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Abstract

The World Wide Web is arguably the most important medium of our time. Billions of users

rely on the security of the web each day for tasks such as banking, shopping, and business and

private communication.

The web is a heterogeneous infrastructure developing at a high pace. The question of whether

the web infrastructure or certain web applications are secure is not easy to answer. Standards

and applications today are reviewed by experts before they are deployed, but all too often even

serious security vulnerabilities are simply overlooked.

In this thesis, we propose a formal model for the web infrastructure which enables a rigorous

formal analysis of security and privacy in the web. Our model is the most comprehensive

and expressive model of the web infrastructure to date. It facilitates accurate security and

privacy analyses of current web standards and applications, and can serve as a reference for

web security researchers, developers of new technologies and standards, and for teaching web

security concepts.

As a case study we analyze the security of two important standards for federated authorization

and authentication, OAuth 2.0 and OpenID Connect. Standardized by the IETF and OpenID

Foundation, respectively, they are among the most widely deployed single sign-on systems in

the web.

For our analysis, we develop detailed formal models for both systems based on our model

of the web infrastructure. These models then allow us to precisely define the security goals of

authentication, authorization and session integrity.

While proving security with respect to these goals, we found a total of five new attacks on

the two single sign-on systems, breaking all of the security goals. In particular OAuth 2.0 had

been analyzed many times before; the fact that we were able to find new attacks in OAuth 2.0

demonstrates the potential of rigorous analyses in our web infrastructure model.

We develop fixes against the underlying vulnerabilities and are then able to prove the security

of OAuth 2.0 and OpenID Connect. Since our results are based on a comprehensive model,

our proofs can exclude large classes of attacks against OAuth and OpenID Connect, including

yet unknown attack vectors. Our attacks and fixes led to the development of new security

recommendations by the standardization organizations.
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Kurzzusammenfassung

Das World Wide Web ist wohl das wichtigste Medium unserer Zeit. Milliarden von Nutzern

verlassen sich täglich für Banking, Shopping sowie geschäftliche und private Kommunikation

auf die Sicherheit des Internets.

Das Web ist eine heterogene Infrastruktur, die sich in hohem Tempo entwickelt. Die Frage,

ob die Web-Infrastruktur oder bestimmte Web-Anwendungen sicher sind, ist nicht einfach

zu beantworten. Standards und Anwendungen werden heute von Experten überprüft, bevor

sie eingesetzt werden, aber allzu oft werden auch schwerwiegende Sicherheitslücken einfach

übersehen.

In dieser Arbeit schlagen wir ein formales Modell für die Web-Infrastruktur vor, das eine

rigorose formale Analyse der Sicherheit und Privacy im Web ermöglicht. Unser Modell ist das

bisher umfassendste und ausdrucksstärkste Modell für die Web-Infrastruktur. Es ermöglicht

genaue Sicherheits- und Privacyanalysen aktueller Webstandards und Anwendungen und kann

als Referenz für Websicherheitsforscher, Entwickler neuer Technologien und Standards sowie für

die Vermittlung von Websicherheitskonzepten dienen.

Als Fallstudie analysieren wir die Sicherheit zweier wichtiger Standards für föderierte Autorisie-

rung und Authentifizierung, OAuth 2.0 und OpenID Connect. Von der IETF bzw. OpenID Foun-

dation standardisiert, gehören sie zu den am weitesten verbreiteten Single-Sign-On-Systemen

im Web.

Für unsere Analyse entwickeln wir detaillierte formale Modelle für beide Systeme auf Basis

unseres Modells der Web-Infrastruktur. Diese Modelle erlauben es uns dann, die Sicherheitsziele

Authentifizierung, Autorisierung und Sitzungsintegrität genau zu definieren.

Während des Beweises der Sicherheit in Bezug auf diese Ziele fanden wir insgesamt fünf neue

Angriffe auf die beiden Single-Sign-On-Systeme, die alle Sicherheitsziele verletzen. Insbesondere

OAuth 2.0 wurde zuvor bereits vielfach analysiert; die Tatsache, dass wir noch neue Angriffe

finden konnten, zeigt das Potenzial rigoroser Analysen in unserem Web-Infrastrukturmodell auf.

Wir entwickeln Schutzmaßnahmen gegen die zugrunde liegenden Schwachstellen und sind

dann in der Lage, die Sicherheit von OAuth 2.0 und OpenID Connect zu beweisen. Da unse-

re Ergebnisse auf einem umfassenden Modell basieren, können unsere Beweise große Klassen

von Angriffen gegen OAuth und OpenID Connect ausschließen, einschließlich noch unbekann-

ter Angriffsvektoren. Unsere Angriffe und Schutzmaßnahmen führten zur Entwicklung neuer

Sicherheitsempfehlungen durch die Standardisierungsorganisationen.
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1. Introduction

“Storage of ASCII text, and display on 24x80 screens, is in the short term sufficient,

and essential. Addition of graphics would be an optional extra with very much less

penetration for the moment.”

— Tim Berners-Lee, Information Management: A Proposal, March 1989 [Ber89]

In 1991, when the first web page was created, it was meant as a way to share text and simple

graphics. Since then, the World Wide Web has grown remarkably: Today, it consists of hundreds

of billions of web pages [GGS] and can be accessed by almost anybody via a myriad of devices

ranging from smart phones to refrigerators. Initially limited to reading and writing mostly

text-based information, today’s web is a driver for rich, dynamic, and complex applications.

Many million times each day, tasks such as banking, shopping, management and remote control

of devices and infrastructure are performed over the web. Billions of private users and businesses

rely on the security and privacy of the web.

The web, however, is a complex, heterogeneous infrastructure: Different kinds of entities,

such as web browsers, web servers, and DNS servers interact using diverse technologies. Web

browsers, in particular, have evolved from information viewers to runtime environments for highly

interactive distributed applications. In one and the same browser, users routinely visit highly

sensitive web services, like online banking, alongside arbitrary web sites of low trustworthiness.

Web browsers, the web infrastructure, and web applications therefore have to protect their

users from a variety of attacks exploiting missing protections, logic flaws, the incorrect use of

cryptographic primitives, and historic shortcomings in web technologies. Today, the state of

the art to ensure that new standards and applications are secure is expert review: Designs are

drafted and thoroughly reviewed by groups of experts. Afterwards, concrete implementations

of standards and applications are often tested using penetration testing (pentesting), which, by

definition, can only find previously known types of attacks. The hope is that the combination

of these two methods can detect all critical flaws before they can do any harm. However, as

illustrated by numerous attacks (e.g., [Akh+10; Arm+13; Ban+13; BBM12; IET09; Kar+07;

Pel+16; SB12; Wan+11; Wan+13; Zhe+15]), this is not the case: Experts and penetration testers

can easily overlook attacks, in particular those that do not follow known patterns. With the

ever-growing and rapidly increasing complexity of web technologies, methods for a rigorous

security and privacy analysis of the web infrastructure, web standards, and web applications

are urgently needed.
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First steps in this direction were made by Akhawe et al. [Akh+10] and Bansal et al. [Ban+13;

BBM12]. In both lines of work, new methods were developed that enable the formal definition

and validation of security properties. These methods, based on automatic analysis, uncover

previously unknown web vulnerabilities in web applications and web standards. Constraints

inherent to the tools used and their modeling languages, however, limit the expressiveness and

comprehensiveness of the models and the results (see Section 1.4 for a more detailed discussion).

In this thesis, one main goal is to develop an all-new, expressive and comprehensive formal

model of the web infrastructure. Our approach does not aim at automation or tool support (see

future work, Section 6). Instead, our first priority is to precisely capture core security aspects

of web applications and the web infrastructure. We aim at staying as close to the standards as

possible while providing a level of abstraction that is suitable for a manual formal analysis.

Our model, the Web Infrastructure Model (WIM), constitutes a solid formal foundation for

the modeling of a broad range of complex web applications and standards, for a precise definition

of security and privacy properties, and for rigorous, model-based security analyses. It is much

more detailed and comprehensive than earlier models.

Our model also serves an additional purpose: The standards and specifications that define

the web are spread across many documents published by different organizations. To name

just a few relevant examples, the still most widely used version of the Hypertext Transfer

Protocol, HTTP/1.1 is defined by the Internet Engineering Task Force (IETF) in [RFC7230;

RFC7231; RFC7232; RFC7233; RFC7234; RFC7235]; cookies are defined in [RFC6265]; Strict

Transport Security (STS) is defined in [RFC6797]; the origin concept is defined in [RFC6454];

the Web Hypertext Application Technology Working Group (WHATWG) defines the Fetch

standard [Fetch]; the World Wide Web Consortium (W3C) defines HTML5 [Ber+17] with many

related specifications such as Web Storage [Ian16] and Cross-Origin Resource Sharing [Ann14].

Specifications for the Domain Name System (DNS) and communication protocols such as the

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are relevant as well.

The documents often build upon each other, replace older versions or other documents, and

sometimes different versions coexist. Some details and behaviors are not specified at all and are

only documented in the form of the source code of web browsers. Browser vendors occasionally

implement different interpretations of the same standard.1

An accurate formal model like the one proposed in this thesis summarizes and condenses

important specifications otherwise spread across different documents. As such, it is an important

contribution to the discourse on web security and can serve as a reference for tool-supported

analysis, web security researchers, developers of web technologies and standards, and for teach-

ing web security concepts.

1For example, traditionally there have been differences in the implementation of the Referer [sic] header as
defined in [RFC7231]: When a web site A links to a web site B that redirects to a web site C, some browsers
used to send a Referer header to web site C containing the URL of web site A, while some others used to
send the URL of B. Nowadays, most browsers send the URL of web site A.
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Another main goal of this thesis is to demonstrate that the Web Infrastructure Model can be

used to analyze the security of complex web applications and standards. To this end, we focus on

a critical building block of almost any web application: user authentication and authorization.

Traditionally, user authentication in the web is based on a set of credentials, often an identifier

(username, email address, etc.) and a secret (password). For each service a user intends to use,

she has to set up a new set of credentials and verify her identity (typically by clicking on a link

received via email). In this setup, the user has to select and memorize many different passwords,

making signing up to a new service cumbersome.

To ease this burden on the user, another form of authentication has found widespread adoption

on the web in recent years: Web Single Sign-On (SSO). SSO here means that a user can use her

identity from one web site to log in at other web sites without establishing new credentials with

these web sites. The verification of her identity is performed by exchanging messages between

the web sites. In this scenario, different entities are involved in the login process in different

roles, hence the term federated authentication.

A closely related concept is federated authorization, where a user grants a web site A access

to her resources at web site B. For example, a user allows a photo printing service to access her

photos on a social network.

The most popular framework for federated authorization is OAuth 2.0, in the following often

simply called OAuth. OAuth 2.0 was released in 2012 as [RFC6749] and [RFC6750] by the

IETF Web Authorization Protocol (OAuth) Working Group.2 The OAuth standard defines a

web-based protocol that allows a user to grant a so-called client web site access to her resources

(data or services) at a so-called resource server (RS). (Here, the client is not to be confused

with a browser.) In the protocol, the user is temporarily redirected to a so-called authorization

server (AS), which, in many deployments, is the same entity as the RS. In practice, OAuth

is often used for federated authentication as well, although it was originally only designed for

authorization. In this case, the client is also called the relying party (RP), and the authorization

server and resource server form what is called the identity provider (IdP).

OAuth is used by companies such as Amazon, Facebook, Google, Microsoft, Yahoo, GitHub,

LinkedIn, StackExchange, and Dropbox, enabling billions of users [Sim] to share their data and

resources. This makes OAuth probably the most widely used method for federated authoriza-

tion/authentication on the web.

OAuth is diverse: The IETF Web Authorization Working Group regards OAuth as a frame-

work for protocols. It supports four different modes of operation that utilize different kinds of

tokens with different security requirements. Many details of these flows are left to the developers

of a concrete implementation of the protocol. For example, it is left unspecified how redirections

or state management techniques are realized.3 It will become evident, however, that details such

2In this work we only consider OAuth 2.0, which uses a different approach and architecture than its predecessor,
OAuth 1.0(a). For example, OAuth 1.0(a) required cryptographic operations even for simple setups, defined
different roles (without a separation between the authorization server and the resource server), and had no
easy method built in to revoke tokens. [OAuthD]

3Even [RFC6749] states that “as a rich and highly extensible framework with many optional components, on its
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as these are critical for the secure operation of OAuth-based authorization and authentication

solutions.

OAuth is also the foundation for the protocol OpenID Connect (OIDC), which aims at defining

a new standard for federated authentication within the OAuth framework. The OpenID Connect

standard is managed by the OpenID Foundation and already enjoys broad and growing industry

support. OpenID Connect is currently in use and actively supported by PayPal, Google, Oracle,

and Microsoft, among many others.4 OpenID Connect extends OAuth by clearly defined

interfaces for user authentication and additional (optional) features, such as dynamic identity

provider discovery and relying party registration, signing and encryption of messages, and logout.

OpenID Connect uses two of the four grants of OAuth to define three so-called flows. It operates

within the boundaries defined by the OAuth framework, but adds many specific details that

change fundamental properties of the protocol (e.g., dynamic registration, encryption/signing,

a new token type, etc.).

In this thesis, we use our generic formal model to provide the most detailed security analysis of

OAuth 2.0 and OpenID Connect. This analysis is based on the respective standards themselves

rather than individual implementations: Security problems in the specifications usually lead

to vulnerabilities in many concrete implementations, whereas errors found in implementation

typically only affect a limited number of deployments. To acquire precise results, we analyze

both systems separately. Although in particular OAuth had been analyzed many times before,

our analysis reveals previously unknown attacks on both SSO systems. We develop fixes against

these attacks and prove the security for the (fixed) systems. Since our results are based on a

comprehensive model, our proofs can exclude large classes of attacks against OAuth and OpenID

Connect, including yet unknown attack vectors.

1.1. Contributions of this Thesis

In detail, our contributions can be outlined as follows:

1.1.1. The Web Infrastructure Model

Our first contribution, a generic formal model for the web infrastructure, is intended to capture

important classes of attacks on web applications and the web standards. To this end, we model

properties of the network level (most importantly, TCP/IP and UDP messages), transmission

protocols (DNS, HTTP and HTTPS, WebRTC and WebSocket messages), and applications

(web browsers, web servers, and DNS servers).

For web browsers and servers, we model handling of HTTP and HTTPS messages including

cookies, the Referer and Origin headers, redirections and Strict Transport Security (STS). The

model of web browsers captures the concepts of windows, documents, and iframes as well as new

own, this specification is likely to produce a wide range of non-interoperable implementations”.
4The OpenID Connect protocol is very different to its predecessor, OpenID. OpenID is not widely used any

longer on the web. We therefore only consider OpenID Connect in the following.
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technologies, such as Web Storage, Cross-Document Messaging, WebSockets and WebRTC. We

take into account the complex security restrictions that are applied when accessing or navigating

other windows, including the same-origin policy. JavaScript is modeled in an abstract way by

what we call scripts. Scripts can be sent around and can, for example, create iframes, send and

receive HTTP(S) messages using the XMLHttpRequest API, and initiate WebRTC connections.

Our model is based on a general Dolev-Yao-style communication model [AF01; DY83], in

which processes have addresses (modeling IP addresses) and messages are modeled as formal

terms, with properties of cryptographic primitives, such as encryption and digital signatures,

expressed as equational theories on terms.

We define two different kinds of attackers, web attackers and network attackers, and consider

two ways of dynamically corrupting browsers.

Altogether, the model is the most comprehensive and detailed model for the web infrastructure

to date. It is defined independently of any web application and as such can be used to analyze

the security and privacy of any web application which uses a subset of the features supported

by the model.

While the case studies in this thesis focus on security aspects, our model has been used

successfully to analyze privacy as well [FKS15a; FKS15b].

1.1.2. Formal Analysis of OAuth 2.0

To prove that the web model is useful in analyzing security properties of real-world web applica-

tions, and as a contribution in its own right, we perform a detailed and comprehensive analysis

of federated authentication and authorization with OAuth.

Model of OAuth 2.0

Using our generic web model, we build a formal model of OAuth, closely following the OAuth 2.0

standard [RFC6749]. We additionally use the OAuth security recommendations [RFC6819],

supplementary RFCs and OAuth Working Group drafts (e.g., [RFC7662], [BLZ18]), and current

web best practices (e.g., regarding session handling). This helps us to fill gaps where [RFC6749]

does not fix certain aspects of the protocol (while making as few assumptions as possible), to

avoid any known attacks on OAuth, and to create a model with state-of-the-art security features

in place. Our model includes clients and AS/RS that (simultaneously) support all four modes

of operation available in OAuth and can be dynamically corrupted by the adversary. Also, we

model all configuration options of OAuth.

Formalization of Security Properties

Based on this model of OAuth, we provide three central security properties of OAuth: autho-

rization, authentication, and session integrity, where session integrity in turn is concerned with

both authorization and authentication.
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Session integrity here means that (concerning authorization) an attacker should be unable to

force a client, during its interaction with an honest user, to access the services of the attacker

instead of the user’s resources at the RS and that (concerning authentication) the attacker should

be unable to force an honest user’s browser to be logged in at a client under the attacker’s

account. Attacks on session integrity are often referred to as session swapping, session fixation,

or Login Cross-Site Request Forgery (CSRF).

Attacks on OAuth 2.0 and Fixes

While trying to prove these properties, we discovered five new attacks on OAuth:

– The first attack, the 307 Redirect Attack, breaks the authorization and authentication

properties. In this attack, authorization servers inadvertently forward user credentials

(i.e., username and password) to the client or to the attacker.

– In the second attack, dubbed the AS Mix-Up Attack, a network attacker playing the

role of an AS can impersonate any victim. This severe attack, which again breaks the

authorization and authentication properties, is caused by a logical flaw in the OAuth 2.0

protocol.

– Three further attacks (State Leak Attack, Näıve Client Session Integrity Attack, and

Across-AS State Reuse Attack) allow an attacker to force a browser to be logged in under

the attacker’s name at a client or force a client to use a resource of the attacker instead of

a resource of the user, breaking the session integrity property.

We present our attacks on OAuth in detail in Section 3.3, also showing how the attacks can

be fixed by changes that are easy to implement in new and existing deployments of OAuth and

OpenID Connect. We have verified all five attacks on actual implementations of OAuth and

OpenID Connect.

To ensure a better understanding of the relevance of our attacks and to give an overview of

the attack mitigations needed for our proof (see below), we also give a summary of previously

known attacks on OAuth.

We notified the respective working groups of our findings. They confirmed the attacks and

we are now working with them to update the standards and recommendations (see Chapter 5

for details).

Proof of Security for OAuth 2.0

Finally, we use our model to show that OAuth, when fixes according to our recommendations,

meets strong authorization, authentication, and session integrity properties. The assumptions

required for this proof are realistic and can be met in real-world deployments. This is the first

proof of the security of OAuth in a comprehensive formal model of the web.
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1.1.3. Formal Analysis of OpenID Connect

Akin to our analysis of OAuth, we also provide the first in-depth formal security analysis of

OpenID Connect. We use our formal web model and strong attacker models to analyze and prove

the security of all flows available in the OIDC standard. We include many of the optional features

and in particular the Discovery and Dynamic Client Registration extensions. The Discovery

extension [Sak+14b] can be used by an OpenID Connect RP to find the IdP responsible for a

certain identity. Using Dynamic Client Registration [SBJ14], the RP can then register itself at

the IdP (for details, see Section 4.2). Both extensions add additional steps and interfaces to the

protocol and thus create new attack surfaces.

In detail, our contributions are as follows.

Attacks on OpenID Connect and Security Guidelines

We first show that most of the attacks against OAuth (discovered by us or known previously)

also apply to OpenID Connect. Even though OIDC is based on OAuth, we show that additional

security features of OIDC have to be circumvented to carry out the attacks. Also, some attacks

work somewhat differently in OIDC. In fact, certain features of OIDC enable attacks not

applicable to OAuth. We briefly present these attacks, including some previously undocumented

variants.

As before, we derive security recommendations from all of these attacks, which are then

incorporated into our model of OIDC. Our formal security analysis (see below), demonstrates

that these defenses are in fact effective and sufficient.

Formal Model of OpenID Connect

Our formal analysis of OIDC is based on our generic model of the web infrastructure. We

build our formal model of OIDC by closely following the standard, employing the defenses and

mitigations discussed earlier in order to create a model with state-of-the-art security features in

place. Our model includes RPs and OPs that (simultaneously) support all modes of OIDC and

can be corrupted dynamically by the adversary.

Formalization of Security Properties

Based on this model of OIDC, we formalize four main security properties of OIDC: authentication,

authorization, session integrity for authentication, and session integrity for authorization. We

also formalize further OIDC specific properties.

Proof of Security for OpenID Connect

Using the model and the formalized security properties, we subsequently show that OIDC in

fact satisfies the security properties. This constitutes the first proof of the security of OIDC

and for the Discovery and Dynamic Registration extensions.
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1.2. Structure of this Thesis

This thesis is structured as follows: In Section 1.3, we give an overview of the papers that were

published during the research project. In Section 1.4, we present related work. Afterwards, in

Chapter 2, we describe the web model, with all definitions and technical details presented in

Appendix A. Chapter 3 covers the security analysis of OAuth 2.0, with formalizations and proofs

provided in Appendix B. Likewise, in Chapter 4, we present the security analysis of OpenID

Connect, again with formalizations and proofs presented in Appendix C. We discuss the impact

of our work in Chapter 5. Finally, we discuss future work and conclude in Chapter 6.

1.3. Publications

This thesis is based on five previous scientific papers that were published in international security

conferences. An overview of these publications is given below.

The first main contribution presented in this thesis, the generic web model, was introduced

in the first publication [FKS14] and extended throughout the subsequent publications. In the

thesis at hand, we provide a new in-depth explanation of the web model. The second main

contribution, the case studies on OAuth 2.0 and OpenID Connect, was developed in the last

two publications [FKS16; FKS17]. The case studies on BrowserID and SPRESSO (see below)

are not part of this thesis.

This thesis improves on these publications in two aspects: First, we extend the Web Infra-

structure Model by adding models for WebRTC and WebSockets. Second, we show how code

injection can be used in the AS Mix-Up Attack to break authorization in the OAuth authoriza-

tion code grant even if client secrets are used. Additionally, the Across-AS State Reuse Attack

is now featured as a separate attack, and the terminology throughout the thesis was adapted to

follow the official terminologies in the OAuth and OpenID Connect specifications more closely.

An Expressive Model for the Web Infrastructure: Definition and Application to

the BrowserID SSO System [FKS14]

In this paper, we presented the first version of our formal web model. We employed the

model to study the security of the single sign-on system Mozilla BrowserID (also known as

Mozilla Persona) which was the first web SSO to claim a certain kind of privacy property: IdPs

do not learn at which RPs their users log in.5

During our security analysis of the secondary IdP mode of BrowserID, we discovered

a number of severe attacks on BrowserID. For example, we found attacks that allowed an attacker

to authenticate as any Google Mail or Yahoo user. We notified Mozilla of our findings and were

awarded a Mozilla Security Bug Bounty.

5Since the secondary IdP mode of BrowserID, by design, does not provide privacy, we did not study the privacy
properties of BrowserID in this paper.
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With defenses against these attacks in place, we were able to prove that BrowserID provides

authentication and session integrity for authentication. This marks the first time that these

properties were proven for an SSO system of the complexity of BrowserID in a comprehensive

web model.

Analyzing the BrowserID SSO System with Primary Identity Providers Using an

Expressive Model of the Web [FKS15a]

In the second publication, we complemented our prior analysis of BrowserID by studying the

security of the primary IdP mode and we analyzed the privacy properties of Brow-

serID.

Using our model, we found a new attack on session integrity and developed a fix against this

attack. We were then able to show authentication and session integrity properties for the fixed

protocol. For the analysis, we extended the formal web model by adding the sessionStorage API

and user identities (see Section 2.10).

Regarding privacy, we found a set of attacks that break the privacy promise of BrowserID

completely. We were able to trace the roots of the problem to an oversight by the developers:

The mere presence of a certain iframe enabled us to detect whether a user is logged in at a

specific RP or not. Since there was no way to fix the problem without a major redesign of the

whole system, we decided to address this in our next publication.

SPRESSO: A Secure, Privacy-Respecting Single Sign-On System for the Web

[FKS15b]

To demonstrate that the privacy property of BrowserID can actually be fulfilled, we designed

SPRESSO as a decentralized and federated SSO system where identity providers cannot learn

at which web sites their users log in. Using our model, we first completed the design of SPRESSO

on paper and proved its privacy, authentication, and session integrity properties before actually

implementing the system.

For the privacy analysis, we had to modify parts of our formal model in order to be able

to show indistinguishability properties between traces. In particular, we removed instances of

nondeterminism in certain places, e.g., regarding the order of handling of network messages. For

an accurate privacy analysis, we added the Referer header to the browser model.

A Comprehensive Formal Security Analysis of OAuth 2.0 [FKS16]

In the next step, we studied the security of OAuth 2.0. This is the first paper in which we

not only analyzed authentication properties, but also authorization properties (both including

session integrity).

Although OAuth 2.0 had been analyzed numerous times before (see Section 1.4), we found

new attacks on OAuth, as described above. The OAuth Working Group acknowledged the
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attacks and we are actively involved in standardization efforts for respective mitigations (see

Chapter 5 for details).

In order to prove the effectiveness of our mitigations against the leakage of sensitive tokens,

we added Referrer Policies to the model (see Section 3.3.3 for details).

The Web SSO Standard OpenID Connect: In-Depth Formal Security Analysis and

Security Guidelines [FKS17]

After our successful analysis of OAuth 2.0, we turned our attention to OpenID Connect. As

outlined above, OpenID Connect is based on OAuth 2.0, but introduces a well-defined scheme

for authentication and new features like discovery and registration.

We demonstrated that the attacks found in the previous publication also apply to OpenID

Connect. With fixes against these attacks in place, we were able to prove authentication,

authorization, and session integrity properties for OpenID Connect.

We also introduced generic models for HTTPS web servers which helped to keep the models

for OpenID Connect simpler and clearer.

1.4. Related Work

In the following, we give an overview of existing research in the area of formal web security

analysis, security analysis of OAuth 2.0 and security analysis of OpenID Connect.6

1.4.1. Formal Web Security Analysis

Early research in the direction of formal web security analysis includes work by Kerschbaum

[Ker07], in which a Cross-Site Request Forgery protection proposal was formally analyzed using

a very simple model of browsers, scripts, and web pages expressed using Alloy, a finite-state

model checker [Jac02].

In their seminal work, Akhawe et al. [Akh+10] initiated a more general formal treatment of

web security. Again the model was provided in the Alloy modeling language. In five case studies,

Akhawe et al. showed that their model can be used to identify security problems in standards

and web applications. The model by Akhawe et al. has been analyzed extensively in the diploma

thesis of the author [Fet11].

Kumar et al. [Kum12; Kum14; Pai+11] combined an Alloy model with BAN logic to analyze

and automatically find attacks in web protocols. They applied their approach to the Security

Assertion Markup Language (SAML) and OAuth (see below).

Bansal et al. [Ban+13; Ban+14; BBM12] built the WebSpi model for the web infrastructure,

which is encoded in the modeling language of ProVerif. ProVerif is a specialized tool for

cryptographic protocol analysis [Bla01] based on a variant of the applied pi-calculus [AF01].

6OAuth 2.0 is very different to its predecessor, OAuth 1.0(a). Likewise, OpenID Connect is very different to its
predecessor, OpenID. We therefore only list research on OAuth 2.0 or OpenID Connect in the following.

34



The WebSpi library models several important features of the web infrastructure, such as cookies,

origins, local storage, and CORS. As such, at the time of writing, it is the most comprehensive

web model that is amenable to tool-based analysis (cf. Section 6 for recent developments). The

WebSpi model has been applied successfully to find attacks in encrypted web storage services

and deployments of OAuth 2.0 (for more details, see the next subsection).

While the models above support (partially or fully) automated analysis, they are necessarily

tailored to and limited by constraints of the respective tools. For example, models for Alloy are

finite-state. Terms (messages) need to be encoded in some way as they are not directly supported.

Due to the analysis method employed in ProVerif, the WebSpi model is of a monotonic nature.

For instance, cookies and localStorage entries can only be added, but not deleted or modified.

Also, the number of cookies per request is limited, and several important features are missing

(e.g., cross-document messaging, different redirection codes, and a precise structure of windows,

documents, and iframes). These automated approaches therefore may miss important problems.

Our model of the web is much more comprehensive and accurate, but requires manual proofs,

at least for now (see the discussion on future work in Chapter 6).

Bai et al. [Bai+13] developed the AuthScan tool which is capable of extracting an authenti-

cation protocol specification from the protocol implementation. The extracted protocol specifi-

cations were then fed into ProVerif for a security analysis. Armando et al. [Arm+08; Arm+13]

performed analyses of SSO (SAML and OpenID) based on custom-built models in the High-

Level Protocol Specification Language (HLPSL++). Compared to our work, the models by Bai

et al. and Armando et al. are not very detailed, since they focus mainly on the logic of the

protocols. They do not consider a comprehensive model of the web infrastructure.

Bohannon and Pierce [BP10] proposed a formal model of a web browser core as a basis for

experiments with security policies and mechanisms. There are several approaches towards track-

ing and controlling information flow inside web browsers [Bau+15; Gro+12; Guh+11; HBS16;

Yos+09]. Börger et al. [BCG12] presented an approach for the analysis of web application frame-

works, focusing on the server. None of these works include a model for the web infrastructure.

1.4.2. Security Analysis of OAuth 2.0

The work closest to ours is the already mentioned research by Bansal et al. [Ban+14; BBM12].

They analyzed the security of OAuth using their WebSpi library and ProVerif. Bansal et al. mod-

eled various settings of OAuth 2.0, often assuming the presence of common web implementation

flaws, for example, CSRF and open redirectors in RPs and IdPs.

They identified previously unknown attacks on the OAuth implementations of Facebook,

Yahoo, Twitter, and many other websites. As pointed out by Bansal et al., the main focus

of their work was to discover attacks on OAuth rather than proving security. They have

some positive results, which, however, are based on their more limited model. In addition, in

order to prove these results, further restrictions were required, e.g., they considered only one

authorization server per client and all authorization servers were assumed to be honest.
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Wang et al. [Wan+13] presented a systematic approach to finding implicit assumptions in

software development kits (SDKs) used for authentication and authorization. Their case studies

include the Facebook PHP SDK and other SDKs implementing OAuth 2.0.

Pai et al. [Pai+11] analyzed the security of OAuth in a very limited model that does not

incorporate generic web features. They showed that through their approach, based on the Alloy

finite-state model checker, known weaknesses can be found.

Chari, Jutla, and Roy [CJR11] analyzed the security of the authorization code grant in the

Universal Composability (UC) model, again without considering web features, such as semantics

of HTTP status codes, details of cookies, or window structures inside a browser.

Besides these formal approaches, empirical studies were conducted on deployments of OAuth.

In [SB12], Sun and Beznosov analyzed the security of three IdPs and 96 RPs. In [LM14], Li

and Mitchell studied the security of ten IdPs and 60 RPs based in China. In [Yan+16], Yang et

al. performed an automated analysis of four OAuth IdPs and 500 RPs. Shernan et al. [She+15]

evaluated the lack of CSRF protection in various OAuth deployments. In [Che+14; SM14],

practical evaluations on the security of OAuth implementations of mobile apps were performed.

Many of the works listed here led to improved security recommendations for OAuth as

documented in [RFC6749] and [RFC6819]. These are already taken into account in our model

and analysis of OAuth.

1.4.3. Security Analysis of OpenID Connect

As mentioned in the introduction, the only previous works on the security of OIDC are [LM16;

Mla+16]. In [LM16], the authors found implementation errors in deployments of Google Sign-

In, which is based on OIDC. In [Mla+16], the authors described a specific variant of the AS

Mix-Up Attack (see Section 4.4) and highlighted the possibility of Server-Side Request Forgery

attacks at RPs in the OIDC standard (see Section 3.4). In contrast to our work, neither [LM16]

nor [Mla+16] are based on formal analysis or establish security guarantees for the OIDC standard.
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2. The Web Infrastructure Model

In this chapter, we present our model of the web infrastructure. We start with an overview of

our design goals, before elaborating on the scope of the model, and eventually outlining our

sources and approach. Subsequently, we outline the architecture before delineating the building

blocks of the model. At the end of this section we demonstrate that our our model can be

extended easily, using WebRTC as an example.

We introduce notations, formalisms, and definitions only as far as they are needed here. Some

definitions in this section are simplified for presentation, in particular regarding the handling of

nonces. All details, including the full definitions, can be found in Appendix A.

2.1. Building a Model of the Web Infrastructure

The design goal was to create a precise and rather comprehensive model of the web infrastructure.

To this end, we decided to create a “pencil-and-paper model”, one that is not encoded in the

language of an automated analysis tool, and as such, not constrained by the tool’s abilities. As

we discuss in Chapter 6, our model can serve as a basis for future efforts towards a tool-supported

analysis of web standards and applications.

The scope of the model is chosen in a way that it covers meaningful classes of attacks on

several layers of web applications, standards, and the web infrastructure:

– Attacks targeting interactions between web applications and browsers, for example,

missing checks for the origin of messages sent between documents (e.g., [BJM08b; SS13]),

the 307 Redirect Attack (cf. Section 3.3.1), or leakage of OAuth tokens from URI fragments

(as described in [RFC6819]).

– Attacks targeting the behavior of web browsers, for example, DNS rebinding [Jac+07],

and attacks on the integrity of cookies [Zhe+15].

– Attacks targeting web application code on servers, for example, lack of user authen-

tication or cross-site request forgery protections.

– Attacks targeting the network layer, for example, forgery of DNS responses and TLS

stripping.

Conversely, certain aspects of the web infrastructure are considered out of the scope of our

model. We do not model the following aspects:
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– Language details: We employ an abstract model of JavaScript, i.e., we cannot model

misuse of specific language features, timing attacks and race conditions in scripts, and do

not track information flows inside scripts. We do, however, have an accurate model of the

input and output behavior of JavaScript and our model precisely captures the effects that

JavaScript, including malicious JavaScript, can have on other documents, network traffic,

and the browser.

– Typing, corruption, and system details: We neither model buffer overflows or similar

attacks in browsers, rendering or scripting engines, nor capture memory corruption attacks

that can be triggered from JavaScript [GMM16]. We can, however, model the effects of

browsers compromised by an attacker through such attacks.

– User interface details: We do not model a user interface, e.g., security indicators,

overlapping frames, style sheets, etc. This prevents us from modeling, for example, browser

fingerprinting [Eck10] or clickjacking attacks [Akh+14; Hua+12]. Again we can, however,

capture the effects of such attacks. We also assume that a user can always distinguish

between HTTPS and HTTP sites and that the user does not “click through” (ignore)

browser warnings.

– Attacks on cryptography and TLS: As is typical for Dolev-Yao models, we assume

that cryptographic primitives cannot be broken. For example, we assume that attackers

cannot eavesdrop on the plain text exchanged in TLS connections without knowledge of

the keys in use.

– Proprietary and deprecated technologies: Our model neither supports proprietary

browser extensions such as ActiveX nor browser plugins like Flash or Java that use the

Netscape Plugin API (NPAPI). While the NPAPI was once widely used, it has now been

deprecated by browser vendors [Sch14; Sme15], first and foremost for its negative impact

on browser security and user privacy [Sol+10].

To build our model, we studied the standards that define the web infrastructure and translated

relevant parts into formalisms and notations of the model. As we describe more precisely in the

following subsection, we provide, with a varying degree of abstraction, models for

– networking (IP [RFC791], TCP [RFC793], UDP [RFC768], DNS [RFC1034; RFC1035]),

– URIs [RFC3986] and HTTP/1.1 [RFC7230; RFC7231; RFC7232; RFC7233; RFC7234;

RFC7235],

– HTML5 [Ber+17],

– Cookies [RFC6265],

– Web Storage [Ian16],
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– Web Messaging [Hic15],

– the web origin concept [RFC6454],

– Fetch [Fetch],

– WebSockets [RFC6455],

– WebRTC [Ber+18]), and

– security technologies (HTTP Basic Authorization [RFC7617], Strict Transport Security

[RFC6797], Referrer Policy [ES17]).

The initial version of the model, presented in [FKS14], contained only a subset of these tech-

nologies. As outlined in Section 1.3, more features were added over time.

To fill gaps where standards lacked details and to check the standards against the real-world

implementations, we ran experiments for certain aspects of the modeling in the most popular

browsers (Microsoft Internet Explorer and Microsoft Edge, Google Chrome, Mozilla Firefox).1

2.2. Architecture

We now give a high-level overview of the architecture of the WIM before going into the details.

The Web Infrastructure Model defines a generic communication model, and, based on it, web

systems consisting of web browsers, DNS servers, web servers, and web and network attackers.

All parties in a web system are formalized by (Dolev-Yao) processes. A (Dolev-Yao)

process consists of a set of addresses the process listens to, a set of states (represented as formal

terms, see below), an initial state, and a relation that takes an event (network message) and a

state as input and (nondeterministically) returns a new state and a sequence of output events.

The relation models a computation step of the process. It is required that the output can be

computed (formally, derived in the usual Dolev-Yao style) from the input event and the state.

Processes communicate via events, which consist of a message (formal term) plus a receiver

and a sender address. In every step of a run of a web system, one event is chosen nondetermin-

istically from a pool of waiting events and is delivered to one of the processes that listens to the

event’s receiver address. The process can then handle the event and output new events, which

are added to the pool of events, and so on.

A web system (as illustrated in Figure 2.1) formalizes the web infrastructure and web

applications. It contains honest and attacker processes. Honest processes can be web browsers,

web servers, or DNS servers.

1In particular, we ran experiments in browsers to check corner cases that are not defined in standards, for
example: Which Referer header is set if a browser is redirected multiple times? How do browsers handle the
“secure” flag for cookies transferred from non-secure origins? Can cookies with the secure flag be overwritten
by non-secure cookies?
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(a) Web system with web attackers.
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Figure 2.1. Illustration: Web systems with typical attacker setups.

A browser is thought to be used by one honest user, who is modeled as part of the browser.

