”.

5.1.4 Backend: Modifications of the Substitution Module

Winery already has a basic substitution feature. This feature enables the substitution of
Node Templates in a topology with Service Templates. The process is automated and a
find first strategy is utilized. So when an abstract Node Type is present in a topology it
is substituted with the first Service Template that presents a fitting substitutable Node
Type. The substitution process aims to connect all previous relations to the abstract Node
Type to the inserted Service Template topology. The current implementation does not
address edge cases such as multiple Relationship Templates of the same Relationship Type.
Multiple Relationship Templates of the same type are essential to NFV topologies since a
single Node Template can be connected to multiple other Node Templates with the same
type of relation (see Section 4.5). The implementation of the substitution module was
therefore modified to account for relationships that target or source requirements of Node
Templates.

5.1.5 Repository UI: Threat Assessment

Threat assessment is incorporated in the detail view of a given Service Template in the
repository UI. The existing navigation menu was extended with a threat assessment view.
The threat assessment view requests all available threats in a Service Template by querying
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Figure 5.1: Threat assessment of a Service Template in the Winery repository UI

the appropriate REST API endpoint described in Section 5.1.3. In addition to the display
of threats their corresponding mitigation options (if available) are suggested. If a threat
can be mitigated (an appropriate VNF implementation exists) the UI indicates this by
displaying a message and coloring the background yellow. If a Node Template of a suggested
mitigation is present in the topology the threat is considered mitigated and indicated by a
respective message and green background. If recommendation can be made (meaning no
VNF is available that can mitigate the threat) the UI displays a message and colors the
background of the threat red. An example of the created UI is depicted in Figure 5.1.

53



5 Implementation and Validation

5.1.6 Topology Modler: Threat Creation, Mitigations and Threat Catalog

A modal was added to the topology modeler to allow for easy creation of threat mitigation
pairs when modeling the application topology. The UI provides a form with input fields that
directly map to the properties definitions of the Security.Threat Policy Type. Submitting
the form results in a HTTP POST request to the API endpoint specified in Section 5.1.1.
Additionally all available threats (threat catalog) is rendered below to allow for efficient
reuse. The threat assessment view described in Section 5.1.5 is displayed in the modal
too. This is done to enable the user to directly add the recommended mitigations to the
topology with a designated button. The complete modal is pictured in Figure 5.2.

5.2 Validation

The presented concept is first validated based on the requirements specified in Section 4.2
and afterwards validated based on the processing of an example service that mimics the
running example.

5.2.1 Requirements

In Section 4.2 a list of requirements was compiled in order to guide the creation of the concept
and validate it afterwards. In the following, the individual requirements are discussed.
The results of the validation are summarized in Table 5.1. To rate the satisfaction of each
requirement plus signs are used. Two plus signs represent full satisfaction while a single
plus sign indicates that the requirement is mainly satisfied. For each single plus sign a
detailed explanation is provided. The requirements are referenced by their numbers and
compressed descriptions.

The requirement of TOSCA conformity is regarded as fully satisfied. The concept is based
on the introduction of special Node Types and Policy Types. These are standard elements
of the TOSCA language and defined accordingly. No additional entities were introduced

The requirement of respecting the TOSCA profile for NFV is seen as satisfying when
some assumptions are made. The TOSCA profile for NFV is not finalized yet. As long
as standard Service Templates are used to express deployable VNF implementations the
proposed concept is considered valid. Even if the profile might introduce additional default
Node Types that are used in a VNF model, these need to be contained in the Service
Template of the VNF. This is due to the fact that this concept does not make assumptions
how a VNF is modeled as long it is contained in a Service Template. This implies the
correct exposure of its requirements, properties and capabilities via boundary definitions.
Users are then tasked to provide appropriate abstract Node Types and ensure it inherits
from S-VNF.

