
Institute for Visualization and Interactive Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

ML-based Visual Analysis of Droplet
Behaviour in Multiphase Flow

Simulations

Moritz Heinemann

Course of Study: Simulation Technology

Examiner: Prof. Dr. Thomas Ertl

Supervisor: Dr. Steffen Frey
Alexander Straub, M.Sc.
Gleb Tkachev, M.Sc.
Dr. Sebastian Boblest

Commenced: January 12, 2018

Completed: July 12, 2018

Abstract

Modern multiphase flow solvers can simulate flows with increasing domain size and precision. This
produces large simulation results which need to be analyzed, and to this end visualized. Because of
the amount of data, classical visualization approaches become more and more unfitting. Therefore, it
is hard to find interesting regions because of visual clutter which is produced by too much data. One
solution could be semi automatic assistance systems to support the observer of the visualization.

Over the last years, machine learning has grown to a widely researched area. Development not
only brought many use cases in research and industry, but highly sophisticated programming
frameworks. This makes it much easier to use machine learning in a wide area of applications, such
as visualization.

In this work we are interested in analyzing multiphase simulations with thousands of droplets. We
use machine learning to train artificial neural networks with the droplet data gained from simulations.
These trained models are used for finding interesting droplet behavior in the simulation, which
is then visualized. Our trained models can predict the development of physical properties and
quantities over time, and therefore errors in prediction can guide us to areas of interest which then
can be investigated further.

The prediction error is visualized as colored dots directly within the 3D simulation dataset using
ParaView. Additionally we can plot the properties and their predictions of single droplets over time
and show the prediction error separated by property within a spider chart. Finally we show the
results, which cover an evaluation of the learning process and an analysis of the used datasets with
our method, as well as give an outlook on possible improvement in future work.

3

Contents

1 Introduction 13
1.1 Structure . 13

2 Related Work 15

3 Basics and Theory 17
3.1 Multiphase flow simulations data . 17
3.2 Used datasets . 18
3.3 Machine learning and artificial neural networks 19

4 Methods and Implementation 25
4.1 Droplet separation . 25
4.2 Calculation of droplet properties . 25
4.3 Matching between time steps . 29
4.4 Generation of ML input and model training . 30

5 Results 33

6 Conclusion and Outlook 45
6.1 Conclusion . 45
6.2 Future work . 45

Bibliography 47

5

List of Figures

3.1 2D example of a rectilinear grid with coarser cells in the outer regions and finer
cells in the center. 17

3.2 2D Example of VOF data. Blue is water, white is air. Numbers show the approximate
ratio of fluid to air. 18

3.3 Overview of the jet dataset. Surface is calculated with the PLIC method. The time
step is written below the frames. 19

3.4 Overview of the slash dataset. Surface is calculated with the PLIC method. The
time step is written below the frames. 20

3.5 Structure of a single neuron according to Kriesel [Kri07, p. 35]. 21
3.6 Example of an artificial neural network with an input layer, an output layer and one

hidden layer in between. The layers are fully connected. 22
3.7 Example of underfitting and overfitting of datapoints (black) with a function (red). 23

4.1 Example of the droplet graph showing separations, collisions and a droplet trace. 29
4.2 Rendering of a droplet within one trace from the jet dataset. The surface is rendered

with the PLIC method. The single droplets are rendered at their actual position in
the simulation domain. The offset between them is the actual droplet movement,
from left to right. 30

4.3 Development of the physical properties of single droplet over time. 31

5.1 Loss curves of the learning process with the jet dataset and an input trace length of
6 time steps. 34

5.2 Droplet prediction total error visualized as colored dots for time step 95 of the jet
dataset. 35

5.3 Development of the properties over time for the first example droplet including the
predicted values (blue dots). Some of the values increase massively in the last time
step, because of an error in the droplet matching. We see the prediction does not
expect this. 36

5.4 Spider chart of the error by property for the last time step of the first example
droplet. We see a large error for rotational energy and angular velocity within the
normalized value range. Error values smaller than 0.1 was set to the value of 0.1
for better visibility of the glyph. 37

5.5 Development of the properties over time for the second example droplet including
the predicted values (blue dots). We see variation the rotational and oscillation
energy, as well as the angular velocity. Some of the predictions are clearly different
to the ground truth. 38

7

5.6 Spider chart of the error by property for the second to last time step of the second
example droplet. We see a large error for rotational energy within the normalized
value range. Error values smaller than 0.1 was set to the value of 0.1 for better
visibility of the glyph. 39

5.7 Rendering of the second example droplet over time. Only every second time step
is shown. The surface was reconstructed using PLIC. The right droplet looks
already separated, but this is still one droplet, as defined in Section 4.1. The surface
approximation of the PLIC method is inaccurate at this point. 39

5.8 Development of the properties over time for the example droplet with low error
including the predicted values (blue dots). We see a longer trace with many
predictions. The prediction for angular velocity and rotational energy does follow
the ground truth. 40

5.9 Rendering of the example droplet with low error over time. The surface was
reconstructed using PLIC. Only a part of the trace for this droplet is shown. . . . 41

5.10 Droplet prediction total error visualized as colored dots for time step 111 of the
splash dataset. 41

5.11 Development of the properties over time for a droplet from the splash dataset
including the predicted values (blue dots). Some of the predictions show a
difference to the ground truth. The trace of this ligature is only five time steps long
and therefore very short. 42

5.12 Rendering of the example droplet from the splash dataset. The surface was
reconstructed using PLIC. Droplets with such long structures are also called ligatures. 43

8

List of Algorithms

4.1 Droplet separation algorithm . 26

9

List of Abbreviations

CFD computational fluid dynamics. 15

DNS direct numerical simulation. 15

FS3D Free Surface 3D. 15

ML machine learning. 13

PLIC piecewise linear interface calculation. 15

QCQP quadratically constrained quadratic program. 28

RANS Reynolds-averaged Navier Stokes. 15

VOF Volume of Fluid. 15

11

1 Introduction

With increasing computational power of modern computers, simulations have grown larger, in both
spatial and temporal resolution, as well as more detailed and accurate. Therefore, large amounts of
data need to be analyzed. This is only possible with the help of visualization. But for growing data
sizes and with time-dependency within the data, the analysis becomes more and more complex and
tedious. Machine learning could be one solution to automate parts of this task.

This work concentrates on multiphase flow simulations. We analyze the behavior of individual
droplets within its surrounding fluid. The data comes from two multiphase flow simulations with
thousands of droplets. They are tracked and observed over a time series. We calculate physical
quantities of each droplet, like oscillation and rotation as well as surface deformation for each
individual time step. The development of these droplet properties is used to train an artificial neural
network, in order to predict the future behavior of this droplet. We then compare this prediction to
the ground truth and visualize the error of the prediction.

The idea behind this is that we want to find interesting droplets or regions within the flow simulation.
By interesting droplets we are thinking of droplets that behave different than the average droplet.
Our assumption is that the artificial neural network would learn how the droplets behave on average
and therefore predicts this average behavior. The droplets where the prediction error is high seems
to not behave like the average droplet and therefore are interesting. With this we can use the
prediction error as scale of how interesting a droplet would be for further analysis. Additionally
we can visualize the individual error for each of the droplet properties, to give the viewer further
insight in how exactly the droplet does not behave like an average droplet.