User actions, such as following a link or entering credentials, are modeled as nondeterministic

actions of the web browser. We provide a detailed model of web browsers, a simplified model

for DNS servers and a generic framework to create customized servers (since the inner workings

of servers depend heavily on the application that is to be analyzed). Typically (and included in

our formalizations of browsers and servers), honest parties can become corrupted by an attacker.

Attackers can be either web attackers (who can listen to and send messages from their own

addresses only) or network attackers (who may listen to and spoof all addresses and therefore

are the most powerful attackers). Typically, one would consider either a single network attacker

(which then also subsumes the DNS server, see below) or a set of web attackers, see Figure 2.1.

We provide a full model covering both types of attackers.

2.3. Terms, Messages, and Events

As usual in Dolev-Yao models (see [AF01; DY83]), messages are expressed as formal terms over

a signature Σ. The signature contains constants (for (IP) addresses, strings) as well as sequence,

projection, and function symbols (for encryption/decryption and signatures). We also define a

set of nonces N , disjoint from Σ. Nonces can be used to model, among others, symmetric and

asymmetric encryption keys.

Terms are defined inductively: All constants and nonces are terms. Additionally, if f ∈ Σ is

an n-ary function symbol for some n ≥ 0 and t1, . . . , tn are terms, then f(t1, . . . , fn) is a term.

For example, a sequence of two strings and a secret x ∈ N asymmetrically encrypted under the

public key belonging to the private key k ∈ N could be

〈abc, def, enca(x, pub(k))〉 .

The equational theory associated with Σ is defined as usual in Dolev-Yao models. For instance,

the equation in the equational theory which captures asymmetric decryption is

deca(enca(x, pub(y)), y) = x .

40



The theory induces a congruence relation ≡ on terms, capturing the meaning of the function

symbols in Σ. Let, for example, req , k′, and kexample.com be some terms. We then have that

deca(enca(〈req , k′〉, pub(kexample.com)), kexample.com) ≡ 〈req , k′〉 ,

i.e., these two terms are equivalent w.r.t. the equational theory.

We define events to capture network messages. Events are terms of the form 〈a, f,m〉, where

a and f are interpreted to be the receiver and sender IP addresses, respectively, and m is the

message (e.g., an HTTP request, see below).

We also introduce a notation for mappings (dictionaries):

[user:alice, password:x] = 〈〈user, alice〉, 〈password, x〉〉 .

2.4. Dolev-Yao Processes

Parties in a web system are formalized as Dolev-Yao processes. A Dolev-Yao process p is

formalized as a tuple

p = (Ip, Zp, Rp, sp0) .

The components are defined as follows:

– Ip is the set of IP addresses for which the process receives messages.

– Zp is the set of states of the process. States of processes are encoded as terms.

– Rp is the relation defining the process’ behavior. The relation maps an input event and a

state to a sequence of output events and a new state. Algorithm 2.1 in Section 2.9 shows

a simple example for a relation of a Dolev-Yao process.

– sp0 is the initial state of the process.

We require that all output events and the new state must be derivable from the process’ old state

and the input event. For a set of terms M , the set of derivable terms d(M) can be inductively

defined as follows:

– For every constant c in Σ we have that c ∈ d(M).

– For every term m ∈M we have that m ∈ d(M), as well as all terms congruent to m.

– If f ∈ Σ is an n-ary function symbol for some n ≥ 0 and t1, . . . , tn ∈ d(M), then

f(t1, . . . , tn) ∈ d(M).

For example, we have that a ∈ d({enca(〈a, b, c〉, pub(k)), k}). For a Dolev-Yao process that

receives an input event ein in a state s and outputs the new state s′ and the events Eout =

〈〈a1, f1,m1〉, . . . , 〈an, fn,mn〉〉 for n ≥ 0, we require that m1, . . . ,mn ∈ d({ein} ∪ {s}) and

s′ ∈ d({ein} ∪ {s}).
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2.5. Attackers

We consider two types of attackers in this thesis: web attackers and network attackers.

Web attackers are our model for adversaries on an end-user internet connection, i.e., they can

send and receive messages just like a normal user can, but do not have access to the network

infrastructure. They can therefore neither intercept messages that are not sent directly to them

nor spoof the sender addresses of their messages. In the internet, these attacks are prevented

by the routing in the network and the handshake used in most protocols (e.g., TCP).

Network attackers, however, have full control over the network: They can intercept all messages

and spoof all sender addresses. In real networks, such attacks can be performed, for example, by

adversaries using ARP-spoofing attacks in local networks,2 or nation-state sponsored adversaries

with access to telecommunication infrastructure.

In the WIM, the so-called attacker process is a nondeterministic Dolev-Yao process that records

all messages it receives and outputs all events it can possibly derive from its recorded messages.

More formally, an attacker process (I, Z,R, s0) that receives an input event ein in a state s

outputs the new state s′ = 〈ein, Eout, s〉 and the events Eout = 〈〈a1, f1,m1〉, . . . , 〈an, fn,mn〉〉
for some n ≥ 0, where the sender addresses f1, . . . , fn are chosen nondeterministically from I,

the receiver addresses a1, . . . , an are chosen nondeterministically from all IP addresses, and the

messages m1, . . . ,mn are chosen nondeterministically from d({ein} ∪ {s}).
Hence, an attacker process carries out all attacks any Dolev-Yao process could possibly

perform, but it cannot break cryptography. Whether an attacker process is a network attacker

or a web attacker is defined by the set of IP addresses I the attacker has access to: The network

attacker has access to all IP addresses, i.e., can receive messages intended for other parties and

spoof their sender addresses, whereas the web attacker has a separate set of IP addresses that

do not overlap with the IP addresses of honest processes.

As already mentioned above, attackers can corrupt other parties. This is modeled by sending

a special message, m = CORRUPT, to the respective process. The process from then on acts

exactly like an attacker process with access to the process’ last state. Details of corruption

depend on the concrete model of the process: as we will see below, two variants of corruption

are considered for browsers.

2.6. Scripts

In real-world web browsers, HTML documents are used to present static information as well

as links, forms, and other interactive elements to users. Documents can also embed other

documents using iframes (see Section 2.10.3). Today, HTML documents are often accompanied

by one or more JavaScript code parts. The JavaScript code can, among others, manipulate the

document, fill and send forms, follow links, open new windows, and store data in the user’s

2In this case, the adversary would only have unrestricted access to the local network, not to communication
outside of the local network.
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browser (using cookies, localStorage, or sessionStorage, see below). JavaScript can also use the

XMLHttpRequest API to send HTTP(S) requests to other servers and read information from

the corresponding responses. Two JavaScripts in different documents in the same browser can

use the postMessage API to communicate with each other (see Section 2.10.8).

In our model, we conflate an HTML document and all JavaScript code parts within the

document or included in the document from external sources into what is called a script.

Formally, a script is defined as a relation mapping an input term in to an output term out ,

where the output term must be derivable from the input term, i.e., out ∈ d(in). On a high level

(see Section 2.10.10 for more details), the input term in contains the script state (an arbitrary

term which is persisted across script executions by the browser), information about documents

and windows in the browser, persisted user data (from cookies, localStorage, and session Storage),

and input messages (like XMLHttpRequest responses and postMessages). The output term

out contains a new script state, new values for cookies, localStorage, and sessionStorage, and

a command to be interpreted by the browser. The command can instruct the browser, for

instance, to follow a link, fill and send a form, create an iframe, or use the XMLHttpRequest

and postMessage API for communication.

It is important to note that a script can, in particular, represent a plain HTML document

without JavaScript, for example, one that consists merely of links: when called by the browser,

the script would nondeterministically choose a link and output it to the browser, which would

then load the corresponding web page.

Akin to an attacker process, the so-called attacker script outputs everything that is derivable

from the input, i.e., carries out all attacks an adversary, having control over a script, could

possibly perform. It is also the representation for a script which includes script code from an

untrusted third party, since in this case, the adversary can gain full control over the embedding

script.

Since scripts are relations, they cannot directly be encoded in terms, such as HTTP responses.

We therefore assign a unique name (a string) to each script. This is captured by the injective

mapping script from the set of scripts to their names. Browsers, when processing an HTTP(S)

response (see below), expect the response body to be of the form

〈script , scriptstate〉 ,

consisting of the name of a script (script) and the script’s initial state (scriptstate). When

receiving the HTTP(S) response, the browser first stores both components in the term repre-

senting the document (see below). Then, when executing the script (see Section 2.10.10), the

browser uses the relation script−1(script) that defines the script’s behavior. Any script can be

delivered to a browser by any server, i.e., scripts are not inherently bound to any origin. For

an example for a simple script that only issues a single command, refer to Algorithm C.2 in the

appendix.
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GET /show?page=42 HTTP/1.1

Host: example.com

Connection: keep-alive

Accept-Encoding: gzip, deflate, br

Accept: text/html

Figure 2.2. Example: HTTP GET request.

2.7. Systems and Web Systems

A system W is a set of processes. A configuration (S,E,N) of W consists of the states of all

processes in the system S, the pool of waiting events E, and a sequence of unused nonces N .

Systems induce runs, i.e., sequences of configurations, where each configuration is obtained

by delivering one of the waiting events of the preceding configuration to a process, which

then performs a computation and outputs new events. The process can change its own state

during the computation and consume nonces. The transition from one configuration to the next

configuration in a run is called a processing step. We write, for example,

Q = (S,E,N) −→ (S′, E′, N ′)

to denote the transition from the configuration (S,E,N) to the configuration (S′, E′, N ′).

A web system captures the web infrastructure and web applications. It is formalized as a

tuple

WS = (W, S , script, E0) .

It contains a system W consisting of honest and attacker processes, a set of scripts S (comprising

honest scripts and the attacker script) with the mapping scripts from scripts to their respective

names, and an initial pool of waiting events E0. Typically, E0 initially only contains an infinite

number of trigger messages (the string TRIGGER) for each process such that any process can get

triggered at any time.

Web systems are at the core of each analysis in the WIM. For the analysis of authorization

in OAuth, for example, we use a web system comprising honest servers, browsers, and scripts,

and the attacker process and the attacker script.

2.8. HTTP and HTTPS Messages

The protocols HTTP and HTTPS form the backbone of the web. In a real-world web browser,

when a user visits the URL http://example.com/show?page=42, the browser first opens a

TCP connection to example.com. For this connection, the browser and the server use a hard-to-

predict TCP sequence number that impedes an adversary from spoofing messages for the TCP

connection unless he has observed one or more messages already.

After establishing the TCP connection, the browser sends an HTTP GET request over this
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HTTP/1.1 200 OK

Cache-Control: private, no-store

Cache-Control: max-age=0

Connection: Keep-Alive

Content-Encoding: gzip

Content-Type: text/html;charset=utf-8

Set-Cookie: SID=c29MT05HYW5kVEhBTktzNFBISVNI

<html>

<form action="/login">

<input type="hidden" name="csrf" value="6803993619024429">

<input type="text" name="username">

<input type="password" name="password">

</form>

</html>

Figure 2.3. Example: HTTP response.

connection, as shown in Figure 2.2. The request, in our example, contains the method GET, the

path /show, the parameter page and its value 42, the host name example.com, and a number of

other headers. A POST request, or requests using other methods, may also contain a message

body after the last header, for example to transmit form data to the server.

In the WIM, an HTTP request is represented by a term containing the string HTTPReq, a

nonce (representing the TCP sequence number), an HTTP method, a host name, a path, URI

parameters, request headers, and a message body. The HTTP request above is represented as

req := 〈HTTPReq, n1, GET, example.com, /show, [page:42], 〈〉, 〈〉〉 .

The last two (empty) sequences in this term represent the list of message headers and the

message body. The list of message headers is empty in this example since only certain headers

are of interest in the WIM, for example cookie headers.3

An example for an HTTP response to the above GET request from a real server is shown in

Figure 2.3. The status code 200 indicates a normal, successful response. The response contains,

among others, a Set-Cookie header. After the headers, there is a message body containing a

login form.

The response shown in Figure 2.3 could be formalized in the WIM as

resp := 〈HTTPResp, n1, 200, [Set-Cookie:〈SID, 〈n2,⊥,>,⊥〉〉], 〈SCRIPT LOGIN, 〈csrf, n3〉〉〉 .

The term resp contains, in the headers section, a cookie with the name SID and the value

3Obviously, any header can be encoded in terms representing HTTP messages, but only certain headers currently
carry semantics in our model. For a list of these headers refer to Appendix A.4.4. The model can easily be
extended to support other headers .
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n2 (see Section 2.10.4 for details on cookies), and, in the body section, the name of a script

(SCRIPT LOGIN) and the script’s initial state, here 〈csrf, n3〉, carrying the nonce used in the

form. We here assume that script−1(SCRIPT LOGIN) is a script that represents the login form in

Figure 2.3, i.e., can instruct the browser to send a form equivalent to the login form. Recall that

script states can be arbitrary terms and the script’s exact use of, in this example, 〈csrf, n3〉
depends on the definition of the script.

HTTPS protects HTTP messages by sending them over TLS connections. In the WIM,

HTTPS messages are modeled by encrypting HTTP messages. The browser or server sending

an HTTPS request encrypts the request asymmetrically using the public key of the intended

receiver. Instead of using a public-key infrastructure with certificate authorities, we store a

mapping from domains to public keys for all HTTPS-enabled domains in the initial state of

each process that can send HTTPS requests. This way, different processes can use different

asymmetric keys for encryption. Typically, all processes are configured to use a key for a specific

domain that is only known to the (honest) server for that domain. To model compromised TLS

connections, a domain can be mapped to a public key known to the attacker.

An HTTPS GET request for the URL https://example.com/show?page=42 is formalized as

httpsreq := enca(〈req , k′〉, pub(kexample.com)) ,

where k′ is a fresh symmetric key (a nonce) generated by the sender of the request (typically a

browser); the web server is supposed to use this key to encrypt the response.

HTTPS responses are encrypted symmetrically using the symmetric key contained in the cor-

responding HTTPS request. For example. an HTTPS response to httpsreq could be represented

as

httpsresp := encs(resp, k′) .

2.9. Name Resolution

In the internet, the domain name system serves to resolve domains—like example.com—into

IP addresses that can be used to establish network connections. In the WIM, we consider a flat

DNS model in which DNS queries are answered directly by one DNS server and always with

the same address for a domain. A full (hierarchical) DNS system with recursive DNS resolution,

DNS caches, etc. could also be modeled to cover certain attacks involving details of the DNS

system. Since DNS messages are always unencrypted in our model, a network attacker usually

also takes the role of the DNS server (as illustrated in Figure 2.1). In our model, before sending

out an HTTP(S) request, browsers always perform a DNS request to resolve the domain name

to an IP address.

Formally, a DNS request for example.com is represented as

〈DNSResolve, example.com, n4〉 ,
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with a possible response being

〈DNSResolved, example.com, addr , n4〉 ,

where addr is an IP address. Just as in HTTP messages, a nonce (here n4) is used to map the

response to the request and emulates the (hard-to-guess) DNS query id and randomized port

number in real-world DNS messages.

A DNS server d is modeled in a straightforward way as an atomic Dolev-Yao process

(Id, {sd0}, Rd, sd0). Its initial (and only) state sd0 encodes a mapping from domain names to

IP addresses of the following form:

sd0 = [domain1:a1, domain2:a2, . . .] .

DNS queries are answered according to this table. If the requested DNS name cannot be found

in the table, the request is ignored. Algorithm 2.1 shows the relation Rd implementing this

behavior.

Algorithm 2.1 Relation of a DNS server Rd.

Input: 〈a, f,m〉, sd0
1: let domain, n such that 〈DNSResolve, domain, n〉 ≡ m if possible; otherwise stop 〈〉, sd0
2: if domain ∈ sd0 then
3: let addr := sd0[domain]
4: let m′ := 〈DNSResolved, domain, addr , n〉
5: stop 〈〈f, a,m′〉〉, sd0
6: stop 〈〉, sd0

2.10. Web Browsers

Web browsers are the most complex entity defined in the WIM. The detailed model captures

many important parts of the behavior of real-world web browsers.

A web browser b is an atomic Dolev-Yao processes (Ib, Zwebbrowser, Rwebbrowser, s0
b). The

relation Rwebbrowser modeling the behavior of browsers is defined by Algorithms A.1–A.11 in the

appendix. The states Zwebbrowser are of the form

〈windows, ids, secrets, cookies, localStorage, sessionStorage, keyMapping , sts,DNSaddress,

pendingDNS , pendingRequests,wsConnections, rtcConnections, isCorrupted〉 .

We will introduce the individual subterms of browser states over the next sections and give

examples for concrete values.
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2.10.1. Browsers and Users

We think of a browser to be used by one honest user—as long as the browser has not been

corrupted by an attacker, see below. The user is a part of the browser model. Actions a

user takes are modeled as nondeterministic actions of the web browser. For example, the web

browser can spontaneously open new windows (tabs) and access random URIs. A browser

randomly follows links in a document—here modeled as nondeterministic actions of the script

that represents the document.

A browser’s initial state contains, in the subterm ids, user secrets and user identities. A

browser can have multiple user identities, public information such as email addresses that is

accessible to any script. For example, if a browser is set up with the two identities

ids = 〈alice@example.com, carla@example.com〉 ,

then a login script can use either of these identities to log the user into some web site.

User secrets, such as passwords, are stored in the browser state subterm secrets indexed

by origins and are only released to documents (scripts) with the corresponding origins.4 For

example, if the initial state of a browser contains a mapping of the form

secrets = [〈example.com, S〉:n5, 〈example.com, P〉:n6]

then scripts loaded from the origin https://example.com (S for secure) would have access to

the nonce (secret) n5, and scripts loaded from the origin http://example.com (P for plain)

would have access to n6.

2.10.2. Two Types of Corruption

We also allow browsers to be taken over by attackers (dynamic corruption). In the real world,

an attacker can exploit buffer overflows in web browsers, compromise operating systems, and

physically take control over shared terminals. We model two types of corruption of browsers,

namely full corruption and limited corruption, which are triggered by special network messages.

Full corruption models an attacker that gained full control over a web browser and its user.

More precisely, the attacker gains access to all data, including secrets, stored in the browser,

and can use the browser’s IP address to send and receive arbitrary messages. Besides modeling

a compromised operating system, full corruption can also serve as a vehicle for the attacker

to participate in a protocol using secrets of honest browsers: Typically, in a concrete analysis,

an attacker starts with no user secrets in its knowledge, but may fully corrupt any number of

browsers and by this impersonate browsers/users.

Limited corruption models a browser that is taken over by the attacker after a user finished

4Since user secrets are restricted to certain origins, user identities and user secrets are not stored in the same
data structure in the browser, i.e., there is no mapping from identities to secrets. A script can, however,
non-deterministically select the correct secret for any identity.
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her browsing session, i.e., after closing all windows of the browser. This form of corruption is

relevant in situations where one browser can be used by many people, e.g., in an Internet café.

Limited corruption removes from the browser’s state all open documents, pending requests, user

secrets, session storage, and session cookies before the attacker takes control over the browser.

Non-session cookies and localStorage information (see Section 2.10.4) is left intact and can be

misused by the attacker.

Whether or not a browser is corrupted is stored in the browser state subterm isCorrupted .

By default, a browser is honest, i.e., we have isCorrupted = ⊥. Otherwise, we have that

isCorrupted = FULLCORRUPT or isCorrupted = LIMITEDCORRUPT. In Section 2.10.9 we describe

in more detail how a browser becomes corrupted and how a corrupted browser behaves. A

browser, once corrupted, can never become honest again.

2.10.3. Windows and Documents

A browser may have a number of windows open at any time (representing the tabs in a real

browser). The browser state subterm windows contains a list of windows opened in a web

browser. Roughly speaking, documents in these windows and iframes are represented as subterms

of windows.

More precisely, each window contains a list of documents of which one is “active”. Being active

means that this document is currently presented to the user and is available for interaction,

similarly to the definition of active documents in the HTML5 specification [Ber+17]. The

document list of a window represents the history of visited web pages in that window. A window

may be navigated forward and backward (modeling forward and back buttons). This deactivates

one document and activates its successor or predecessor.

Documents may contain subwindows, which correspond to iframes in real-world browsers, that

may again contain other documents, and so on, effectively creating a forest of windows and trees.

This structure induces a notion of a top-level window (a window which is not a subwindow),

parent window (the window of which the current window is a direct subwindow) and ancestor

window (some window of which the current window is a not necessarily direct subwindow) to

describe the relationships in a tree of windows and documents.

A document inside a window is specified by a term which essentially contains the name of

a script, the current state of the script, the input that the script obtained so far (from XML-

HttpRequests, postMessages, WebRTC, and WebSocket messages), the origin of the document,

and a list of subwindows.

A term describing a window or a document also contains a unique nonce, which we refer to

by document/window reference. These references are used to match HTTP responses to the

corresponding windows and documents from which they originate.5

Top-level windows may have been opened by another window. In this case, the term of

5We use references in several places. Some references are visible outside of the process using it, like the references
in HTTP messages described above, while others stay internal to a process, like document references.
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the opened window contains a reference to the window by which it was opened (the opener).

Following the HTML5 standard, we call such a window an auxiliary window. Auxiliary windows

are always top-level windows.

We call a window active if it is a top-level window or if it is a subwindow of an active document

in an active window. The active documents in all active windows are exactly those documents

a user can currently see/interact with in the browser.

The following is a slightly simplified6 example of a list of windows containing a single window

term carrying the window reference n7, two documents identified by their document references

n8 and n9, and a window reference to an opener (n10):

windows = 〈〈n7,〈〈n8, 〈example.com, P〉, SCRIPT LOGIN, 〈csrf, n3〉, 〈〉, 〈〉,⊥〉,

〈n9, 〈example.com, S〉, SCRIPT HOME, 〈〉, 〈〉, 〈〉,>〉〉, n10〉〉 .

The first document (reference n8) was loaded from the origin 〈example.com, P〉, which translates

into http://example.com. Its script is SCRIPT LOGIN, the script state is 〈csrf, n3〉, and the

input history of this script is empty. The document does not have subwindows and is inactive (⊥).

The second document (reference n9) was loaded from https://example.com, the script is

SCRIPT HOME, the script state is empty, there are no subwindows, and the document is active (>).

2.10.4. Cookies and Web Storage

The browser model supports two mechanisms that allow web sites to persist data in the user’s

browser: Cookies and Web Storage.

Cookies

Cookies are name-value pairs that can be set either by scripts, or by web servers using the

Set-Cookie header in a response. Once a browser has received a cookie, it will automatically

add the cookie (in a Cookie header) to HTTP(S) requests to the domain from which it received

the cookie.

Browsers store cookies per-domain and together with their attributes secure, httpOnly, and

an expiration time. If secure is set, the cookie is only delivered to HTTPS origins. If httpOnly

is set, the cookie cannot be accessed by JavaScript. The expiration time is optional: If it is

not set, the cookie should be deleted by the browser when the user session ends, i.e., when

the browser is closed. Otherwise, the cookie is kept in the browser until the expiration time is

reached.7

6For brevity of presentation we omitted from the document term the full URL and the headers. See Definition 41
for details.

7Real-world browsers actually know two different attributes to determine the expiration time: “max-age” defines
the maximum lifetime of the cookie in seconds, “expires” defines a concrete date and time on which the cookie
will be deleted.
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A cookie is, in our model, represented as a term of the form

〈name, 〈value, secure, session, httpOnly〉〉 .

The attributes secure, session, and httpOnly can either be > (true) or ⊥ (false). If the session

attribute is >, the cookie is deleted when the browser is closed (this is only relevant for corruption,

see Section 2.10.9). Otherwise, since the model does not have a notion of time, cookies are kept

forever or until they are overwritten by a cookie of the same name.

An example for a server setting a cookie can be seen in the response resp in Section 2.8 above.

Browsers store cookies in the subterm cookies of their state. The browser receiving resp would

store the following subterm:

cookies = [example.com:[SID:〈n2,⊥,>,⊥〉] = 〈〈example.com, 〈〈SID, 〈n2,⊥,>,⊥〉〉〉〉〉 .

In a request, say, req ′ that follows resp, the browser would then include the cookie’s name and

value (the attributes are not transferred to the server):

req ′ := 〈HTTPReq, n11, GET, example.com, /anything, 〈〉, [Cookie:[SID:n2]], 〈〉〉 .

Web Storage

Web Storage is an API with a similar purpose as cookies, but with two major differences: First,

WebStorage can only be accessed by JavaScript. Second, WebStorage is designed to handle

much more data than cookies, which traditionally are limited to about 4 kilobytes of data. Web

Storage offers two different kinds of storage: localStorage and sessionStorage. LocalStorage data

is separated by origins, i.e., any script loaded from the same origin shares the same localStorage

data set, but scripts cannot access other origin’s localStorage data. SessionStorage is additionally

indexed by top-level windows, i.e., two windows need to share the same origin and same top-level

window in order to access the same sessionStorage data set.

Our implementation of Web Storage is straightforward: Scripts receive from the browser

the localStorage and sessionStorage data sets accessible to them. This data is represented as

arbitrary terms. The scripts can alter both terms and then output the new values for localStorage

and sessionStorage. Browsers store the data, indexed by origin or by origin and top-level window

nonce, in their state’s subterm localStorage and sessionStorage, respectively.

For example, assume that a script from example.com stored strings in each localStorage and

sessionStorage and the top-level window of the window in which the script runs has the window

nonce n7. Then, the two subterms of the browser state would contain the following data:

localStorage = [example.com:foo]

sessionStorage = [〈example.com, n7〉:bar]
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2.10.5. HTTP(S) Message Dispatching

We now take a closer look at the two steps needed for browsers to send an HTTP request. In

Section 2.10.9, we will then see how browsers handle incoming messages.

First, recall that every HTTP(S) request contains a nonce created by the browser. A server

is supposed to include this nonce into its HTTP response. By this, the browser can match

the response to the request (a real web browser would use the TCP sequence number and port

number for this purpose).

Browsers can send HTTP(S) requests

– “spontaneously” by nondeterministically reloading some document or by navigating to

some URI (both of which can happen at any time),

– triggered by a Location header redirection (i.e., in response to an incoming HTTP re-

sponse),

– or triggered by a script that follows a link, opens a new iframe, submits a form, sends

an XMLHttpRequest, or tries to establish a WebSocket connection (one of the script

commands HREF, IFRAME, FORM, XMLHTTPREQUEST, or WS OPEN, described in more detail in

Section 2.10.9).8

In all of these cases, the browser first resolves the domain name to an IP address.

Step 1: DNS Resolution

To this end, the browser first records the HTTP request in a subterm of its state called

pendingDNS along with the original URL for the request and a reference:

– In the case of HTTP(S) requests, the reference is the constant string REQ plus the window

reference of the window from which the request originated.

– In the case of XMLHttpRequests, the reference is a sequence of three elements, the

constant string XHR, the document reference of the document from which the request

originated, and a term (usually a fresh nonce) that was chosen by the script that issued

the XMLHttpRequest. This enables the script to have multiple XMLHttpRequests running

in parallel.

– In the case of WebSocket connections, the reference is of the same form as in the previous

case, except the first element is now the constant string WS.

For example, let req ′ be an HTTP request as above, url be the URL9 of req ′, n7 be the window

from which the request originated, and n4 the nonce chosen by the browser for the DNS request

8An HTTP request can also be triggered when a WebRTC proxy script is loaded, see Section 2.12.
9The exact encoding of URLs is not important here. See Definition 28 in the appendix for details.
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(as in the example in Section 2.9). Until the DNS resolution for req ′ finishes, pendingDNS would

be of the form

pendingDNS = [n4:〈〈REQ, n7〉, req ′, url〉] .

The browser then sends the DNS request required to resolve the domain name into an IP address.

Step 2: Dispatching the HTTP Request

After receiving the corresponding DNS response, the browser sends the HTTP request and stores

it (along with the window/document reference, the original url, and the resolved IP address)

in pendingRequests. Before sending the HTTP request, the cookies stored in the browser for

the domain of the request are added as Cookie headers to the request. (Cookies with attribute

secure are only added for HTTPS requests.) The browser also checks if the domain of the

request is contained in the browser’s list of strict transport security domains, and, if that is the

case, rewrites the request from HTTP to HTTPS (see below).

In our example, assuming that example.com was resolved into the IP address addr , the

browser state subterm pendingDNS would then be of the following form (see below for the

meaning of ⊥ in this term):

pendingRequests = 〈〈〈REQ, n7〉, req ′, url ,⊥, addr〉〉 .

As we see below in more detail, when an HTTP response arrives, the browser uses the nonce

in this response to match it with the corresponding HTTP request (if any is recorded) and

checks whether the address of the sender is as expected. The reference recorded along with the

request then determines to which window/document the response belongs.

HTTPS Requests

For HTTPS requests, a fresh symmetric key (a nonce) is generated and added to the request

by the browser before the request is sent. The resulting message is then encrypted using the

public key corresponding to the domain in the request. The symmetric key is recorded along

with the request in pendingRequests. If, for example, the key n12 was chosen, pendingRequests

would look like this:

pendingRequests = 〈〈〈REQ, n7〉, req ′, url , n12, addr〉〉 .

The response is, as mentioned above, supposed to be encrypted with the symmetric key n12.

2.10.6. WebSockets

WebSockets enable real-time bidirectional communication between JavaScript (in a browser)

and a server. On a high level, WebSockets work as follows: First, the WebSocket protocol,

which is always initiated by the client-side JavaScript, starts as a regular HTTP(S) request in
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which the browser indicates that it wants to create a WebSocket connection. The server, if it

supports WebSockets, then agrees to this upgrade in the HTTP(S) response. From then on,

server and browser can, at any time, send WebSocket messages containing arbitrary data over

the TCP connection used for the HTTP(S) request and response, which is kept open. When a

browser receives a WebSocket message, its contents are delivered to the script that started the

connection.

The WebSocket protocol is defined in [RFC6455], but we do not need to introduce all details

here. The important details of the protocols are captured in our model of WebSockets, which

we delineate in the following.

In the WIM, scripts in a browser can issue the command WS OPEN to create a new WebSocket

connection to some URL. Just as in the model for XMLHttpRequests, the script identifies this

connection using a freely chosen reference, the WebSocket reference.

To create the requested WebSocket connection, the browser first (just as in a real-world

browser) sends a regular HTTP(S) request. In this request, the browser sends an Upgrade

header to inform the server of its intent to switch to the WebSocket protocol:

〈HTTPReq,n, GET, host , path, parameters, 〈〈Upgrade, websocket〉〉, 〈〉〉 .

This request can additionally be encrypted if the script requested a WebSocket connection over

TLS.

The server is then expected to respond with an HTTP(S) response with status code 101 and

the same Upgrade header.10 Upon receiving this response, the connection is considered “open”

and the browser stores connection information (WebSocket reference, HTTP request nonce,

symmetric encryption key) in the list of open WebSocket connections (browser state subterm

wsConnections).

Now, server and browser can (at any time) send data to each other using network messages

of the form

〈WS MSG,nonce, data〉

(possibly encrypted using the symmetric key from the TLS connection as above). In the browser,

a script can send such a message by calling the command WS SEND and providing, as a parameter

to the command, the WebSocket reference created when opening the WebSocket connection.

Incoming WebSocket messages are appended to the script’s inputs (see Section 2.10.9 for more

details).

2.10.7. Strict Transport Security

With the security mechanism Strict Transport Security (STS or HSTS), defined in [RFC6797],

servers can send a special header, Strict-Transport-Security in HTTPS responses. When a

10In the real-world handshake, the browser also has to send a nonce in a special header which must then be hashed,
together with a static string, by the server. This is intended to ensure that the server actually understands
the WebSocket protocol. We overapproximate in the WIM and do not include this part of the handshake.
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supporting browser encounters this header, it will add the domain from which it received the

header to an internal list of STS domains. The browser will not allow any HTTP connections

to domains in this list, but instead automatically change all such requests to use HTTPS. This

ensures that a browser always uses a TLS connection to a server and can help to protect against

TLS stripping attacks.11

Our browser model supports STS and maintains the list of STS domains in the browser state

subterm sts:

sts = 〈example.com, foo.example, bar.example, . . .〉 .

2.10.8. WebMessaging

WebMessaging [Hic15] defines methods for communication between documents/scripts inside

the same web browser. The most commonly used WebMessaging API is postMessage. Using

the postMessage API, JavaScript can dispatch messages to other windows or receive messages

from other windows. The target window always has to be specified explicitly. PostMessage

implements two important security mechanisms:

– The sender of a message can define the origins which are allowed to receive the mes-

sage or use the wildcard * to allow all target origins. For example, if a script defines

https://example.com as the target origin, but the document loaded inside the target

window was loaded from http://example.com, the browser will not deliver the message.

– The receiver of a message learns the origin of the sender of the messages and a reference

to the sender’s window. The browser ensures that this information is trustworthy, i.e.,

scripts that run in an uncompromised browser can rely on this information.

In the WIM, scripts can use the POSTMESSAGE to send data via postMessage to scripts in other

windows. Scripts receive postMessages as part of their script inputs. See Section 2.10.10 for

details.

2.10.9. Message Processing

As usual in our model, all actions of the web browser atomic Dolev-Yao process need to be

triggered by an incoming message. The only “entry point” into the web browser is the algorithm

outlined in the following (see Algorithm A.11 for details). Figure 2.4 provides an overview of

the structure of this algorithm.

If the browser is corrupted, i.e., isCorrupted 6= ⊥, it acts as an attacker process: it simply

adds the input message m to its current state (i.e., knowledge) and then nondeterministically

outputs an event derivable from its state. More formally, when a corrupted browser in the state

s receives a message m for the browser’s IP address a, the browser adds m to the subterm

11A Strict-Transport-Security header also contains a lifetime in seconds. After the lifetime has expired, the
browser will remove the domain from the STS list if no new Strict-Transport-Security header was received
in the meantime. This lifetime is not reflected in our model.
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Processing Input Message mmm
m = FULLCORRUPTm = FULLCORRUPTm = FULLCORRUPT: Set isCorrupted := FULLCORRUPT.
m = LIMITEDCORRUPTm = LIMITEDCORRUPTm = LIMITEDCORRUPT: Clean secrets, windows, cookies, storage, set isCorrupted := LIMITEDCORRUPT.
m = TRIGGERm = TRIGGERm = TRIGGER: nondeterministically choose action:

actionactionaction is script: Call script of some active document. Outputs new state and command cmd .
cmd = HREFcmd = HREFcmd = HREF: Initiate HTTP(S) request to URL in link.
cmd = IFRAMEcmd = IFRAMEcmd = IFRAME: Create subwindow, initiate request to load URL into iframe.
cmd = FORMcmd = FORMcmd = FORM: Initiate HTTP(S) GET/POST request to given URL with form data.
cmd = SETSCRIPTcmd = SETSCRIPTcmd = SETSCRIPT: Change script in given document.
cmd = SETSCRIPTSTATEcmd = SETSCRIPTSTATEcmd = SETSCRIPTSTATE: Change state of script in given document.
cmd = XMLHTTPREQUESTcmd = XMLHTTPREQUESTcmd = XMLHTTPREQUEST: Initiate XMLHttpRequest.
cmd = BACKcmd = BACKcmd = BACK or FORWARDFORWARDFORWARD: Navigate given window.
cmd = CLOSEcmd = CLOSEcmd = CLOSE: Close given window.
cmd = POSTMESSAGEcmd = POSTMESSAGEcmd = POSTMESSAGE: Send postMessage to specified document.
cmd = WS OPENcmd = WS OPENcmd = WS OPEN: Initiate HTTP(S) request to create new WebSocket connection.
cmd = WS SENDcmd = WS SENDcmd = WS SEND: Send WebSocket message over established WebSocket connection.
cmd = RTC CREATE PEERCONNECTIONcmd = RTC CREATE PEERCONNECTIONcmd = RTC CREATE PEERCONNECTION: Create a new WebRTC connection object.
cmd = RTC GET OFFERcmd = RTC GET OFFERcmd = RTC GET OFFER: Create and return WebRTC offer document.
cmd = RTC SET REMOTEcmd = RTC SET REMOTEcmd = RTC SET REMOTE: Consume remote WebRTC offer.
cmd = RTC GET IA INFOcmd = RTC GET IA INFOcmd = RTC GET IA INFO: Return information needed for identity assertion.
cmd = RTC SET IAcmd = RTC SET IAcmd = RTC SET IA: Store the local identity assertion in WebRTC connection.
cmd = RTC GET CHECK IA INFOcmd = RTC GET CHECK IA INFOcmd = RTC GET CHECK IA INFO: Return information to check remote identity assertion against.
cmd = RTC CHECKED IAcmd = RTC CHECKED IAcmd = RTC CHECKED IA: Set flag that remote identity assertion was checked.
cmd = RTC SENDcmd = RTC SENDcmd = RTC SEND: Send WebRTC message over established WebRTC connection.

actionactionaction is urlbar: Initiate request to some URL in new window.
actionactionaction is reload: Reload some document.
actionactionaction is forward: Navigate some window forward.
actionactionaction is back: Navigate some window back.

mmm is a DNS response: Send HTTP(S) request that was waiting for DNS resolution.
mmm is a HTTP(S) response: (Decrypt m,) handle headers (Set-Cookie, Location, etc.), find reference:

reference to window: Create document in window.
reference to document: Add response body to document’s script input.
reference to websocket: Finish WebSocket connection setup.

mmm is a WebSocket message: (Decrypt m,) find WebSocket connection, deliver data to respective
document.
mmm is a WebRTC message: Find WebRTC connection, decrypt data, deliver data to respective docu-
ment.

Figure 2.4. The basic structure of the web browser relation Rp with an extract of the most important
processing steps, in the case that the browser is not already corrupted. Includes the WebRTC extensions
presented in Section 2.12.

pendingRequests of its state.12 The browser is now in a new state, say s′. It then creates and

sends an event 〈a′, a,m′〉 with the receiver address a′ being a nondeterministically chosen IP

address, the sender address being a, and the message m chosen nondeterministically from d(s′).

If the browser is not corrupted, the input message m is expected to be one of the special

messages TRIGGER, FULLCORRUPT, LIMITEDCORRUPT, an HTTP(S) response, a DNS response, a

WebSocket message, or a WebRTC message. Other types of messages are discarded without any

change in the browser’s state. The browser will then act as follows:

12The subterm is chosen arbitrarily, any other subterm would work as well.