The requirement of using NFV to enhance security is regarded as fully satisfied. The
proposed concept establishes a connection between threats and VNFs in order to mitigate
these threats. NFV is therefore utilized as a main driver for security enhancement.
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Figure 5.2: Threat modeling options in the Winery topology modler
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Requirement Satisfaction

R1(“TOSCA conformity”) ++

R2(“TOSCA For NFV Profile”) +

R3(“NFV as security enabler”) ++

R4(“Security requirements derived from application”) ++

R5(“structured approach”) ++

Table 5.1: Concept validation based on the initially defined requirements. Two plus signs
indicate full satisfaction. Single plus signs represent satisfaction with additional
remarks

Threat name No Traffic Encryption MySQL ports exposed

STRIDE type Spoofing Information Disclosure

Severity High Middle

Table 5.2: Detailed overview of the properties of the two modeled threat Policy Templates

Threat modeling ensures that threats are assessed in a structured way and is considered
industry standard practice. These threats are then directly annotated to application
topology components. This accounts for satisfaction of the requirement to derive security
requirements directly from the application topology. Additionally the requirement regarding
the structured approach is satisfied by applying the STRIDE method to threat modeling.

5.2.2 Example Service

Figure 5.3 visualizes the example service that is composed of a simplified version of the
running example and modeled in Eclipse Winery.

A demo repository of VNFs is created to simulate the presence of multiple different VNF
implementations. Figure 5.4 illustrates an exemplary firewall VNF implementation that
is composed of a single VM Node Type and two Port Node Types on the right. This
Service Template will be referenced as Firewall VFN. A VNF implementation that acts as
a Secure Sockets Layer (SSL) proxy VNF is shown on the left and will be referenced to as
SSLProxy VFN. Each VNF is contained in its own Service Template and composed of one
VM and a varying number of ports. Each Service Template exposes boundary definitions
that address the requirements and capability of internal Node Templates. For example
the port of the SSLProxy VNF needs to be linked to a network and therefore exposes a
requirement. This requirement is exposed in the boundary definitions. A S-VNF.Firewall
Node Type and a S-VNF.SSLProxy Node Type were created to act as S-VNF groups.
Both of those inherit from S-VNF. The S-VNF group Node Types define the requirements
and capability accordingly. For the demo a subset of threats was modeled using the
threat modeling UI. The resulting threat Policy Templates are described in Table 5.2. The
description property is omitted for brevity. Both mitigation Policy Templates were created
automatically.
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Figure 5.3: Simplified running example topology modeled in Eclipse Winery with attached
threat Policy Templates

The No Traffig Encryption threat is attached to the WordpressVM Node Template of
the demo topology while the MySQL ports exposed is attached to the DBVM Node Tem-
plate. The generated corresponding mitigation Policy Templates are attached to the
VNF implementations. The SSLProxy VFN is able to encrypt traffic and therefore the
MITIGATE No Traffig Encryption is attached via boundary definitions. The MITI-
GATE MySQL ports exposed is attached to the boundary definitions of the Firewall VNF
Service Template. Subsequently the implemented system correctly recognizes the threats
present in the demo topology and suggests the usage of the according S-VNF groups. The
threat assessment UI correctly recommends that in order to mitigate the No Traffig En-
cryption the S-VNF.SSLProxy group should be included in the topology. Additionally it is
recommended that the S-VNF.Firewall Node Type should be used to mitigate the threat
MySQL ports exposed. The suggested S-VNF group Node Types (S-VNF.Firewall and S-
VFN.SSLProxy) are inserted into the topology and connected as the requirements demand.
This is illustrated in ??. A look at the threat assessment UI then correctly states that both
threats can be considered mitigated. Finally the substitution procedure is triggered and
the resulting topology contains the correctly connected topology of application components
and concrete VNF components. The final topology is illustrated in Figure 5.6