1.1 Structure

This thesis is structured as follows: Chapter 2 - Related Work gives an overview over the related
work. This includes work we directly set up on, as well as a short description of similar work. Next
we introduce basic topics which are used in this work in Chapter 3 - Basics and Theory. We
provide information about the datasets and where they come from, as well as a short introduction
to machine learning (ML) and artificial neural networks. After this we present our methods in
Chapter 4 - Methods and Implementation. Starting with droplet processing, to training of the
artificial neural network. This is followed by a discussion and our results in Chapter 5 - Results.
This includes an evaluation of the learning process, as well as providing visualizations. Finally this
thesis is completed with Chapter 6 - Conclusion and Outlook.

13

2 Related Work

The computational fluid dynamics (CFD) solver Free Surface 3D (FS3D) [EEG+16] is used for
multiphase flow simulations. Two of the simulations of this tool are used within this work. FS3D
uses direct numerical simulation (DNS) to solve the incompressible Navier-Stokes equation. It is
based on the Volume of Fluid (VOF) method, which was first described by Noh and Woodward
[NW76], as well as Hirt and Nichols [HN81]. For the reconstruction of the phase interfaces within
the VOF method piecewise linear interface calculation (PLIC) [You82] [You84] [RK98] is used.
Additionally, many other complex phenomena, like freezing and evaporation can be simulated. The
code base is optimized for massive parallel architectures. Further improvement was done by Liu
and Bothe [LB16] to stabilize lamella structures which occur in simulations of binary water droplet
collisions. This was needed for the second of the two datasets we use in this work.

For visualization of multiphase flow simulations, the basic idea is to show the interface between the
different phases. This can be done with classical isosurface techniques, for example the marching
cubes algorithm [LC87]. Karch et al. [KSM+13] present a visualization technique based on
PLIC, which is the same method used by FS3D with the VOF method to calculate the interfaces
during simulation. Furthermore Karch et al. describe a generalization of PLIC to higher-order
approximations with their framework.

For machine learning and artificial neural networks in general, there is a good introduction to this
topic available by Kriesel [Kri07]. A deeper and more general overview to ML and deep learning in
particular is the book Deep Learning from Goodfellow et al. [GBC16]. Also we like to mention the
frameworks Tensorflow [MAP+15] and Keras [Cho+15] here as related work, which where used for
implementation.

Much work was done by using ML in context of fluid simulations. Ling and Templeton [LT15]
analyze different machine learning algorithms for finding regions of high uncertainty within
Reynolds-averaged Navier Stokes (RANS) simulations. Training data is gained by comparing
RANS simulations to results from DNS or large eddy simulations. The analyzed algorithms are
support vector machines, Adaboost decision trees and random forests. Artificial neural networks are
even used within solvers of the Navier Stokes equation [TSSP16] for acceleration of computation
time. Other work does use ML to reconstruct a full pressure field from sparse measurement points
within simulated flow around a cylinder [BLK13]. Yetilmezsoy and Saral [YS07] train a neural
network to determine the collection efficiency of single droplets in countercurrent spray towers.
Oliveira and Sousa [OS01] use a neural network to predict heat flux within air/water sprays, based
on different parameters of the spray and the droplets within the spray. But in difference to other
work they use experimental data and not fluid simulations.

15

3 Basics and Theory

3.1 Multiphase flow simulations data

In this work we use data from incompressible multiphase flow simulations computed with the solver
FS3D [EEG+16]. The simulation output is a VOF [NW76] [HN81] field, as well as a velocity field,
both stored on a rectilinear grid. A rectilinear grid has axis-aligned rectangular cells, with possibly
different cell sizes along each axis. An example is shown in Figure 3.1.

For each cell, a VOF value fc between 0 and 1 is given. A value of 1 means that the cell is
completely filled with a phase, while a value of 0 means that this cell does not contain the phase.
Values between 0 and 1 mean that there is an interface. Here, the value indicates the ratio of the
volume phase to the whole cell. An example with water and air is shown in Figure 3.2.

PLIC is used to determine the surface between the two phases in a VOF field. This is needed
during the simulation, to avoid numerical diffusion. But the phase interface can also be used in
visualization.

The idea behind PLIC is to model the surface as a linear plane in each VOF cell, where the value fc
is 0 < fc < 1. As normal of the plane, the inverse gradient of the VOF field is used:

n = −
∇ f (xc)
‖∇ f (xc)‖

(3.1)

Figure 3.1: 2D example of a rectilinear grid with coarser cells in the outer regions and finer cells in
the center.

17

3 Basics and Theory

0 0 0 0 0

0 0 0.3 0.7 0.9

0 0.3 0.8 1 1

0 0.7 1 1 1

0 0.9 1 1 1

Figure 3.2: 2D Example of VOF data. Blue is water, white is air. Numbers show the approximate
ratio of fluid to air.

Furthermore the plane is positioned, such that the volume enclosed between the cell boundaries and
the plane has the same ratio to the total cell volume as the VOF value [KSM+13].

3.2 Used datasets

For machine learning, we need many input droplets, which we can use as training data. Therefore,
we use two simulations, jet and splash, which both provide us with a lot of small droplets from
atomization.

The jet dataset is a simulation of a jet of an aqueous solution with 0.3% Praestol 2500 within air.
Temperature is at 20 ◦C and air pressure is 1 bar. The diameter of the jet nozzle is 0.25 cm und
the average injection velocity is 5525 cm s−1 with a parabolic profile and maximum velocity of
8287.5 cm s−1. Further characteristics are the Reynolds number of 3000 and the Ohnesorge number
of 0.1. The simulation domain has a size of 10 × 4 × 4cm3 with a grid of 1152 × 384 × 384 cells.
The cells are smaller at the center of the domain along the x-axis. We have 111 time steps of this
dataset which are distributed over a duration of 2 ms. The size of this dataset is 562 GB. Renderings
of selected time steps are shown in Figure 3.3.

The splash dataset is a simulation of a binary water droplet heads-on collision within air. The
problem was symmetric, therefore only half of the domain was simulated. The initial velocity of
the droplets is 1000 cm s−1. The Weber number is 803. For this simulation the FS3D solver needed
further improvements to stabilize the lamella structures of the fluid within the simulation [LB16].
The size of the half domain is 0.6× 0.6× 0.075cm3 on grid of 512× 512× 64 cells. The duration of
this simulation covers 0.25 ms with 251 time steps. The size of this dataset is 126 GB. Renderings
of selected time steps are shown in Figure 3.4.

18

3.3 Machine learning and artificial neural networks

0.000 ms 0.362 ms

0.724 ms 1.086 ms

1.448 ms 1.810 ms

Figure 3.3: Overview of the jet dataset. Surface is calculated with the PLIC method. The time step
is written below the frames.

3.3 Machine learning and artificial neural networks

An artificial neural network could be imagined as a mathematical function f : Rm 7→ Rn in a black
box [Kri07, p. 7] [GBC16, p. 164]. This function has a given input vector x ∈ Rm and an output
scalar or vector y ∈ Rn. The input is the data the network should evaluate or analyze. This could
be an image, measurement results or any other kind of data. The output is the result the network
should give. If a classification problem is given, the output should return the corresponding class to
the given input or usually the probability of each class. If a regression problem is given, the network
should output a prediction of the data.

It is of course mostly impossible or at least very hard to quickly write down such a function f for
the problem it should solve. That is where machine learning should start. The basic idea behind
this is to use a lot of data samples, later called training data, show it to the black box function f ,
and within the black box the function should learn to interpret the data.