56



m = TRIGGERm = TRIGGERm = TRIGGER. Upon receipt of this message, the browser nondeterministically chooses one of

five actions:

Action is scriptscriptscript: Some active (sub)window is chosen nondeterministically. Then the script of

the active document of that window is triggered, as described in the next subsection.

Action is urlbarurlbarurlbar: A new HTTP(S) GET request (i.e., an HTTP(S) request with method GET)

is created where the URL is some message derivable from the current state of the browser.

However, nonces may not be used. This models the user typing in a URL herself, but we

do not allow her to use secrets in the URL, e.g., passwords or session tokens. Otherwise,

the attacker would trivially learn all of the user’s secrets. A new window is created to

show the response.

Action is reloadreloadreload: Some active (sub)window is chosen nondeterministically and the document

in that window is reloaded.

Action is forwardforwardforward or backbackback: Some active window or subwindow is chosen nondeterministically

and navigated forward or back, respectively (cf. Section 2.10.3).

m = FULLCORRUPTm = FULLCORRUPTm = FULLCORRUPT. If the browser receives this message, it sets isCorrupted to FULLCORRUPT.

From then on the browser is corrupted as described above. Unlike for limited corruption (see

next paragraph), the state of the browser is not cleared when this command is received. This

means that the attacker gains full access to the browser’s internal state, including all secrets.

m = LIMITEDCORRUPTm = LIMITEDCORRUPTm = LIMITEDCORRUPT. If the browser receives this message, it first removes the user secrets,

open windows and documents, all session cookies, all sessionStorage data, and all pending

DNS/HTTP(S) requests from its current state. LocalStorage data and persistent cookies are

not deleted. The browser then sets isCorrupted to LIMITEDCORRUPT (and hence, from then on

is corrupted). As mentioned in Section 2.10.2, this models that the browser is closed by a user

and that then the browser is used by another, potentially malicious user (an attacker), such as

in an Internet café.

mmm is a DNS response. When a DNS response is received (and its nonce is contained in

pendingDNS ), this means that there is an HTTP(S) request waiting for this response (recall

Section 2.10.5 above). Therefore, the corresponding HTTP(S) request will be dispatched.

mmm is a HTTP(S) response. The browser performs the following steps:

(I) The browser identifies the corresponding HTTP(S) request q (if any) and the window or

document from which q originated using the data recorded in pendingRequests. If q was

an encrypted HTTPS request, m is decrypted using the symmetric key recorded together

with q in pendingRequests.

(II) If there is a Set-Cookie header in the response, its contents are evaluated: The cookie’s

name, value, and attributes (httpOnly, secure, session) are saved in the browser’s list
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of cookies. If a cookie with the same name already exists, the old values and attributes

are overwritten, as specified in [RFC6265].

(III) If there is a Strict-Transport-Security header in the response, the domain of q is added

to the term sts. As defined in [RFC6797], all future requests to this domain, if not already

HTTPS requests, are automatically modified to use HTTPS. This includes requests made

by the user (urlbar action above.)

(IV) If there is a Location header (with some URL u) in the response and the HTTP status

code is 303 or 307, the browser re-sends the original request to the URL u (unless the

original request was an XMLHttpRequest and u does not have the same origin as the initial

request’s URL, in which case the browser aborts). In line with [RFC7231], if the status

code is 307, the browser retains the original request method and body in the redirected

request. For 303, if the original request’s method is not GET or HEAD, the browser

will change the method to GET and discard the request body. The Origin header value

is replaced by a null value (⊥) as defined in the W3C Cross-Origin Resource Sharing

specification [Ann14].

(V) Otherwise, if no redirection is requested, the browser does the following:

a) If the request originated from a window, a new document is created from the response

body. For this, the response body is expected to be a term of the form 〈script , state〉
where script is the name of a script and state is a term used as the script’s initial state.

The document is then added to the window the reference points to, it becomes the

active document, and the successor of the currently active document. All previously

existing successors are removed.

b) If the request originated from a document (and hence, was the result of an XML-

HttpRequest), the body of the response is appended to the script input term of the

document. When later the script of this document is activated, it can read and

process the response.

c) If the message is a response to a WebSocket connection establishment message,

the browser expects a status code of 101 and an Upgrade header just as in the request.

If this is the case, the browser stores the nonce and symmetric encryption key (if

any) used in the HTTP messages for future use in the WebSocket connection in its

local state subterm wsConnections.

mmm is a WebSocket message. To handle an incoming WebSocket message, the browser checks

its list of open WebSocket connections for an entry matching the nonce (and possibly the

encryption key) in the WebSocket message and adds the data contained in the WebSocket

message to the script inputs of the script that initiated the connection.

mmm is a WebRTC message. See Section 2.12.

58



2.10.10. Executing a Script

As described above, a browser, upon receiving a trigger message, can nondeterministically

execute a script in any active document. The script is provided with a term of the form

〈tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets〉 .

The components of the term contain (in the order shown)

– document and window references of all active documents and subwindows,13, and, only for

same-origin documents, information about the documents’ origins, scripts, script states

and script inputs,

– the nonce of the document into which this script was loaded,

– the last state of the script,

– the input history (i.e., previous inputs from postMessages, XMLHttpRequests, WebSocket

and WebRTC messages) of the script (as recorded in the document),

– cookies (names and values only) indexed with the document’s domain, except for httpOnly

cookies,

– localStorage data for the document’s origin,

– sessionStorage data that is indexed with the document’s origin and the reference of the

document’s top-level window,

– identities of the browser, and

– secrets indexed with the document’s origin.

Now, according to the definition of scripts, the script outputs a term. The browser expects

terms of the form

〈state, cookies, localStorage, sessionStorage, cmd〉

(and otherwise ignores the output) where state is an arbitrary term describing the new state

of the script, cookies is a sequence of name/value pairs, localStorage and sessionStorage are

arbitrary terms, and cmd is a term which is interpreted as a command which is to be processed

by the browser. The old state of the script recorded in the document is replaced by the new one

(state), the local/session storage data recorded in the browser for the document’s origin (and

top-level window reference) is replaced by localStorage/sessionStorage, and the old cookie store

of the document’s origin is updated using cookies similar to the case of HTTP(S) responses with

13We over-approximate here: In real-world browsers, only a limited set of window handles are available to a
script. Our approach is motivated by the fact that in some cases windows can be navigated by names (without
a handle). However, as we will see, specific restrictions for navigating windows and accessing/changing their
data apply.
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Set-Cookie headers, except that now no httpOnly cookies can be set or replaced, as defined in

[RFC6265]. For details, see Line 12 of Algorithm A.8 and Definition 46 in Appendix A.

Subsequently, cmd (if not empty) is interpreted by the browser as described next. For most

commands, the browser expects additional parameters.

cmd = HREFcmd = HREFcmd = HREF: (Parameters: URL, window reference, and a flag indicating whether the Referer

header should be suppressed.) A new GET request to the given URL is initiated. If the

window reference is BLANK, the response to the request will be shown in a new auxiliary

window. This new window will carry the reference to its opener, namely the reference to

the window in which the script was running. Otherwise, if the window reference is not

BLANK, the corresponding window is navigated (upon receipt of the response and only if

it is active) to the given URL.

Navigation of windows is subject to several restrictions. We closely follow the rules

defined in [Ber+17], Subsection 5.1.4: A window A can navigate a window B if the active

documents of both are same origin, or B is an ancestor window of A and B is a top-level

window, or if there is an ancestor window of B whose active document has the same origin

as the active document of A (including A itself). Additionally, A may navigate B if B is

an auxiliary window and A is allowed to navigate the opener of B.

cmd = IFRAMEcmd = IFRAMEcmd = IFRAME: (Parameters: URL, window reference.) Provided that the active document in

the referenced window is same origin, create a new subwindow in that document and

initiate an HTTP GET request to the given URL for that subwindow.

cmd = FORMcmd = FORMcmd = FORM: (Parameters: URL, method, form data, window reference.) Initiate a new request

using the specified method for the given URL. If the method GET, the form data is

transferred as URL parameters, otherwise it is put in the request’s body. The window

reference determines, just like in the case of HREF, in what window the response is shown.

Again the same restrictions for navigating other windows as in the case of HREF apply. For

this request an Origin header is set if the method is POST. Its value is the origin of the

document.

cmd = SETSCRIPTcmd = SETSCRIPTcmd = SETSCRIPT: (Parameters: window reference, script name.) Replace the script of the

active document in the referenced window by the script with the given name, provided

that the active document in that window is same origin.

cmd = SETSCRIPTSTATEcmd = SETSCRIPTSTATEcmd = SETSCRIPTSTATE: (Parameters: window reference, term.) Change the state of the script

of the active document in the referenced window to a new term , provided that the active

document in the window is same origin.

cmd = XMLHTTPREQUESTcmd = XMLHTTPREQUESTcmd = XMLHTTPREQUEST: (Parameters: URL, method, data, XMLHttpRequest reference.) Ini-

tiate a request with the given method and data to the given URL, provided that the URL

is same origin and the method is not is not CONNECT, TRACE, or TRACK.14 The Origin

14These methods are forbidden to prevent certain attacks, in accordance with [Fetch].
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header is set as in the case of FORM.

cmd = BACKcmd = BACKcmd = BACK or FORWARDFORWARDFORWARD: (Parameter: window reference.) Replace the active document in the

given window by its predecessor/successor in the window’s history.15 Again, the same

restrictions for navigating windows as in the case of HREF apply.

cmd = CLOSEcmd = CLOSEcmd = CLOSE: (Parameter: window reference.) Close the given window, i.e., remove it from the

list of windows in which it is contained. The same restrictions for navigating windows as

in the case of HREF apply.

cmd = POSTMESSAGEcmd = POSTMESSAGEcmd = POSTMESSAGE: (Parameters: message, window reference, origin.) The message, the origin

of the sending document, and a reference to its window are appended to the input history

of the active document in the given window, unless that document’s origin does not match

the given origin (and the given origin is not ⊥).

cmd = WS OPENcmd = WS OPENcmd = WS OPEN: (Parameters: URL, WebSocket reference.) Create a new WebSocket connection

to the given URL and identified by the given WebSocket reference.

cmd = WS SENDcmd = WS SENDcmd = WS SEND: (Parameters: WebSocket reference, data.) Send data in a WebSocket message

using an already established WebSocket connection (identified by the WebSocket reference).

cmd = RTC ∗cmd = RTC ∗cmd = RTC ∗: We present the commands for WebRTC connection establishment separately in

Section 2.12.

The script execution ends after the interpretation of the command.

2.11. Generic HTTPS Servers

Our generic framework for HTTPS servers defines a basic set of algorithms that can handle

incoming HTTPS requests, but also send its own HTTPS requests (and, to this end, handle

DNS as well).

Except for the handling of incoming HTTPS requests, the model follows the relevant parts

from the browser model: the framework prescribes that an HTTPS server must have a state

containing pendingDNS and pendingRequests subterms, and these are used just as in browsers.

Our framework currently does not handle cookies or strict transport security when dealing with

outgoing HTTPS requests, but these and other features could be added easily.

Corruption is also included in the generic HTTPS server model. It follows the same idea as

corruption in the browser model: A corrupted server collects all incoming messages and sends

all messages derivable from its knowledge. Unlike browsers, the generic web server model only

implements full corruption.

15Note that navigating a window using the back/forward buttons does not trigger a reload of the affected
documents. While real world browser may chose to refresh a document in this case, we assume that the
complete state of a previously viewed document is restored. A reload can be triggered nondeterministically at
any point by the browser.

61



Concrete instantiations of servers using the framework must (at least) define algorithms for

handling HTTPS responses, and HTTPS requests. They can also provide algorithms to handle

trigger messages and other kinds of messages.

2.12. Extension: WebRTC

Although being relatively comprehensive, the WIM cannot capture all current and future web

technologies. We therefore, in this section, demonstrate that the WIM can be extended easily,

even for a complex technology such as WebRTC.

WebRTC can be used to establish direct connections between two browsers to transmit video,

audio, or data streams.16 In order to establish a WebRTC connection, web servers are needed to

(1) deliver, to the browser(s) participating in a WebRTC session, JavaScript which then uses the

WebRTC JavaScript API to establish a WebRTC connection, and (2) broker connections between

the participating browsers as long as no direct WebRTC connection has been established.

Taking the scenario of a video connection between two users as an example, it is not necessary

that the two users visit the same web site to establish the connection, i.e., WebRTC can connect

browsers across origins (as long as the two origins are cooperating actively).

To authenticate users of a WebRTC session, the JavaScript delivered to the browser can

either chose to only establish connections between authenticated and authorized users using a

traditional cookie-based session management, or to use specific features of WebRTC that allow

users to use a federated identity management to prove their identities (peer authentication), as

we will see in more detail below.

2.12.1. WebRTC and the WebRTC Model

To explain WebRTC and our model of it, we first describe a WebRTC connection establishment

procedure between two web browsers (Browser A and Browser B) using a common server

(example.com). We here assume that example.com has authenticated the users of the respective

browsers. In the next example, we will then introduce the authentication features of WebRTC.

The flow (Figure 2.5) shows the following steps:

– First, both browsers load some web page from the server of example.com.

– Second, the documents in both browsers call a WebRTC API function that creates and

initializes a new WebRTC connection object 1 .

– So far, both browsers performed the same steps. Now, one of the browsers (Browser A)

creates a so-called offer, a description of the WebRTC connection properties 2 . It contains,

for example, networking and media stream details, but also identity information (see next

16In practice and in our model, one or both of the endpoints might also be servers instead of browsers. This is
used, for example, to stream a live video feed from a server to a browser or to connect the browser’s user to a
traditional telephone system.
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º Browser A ¹ Browser B

GETGET GETGET

3 WebSocketWebSocket

〈RTC OFFER,nonceA,⊥,⊥, pub(kA), ipA〉〈RTC OFFER,nonceA,⊥,⊥, pub(kA), ipA〉

4 WebSocketWebSocket

〈RTC OFFER,nonceA,⊥,⊥, pub(kA), ipA〉〈RTC OFFER,nonceA,⊥,⊥, pub(kA), ipA〉

6 WebSocketWebSocket

〈RTC OFFER,nonceB ,⊥,⊥, pub(kB), ipB〉〈RTC OFFER,nonceB ,⊥,⊥, pub(kB), ipB〉

7 WebSocketWebSocket

〈RTC OFFER,nonceB ,⊥,⊥, pub(kB), ipB〉〈RTC OFFER,nonceB ,⊥,⊥, pub(kB), ipB〉

9

enca(〈RTC MSG,nonceB ,m〉, pub(kB))enca(〈RTC MSG,nonceB ,m〉, pub(kB))

10

enca(〈RTC MSG,nonceA,m
′〉, pub(kA))enca(〈RTC MSG,nonceA,m
′〉, pub(kA))

n example.com/ � example.com n example.com/

1 RTC CREATE PEERCONNECTIONRTC CREATE PEERCONNECTION RTC CREATE PEERCONNECTIONRTC CREATE PEERCONNECTION

2 RTC GET OFFERRTC GET OFFER

5 RTC GET OFFERRTC GET OFFER

8 RTC SET REMOTERTC SET REMOTE

n example.com/ � example.com n example.com/

Figure 2.5. Simple example flow of WebRTC without peer authentication.

example), and cryptographic keys. In our example (and model), the offer contains a freshly

chosen nonce that identifies the connection, the public key of the browser’s (freshly chosen)

key pair, and the browser’s IP address.

– The offer is now sent, for example via WebSockets, to example.com and from there to

Browser B 3 , 4 .

– Browser B now feeds the initial offer into the WebRTC API and creates an answer 5 .

At the abstraction level of our model, answers and offers are of the same structure and

contain the same data. We therefore, in our formal representation of WebRTC, call the

answers “offers” as well.

– The answer is now transmitted back to Browser A 6 , 7 .

– The script in Browser A receives the answer and feeds it into the WebRTC API 8 .
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– The WebRTC connection is now configured in both browsers and the browsers can send

messages back and forth 9 , 10 . The messages contain the nonces identifying the respective

connections in each browser and the payload (e.g., frames of a video stream) encrypted

with the public keys exchanged earlier.

It is easy to see that in this example, browsers rely on example.com for authentication.

WebRTC peer authentication can be used by browsers to authenticate themselves to each other.

The basic principle of peer authentication is that an identity provider (IdP) checks a user’s

identity (for example, using a combination of username and password) and then testifies for the

identity of the user, for example by signing the user’s public key, creating a so-called identity

assertion (IA).17

To check the identity of a peer, a browser can ask the same IdP to verify the IA provided

during the connection establishment.

Figure 2.6 shows a WebRTC flow where Browser A authenticates to Browser B. In more

complex scenarios, authentication can be mutual, i.e., Browser B could also authenticate to

Browser A. Since the steps are the same (with Browsers A and B interchanged), we omitted

them from the figure and the following explanation.

To authenticate to Browser B, Browser A performs the following additional steps:

– When creating the peer connection object, the JavaScript in Browser A provides an IdP

domain to the browser, say idp.example. The browser then triggers the WebRTC peer

authentication: It opens a new window18 1 and loads a document from a well-known

URI at idp.example 2 . This document is called a proxy script, since it acts as a proxy

between the JavaScript from example.com and the IdP.

– Now, the JavaScript in the IdP window retrieves the information that is needed to create

the IA from the calling window (e.g., the public key of the WebRTC connection) 3 .

– The IdP now creates the IA. Typically, this involves one or more requests to the IdP’s

web server, which are out of the scope of the specification.

– The proxy script now calls an API function to transmit the IA back to the calling window

for it to be used during the peer connection 4 .

– The IA and the IdP domain become part of the offer that is created by the WebRTC API.

Just as before, this offer is now, as part of the connection establishment, transmitted to

Browser B.

In a similar way, Browser B now checks the IA of Browser A: It first opens a window with an

IdP proxy script 5 , which then retrieves the IA and the public key of Browser A 6 . If the IA

17Since WebRTC only defines an interface for peer authentication, details of the authentication are not specified,
in particular the contents of the IA.

18In real-world browsers, a new “browsing context” is opened—roughly equivalent to a window without a user
interface.
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º Browser A ¹ Browser B

GETGET GETGET

1 openopen

2 GETGET

infoinfo

iaia

WebSocketWebSocket

〈RTC OFFER,nonceA, idp.example, ia, pub(kA), ipA〉〈RTC OFFER,nonceA, idp.example, ia, pub(kA), ipA〉

WebSocketWebSocket

〈RTC OFFER,nonceA, idp.example, ia, pub(kA), ipA〉〈RTC OFFER,nonceA, idp.example, ia, pub(kA), ipA〉

5 openopen

GETGET

iaia

okok

WebSocketWebSocket

〈RTC OFFER,nonceB ,⊥,⊥, pub(kB), ipB〉〈RTC OFFER,nonceB ,⊥,⊥, pub(kB), ipB〉

WebSocketWebSocket

〈RTC OFFER,nonceB ,⊥,⊥, pub(kB), ipB〉〈RTC OFFER,nonceB ,⊥,⊥, pub(kB), ipB〉

enca(〈RTC MSG,nonceB ,m〉, pub(kB))enca(〈RTC MSG,nonceB ,m〉, pub(kB))

enca(〈RTC MSG,nonceA,m
′〉, pub(kA))enca(〈RTC MSG,nonceA,m
′〉, pub(kA))

n example.com/ � example.com n example.com/� idp.example

RTC CREATE PEERCONNECTIONRTC CREATE PEERCONNECTION

n idp.example/

3 RTC GET IA INFORTC GET IA INFO

4 RTC SET IARTC SET IA

n idp.example/

RTC CREATE PEERCONNECTIONRTC CREATE PEERCONNECTION

RTC GET OFFERRTC GET OFFER

RTC SET REMOTERTC SET REMOTE

n idp.example/

6 RTC GET CHECK IA INFORTC GET CHECK IA INFO

7 RTC CHECKED IARTC CHECKED IA

n idp.example/

RTC GET OFFERRTC GET OFFER

RTC SET REMOTERTC SET REMOTE

n example.com/ � example.com n example.com/� idp.example

Figure 2.6. WebRTC example flow where Browser A authenticates itself to Browser B. For clarity of
presentation, Browser B does not authenticate itself to browser A in this example.

has been checked successfully, the calling window is notified 7 and the WebRTC flow continues

as in the previous example.

2.12.2. New Script Commands for WebRTC

To support WebRTC in browsers, we introduce new commands available to scripts additionally

to those listed in Section 2.10.10. Some of the commands are only available to scripts in the

IdP proxy window. If such a command is issued by a script not loaded in an IdP proxy window,

the browser ignores the command. We introduce the following commands:
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cmd = RTC CREATE PEERCONNECTIONcmd = RTC CREATE PEERCONNECTIONcmd = RTC CREATE PEERCONNECTION: (Parameters: Domain of IdP, private key.) Create a new

WebRTC connection object—more precisely, an entry in the browser state’s subterm

rtcConnections identified by a WebRTC nonce (chosen by the browser and returned to

the script via the script inputs). In this entry, the browser tracks the properties of the

WebRTC connection. If a domain of an IdP is given, the browser creates a new top-level

window and, in this window, loads the IdP proxy script.

cmd = RTC GET OFFERcmd = RTC GET OFFERcmd = RTC GET OFFER: (Parameters: WebRTC reference.) Create a new WebRTC offer/answer

document containing the WebRTC reference, the identity assertion (if any), the public

key chosen by the browser for this WebRTC connection, and the browser’s IP address.

cmd = RTC SET REMOTEcmd = RTC SET REMOTEcmd = RTC SET REMOTE: (Parameters: WebRTC reference, offer.) Put the information sent

by the remote peer in an offer/answer document into the WebRTC connection object

identified by the given WebRTC reference. Afterwards, run the code to check the remote’s

identity assertion, i.e., open a new window containing the IdP’s proxy page, which can

then use the commands RTC GET CHECK IA INFO and RTC GET CHECK IA INFO (see below).

cmd = RTC GET IA INFOcmd = RTC GET IA INFOcmd = RTC GET IA INFO: (Parameters: none.) This function can only be used from an IdP proxy

script. It returns (by appending to the script’s inputs), the WebRTC nonce identifying

the connection for which the window was opened and the public key used by the browser

in that connection. The proxy script is supposed to check the user’s identity (for instance,

using cookies and an XMLHttpRequest to the IdP server), and then use the next function

to return a signed identity assertion to the browser.

cmd = RTC SET IAcmd = RTC SET IAcmd = RTC SET IA: (Parameters: identity assertion.) This function can only be used from an

IdP proxy script. Signals the browser to store the identity assertion created by the IdP in

the WebRTC connection information, so that the browser can use this information in an

offer/answer document.

cmd = RTC GET CHECK IA INFOcmd = RTC GET CHECK IA INFOcmd = RTC GET CHECK IA INFO: (Parameters: none.) This function can only be used from a

window opened for an IdP proxy script. It returns the information the IdP needs to check

the validity of the identity assertion presented by the remote browser—in particular, the

identity assertion itself, the nonce identifying the connection, and the remote browser’s

public key.

cmd = RTC CHECKED IAcmd = RTC CHECKED IAcmd = RTC CHECKED IA: (Parameters: identity assertion.) This function can only be used from

an IdP proxy script. Using this function, the proxy script signals to the browser that it

has successfully checked the remote’s identity assertion.

cmd = RTC SENDcmd = RTC SENDcmd = RTC SEND: (Parameters: WebRTC nonce, data.) Using the WebRTC connection identi-

fied by the WebRTC reference, send a WebRTC message over the network (with the data

encrypted using the peer’s public key).
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3. Analysis of OAuth 2.0

In this chapter, we present our analysis of OAuth 2.0. We start with an introduction of basic

concepts before we give an in-depth description of the four modes, also called grants or grant

types, defined in [RFC6749]. Subsequently, we elaborate on the attacks uncovered during our

analysis and fixes against these attacks. We then summarize the most important previously

known attacks on OAuth 2.0 that have to be mitigated in order to prove the security of OAuth.

In the last section, we outline our formal analysis and the proof. All technical details of the

analysis and proof can be found in Appendix B.

3.1. OAuth 2.0 Basic Concepts

OAuth 2.0 was first intended only for authorization, i.e., users authorize client web sites to

access their protected resources at resource servers by using a token issued by an authorization

server. Accessing the protected resources can mean reading information from these resources

(e.g., the user’s private profile information) or modifying these resources on the user’s behalf

(e.g., uploading content to the user’s profile at the resource server). Usually, authorization server

and resource server are controlled by the same entity and we then use the term OAuth Provider

(OAP) for this entity. For example, a user can use OAuth to authorize a photo printing service

to download her (private) pictures from Facebook. In this case, the printing service is the client

and Facebook is the OAuth Provider (since it operates the authorization and resource servers).

Roughly speaking, in the most common modes/grants, OAuth works as follows: If a user

wants to authorize a client to access some of her data at an RS, the client redirects the user’s

browser to the AS, where the user authenticates and agrees to grant the client access to some of

her user data at the RS. Then, the user is redirected back to the client with an access token or

authorization code issued by the AS. If an authorization code was issued, the client can exchange

it for an access token at the AS. The client can then use the access token as a credential at the

RS to access the user’s data.

OAuth is also commonly used for authentication, although it was not designed with authen-

tication in mind. In this case, the client acts as an RP and the OAP (AS and RS) act as the

IdP. A user can, for example, use her Facebook account, with Facebook being the IdP, to log in

at some online community (the RP). Typically, in order to log in, the user authorizes the RP

to access a unique user identifier at the IdP. The RP then retrieves this identifier and considers

this user to be logged in.

In the following, we introduce the most important concepts used in OAuth 2.0.
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3.1.1. Token Types

OAuth 2.0 defines three important types of tokens: access tokens, authorization codes, and

refresh tokens.

The access token is issued by an AS and is what ultimately gives access to a resource at an RS.

Access tokens are involved in every flow of OAuth. An access token is a so-called bearer token,

which [RFC6750] defines as a “security token with the property that any party in possession

of the token (a ’bearer’) can use the token in any way that any other party in possession of it

can. Using a bearer token does not require a bearer to prove possession of cryptographic key

material (proof-of-possession).”

[RFC6749] does not mandate any specific structure or contents of the access token (it is

“opaque to the client”), but there must be a way for the RS to check the validity of the access

token and to learn the token’s properties, for example, to which data the token gives access

to. There are several ways to accomplish this: the token can be a cryptographically signed

document which the RS can verify without contacting the AS (see, e.g., [RFC7519; RFC7523]),

there can be a (proprietary) back-channel or shared state between the RS and the AS, or the

RS can use token introspection, i.e., query information about the access token from the AS.1 In

our model, access tokens are nonces and the whole OAP is modeled as a single server which can

immediately check the validity of a token from its state.

An authorization code is a temporary (single-use) token that can be issued to the client in

the authorization code grant (see below). The client can exchange the authorization code for an

access token at the token endpoint of the AS (see below). According to [RFC6749], authorization

codes improve the security of OAuth 2.0: First, an AS can authenticate the client presenting

the authorization code at the token endpoint (for example, using a client secret, see below).

Second, with authorization codes, the access token can be transferred from the AS to the client

directly without passing through the user’s browser. This reduces chances for an inadvertent

leak of the access token, and the access token is not exposed to the user.

Refresh tokens are credentials issued by an AS to a client and can be used to obtain further

access tokens when the current one expires or becomes invalid, or to obtain other access tokens

with different properties (see also Section 3.1.6 below). Unlike access tokens, refresh tokens

are never sent to a resource server. The use of refresh tokens is optional. Since many real-

world deployments do not use refresh tokens, and access tokens neither expire nor have varying

properties in our model, we do not cover refresh tokens.

3.1.2. Endpoints

In OAuth, clients, RS, and AS need to know certain URIs of each other, called endpoints. An AS

provides an authorization endpoint at which the user can authenticate to the AS and authorize

a client to access her user data. The AS also provides a token endpoint at which the client

1A standard way for token introspection is defined in [RFC7662].
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can request access tokens. A client provides one or more redirection endpoints to which the

user’s browser gets redirected by the by the AS after the user authenticated herself to the AS.

The URIs of the endpoints are not fixed by the standard, but are communicated when a client

registers itself at the OAP, as described below.

For all endpoints, [RFC6749] and the security recommendations in [RFC6819] recommend

the use of HTTPS. We follow this recommendation in our analysis of OAuth.

3.1.3. Client Registration at the OAP

Before a client can interact with an OAP, the client needs to be registered at the OAP. The details

of the registration process are out of the scope of the core OAuth protocol.2 In practice, this

process is usually a manual task. During the registration process, the OAP assigns credentials to

the client, consisting of a client id and a client secret. The client may later use the client secret

to authenticate to the AS. If the client cannot keep the OAuth client secret confidential, e.g., if

the client is an in-browser app or a native application, the secret can be omitted. In [RFC6749],

clients with client secrets are called confidential clients, while those without are called public

clients. The OAuth client id always is public information. It is, for example, revealed to users

in redirects issued by the client.

As mentioned above, a client registers one or more redirection endpoints at the OAP. If more

than one redirection URI is registered, the client must specify which redirection URI is to be

used in each run of the OAuth protocol. For simplicity of presentation, we assume that a client

always specifies its choice, although this can be omitted if there exists only one (fixed) redirect

URI. Depending on the implementation of an AS, a client may also register a pattern as a

redirect URI and then specify the exact redirect URI during the OAuth run. In this case, the

AS checks if the specified redirect URI matches this pattern.

With the registration, the operator of the client also needs to configure the endpoints of the

OAP into its systems. Typically, the same endpoints are used for all clients.3

Our analysis presented in Section 4.5 covers all the options mentioned here: public and

confidential clients, explicitly specified redirection URIs, and URI patterns.

3.1.4. Login Sessions and State

During an OAuth run, a user’s browser is redirected from the client to the AS and back to the

client. To keep track of the user’s actions and to prevent Cross-Site Request Forgery attacks, the

2As introduced in Section 1.1.3, OpenID Connect provides features for the discovery of IdPs and dynamic
registration of RPs. With [RFC7591], these mechanisms have been backported into OAuth, but they are not
part of the core specification of OAuth 2.0.

3An attack on OAuth/OpenID Connect can be to social engineer the operator of the client to believe that a
URL controlled by an adversary is the token endpoint or a resource server endpoint. In this case, the client
would send access tokens or authorization codes to the attacker, which can use these to access protected
resources at the original OAP. This attack has been described (briefly) in Section 8.3.2 of the Read and Write
API Security Profile of the OpenID Financial API specification [SSN18]. In our analysis, we assume that the
endpoints are configured properly, i.e., do not point to attacker-controlled servers.
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client typically establishes a session with the browser before the first redirect.4 To prevent CSRF

attacks, the OAuth standard recommends that a client selects the so-called state parameter and

binds this value to the session, e.g., by choosing a fresh nonce as the state value and storing

the nonce in the session state. When the user later gets redirected back to the client, the state

value must match the one stored in the session. To be effective against CSRF attacks, the state

value must never leak to an attacker. Omitting or incorrectly using this parameter can lead to

attacks described in [Ban+14; LM14; RFC6749; RFC6819; SB12]. In our analysis, we follow the

recommendation of using the state parameter.

3.1.5. Tracking User Intention

Often, clients support more than one OAP for user authentication/authorization. For example,

many web sites allow users to log in using Google or Facebook as the OAP.

A client needs to remember which OAP a user wanted to use when the user comes back from

the AS. There are two different approaches to accomplish this in practice: First, the client can

distinguish different OAPs by using separate redirection URIs for each OAP. We call this method

näıve user intention tracking. Second, the client can store the user’s choice in the session and

use this information later. We call this explicit user intention tracking. In Section 3.3 we discuss

the security implications of the choice of the user intention tracking method.

3.1.6. Further Recommendations and Options

The standard and the recommendations do not specify all implementation details. For example,

the precise user interaction with a client, formatting details of messages, and the authentication

of the user to an AS (e.g., username and password or other mechanisms) are not covered. In our

security analysis of OAuth we follow all OAuth security recommendations as well as common

best practices for state-of-the-art web applications in order to avoid all known attacks.

OAuth allows RPs to specify which scope of the user’s data they are requesting access to at an

RS. The scopes themselves are not defined in the standard and are considered an implementation

detail of OAPs. Therefore, in our description and analysis of OAuth, we omit the scope parameter

and assume that the user always grants full access to her data at the RS.

3.2. OAuth 2.0 Grant Types

With the basic concepts introduced, we now describe the four basic grant types (or modes) of

OAuth defined in [RFC6749]. A client, when starting an OAuth flow, selects which grant it wants

to use: It can redirect the user’s browser to the authorization endpoint and use a parameter

called response type to select either the authorization code grant or the implicit grant. If it

4The OAuth standard [RFC6749] as well as the OAuth security recommendations [RFC6819] do not specify the
session mechanism for clients. In our analysis we assume the usual session mechanism with session cookies
following common best practices. For more details, see Section 3.4.5.
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instead contacts the token endpoint first, it can select the resource owner password credentials

grant or the client credentials grant using the grant type parameter.

An OAP does not need to support all grant types. In practice, most OAPs only support one

or two grant types.

3.2.1. Authorization Code Grant

In the authorization code grant, when the user tries to authorize a client to access her data at

an RS (or tries to log in at a client, i.e., an RP), the client first redirects the user’s browser to

the AS. The user then authenticates to the AS, e.g., by providing her username and password,

and finally is redirected back to the client along with an authorization code generated by the AS.

The client now contacts the token endpoint of the AS with this authorization code (along with

the client id and, if used, the client secret) and receives an access token, which the client can

use as a credential to access the user’s protected resources at the AS or to retrieve information

about the user from the AS.

Step-by-Step Protocol Flow

The protocol flow of OAuth 2.0 in the authorization code grant looks as follows (see Figure 3.1):

– First, the user starts the OAuth flow, e.g., by clicking on a button to select an OAP. The

user’s choice is sent to the client, e.g., in an HTTP POST request 1 .

– The client selects one of its redirection endpoint URIs, redirect uri , and a nonce state.

The redirect uri will be used later in Step 7 . The client then redirects the browser to the

authorization endpoint URI at the AS with the URL parameters client id , redirect uri ,

state, and response type (value code) 2 , 3 .

– The AS then prompts the user to provide her username and password 4 . The user’s

browser sends this information to the AS 5 .

– If the credentials are correct, the AS creates an authorization code, code, and redirects

the user’s browser to client’s redirection endpoint URI redirect uri with code and state as

URI parameters 6 , 7 .

– If state matches the value stored in the user’s session, the client contacts the token

endpoint of the AS to exchange code for an access token. The client provides code,

client id , client secret , and redirect uri in this request 8 .

– The AS verifies this information, i.e., it checks that code was issued for the client identified

by client id , that client secret (if used) is the secret for client id , that redirect uri is the

same as in Step 2 , and that code has not been redeemed before. If these checks are

successful, the AS issues an access token access token 9 .
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1 POST /startPOST /start

start flow using ASstart flow using AS

2 ResponseResponse

Redirect to AS /authEP with client id , redirect uri , state, response type=codeRedirect to AS /authEP with client id , redirect uri , state, response type=code

3 GET /authEPGET /authEP

client id , redirect uri , state, response type=codeclient id , redirect uri , state, response type=code

4 ResponseResponse

5 POST /authEPPOST /authEP

username, passwordusername, password

6 ResponseResponse

Redirect to Client redirect uri with code, stateRedirect to Client redirect uri with code, state

7 GET redirect uriGET redirect uri

code, statecode, state

8 POST /tokenEPPOST /tokenEP

code, client id , redirect uri , client secretcode, client id , redirect uri , client secret

9 ResponseResponse

access tokenaccess token

Authorization:Authorization:

10 GET /resourceGET /resource

access tokenaccess token

11 ResponseResponse

protected resourceprotected resource

Authentication:Authentication:

12 GET /introspectionEPGET /introspectionEP

access tokenaccess token

13 ResponseResponse

user id , client iduser id , client id

14 ResponseResponse

session cookiesession cookie

º Browser � Client � AS/RS

º Browser � Client � AS/RS

Figure 3.1. OAuth 2.0 authorization code grant. Data depicted below the arrows is either transferred
in URI parameters, HTTP headers, or POST bodies.

– When OAuth is used for authorization, the client uses the access token to view or manipu-

late the protected resource at the RS (illustrated in Steps 10 and 11 ). For authentication,

the client (in this case acting as an RP) fetches a user id (which uniquely identifies the

user at the OAP) using the access token in Steps 12 and 13 . The client then issues a

session cookie to the user’s browser as shown in Step 14 .5

5A client might as well opt to re-use the session that was used for the login procedure. It is more secure, however,
to issue a new session after login, see Section 3.4.5.
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3.2.2. Implicit Grant

This grant is a simplified version of the authorization code grant: instead of providing an

authorization code to a client, an AS directly delivers an access token to the client (via the

user’s browser).

Step-by-Step Protocol Flow

The implicit grant works as follows (see Figure 3.2):

– Steps 1 , 2 , 3 , 4 , and 5 are the same as in the authorization code grant, except that

now the value of response type is token.

– If the user’s credentials are correct, the AS creates an access token, access token, and

redirects the user’s browser to the client’s redirection endpoint redirect uri , where the AS

appends access token and state to the fragment of the redirection URI 6 , 7 .6

6The fragment is the last part of a URI, started by the ‘#’ symbol. When the browser opens a URI, the
information in the fragment is not transferred to the server.

1 POST /startPOST /start

start flow using ASstart flow using AS

2 ResponseResponse

Redirect to AS /authEP with client id , redirect uri , state, response type=tokenRedirect to AS /authEP with client id , redirect uri , state, response type=token

3 GET /authEPGET /authEP

client id , redirect uri , state, response type=tokenclient id , redirect uri , state, response type=token

4 ResponseResponse

5 POST /authEPPOST /authEP

username, passwordusername, password

6 ResponseResponse

Redirect to Client redirect uri , fragment: access token, stateRedirect to Client redirect uri , fragment: access token, state

7 GET redirect uriGET redirect uri

8 ResponseResponse

9 POST /tokenPOST /token

access token, stateaccess token, state

10 GET /resourceGET /resource

access tokenaccess token

11 ResponseResponse

protected resourceprotected resource

º Browser � Client � AS/RS

º Browser � Client � AS/RS

Figure 3.2. OAuth 2.0 implicit grant.
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1 POST /startPOST /start

start flow using AS , username, passwordstart flow using AS , username, password

2 POST tokenEPPOST tokenEP

username, password , client id , client secretusername, password , client id , client secret

3 ResponseResponse

access tokenaccess token

4 GET /resourceGET /resource

access tokenaccess token

5 ResponseResponse

protected resourceprotected resource

º Browser � Client � AS/RS

º Browser � Client � AS/RS

Figure 3.3. OAuth 2.0 resource owner password credentials grant.