During the validation the possibility of false positives was discovered when the system
evaluates which threat are effectively mitigated. For example if two threats (threat1 and
threat2) are present in a topology. Two VNFs are assumed to be available and VNF1
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Figure 5.4: Topology of a demo VNF implementations that represents a SSL proxy (left)
and topology of a demo VNF implementations that represents a firewall
(right)

mitigates threat1 and VNF2 mitigaes threat2. Both VNFs belong to the same S-VNF group
(through the declaration of substitutable Node Types). Based on the proposed concept this
means that both threat can be mitigated, which is true. When the corresponding S-VNF
group Node Type is placed in the topology it is assumed that both threats are mitigates
because the Node Template can potentially substituted with both VNFs. This assumption
is false since only one VNF will end up in the topology through substitution. This results
in the exclusive mitigation of either threat1 or threat2.
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5.2 Validation

Figure 5.5: Demo topology enhanced with recommended SVFN groups (S-VNF.Firewall
and S-VFN.SSLProxy)
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5 Implementation and Validation

Figure 5.6: Resulting final topology after substitution including application components
and concrete VNF implementations
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6 Conclusion and Future Work

The goal of this thesis is to develop a concept for security-aware modeling and deployment
of NFV topologies using TOSCA. The proposed concept employs threat modeling as an
industry standard practice to assess security threats of application topologies. Virtual
network functions are levered as countermeasures to these threats. The developed approach
establishes a relation between possible threats and appropriate NFV based countermeasures.
This is done by leveraging standard TOSCA policy mechanisms. Dedicated threat and
mitigation Policy Types are introduced and defined to express the required information.
Additionally an abstract S-VNF Node Type was introduced to function as a root ancestor
for all security related VNF categories and concrete implementations. The developed
approach mandates that for each concrete VNF implementation there needs to exist
an appropriate abstract representation. This in turn enables an abstract NFV modeling
approach. The application architect does not have to care for the specificities of a particular
VNF implementation. The TOSCA concept of substitution is brought in to refine abstract
models with concrete VNF implementations that match the countermeasure requirements
for present threats. Based on the information carried by the introduced Policy Types and
Node Types, automated recommendations can be made how an application topology can be
protected with and NFV based approach. This way the knowledge gap between application
architects and network security experts can be bridged in an automated manner.

To validate the approach, a proof-of-concept was implemented as an extension to the
TOSCA modeling tool Eclipse Winery. The prototype allows for the provisioning of all
necessary Policy Types and Node Types to use the proposed concept. The creation of
threats automates the creation of corresponding threat and mitigation Policy Templates. A
graphical interface enables users to assess the current security state of an application (what
threats currently exist and which can be or are mitigated). The topology modeling tool
was modified to enable the user to directly add appropriate abstract VNFs to the topology
with the click of a button. An extension to the substitution algorithm incorporates NFV
specifics in a standard conforming way.

Future work regarding the concept should include further research on how the correct
placement of VNFs can be guaranteed. The current concept only allows to check if a
required VNF is present in a topology and ignores the fact where it is. For example if a
VNF that encrypts traffic is deployed in a cloud environment but the target is not in the
same network the encryption is breachable. This is vital for providing secure end-to-end
encryption. Additional sources for potential future work can be found in the limitations
section of the concept (Section 4.7). The possibility of false positive estimates regarding
the effective mitigation of threats discovered in the validation (see Section 5.2) needs to be
addressed as well.
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6 Conclusion and Future Work

Regarding the implementation, future work needs to be done in terms of visualization and
creation of Relationship Templates. The already mentioned extension to the substitution
module accounts for a correct implementation of TOSCA relations. The current functional-
ity needs to be extended to allow for relations that target or source a concrete requirement
of a Node Template.

62



Bibliography

[Bar08] S. Barnum. “Common attack pattern enumeration and classification (capec)
schema description”. In: Cigital Inc, http://capec. mitre. org/documents/doc-
umentation/CAPEC Schema Descr iption v1 3 (2008) (cit. on p. 33).

[BB11] M.A. Bamiah, S.N. Brohi. “Seven deadly threats and vulnerabilities in cloud
computing”. In: International Journal of Advanced engineering sciences and
technologies 9.1 (2011), pp. 87–90 (cit. on p. 32).
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