Before we take a look into the black box and what exactly happens during learning, we already can
distinguish three different types of learning, by looking at what data is provided. Unsupervised
learning does mean we only have sample data for the input vectors. The network should then find
useful output by itself, in example classes of similar data. The second method is called reinforcement

19

3 Basics and Theory

0.000 ms 0.050 ms 0.100 ms

0.150 ms 0.200 ms 0.250 ms

Figure 3.4: Overview of the slash dataset. Surface is calculated with the PLIC method. The time
step is written below the frames.

learning. This means additionally to the input vector samples, a validation of the output is given. If
the neural network calculates an output to the input, the validation can tell if this output is good or
bad. The third method is supervised learning. There we have corresponding output sample data
to all input samples. In this work we only use supervised learning. In the next sections we first
describe how an artificial neural network looks and afterwards how it learns.

3.3.1 Artificial neural networks

As the name artificial neural network already suggests, this is inspired by nature from biological
neural networks. An artificial neural network is a set of neurons and weighted connections between
those neurons. Formal this could be written as triple (N,V,w), with the set of neurons N , the set of
connections V = {(i, j)|i, j ∈ N} and weights of the connections w : V → R [Kri07, p. 34]. An
example is shown in Figure 3.6.

Next we describe the structure of a single neuron according to Kriesel [Kri07, p. 34 ff.]. A single
neuron is build like in Figure 3.5. We see multiple input connections from other neurons, which are
received with the so called propagation function. The propagation function takes the output values
from the previous neurons and the connections weights and outputs a scalar value called network
input. Very common is to use the weighed sums as propagation function [Kri07, p. 35]

netj =
∑
i∈I

(oiwi, j) (3.2)

20

3.3 Machine learning and artificial neural networks

Propagation function

Activation function

Output function

Network input

Activtion

Figure 3.5: Structure of a single neuron according to Kriesel [Kri07, p. 35].

with current neuron j and I set of neurons which has a connection to neuron j with weight wi, j and
output oi.

The activation function models the reaction of the neuron. This is motivated by biological neurons,
which gets activated when input signals reach a certain threshold. In general the activation function
depends on the network input netj , a threshold value Θ and the activation from the last time step,
assuming discrete time. This could formal be written as [Kri07, p. 36]

aj(t) = fact (netj(t), aj(t − 1),Θj) (3.3)

A very common choice [GBC16, p. 171] is to use the rectified linear unit (ReLU) [NH10] as
activation function:

fReLU (x) = max{0, x}. (3.4)

Note that is possible to model the threshold Θ as weight of an connection by inserting a so called
bias neuron to the network which always outputs a value of one and has a connection to every other
neuron. The weights of the connections from the bias neuron brings the threshold as input of the
neuron and therefore the threshold is not explicitly included here.

After this the output function will determine the output value from the activation. It is very common
to use the identity as output function [Kri07, p. 38], but sometimes it could be useful to use a
different output function, for example to rescale the value range.

To build a complete artificial neural network, a set of neurons is used with connections in between
them. You can think of an arbitrary graph. We can distinguish multiple networks by common
topologies. One class are feed forward neural networks. They are organized in layers, with
connections only going in one direction from one layer to the next layer. An example with three
layers is shown in Figure 3.6. On the left, we see an input layer with three neurons, in the middle one
hidden layer with four neurons and on the right an output layer with two neurons. In this example
the layers are fully connected, which means, that every neuron from one layer is connected to every

21

3 Basics and Theory

I1

I2

I3

H1

H2

H3

H4

O1

O2

Figure 3.6: Example of an artificial neural network with an input layer, an output layer and one
hidden layer in between. The layers are fully connected.

neuron on the next layer. There are more topologies, for example recurrent neural networks can
have backwards connections, which leads to loops in the graph, but here we focus on feed forward
networks.

As you see, we already gave the first and the last layer special names by naming them input and
output layers. The input layer gets directly the input values. That means the input layer must have
the same number of neurons as the data input vector is long. The input neurons directly use the
input values as network input, without a propagation function. All output values from the output
neurons, are the network output data vector.

3.3.2 Training

The learning process within ML is a very huge topic for itself. Therefore we only want to introduce
very basic ideas and terms and refer the reader to further literature [GBC16] [Kri07].

Above the general structure of an artificial neural network was described. The knowledge of the
neural network is within the weights of the connections between the neurons. Learning is the
process in which we want to change the connection weights in order to get an optimal output from
the network.

Now, we think of a neural network with random weights at the beginning. We see the network as a
mathematical function, which maps one input vector to an output vector. As we are only looking at
supervised learning, we know the correct output for each input vector. Therefore we can calculate
an error of the network output to the correct output vector. When we change the weights of the
connections the output of the network will probably change, and this will change the error of the

22

3.3 Machine learning and artificial neural networks

•
• •

• • •
• •

• • •
•
•
•
•
• • • • •

•

Underfitting

•
• •

• • •
• •

• • •
•
•
•
•
• • • • •

•

Optimal

•
• •

• • •
• •

• • •
•
•
•
•
• • • • •

•

Overfitting

Figure 3.7: Example of underfitting and overfitting of datapoints (black) with a function (red).

network output. With this we can think of a mathematical error function with all weights of the
network as parameter and the error value as output [Kri07]:

Err : W 7→ R (3.5)

Learning will be the changing of weights to reduce the error. This could be done with gradient decent
algorithms on this function, like the backpropagation of error. Gradient decent is an numerical
optimization algorithm for finding the minimum of function f . The algorithm is an iterative process
where we are going in each step from a point xi in the direction of the negative gradient to find the
next position

xi+1 = xi − a∇ f (xi), (3.6)

with step size a. For more details we refer to literature [Kri07] [GBC16].

We have multiple input data which can be used. Therefore within the learning process not only a
single function like the gradient decent example above is optimized, but a set of functions. Think of
one error function like in Equation (3.5) for each input data point. It is needed to iterate with all of
this functions one after each other. Iterating one step with all of them is called an epoch. Usually
the error of the network output, also called loss in this context, is evaluated after each epoch. We
can plot the loss over the epochs to see how the network learns. An example will be seen later in
Figure 5.1.

The step size within the gradient decent algorithm is also called learning rate, because it influences
how fast the network weights change and therefore how fast the network learns. But a too big
learning rate can lead to divergence. That is why this parameter must be selected carefully as well.
This is strongly dependent on the concrete problem, a general best learning rate cannot be given.

The network should learn a general estimation of the data. It should not be a too coarse approximation,
but also we do not want the network to simply memorize the input data. This effects are shown in
Figure 3.7. Underfitting is simpler to handle, because a too coarse approximation will lead to a
higher error in the output. More complicated is overfitting, because if the network memorizes the
exact training data the error is zero or very small. To compensate this the input data is split into two
sets, the training and the validation set. The training set is used for learning and the validation set is
only used for evaluation of the loss. With this we can detect overfitting if the loss of the training
data will be small, but the validation loss is much higher. If both, the training and the validation set,
show a small loss, we know that the network has learned a general pattern within the data.