– The browser follows the redirection 7 . Since the access token and state are contained in

the URI fragment, they are not transmitted to the client’s server.

– To retrieve these values, the client delivers a document containing JavaScript code 8 . It

retrieves access token and state from the fragment and sends these to the client 9 .

– The client then checks if state is the same as in the session. Just as in the authorization

code grant, the client can now use access token for authorization (illustrated in Steps 10

and 11 ); authentication is analogous to Steps 12 , 13 , and 14 of Figure 3.1.7

Recall that in the implicit grant, an AS cannot verify the identity of the receiver of the access

token, as a client does not authenticate itself to the AS (using client secret). Hence, this grant

type is more suitable for clients that do not have access to a secure, long-lived storage for client

secrets (public clients) such as in-browser applications.

3.2.3. Resource Owner Password Credentials Grant

In this grant, the user gives her credentials for an AS directly to a client. The client can then

authenticate to the AS on the user’s behalf and retrieve an access token. The resource owner

password credentials grant is intended for highly-trusted clients, such as the operating system of

the user’s device or highly-privileged applications, or if the previous two grants are not possible

to perform (e.g., for applications without a web browser). In the following, we assume that the

authorization/login process is started by the user using a web browser.

7For authentication, it is important to note that the response from the AS (Step 13 ) includes the client’s OAuth
client id, which is checked by the client. This check prevents reuse of access tokens across clients in the OAuth
implicit grant as explained in [Wan+13].
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Step-by-Step Protocol Flow

The resource owner password credentials grant is depicted in Figure 3.3: In the first step, the

user provides her username and password for the AS to the client 1 . Now, the client sends

the username, the password, its client id and client secret8 to the AS 2 . The AS then issues

an access token, access token, to the client 3 . Just as in the authorization code grant, the

client can now use the access token for authorization (illustrated in Steps 4 and 5 ) and

authentication (as in Steps 12 , 13 , and 14 of Figure 3.1).

3.2.4. Client Credentials Grant

In contrast to the grant types shown above, this grant works without the user’s interaction.

Instead, it is started by a client in order to fetch an access token to access the client’s own

resources at an RS or to access resources at an RS the client is authorized to by other means.

For example, Facebook allows clients to use the client credentials grant to obtain an access token

to access reports of their advertisements’ performance.

Step-by-Step Protocol Flow

The step-by-step description of the client credentials grant is as follows (see Figure 3.4): First,

the client contacts the AS with its client id and client secret 1 . The AS now issues an

access token 2 . Just as in the authorization code grant, the client can now use access token for

authorization (illustrated in Steps 3 and 4 ). In contrast to the other grants presented above,

the access token is not bound to a specific user account, but only to the client. Therefore, the

client cannot use this grant type for user authentication.

8In this grant type, if a client does not have an OAuth client secret for an AS, the client secret and client id
parameters are both omitted in this request. This option is also covered by our analysis.

1 POST /tokenEPPOST /tokenEP

client id , client secretclient id , client secret

2 ResponseResponse

access tokenaccess token

3 GET /resourceGET /resource

access tokenaccess token

4 ResponseResponse

protected resourceprotected resource

� Client � AS/RS

� Client � AS/RS

Figure 3.4. OAuth 2.0 client credentials grant.
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3.3. New Attacks on OAuth

While trying to prove the security of OAuth based on the model presented in Chapter 2 and

our model of OAuth (see Section 3.5), we found five previously unknown attacks, namely the

307 Redirect Attack, the AS Mix-Up Attack, the State Leak Attack, the Näıve Client Session

Integrity Attack, and the Across-AS State Reuse Attack. Table 3.1 shows the attacks and the

security properties broken by them in different OAuth grants. As can be seen from the figure,

all attacks target the authorization code grant and the implicit grant.

In this section, we provide, for each attack, the assumptions we have to make for the attack

to work and their rationale, a detailed description of the attack, and easily implementable fixes.

Our formal analysis of OAuth presented in the next section shows that these fixes are indeed

sufficient to make OAuth secure against our strong attacker models. The attacks also apply to

OpenID Connect (see Section 4.4). We have verified our attacks on actual implementations of

OAuth and OpenID Connect and reported the attacks to the respective working groups who

confirmed the attacks (see Section 5.1).

attack on OAuth grant
authorization code implicit

307 Redirect Attack az + an az + an

AS Mix-Up Attack az + an az + an

State Leak Attack si si

Näıve Client Session Integrity Attack si si

Across-AS State Reuse Attack si si

az: breaks authorization. an: breaks authentication. si: breaks session integrity.

Table 3.1. Overview of attacks on OAuth 2.0.

3.3.1. 307 Redirect Attack

In this attack, which breaks our authorization and authentication properties (see Section 3.5.3),

the attacker (running a client) learns the user’s credentials when the user logs in at an AS that

uses the wrong HTTP redirection status code. While the attack itself is based on a simple error,

to the best of our knowledge, this is the first description of an attack of this kind.

Assumptions

The main assumptions that we need to make for this attack to work are that

(1) the AS that is used for the login chooses the 307 HTTP status code when redirecting the

user’s browser back to the client (Step 6 in Figure 3.1), and

(2) the AS redirects the user immediately after the user entered her credentials (i.e., in the

response to the HTTP POST request that contains the form data sent by the user’s

browser).
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Assumption (1): This assumption is reasonable because neither [RFC6749] nor [RFC6819]

specify the exact method of how to redirect. The OAuth standard rather explicitly permits any

HTTP redirect:

“While the examples in this specification show the use of the HTTP 302 status

code, any other method available via the user-agent to accomplish this redirection

is allowed and is considered to be an implementation detail.”

Assumption (2): This assumption is reasonable as many examples for redirects immediately

after entering the user credentials can be found in practice, for example at github.com (where,

however, Assumption (1) is not satisfied.)

Attack

When a malicious client starts the authorization code or implicit grant of OAuth for a user, the

user’s browser is redirected to the AS and the user is prompted to enter her credentials. The AS

then receives these credentials from the browser in a POST request. It checks the credentials

and redirects the browser to the client’s redirection endpoint in response to the POST request.

Since the 307 status code is used for this redirection, the browser will send a POST request to

the client that contains all form data from the previous request, including the user credentials.

Since the client is run by the attacker, the attacker can use these credentials to impersonate the

user.

Fix

Contrary to the current wording in the OAuth standard, the exact method of the redirect is not an

implementation detail but essential for the security of OAuth. In the HTTP standard [RFC7231],

only the 303 redirect is defined unambiguously to drop the body of an HTTP POST request

instead of repeating it in the following request. Therefore, the OAuth standard should require

303 redirects for the steps mentioned above in order to fix this problem.

3.3.2. AS Mix-Up Attack

In this attack, which breaks our authorization and authentication properties (see Section 3.5.3),

the attacker confuses a client about which AS the user chose at the beginning of the lo-

gin/authorization process in order to acquire an authentication code or access token which

can be used to impersonate the user or access user data.

This attack applies to the authorization code grant and the implicit grant of OAuth when

explicit user intention tracking is used by the client. To launch the attack, the attacker ma-

nipulates the first request of the user such that the client thinks that the user wants to use an

identity managed by an AS of the attacker (A-AS) while the user instead wishes to use her

identity managed by an honest AS (H-AS). As a result, the client sends the authorization code
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or the access token issued by H-AS to the attacker. The attacker then can use this information

to login at the client under the user’s identity or access the user’s protected resources at the

H-RS associated with H-AS. There is also a variant of the attack that does not require the

attacker to manipulate any HTTP messages (and thus works with a web attacker instead of a

network attacker), see below.

Assumptions

For the AS Mix-Up Attack to work, we need three assumptions that we further discuss below:

(1) the presence of a network attacker who can manipulate the request in which the user

sends her identity to the client as well as the corresponding response to this request (see

Steps 1 and 2 in Figure 3.1),

(2) a client which allows users to log in with identities from an honest OAP (H-AS/H-RS)

and an attacker-controlled OAP (A-AS/A-RS), and

(3) a client that uses explicit user intention tracking and issues the same redirection URI to

all ASs. (Alternatively, the attack works as well if the client issues different redirection

URIs to different ASs, but internally treats them as the same URI.)

We emphasize that we do not assume that the user sends any secret (such as a password)

over an unencrypted channel. The variant of this attack described below has slightly different

assumptions.

Assumption (1): It would be unrealistic to assume that a network attacker can never manip-

ulate Steps 1 and 2 in Figure 3.1.

First, these messages are sent between the user and the client, i.e., the attacker does not need

to intercept server-to-server communication. He could, e.g., use ARP spoofing in a wifi network

to mount the attack.

Second, the need for HTTPS for these steps is not obvious to users or developers, and the

use of HTTPS is not suggested by the OAuth security recommendations, since the user only

selects an AS at this point; credentials are not transferred.

Third, even if a client intends to use HTTPS also for the first request (as in our model), it has to

protect itself against TLS stripping by adding the client domain to the browser’s preloaded Strict

Transport Security list [STSPre]. Other mitigations, such as the Strict-Transport-Security

header, can be circumvented (see [Sel14]), and do not work on the very first connection between

the user’s browser and client. For example, when a user enters the address of a client into her

browser, browsers by default try unencrypted connections. It is therefore unrealistic to assume

that all clients are always protected against TLS stripping.

Our formal analysis presented in Section 4.5 shows that OAuth can be operated securely even

if no HTTPS is used for the initial request (given that our fix, presented below, is applied).

78



Assumption (2): Clients may use different AS, some of which might be malicious, and hence,

OAuth should provide security in this case. Using a technique called dynamic client registration,

OAuth clients can even allow the ad-hoc use of any AS, including malicious ones [RFC7591].

This is particularly relevant in OpenID Connect, where this technique was first implemented.

Assumption (3): Typically, clients that use explicit user intention tracking do not register

different redirection URIs for different AS, since it is not needed. In particular, for clients that

allow for dynamic registration, using the same redirection endpoint for all AS is an obvious imple-

mentation choice. This is for example the case in the OAuth/OpenID Connect implementations

mod auth openidc and pyoidc.

1 POST /startPOST /start

start flow using H-ASstart flow using H-AS

2 POST /startPOST /start

start flow using A-ASstart flow using A-AS

3 ResponseResponse

Redirect to A-AS /authEP with client id ′, redirect uri , stateRedirect to A-AS /authEP with client id ′, redirect uri , state

4 ResponseResponse

Redirect to H-AS /authEP with client id , redirect uri , stateRedirect to H-AS /authEP with client id , redirect uri , state

5 GET /authEPGET /authEP

client id , redirect uri , stateclient id , redirect uri , state

6 ResponseResponse

7 POST /authEPPOST /authEP

username, passwordusername, password

8 ResponseResponse

Redirect to client redirect uri with code, stateRedirect to client redirect uri with code, state

9 GET redirect uriGET redirect uri

code, statecode, state

10 POST /tokenEPPOST /tokenEP

code, client id ′, redirect uri , client secret ′code, client id ′, redirect uri , client secret ′

Continue to break authorization/authentication as shown below.Continue to break authorization/authentication as shown below.

º Browser � ClientAttacker � H-AS/H-RS

º Browser � ClientAttacker � H-AS/H-RS

Figure 3.5. Start of the AS Mix-Up Attack on OAuth 2.0 authorization code grant.

Attack on Authorization Code Grant

We now describe the AS Mix-Up Attack on the OAuth authorization code grant. As mentioned,

a very similar attack also applies to the implicit grant.

The AS Mix-Up Attack for the authorization code grant is depicted in Figure 3.5:

– Just as in a regular flow, the attack starts when the user selects that she wants to log in

using H-AS 1 .
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– Now, the attacker intercepts the request intended for the client and modifies the content

of this request by replacing H-AS by A-AS 2 .

– The response of the client (containing a redirect to A-AS) is then again intercepted and

modified by the attacker such that it redirects the user to H-AS 3 , 4 . The attacker

also replaces the OAuth client id of the client at A-AS with the client id of the client at

H-AS (which is public information). We assume that from this point on, in accordance

with the OAuth security recommendations, the communication between the user’s browser

and H-AS and the client is encrypted by using HTTPS, and thus, cannot be inspected or

altered by the attacker.

– The user’s browser follows the redirection to H-AS, the user authenticates to H-AS and is

redirected back to the client 5 – 8 .

– The client believes, due to Step 2 of the attack, that the code contained in this redirect

was issued by A-AS, rather than H-AS. The client therefore now tries to redeem this nonce

for an access token at A-AS 10 , rather than H-AS.

This leaks code to the attacker, which can now be used to break authentication or authorization

properties.

11 POST /tokenEPPOST /tokenEP

code, client id , redirect uricode, client id , redirect uri

12 ResponseResponse

access tokenaccess token

13 GET /resourceGET /resource

access tokenaccess token

14 ResponseResponse

protected resourceprotected resource

º Browser � ClientAttacker � H-AS/H-RS

º Browser � ClientAttacker � H-AS/H-RS

Figure 3.6. AS Mix-Up Attack on OAuth 2.0: Breaking authorization without code injection.

Breaking Authorization without Code Injection: If the client is a public client (i.e., does

not have a client secret for H-AS), the attacker can now redeem code for an access token at

the token endpoint of H-AS (Steps 11 and 12 in Figure 3.6). This access token allows the

attacker to access protected resources of the user at H-AS (Steps 13 and 14 ). This breaks the

authorization property (see Section 3.5.3).

Breaking Authorization with Code Injection: In the case that the client has to provide a

client secret (confidential client), breaking authorization as presented before would not work

(in the authorization code grant). However, with or without a client secret, the attacker could
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11 POST /startPOST /start

start flow using H-ASstart flow using H-AS

12 ResponseResponse

Redirect to H-AS /authEP with client id , redirect uri , state′Redirect to H-AS /authEP with client id , redirect uri , state′

13 GET redirect uriGET redirect uri

code, state′code, state′

14 POST /tokenEPPOST /tokenEP

code, client id , redirect uri , client secretcode, client id , redirect uri , client secret

15 ResponseResponse

access tokenaccess token

16 GET /resourceGET /resource

access tokenaccess token

17 ResponseResponse

protected resourceprotected resource

18 ResponseResponse

protected resourceprotected resource

º Browser � ClientAttacker � H-AS/H-RS

º Browser � ClientAttacker � H-AS/H-RS

Figure 3.7. AS Mix-Up Attack on OAuth 2.0: Using code injection to break authorization.

instead launch a code injection attack (see Figure 3.7): The attacker starts a new OAuth flow

at the client (using his own browser) 11 . He selects H-AS as the AS for this flow and receives a

redirect to H-AS, which he ignores 12 . The redirect contains a cookie for a new login session and

a fresh state parameter (state ′). The attacker now crafts a request to the redirection endpoint of

the client using state ′ and code acquired earlier 13 . Since the client will now provide its client

secret to the token endpoint at H-AS 14 , the client will receive an access token for the honest

user’s resources at H-RS 15 , and the attacker will have access to these resources through the

client 16 – 18 . (The attacker does not learn an access token in this case.)

Breaking Authentication with Code Injection: Using code injection, the attacker can also

break authentication and impersonate the honest user (see Figure 3.8). Just as before, the

attacker, after obtaining code, starts a new login process at the client using H-AS 11 , 12 . Again

as before, the attacker crafts a request to the redirection endpoint of the client using state ′ and

code acquired earlier 13 . Now, the client will retrieve an access token from the token endpoint

at H-AS (Steps 14 and 15 ) and subsequently use the token at the introspection endpoint to

fetch the (honest) user’s id (Steps 16 and 17 ). Being convinced that the attacker owns the

honest user’s account, the client issues a session cookie for this account to the attacker 18 . As

a result, the attacker is logged in at the client under the honest user’s id. (Again, the attacker

does not learn an access token.)
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11 POST /startPOST /start

start flow using H-ASstart flow using H-AS

12 ResponseResponse

Redirect to H-AS /authEP with client id , redirect uri , state′Redirect to H-AS /authEP with client id , redirect uri , state′

13 GET redirect uriGET redirect uri

code, state′code, state′

14 POST /tokenEPPOST /tokenEP

code, client id , redirect uri , client secretcode, client id , redirect uri , client secret

15 ResponseResponse

access tokenaccess token

16 GET /introspectionEPGET /introspectionEP

access tokenaccess token

17 ResponseResponse

user id , client iduser id , client id

18 ResponseResponse

session cookiesession cookie

º Browser � ClientAttacker � H-AS/H-RS

º Browser � ClientAttacker � H-AS/H-RS

Figure 3.8. AS Mix-Up Attack on OAuth 2.0: Using code injection to break authentication.

Attack on the Implicit Grant

In the implicit grant, the attack works almost identical to the attack on the authorization code

grant: As before, the attacker intercepts and modifies the first two messages. Unlike before, the

user now returns from the authorization endpoint of H-AS with an access token instead of a

code. The client believes that this access token was issued by A-AS and will therefore try to

use the access token to access a resource at A-RS, leaking the token to the attacker. Since the

access token is a bearer token (as explained above), the attacker can immediately use the token

to break authorization, i.e., access the user’s resources at H-RS. To break authentication, i.e.,

impersonate the honest user, the attacker can start a new login process (using his own browser)

at the client with H-AS. Instead of following the redirect to the authorization endpoint at H-AS,

the attacker can immediately forge a request to the redirection endpoint of the client using the

captured access token. The client will now use the honest user’s access token to retrieve user

data at H-RS and the attacker will be logged in at the client under the honest user’s identity.

Variant

There is also a variant of the AS Mix-Up Attack that only requires a web attacker (which does

not intercept and manipulate network messages). In this variant, the user intends to log in

with A-AS, but is redirected by A-AS to log in at H-AS. A user might “intend” to login with

A-AS because A-AS disguises itself as H-AS (in the interface where the user selects the OAP),

or because the client is misconfigured to use A-AS instead of H-AS.
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In detail, the first four steps in Figure 3.5 are replaced by the following steps: First, the user

starts a new OAuth flow with the client using A-AS. She is then redirected by the client to

A-AS’s authorization endpoint. Now, instead of prompting the user for her password, A-AS

redirects the user to H-AS’s authorization endpoint. As above, in this step, the attacker uses

the state value he received from the browser plus the client id of client at H-AS. From here on,

the attack proceeds exactly as in Figure 3.5 (Step 5 ff.).

Related Attacks

An attack in the same class, cross social-network request forgery, was outlined by Bansal,

Bhargavan, Delignat-Lavaud, and Maffeis in [Ban+14]. It applies to clients with näıve user

intention tracking (rather than explicit user intention tracking assumed in our AS Mix-Up

Attack) in combination with AS, such as Facebook, that only loosely check the redirect URI.

(Facebook, by default, only checks the origin of redirect URIs.) Our AS Mix-Up Attack works

even if an AS strictly checks redirect URIs. The attack in [Ban+14] is described in the context

of concrete social network implementations, but our findings show that this class of attacks is

not merely an implementation error, but a more general problem in the OAuth standard, as

confirmed by the IETF OAuth Working Group (see Section 5).

Another attack with a similar outcome, called Malicious Endpoints Attack, leveraging the

OpenID Connect Discovery mechanism and therefore limited to OpenID Connect, was described

in [Mla+16]. This attack assumes a CSRF vulnerability on the client’s side.

Fix

A fundamental problem in the authorization code and implicit grants of the OAuth standard is

a lack of reliable information in the redirect in Steps 6 and 7 in Figure 3.1 (even if HTTPS

is used). The client does not receive information from where the redirect was initiated (when

explicit user intention tracking is used) or receives information that can easily be spoofed (when

näıve user intention tracking is used with OAPs such as Facebook). Hence, the client cannot

check whether the information contained in the redirect stems from the AS that was indicated

in Step 1 .

Our fix therefore is to include the identity of the AS in the redirect URI in some form that

cannot be influenced by the attacker, e.g., using a new URI parameter. Each AS should add

such a parameter to the redirect URI. The client can then check that the parameter contains the

identity of the AS it expects to receive the response from. (This could be used with either näıve

or explicit user intention tracking, but to mitigate the Näıve Client Session Integrity Attack

described below, we advise to use explicit user intention tracking only, see below.)

An early mitigation draft by the OAuth Working Group adopted this fix, with the parameter

being called iss (for issuer) [JBS16]. The updated OAuth security recommendations, which

we are working on together with the OAuth Working Group, recommend this parameter as

well [Lod+18].
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We show in Section 4.5 that this fix is indeed sufficient to mitigate the AS Mix-Up Attack (as

well as the attacks pointed out in [Ban+14; Mla+16]).

3.3.3. State Leak Attack

Using the state leak attack, an attacker can force a browser to be logged in under the attacker’s

name at a client or force a client to use a resource of the attacker instead of a resource of the

user. This attack, which breaks our session integrity property (see Section 3.5.3), enables what

is often called session swapping or login CSRF [BJM08a].

State Leak from Client

After the user has authenticated to the AS in the authorization code grant, the user is redirected

to the client (Step 7 in Figure 3.1). This request contains state and code as parameters. The

response to this request (Step 14 ) can be a page containing a link to the attacker’s website or

some resource located at the attacker’s website. (For example, it is not uncommon to include

third-party advertisements, media files, or user-tracking scripts on such pages.) When the user

clicks the link or the resource is loaded, the user’s browser sends a request to the attacker. This

request contains a Referer header with the full URI of the page the user was redirected to,

which in this case contains state and code.

As the state value is supposed to protect the browser’s session against CSRF attacks [RFC6819],

the attacker can now use the leaked state value to perform a CSRF attack against the victim.

For example, he can redirect the victim’s browser to the client’s redirection endpoint (again)

and by this, overwrite the previously performed authorization. The user will then be logged in

as the attacker.

Given the history of OAuth, leaks of sensitive data through the Referer header are not

surprising. For example, the fact that the authorization code can leak through this header

was described as an attack (in a similar setting) in [Hom14]. Since the authorization code

is single-use only [RFC6749], it might already be redeemed by the time it is received by the

attacker. State, however, is not limited to single use, making this attack easier to exploit in

practice. Stealing the state value through the Referer header to break session integrity has not

been reported as an attack before, as was confirmed by the IETF OAuth Working Group.

State Leak from AS

A variant of this attack exists if the login page at an AS contains links to external resources.

If the user visits this page to authenticate at the AS and the browser follows links to external

resources, the state is transferred in the Referer header. This variant is applicable to the

authorization code grant and the implicit grant.
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Fix

We suggest to limit state to a single use and to use the recently introduced Referrer Policies

[ES17] to avoid leakage of the state (or code) to the attacker. Using Referrer Policies, a web

server can instruct a web browser to (partially or completely) suppress the Referer header

when the browser follows links in or loads resources for some web page. The Referer header

can be blocked entirely, or it can be stripped down to the origin of the URI of the web page.

Both options would prevent the state value from leaking. Referrer Policies are supported by all

modern browsers.

In our OAuth model, clients and OAPs use Referrer Policies to specify that Referer headers

sent when visiting links outgoing from any of their web pages may not contain more than the

origin of the respective page. Our security proof shows that this measure is effective and protects

against the attack in [Hom14] as well.

3.3.4. Näıve Client Session Integrity Attack

This attack again breaks the session integrity property for clients, where here we assume a client

that uses näıve user intention tracking.9

Attack

First, an attacker starts a session with an honest AS (H-AS) to obtain an authorization code

or access token for his own account. Next, when a user wants to log in at some client using

A-AS (an AS controlled by the attacker), A-AS redirects the user back to the redirection URI

assigned to H-AS at the client. To this redirection URI the A-AS attaches the state issued by

the client, and the code or token obtained from H-AS. Now, since client performs näıve user

intention tracking only, the client then believes that the user logged in at H-AS. Hence, the

user is logged in at the client using the attacker’s identity at H-AS or the client accesses the

attacker’s resources at H-AS believing that these resources are owned by the user.

Fix

The fix against the AS Mix-Up Attack (described above) does not work in this case: Since

the client does not track where the user wanted to log in, it has to rely on parameters in the

redirection URI which the attacker can easily spoof. Instead, we propose to always use explicit

user intention tracking.

3.3.5. Across-AS State Reuse Attack

With this attack, an attacker can again break the session integrity property. The attack works if

a client does not choose a fresh state value for each login/authorization attempt (and invalidates

9We may still assume that the OAuth state parameter is used, i.e., the client is not necessarily stateless.
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any old values). A common approach is to choose a state value for a user’s session with the

client, but then leave this value unchanged (and valid) for multiple login attempts.

Attack

First, a user starts an OAuth flow at some client using a malicious AS (A-AS). A-AS learns

the state value that is used in the current user session. Then, as soon as the user starts a new

OAuth flow with the same client and an honest AS (H-AS), A-AS can use the known state value

to mount a CSRF attack, breaking the session integrity property.

In this attack, the state value does not leak unintentionally (in contrast to the state leak

attack).

Fix

Client implementations must ensure that a state that has been sent to one AS cannot be used

for a login flow at another AS, or that state values that have been issued previously cannot be

used for later login flows. For example, a client could choose a fresh nonce for state at each

start of an OAuth flow and store that nonce in the user’s session. If the client then uses explicit

user intention tracking, an attacker would not be able to use the state in a different login flow.

Alternatively, [BLZ18] describes a mechanism to create signed state tokens that can only be

used for one specific AS.

3.4. Other Attacks on OAuth

A number of attacks on OAuth 2.0 have been discovered in the past and respective security

recommendations have been developed to implement and operate OAuth 2.0 securely. In this

section, we summarize the most important attacks on OAuth and the security recommendations

derived from these attacks. We have to follow these recommendations (in addition to those

protecting against our new attacks) in our model in order to prove the security properties.

3.4.1. Code/Token/State Leakage

An attacker that has access to browsing histories (e.g., through malicious browser extensions)

or logfiles of servers or proxies can steal authentication codes, access tokens, id tokens, or state

values. The attacker can then, depending on the token, proceed as in the AS Mix-Up Attack or

the State Leak Attack to break authentication, authorization, or session integrity. Such attacks

have been dubbed Cut-and-Paste Attacks by the IETF OAuth working group [JBS16].

There are drafts for RFCs that tackle specific aspects of these leakage attacks, e.g., [BLZ18]

which discusses binding the state parameter to the browser instance, and [Jon+] which proposes

to bind the access token to a TLS session. Since these mitigations are still drafts, subject to

change, and not implemented in the vast majority of OAuth deployments, we did not include

86



them in our model. They are, nonetheless, interesting candidates for future work in our model

(see Chapter 6).

In the analysis, we assume that implementations keep logfiles and browsing histories (of honest

browsers) secret, since otherwise, the attacks sketched above would easily break the security of

OAuth. As mentioned above, we use Referrer Policies to protect against leakage through the

Referer header.

3.4.2. CSRF Protection

Without proper CSRF protection, OAPs and clients can be vulnerable to CSRF attacks (as

described in [Ban+14; SB12]). While [RFC6749] recommends the use of state to protect the core

of the OAuth protocol, there are other endpoints that need to protected by effective mechanisms:

– Clients need to protect the endpoint where the OAuth flow is started (for the implicit and

authorization code grants), the password login for the resource owner password credentials

grant, and the URI to which the JavaScript posts the access token in the implicit mode.

– OAPs need to protect the endpoint to which the user credentials are posted.

In our model, we use Origin header checking for CSRF protection, which in practice might not

be sufficient, since not all browsers support the Origin header yet. Therefore, we additionally

recommend CSRF tokens [Ope18] or Same-Site Cookies [BW17] for these endpoints.

3.4.3. Third-Party Resources

Client and OAP websites that include active third-party content, in particular tracking or

advertisement scripts, subject their users to token theft, phishing, and other attacks through

the JavaScript delivered by these third parties. Malicious JavaScript running on an origin of

an OAuth endpoint potentially has access to all tokens and cookies used in the OAuth flow. If

possible, clients and OAPs should therefore avoid including third-party resources on the same

origins as OAuth endpoints. For newer browsers, subresource integrity [Akh+16] can help to

reduce the risks associated with embedding third-party resources. With subresource integrity,

websites can instruct supporting web browsers to reject third-party content if this content does

not match a specific hash.

In our model, we assume that clients and OAPs, as long as they are honest, do not include

(untrusted) third-party JavaScript on their websites and do not have Cross-Site Scripting vul-

nerabilities. Otherwise, access tokens and authorization codes can be stolen in various ways, as

described, among others, in [Ban+14; RFC6749; RFC6819; SB12].

3.4.4. Open Redirectors

In [RFC6819], an open redirector is described as “an endpoint using a parameter to automatically

redirect a user agent to the location specified by the parameter value without any validation.”
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Open redirectors can allow an attacker to get access to code, state, or access token values. The

preconditions are that the attacker can influence (parts of) the redirection URI such that the

URI (a) points to an open redirector at the client, and (b) the URI is accepted by the AS, for

example, because only a part of the redirection URI is actually checked by the AS. The attack

then consists of the attacker influencing the redirection URI used in an OAuth flow such that

the authorization endpoint redirects a user (with the secrets contained in the URI) back to an

open redirector at the client’s server, which then redirects the user to an attacker-controlled

web site. The attacker can then perform the attacks we have seen above.

In order to prevent such attacks, clients must ensure that no registered redirection URI

(and no URI matching a redirection URI pattern) points to an open redirector at the client.

Additionally, open redirectors at the client web site should generally be avoided, since they

can also be abused for phishing attacks (see [Ope17]). In our model, clients do not have open

redirectors.

3.4.5. Session Handling

Sessions are typically identified by a nonce that is stored in the user’s browser as a cookie. It

is a well known best practice that cookies should make use of the secure attribute (i.e., the

cookie is only ever used over HTTPS connections) and the httpOnly flag (i.e., the cookie is not

accessible by JavaScript). Additionally, after the login, the client should replace the session ID

of the user by a freshly chosen nonce in order to prevent session fixation attacks: Otherwise,

a network attacker could set a login session cookie that is bound to a known state value into

the user’s browser, lure the user into logging in at the corresponding client, and then use the

session cookie to access the user’s data at the client (session fixation, see [Ope15; Zhe+15]). In

our model, clients use two kinds of sessions: Login sessions (which are valid until just before

a user is authenticated at the client) and service sessions (which signify that a user is already

signed in to the client). For both sessions, cookies with the secure and httpOnly flags are used.

3.4.6. Access Token Introspection Client ID

When a client sends an access token to the introspection endpoint of an OAP for authentication

(Step 12 in Figure 3.1), the OAP returns the user identifier and the client id for which the

access token was issued (Step 13 ). The client must check that the returned client id is its own,

otherwise a malicious client could impersonate an honest user at an honest client (see [RFC6749;

Wan+13]). We therefore require this check also in our model.

3.5. Formal Analysis of OAuth 2.0

We now present our security analysis of OAuth. We start with an outline of our model before

we introduce the security properties and state the main theorem, namely the security of OAuth

w.r.t. these properties. We also provide a sketch of the proof.
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The definitions of the security properties introduced in the following are similar to those for

OpenID Connect, which we explain in more detail in Section 4.5.2. In order to avoid repetition,

we here only provide an informal description.

See Appendices B.1–B.3 for the full details of the model, the security properties, and our

proof.

3.5.1. Model: Design, Concepts, Limitations

Our model for OAuth is based on the Web Infrastructure Model presented in Chapter 2. We

developed the OAuth model to adhere to [RFC6749], follow the security considerations described

in [RFC6819], and include the mitigations against the attacks discussed above.

Design

Our comprehensive model of OAuth includes all configuration options of OAuth and makes as

few assumptions as possible in order to strengthen our security results:

– Clients, OAPs, and browsers may run any of the four OAuth grants simultaneously. As

described above, AS and RS run on the same server in our model, the OAP.

– Clients, OAPs and browsers can be corrupted by the attacker at any time.

– A client chooses redirection URIs explicitly or the OAP selects a redirection URI that

was registered before. Redirection URIs can contain patterns. This covers all cases

specified in the OAuth standard. We allow that OAPs do not strictly check the redirection

URIs, and instead only check the origin.

– As in the OAuth standard, clients can be public or confidential clients. A single client

may be a public client for one OAP and a confidential client for another OAP.

– Users may visit HTTP and HTTPS URIs of the servers in the model and parties are

not required to use Strict-Transport-Security (STS), although we still recommend STS in

practice. Web pages at clients can contain links to arbitrary external web sites.

– As usual in our web model, at any time the user can navigate backwards or forward in

her browser history, navigate to any web page, open multiple windows, start simultaneous

login flows using different or the same OAPs, etc.

– User authentication at the authorization endpoint of the OAP, which is out of the

scope of OAuth, is performed using username and password. It is assumed that the user

only ever sends her password over an encrypted channel and only to the AS this password

was chosen for (or to trusted clients, as mentioned above). The user also does not reuse

her password for different OAPs. Otherwise, a malicious OAP would be able to use the

account of the user at an honest OAP.
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Concepts Used in Our Model

We use the following concepts in our model and the security properties:

Protected Resources: Closely following [RFC6749], OAuth protected resources are an abstract

concept for any resource a client could use at an RS after successful authorization. For example,

if Facebook gives access to the friends list of a user to a client, this would be considered a

protected resource. In our model, there is a mapping from (OAP, client, identity) to nonces

(which model protected resources). In this mapping, the identity part can be ⊥, modeling a

resource that is acquired in the client credentials grant and thus not bound to a user.

Service Tokens: When OAuth is used for authentication, we assume that after successful login,

the RP (client) sends a service token to the browser in a cookie (establishing a service session,

cf. Section 3.4.5). The intuition is that with this service token a user can use the services of

the RP. The service token consists of a nonce, the user’s identifier, and the domain of the IdP

(OAP) which was used in the login process. The service token is a generic model for any session

mechanism the RP could use to track the user’s login status (e.g., a cookie). We note that the

actual session mechanism used by the RP after a successful login is out of the scope of OAuth,

which is why we use the generic concept of a service token.

Trusted Clients: A browser can choose to launch the resource owner password credentials

grant with any client, causing this client to know the password of the user. Clients, however,

can become corrupted and thus leak the password to the attacker. Therefore, to define the

security properties, we need the concept of trusted clients. Intuitively, this is a set of clients a

user entrusts with her password. In particular, whether a client is trusted depends on the user.

In our security properties, when we state that an adversary should not be able to impersonate

a user u in a run, we would assume that all trusted clients of u have not become corrupted in

this run.

Limitations

While our model of OAuth is very comprehensive, a few aspects of OAuth were not taken into

consideration in our analysis: expiration and revocation of access tokens and session ids, user

log out, error handling, and, as mentioned above, scopes and refresh tokens.

3.5.2. Model: Web Systems

Our model for OAuth defines two types of web systems: The OAuth web system with a network

attacker for the analysis of authentication and authorization properties, and the OAuth web

system with web attackers for the analysis of session integrity. (Recall that one network attacker

subsumes multiple web attackers, as described in Section 2.2.)
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The rationale behind using web attackers instead of a network attacker for the analysis of

session integrity is that a network attacker can always forcefully log a user in under his own

account by setting cookies from non-secure to secure origins [Zhe+15]. This is a common problem

for cookie-based session management of web applications, independently of OAuth. In OAuth,

a network attacker can use this attack vector to defeat the state parameter as a CSRF defense.

We are interested in particular in this CSRF defense mechanism since it is contained in the

OAuth specification, and therefore restrict our analysis of session integrity to web attackers.

We note, however, that more robust solutions for session integrity are conceivable, but are

currently not standardized or not deployed. Such solutions could be based on TLS Token

Binding [Pop+18] or JavaScript with Web Messaging or Web Storage.

OAuth Web System with a Network Attacker

We model OAuth as a class of web systems (in the sense of Section 2.7) that can contain an

unbounded finite number of clients, OAPs, and browsers. We call a web system OAuthWSn an

OAuth web system with a network attacker if it is of the form described in what follows.

The web system consists of a network attacker, a finite set of web browsers, a finite set

of web servers for the clients, and a finite set of web servers for the OAPs. The set of scripts

consists of the three scripts script client index , script client implicit , and script oap form. We

now briefly sketch clients, OAPs, and the scripts, with full details provided in Appendix B.

Each client is a web server modeled as an atomic Dolev-Yao process, including all OAuth

modes, as well as the fixes and mitigations discussed before. The client can either (at any time)

launch a client credentials grant or wait for users to start any of the other grants. As described

in Section 3.4.5, the client manages two kinds of sessions: The login sessions, which are used

only during the user login phase, and the service sessions modeled by a service token. When

receiving a special message, a client can become corrupted and then behaves like an attacker

process.

Each OAP is a web server modeled as an atomic Dolev-Yao process, again including all

OAuth modes, as well as the fixes and mitigations discussed before. Users can authenticate to

an OAP with their credentials. Just as clients, OAPs can become corrupted at any time.

The scripts which run in a user’s browser are defined as follows:

– The script script client index is loaded from a client into a user’s browser when the user

visits the client’s web site. It starts the authorization or login process.

– The script script client implicit is loaded into the user’s browser from a client during an

implicit grant flow to retrieve the data from the URI fragment. It extracts the access token

and state from the fragment part of its own URI. The script then sends this information

in the body of an HTTPS POST request to the client.

– The script script oap form is loaded from an OAP into the user’s browser for user authen-

tication at the OAP.
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OAuth Web System with Web Attackers

In an OAuth web system with web attackers, the network attacker is replaced by an unbounded

finite set of web attackers and a DNS server is introduced. We denote such systems by OAuthWSw

and use them for the analysis of session integrity properties.

3.5.3. Security Properties

Based on the formal OAuth model described above, we now formulate central security properties

of OAuth, namely authorization, authentication, and session integrity (see Appendix B.2 for

the full formal definitions).

Authorization

Intuitively, authorization for OAuthWSn means that an attacker should not be able to obtain or

use a protected resource available to some honest client at an OAP for some user unless, roughly

speaking, the user’s browser or the OAP is corrupted.

More formally, we say that OAuthWSn is secure w.r.t. authorization if the following holds

true: if at any point in a run of OAuthWSn an attacker can obtain a protected resource available

to some honest client r at an OAP i for some user u, then the OAP i is corrupt or, if u 6= ⊥, we

have that the browser of u or at least one of the trusted clients of u must be corrupted. Recall

that if u = ⊥, then the resource was acquired in the client credentials mode, and hence, is not

bound to a user.

Authentication

Intuitively, authentication for OAuthWSn means that an attacker should not be able to login at

an (honest) client under the identity of a user unless, roughly speaking, the OAP involved or

the user’s browser is corrupted. As explained above, being logged in at a client under some user

identity means to have obtained a service token for this identity from the client.

More formally, we say that OAuthWSn is secure w.r.t. authentication if the following holds

true: if at any point in a run of OAuthWSn an attacker can obtain the service token that was

issued by an honest client using some OAP i for a user u, then the OAP i, the browser of u, or

at least one of the trusted clients of u must be corrupted.

Session Integrity

Intuitively, session integrity (for authorization) means that (a) a client should only be authorized

to access some resources of a user when the user actually expressed the wish to start an OAuth

flow before, and (b) if a user expressed the wish to start an OAuth flow using some honest OAP

and a specific identity, then the OAuth flow is never completed with a different identity (in the

same session); similarly for authentication.
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More formally, we say that OAuthWSw is secure w.r.t. session integrity for authorization if

the following holds true: (a) If in a run OAuthWSw an OAuth login flow is completed with a

user’s browser, then this user started an OAuth flow. (b) If in addition we assume that the

OAP that is used in the completed flow is honest, then the flow was completed for the same

identity for which the OAuth flow was started by the user. We say that the OAuth flow was

completed (for some identity v) iff the client gets access to a protected resource (of v).

We say that OAuthWSw is secure w.r.t. session integrity for authentication if the following

holds true: (a) If in a run ρ of OAuthWSw a user is logged in with some identity v, then the

user started an OAuth flow. (b) If in addition the OAP that is used in that flow is honest, then

the user is logged in under exactly the same identity for which the OAuth flow was started by

the user.

3.5.4. The OAuth Security Theorem

We prove the following theorem (see Appendix B.3 for the proof):

Theorem 1 (Security of OAuth). Let OAuthWSn be an OAuth web system with a network at-

tacker, then OAuthWSn is secure w.r.t. authorization and secure w.r.t. authentication. Let

OAuthWSw be an OAuth web system with web attackers, then OAuthWSw is secure w.r.t. ses-

sion integrity for authorization and authentication.

This trivially implies that authentication and authorization properties are satisfied also if web

attackers are considered.

3.5.5. Proof of the OAuth Security Theorem: Outline

We first show three basic lemmas that apply to honest clients and capture specific technical

details:

1. Messages transferred over HTTPS connections that were initiated by honest clients cannot

be read or altered by other parties. In particular, honest clients do not leak the encryption

keys to other parties.

2. HTTP(S) messages which await DNS resolution in a state of an honest client are later

sent out over the network without being altered in between.

3. Honest clients never send messages to other clients or themselves, and they send only

HTTPS messages that other clients cannot decrypt.

Authentication

We then prove the authentication property by contradiction. To this end, we show in three

separate lemmas building on each other that (1) the attacker does not learn passwords of the

user, (2) the attacker does not learn authorization codes that could be used to learn a relevant
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access token, and (3) that the attacker in fact does not learn an access token that could be

used to retrieve a service token as described in the authentication property. We finally show

that there is no other way for an attacker to get hold of a service token (as described in the

authentication property), and that therefore, the authentication property holds true.

Authorization

As above, we assume that the authorization property does not hold and lead this to a contra-

diction. The proof then builds upon the lemmas shown in the authentication proof. We show

that the attacker would need to know an access token to acquire a protected resource. If the

protected resource is bound to a user (i.e., it was not issued in the client credentials grant), then

(3) from above applies and shows that the attacker cannot learn such an access token, and thus

cannot learn this protected resource. If the protected resource was not assigned to a user (i.e.,

it was issued in the client credentials grant), then we can show that the attacker would need

to know client secrets to get the protected resource. We show, however, that it is not possible

for the attacker to learn the necessary client secrets (which are always required in the client

credentials grant). Therefore, whether it is a user-bound protected resource or not, the attacker

cannot learn it, leading our assumption to a contradiction.

Session Integrity

We first show session integrity for authorization. To this end, we show that an OAuth flow with

an honest browser b and honest client r can only be completed when it was actively started by b,

i.e., the correct script was run under an origin of r and this script started the login using some

identity v. This is achieved by showing the existence of certain events, starting from the last

event (where the flow is completed) and backtracing to a starting event. We then show that if i

is also honest, the start and end events belong to the same flow, and that the identity v that

was selected in this flow is exactly the same identity for which r accesses a resource in the last

event. This is done by showing that all events (from the event where the identity was selected

to the last event) are connected and that certain values (such as the chosen identity) are relayed

correctly and not modified in between processing steps or messages. We then show that session

integrity for authentication follows from session integrity for authorization.

3.5.6. Discussion of Results

Our results show that the OAuth standard is secure, i.e., provides strong authentication, autho-

rization, and session integrity properties, when it is fixed according to our proposal and adheres

to the OAuth security recommendations and best practices, as explained in Section 3.5.1. De-

pending on individual implementation choices, not all of these conditions can be met in all

practical scenarios. For example, clients might run untrusted JavaScript on their websites.

Nevertheless, our security results, for the first time, give precise implementation guidelines for
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OAuth to be secure and also clearly show that if these guidelines are not followed, then the

security of OAuth cannot be guaranteed.
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4. Analysis of OpenID Connect

In this chapter, we present our analysis of OpenID Connect. First, we introduce the OpenID

Connect protocol and the extensions analyzed in this thesis, building on concepts introduced in

the previous chapter. Afterwards, we discuss attacks on OpenID Connect and finally present

our formal analysis. We present the details of our analysis in Appendix C.

4.1. OpenID Connect Basic Concepts

As we have seen before, OAuth 2.0 is not only used for authorization, for which is was designed

initially, but is also used for authentication. To this end, non-standardized ways for authenti-

cation in OAuth 2.0 were used, like the one presented in the previous chapter. The incorrect

implementation of authentication in OAuth 2.0 led to security problems in the past [Bra12].

OpenID Connect was designed as a standardized authentication layer on top of OAuth (retain-

ing the option for authorization) and provides other features not initially contained in OAuth:

For example, an OIDC RP (client) can register itself at an IdP (also called OpenID Provider,

OP) dynamically and automatically. This feature is called Dynamic Client Registration and

replaces the manual registration process in OAuth outlined in Section 3.1.3. Often, Dynamic

Client Registration is used together with another OIDC extension, Discovery, which enables a

client to find the OP that is responsible for a certain user identity.

OIDC was defined by the OpenID Foundation in a Core document [Sak+14a] and in extension

documents (e.g., [Sak+14b; SBJ14]). Supporting technologies were standardized at the IETF,

e.g., [RFC7033; RFC7519].

Throughout this chapter, to align with the official OIDC terminology, we use the terms “RP”

for the client and “IdP” or “OP” for the AS/RS.

4.1.1. Relationship to OAuth 2.0

At the core of each OIDC flow there is an OAuth flow. The Discovery and Dynamic Registrations

extensions add new steps before the OAuth flow and OIDC introduces new parameters and a

new token, the id token. The id token is created by the user’s identity provider and serves as a

one-time proof of the user’s identity to the relying party. It is used as the primary means for

user authentication. Some messages and tokens in OIDC can be cryptographically signed or

encrypted while OAuth 2.0 does neither use signing nor encryption (besides HTTPS). The new

hybrid flow combines features of the implicit grant and the authorization code grant. There are
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no flows similar to the resource owner password credentials grant or the client credentials grant

in OIDC.

Clearly, the addition of these features and their interplay introduce new potential security

flaws. For example, an attacker, playing the role of an OP, can try to provide manipulated

endpoint URIs to an RP during the Discovery phase of the protocol. This might lead to attacks,

as shown in [Mla+16]. It is therefore not sufficient to analyze the security of OAuth 2.0 to derive

any guarantees for OIDC, a new security analysis is required.

4.1.2. Authentication, ID Tokens, and Issuer Identifiers

The main goal of OpenID Connect is to authenticate a user to an RP, i.e., the RP gets assured

of the identity of the user interacting with the RP. This assurance is based on id tokens. An id

token is a JSON Web Token (JWT, see [RFC7519]) signed by the OP that carries claims, i.e.,

information about the user and meta data about the authentication process.

More precisely, an id token contains:

– A user identifier (unique at the respective OP) and the issuer identifier of the OP. The

issuer identifier of an OP is an HTTPS URL without any query or fragment components.

The path component may be used to host several different IdPs under a single domain.

Both identifiers in combination serve as a global user identifier for authentication.

– The audience, i.e., the client id of the RP at the OP, which is assigned during registration.

– A nonce chosen by the RP during the authentication flow (optional).

– An expiration timestamp and a timestamp of the user’s authentication at the OP to

prevent replay attacks.

– Optionally, information about the particular method of authentication and other claims,

such as further meta data about the user and a hash of some data sent outside of the id

token.

When an RP validates an id token, it checks in particular whether the signature of the token is

correct (we explain below how RP obtains the public key of the OP), the issuer identifier points

to the OP currently used, the id token is issued for this RP (audience matches the RP’s client

id), the nonce is the one RP has chosen during this login flow (if any), and the token has not

expired yet. If the id token is valid, the RP trusts the claims contained in the id token and is

confident in the user’s identity.

4.2. Discovery and Dynamic Registration Extensions

Just as in OAuth, an RP and an OP that want to run the OIDC protocol need to know the

endpoint URLs of each other. Additionally, the RP needs to know its client id and client secret
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1 POST /startPOST /start

emailemail

2 GET /.wk/webfingerGET /.wk/webfinger

emailemail

3 ResponseResponse

opop

4 GET /.wk/openid-configurationGET /.wk/openid-configuration

5 ResponseResponse

issuer , authEP , tokenEP , registrationEP , jwksURI , userinfoEPissuer , authEP , tokenEP , registrationEP , jwksURI , userinfoEP

6 GET jwksURIGET jwksURI

7 ResponseResponse

pubSignKeypubSignKey

(continue with Dynamic Registration)(continue with Dynamic Registration)

º Browser � RP � OP

º Browser � RP � OP

Figure 4.1. OpenID Connect Discovery extension protocol flow. As above, data shown below the arrows
is either transferred in URI parameters, HTTP headers, or POST bodies. The server of the user’s email
domain is depicted as the same party as the OP.

at the OP and a public key of the OP to verify the signature of id tokens. This information can

be exchanged either manually (as in OAuth) or automatically using the Discovery and Dynamic

Registration extensions described in the following.

4.2.1. OpenID Connect Discovery

During the automated discovery as defined in [Sak+14b], the RP first uses the WebFinger

protocol [RFC7033] to determine which OP is responsible for the user who wants to log in.

The RP learns the issuer identifier of the OP and can retrieve the URLs of the authorization

endpoint and the token endpoint from the OP. Furthermore, the RP receives a URL where it

can retrieve the public key to verify the signature of the id token (JWKS URI, cf. [RFC7515]),

and a URL where the RP can register itself at the OP (client registration endpoint).

Step-by-Step Protocol Flow

The flow defined by the Discovery extension is depicted in Figure 4.1. First, the user starts the

login process by entering her email address in her browser (at some web page of an RP), which

sends the email address to the RP in 1 .1 Now, the RP uses the OpenID Connect Discovery

extension to gather information about the OP:

1In our examples and many real-world implementations, the user identifies herself by her email address, but
other types of identifiers, such as personal URIs, are conceivable.
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(from Discovery)(from Discovery)

8 POST registrationEPPOST registrationEP

redirect urisredirect uris

9 ResponseResponse

client id , (client secret)client id , (client secret)

(continue with Core protocol flow)(continue with Core protocol flow)

º Browser � RP � OP

º Browser � RP � OP

Figure 4.2. OpenID Connect Dynamic Registration extension protocol flow. This step is skipped if the
RP is already registered at the OP.

– As the first step, the RP uses the WebFinger mechanism [RFC7033] to discover information

about which OP is responsible for this user. For this discovery, the RP contacts the server

of the user’s email domain 2 .

– The result of the WebFinger request contains the issuer identifier of the OP 3 .

– With this information, the RP can continue the discovery by requesting the OIDC configu-

ration from the OP 4 , 5 . This configuration contains meta data about the OP, including

all endpoints of the OP and a URL where the RP can retrieve the public key of the OP

(used to later verify the id token’s signature).

– If the RP does not know this public key yet, the RP retrieves the key 6 , 7 .

This concludes the OIDC Discovery protocol.

4.2.2. OpenID Connect Dynamic Client Registration

If the RP has not registered itself at this OP before, it registers itself at the client registration

endpoint using the Dynamic Client Registration protocol [SBJ14]: The RP sends a list of its

redirection endpoint URLs to the OP and receives a new client id and (optionally) a client secret

in return.

Step-by-Step Protocol Flow

The flow defined by the Dynamic Registration extension is depicted in Figure 4.2:

– The RP contacts the OP and provides its redirect URIs 8 .

– In return, the OP issues a client id and (optionally) a client secret to the RP 9 .

This concludes the OpenID Connect Dynamic Client Registration protocol.
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1 POST /startPOST /start

emailemail

Discovery and Registration (as above)Discovery and Registration (as above)

10 ResponseResponse

Redirect to OP authEP with client id , redirect uri , state, (nonce)Redirect to OP authEP with client id , redirect uri , state, (nonce)

11 GET authEPGET authEP

client id , redirect uri , state, (nonce)client id , redirect uri , state, (nonce)

12 ResponseResponse

13 POST /authPOST /auth

username, passwordusername, password

14 ResponseResponse

Redirect to RP redirect uri with code, state, issuerRedirect to RP redirect uri with code, state, issuer

15 GET redirect uriGET redirect uri

code, state, issuercode, state, issuer

16 POST tokenEPPOST tokenEP

code, client id , redirect uri , (client secret)code, client id , redirect uri , (client secret)

17 ResponseResponse

id token, access tokenid token, access token

18 ResponseResponse

session cookiesession cookie

º Browser � RP � OP

º Browser � RP � OP

Figure 4.3. OpenID Connect authorization code flow.

4.3. OpenID Connect Flows

OIDC defines three flows: the authorization code flow, the implicit flow, and the hybrid flow.

The first two are directly based on the respective OAuth grants. In the authorization code

flow, the id token is retrieved by an RP from an OP in direct server-to-server communication

(sometimes called back channel), and in the implicit flow, the id token is relayed from an OP to

an RP via the user’s browser (also called front channel). The hybrid flow is a combination of

both flows and allows id tokens to be exchanged via the front and the back channel at the same

time. We now provide a detailed description of all three flows.

4.3.1. Authorization Code Flow

In this flow, an RP redirects the user’s browser to an OP. At the OP, the user authenticates herself

and then the OP issues an authorization code to the RP. The RP now uses this authorization

code to obtain an id token (and, optionally, an access token) from the OP.
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Step-by-Step Protocol Flow

First, the Discovery and Dynamic Registration protocols, as presented above, are executed (if

needed). Then, the core part of the OpenID Connect protocol starts (depicted in Figure 4.3):

– The RP redirects the user’s browser to the OP 10 . This redirect contains the information

that the authorization code flow is used, the client id of the RP, a redirect URI, and a

state value. The redirect may also optionally include a nonce, which will be included in

the id token issued later in this flow.

– This data is sent to the OP by the browser 11 .

– The user authenticates to the OP 12 , 13 , and the OP redirects the user’s browser back

to the RP 14 , 15 . The OP uses the redirect URI from the request in Step 11 . The

redirect contains an authorization code, the state value received in Step 10 , and the issuer

identifier.2

– If the state value and the issuer identifier are correct, the RP contacts the OP at the token

endpoint with the received authorization code, its client id, its client secret (if any), and

the redirect URI used to obtain the authorization code 16 .

– The OP sends a response with a fresh access token and an id token to the RP 17 .

– If the id token is valid, the RP considers the user to be logged in under the identifier

composed from the user id in the id token and the issuer identifier. Hence, the RP may

set a session cookie at the user’s browser 18 . Optionally, the RP can use the access token

to access the user’s resources at some RS.

4.3.2. Implicit Flow

This flow is similar to the authorization code flow, but instead of providing an authorization

code, the OP issues an id token right away to the RP (via the user’s browser) when the user

authenticates to the OP.

Step-by-Step Protocol Flow

The protocol flow is depicted in Figure 4.4. The implicit flow differs only in its last part from

the authorization code flow, i.e., the Steps 10 – 13 of the authorization code flow (Figure 4.3)

are the same, with the exception that the nonce is mandatory in the implicit flow.

As already mentioned above, the OP does not issue an authorization code in Step 14 (Fig-

ure 4.4). Instead, the OP redirects the user’s browser to the redirection endpoint at the RP,

providing an id token, optionally an access token, the state value (as received in Step 11 ),

and the issuer identifier. These values are not provided as a URL parameter but in the URL

2The issuer identifier is included here as a fix against the AS Mix-Up attack, cf. Section 3.3.2.
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1 POST /startPOST /start

emailemail

Discovery and Registration (as above)Discovery and Registration (as above)

10 ResponseResponse

Redirect to OP authEP with client id , redirect uri , state, nonceRedirect to OP authEP with client id , redirect uri , state, nonce

11 GET authEPGET authEP

client id , redirect uri , state, nonceclient id , redirect uri , state, nonce

12 ResponseResponse

13 POST /authPOST /auth

username, passwordusername, password

14 ResponseResponse

Redirect to RP redirect uri with issuer , fragment: id token, access token, state,Redirect to RP redirect uri with issuer , fragment: id token, access token, state,

15 GET redirect uriGET redirect uri

issuerissuer

16 ResponseResponse

17 POST /tokenPOST /token

issuer , id token, access token, stateissuer , id token, access token, state

18 ResponseResponse

session cookiesession cookie

º Browser � RP � OP

º Browser � RP � OP

Figure 4.4. OpenID Connect implicit flow.

fragment instead, as in the OAuth implicit grant. Hence, the browser does not send them to

the RP at first. Instead, the RP has to provide a JavaScript that retrieves these values from

the fragment and sends them to the RP. If the id token is valid, the issuer is correct, and the

state matches the one chosen by the RP for Step 10 , the RP considers the user to be logged in

and issues a session cookie.

4.3.3. Hybrid Flow

The hybrid flow (depicted in Figure 4.5) is a combination of the authorization code flow and

the implicit flow: First, it works like the implicit flow, but when OP redirects the browser back

to RP (Step 14 ), the OP issues an authorization code, and either an id token or an access

token or both.3 The RP then retrieves these values as in the implicit flow (as they are sent in

the fragment like in the implicit flow) and uses the authorization code to obtain a (potentially

second) id token and a (potentially second) access token from OP (Steps 18 f.).

3The choice of the OP to issue either an id token or an access token or both depends on the OP’s configuration
and the request in Step 11 in Figure 4.5.
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1 POST /startPOST /start

emailemail

Discovery and Registration (as above)Discovery and Registration (as above)

10 ResponseResponse

Redirect to OP authEP with client id , redirect uri , state, (nonce)Redirect to OP authEP with client id , redirect uri , state, (nonce)

11 GET authEPGET authEP

client id , redirect uri , state, (nonce)client id , redirect uri , state, (nonce)

12 ResponseResponse

13 POST /authPOST /auth

username, passwordusername, password

14 ResponseResponse

Redirect to RP redirect uri , fragment: code, [id token and/or access token], stateRedirect to RP redirect uri , fragment: code, [id token and/or access token], state

15 GET redirect uriGET redirect uri

16 ResponseResponse

17 POST /tokenPOST /token

code, [id token and/or access token], statecode, [id token and/or access token], state

18 POST tokenEPPOST tokenEP

code, client id , redirect uri , (client secret)code, client id , redirect uri , (client secret)

19 ResponseResponse

access token ′, id tokenaccess token ′, id token

20 ResponseResponse

session cookiesession cookie

º Browser � RP � OP

º Browser � RP � OP

Figure 4.5. OpenID Connect hybrid flow.

4.4. Attacks on OpenID Connect

In this section, we revisit the attacks on OAuth presented in Section 3.3 and discuss if and

how they apply to OpenID Connect as well (cf. Table 4.1). We also discuss other attacks on

OpenID Connect and present some new extensions and variants that have not been documented

so far. We further show mitigations and implementation guidelines that help to avoid all of

these attacks. Attacks that are already covered in the OIDC Core standard [Sak+14a] itself are

not listed here.

Unless noted otherwise, we incorporate the mitigations and adhere to the guidelines established

in the following also in our model. We thereby show that the mitigations and guidelines are

effective and sufficient to protect not only against the attacks described here but also against

other, potentially unknown types of attacks captured by our security properties. This section

also serves to show the state of the art regarding OpenID Connect security.
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attack on OpenID Connect flow
authorization code implicit hybrid

307 Redirect Attack az + an az + an az + an

AS Mix-Up Attack az + an – az + an*

State Leak si si si

Näıve Client Session Integrity Attack si si si

Across-AS State Reuse Attack si si si

az: breaks authorization. an: breaks authentication. si: breaks session integrity. –: not applicable. * restriction:
if client secrets are used, either authorization or authentication is broken, depending on implementation details.

Table 4.1. Overview of attacks on OpenID Connect.

4.4.1. AS Mix-Up Attacks

Recall that in the AS Mix-Up Attack presented in Section 3.3.2 and its variants, the aim was

to confuse the RP about the identity of the OP. In all cases, the user was tricked into using

an honest OP to authenticate to an honest RP, while the RP is made to believe that the user

authenticated to the attacker. The RP therefore, after successful user authentication, tries to

use the authentication token (authorization code or access token) at the attacker’s server, by

which the attacker learns this token and can impersonate the user or access the user’s data at

the OP.

AS Mix-Up Attack in OpenID Connect

Just as in the case of OAuth, the AS Mix-Up Attack on OpenID connect can be performed

in several variants. Here, we first describe two variants to start the attack in the hybrid flow

of OIDC. Below, we elaborate on three distinct methods to continue the attack that can be

combined with both variants of starting the attack.

The start of the attack is depicted in Figure 4.6.

– To start the login flow, the user selects an OP at RP by entering her email address 1 .

This step is the main difference between the two variants to start the attack: In Variant 1,

the user selects a malicious OP, say A-OP. In Variant 2, the user selects an honest OP, say

H-OP, but the request is intercepted by the attacker and altered such that the attacker

replaces the honest OP by A-OP (email is replaced by email ′ in Steps 1 and 2 in

Figure 4.6).4

– Now, RP starts with the discovery phase of the protocol. Since RP thinks that the user

wants to login with A-OP, it retrieves the OIDC configuration from A-OP 5 , 6 . In this

configuration, the attacker does not let all endpoint URLs point to himself, as would be

usual for OIDC, but instead sets the authorization endpoint to be the one of H-OP.

– Next, the RP registers itself at A-OP 9 , 10 . In this step, A-OP issues the same client id

to RP which RP is registered with at H-OP (client ids are public). This is important as

4This initial request is often unencrypted in practice, see [FKS16].

105



1 POST /startPOST /start

emailemail

2 POST /startPOST /start

email ′email ′

Discovery:Discovery:

3 GET /.wk/webfingerGET /.wk/webfinger

email ′email ′

4 ResponseResponse

attackerattacker

5 GET /.wk/openid-configurationGET /.wk/openid-configuration

6 ResponseResponse

issuer ′, authEP , tokenEP ′, registrationEP ′, jwksURI ′, responseTypesissuer ′, authEP , tokenEP ′, registrationEP ′, jwksURI ′, responseTypes

7 GET jwksURIGET jwksURI

8 ResponseResponse

pubSignKeypubSignKey

Registration:Registration:

9 POST registrationEP ′POST registrationEP ′

redirect urisredirect uris

10 ResponseResponse

client id , client secret ′client id , client secret ′

Login:Login:

11 ResponseResponse

Redirect to H-OP authEP with client id , redirect uri , stateRedirect to H-OP authEP with client id , redirect uri , state

12 GET authEPGET authEP

client id , redirect uri , stateclient id , redirect uri , state

13 ResponseResponse

14 POST /authPOST /auth

username, passwordusername, password

15 ResponseResponse

Redirect to RP redirect uri , fragment: access token, code, stateRedirect to RP redirect uri , fragment: access token, code, state

16 GET redirect uriGET redirect uri

17 ResponseResponse

18 POST /tokenPOST /token

access token, code, stateaccess token, code, state

19 POST tokenEP ′POST tokenEP ′

code, client id , redirect uri , client secret ′code, client id , redirect uri , client secret ′

Continue to break authorization/authentication as shown below.Continue to break authorization/authentication as shown below.

º Browser � RPAttacker � OP

º Browser � RPAttacker � OP

Figure 4.6. Start of the AS Mix-Up Attack on the OpenID Connect hybrid flow.
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H-OP will later redirect the user’s browser back to RP and checks the redirect URI based

on the client id.

– Next, RP redirects the user’s browser to H-OP (Variant 1) or A-OP (Variant 2) 11 . In

Variant 1 of the attack, a vigilant user might now be able to detect that she tried to log

in using A-OP but instead is redirected to H-OP. This does not happen in Variant 2, but

here the attacker needs to replace the redirection to A-OP by a redirection to H-OP.

– The user then authenticates at H-OP and is redirected back to RP along with an autho-

rization code and an access token5 12 – 15 .

– Now, RP retrieves the authorization code and the access token from the user’s browser

and continues the login flow 16 , 18 . As RP still assumes that A-OP is used in this case,

it tries to redeem the authorization code for an id token (and a second access token) at

A-OP 19 .

The attacker can now continue the attack in different ways. We here present three interesting

variants:

Breaking Authentication with Code Injection

As the authorization code has not been redeemed at H-OP yet, the code is still valid and the

attacker may start a second login flow (pretending to be the user) at RP (see Figure 4.7). The

attacker skips the authentication at H-OP and returns to RP with the authorization code he

has learned before 22 . RP now redeems this code at H-OP and receives an id token issued for

the honest user and consequently assumes that the attacker has the identity of the user and logs

him in 23 – 25 .

This shows that, using the AS Mix-Up attack, an attacker can successfully impersonate users

at RPs and access their data at honest OPs.

Breaking Authentication without Code Injection

In another variation of the attack, if H-OP does not issue client secrets to RPs, the attacker

can also redeem the authorization code by himself (see Figure 4.8). In this case, the attacker

receives an access token valid for the user’s account. With this access token, he can retrieve

data of the user or act on the user’s behalf at H-OP. (As he redeems the authorization code, he

cannot use it to log himself into the RP in this case.)

Breaking Authorization with Mock Tokens

In any case, the attacker can also respond to the authorization code sent to his token endpoint

with a mock access token and a mock id token (which will not be used in the following). This is

5Depending on the sub-mode of the hybrid flow, OPs do not send id tokens in this step.
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20 POST /startPOST /start

emailemail

21 ResponseResponse

Redirect to H-OP authEP with client id , redirect uri , state′Redirect to H-OP authEP with client id , redirect uri , state′

22 POST /tokenPOST /token

access token ′, code, state′access token ′, code, state′

23 POST tokenEPPOST tokenEP

code, client id , redirect uri , client secretcode, client id , redirect uri , client secret

24 ResponseResponse

access token ′′, id tokenaccess token ′′, id token

25 ResponseResponse

session cookiesession cookie

º Browser � RPAttacker � OP

º Browser � RPAttacker � OP

Figure 4.7. AS Mix-Up Attack on OIDC: Breaking authentication with code injection.

20 POST tokenEPPOST tokenEP

code, client id , redirect uricode, client id , redirect uri

21 ResponseResponse

access token ′′′, id tokenaccess token ′′′, id token

º Browser � RPAttacker � OP

º Browser � RPAttacker � OP

Figure 4.8. AS Mix-Up Attack on OIDC: Breaking authentication without code injection.

20 ResponseResponse

access token ′, id tokenaccess token ′, id token

21 GET /protectedResourceGET /protectedResource

access tokenaccess token

22 GET /protectedResourceGET /protectedResource

access tokenaccess token

23 ResponseResponse

secret user datasecret user data

º Browser � RPAttacker � OP

º Browser � RPAttacker � OP

Figure 4.9. AS Mix-Up Attack on OIDC: Using a mock access token.
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depicted in Figure 4.9, Step 20 . In the next step, the RP might then use the access token learned

from the honest OP to retrieve data of the user from A-OP 21 .6 Then the attacker learns also

this access token, which (as described in the paragraph above) grants him unauthorized access

to the user’s account at H-OP 22 , 23 .

Fixing OpenID Connect

Our analysis of OpenID Connect shows that the mitigation presented in Section 3.3.2 is effective

for OpenID Connect as well and protects against all attack variants shown above.

4.4.2. Attacks on the State Parameter

The state parameter is used in OpenID Connect, just as in OAuth, to protect against attacks

on session integrity, i.e., to prevent an attacker from forcing a user to be logged in at some RP

under the attacker’s account. The use of the state parameter is recommended by the OIDC

standard [Sak+14a].

All of the attacks on the state parameter presented in Section 3.3 apply to OpenID Connect

as well: The State Leak attack, the Näıve Client Session Integrity attack, and the Across-AS

State Reuse attack. Therefore, the fixes proposed in Section 3.3 should be used in OpenID

Connect setups as well.

4.4.3. 307 Redirect Attack

Since OIDC is based on OAuth, the 307 Redirect Attack (Section 3.3.1) applies to OIDC as

well. Assumption (1) in Section 3.3.1 is still reasonable: The OIDC standard does not define

the redirection code or method. In our model, we therefore exclusively use the 303 status code,

which does not instruct the browser to re-send form data.

4.4.4. Server-Side Request Forgery

Server-Side Request Forgery (SSRF) attacks can arise when an attacker can instruct a server

to send HTTP(S) requests to other hosts, causing unwanted side-effects or revealing informa-

tion [Pel+16]. For example, if an attacker can instruct a server behind a corporate firewall to

send requests to other hosts behind this firewall, the attacker might be able to call services or to

scan the internal network (using timing attacks). He might also instruct the server to retrieve

very large documents from other sources, thereby creating Denial of Service attacks.

The first SSRF attack on OIDC was described in [Mla+16], in the context of the OIDC

Discovery extension: An attacker can set up a malicious discovery service that, when queried

by an RP, answers with links to arbitrary, network-internal or external servers (in Step 5 of

Figure 4.1).

6Depending on the RP implementation, the RP might choose to use the mock access token or the one learned
from the honest OP in this step. In the real-world implementation mod auth openidc, the access token from
the honest OP was used.
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Attacker

OP Internal Server

1 Authentication Request

?request uri=http://internal/service

2 GET http://internal/service

Figure 4.10. Server-Side Request Forgery in OIDC with an OP and an internal server behind a firewall.

We point out that not only RPs using the Discovery extension can be affected by SSRF

vulnerabilities, but also OPs, even if they do not use the Discovery extension. The OIDC

Core standard [Sak+14a] defines in Section 6.2.2 a way to indirectly pass the parameters for the

authorization request (cf. Step 11 in Figure 4.5). To this end, RPs can create a JSON document

containing the parameters that are to be passed indirectly (e.g., redirect uri) and make this

document available at some URI. Then, this URI is passed in the authorization request in a new

parameter, request uri . The OP then fetches this document and uses the parameters contained

therein as if they were contained in the authorization request URI. The attacker can therefore

easily mount an SSRF attack against the OP: He only needs to access the authorization endpoint

of the targeted OP and provide a crafted URI (for example, pointing to an internal server) in

the request uri parameter. The OP will then try to access the request uri and the attacker

can, for example, determine by the timing whether the internal server exists, receive an error

message containing further information about the internal server, or even cause some unwanted

action on the internal server. Such an attack is depicted in Figure 4.10.

This new attack vector shows that not only RPs but also OPs have to protect themselves

against SSRF by using appropriate filtering and limiting mechanisms to restrict unwanted

requests that originate from a web server (see [Pel+16]).

Since SSRF attacks depend heavily on the structure of and (vulnerable) services on an internal

network, and often also on timing and performance properties, they are not part of our model.

4.4.5. CSRF Attacks and Third-Party Login Initiation

Some endpoints in OIDC need protection against Cross-Site Request Forgery in addition to the

protection that the state parameter provides, e.g., by checking the Origin header. Our analysis

(see Section 4.5) shows that it is sufficient for the RP to protect the URI on which the login

flow is started (otherwise, an attacker could start such a login flow using his own identity in

a user’s browser) and for the OP to protect the URI where the user submits her credentials

(otherwise, an attacker could submit his credentials instead). The redirection endpoint at the

RP is sufficiently protected if the state parameter does not leak to the attacker.

In the OIDC Core standard [Sak+14a], a so-called login initiation endpoint is described
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which allows a third party to start a login flow by redirecting a user to this endpoint, passing

the identity of an OP in the request. The RP will then start a login flow at the given OP.

Members of the OIDC foundation confirmed to us that this endpoint is essentially an intentional

CSRF protection bypass. We therefore recommend that login initiation endpoints should not

be implemented (they are not a mandatory feature), or the endpoints should require explicit

confirmation by the user.

4.5. Formal Analysis of OpenID Connect

In the following, we present our security analysis of OIDC, including a formal model of OIDC,

the specifications of central security properties, our theorem which establishes the security of

OIDC in our model, and a sketch of the proof (see the appendix for details).

The formal model of OIDC is based on the Web Infrastructure Model and is derived by closely

following the OIDC standards Core, Discovery, and Dynamic Client Registration [Sak+14a;

Sak+14b; SBJ14]. We formalize the main security properties for OIDC (authentication, autho-

rization, session integrity for authentication and authorization) and secondary security properties.

They capture important aspects of the security of OIDC, for example, regarding the outcome

of the dynamic client registration. Finally, we state and prove our main theorem.

4.5.1. Model

Our model of OIDC comprises, as mentioned above, the OIDC Core standard [Sak+14a] plus

the Discovery [Sak+14b] and Dynamic Client Registration [SBJ14] extensions.

More specifically, our model includes all features of OIDC that are commonly found in real-

world implementations, for example, all three flows (implicit, authorization code, and hybrid

flow), a detailed model of the Discovery (including the WebFinger protocol) and Dynamic

Registration phases, including dynamic exchange of signing keys, and all relevant endpoints.

RPs, IdPs (OPs), and browsers can be corrupted by the adversary dynamically.

We do not model detailed user claims (information about the user that can be retrieved from

OPs). In our model, users have identities, but no other properties. We also do not model logout,

self-issued OIDC providers (defined by [Sak+14a] as “personal, self-hosted OPs that issue self-

signed ID Tokens”), and Authentication Class Reference (ACR) and Authentication Methods

Reference (AMR) values that can be used to indicate the level of trust in a user authentication.7

Since the Web Infrastructure Model has no notion of time, we do not model expiry dates, for

example, for the ID token and instead overapproximate by assuming that these tokens do not

expire.

As in the OAuth model, we have two versions of our OIDC model, one with a network attacker

and one with an unbounded number of web attackers (see Section 3.5.2 for the rationale).

7For example, these values would indicate a higher level of trust for a two-factor user authentication than for a
password-based authentication.
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OIDC Web System with a Network Attacker

An OIDC web system with a network attacker (OIDCWSn) consists of a network attacker, a finite

set of web browsers, a finite set of web servers for the RPs, and a finite set of web servers for

the OPs. All non-attacker parties are initially honest, but can become corrupted dynamically

upon receiving a special message and then behave just like a web attacker process.

Web Servers: Our models for OPs and RPs follow the OIDC standard closely and include the

mitigations discussed in Section 4.4.

An RP waits for users to start a login flow and then nondeterministically decides which flow

to use. If needed, it then starts the discovery and dynamic registration phase of the protocol,

and finally redirects the user to the OP for user authentication. Afterwards, it processes the

received tokens. It then uses these tokens according to their type (e.g., using an access token,

the RP would retrieve an id token from the OP). If an id token is received that passes all checks,

the user will be logged in. Just as in our model for OAuth, RPs manage two kinds of sessions:

The login sessions, which are used only during the user login phase, and service sessions.

The OP provides several endpoints according to its role in the login process. This includes the

endpoints needed for the discovery and registration phases, which, in real-world deployments,

may reside on different servers. For example, the OP provides its own OIDC configuration at

the path /.wk/openid-configuration, and receives authentication and token requests.

Scripts: Three scripts can be sent from honest OPs and RPs to web browsers.

– The script script rp index is sent by an RP when the user visits web site of RP. It starts

the login process.

– The script script rp get fragment is sent by an RP during an implicit or hybrid flow to

retrieve the data from the URI fragment. It extracts the access token, the authorization

code, and the state from the fragment part of its own URI and sends this information in

the body of a POST request back to the RP.

– Finally, OP uses the script script op form for user authentication.

OIDC Web System with Web Attackers

In addition to OIDCWSn, we also consider a class of web systems where the network attacker

is replaced by an unbounded finite set of web attackers and a DNS server is introduced. We

denote such a system by OIDCWSw and call it an OIDC web system with web attackers.

4.5.2. Main Security Properties

Our primary security properties capture authentication, authorization and session integrity for

authentication and authorization. We present these security properties in detail in the following.

Supporting definitions can be found in the appendix.
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Authentication Property

The most important property for OIDC is the authentication property. In short, it captures

that a network attacker (and therefore also web attackers) should be unable to log in as an

honest user at an honest RP using an honest OP.

Before we define the authentication property in more detail, recall that in our modeling, an

RP uses two kinds of sessions: login sessions, which are only used for the login flow, and service

sessions, which are used after a user/browser was logged in (see Section 3.4.5 for details). When

a login session has finished successfully (i.e., the RP received a valid id token), the RP uses a

fresh nonce as the service session id, stores this id in the session data of the login session, and

sends the service session id as a cookie to the browser. In the same step, the RP also stores the

issuer (say, d) that was used in the login flow and the identity (email address) of the user (say,

id) as a pair 〈d, id〉, to be used as the global user identifier.

Now, our authentication property defines that a network attacker should be unable to get

hold of a service session id by which the attacker would be considered to be logged in at an

honest RP under an identity governed by an honest OP for an honest user/browser.