23

3 Basics and Theory

Further important concepts used in this work are normalization and regularization. One problem
could be that different values within the input vector are from completely different value ranges. An
example would be if one value stands for the mass of very small droplets and an other value stands
for the velocity. This values could be on different magnitudes. For the network it would be hard to
compensate this. Therefore normalization could be used. This means every value is scaled by the
mean and variation of this value within all sets of the training data. The network then process the
normalized data. It is possible to normalize only the input data points or also the output data.

Regularization does mean that the weights of the connections within the network should stay as
small as possible. This is achieved by adding a penalty term to the loss calculation for bigger
weights in the network. This could help against overfitting.

24

4 Methods and Implementation

Due to the availability of the machine learning frameworks Tensorflow [MAP+15] and Keras
[Cho+15], we have chosen to implement our framework in Python. Because of the partially long
computation time, we split our framework into multiple Python scripts, which are parts of a pipeline.
Each script writes its output on disk, enabling the next scripts to use this data for further processing.
This allows us to only run single stages of this pipeline and to keep data which does not change
between multiple runs. We start with reading the raw data from multiphase flow simulations and
extracting single droplets. For each extracted droplet, we calculate different physical properties and
quantities. Next, we need to match droplets between time steps, to be able to track droplets over
time. From this data, we generate training input for the machine learning models. We train the
models and then use the output for various visualizations. These steps of the pipeline are described
in more detail in the following sections.

4.1 Droplet separation

As written above, we are interested in a lot of single droplets to use them for machine learning.
To get many droplets we use the data from simulations which feature secondary breakup and
atomization. To this end, we have to separate the VOF field data. A droplet should be the region of
neighboring cells, where the volume of fluid value is not zero. As neighboring cells we only see
cells which share a surface, cells only sharing an edge or corner are not seen as neighbors. Our
algorithm picks a random cell as start point for a droplet and iterates over all neighbors to grow the
region of cells which belong to this droplet. Algorithm 4.1 shows this in detail.

4.2 Calculation of droplet properties

We want the machine learning algorithm to run on as many droplet configurations as possible. This
includes variable simulation parameters, such as different fluids, different spatial and temporal
resolution, and different boundary conditions. To handle all these differences, we need do calculate
more general droplet parameters, which are independent of the actual simulation output data and
the used grid. As general parameters we choose: center of mass, mass, velocity, inertia, total
energy, translational energy, rotational energy, oscillation energy, angular velocity, surface, surface
to volume ratio, momentum and angular momentum.

The following sections describe how we calculate these properties from the simulation output.

Here, i is the index of a cell in the rectilinear grid. In the context of droplet properties, we write
∑

i

for the sum over all cells of this droplet.

25

4 Methods and Implementation

Algorithm 4.1 Droplet separation algorithm
procedure SeparateDroplets(vo f)

cell Ids← getCellIdsWhereValueIsNotZero(vo f)
while size(cell Ids) > 0 do

cell Id = cell Ids.pop()
cellGroup.append(cell Id)
cellGroupCheck ← 0
while cellGroupCheck < size(cellGroup) do

neighbors← getNeighbors(cellGroup[cellGroupCheck])
// Front, Back, Top, Bottom, Left, Right

for all n ∈ neighbors do
if n ∈ cell Ids then

cellGroup.append(n)
cell Ids.remove(n)

end if
end for
cellGroupCheck ← cellGroupCheck + 1

end while
makeDroplet(cellGroup)

end while
end procedure

The volume of a single droplet is defined as

Vdroplet =
∑
i

fiVi, (4.1)

with VOF fi of cell i and volume Vi . As we have no density given in the data, we assume a density
of 1 and use the volume as synonym for mass.

The center of mass is defined as

rdroplet =
∑

i rimi∑
i mi
, (4.2)

with cell center ri and mass mi of cell i.

We get the velocity of the center of mass by

vdroplet =
∑

i vimi∑
i mi
, (4.3)

with velocity vi and mass mi of cell i.

The inertia tensor Θdroplet is used as a parameter for the droplet deformation.

Θdroplet =
©­­«
∑

i mi(y
2
i + z2

i) −
∑

i mixiyi −
∑

i mixizi
−
∑

i mixiyi
∑

i mi(x2
i + z2

i) −
∑

i miyizi
−
∑

i mixizi −
∑

i miyizi
∑

i mi(x2
i + y2

i)

ª®®¬ , (4.4)

26

4.2 Calculation of droplet properties

with (xi, yi, zi)T = ri − rdroplet .

To calculate the total energy of a droplet, we assume a particle system where each cell is a particle
of mass mi. The energy of one cell is

Ei =
1
2

miv2
i . (4.5)

The total energy of the droplet is the sum of all cell energies

Edroplet =
∑
i

Ei . (4.6)

In the next sections, we want to split the total energy into a part for translational energy ET , rotation
energy ER and oscillation energy EO. Assuming the conservation of energy, the total energy is

Edroplet = ET + ER + EO, (4.7)

with ET ≥ 0, ER ≥ 0, EO ≥ 0.

The translational energy is

ET =
1
2

mdropletv2
droplet . (4.8)

Rotation energy is defined as

ER =
1
2
ωTdropletΘdropletωdroplet, (4.9)

with the angular velocity ωdroplet , whose calculation is given below.

The oscillation energy can be written as the rest term of the total droplet energy

EO = Edroplet − ET − ER . (4.10)

Given the angular velocity, we know the rotation velocity of each cell is

vi,R = ωdroplet × r′i, (4.11)

where r′i is the cell center position relative to the center of mass of the droplet ri − rdroplet . Even if
we would know vi,rot we cannot easily calculate ωdroplet because the cross product has no inverse
function.

We can invert this function if we knew at least the direction of omega. Therefore, we assume that
the droplet rotates around the principal axis of inertia, which should be physically plausible. ωdir is
a unit vector in direction of the principal axis of inertia. This leads to the equation

ωdroplet = ω̂dropletωdir, (4.12)

27

4 Methods and Implementation

where ω̂droplet is only a scalar. Furthermore, we now assume a moving coordinate system aligned
with the center of mass and the center of mass velocity of the droplet, hence v′

droplet
= 0. Inserting

this into Equation (4.11) gives us

ω̂i =
|v′i,R |

|ωdir × r′i |
, (4.13)

with v′i,R as projection of v′i into the direction of ωdir × r′i.

The individual ω̂i of all cells are averaged by cell weight

ω̂droplet =

∑
i ω̂imi∑
i mi

. (4.14)

We can extend this method to use three axes (i.e. all three principal axis of inertia) and combine
these three resulting rotations to a total rotation. The problem with this is the limited numerical
precision. We can get cases where ET + ER > Edroplet and with this EO < 0, which is physically
incorrect. Therefore we use a second method for physical correctness.

The idea is to formulate this as an optimization problem with constraints.

The velocity of each cell could be split in three parts: translational velocity, rotation velocity and
oscillation velocity:

vi = vdroplet + vi,R + vi,O, (4.15)

where vi and vdroplet are known and vi,R = ωdroplet × r′i.

Now, we want to minimize the remaining oscillation velocity
∑

i ‖vi,O‖2, finding an optimal
ωdroplet .

min
ωdroplet

{∑
i

‖vi,O‖2

}
. (4.16)

The constraint for this optimization problem is the conservation of energy in Equation (4.7)

We can bring this optimization problem to the form of a quadratically constrained quadratic program
(QCQP), which could be solved with optimization toolboxes. In our implementation we use the
IBM CPLEX Optimizer [IBM]. With this method we get physically correct energies in all cases.

Next we need the surface of a single droplet. To calculate the surface of a single droplet we used an
implementation of the PLIC algorithm [KSM+13]. We extract all planes of the droplet and sum the
area of them together to the total surface area of the droplet. By dividing the surface by the volume,
we can get the surface to volume ration.

Finally the momentum of the droplet is defined as

pdroplet = mdropletvdroplet, (4.17)

and the angular momentum as

Ldroplet = Θdropletωdroplet . (4.18)

28

4.3 Matching between time steps

1 2 3 4 5

Time steps

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

coll.

coll.
sep.

Droplet trace of length 3.

Figure 4.1: Example of the droplet graph showing separations, collisions and a droplet trace.

4.3 Matching between time steps

Above, we have extracted single droplets and calculated droplet properties. This was done for each
time step individually. Now, we want to observe droplets over time and therefore we need to track
the droplets between time steps. To this end, we want to build a graph for all droplets in time. For
each droplet in each time step there is a node in the graph. We want to know which of this nodes
belong to the same droplet at different time steps. Therefore we want connections in the graph
between nodes which stands for the same droplet at different time steps. And of course we only
want the connection between neighboring time steps.

We use the method of forward and backwards advection. This is a simple version of the method
from Karch et al. [KSB+17]. For each droplet in one time step, we look at each cell. For each cell
center we have a velocity vector. With the cell center position, the velocity and the time difference
to the next step, we can calculate one step with the Euler method to approximate the position of
the cell center in the next time step. We look up to which cell of the next time step this point in
space belongs and then if this cell is part of a droplet. If we find a droplet in the next time step, we
can add a connection to our droplet graph between the droplet in the current time step and in the
next time step. An example of such a graph is given in Figure 4.1 The same thing is also done in
backwards direction by calculating the inverse movement from the current time step to the previous
time step. This increases precision as the method is only an approximation.

Within this graph, we now can also see separations and collisions of droplets. If we have edges from
one droplet in time step t to two or more droplets in time step t + 1, this droplet has separated. If we
have edges from two or more droplets in time step t to one droplet in time step t + 1, droplets have
collided. We want to ignore separations and collisions and therefore are interested in the droplets
with exactly one incoming and one outgoing edge. Of course, more combinations are possible.
For example, a droplet which does not have a connection to the previous, or next time step, could
happen, if this droplet enters, or leaves, the simulation domain in the current time step.

29

4 Methods and Implementation

Figure 4.2: Rendering of a droplet within one trace from the jet dataset. The surface is rendered
with the PLIC method. The single droplets are rendered at their actual position in the
simulation domain. The offset between them is the actual droplet movement, from left
to right.

As we are interested in single droplets over time, we define the term droplet trace. Hereby we mean
all paths where we can follow one single droplet as long as possible over time. A separation, a
collision, or if the droplet just appears, means the start of a new trace. The trace goes as long as we
find exactly one connection in the graph to the next time step and then ends also with a collision, a
separation, or just by leaving the domain. In Figure 4.2, we show renderings of the single droplets
within one trace. The trace is nine time steps long. Here, the beginning of the trace was a separation
from a bigger droplet and the trace ends because the droplet collides with another droplet in the
next time step.

In the section above, we have described how to calculate the properties and physical quantities of
this droplets. Figure 4.3 shows all of these values plotted over time within this example trace. These
values will be used for further processing.

4.4 Generation of ML input and model training

We want to analyze two different problem cases. The first would be to generate a model which
could predict the actual droplet values in the next time step. Therefore we need traces of constant
length l. We then use l − 1 time steps as input to predict the model in the l-th time step of the trace.
To get this constant length traces and preferably many data for training we use overlapping subtraces.
For example if l is 5 and we have a trace of length 8, we can get 4 subtraces.

The second case is to predict whether a droplet separates or not. To predict this we get a similar set
of subtraces of constant length. The difference is that we use the complete subtrace of length l as
input and additionally we get the information from the graph if the subtrace ends within the next n
time steps after the subtrace ends.

The actual input vector is then generated by using a vector of the properties for each droplet of a
subtrace. To generate the actual input data we replace the subtraces by a vector of the properties of
each droplet. The single vectors for each droplet of one time step are then sticked together.

30

4.4 Generation of ML input and model training

0.00000
0.00002

Volume (cm^3)

0

5000
Velocity (cm/s)

0
500

Energy tot. (10E-7 J)

0
500

Energy tr. (10E-7 J)

0.000

0.005
Energy rot. (10E-7 J)

0.00
0.01

Energy oz. (10E-7 J)

0

1000
Angular veclocity norm

0.000

0.005
Surace (cm^2)

0
100

Surface / Volume

0.0

0.2
Momentum norm

90 91 92 93 94 95 96 97 98
Timestep

0.00000

0.00001
A. Momentum norm

Figure 4.3: Development of the physical properties of single droplet over time.

31

5 Results

Our final neural network consists of an input layer with the length of the input data vector, followed
by two hidden layers with 16 fully connected neurons each, followed by an output layer with a single
neuron for one value. The hidden layers use the ReLU activation function, while the output layer
uses the linear activation function. The input of our network is the full vector of a droplet trace
as described in the last section. We only use a single output neuron to predict exactly one droplet
property. To predict multiple droplet properties, we train different networks with the same input
vectors, but a different output property on each. We did this, because not all properties show the
same kind of predictability, at least with our used datasets. By splitting the property prediction to
different networks, the influence of more badly predictable properties does not influence the learning
of the other properties. We also think this does increase the understanding of the learning results.
The network layout of two hidden layers with 16 neurons each has shown good results during
this work. We have tried different network layouts to find the best by looking at overfitting and
underfitting, but this could of course be analyzed more deeply in possible future work. Furthermore
adding regularization to the network has shown better results of learning. Because the input data
values varies over multiple magnitudes between different properties, we used normalization of the
input. Each variable was scaled to have a standard deviation of 1 around its mean.

Loss curves of the training process are shown in Figure 5.1. This example is for the jet dataset
with a trace length of seven, which means that the input vector covers six time steps for the eleven
properties each. From the jet dataset we could extract 62 560 overlapping traces of length seven. We
split this in training and validation data by 70% to 30% after random mixing. As you notice, there
is an offset in the loss between validation and test data even at the beginning before the first learning
step. Further investigation has shown that this is probably some bias within the data. Repeating the
random mixing and splitting of the training and validation data changes this offset. In average with
multiple repeats this offset is near zero, but with high variation for single evaluations. Therefore
we ignore this offset for now and just evaluate the shape of the loss over time. Also surprisingly
seems the fact that the surface to volume ratio shows a bad learning performance. This is surprising
because the mass and surface show good results. As we wrote above, mass is directly bound to the
volume and the surface to volume ratio is simply the division of surface by volume.

With the trained models, we predict future droplet properties with one trace and compare this to the
ground truth. The difference is shown as error. We have error values for each properties individually
and a total error as euclidean norm of all error values. A visualization of the total error is shown
in Figure 5.2. The error values are rendered as colored dot at the center of mass of each droplet.
Additionally, a transparent rendering of the total jet with PLIC surface is shown in the image for
context. We used the tool ParaView [Aya15] for this visualizations.