In order to define the authentication property formally, we first need to define the precise

notion of a service session. In the following, as introduced in Section 2.7, (S,E,N) denotes a

configuration in the run ρ with its components S, a mapping from processes to states of these

processes, E, a set of events in the network that are waiting to be delivered to some party, and

N , a set of nonces that have not been used yet. By governor(id) we denote the OP that is

responsible for a given user identity (email address) id , and by dom(governor(id)), we denote the

set of domains that are owned by this OP. By S(r).sessions[lsid ] we denote a data structure

in the state of r that contains information about the login session identified by lsid . This data

structure contains, for example, the identity for which the login session with the id lsid was

started and the service session id that was issued after the login session.

We can now define that there is a service session identified by a nonce n for an identity id

at some RP r iff there exists a login session (identified by some nonce lsid) such that n is the

service session associated with this login session, and r has stored that the service session is

logged in for the id id using an issuer d (which is some domain of the governor of id).

Definition 1 (Service Sessions). We say that there is a service session identified by a nonce

n for an identity id at some RP r in a configuration (S,E,N) of a run ρ of an OIDC web

system iff there exists some login session id lsid and a domain d ∈ dom(governor(id)) such that

S(r).sessions[lsid ][loggedInAs] ≡ 〈d, id〉 and S(r).sessions[lsid ][serviceSessionId] ≡ n.

By d∅(S(attacker)) we denote all terms that can be computed (more formally, derived in the

usual Dolev-Yao style [DY83]) from the attacker’s knowledge in the state S. We can now define

that an OIDC web system with a network attacker is secure w.r.t. authentication iff the attacker

can never get hold of a service session id (n) that was issued by an honest RP r for an identity

id of an honest user (browser) at some honest OP (governor of id).
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Definition 2 (Authentication Property). Let OIDCWSn be an OIDC web system with a network

attacker. We say that OIDCWSn is secure w.r.t. authentication iff for every run ρ of OIDCWSn,

every configuration (S,E,N) in ρ, every r ∈ RP that is honest in S, every browser b that is

honest in S, every identity id ∈ ID owned by b with governor(id) being an honest OP, every

service session identified by some nonce n for id at r, we have that n is not derivable from the

attackers knowledge in S (i.e., n 6∈ d∅(S(attacker))).

Authorization Property

Intuitively, authorization for OIDC means that a network attacker should not be able to obtain

or use a protected resource available to some honest RP at an OP for some user unless certain

parties involved in the authorization process are corrupted. As the access control for such

protected resources relies only on access tokens, we require that an attacker does not learn

access tokens that would allow him to gain unauthorized access to these resources.

To define the authorization property formally, we need to reason about the state of an

honest OP, say i. In this state, i creates records which contain information about successful

authentications of users at i. Such records are stored in S(i).records (with S as above). One

such record, say x, contains the authenticated user’s identity in x[subject], two8 access tokens

in x[access tokens], and the client id of the RP in x[client id].

We can now define the authorization property. It defines that an OIDC web system with a

network attacker is secure w.r.t. authorization iff the attacker cannot get hold of an access token

that is stored in one of i’s records for an identity of an honest user/browser b and an honest

RP r.

Definition 3 (Authorization Property). Let OIDCWSn be an OIDC web system with a network

attacker. We say that OIDCWSn is secure w.r.t. authorization iff for every run ρ of OIDCWSn,

every configuration (S,E,N) in ρ, every r ∈ RP that is honest in S, every i ∈ OP that is honest

in S, every browser b that is honest in S, every identity id ∈ IDi owned by b, every nonce n,

every term x ∈〈〉 S(i).records with x[subject] ≡ id , n ∈〈〉 x[access tokens], and the client id

x[client id] having been issued by i to r, we have that n is not derivable from the attackers

knowledge in S (i.e., n 6∈ d∅(S(attacker))).

Session Integrity for Authentication

The two session integrity properties capture that an attacker should be unable to forcefully log

a user/browser in to some RP. This includes attacks such as CSRF and session swapping. As

mentioned above, we define these properties over OIDCWSw.

For session integrity for authentication we say that a user/browser that is logged in at some

RP must have expressed her wish to be logged in to that RP in the beginning of the login flow.

It is important to note that not even a malicious OP should be able to forcefully log in its users

8In the hybrid mode, OPs can issue two access tokens, cf. Section 4.3.3.
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(more precisely, its user’s browsers) at an honest RP. If the OP is honest, then the user must

additionally have authenticated herself at the OP with the same user account that RP uses for

her identification. This excludes, for example, cases where (1) the user is forcefully logged in

to an RP by an attacker that plays the role of an OP, and (2) where an attacker can force an

honest user to be logged in at some RP under a false identity issued by an honest OP.

In our formal definition of session integrity for authentication (below), loggedInQρ (b, r, u, i, lsid)

denotes that in the processing step Q (see below), the browser b was authenticated (logged in)

to an RP r using the OP i and the identity u in an RP login session with the session id lsid .

(Here, the processing step Q corresponds to Step 18 in Figure 4.3.) The user authentication in

the processing step Q is characterized by the browser b receiving the service session id cookie

that results from the login session lsid .

By startedQ
′

ρ (b, r, lsid) we denote that the browser b, in the processing step Q′ triggered the

script script rp index to start a login session which has the session id lsid at the RP r. (Compare

Section 2.10.10 on how browsers handle scripts.) Here, Q′ corresponds to Step 1 in Figure 4.3.

By authenticatedQ
′′

ρ (b, r, u, i, lsid) we denote that in the processing step Q′′, the user/browser

b authenticated to the OP i. In this case, authentication means that the user filled out the login

form (in script op form) at the OP i and, by this, consented to be logged in at r (as in Step 13

in Figure 4.3).

Using these notations, we can now define security w.r.t. session integrity for authentication of

an OIDC web system with web attackers in a straightforward way from our informal definition

above:

Definition 4 (Session Integrity for Authentication). Let OIDCWSw be an OIDC web system

with web attackers. We say that OIDCWSw is secure w.r.t. session integrity for authentication

iff for every run ρ of OIDCWSw, every processing step Q in ρ with Q = (S,E,N) −→ (S′, E′, N ′)

(for some S, S′, E, E′, N , N ′), every browser b that is honest in S, every i ∈ OP, every

identity u, every r ∈ RP that is honest in S, every nonce lsid , with loggedInQρ (b, r, u, i, lsid), we

have that (1) there exists a processing step Q′ in ρ (before Q) such that startedQ
′

ρ (b, r, lsid),

and (2) if i is honest in S, then there exists a processing step Q′′ in ρ (before Q) such that

authenticatedQ
′′

ρ (b, r, u, i, lsid).

Session Integrity for Authorization

For session integrity for authorization we say that if an RP uses some access token at some

OP in a session with a user, then that user expressed her wish to authorize the RP to interact

with some OP. One cannot guarantee that the OP with which RP interacts is the one the user

authorized the RP to interact with. This is because the OP might be malicious. In this case,

for example in the discovery phase, the malicious OP might just claim (in Step 3 in Figure 4.1)

that some other OP is responsible for the authentication of the user. If, however, the OP the

user is logged in with is honest, then it should be guaranteed that the user authenticated to
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that OP and that the OP the RP interacts with on behalf of the user is the one intended by the

user.

For the formal definition, we use two additional predicates: usedAuthorizationQρ (b, r, i, lsid)

means that the RP r, in a login session (session id lsid) with the browser b used some access

token to access services at the OP i. By actsOnUsersBehalfQρ (b, r, u, i, lsid) we denote that the

RP r not only used some access token, but used one that is bound to the user’s identity at the

OP i.

Again, starting from our informal definition above, we define security w.r.t. session integrity

for authorization of an OIDC web system with web attackers in a straightforward way (and

similarly to session integrity for authentication):

Definition 5 (Session Integrity for Authorization). Let OIDCWSw be an OIDC web system with

web attackers. We say that OIDCWSw is secure w.r.t. session integrity for authorization iff for ev-

ery run ρ of OIDCWSw, every processing step Q in ρ with Q = (S,E,N) −→ (S′, E′, N ′) (for some

S, S′, E, E′, N , N ′), every browser b that is honest in S, every i ∈ OP, every identity u, every

r ∈ RP that is honest in S, every nonce lsid , we have that (1) if usedAuthorizationQρ (b, r, i, lsid),

then there exists a processing step Q′ in ρ (before Q) such that startedQ
′

ρ (b, r, lsid), and (2) if i

is honest in S and actsOnUsersBehalfQρ (b, r, u, i, lsid), then there exists a processing step Q′′ in

ρ (before Q) such that authenticatedQ
′′

ρ (b, r, u, i, lsid).

4.5.3. Secondary Security Properties

We define the following secondary security properties that capture specific aspects of OIDC. We

use these secondary security properties during our proof of the above main security properties.

Nonetheless, these secondary security properties are important and interesting in their own

right, since the security of OIDC depends on them.

In the first lemma, we capture that if a relying party requests the issuer identifier from an

identity provider (cf. Steps 2 – 3 in Figure 4.1), then the RP will only receive an origin that

belongs to this OP in the response. In other words, honest OPs do not use attacker-controlled

domains as issuer identifiers, and the attacker is unable to alter this information on the way to

the RP. The RP stores the mapping from email addresses to issuer identifiers in the so-called

issuer cache.

Lemma 1 (Integrity of Issuer Cache). For any run ρ of an OIDC web system OIDCWSn with a

network attacker or an OIDC web system OIDCWSw with web attackers, every configuration

(S,E,N) in ρ, every OP i that is honest in S, every identity id ∈ ID with governor(id) = i,

every relying party r that is honest in S, we have that S(r).issuerCache[id ] ≡ 〈〉 (not set) or

S(r).issuerCache[id ] ∈ dom(i).

In a similar way, the next lemma captures that (1) honest OPs only use endpoints under their

control in their OIDC configuration document (cf. Steps 4 – 5 in Figure 4.1) and that (2) this
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information cannot be altered by an attacker. RPs store OIDC configurations in their OIDC

configuration cache as a mapping from issuer identifiers to OIDC configuration documents.

Lemma 2 (Integrity of OIDC Configuration Cache). For any run ρ of an OIDC web system

with a network attacker OIDCWSn or an OIDC web system with web attackers OIDCWSw, every

configuration (S,E,N) in ρ, every OP i that is honest in S, every domain d ∈ dom(i), every

relying party r that is honest in S, we have that S(r).oidcConfigCache[d] ≡ 〈〉 (not set) or

S(r).oidcConfigCache[d] ≡ [issuer : d, auth ep : u1, token ep : u2, jwks ep : u3, reg ep : u4]

with ul, l ∈ {1, 2, 3, 4}, being URLs, ul.host ∈ dom(i), and ul.protocol ≡ S.

Again similarly to the above, the third lemma captures that RPs receive only “correct” signing

keys from honest OPs, i.e., keys that belong to the respective OP (cf. Steps 6 – 7 in Figure 4.1).

RPs store public signing keys of OPs in their JWKS cache (again as a mapping from issuer

identifiers to keys).

Lemma 3 (Integrity of JWKS Cache). For any run ρ of an OIDC web system with a network

attacker OIDCWSn or an OIDC web system with web attackers OIDCWSw, every configuration

(S,E,N) in ρ, every OP i that is honest in S, every domain d ∈ dom(i), every relying party

r that is honest in S, we have that S(r).jwksCache[d] ≡ 〈〉 (not set) or S(r).jwksCache[d] ≡
pub(S(i).jwks).

The following lemma captures that honest RPs register only redirection URIs that point

to themselves and that these URIs always use HTTPS. Recall that when an RP registers at

an OP, the OP issues a freshly chosen client id to the RP and then stores RP’s redirection

URIs. In a state S(i) of an OP, for a given client id c the list of redirection URIs is stored in

S(i).clients[c][redirect uris].

Lemma 4 (Integrity of Client Registration). For any run ρ of an OIDC web system with a net-

work attacker OIDCWSn or an OIDC web system with web attackers OIDCWSw, every con-

figuration (S,E,N) in ρ, every OP i that is honest in S, every domain d ∈ dom(i), every

relying party r that is honest in S, every client id c that has been issued to r by i, every URL

u ∈〈〉 S(i).clients[c][redirect uris], we have that u.host ∈ dom(r) and u.protocol ≡ S.

The following lemma formalizes an important, yet expected property of OIDCWSn: Attackers

cannot learn user’s passwords. More precisely, we define that secretOfID(id), which denotes the

password for a given identity id , is not known to any party except for the browser b owning the

id and the identity provider i governing the id (as long as b and i are honest).

Lemma 5 (Third parties do not learn passwords). For any run ρ of an OIDC web system with

a network attacker OIDCWSn or an OIDC web system with web attackers OIDCWSw, every

configuration (S,E,N) in ρ, every OP i that is honest in S, every identity id ∈ ID with

governor(id) = i, every browser b with b = ownerOfID(id) that is honest in S, every p ∈W\{b, i},
we have that secretOfID(id) 6∈ d∅(Sl(p)).
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The following lemma states that attackers also cannot learn ID tokens that were issued by

honest OPs for honest RPs and identities of honest browsers.

Lemma 6 (Attacker does not Learn ID Tokens). For any run ρ of an OIDC web system with

a network attacker OIDCWSn or an OIDC web system with web attackers OIDCWSw, every

configuration (S,E,N) in ρ, every OP i that is honest in S, every domain d ∈ dom(i), every

identity id ∈ ID with governor(id) = i and with b = ownerOfId(id) being an honest browser (in

S), every relying party r that is honest in S, every client id c that has been issued to r by i,

every term y, every id token t = sig([iss : d, sub : id , aud : c, nonce : y], k) with k = S(i).jwks,

every attacker process a, we have that t 6∈ d∅(S(a)).

Finally, the following lemma shows that if an honest browser logs in at an honest RP using

an honest OP, then the attacker cannot learn the state value used in this login flow.

Lemma 7 (Third parties do not learn state). There exists no run ρ of an OIDC web system with

web attackers OIDCWSw, no configuration (S,E,N) of ρ, no r ∈ RP that is honest in S, no i ∈ OP

that is honest in S, no browser b that is honest in S, no nonce lsid ∈ N , no domain h ∈ dom(r)

of r, no terms g, x, y, z ∈ TN , no cookie c := 〈sessionId, 〈lsid , x, y, z〉〉, no atomic Dolev-Yao

process p ∈ W \ {b, i, r} such that (1) S(r).sessions[lsid ] ≡ g, (2) g[state] ∈ d∅(S(p)), (3)

S(r).issuerCache[g[identity]] ∈ dom(i), and (4) c ∈〈〉 S(b).cookies[h].

4.5.4. The OpenID Connect Security Theorem

The following theorem states that OIDC is secure w.r.t. authentication and authorization in pres-

ence of the network attacker, and that OIDC is secure w.r.t. session integrity for authentication

and authorization in presence of web attackers.

Theorem 2 (Security of OpenID Connect). Let OIDCWSn be an OIDC web system with a net-

work attacker. Then, OIDCWSn is secure w.r.t. authentication and authorization. Let OIDCWSw

be an OIDC web system with web attackers. Then, OIDCWSw is secure w.r.t. session integrity

for authentication and authorization.

4.5.5. Proof of the OpenID Connect Security Theorem: Outline

Here, we only give a very rough overview of our proof. For full details we refer to the appendix.

For authentication and authorization, we first show that Lemmas 1–6 hold true. (The proofs

for Lemmas 1–4 build upon each other.) We then assume that the authentication/authorization

properties do not hold, i.e., that there is a run ρ of OIDCWSn that does not satisfy authen-

tication or authorization, respectively. Using Lemmas 1–6, it then only requires a few steps

to lead the respective assumption to a contradication and thereby show that OIDCWSn enjoys

authentication/authorization.

For the session integrity properties, we follow a similar scheme. Since the state value is essential

for session integrity, we first show Lemma 7, which essentially says that a web attacker is unable
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to get hold of the state value that is used in a session between an honest browser b, an honest

RP r, and an honest OP i. We then show session integrity for authentication/authorization by

starting from the latest “known” processing steps in the respective flows (e.g., for authentication,

loggedInQρ (b, r, u, i, lsid)) and tracking through the OIDC flows to show the existence of the earlier

processing steps (e.g., startedQ
′

ρ (b, r, lsid)) and their respective properties.

4.5.6. Discussion of Results

We were able to prove, for the first time, the security of OpenID Connect. Our analysis

shows that the fixes we devised for OAuth are also effective and sufficient to protect OpenID

Connect. The secondary security properties show in particular that the Discovery and Dynamic

Registration extensions work “as expected” and do not introduce new security vulnerabilities.

This is an important result for the security of OpenID Connect.
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5. Impact

Numerous services rely on OAuth and OpenID Connect to protect their users’ data, for example,

when authorizing critical financial transactions (PayPal [Pay], OpenID Financial API [SSN18]).

Many of these services were potentially affected by the attacks we found, and it was therefore

important to disclose the attacks responsibly.

After finding the attacks using our formal model, we first verified all attacks on existing,

real-world implementations of OAuth and OpenID Connect. We then disclosed the attacks,

most importantly the AS Mix-Up attack, to the OAuth and OpenID Connect standardization

bodies. We are currently working in the OAuth Working Group on creating a new internet

standard containing recommendations on mitigations against the attacks.

5.1. Verification

We verified the AS Mix-Up and 307 Redirect attacks on the Apache web server module

mod auth openidc, an implementation of an OpenID Connect (and therefore also OAuth) client

which is maintained by a member of the IETF OAuth Working Group. We also verified the AS

Mix-Up Attack on the Python implementation pyoidc. We verified the State Leak Attack on a

version of the Facebook PHP SDK and the Näıve Client Session Integrity and Across-AS State

Reuse attacks on nytimes.com.1

5.2. Disclosure

In November 2015, we reported the attacks to the IETF OAuth Working Group and the OpenID

Connect Working Group at the OpenID Foundation that confirmed the attacks. Simultaneously,

we also notified the affected implementors of OAuth and OpenID Connect listed above. The

OAuth Working Group invited us to discuss our findings and potential countermeasures at

an emergency meeting in the following month. In January 2016, the OAuth Working Group

published a security advisory on its mailing list [Tsc16] warning users of the AS Mix-Up Attack

and the variant in [Mla+16].

1We found that mod auth openidc and nytimes.com are not susceptible to the State Leak attack since the user
is immediately redirected to another web page at the same client after the login/authorization.
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5.3. Follow-Up

During the emergency meeting, we proposed a workshop series to provide a forum for the

exchange and cooperation between researchers, industry experts and standardization groups

in the area of OAuth security. The idea was well received and so we hosted the first OAuth

Security Workshop (OSW) at our university in July 2016. Since then, the workshop has been held

annually and continues to foster the exchange in the areas of web authentication, authorization,

and privacy. We continue to present and discuss our work at this workshop series.

We also joined the IETF OAuth Working Group to develop a new RFC codifying updated

security recommendations for OAuth and OpenID Connect based on our findings [Lod+18]. This

RFC contains advice on all attacks presented in this work and discusses potential mitigations.

It is designed as a Best Current Practice (BCP) document that, in contrast to regular RFCs

like [RFC6819], can be updated in the future.
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6. Conclusion and Future Work

In this thesis, we have presented two important contributions to the area of web security: First,

the most detailed and comprehensive formal model for the web infrastructure to date, and

second, a detailed and precise security analysis of the widely used SSO standards OAuth and

OpenID Connect, revealing previously unknown attacks.

Our Web Infrastructure Model captures many important features of the web with an unrivaled

level of precision. The model is suitable for the analysis of a very wide range of web applications

and standards, and with the WebRTC and WebSockets extensions, it supports even more

web APIs than in the original publications. Nonetheless, some web features are not currently

represented in the model and, since the web is developing at a high pace, there will always

be room for elaborating on the model. For example, it could be extended to support complex

Cross-Origin Resource Sharing requests, or upcoming technologies such as HTTP Token Binding

[Pop+18] or the Web Authentication API [Bal+18].

As we have seen in our case studies, our analyses capitalize on the high level of detail of

our pencil-and-paper model. As discussed earlier, achieving a similar level of detail in tools for

automated proofs can be challenging. A mechanization of the web model, however, is certainly

desirable: encoding the web model in a programming language and using tools to assist in

creating and verifying proofs could enable an easier reuse of existing proofs and models, and

it could help make formal methods more accessible to developers of applications and protocols.

Such an approach could also facilitate the (automated) translation of real-world-applications

into accurate models and vice-versa.

Using the Web Infrastructure Model as the foundation, we carried out the first extensive

formal security analyses of the OAuth 2.0 and OpenID Connect standards. The detailed models

created to this end comprise all grant types (flows) of OAuth and OIDC and take into account

a large range of available options, the OpenID Connect Discovery and Dynamic Registration

extensions, as well as corrupted browsers, clients, and OAPs/OPs.

Demonstrating the usefulness of our manual approach, our in-depth analyses revealed five

previously unknown attacks on OAuth and OpenID Connect. The attacks break authorization,

authentication, and session integrity in realistic settings. We verified all attacks on real-world

implementations, proposed fixes, and joined the OAuth Working Group to codify the mitigations

into official standards.

We showed that both, OAuth and OpenID Connect, can in fact be operated securely: With

our mitigations in place and under assumptions that can be met in real-world deployments, we

proved authentication, authorization and session integrity properties for both standards. Our
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assumptions are documented in detail and can serve as guidelines for the secure implementation

and usage of OAuth and OIDC. The fact that OAuth and OIDC are two of the most widely

deployed authorization and authentication systems in the web and the basis for other protocols

makes our findings particularly relevant.

Our definitions and proofs for OAuth and OIDC are excellent starting points for the thorough

security analysis of technologies related to OAuth such as PKCE, OAuth Token Binding, and

OAuth MTLS. PKCE (Proof Key for Code Exchange, [RFC7636]) was developed to protect

OAuth even if an attacker can observe the authorization code, as possible on mobile operating

systems. OAuth Token Binding [Jon+] limits access tokens, authorization codes, and refresh

tokens to specific TLS connections. MTLS (mutual TLS, [Cam+18]) can be used for client

authentication and to bind access tokens to client certificates. All of these techniques can and

should be evaluated in our model.

In this work we have demonstrated that challenging security problems in the web can be

tackled using formal models and rigorous proofs. With our accurate model and the case studies,

we have laid a solid foundation for a more formal treatment of web security. Our hope is that

our work will lead to formal methods being used more frequently and at an earlier stage in the

development of web protocols, standards, and applications, making the web more secure.
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A. The Web Infrastructure Model

In this appendix, we present the Web Infrastructure Model as proposed in [FKS14] and extended

in [FKS15a; FKS15b; FKS16; FKS17]. The model also includes the WebRTC and WebSocket

extensions presented in Section 2.

A.1. Communication Model

We start with details and definitions on the basic communication model.

A.1.1. Terms, Messages and Events

The signature Σ for the terms and messages considered in this work is the union of the following

pairwise disjoint sets of function symbols:

– constants C = IPs∪ S∪ {>,⊥,3} where the three sets are pairwise disjoint, S is interpreted

to be the set of ASCII strings (including the empty string ε), and IPs is interpreted to be

a set of (IP) addresses,

– function symbols for public keys, (a)symmetric encryption/decryption, and signatures:

pub(·), enca(·, ·), deca(·, ·), encs(·, ·), decs(·, ·), sig(·, ·), checksig(·, ·, ·), and extractmsg(·),

– n-ary sequences 〈〉, 〈·〉, 〈·, ·〉, 〈·, ·, ·〉, etc., and

– projection symbols πi(·) for all i ∈ N.

For strings (elements in S), we use a specific font. For example, HTTPReq and HTTPResp are

strings. We denote by Doms ⊆ S the set of domains, e.g., example.com ∈ Doms. We denote by

Methods ⊆ S the set of methods used in HTTP requests, e.g., GET, POST ∈ Methods.

Definition 6 (Nonces and Terms). By X = {x1, x2, . . . } we denote a set of variables and by N
we denote an infinite set of constants (nonces) such that Σ, X, and N are pairwise disjoint. For

N ⊆ N , we define the set TN (X) of terms over Σ∪N ∪X inductively: (1) If t ∈ N ∪X, then t

is a term. (2) If f ∈ Σ is an n-ary function symbol in Σ for some n ≥ 0 and t1, . . . , tn are terms,

then f(t1, . . . , tn) is a term.

The equational theory associated with the signature Σ is given in Figure A.1. By ≡ we

denote the congruence relation on TN (X) induced by this theory. For example, we have that

π1(deca(enca(〈a, b〉, pub(k)), k)) ≡ a.
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deca(enca(x, pub(y)), y) = x

decs(encs(x, y), y) = x

checksig(sig(x, y), pub(y)) = >
extractmsg(sig(x, y)) = x

πi(〈x1, . . . , xn〉) = xi if 1 ≤ i ≤ n
πj(〈x1, . . . , xn〉) = 3 if j 6∈ {1, . . . , n}

Figure A.1. Equational theory for Σ.

Definition 7 (Ground Terms, Messages, Placeholders, Protomessages). By TN = TN (∅), we de-

note the set of all terms over Σ ∪ N without variables, called ground terms. The set M of

messages (over N ) is defined to be the set of ground terms TN .

We define the set Vprocess = {ν1, ν2, . . . } of variables (called placeholders) used by processes

(see below). The set M ν := TN (Vprocess) is called the set of protomessages, i.e., messages that

can contain placeholders.

Example 1. For example, k ∈ N and pub(k) are messages, where k typically models a private

key and pub(k) the corresponding public key. For constants a, b, c and the nonce k ∈ N , the

message enca(〈a, b, c〉, pub(k)) is interpreted to be the sequence of constants a, b, c encrypted by

the public key pub(k).

Definition 8 (Variable Replacement). Let N ⊆ N , τ ∈ TN ({x1, . . . , xn}), and t1, . . . , tn ∈ TN .

By τ [t1/x1, . . . , tn/xn] we denote the (ground) term obtained from τ by replacing all occurrences

of xi in τ by ti, for all i ∈ {1, . . . , n}.

Definition 9 (Events and Protoevents). An event over IPs and M is a term of the form 〈a, f,m〉,
for a, f ∈ IPs and m ∈ M , where a is interpreted to be the receiver address and f is the sender

address. We denote by E the set of all events. Events over IPs and M ν are called protoevents

and are denoted Eν . By 2E〈〉 (or 2Eν〈〉, respectively) we denote the set of all sequences of

(proto)events, including the empty sequence (e.g., 〈〉, 〈〈a, f,m〉, 〈a′, f ′,m′〉, . . . 〉, etc.).

A.1.2. Notations

Definition 10 (Normal Form). Let t be a term. The normal form of t is acquired by reducing

the function symbols from left to right as far as possible using the equational theory shown in

Figure A.1. For a term t, we denote its normal form as t↓.

Definition 11 (Pattern Matching). Let pattern ∈ TN ({∗}) be a term containing the wildcard

(variable ∗). We say that a term t matches pattern iff t can be acquired from pattern by replacing

each occurrence of the wildcard with an arbitrary term (which may be different for each instance
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[k1:v1, . . . , kn:vn] [ki] = vi

[k1:v1, . . . , kn:vn]− ki = [k1:v1, . . . , ki−1:vi−1, ki+1:vi+1 . . . , kn:vn]

Figure A.2. Dictionary operators with 1 ≤ i ≤ n.

of the wildcard). We write t ∼ pattern. For a sequence of patterns patterns we write t ∼̇ patterns

to denote that t matches at least one pattern in patterns.

For a term t′ we write t′| pattern to denote the term that is acquired from t′ by removing all

immediate subterms of t′ that do not match pattern.

Example 2. For example, for a pattern p = 〈>, ∗〉 we have that 〈>, 42〉 ∼ p, 〈⊥, 42〉 6∼ p, and

〈〈⊥,>〉, 〈>, 23〉, 〈a, b〉, 〈>,⊥〉〉| p = 〈〈>, 23〉, 〈>,⊥〉〉 .

Definition 12 (Sequence Notations). For a sequence t = 〈t1, . . . , tn〉 and a set s we use t ⊂〈〉 s
to say that t1, . . . , tn ∈ s. We define x ∈〈〉 t ⇐⇒ ∃i : ti = x . For a term y we write t +〈〉 y

to denote the sequence 〈t1, . . . , tn, y〉. For a sequence r = 〈r1, . . . , rm〉 we write t ∪ r to denote

the sequence 〈t1, . . . , tn, r1, . . . , rm〉. For a finite set M with M = {m1, . . . ,mn} we use 〈M〉 to

denote the term of the form 〈m1, . . . ,mn〉. (The order of the elements does not matter; one is

chosen arbitrarily.)

Definition 13. A dictionary over X and Y is a term of the form

〈〈k1, v1〉, . . . , 〈kn, vn〉〉

where k1, . . . , kn ∈ X, v1, . . . , vn ∈ Y . We call every term 〈ki, vi〉, i ∈ {1, . . . , n}, an element of

the dictionary with key ki and value vi. We often write [k1:v1, . . . , ki:vi, . . . , kn:vn] instead of

〈〈k1, v1〉, . . . , 〈kn, vn〉〉. We denote the set of all dictionaries over X and Y by [X × Y ].

We note that the empty dictionary is equivalent to the empty sequence, i.e., [] = 〈〉. Figure A.2

shows the short notation for dictionary operations. For a dictionary z = [k1:v1, k2:v2, . . . , kn:vn]

we write k ∈ z to say that there exists i such that k = ki. We write z[kj ] to refer to the value

vj . If a dictionary contains two elements 〈k, v〉 and 〈k, v′〉, then the notations and operations

for dictionaries apply nondeterministically to one of both elements. If k 6∈ z, we set z[k] := 〈〉.
Given a term t = 〈t1, . . . , tn〉, we can refer to any subterm using a sequence of integers. The

subterm is determined by repeated application of the projection πi for the integers i in the

sequence. We call such a sequence a pointer :

Definition 14. A pointer is a sequence of non-negative integers. We write τ.p for the application

of the pointer p to the term τ . This operator is applied from left to right. For pointers consisting

of a single integer, we may omit the sequence braces for brevity.
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Example 3. For the term τ = 〈a, b, 〈c, d, 〈e, f〉〉〉 and the pointer p = 〈3, 1〉, the subterm of τ at

the position p is c = π1(π3(τ)). Also, τ.3.〈3, 1〉 = τ.3.p = τ.3.3.1 = e.

To improve readability, we try to avoid writing, e.g., o.2 or π2(o) in this document. Instead,

we will use the names of the components of a sequence that is of a defined form as pointers that

point to the corresponding subterms. E.g., if an Origin term is defined as 〈host , protocol〉 and o

is an Origin term, then we can write o.protocol instead of π2(o) or o.2. See also Example 4.

A.1.3. Atomic Processes, Systems and Runs

An atomic process takes its current state and an event as input, and then (nondeterministically)

outputs a new state and a set of events.

Definition 15 (Generic Atomic Processes and Systems). A (generic) atomic process is a tuple

p = (Ip, Zp, Rp, sp0)

where Ip ⊆ IPs, Zp ⊆ TN is a set of states, Rp ⊆ (E × Zp) × (2Eν〈〉 × TN (Vprocess)) (input

event and old state map to sequence of output events and new state), and sp0 ∈ Zp is the

initial state of p. For any new state s and any sequence of nonces (η1, η2, . . . ) we demand that

s[η1/ν1, η2/ν2, . . . ] ∈ Zp. A system P is a (possibly infinite) set of atomic processes.

We use configurations to capture the state of a system:

Definition 16 (Configurations). A configuration of a system P is a tuple (S,E,N) where the

state of the system S maps every atomic process p ∈ P to its current state S(p) ∈ Zp, the

sequence of waiting events E is an infinite sequence1 (e1, e2, . . . ) of events waiting to be delivered,

and N is an infinite sequence of nonces (n1, n2, . . . ).

Definition 17 (Concatenating terms and sequences). For a term a = 〈a1, . . . , ai〉 and a sequence

b = (b1, b2, . . . ), we define the concatenation as a · b := (a1, . . . , ai, b1, b2, . . . ).

Definition 18 (Subtracting from Sequences). For a sequence X and a set or sequence Y we define

X \Y to be the sequence X where for each element in Y , a nondeterministically chosen occurence

of that element in X is removed.

A system can transition from one configuration into another in a so-called processing step.

Intuitively, for a processing step, we select one of the processes in P , and call it with one of the

events in the list of waiting events E. In its output (new state and output events), we replace

any occurrences of placeholders νx by “fresh” nonces from N (which we then remove from N).

The output events are then prepended to the list of waiting events, and the state of the process

is reflected in the new configuration.

1Here: Not in the sense of terms as defined earlier.
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Definition 19 (Processing Steps). A processing step of the system P is of the form

(S,E,N)
ein→p−−−−−→
p→Eout

(S′, E′, N ′)

where

– (S,E,N) and (S′, E′, N ′) are configurations of P ,

– ein = 〈a, f,m〉 ∈ E is an event,

– p ∈ P is a process, and

– Eout is a sequence (term) of events

such that there exists

– a sequence (term) Eνout ⊆ 2Eν〈〉 of protoevents,

– a term sν ∈ TN (Vprocess),

– a sequence (v1, v2, . . . , vi) of all placeholders appearing in Eνout or sν , and

– a sequence Nν = (η1, η2, . . . , ηi) of the first i elements in N

with

– ((ein, S(p)), (Eνout, s
ν)) ∈ Rp and a ∈ Ip,

– Eout = Eνout[η1/v1, . . . , ηi/vi],

– S′(p) = sν [η1/v1, . . . , ηi/vi] and S′(p′) = S(p′) for all p′ 6= p,

– E′ = Eout · (E \ {ein}), and

– N ′ = N \Nν .

We may omit the superscript and/or subscript of the arrow.

A sequence of configurations linked by processing steps is called a run:

Definition 20 (Runs). Let P be a system, E0 be sequence of events, and N0 be a sequence of

nonces. A run ρ of a system P initiated by E0 with nonces N0 is a finite sequence of configurations

((S0, E0, N0), . . . , (Sn, En, Nn)) or an infinite sequence of configurations ((S0, E0, N0), . . . ) such

that S0(p) = sp0 for all p ∈ P and (Si, Ei, N i) −→ (Si+1, Ei+1, N i+1) for all 0 ≤ i < n (finite run)

or for all i ≥ 0 (infinite run).

We denote the state Sn(p) of a process p at the end of a run ρ by ρ(p).

Usually, we will initiate runs with a set E0 containing infinite trigger events of the form

〈a, a, TRIGGER〉 for each a ∈ IPs, interleaved by address.
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A.1.4. Atomic Dolev-Yao Processes

We next define atomic Dolev-Yao processes, for which we require that the messages and states

that they output can be computed (more formally, derived) from the current input event and

state. For this purpose, we first define what it means to derive a message from given messages.

Definition 21 (Deriving Terms). Let M be a set of ground terms. We say that a term m

can be derived from M with placeholders V if there exist n ≥ 0, m1, . . . ,mn ∈ M , and τ ∈
T∅({x1, . . . , xn} ∪ V ) such that m ≡ τ [m1/x1, . . . ,mn/xn]. We denote by dV (M) the set of all

messages that can be derived from M with variables V .

For example, we have that a ∈ d∅({enca(〈a, b, c〉, pub(k)), k}). We can now define atomic

Dolev-Yao processes based on generic atomic processes. We also define an atomic attacker

process based on the atomic Dolev-Yao process:

Definition 22 (Atomic Dolev-Yao Process). An atomic Dolev-Yao process (or simply, a DY pro-

cess) is a tuple p = (Ip, Zp, Rp, sp0) such that (Ip, Zp, Rp, sp0) is a generic atomic process and for

all events e ∈ E , sequences of protoevents E, s ∈ TN , s′ ∈ TN (Vprocess), with ((e, s), (E, s′)) ∈ Rp

it holds true that E, s′ ∈ dVprocess({e, s}).

Definition 23 (Atomic Attacker Process). An (atomic) attacker process for a set of sender ad-

dresses A ⊆ IPs is an atomic DY process p = (I, Z,R, s0) such that for all events e, and s ∈ TN

we have that ((e, s), (E, s′)) ∈ R iff s′ = 〈e, E, s〉 and E = 〈〈a1, f1,m1〉, . . . , 〈an, fn,mn〉〉 with

n ∈ N, a1, . . . , an ∈ IPs, f1, . . . , fn ∈ A, m1, . . . ,mn ∈ dVprocess({e, s}).

Algorithms

We often define a relation Rp of an atomic Dolev-Yao process using a nondeterministic algorithm

A. Besides the usual pseudocode syntax and the notations introduced before, we use the following

notations in algorithms:

– The notation let n ← N is used to describe that n is chosen nondeterministically from

the set N .

– We write for each s ∈ M do to denote that the following commands are repeated for

every element in M , where the variable s is the current element. The order in which the

elements are processed is chosen nondeterministically.

– We write, for example,

let x, y such that 〈Constant, x, y〉 ≡ t if possible; otherwise doSomethingElse

for some variables x, y, a string Constant, and some term t to express that x := π2(t),

and y := π3(t) if Constant ≡ π1(t) and if |〈Constant, x, y〉| = |t|, and that otherwise x

and y are not set and doSomethingElse is executed.
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– We write stop x to denote that the algorithm stops with the output x. We omit x to

denote that there is no output.

We say that an algorithm A defines a relation Rp of an atomic Dolev-Yao process in the following

sense: The pair (
(〈〈a, f,m〉〉, s) ,

(
M, s′

))
belongs to Rp iff A (or any of the functions called therein), when given (〈a, f,m〉, s) as input,

terminates with the command stop M , s′, i.e., with output M and s′.

A.2. Scripts

We define scripts, which model client-side scripting technologies, such as JavaScript. Scripts are

defined analog to DY processes.

Definition 24 (Placeholders for Scripts). By Vscript = {λ1, . . . } we denote an infinite set of vari-

ables used in scripts.

Definition 25 (Scripts). A script is a relation R ⊆ TN × TN (Vscript) such that for all s ∈ TN ,

s′ ∈ TN (Vscript) with (s, s′) ∈ R it follows that s′ ∈ dVscript(s).

A script is called by the browser which provides it with state information s, such as the script’s

last state and limited information about the browser’s state. The script then outputs a term s′,

which represents the new internal state and some command which is interpreted by the browser.

The term s′ may contain variables λ1, . . . which the browser will replace by otherwise unused

placeholders ν1, . . . which will be replaced by nonces once the browser DY process finishes. This

provides the script with a way to get “fresh” nonces.