33

5 Results

100 0 100 200 300 400 500 6000.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
val_loss
loss
start_val_loss
start_loss

Mass

100 0 100 200 300 400 500 6000.5

0.0

0.5

1.0

1.5

2.0
val_loss
loss
start_val_loss
start_loss

Velocity norm

100 0 100 200 300 400 500 6000.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
val_loss
loss
start_val_loss
start_loss

Total energy

100 0 100 200 300 400 500 6000.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
val_loss
loss
start_val_loss
start_loss

Translational energy

100 0 100 200 300 400 500 6000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
val_loss
loss
start_val_loss
start_loss

Rotation energy

100 0 100 200 300 400 500 6001

0

1

2

3

4

5

6
val_loss
loss
start_val_loss
start_loss

Oscillation energy

100 0 100 200 300 400 500 6000.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
val_loss
loss
start_val_loss
start_loss

Angular velocity norm

100 0 100 200 300 400 500 6000.5

0.0

0.5

1.0

1.5

2.0

2.5
val_loss
loss
start_val_loss
start_loss

Surface

100 0 100 200 300 400 500 6000.0

0.5

1.0

1.5

2.0

2.5

3.0
val_loss
loss
start_val_loss
start_loss

Surface to volume ratio

100 0 100 200 300 400 500 6000.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
val_loss
loss
start_val_loss
start_loss

Momentum norm

100 0 100 200 300 400 500 6000.2

0.0

0.2

0.4

0.6

0.8

1.0
val_loss
loss
start_val_loss
start_loss

Angular momentum norm

Figure 5.1: Loss curves of the learning process with the jet dataset and an input trace length of 6
time steps.

34

Figure 5.2: Droplet prediction total error visualized as colored dots for time step 95 of the jet
dataset.

You can see a few red dots distributed over the domain. However, there is a concentration of red
dots at the right of the jet. This is where the droplets leave the domain. The calculation of the
properties there could be wrong, for droplets which have already partially left the domain. It is
plausible that we can see a larger error there.

Furthermore, we picked some of the dots with large error from the center and have subjected them
to a deeper investigation. In Figure 5.3 we look at the development of the properties over time of
such a droplet. Additionally, we plotted the predicted values as blue dots for each property. Because
we used six time steps as input vector and the trace is only eight time steps long, we only have
predictions for the last two time steps in this trace. We notice that some values have a massive
increase in the last time step. Looking at the mass, we see also a small increase in the last time step.
This is physically incorrect as the mass should stay constant. A deeper look at the data shows, that
here the matching between the time steps is incorrect and a collision was overlooked. Therefore, the
droplet properties change, as we have a new droplet after the collision. However, we think it is a
good validation that this is still found as an interesting droplet with higher prediction error. The
error of the last time step is also visualized as spider chart in Figure 5.4. In contrast to Figure 5.3
where the physical values are shown, we calculate the error within the normalized values which are
used for training of the neural network. We think this allows for a better comparison of the error
values.

We have picked a second random example with high error within the 3D view. Also for this droplet,
we show the same diagrams as before in Figure 5.5 and Figure 5.6. First of all, we see much more
variation within the properties. There are changes in rotational energy, oscillation energy, angular

35

5 Results

0.00000
0.00002

Volume (cm^3)

0

5000
Velocity (cm/s)

0

500
Energy tot. (10E-7 J)

0

500
Energy tr. (10E-7 J)

0.0
0.2

Energy rot. (10E-7 J)

0.0

Energy oz. (10E-7 J)

0

10000Angular veclocity norm

0.000

0.005
Surace (cm^2)

0

5000Surface / Volume

0.0

0.2Momentum norm

67 68 69 70 71 72 73 74 75 76
Timestep

0.00000

0.00005
A. Momentum norm

Figure 5.3: Development of the properties over time for the first example droplet including the
predicted values (blue dots). Some of the values increase massively in the last time step,
because of an error in the droplet matching. We see the prediction does not expect this.36

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6Mass

Velocity

Energy tot.

Energy tr.

Energy rot.

Energy oz.Omega

Surace

Surface / Volume

Momentum

A. Momentum

Figure 5.4: Spider chart of the error by property for the last time step of the first example droplet.
We see a large error for rotational energy and angular velocity within the normalized
value range. Error values smaller than 0.1 was set to the value of 0.1 for better visibility
of the glyph.

velocity and the surface area. In Figure 5.7 we show renderings if this droplet over time. The
droplet has a very bumpy shape and the shape changes a lot over time. Therefore, we think we have
found a droplet which could be interesting.

For comparison we look now at a droplet with a very small error value in the 3D view. Again we
look at the development of the properties over time and the predicted values in Figure 5.8. First of
all, we see that the trace of this droplet is a lot longer. Therefore we can see much more predicted
values than in the last examples. A rendering of this droplet is shown in Figure 5.9. This droplet
looks a lot more uniform and constant over time. But we see that the rotational energy, the angular
velocity and the angular momentum have variation over time. They all share a similar pattern
within the variation, which is not at all surprising, as angular momentum and rotational energy are
directly related to the angular velocity and all other values are more or less constant. For angular
velocity and rotational energy, we can see that the prediction can follow this trend. Unfortunately,
the prediction of the oscillation energy and the angular momentum seem to be a lot worse.

The same kind of analysis was done with the splash dataset. Figure 5.10 shows the total error within
the 3D view of the data for one time step. Overall we got very similar results, and therefore we want
to only look at one example.

In contrast to the jet, the splash dataset contains very long droplet structures, called ligatures. You
can see an example in Figure 5.12. The ligatures do not behave like the the round droplets. As
expected, the network output has a high error. Again, we show the plot of the properties over time

37

5 Results

0.0000

0.0001
Volume (cm^3)

0

5000
Velocity (cm/s)

0

2000
Energy tot. (10E-7 J)

0

2000
Energy tr. (10E-7 J)

0

Energy rot. (10E-7 J)

0

Energy oz. (10E-7 J)

0

5000
Angular veclocity norm

0.00

0.02
Surace (cm^2)

0

5000Surface / Volume

0.0
0.5

Momentum norm

88 89 90 91 92 93 94 95 96 97
Timestep

0.000

0.001
A. Momentum norm

Figure 5.5: Development of the properties over time for the second example droplet including the
predicted values (blue dots). We see variation the rotational and oscillation energy, as
well as the angular velocity. Some of the predictions are clearly different to the ground
truth.

38

1

2

3

4
Mass

Velocity

Energy tot.

Energy tr.

Energy rot.

Energy oz.Omega

Surace

Surface / Volume

Momentum

A. Momentum

Figure 5.6: Spider chart of the error by property for the second to last time step of the second
example droplet. We see a large error for rotational energy within the normalized value
range. Error values smaller than 0.1 was set to the value of 0.1 for better visibility of
the glyph.

Figure 5.7: Rendering of the second example droplet over time. Only every second time step is
shown. The surface was reconstructed using PLIC. The right droplet looks already sep-
arated, but this is still one droplet, as defined in Section 4.1. The surface approximation
of the PLIC method is inaccurate at this point.

39

5 Results

0.00000

0.00002
Volume (cm^3)

0

Velocity (cm/s)

0

200
Energy tot. (10E-7 J)

0

200
Energy tr. (10E-7 J)

0.000
0.002

Energy rot. (10E-7 J)

0.1

0.0Energy oz. (10E-7 J)

0

1000
Angular veclocity norm

0.000

0.005Surace (cm^2)

0

5000Surface / Volume

0.0

0.1
Momentum norm

70 75 80 85 90 95 100 105 110
Timestep

0.000000

0.000005
A. Momentum norm

Figure 5.8: Development of the properties over time for the example droplet with low error including
the predicted values (blue dots). We see a longer trace with many predictions. The
prediction for angular velocity and rotational energy does follow the ground truth.40

Figure 5.9: Rendering of the example droplet with low error over time. The surface was recon-
structed using PLIC. Only a part of the trace for this droplet is shown.

Figure 5.10: Droplet prediction total error visualized as colored dots for time step 111 of the splash
dataset.

with the predicted values in Figure 5.11. For this example, we used a trace length of four time steps.
So far this was expectable, but we see a different problem with the ligatures. In Figure 5.10, we see
that only some of the ligatures have a point with an error value at all. The problem here is that
ligatures are not very stable and therefore have a lot of separations. We cannot find a trace which
is long enough to use for prediction, even if we only used a shorter trace length here. This is a
general limitation of our method, as we explicitly restricted our model to traces without collision
and separation.

Additionally to the development of the droplet parameters, we want to predict droplet separations.
We divided the droplet traces in two classes. One class for the droplets which separate within the
next few time steps after the trace, and the other class for droplets which stay stable for the same
amount of time steps after the trace. On this data, we did not find a network which was able to

41

5 Results

0

Volume (cm^3)1e 7

0
1000

Velocity (cm/s)

0.0

Energy tot. (10E-7 J)

0.0

Energy tr. (10E-7 J)

0.00000

0.00002Energy rot. (10E-7 J)

0.1

0.0Energy oz. (10E-7 J)

0
500

Angular veclocity norm

0.0000

0.0005Surace (cm^2)

0

20000
Surface / Volume

0.0000

0.0005
Momentum norm

107 108 109 110 111 112 113
Timestep

0.0

0.5
A. Momentum norm1e 7

Figure 5.11: Development of the properties over time for a droplet from the splash dataset including
the predicted values (blue dots). Some of the predictions show a difference to the
ground truth. The trace of this ligature is only five time steps long and therefore very
short.

42

Figure 5.12: Rendering of the example droplet from the splash dataset. The surface was recon-
structed using PLIC. Droplets with such long structures are also called ligatures.

learn a separation prediction with satisfying results. We think there are multiple reasons for this.
One is that the datasets only contains very few separations. For example, within the splash dataset
for a trace length of five and a search for separation within the next 3 time steps, we get 72 667
training sets for no separation, but only 630 sets for a separation. This is similar for the jet dataset:
58 238 sets for no separation and 1 970 sets for separation. Also, it could be possible that there is no
particular pattern within the data, where a separation could be predicted from. And finally, more
time is needed for a deeper investigation.

43

6 Conclusion and Outlook

6.1 Conclusion

In this thesis, we have presented our framework for analyzing droplets from multiphase flow
simulations with the help of ML. This is used to produce a visualization where we can find
interesting droplets within the data.

We started with extracting droplets from simulation data from the solver FS3D. These droplets
where tracked over time and we calculated physical properties and quantities of them. With this,
we trained artificial neural networks which could predict the future development of the droplet
properties. We compared the prediction to the ground truth and used the resulting error as rate of
how interesting a droplet is. Our theory is that the neural network has learned the average behavior
of the droplets and our definition of an interesting droplet is that it behaves different to the average
droplet.

We used these results to analyze the two given datasets and have shown the usability of our work on
examples. For the prediction of the droplet properties, we have seen good results within the learning
process at least for most of the properties. Unfortunately, the results for the droplet separation where
not usable to generate meaningful visualizations. We need to investigate this further.

6.2 Future work

In future, our work could be extended in multiple directions. It would be interesting to apply our
method to more datasets and include further parameters, such as the type of fluid or further boundary
conditions from the simulation. We could also try to use more or different properties from the
droplets, for example a more explicit measurement for the droplet shape. Furthermore the learning
process of the droplet property prediction could be analyzed more systematic for optimization of
the network layout and of course an improvement of the separation prediction is needed.

Finally, the visualization should be improved. The property prediction error values are shown as
point data wihtin the 3D view. The visualization could be changed such that the PLIC surfaces
show the color and we do not need the points anymore. Also, the implementation could me more
interactive. At the moment, our framework writes vtk-files, which we than can view within ParaView.
The other charts were generated by scripts. The analysis process would be easier for the observer, if
we can automate this by offering the possibility to select single droplets within the 3D view and
automatically generating the charts for this droplet.

45

Bibliography

[Aya15] U. Ayachit. The ParaView Guide: A Parallel Visualization Application. USA: Kitware,
Inc., 2015. isbn: 1930934300, 9781930934306 (cit. on p. 33).

[BLK13] I. Bright, G. Lin, J. N. Kutz. “Compressive sensing based machine learning strategy
for characterizing the flow around a cylinder with limited pressure measurements”.
In: Physics of Fluids 25.12 (2013), p. 127102. doi: 10.1063/1.4836815. eprint:
https://doi.org/10.1063/1.4836815. url: https://doi.org/10.1063/1.4836815
(cit. on p. 15).

[Cho+15] F. Chollet et al. Keras. https://keras.io. 2015 (cit. on pp. 15, 25).
[EEG+16] K. Eisenschmidt, M. Ertl, H. Gomaa, C. Kieffer-Roth, C. Meister, P. Rauschenberger,

M. Reitzle, K. Schlottke, B. Weigand. “Direct numerical simulations for multiphase
flows: An overview of the multiphase code FS3D”. In: Applied Mathematics and
Computation 272 (2016). Recent Advances in Numerical Methods for Hyperbolic
Partial Differential Equations, pp. 508–517. issn: 0096-3003. doi: https://doi.org/
10.1016/j.amc.2015.05.095. url: http://www.sciencedirect.com/science/article/
pii/S0096300315007195 (cit. on pp. 15, 17).

[GBC16] I. Goodfellow, Y. Bengio, A. Courville. Deep Learning. http://www.deeplearningboo
k.org. MIT Press, 2016 (cit. on pp. 15, 19, 21–23).

[HN81] C. Hirt, B. Nichols. “Volume of fluid (VOF) method for the dynamics of free
boundaries”. In: Journal of Computational Physics 39.1 (1981), pp. 201–225. issn:
0021-9991. doi: https://doi.org/10.1016/0021-9991(81)90145-5. url: http:
//www.sciencedirect.com/science/article/pii/0021999181901455 (cit. on pp. 15,
17).

[IBM] IBM. IBM ILOG CPLEX Optimization Studio. https://www.ibm.com/analytics/
cplex-optimizer (cit. on p. 28).

[Kri07] D. Kriesel. A Brief Introduction to Neural Networks. 2007. url: http://www.dkriesel.
com (cit. on pp. 15, 19–23).

[KSB+17] G. K. Karch, F. Sadlo, S. Boblest, M. Ertl, B. Weigand, K. Gaither, T. Ertl. “Vi-
sualization of Feature Separation in Advected Scalar Fields”. In: arXiv preprint
arXiv:1705.05138 (May 2017). arXiv: 1705.05138. url: http://arxiv.org/abs/1705.
05138 (cit. on p. 29).