We also define the attacker script Ratt:

Definition 26 (Attacker Script). The attacker script Ratt outputs everything that is derivable

from the input, i.e., Ratt = {(s, s′) | s ∈ TN , s
′ ∈ dVscript(s)}.

Like atomic Dolev-Yao processes, scripts are also usually defined using algorithms. We then

say that an algorithm A defines a script in the following sense: The pair (in, out) belongs to

the script iff A (or any of the functions called therein), when given in as input, terminates with

the command stop out .

A.3. Web System

The web infrastructure and web applications are formalized by what is called a web system.

A web system contains, among others, a (possibly infinite) set of DY processes, modeling web

browsers, web servers, DNS servers, and attackers (which may corrupt other entities, such as

browsers).
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Definition 27. A web system WS = (W, S , script, E0) is a tuple with its components defined as

follows:

– The first component, W, denotes a system (a set of DY processes) and is partitioned

into the sets Hon, Web, and Net of honest, web attacker, and network attacker processes,

respectively.

Every p ∈ Web ∪ Net is an attacker process for some set of sender addresses A ⊆ IPs.

For a web attacker p ∈ Web, we require its set of addresses Ip to be disjoint from the

set of addresses of all other web attackers and honest processes, i.e., Ip ∩ Ip′ = ∅ for all

p′ ∈ Hon∪Web. Hence, a web attacker cannot listen to traffic intended for other processes.

Also, we require that A = Ip, i.e., a web attacker can only use sender addresses it owns.

Conversely, a network attacker may listen to all addresses (i.e., no restrictions on Ip) and

may spoof all addresses (i.e., the set A may be IPs).

Every p ∈ Hon is a DY process which models either a web server, a web browser, or a DNS

server, as further described in the following subsections. Just as for web attackers, we

require that p does not spoof sender addresses and that its set of addresses Ip is disjoint

from those of other honest processes and the web attackers.

– The second component, S , is a finite set of scripts such that Ratt ∈ S .

– The third component, script, is an injective mapping from S to S, i.e., by script every s ∈ S
is assigned its string representation script(s).

– Finally, E0 is an (infinite) sequence of events, containing an infinite number of events of

the form 〈a, a, TRIGGER〉 for every a ∈
⋃
p∈W Ip.

A run of WS is a run of W initiated by E0.

A.4. Message and Data Formats

We now provide some more details about data and message formats that are needed for the

formal treatment of the web model.

A.4.1. URLs

Definition 28. A URL is a term of the form

〈URL, protocol , host , path, parameters, fragment〉

with the subterms protocol ∈ {P, S} (for plain HTTP and secure HTTPS), host ∈ Doms,

path ∈ S, parameters ∈
[
S× TN

]
, and fragment ∈ TN . The set of all valid URLs is URLs.
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The fragment part of a URL can be omitted when writing the URL. Its value is then defined

to be ⊥.

Example 4. For the URL u = 〈URL, a, b, c, d〉, we have that u.protocol = a. If, in the algorithm

described later, we write u.path := e then u = 〈URL, a, b, c, e〉 afterwards.

A.4.2. Origins

Definition 29. An origin is a term of the form 〈host , protocol〉 with host ∈ Doms and protocol ∈
{P, S}. We write Origins for the set of all origins.

Example 5. For example, 〈FOO, S〉 is the HTTPS origin for the domain FOO, while 〈BAR, P〉 is the

HTTP origin for the domain BAR.

A.4.3. Cookies

Definition 30. A cookie is a term of the form 〈name, content〉 where name ∈ TN , and content is a

term of the form 〈value, secure, session, httpOnly〉 where value ∈ TN , secure, session, httpOnly ∈
{>,⊥}. We write Cookies for the set of all cookies and Cookiesν for the set of all cookies where

names and values are defined over TN (V ).

If the secure attribute of a cookie is set, the browser will not transfer this cookie over

unencrypted HTTP connections. If the session flag is set, this cookie will be deleted as soon

as the browser is closed. The httpOnly attribute controls whether JavaScript has access to this

cookie.

Cookies of the form described here are contained in HTTP(S) requests and in the browser

state. In HTTP(S) responses, only the components name and value are transferred as a pairing

of the form 〈name, value〉.

A.4.4. HTTP Messages

Definition 31. An HTTP request is a term of the form shown in (A.1). An HTTP response is a

term of the form shown in (A.2).

〈HTTPReq,nonce,method , host , path, parameters, headers, body〉 (A.1)

〈HTTPResp,nonce, status, headers, body〉 (A.2)

The components are defined as follows:

– nonce ∈ N serves to map each response to the corresponding request,

– method ∈ Methods is one of the HTTP methods,

– host ∈ Doms is the host name in the Host header of HTTP/1.1,
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– path ∈ S is a string indicating the requested resource at the server side,

– status ∈ S is the HTTP status code (i.e., a number between 100 and 505, as defined by

the HTTP standard),

– parameters ∈
[
S× TN

]
contains URL parameters,

– headers ∈
[
S× TN

]
contains request/response headers, and

– body ∈ TN represents the request/response body.

We write HTTPRequests/HTTPResponses for the set of all HTTP requests or responses, respec-

tively.

The following request/response headers are created or understood by our browser model

presented later:

– 〈Origin, o〉 where o is an origin or 3 (the “null” origin),

– 〈Set-Cookie, c〉 where c is a sequence of cookies,

– 〈Cookie, c〉 where c ∈
[
S× TN

]
(in this header, only names and values of cookies are

transferred),

– 〈Location, l〉 where l ∈ URLs,

– 〈Referer, r〉 where r ∈ URLs,

– 〈Strict-Transport-Security,>〉,

– 〈Authorization, 〈username, password〉〉 where username, password ∈ S,

– 〈ReferrerPolicy, p〉 where p ∈ {noreferrer, origin}, and

– 〈Upgrade, websocket〉.

Example 6 (HTTP Request and Response).

r :=〈HTTPReq, n1, POST, example.com, /show, 〈〈index, 1〉〉,

[Origin : 〈example.com, S〉], 〈foo, bar〉〉 (A.3)

s :=〈HTTPResp, n1, 200, 〈〈Set-Cookie, 〈〈SID, 〈n2,⊥,⊥,>〉〉〉〉〉, 〈somescript, x〉〉 (A.4)

An HTTP POST request for the URL http://example.com/show?index=1 is shown in (A.3),

with an Origin header and a body that contains 〈foo, bar〉. A possible response is shown in

(A.4), which contains an httpOnly cookie with name SID and value n2 as well as the string

representation somescript of the script script−1(somescript) (which should be an element of

S) and its initial state x.
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Encrypted HTTP Messages

For HTTPS, requests are encrypted using the public key of the server. Such a request contains an

(ephemeral) symmetric key chosen by the client that issued the request. The server is supported

to encrypt the response using the symmetric key.

Definition 32. An encrypted HTTP request is of the form enca(〈m, k′〉, k), where k ∈ terms,

k′ ∈ N , and m ∈ HTTPRequests. The corresponding encrypted HTTP response would be of the

form encs(m
′, k′), where m′ ∈ HTTPResponses. We call the sets of all encrypted HTTP requests

and responses HTTPSRequests or HTTPSResponses, respectively.

We say that an HTTP(S) response matches or corresponds to an HTTP(S) request if both

terms contain the same nonce.

Example 7.

enca(〈r, k′〉, pub(kexample.com)) (A.5)

encs(s, k
′) (A.6)

The term (A.5) shows an encrypted request (with r as in (A.3)). It is encrypted using the

public key pub(kexample.com). The term (A.6) is a response (with s as in (A.4)). It is encrypted

symmetrically using the (symmetric) key k′ that was sent in the request (A.5).

A.4.5. DNS Messages

Definition 33. A DNS request is a term of the form 〈DNSResolve, domain,nonce〉 where domain

∈ Doms, nonce ∈ N . We call the set of all DNS requests DNSRequests.

Definition 34. A DNS response is a term of the form 〈DNSResolved, domain, result ,nonce〉 with

domain ∈ Doms, result ∈ IPs, nonce ∈ N . We call the set of all DNS responses DNSResponses.

DNS servers are supposed to include the nonce they received in a DNS request in the DNS

response that they send back so that the party which issued the request can match it with the

request.

A.4.6. WebSocket Messages

Definition 35. A WebSocket Message is a term of the form 〈WS MSG,nonce, data〉 where nonce

∈ N and data ∈ TN .

Definition 36. An Encrypted WebSocket Message is a term of the form encs(m, k) where m is a

WebSocket Message and k is a symmetric key (a nonce).
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A.4.7. WebRTC Messages

Definition 37. A WebRTC Offer or WebRTC Answer is a term of the form

〈RTC OFFER,nonce, idp, ia, pubkey , addr〉

where nonce, pubkey ∈ N , addr ∈ IPs, and ia and data ∈ TN . We use the identifier RTC OFFER

for both offer and answer documents.

Definition 38. A WebRTC Message is a term of the form enca(〈RTC MSG,nonce, data〉, k,) where

nonce, k ∈ N and data ∈ TN .

A.5. DNS Server Model

We consider a flat DNS model in which DNS queries are answered directly by one DNS server

and always with the same address for a domain.

Definition 39. A DNS server d (in a flat DNS model) is modeled as an atomic DY process

(Id, {sd0}, Rd, sd0). It has a finite set of addresses Id and its initial (and only) state sd0 encodes a

mapping from domain names to addresses of the form

sd0 = 〈〈domain1, a1〉, 〈domain2, a2〉, . . .〉 .

Algorithm 2.1 defines the relation Rd.

A.6. Web Browser Model

Following the description of the browser model in Section 2.10, we now present our formal

definition of web browsers. This section is devided into four parts: First, we introduce notations

to represent windows and documents in the browser state. Afterwards, we define the set of states

of web browsers. We then present the relation defining the behavior of web browsers in our

model. Finally, we put these parts together in the definition of web browser atomic processes.

A.6.1. Windows, Documents, and Related Notations

We represent windows and documents opened in a web browser by terms contained in the

browser’s state (see below). Each window/document in a web browser is represented by one

specific term.

Definition 40 (Window). A window is a term of the form w = 〈nonce, documents, opener〉 with

nonce ∈ N , documents ⊂〈〉 Documents (defined below), opener ∈ N ∪{⊥} where d.active = >
for exactly one d ∈〈〉 documents if documents is not empty (we then call d the active document

of w).
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We write Windows for the set of all windows. We write w.activedocument to denote the active

document inside window w if it exists and 〈〉 else. We will refer to the window nonce as (window)

reference.

A window a may have opened a top-level window b (i.e., a window term which is not a

subterm of a document term). In this case, the opener part of the term b is the nonce of a, i.e.,

b.opener = a.nonce.

The documents contained in a window term to the left of the active document are the

previously viewed documents (available to the user via the “back” button) and the documents

in the window term to the right of the currently active document are documents available via

the “forward” button.

Definition 41 (Document). A document d is a term of the form

〈nonce, location, headers, referrer , script , scriptstate, scriptinputs, subwindows, active〉

where nonce ∈ N , location ∈ URLs, headers ∈
[
S× TN

]
, referrer ∈ URLs ∪ {⊥}, script ∈ TN ,

scriptstate ∈ TN , scriptinputs ∈ TN , subwindows ⊂〈〉 Windows, active ∈ {>,⊥}. A restricted

document is a term of the form 〈nonce, subwindows〉 with nonce, subwindows as above. A

window w ∈〈〉 subwindows is called a subwindow (of d).

We write Documents for the set of all documents. For a document term d we write d.origin

to denote the origin of the document, i.e., the term 〈d.location.host, d.location.protocol〉 ∈
Origins. We will refer to the document nonce as (document) reference.

Given two windows w and w′ we write w
childof−−−−→ w′ if w ∈〈〉 w′.activedocument.subwindows.

We write
childof+−−−−−→ for the transitive closure.

Definition 42 (WebRTC Connection Record). A WebRTC Connection Record is a term of the

form

〈docnonce, privkey , idp, ia,windownonce, remoteDescription, remoteAuthenticated〉.

A.6.2. Web Browser States Zwebbrowser

We now introduce the web browser state, which is the most complex term used in our model.

Recall from Section 2.10.5 that HTTP(S) connections are tracked using references. These

are defined as a pairing of a an identifier for the type of the request and a unique part. The

identifier can be XHR for XMLHttpRequests, WS for websocket requests, or REQ for normal

HTTP(S) requests. The unique part is a term containing a nonce. In the browser state, we will

introduce the subterms pendingDNS , pendingRequests, wsConnections. In these subterms, the

references (or just their unique part) are used to identify individual entries.
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Definition 43. The set of states Zwebbrowser of a web browser atomic Dolev-Yao process consists

of the terms of the form

〈windows, ids, secrets, cookies, localStorage, sessionStorage, keyMapping , sts,DNSaddress,

pendingDNS , pendingRequests,wsConnections, rtcConnections, isCorrupted〉

with the subterms as follows:

– windows ⊂〈〉 Windows contains a list of window terms (representing top-level windows, or

browser tabs) which contain documents, which in turn can contain further window terms

(iframes).

– ids ⊂〈〉 TN is a list of identities that are owned by this browser (i.e., belong to the user of

the browser).

– secrets ∈
[
Origins× TN

]
contains a list of secrets that are associated with certain origins

(i.e., passwords of the user of the browser at certain websites).

– cookies is a dictionary over Doms and sequences of Cookies modelling cookies that are

stored for specific domains.

– localStorage ∈
[
Origins× TN

]
stores the data saved by scripts using the localStorage API

(separated by origins).

– sessionStorage ∈
[
OR × TN

]
for OR := {〈o, r〉| o ∈ Origins, r ∈ N } similar to localStorage,

but the data in sessionStorage is additionally separated by top-level windows.

– keyMapping ∈
[
Doms× TN

]
maps domains to TLS encryption keys.

– sts ⊂〈〉 Doms stores the list of domains that the browser only accesses via TLS (strict

transport security).

– DNSaddress ∈ IPs defines the IP address of the DNS server.

– pendingDNS ∈
[
N × TN

]
contains one pairing per unanswered DNS query of the form

〈reference, request , url〉. In these pairings, reference is an HTTP(S) request reference

(as above), request contains the HTTP(S) message that awaits DNS resolution, and url

contains the URL of said HTTP request. The pairings in pendingDNS are indexed by the

DNS request/response nonce.

– pendingRequests ∈ TN contains pairings of the form 〈reference, request , url , key , f〉 with

reference, request , and url as in pendingDNS , key is the symmetric encryption key if

HTTPS is used or ⊥ otherwise, and f is the IP address of the server to which the request

was sent.

138



– wsConnections ∈ TN is a list of pairings of the form 〈reference,nonce, key , f〉 where nonce

is a nonce that is used in WebSocket messages and the other terms are used analogously

to above.

– rtcConnections ∈
[
N × TN

]
maps nonces to WebRTC Connection Records.

– isCorrupted ∈ {⊥, FULLCORRUPT, LIMITEDCORRUPT} specifies the corruption level of the

browser.

In corrupted browsers, certain subterms are used in different ways (e.g., pendingRequests is used

to store all observed messages).

A.6.3. Web Browser Relation Rwebbrowser

We now define the relation Rwebbrowser of a standard HTTP browser. To this end, we first

introduce functions that are used for defining the browser main algorithm. We then define the

browser relation.

Helper Functions

In the following description of the web browser relation Rwebbrowser we use the helper functions

Subwindows, Docs, Clean, CookieMerge and AddCookie.

Given a browser state s, Subwindows(s) denotes the set of all pointers2 to windows in the

window list s.windows, their active documents, and (recursively) the subwindows of these

documents. We exclude subwindows of inactive documents and their subwindows. With Docs(s)

we denote the set of pointers to all active documents in the set of windows referenced by

Subwindows(s).

Definition 44. For a browser state s we denote by Subwindows(s) the minimal set of pointers

that satisfies the following conditions: (1) For all windows w ∈〈〉 s.windows there is a p ∈
Subwindows(s) such that s.p = w. (2) For all p ∈ Subwindows(s), the active document d of

the window s.p and every subwindow w of d there is a pointer p′ ∈ Subwindows(s) such that

s.p′ = w.

Given a browser state s, the set Docs(s) of pointers to active documents is the minimal

set such that for every p ∈ Subwindows(s), there is a pointer p′ ∈ Docs(s) with s.p′ =

s.p.activedocument.

By Subwindows+(s) and Docs+(s) we denote the respective sets that also include the inactive

documents and their subwindows.

The function Clean will be used to determine which information about windows and documents

the script running in the document d has access to.

2Recall the definition of a pointer in Definition 14.

139



Definition 45. Let s be a browser state and d a document. By Clean(s, d) we denote the term

that equals s.windows but with (1) all inactive documents removed (including their subwindows

etc.), (2) all subterms that represent non-same-origin documents w.r.t. d replaced by a restricted

document d′ with the same nonce and the same subwindow list, and (3) the values of the

subterms headers for all documents set to 〈〉. (Non-same-origin documents on all levels are

replaced by their corresponding restricted document.)

The function CookieMerge merges two sequences of cookies together: When used in the

browser, oldcookies is the sequence of existing cookies for some origin, newcookies is a sequence

of new cookies that was output by some script. The sequences are merged into a set of cookies

using an algorithm that is based on the Storage Mechanism algorithm described in [RFC6265].

Definition 46. For a sequence of cookies (with pairwise different names) oldcookies and a se-

quence of cookies newcookies, the set CookieMerge(oldcookies,newcookies) is defined by the

following algorithm: From newcookies remove all cookies c that have c.content.httpOnly ≡ >.

For any c, c′ ∈〈〉 newcookies, c.name ≡ c′.name, remove the cookie that appears left of the other

in newcookies. Let m be the set of cookies that have a name that either appears in oldcookies

or in newcookies, but not in both. For all pairs of cookies (cold, cnew) with cold ∈〈〉 oldcookies,

cnew ∈〈〉 newcookies, cold.name ≡ cnew.name, add cnew to m if cold.content.httpOnly ≡ ⊥ and

add cold to m otherwise. The result of CookieMerge(oldcookies,newcookies) is m.

The function AddCookie adds a cookie c received in an HTTP response to the sequence of

cookies contained in the sequence oldcookies. It is again based on the algorithm described in

[RFC6265] but simplified for the use in the browser model.

Definition 47. For a sequence of cookies (with pairwise different names) oldcookies and a cookie c,

the sequence AddCookie(oldcookies, c) is defined by the following algorithm: Let m := oldcookies.

Remove any c′ from m that has c.name ≡ c′.name. Append c to m and return m.

The function NavigableWindows returns a set of windows that a document is allowed to

navigate. We closely follow [Ber+17], Section 5.1.4 for this definition.

Definition 48. The set NavigableWindows(w, s′) is the set W ⊆ Subwindows(s′) of pointers to

windows that the active document in w is allowed to navigate. The set W is defined to be the

minimal set such that for every w′ ∈ Subwindows(s′) the following is true:

– If s′.w′.activedocument.origin ≡ s′.w.activedocument.origin (i.e., the active docu-

ments in w and w′ are same-origin), then w′ ∈W , and

– If s′.w
childof∗−−−−−→ s′.w′ ∧ @w′′ ∈ Subwindows(s′) with s′.w′

childof∗−−−−−→ s′.w′′ (w′ is a top-level

window and w is an ancestor window of w′), then w′ ∈W , and
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– If ∃ p ∈ Subwindows(s′) such that s′.w′
childof+−−−−−→ s′.p

∧ s′.p.activedocument.origin = s′.w.activedocument.origin (w′ is not a top-level win-

dow but there is an ancestor window p of w′ with an active document that has the same

origin as the active document in w), then w′ ∈W , and

– If ∃ p ∈ Subwindows(s′) such that s′.w′.opener = s′.p.nonce ∧ p ∈ W (w′ is a top-level

window—it has an opener—and w is allowed to navigate the opener window of w′, p),

then w′ ∈W .

Functions

In the description of the following functions, we use a, f , m, and s as read-only global input

variables. All other variables are local variables or arguments.

In several places throughout the algorithms we use placeholders to generate “fresh” nonces

(Definition 6). Table A.1 shows a list of all placeholders used.

Placeholder Usage

ν1 Algorithm A.11, window nonces

ν2 Algorithm A.11, HTTP request nonce

ν3 Algorithm A.11, lookup key for pending HTTP requests entry

ν4 Algorithm A.8, HTTP request nonce (multiple lines)

ν5 Algorithm A.8, subwindow nonce

ν6 Algorithm A.10, HTTP request nonce

ν7 Algorithm A.10, document nonce

ν8 Algorithm A.4, lookup key for pending DNS entry

ν9 Algorithm A.1, window nonce

ν10 Algorithm A.7, window nonce

ν11 Algorithm A.7, HTTP request nonce

ν12 Algorithm A.8, WebRTC connection nonce

ν13, . . . Algorithm A.8, replacement for placeholders in script output

Table A.1. List of placeholders used in browser algorithms.

The function GETNAVIGABLEWINDOW (Algorithm A.1) is called by the browser to determine

the window that is actually navigated when a script in the window s′.w provides a window

reference for navigation (e.g., for opening a link). When it is given a window reference (nonce)

window , this function returns a pointer to a selected window term in s′:

– If window is the string BLANK, a new window is created and a pointer to that window is

returned.

– If window is a nonce (reference) and there is a window term with a reference of that value

in the windows in s′, a pointer w′ to that window term is returned, as long as the window

is navigable by the current window’s document (as defined by NavigableWindows above).
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Algorithm A.1 Web Browser Model: Determine window for navigation.

1: function GETNAVIGABLEWINDOW(w, window , noreferrer , s′)
2: if window ≡ BLANK then → Open a new window when BLANK is used
3: if noreferrer ≡ > then
4: let w′ := 〈ν9, 〈〉,⊥〉
5: else
6: let w′ := 〈ν9, 〈〉, s′.w.nonce〉
7: let s′.windows := s′.windows +〈〉 w′ and let w′ be a pointer to this new element in s′

8: return w′

9: let w′ ← NavigableWindows(w, s′) such that s′.w′.nonce ≡ window if possible; otherwise
return w

10: return w′

In all other cases, w is returned instead (the script navigates its own window).

The function GETWINDOW (Algorithm A.2) takes a window reference as input and returns

a pointer to a window as above, but it checks only that the active documents in both windows

are same-origin. It creates no new windows.

Algorithm A.2 Web Browser Model: Determine same-origin window.

1: function GETWINDOW(w, window , s′)
2: let w′ ← Subwindows(s′) such that s′.w′.nonce ≡ window if possible; otherwise return w
3: if s′.w′.activedocument.origin ≡ s′.w.activedocument.origin then
4: return w′

5: return w

The function CANCELNAV (Algorithm A.3) is used to stop any pending requests for a specific

window. From the pending requests and pending DNS requests it removes any requests with

the given window reference n.

Algorithm A.3 Web Browser Model: Cancel pending requests for given window.

1: function CANCELNAV(reference, s′)
2: remove all 〈〈REQ, reference〉, req , key , f 〉 from s′.pendingRequests for any req , key , f
3: remove all 〈x, 〈〈REQ, reference〉,message, url〉〉 from s′.pendingDNS

↪→ for any x , message, url
4: return s′

The function HTTP SEND (Algorithm A.4) takes an HTTP request message as input, adds

Cookie and Origin headers to the message, creates a DNS request for the hostname given in the

request and stores the request in s′.pendingDNS until the DNS resolution finishes. For normal

HTTP requests, reference is a window reference. For XMLHttpRequests, reference is a value of

the form 〈document ,nonce〉 where document is a document reference and nonce is some nonce

that was chosen by the script that initiated the request. url contains the full URL of the request

(this is mainly used to retrieve the protocol that should be used for this message, and to store

the fragment identifier for use after the document was loaded). origin is the Origin header

value that is to be added to the HTTP request.
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Algorithm A.4 Web Browser Model: Prepare headers, do DNS resolution, save message.

1: function HTTP SEND(reference, message, url , origin, referrer , referrerPolicy , s′)
2: if message.host ∈〈〉 s′.sts then
3: let url .protocol := S

4: let cookies := 〈{〈c.name, c.content.value〉|c ∈〈〉 s′.cookies [message.host]
↪→ ∧ (c.content.secure =⇒ (url .protocol = S))}〉

5: let message.headers[Cookie] := cookies
6: if origin 6≡ ⊥ then
7: let message.headers[Origin] := origin

8: if referrerPolicy ≡ noreferrer then
9: let referrer := ⊥

10: if referrer 6≡ ⊥ then
11: if referrerPolicy ≡ origin then → Reduce Referer to origin.
12: let referrer := 〈URL, referrer .protocol, referrer .host, /, 〈〉,⊥〉
13: let referrer .fragment := ⊥ → Browsers do not send fragment ids in the Referer header.
14: let message.headers[Referer] := referrer

15: let s′.pendingDNS[ν8] := 〈reference,message, url〉
16: stop 〈〈s′.DNSaddress, a, 〈DNSResolve,message.host, ν8〉〉〉, s′

The functions NAVBACK (Algorithm A.5) and NAVFORWARD (Algorithm A.6), navigate

a window forward or backward. More precisely, they deactivate one document and activate

that document’s succeeding document or preceding document, respectively. If no such succes-

sor/predecessor exists, the functions do not change the state.

Algorithm A.5 Web Browser Model: Navigate a window backward.

1: function NAVBACK(w′, s′)
2: if ∃ j ∈ N, j > 1 such that s′.w′.documents.j.active ≡ > then
3: let s′.w′.documents.j.active := ⊥
4: let s′.w′.documents.(j − 1).active := >
5: let s′ := CANCELNAV(s′.w′.nonce, s′)

Algorithm A.6 Web Browser Model: Navigate a window forward.

1: function NAVFORWARD(w′, s′)
2: if ∃ j ∈ N such that s′.w′.documents.j.active ≡ >

↪→ ∧ s′.w′.documents.(j + 1) ∈ Documents then
3: let s′.w′.documents.j.active := ⊥
4: let s′.w′.documents.(j + 1).active := >
5: let s′ := CANCELNAV(s′.w′.nonce, s′)
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The function RTC CHECK REMOTE IA (Algorithm A.7) starts the check of identity assertion

presented by a remote server. To this end, the function opens an IdP proxy window. The script in

the proxy window has access to the identity assertion via the command RTC GET CHECK IA INFO

and can issue the command RTC CHECKED IA when it has successfully checked the IA.

Algorithm A.7 Web Browser Model: Check remote server’s WebRTC identity assertion.

1: function RTC CHECK REMOTE IA(nonce, s′)
2: let idp := s′.rtcConnections[nonce].remoteDescription.idp
3: if idp 6≡ ⊥ then
4: let windownonce := ν10
5: let w′ := 〈windownonce, 〈〉,⊥〉
6: let s′.windows := s′.windows +〈〉 w′

7: let path := .wk/idp-proxy
8: let url := 〈URL, S, idp, path, 〈〉, 〈〉〉
9: let req := 〈HTTPReq, ν11, GET, idp, path, 〈〉, 〈〉, 〈〉〉

10: let s′.rtcConnections[nonce].windownonce := windownonce
11: call HTTP SEND(〈REQ,windownonce〉, req , url , ⊥, ⊥, ⊥, s′)

The function RUNSCRIPT (Algorithm A.8) performs a script execution step of the script in

the document s′.d (which is part of the window s′.w). A new script and document state is

chosen according to the relation defined by the script and the new script and document state is

saved. Afterwards, the command that the script issued is interpreted.

Algorithm A.8 Web Browser Model: Execute a script.

1: function RUNSCRIPT(w, d, s′)
2: let tree := Clean(s′, s′.d)
3: let cookies := 〈{〈c.name, c.content.value〉|c ∈〈〉 s′.cookies

[
s′.d.origin.host

]
↪→ ∧ c.content.httpOnly = ⊥
↪→ ∧

(
c.content.secure =⇒

(
s′.d.origin.protocol ≡ S

))
}〉

4: let tlw ← s′.windows such that tlw is the top-level window containing d
5: let sessionStorage := s′.sessionStorage

[
〈s′.d.origin, tlw .nonce〉

]
6: let localStorage := s′.localStorage

[
s′.d.origin

]
7: let secrets := s′.secrets

[
s′.d.origin

]
8: let R ← script−1(s′.d.script)
9: let in := 〈tree, s′.d.nonce, s′.d.scriptstate, s′.d.scriptinputs, cookies,

↪→ localStorage, sessionStorage, s′.ids, secrets〉
10: let state ′ ← TN (V ), cookies ′ ← Cookiesν , localStorage ′ ← TN (V ), sessionStorage ′ ← TN (V ),

↪→ command ← TN (V ), outλ := 〈state ′, cookies ′, localStorage ′, sessionStorage ′, command〉
↪→ such that (in, outλ) ∈ R

11: let out := outλ[ν13/λ1, ν14/λ2, . . . ]
12: let s′.cookies

[
s′.d.origin.host

]
:= 〈CookieMerge(s′.cookies

[
s′.d.origin.host

]
, cookies ′)〉

13: let s′.localStorage
[
s′.d.origin

]
:= localStorage ′

14: let s′.sessionStorage
[
〈s′.d.origin, tlw .nonce〉

]
:= sessionStorage ′

15: let s′.d.scriptstate := state′

16: let referrer := s′.d.location
17: let referrerPolicy := s′.d.headers[ReferrerPolicy]
18: let docorigin := s′.d.origin
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19: switch command do
20: case 〈HREF, url , hrefwindow ,noreferrer〉
21: let w′ := GETNAVIGABLEWINDOW(w, hrefwindow , noreferrer , s′)
22: let req := 〈HTTPReq, ν4, GET, url .host, url .path, url .parameters, 〈〉, 〈〉〉
23: if noreferrer ≡ > then
24: let referrerPolicy := noreferrer

25: let s′ := CANCELNAV(s′.w′.nonce, s′)
26: call HTTP SEND(〈REQ, s′.w′.nonce〉, req , url , ⊥, referrer , referrerPolicy , s′)

27: case 〈IFRAME, url ,window〉
28: let w′ := GETWINDOW(w,window , s′)
29: let req := 〈HTTPReq, ν4, GET, url .host, url .path, url .parameters, 〈〉, 〈〉〉
30: let w′ := 〈ν5, 〈〉,⊥〉
31: let s′.w′.activedocument.subwindows := s′.w′.activedocument.subwindows +〈〉 w′

32: call HTTP SEND(〈REQ, ν5〉, req , url , ⊥, referrer , referrerPolicy , s′)

33: case 〈FORM, url ,method , data, hrefwindow〉
34: if method 6∈ {GET, POST} then
35: stop

36: let w′ := GETNAVIGABLEWINDOW(w, hrefwindow , ⊥, s′)
37: if method = GET then
38: let body := 〈〉
39: let parameters := data
40: let origin := ⊥
41: else
42: let body := data
43: let parameters := url .parameters
44: let origin := docorigin

45: let req := 〈HTTPReq, ν4,method , url .host, url .path, parameters, 〈〉, body〉
46: let s′ := CANCELNAV(s′.w′.nonce, s′)
47: call HTTP SEND(〈REQ, s′.w′.nonce〉, req , url , origin, referrer , referrerPolicy , s′)

48: case 〈SETSCRIPT,window , script〉
49: let w′ := GETWINDOW(w,window , s′)
50: let s′.w′.activedocument.script := script
51: stop 〈〉, s′

52: case 〈SETSCRIPTSTATE,window , scriptstate〉
53: let w′ := GETWINDOW(w,window , s′)
54: let s′.w′.activedocument.scriptstate := scriptstate
55: stop 〈〉, s′

56: case 〈XMLHTTPREQUEST, url ,method , data, xhrreference〉
57: if method ∈ {CONNECT, TRACE, TRACK} ∧ xhrreference 6∈ {N ,⊥} then
58: stop

59: if url .host 6≡ docorigin.host ∨ url 6≡ docorigin.protocol then
60: stop

61: if method ∈ {GET, HEAD} then
62: let data := 〈〉
63: let origin := ⊥
64: else
65: let origin := docorigin

66: let req := 〈HTTPReq, ν4,method , url .host, url .path, url .parameters, 〈〉, data〉
67: let reference := 〈XHR, s′.d.nonce, xhrreference〉
68: call HTTP SEND(reference, req , url , origin, referrer , referrerPolicy , s′)
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69: case 〈BACK,window〉
70: let w′ := GETNAVIGABLEWINDOW(w, window , ⊥, s′)
71: NAVBACK(w′, s′)
72: stop 〈〉, s′

73: case 〈FORWARD,window〉
74: let w′ := GETNAVIGABLEWINDOW(w, window , ⊥, s′)
75: NAVFORWARD(w′, s′)
76: stop 〈〉, s′

77: case 〈CLOSE,window〉
78: let w′ := GETNAVIGABLEWINDOW(w, window , ⊥, s′)
79: remove s′.w′ from the sequence containing it
80: stop 〈〉, s′

81: case 〈POSTMESSAGE,window ,message, origin〉
82: let w′ ← Subwindows(s′) such that s′.w′.nonce ≡ window
83: if ∃j ∈ N such that s′.w′.documents.j.active ≡ > ∧

↪→ (origin 6≡ ⊥ =⇒ s′.w′.documents.j.origin ≡ origin) then
84: let s′.w′.documents.j.scriptinputs := s′.w′.documents.j.scriptinputs

↪→ +〈〉 〈POSTMESSAGE, s′.w.nonce, docorigin,message〉
85: stop 〈〉, s′

86: case 〈WS OPEN, url ,wsreference〉
87: let headers := 〈〈Upgrade, websocket〉〉
88: let req := 〈HTTPReq, ν4, GET, url .host, url .path, url .parameters, headers, 〈〉〉
89: let reference := 〈WS, s′.d.nonce,wsreference〉
90: call HTTP SEND(reference, req , url , docorigin, referrer , referrerPolicy , s′)

91: case 〈WS SEND,wsreference, data〉
92: let reference := 〈WS, s′.d.nonce,wsreference〉
93: let nonce, key , f such that 〈reference,nonce, key , f 〉 ∈〈〉 s′.wsConnections

↪→ if possible; otherwise stop
94: let msg := 〈WS MSG,nonce, data〉
95: if key 6≡ ⊥ then
96: let msg := encs(msg , key)

97: stop 〈〈f, a,msg〉〉, s′

98: case 〈RTC CREATE PEERCONNECTION, idp, privkey〉 → idp contains only the domain of the IdP.
99: let s′.d.scriptinputs := s′.d.scriptinputs +〈〉 〈RTC PEERCONNECTION, ν12〉
100: if idp 6≡ ⊥ then → If IdP is used, create new window for IdP proxy script.
101: let windownonce := ν5
102: let w′ := 〈windownonce, 〈〉,⊥〉
103: let s′.windows := s′.windows +〈〉 w′

104: let path := .wk/idp-proxy
105: let url := 〈URL, S, idp, path, 〈〉, 〈〉〉 → Not implemented: subprotocol.
106: let req := 〈HTTPReq, ν4, GET, idp, path, 〈〉, 〈〉, 〈〉〉
107: else
108: let windownonce := ν5
109: let record := 〈s′.d.nonce, privkey , idp,⊥,windownonce,⊥,⊥,⊥,⊥,⊥〉
110: let s′.rtcConnections[ν12] := record → Create/store new WebRTC Connection Record.
111: if idp 6≡ ⊥ then → If using IdP proxy, finish with new HTTP request.
112: call HTTP SEND(〈REQ,windownonce〉, req , url , ⊥, ⊥, ⊥, s′)

113: case 〈RTC GET OFFER,nonce〉
114: if s′.rtcConnections[nonce].docnonce 6≡ s′.d.nonce then
115: stop
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116: let conn := s′.rtcConnections[nonce]
117: let offeranswer := 〈RTC OFFER,nonce, .idp, conn.ia, pub(conn.privkey), a〉
118: let s′.d.scriptinputs := s′.d.scriptinputs +〈〉 offeranswer

119: case 〈RTC SET REMOTE,nonce, offeranswer〉
120: if s′.rtcConnections[nonce].docnonce 6≡ s′.d.nonce then
121: stop

122: let s′.rtcConnections[nonce].remoteDescription := offeranswer
123: call RTC CHECK REMOTE IA(nonce, s′) → Check the remote’s identity assertion.

124: case 〈RTC GET IA INFO〉 → Called by IdP proxy to receive data to be signed.
125: let nonce ← N such that s′.rtcConnections[nonce].windownonce ≡ s′.w.nonce

↪→ if possible; otherwise stop
126: let iarequest := 〈RTC IA REQUEST,nonce, pub(s′.rtcConnections[nonce].privkey)〉
127: let s′.d.scriptinputs := s′.d.scriptinputs +〈〉 iarequest

128: case 〈RTC SET IA, ia〉 → Called by IdP proxy to commit the IA.
129: let nonce ← N such that s′.rtcConnections[nonce].windownonce ≡ s′.w.nonce

↪→ if possible; otherwise stop
130: let s′.rtcConnections[nonce].ia := ia

131: case 〈RTC GET CHECK IA INFO〉 → Called by IdP proxy to receive the IA to check.
132: let nonce ← N such that s′.rtcConnections[nonce].windownonce ≡ s′.w.nonce

↪→ if possible; otherwise stop
133: let remote := s′.rtcConnections[nonce].remoteDescription
134: let data := 〈RTC REMOTE IA, remote.nonce, remote.pubkey, remote.ia〉
135: let s′.d.scriptinputs := s′.d.scriptinputs +〈〉 data

136: case 〈RTC CHECKED IA, ia〉 → Called by IdP proxy when the IA was checked successfully.
137: let nonce ← N such that s′.rtcConnections[nonce].windownonce ≡ s′.w.nonce

↪→ if possible; otherwise stop
138: if s′.rtcConnections[nonce].remoteDescription.ia 6≡ ia then
139: stop

140: let s′.rtcConnections[nonce].remoteAuthenticated := >
141: case 〈RTC SEND,nonce, data〉
142: if s′.rtcConnections[nonce].docnonce 6≡ s′.d.nonce then
143: stop

144: let remote := s′.rtcConnections[nonce].remoteDescription
145: stop 〈〈remote.addr, a, 〈RTC MSG, remote.nonce, enca(data, remote.pubkey)〉〉〉, s′

146: case else
147: stop

The function DELIVER TO DOC (Algorithm A.9) is a helper function that adds data to the

script inputs of a document identified by the document reference. This function is used in the

following algorithms to deliver WebSocket, WebRTC, and XMLHttpRequest messages to scripts.