[KSM+13] G. K. Karch, F. Sadlo, C. Meister, P. Rauschenberger, K. Eisenschmidt, B. Weigand,
T. Ertl. “Visualization of piecewise linear interface calculation”. In: 2013 IEEE
Pacific Visualization Symposium (PacificVis). Feb. 2013, pp. 121–128. doi: 10.1109/
PacificVis.2013.6596136 (cit. on pp. 15, 18, 28).

[LB16] M. Liu, D. Bothe. “Numerical study of head-on droplet collisions at high Weber
numbers”. In: Journal of Fluid Mechanics 789 (2016), pp. 785–805. issn: 14697645.
doi: 10.1017/jfm.2015.725 (cit. on pp. 15, 18).

47

https://doi.org/10.1063/1.4836815
https://doi.org/10.1063/1.4836815
https://doi.org/10.1063/1.4836815
https://keras.io
https://doi.org/https://doi.org/10.1016/j.amc.2015.05.095
https://doi.org/https://doi.org/10.1016/j.amc.2015.05.095
http://www.sciencedirect.com/science/article/pii/S0096300315007195
http://www.sciencedirect.com/science/article/pii/S0096300315007195
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/https://doi.org/10.1016/0021-9991(81)90145-5
http://www.sciencedirect.com/science/article/pii/0021999181901455
http://www.sciencedirect.com/science/article/pii/0021999181901455
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
http://www.dkriesel.com
http://www.dkriesel.com
http://arxiv.org/abs/1705.05138
http://arxiv.org/abs/1705.05138
http://arxiv.org/abs/1705.05138
https://doi.org/10.1109/PacificVis.2013.6596136
https://doi.org/10.1109/PacificVis.2013.6596136
https://doi.org/10.1017/jfm.2015.725

Bibliography

[LC87] W. E. Lorensen, H. E. Cline. “Marching Cubes: A High Resolution 3D Surface
Construction Algorithm”. In: Proceedings of the 14th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’87. New York, NY, USA: ACM,
1987, pp. 163–169. isbn: 0-89791-227-6. doi: 10.1145/37401.37422. url: http:
//doi.acm.org/10.1145/37401.37422 (cit. on p. 15).

[LT15] J. Ling, J. Templeton. “Evaluation of machine learning algorithms for prediction of
regions of high Reynolds averaged Navier Stokes uncertainty”. In: Physics of Fluids
27.8 (2015), p. 085103. doi: 10.1063/1.4927765. eprint: https://aip.scitation.org/
doi/pdf/10.1063/1.4927765. url: https://aip.scitation.org/doi/abs/10.1063/1.
4927765 (cit. on p. 15).

[MAP+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Y. Jia, Rafal Joze-
fowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vi-
jay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, Xiaoqiang Zheng. TensorFlow: Large-Scale Machine Learn-
ing on Heterogeneous Systems. Software available from tensorflow.org. 2015. url:
https://www.tensorflow.org/ (cit. on pp. 15, 25).

[NH10] V. Nair, G. E. Hinton. “Rectified linear units improve restricted boltzmann machines”.
In: Proceedings of the 27th international conference on machine learning (ICML-10).
2010, pp. 807–814 (cit. on p. 21).

[NW76] W. F. Noh, P. Woodward. “SLIC (Simple Line Interface Calculation)”. In: Proceedings
of the Fifth International Conference on Numerical Methods in Fluid Dynamics
June 28 – July 2, 1976 Twente University, Enschede. Ed. by A. I. van de Vooren,
P. J. Zandbergen. Berlin, Heidelberg: Springer Berlin Heidelberg, 1976, pp. 330–340.
isbn: 978-3-540-37548-7 (cit. on pp. 15, 17).

[OS01] M. Oliveira, A. Sousa. “Neural network analysis of experimental data for air/water
spray cooling”. In: Journal of Materials Processing Technology 113.1 (2001). 5th
Asia Pacific conference on Materials processing, pp. 439–445. issn: 0924-0136. doi:
https://doi.org/10.1016/S0924-0136(01)00646-X. url: http://www.sciencedirect.
com/science/article/pii/S092401360100646X (cit. on p. 15).

[RK98] W. J. Rider, D. B. Kothe. “Reconstructing Volume Tracking”. In: Journal of Computa-
tional Physics 141.2 (1998), pp. 112–152. issn: 0021-9991. doi: https://doi.org/
10.1006/jcph.1998.5906. url: http://www.sciencedirect.com/science/article/
pii/S002199919895906X (cit. on p. 15).

[TSSP16] J. Tompson, K. Schlachter, P. Sprechmann, K. Perlin. “Accelerating Eulerian Fluid
Simulation With Convolutional Networks”. In: CoRR abs/1607.03597 (2016). arXiv:
1607.03597. url: http://arxiv.org/abs/1607.03597 (cit. on p. 15).

[You82] D. L. Youngs. “Time-dependent multi-material flow with large fluid distortion”. In:
Numerical methods for fluid dynamics 24 (1982), pp. 273–285 (cit. on p. 15).

48

https://doi.org/10.1145/37401.37422
http://doi.acm.org/10.1145/37401.37422
http://doi.acm.org/10.1145/37401.37422
https://doi.org/10.1063/1.4927765
https://aip.scitation.org/doi/pdf/10.1063/1.4927765
https://aip.scitation.org/doi/pdf/10.1063/1.4927765
https://aip.scitation.org/doi/abs/10.1063/1.4927765
https://aip.scitation.org/doi/abs/10.1063/1.4927765
https://www.tensorflow.org/
https://doi.org/https://doi.org/10.1016/S0924-0136(01)00646-X
http://www.sciencedirect.com/science/article/pii/S092401360100646X
http://www.sciencedirect.com/science/article/pii/S092401360100646X
https://doi.org/https://doi.org/10.1006/jcph.1998.5906
https://doi.org/https://doi.org/10.1006/jcph.1998.5906
http://www.sciencedirect.com/science/article/pii/S002199919895906X
http://www.sciencedirect.com/science/article/pii/S002199919895906X
http://arxiv.org/abs/1607.03597
http://arxiv.org/abs/1607.03597

[You84] D. L. Youngs. “An interface tracking method for a 3D Eulerian hydrodynamics code”.
In: Atomic Weapons Research Establishment (AWRE) Technical Report 44/92 (1984),
p. 35 (cit. on p. 15).

[YS07] K. Yetilmezsoy, A. Saral. “Stochastic modeling approaches based on neural network
and linear–nonlinear regression techniques for the determination of single droplet
collection efficiency of countercurrent spray towers”. In: Environmental Modeling &
Assessment 12.1 (Feb. 2007), pp. 13–26. issn: 1573-2967. doi: 10.1007/s10666-006-
9048-4. url: https://doi.org/10.1007/s10666-006-9048-4 (cit. on p. 15).

All links were last followed on July 11, 2018.

https://doi.org/10.1007/s10666-006-9048-4
https://doi.org/10.1007/s10666-006-9048-4
https://doi.org/10.1007/s10666-006-9048-4

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Structure

	2 Related Work
	3 Basics and Theory
	3.1 Multiphase flow simulations data
	3.2 Used datasets
	3.3 Machine learning and artificial neural networks

	4 Methods and Implementation
	4.1 Droplet separation
	4.2 Calculation of droplet properties
	4.3 Matching between time steps
	4.4 Generation of ML input and model training

	5 Results
	6 Conclusion and Outlook
	6.1 Conclusion
	6.2 Future work

	Bibliography