Algorithm A.9 Web Browser Model: Deliver a message to the script in a document.

1: function DELIVER TO DOC(docnonce, data, s′)
2: let w ← Subwindows(s′), d such that s′.d.nonce ≡ docnonce ∧ s′.d = s′.w.activedocument

↪→ if possible; otherwise stop
3: let s′.d.scriptinputs := s′.d.scriptinputs +〈〉 data
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The function PROCESSRESPONSE (Algorithm A.10) is responsible for processing an HTTP

response (response) that was received as the response to a request (request) that was sent

earlier. The reference identifies this request, which can either be a normal HTTP connection,

an XMLHttpRequest, or a WebSocket connection establishment request.

The function first saves any cookies that were contained in the response to the browser

state (using the AddCookie helper function shown above), then checks whether a redirection is

requested (Location header). If that is the case, the function prepares and sends a new HTTP

request, according to the rules in the HTTP/1.1 [RFC7231] and Fetch [Fetch] standards. If

no redirection is requested, the function creates a new document (for normal HTTP requests),

delivers the contents of the response to the respective receiver (for XMLHttpRequest responses),

or finishes the WebRTC connection establishment.

Finally, the browser main function (Algorithm A.11) brings all parts together and defines

Rwebbrowser. First, the algorithm checks whether the browser is already corrupted. If that is the

case, it collects all incoming messages and derives a new messages from its state and sends it out

over the network. If the browser is not corrupted, it handles trigger messages (to trigger a nonde-

terministic action by the browser), corruption messages, or DNS/HTTP/WebSocket/WebRTC

messages (see Section 2.10 for details).

A.6.4. Definition of Web Browsers

Finally, we define web browser atomic Dolev-Yao processes as follows:

Definition 49 (Web Browser atomic Dolev-Yao Process). A web browser atomic Dolev-Yao pro-

cess b is an atomic Dolev-Yao process b = (Ib, Zwebbrowser, Rwebbrowser, s0
b) for a set Ib of ad-

dresses, Zwebbrowser and Rwebbrowser as defined above, and an initial state s0
b ∈ Zwebbrowser.

Algorithm A.10 Web Browser Model: Process an HTTP response.

1: function PROCESSRESPONSE(response, reference, request , requestUrl , key , f , s′)
Process headers in response

2: if Set-Cookie ∈ response.headers then
3: for each c ∈〈〉 response.headers [Set-Cookie], c ∈ Cookies do
4: let s′.cookies [request .host] := AddCookie(s′.cookies [request .host] , c)

5: if Strict-Transport-Security ∈ response.headers ∧ requestUrl .protocol ≡ S then
6: let s′.sts := s′.sts +〈〉 request .host

7: if Referer ∈ request.headers then
8: let referrer := request.headers[Referer]
9: else

10: let referrer := ⊥
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11: if Location ∈ response.headers ∧ response.status ∈ {303, 307} then
12: let url := response.headers [Location]
13: if url .fragment ≡ ⊥ then
14: let url .fragment := requestUrl .fragment

15: let method ′ := request .method
16: let body ′ := request .body
17: if response.status ≡ 303 ∧ request .method 6∈ {GET, HEAD} then
18: let method ′ := GET

19: let body ′ := 〈〉
20: if Origin ∈ request.headers ∧method ′ ≡ POST then
21: let origin := 3

22: else
23: let origin := ⊥
24: if π1(reference) 6≡ XHR then → Do not redirect XHRs.
25: let req := 〈HTTPReq, ν6,method ′, url .host, url .path, url .parameters, 〈〉, body ′〉
26: let referrerPolicy := response.headers[ReferrerPolicy]
27: call HTTP SEND(reference, req , url , origin, referrer , referrerPolicy , s′)

Deliver/process data in response
28: switch π1(reference) do
29: case REQ → normal response
30: let w ← Subwindows(s′) such that s′.w.nonce ≡ π2(reference)

↪→ if possible; otherwise stop
31: if response.body 6∼ 〈∗, ∗〉 then
32: stop {}, s′

33: let script := π1(response.body)
34: let scriptstate := π2(response.body)
35: let d := 〈ν7, requestUrl , response.headers, referrer , script , scriptstate, 〈〉, 〈〉,>〉
36: if s′.w.documents ≡ 〈〉 then
37: let s′.w.documents := 〈d〉
38: else
39: let i ← N such that s′.w.documents.i.active ≡ >
40: let s′.w.documents.i.active := ⊥
41: remove s′.w.documents.(i+ 1) and all following documents from s′.w.documents
42: let s′.w.documents := s′.w.documents +〈〉 d

43: stop {}, s′

44: case XHR → process XHR response
45: let headers := response.headers− Set-Cookie
46: let m := 〈XMLHTTPREQUEST, headers, response.body, π3(reference)〉
47: call DELIVER TO DOC(π2(reference), m, s′)
48: stop {}, s′

49: case WS → process WebSocket response
50: if response.status 6≡ 101 ∨ response.headers[Upgrade] 6≡ websocket then
51: stop

52: let wsconn := 〈reference, request .nonce, key , f〉
53: let s′.wsConnections := s′.wsConnections +〈〉 wsconn

149



Algorithm A.11 Web Browser Model: Main Algorithm.

Input: 〈a, f,m〉, s
1: let s′ := s

Check if browser is corrupted
2: if s.isCorrupted 6≡ ⊥ then
3: let s′.pendingRequests := 〈m, s.pendingRequests〉 → Collect incoming messages
4: let n ← N
5: let m′1, . . . ,m

′
n ← dV (s′) → Create n new messages nondeterministically.

6: let a′1, . . . , a
′
n ← IPs

7: stop 〈〈a′1, a,m′1〉, . . . , 〈a′n, a,m′n〉〉, s′

Receive trigger message
8: if m ≡ TRIGGER then
9: let switch ← {script, urlbar, reload, forward, back}

10: let w ← Subwindows(s′) such that s′.w.documents 6= 〈〉
↪→ if possible; otherwise stop → Pointer to some window.

11: let tlw ← N such that s′.tlw.documents 6= 〈〉
↪→ if possible; otherwise stop → Pointer to some top-level window.

12: if switch ≡ script then → Run some script.
13: let d := w +〈〉 activedocument
14: call RUNSCRIPT(w, d, s′)
15: else if switch ≡ urlbar then → Create some new request.
16: let newwindow ← {>,⊥}
17: if newwindow ≡ > then → Create a new window.
18: let windownonce := ν1
19: let w′ := 〈windownonce, 〈〉,⊥〉
20: let s′.windows := s′.windows +〈〉 w′

21: else → Use existing top-level window.
22: let windownonce := s′.tlw.nonce
23: let protocol ← {P, S}
24: let host ← Doms
25: let path ← S
26: let fragment ← S
27: let parameters ← [S× S]
28: let url := 〈URL, protocol , host , path, parameters, fragment〉
29: let req := 〈HTTPReq, ν2, GET, host , path, parameters, 〈〉, 〈〉〉
30: call HTTP SEND(〈REQ,windownonce〉, req , url , ⊥, ⊥, ⊥, s′)
31: else if switch ≡ reload then → Reload some document.
32: let url := s′.w.activedocument.location
33: let req := 〈HTTPReq, ν2, GET, url .host, url .path, url .parameters, 〈〉, 〈〉〉
34: let referrer := s′.w.activedocument.referrer
35: let s′ := CANCELNAV(s′.w.nonce, s′)
36: call HTTP SEND(〈REQ, s′.w.nonce〉, req , url , ⊥, referrer , ⊥, s′)
37: else if switch ≡ forward then
38: NAVFORWARD(w, s′)
39: else if switch ≡ back then
40: NAVBACK(w, s′)

Change corruption status
41: else if m ≡ FULLCORRUPT then → Request to corrupt browser
42: let s′.isCorrupted := FULLCORRUPT

43: stop 〈〉, s′
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44: else if m ≡ LIMITEDCORRUPT then → Close the browser
45: let s′.secrets := 〈〉
46: let s′.windows := 〈〉
47: let s′.pendingDNS := 〈〉
48: let s′.pendingRequests := 〈〉
49: let s′.sessionStorage := 〈〉
50: let s′.cookies ⊂〈〉 Cookies such that

↪→ (c ∈〈〉 s′.cookies)⇐⇒ (c ∈〈〉 s.cookies ∧ c.content.session ≡ ⊥)
51: let s′.isCorrupted := LIMITEDCORRUPT

52: stop 〈〉, s′
Plain-text messages

53: else if m ∈ DNSResponses then → DNS response
54: if m.nonce 6∈ s.pendingDNS ∨m.result 6∈ IPs

↪→ ∨ m.domain 6≡ π2(s.pendingDNS[m.nonce]).host then
55: stop

56: let 〈reference,message, url〉 := s.pendingDNS[m.nonce]
57: if url .protocol ≡ S then
58: let s′.pendingRequests := s′.pendingRequests +〈〉 〈reference, message, url , ν3, m.result〉
59: let message := enca(〈message, ν3〉, s′.keyMapping [message.host])
60: else
61: let s′.pendingRequests := s′.pendingRequests +〈〉 〈reference, message, url , ⊥, m.result〉
62: let s′.pendingDNS := s′.pendingDNS−m.nonce
63: stop 〈〈m.result, a,message〉〉, s′
64: else if π1(m) ≡ HTTPResp ∧ ∃ 〈reference, request , url ,⊥, f〉 ∈〈〉 s′.pendingRequests

↪→ such that m.nonce ≡ request .nonce then → Plain HTTP Response
65: remove 〈reference, request , url ,⊥, f〉 from s′.pendingRequests
66: call PROCESSRESPONSE(m, reference, request , url , key , f , s′)
67: else if m.1 ≡ WS MSG ∧ ∃ 〈reference,nonce,⊥, f〉 ∈〈〉 s′.wsConnections

↪→ such that m.nonce ≡ nonce then → Plain Websocket Message
68: call DELIVER TO DOC(π2(reference), m, s′)

Encrypted messages
69: else if ∃ 〈reference, request , url , key , f〉 ∈〈〉 s′.pendingRequests

↪→ such that π1(decs(m, key)) ≡ HTTPResp then → Encrypted HTTP response
70: let m′ := decs(m, key)
71: if m′.nonce 6≡ request .nonce then
72: stop

73: remove 〈reference, request , url , key , f〉 from s′.pendingRequests
74: call PROCESSRESPONSE(m′, reference, request , url , key , f , s′)
75: else if ∃ 〈reference,nonce, key , f〉 ∈〈〉 s′.wsConnections

↪→ such that π1(decs(m, key)) ≡ WS MSG then → Encrypted Websocket Message
76: let m′ := decs(m, key)
77: if m′.nonce 6≡ nonce then
78: stop

79: call DELIVER TO DOC(π2(reference), m′, s′)
80: else if ∃〈nonce, info〉 ∈〈〉 s′.rtcConnections

↪→ such that π1(deca(m, info.privkey)) ≡ RTC MSG then → WebRTC message
81: let m′ := deca(m, info.privkey)
82: if m′.nonce 6≡ nonce then
83: stop

84: let docnonce := info.docnonce
85: call DELIVER TO DOC(docnonce, m′, s′)

86: stop
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A.7. Generic HTTPS Server Model

This base model can be used to ease modeling of HTTPS server atomic processes. It defines

placeholder algorithms that can be replaced by more detailed algorithms to describe a concrete

instance of an HTTPS server.

For these algorithms to work as expected, the state of the HTTPS server must contain (at

least) a minimal set of subterms:

Definition 50 (Base state for an HTTPS server.). The states of HTTPS servers that are in-

stantiations of this generic server must contain at least the following subterms: pendingDNS ∈[
N × TN

]
, pendingRequests ∈ TN (both containing arbitrary terms), DNSaddress ∈ IPs (con-

taining the IP address of a DNS server), keyMapping ∈
[
Doms× TN

]
(containing a mapping

from domains to public keys), tlskeys ∈ [Doms×N ] (containing a mapping from domains to

private keys), and corrupt ∈ TN (either ⊥ if the server is not corrupted, or an arbitrary term

otherwise).

We note that in concrete instantiations of the generic HTTPS server model, there is no need to

extract information from these subterms or alter these subterms.

Let νn0 and νn1 denote placeholders for nonces that are not used in the concrete instantiation of

the server. Algorithm A.17 defines the relation of the generic HTTPS server. It works similar to

the browser main algorithm (Algorithm A.11) and makes use of Algorithms A.13–A.16 to handle

various types of incoming messages. In particular, the function PROCESS HTTPS REQUEST

(Algorithm A.15) is called when an HTTPS request was received and successfully decrypted. An

HTTPS response is handled by the function PROCESS HTTPS RESPONSE (Algorithm A.13),

trigger messages are handled by PROCESS TRIGGER (Algorithm A.14), and all other messages

are handled by PROCESS OTHER (Algorithm A.16). The function HTTPS SIMPLE SEND

(Algorithm A.12) can be used to send HTTPS requests. In this regard, the generic HTTPS

server works just like a (simplified) browser. For example, it first sends a DNS request to resolve

the name into an IP address before sending out an HTTPS request.
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Algorithm A.12 Generic HTTPS Server Model: Sending a DNS message.

1: function HTTPS SIMPLE SEND(reference, message, s′, a)
2: let s′.pendingDNS[νn0] := 〈reference,message〉
3: stop 〈〈s′.DNSaddress, a, 〈DNSResolve,message.host, νn0〉〉〉, s′

Algorithm A.13 Generic HTTPS Server Model: Default HTTPS response handler.

1: function PROCESS HTTPS RESPONSE(m, reference, request , key , a, f , s′)
2: stop

Algorithm A.14 Generic HTTPS Server Model: Default trigger event handler.

1: function PROCESS TRIGGER(s′)
2: stop

Algorithm A.15 Generic HTTPS Server Model: Default HTTPS request handler.

1: function PROCESS HTTPS REQUEST(m, k, a, f , s′)
2: stop

Algorithm A.16 Generic HTTPS Server Model: Default handler for other messages.

1: function PROCESS OTHER(m, a, f , s′)
2: stop
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Algorithm A.17 Generic HTTPS Server Model: Main relation of a generic HTTPS server.

Input: 〈a, f,m〉, s
1: let s′ := s

Check if browser is corrupted or becomes corrupted
2: if s′.corrupt 6≡ ⊥ ∨m ≡ CORRUPT then
3: let s′.corrupt := 〈〈a, f,m〉, s′.corrupt〉
4: let m′ ← dV (s′)
5: let a′ ← IPs
6: stop 〈〈a′, a,m′〉〉, s′

Decrypt HTTPS request
7: if ∃mdec, k, k′, inDomain such that 〈mdec, k〉 ≡ deca(m, k

′) ∧ 〈inDomain, k′〉 ∈ s.tlskeys then
8: let n, method , path, parameters, headers, body such that

↪→ 〈HTTPReq, n,method , inDomain, path, parameters, headers, body〉 ≡ mdec

↪→ if possible; otherwise stop
9: call PROCESS HTTPS REQUEST(mdec, k, a, f , s′)

DNS response
10: else if m ∈ DNSResponses then
11: if m.nonce 6∈ s.pendingDNS ∨m.result 6∈ IPs

↪→ ∨ m.domain 6≡ s.pendingDNS[m.nonce].2.domain then
12: stop

13: let 〈reference, request〉 := s.pendingDNS[m.nonce]
14: let s′.pendingRequests := s′.pendingRequests

↪→ +〈〉 〈reference, request , νn1, m.result〉
15: let message := enca(〈request , νn1〉, s′.keyMapping [request .host])
16: let s′.pendingDNS := s′.pendingDNS−m.nonce
17: stop 〈〈m.result, a,message〉〉, s′

Encrypted HTTPS response
18: else if ∃ 〈reference, request , key , f〉 ∈〈〉 s′.pendingRequests

↪→ such that π1(decs(m, key)) ≡ HTTPResp then
19: let m′ := decs(m, key)
20: if m′.nonce 6≡ request .nonce then
21: stop

22: remove 〈reference, request , key , f〉 from s′.pendingRequests
23: call PROCESS HTTPS RESPONSE(m′, reference, request , key , a, f , s′)
24: stop

Process was triggered
25: else if m ≡ TRIGGER then
26: call PROCESS TRIGGER(s′)

Other type of message
27: else
28: call PROCESS OTHER(m, a, f , s′)

29: stop
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B. Analysis of OAuth 2.0

In this appendix, we present our model of OAuth, the formalization of the security properties,

and the proof of the OAuth Security Theorem (Theorem 1).

B.1. Formal Model of OAuth with a Network Attacker

We model OAuth as a web system in the sense of Appendix A.3. We call a web system

OAuthWSn = (W , S , script, E0) an OAuth web system with a network attacker if it is of the form

described in what follows.

B.1.1. Outline

The system W = Hon∪Net consists of a network attacker process (in Net), a finite set B of web

browsers, a finite set Clients of web servers for the clients, a finite set OAP of web servers for the

OAuth providers (each OAP playing the role of an AS and an RS), with Hon := B∪Clients∪OAP.

More details on the processes in W are provided below. We do not model DNS servers, as

they are subsumed by the network attacker. Table B.1 shows the set of scripts S , their string

representations that are defined by the mapping script, and the algorithms that define the

respective scripts.

s ∈ S script(s) defined in

Ratt att script Definition 26

script client index script client index Algorithm B.1

script client implicit script client implicit Algorithm B.2

script oap form script oap form Algorithm B.3

Table B.1. List of scripts in S , their respective string representations, and their definitions.

In the algorithms defining the scripts, we use the function GETURL(tree, docnonce). We

define this function as follows: It searches for the document with the identifier docnonce in the

(cleaned) tree tree of the browser’s windows and documents. It then returns the URL u of that

document. If no document with nonce docnonce is found in the tree tree, 3 is returned. We also

use the helper function GETDOCWINDOW(tree, docnonce). It returns the nonce of the window

in tree that contains the document identified by docnonce.

The set E0 contains only the trigger events as specified in Appendix A.3. This outlines

OAuthWSn. We now define the DY processes in OAuthWSn and their addresses, domain names,

and secrets in more detail.
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Algorithm B.1 Relation of script client index .

Input: 〈tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets〉
1: let switch ← {auth, link}
2: if switch ≡ auth then
3: let url := GETURL(tree, docnonce)
4: let id ← ids
5: let username := π1(id)
6: let domain := π2(id)
7: let interactive ← {⊥,>}
8: if interactive ≡ > then
9: let url ′ := 〈URL, S, url .host, /startInteractiveLogin, 〈〉, 〈〉〉

10: let command := 〈FORM, url ′, POST, domain,⊥〉
11: else
12: let url ′ := 〈URL, S, url .host, /passwordLogin, 〈〉, 〈〉〉
13: let secret such that secret = secretOfID(id) ∧ secret ∈ secrets if possible; otherwise

↪→ stop 〈s, cookies, localStorage, sessionStorage, 〈〉〉
14: let command := 〈FORM, url ′, POST, 〈id , secret〉,⊥〉
15: stop 〈scriptstate, cookies, localStorage, sessionStorage, command〉
16: else
17: let protocol ← {P, S}
18: let host ← Doms
19: let path ← S
20: let fragment ← S
21: let parameters ← [S× S]
22: let url := 〈URL, protocol , host , path, parameters, fragment〉
23: let command := 〈HREF, url ,GETDOCWINDOW(tree, docnonce)),⊥〉
24: stop 〈scriptstate, cookies, localStorage, sessionStorage, command〉

Algorithm B.2 Relation of script client implicit .

Input: 〈tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets〉
1: let url := GETURL(tree, docnonce)
2: let url ′ := 〈URL, S, url .host, /receiveTokenFromImplicitGrant, 〈〉, 〈〉〉
3: let body := 〈url .fragment[access token], url .fragment[state], scriptstate〉
4: let command := 〈FORM, url ′, POST, body ,⊥〉
5: stop 〈scriptstate, cookies, localStorage, sessionStorage, command〉

Algorithm B.3 Relation of script oap form.

Input: 〈tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets〉
1: let url := GETURL(tree, docnonce)
2: let url .path ← S
3: let formdata := scriptstate
4: let id ← ids
5: let secret ← secrets
6: let formdata := formdata +〈〉 〈username, id〉
7: let formdata := formdata +〈〉 〈password, secret〉
8: let command := 〈FORM, url , POST, formdata,⊥〉
9: stop 〈scriptstate, cookies, localStorage, sessionStorage, command〉

156



B.1.2. Addresses and Domain Names

The set IPs contains for the network attacker in Net, every client in Clients, every OAuth

provider in OAP, and every browser in B a finite set of addresses each. By addr we denote the

corresponding assignment from a process to its address. The set Doms contains a finite set of

domains for every client in Clients, every OAuth provider in OAP, and the network attacker in

Net. Browsers (in B) do not have a domain.

By addr and dom we denote the assignments from atomic processes to sets of IPs and Doms,

respectively.

B.1.3. Keys and Secrets

The set N of nonces is partitioned into five sets: an infinite sequence N , an infinite set KTLS,

an infinite set Ksign, and finite sets Passwords, ClientSecrets′ and ProtectedResources. We thus

have

N = N︸︷︷︸
infinite sequence

∪̇KTLS︸ ︷︷ ︸
finite

∪̇Passwords︸ ︷︷ ︸
finite

∪̇ClientSecrets′︸ ︷︷ ︸
finite

∪̇ProtectedResources︸ ︷︷ ︸
finite

.

We then define ClientSecrets := ClientSecrets′ ∪ {⊥}. These sets are used as follows:

– The set N contains the nonces that are available to each DY process in W , i.e., the set

can be used to create a run of W .

– The set KTLS contains the keys that will be used for TLS encryption. Let tlskey : Doms→
KTLS be an injective mapping that assigns a (different) private key to every domain.

For an atomic DY process p we define tlskeysp to be a mapping from domains of p to

corresponding TLS keys, or more formally, tlskeysp = 〈{〈d, tlskey(d)〉 | d ∈ dom(p)}〉.

– The set Passwords is the set of passwords (secrets) the browsers share with the OAuth

providers. These are the passwords the users use to log in at the OAPs.

– The set ClientSecrets is the set of passwords (secrets) the clients share with the OAuth

providers. These are the passwords the clients use to log in at the OAPs. The passwords

can also be blank (⊥).

– The set ProtectedResources contains a secret for each combination of OAP, client, and user.

These are thought of as protected resources that only the resource owner (i.e., the user)

should be able to read. (See also Definition 55.)

B.1.4. Identities, Passwords, and Protected Resources

Identities consist, like email addresses, of a username and a domain part. For our model, this is

defined as follows:
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Definition 51. An identity (email address) i is a term of the form 〈name, domain〉 with name ∈ S
and domain ∈ Doms.

Let ID be the finite set of identities. By IDy we denote the set {〈name, domain〉 ∈ ID | domain ∈
dom(y)}.

We say that an ID is governed by the DY process to which the domain of the ID belongs.

Formally, we define the mapping governor : ID→W , 〈name, domain〉 7→ dom−1(domain).

The governor of an ID will usually be an OAP, but could also be the attacker. Besides governor,

we define the following mappings:

– By secretOfID : ID → Passwords we denote the bijective mapping that assigns secrets to

all identities.

– Let ownerOfSecret : Passwords → B denote the mapping that assigns to each secret a

browser that owns this secret. Now, we define the mapping ownerOfID : ID → B, i 7→
ownerOfSecret(secretOfID(i)), which assigns to each identity the browser that owns this

identity (we say that the identity belongs to the browser).

– Let trustedClients : Passwords → 2Clients denote a mapping that assigns to each password

a set of trusted clients. Intuitively a trusted client is a client the user entrusts with her

password (in the resource owner password credentials grant of OAuth).

– Let clientID : (Client ∪ {⊥})× OAP→ S ∪ {⊥} denote a mapping that assigns an OAuth

client id for a client to each combination of a client and an OAuth provider. We require

that clientID(·, i) is bijective for all i ∈ OAP and that clientID(r, i) = ⊥ iff r = ⊥ for all

i ∈ OAP.

– Let secretOfClient : Clients×OAP→ ClientSecrets denote a bijective mapping that assigns

a client password (or the empty password ⊥) to each combination of a client and an OAuth

provider.

– As a shortcut, we define the mapping secretOfClientID : S × OAP → ClientSecrets to

return the client password to a client identified by an OAuth client id (at some specific

OAuth provider), i.e., secretOfClientID(s, i) maps to secretOfClient(r, i) with r such that

s = clientID(r, i).

– By resourceOf : OAP× (Clients ∪ {⊥})× (ID ∪ {⊥})→ ProtectedResources we denote the

injective mapping that assigns a protected resource to each combination of user identity,

OAP and client. We also include protected resources that are not assigned to a specific

user (in this case, the user is ⊥) and those that are not assigned to a specific client (the

client then is ⊥).

A protected resource depends not only on the OAP and user ID but also the client. This is

motivated by the fact that different clients may get access to different protected resources
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at one OAP, even if they access the resources of the same user. In the resource owner

password credentials mode, clients can also access resources that do not depend on the

client, we then have that client is ⊥.1

B.1.5. Corruption

Clients and OAPs can become corrupted: If they receive the message CORRUPT, they start

collecting all incoming messages in their state and (upon triggering) send out all messages that

are derivable from their state and collected input messages, just like the attacker process. We

say that a client or an OAP is honest if the according part of their state (s.corrupt) is ⊥, and

that they are corrupted otherwise.

We are now ready to define the processes in W in more detail.

B.1.6. Processes in W (Overview)

We first provide a brief overview of the processes in W . All processes in W contain in their

initial states all public keys and the private keys of their respective domains (if any). We define

Ip = addr(p) for all p ∈ Hon.

Network Attacker There is one atomic DY process na ∈ Net which is a network attacker (see

Appendix A.3), who uses all addresses for sending and listening.

Browsers Each b ∈ B is a web browser as defined in Appendix A.6. The initial state contains

all secrets owned by b, stored under the origins of the respective OAP and of all trusted

clients for the respective secret. See Appendix B.1.8 for details.

Clients Each client is a web server modeled as an atomic DY process following the description

in Chapter 3 including the fixes. The client can either (at any time) launch a client

credentials grant or wait for users to start any of the other flows. The client manages two

kinds of sessions: The login sessions, which are only used during the login phase of a user,

and the service sessions (modeled by a service token as described above). When receiving

a special message (CORRUPT) clients become corrupted, as described before.

OAuth Providers Each OAP is a web server modeled as an atomic DY process following the

description in Chapter 3, again including the fixes. In particular, users can authenticate to

the OAP with their credentials. Authenticated users can interact with the authorization

endpoint of the OAP (e.g., to acquire an authorization code). Just as clients, OAPs can

become corrupted.

1In the resource owner password credentials mode, the client gets the user’s credentials and thus has full access
to the user’s account at OAP. This access is not bound to potential limitations that depend on the client’s
identity.

159



B.1.7. Network Attacker

As mentioned, the network attacker na is modeled to be a network attacker as specified in

Appendix A.3. We allow it to listen to/spoof all available IP addresses, and hence, define

Ina = IPs. The initial state is sna0 = 〈attdoms, tlskeys, signkeys〉, where attdoms is a sequence

of all domains along with the corresponding private keys owned by the attacker na, tlskeys is a

sequence of all domains and the corresponding public keys, and signkeys is a sequence containing

all public signing keys for all OAPs.

B.1.8. Browsers

Each b ∈ B is a web browser as defined in Appendix A.6, with Ib := addr(b) being its addresses.

To define the inital state, first let IDb := ownerOfID−1(b) be the set of all IDs of b. We then

define the set of passwords that a browser b gives to an origin o to consist of two parts: (1) If

the origin belongs to an OAP, then the user’s passwords of this OAP are contained in the set.

(2) If the origin belongs to a client, then those passwords with which the user entrusts this client

are contained in the set. To define this mapping in the initial state, we first define for some

process p

Secretsb,p =
{
s
∣∣∣ b = ownerOfSecret(s) ∧

(
(∃ i : s = secretOfID(i) ∧ i ∈ governor−1(p))

∨ (∃R : p ∈ R ∧ s ∈ trustedClients−1(R))
)}
.

Then, the initial state sb0 is defined as follows: the key mapping maps every domain to its

public TLS key, according to the mapping tlskey; the DNS address is an address of the network

attacker; the list of secrets contains an entry 〈〈d, S〉, 〈Secretsb,p〉〉 for each p ∈ Clients∪OAP and

d ∈ dom(p); ids is 〈IDb〉; sts is empty.

B.1.9. Clients

A client r ∈ Clients is a web server modeled as an atomic DY process (Ir, Zr, Rr, sr0) with the

addresses Ir := addr(r).2 Its initial state sr0 contains its domains, the private keys associated

with its domains, the DNS server address, and information about OAPs where the client is

registered at. The full state additionally contains the sets of service tokens and login session

identifiers the client has issued as well as information about pending DNS and pending HTTPS

requests (similar to browsers or generic HTTPS servers). A client only accepts HTTPS requests.

A client manages two kinds of sessions: The login sessions, which are only used during the

login phase of a user, and the service sessions (we call the session identifier of a service session

2We use r (for relying party) as a variable here and in the following instead of c to align with [FKS16] and the
definitions in Appendix C. For the same reason, we use i (identity provider) instead of o for OAPs.
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a service token). Service sessions allow a user to use the client’s services. The ultimate goal of

a login flow is to establish such a service session.

We have already described how r can become corrupted. In the following, we explain the

behaviour of r during a login flow in more detail.

Initial Request In a typical flow, r will first receive an HTTP GET request from a browser for

the path /. In this case, r returns the script script client index. Besides providing arbitrary

links, this script allows users to start an OAuth flow in the browser. If an OAuth flow is started,

the script nondeterministically chooses an identity of the user, i.e., a combination of a username

and a domain of an OAP. Further this script nondeterministically decides whether an interactive

login (i.e., authorization code grant or implicit grant) or a non-interactive login (i.e., resource

owner password credentials grant) is used. If an interactive login is chosen, the script instructs

the browser to send an HTTPS POST request to r for the path /startInteractiveLogin.

This POST request contains in its body the domain of the OAP.3 If the script chooses a non-

interactive login, the domain of the OAP, the username, and the user’s password are sent to r

in an HTTPS POST request for the path /passwordLogin.

As the flow now forks into different branches, we explain each of these branches separately.

Interactive Login In this case, script client index has sent an HTTPS POST request for

the path /startInteractiveLogin to r containing the domain of an OAP in its body. When r

receives such a request, r nondeterministically decides whether the OAuth authorization grant

or the OAuth implicit grant is used. Also, r nondeterministically either selects a redirect URI

redirect uri of its redirection endpoints and appends the domain of the OAP to this redirect URI,

or selects no redirect URI. Further, r nondeterministically selects a (fresh) nonce state and a

(fresh) nonce as the login session id. Now, r constructs and sends an HTTPS response containing

an HTTP 303 location redirect or an HTTP 307 location redirect (chosen nondeterministically).

The redirection points to the authorization endpoint at the OAP along with r’s OAuth client

id for this OAP, state and information which OAuth grant r has chosen. The response also

contains a Set-Cookie header, which sets a cookie containing the login session id. r also creates

a new record in the subterm loginSessions of its state. This record contains the login session id,

the chosen OAP and grant type, and the redirection URI (if any).

Later in the flow, when OAP redirects the user’s browser to r’s redirection endpoint, r will

receive an HTTPS GET request for the path /redirectionEndpoint. This request must contain

a login session id cookie, which refers to the information stored in the subterm loginSessions

in r’s state. The request must also contain a parameter with the domain of the OAP and this

domain must match the domain stored for this login session.

If r has stored that for this login session the OAuth authorization code grant is used, r checks

if the state value in the parameter of the same name is correct, i.e., is congruent to the value

3While the script has selected an identity of the user, only the domain of the OAP is used here. During the
authentication to the OAP, a different username may be chosen.
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recorded in r’s state. Then, r extracts the authorization code code from the parameters of the

incoming request and prepares an HTTPS POST request to the OAP’s token endpoint to obtain

an access token. To this end, r first adds the authorization code to the request’s body. If a

redirect URI has been set by r before, the redirect URI is included in the request’s body. If

r knows an OAuth client secret for the OAP, r adds its OAuth client id and its OAuth client

secret for the OAP to the header of the request, else r adds its OAuth client id for the OAP to

the request’s body. Now, r sends a DNS request for the domain of the OAP’s token endpoint

to the DNS server. Finally, r saves the prepared request and the HTTPS request received from

the browser in its state. We continue our description in the OAuth authorization code grant in

the paragraph Token Response below.

If the (incoming) HTTPS request’s login session at r states that implicit grant is used,

r instead sends an HTTPS response to the sender of the incoming message. This HTTPS

response contains the script script client implicit and the initial state for this script in this

response contains the domain of the OAP.

In a browser, this script extracts access token and state from the fragment part of its URL

and extracts the domain of the OAP from its initial state. The script then sends this information

in the body of an HTTPS POST request for the path /receiveTokenFromImplicitGrant to r.

When r receives such an HTTPS POST request, r checks if this request contains a login

session id cookie, which refers to the information stored in its state and if the values of state

and oap (contained in the request) match the information there. Next, r prepares an HTTPS

request to OAP’s introspection endpoint containing the access token just received. r saves all

information belonging to this new request and the (incoming) request it had just received in

pendingDNS in its state and sends out a DNS request for the domain of the OAP’s introspection

endpoint to the DNS server.

We describe what happens when r later receives the response from OAP in the paragraph

Introspection Response below.

Non-Interactive Login In this case, script client index has sent an HTTPS POST request

for the path /passwordLogin to r containing a domain of an OAP, a username and a user’s

password in its body. Next, r constructs an HTTPS POST request to the token endpoint of the

OAP. This request contains the username and the user’s password in its body and if r knows

an OAuth client secret for the OAP, the request contains an HTTP header with r’s OAuth

client id and OAuth client secret. r saves all information belonging to this new request and the

(incoming) request r has just received in the subterm pendingDNS in r’s state and sends out a

DNS request for the domain of the OAP’s token endpoint to the DNS server.

We describe what happens when r later receives the response from the OAP in the paragraph

Token Response below.

Client Credentials Grant When r receives a TRIGGER message (which models that r nondeter-

ministically starts an OAuth flow in the client credentials grant), r first nondeterministically
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selects a domain of an OAP. Then, r constructs an HTTPS POST request to the token endpoint

of the OAP. This request contains an HTTP header with r’s OAuth client id and OAuth client

secret.4 r saves all information belonging to this (prepared) request in pendingDNS and sends

out a DNS request for the domain of the OAP’s token endpoint to the DNS server.

We describe what happens when r later receives the response from OAP in the paragraph

Token Response below.

Token Response When r receives an encrypted HTTP response that matches a record in the

subterm pendingRequests of its state and belongs to a request for an access token from an OAP

(according to the information recorded in pendingRequests), then r extracts the access token

and prepares an HTTPS request to the OAP’s introspection endpoint containing the access

token. r saves all information belonging to this new request in pendingDNS . Further, r also

stores selected information, which is passed along in r’s state in the corresponding record of

the incoming request, such as the IP address of the sender and the HTTPS response key of the

request which initiated r’s request for the access token before. Then, r sends out a DNS request

for the domain of the OAP’s introspection endpoint to the DNS server.

Introspection Response When r receives an encrypted HTTP response that matches a record

in the subterm pendingRequests in its state and this record belongs to a request to an OAP’s

introspection endpoint, r checks whether the response belongs to a flow in client credentials

grant (according to the record). If that is the case, r stops. Otherwise, r nondeterministically

proceeds with either an authorization flow or an authentication flow:

– If authorization is selected, r retrieves the protected resource from the OAP’s response and

sends out an HTTPS response to the IP address recorded in the record in pendingRequests

(which contains the IP address of the browser, which initially sent either user credentials,

an authorization code, or an access token).

– Else, authentication is selected. Now, if the response does not contain r’s OAuth client

id, r stops. Otherwise, r retrieves the user id from the response and nondeterministically

chooses a fresh nonce as a service token. r records in its state that the service token

belongs to the user identified by the user id at the OAP. Now, r sends out a response (as

above) which contains the service token in a cookie.

In both cases, r replies with the script script client index , which provides arbitrary links and

the possibility to start a new OAuth flow (see above).

This concludes the description of the behaviour of a client.

4In our model, r may even construct such a request if r does not have an OAuth client secret for the OAP. In
this case, the symbol ⊥ is placed in this header instead of an OAuth client secret. The OAP, however, will
drop such a request, as it is not authenticated.
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Formal description

We now provide the formal definition of r as an atomic DY process (Ir, Zr, Rr, sr0). As mentioned,

we define Ir = addr(r). Next, we define the set Zr of states of r and the initial state sr0 of r.

Definition 52. An OAP registration record is a term of the form

〈tokenEndpoint , authorizationEndpoint , introspectionEndpoint , clientId , clientPassword〉

with tokenEndpoint , authorizationEndpoint , introspectionEndpoint ∈ URLs, clientId ∈ S, and

clientPassword ∈ N .

An OAP registration record for an OAuth provider i at a client r is an OAP registration record

with tokenEndpoint .host, authorizationEndpoint .host, introspectionEndpoint .host ∈ dom(i),

clientId = clientID(r, i), and clientPassword = secretOfClient(r, i).

Definition 53. A state s ∈ Zr of a client r is a term of the form

〈DNSAddress, oaps, serviceTokens, loginSessions,

keyMapping , tlskeys, pendingDNS , pendingRequests, corrupt〉

where DNSAddress ∈ IPs, oaps ∈
[
Doms× TN

]
is a dictionary of OAP registration records,

serviceTokens ∈
[
N × TN

]
, loginSessions ∈

[
N × TN

]
is a dictionary of login session records,

keyMapping ∈ [S×N ], tlskeys = tlskeysr, pendingDNS ∈
[
N × TN

]
, pendingRequests ∈[

N × TN
]
, corrupt ∈ TN .

An initial state sr0 of r is a state of r with sr0.oaps being a dictionary that maps each

domain of all OAuth providers i to an OAP registration record for i at r, sr0.serviceTokens =

sr0.loginSessions = 〈〉, sr0.corrupt = ⊥, and sr0.keyMapping is the same as the keymapping

for browsers above.

Algorithm B.4 specifies the relation Rr. In several places throughout this algorithm we

use placeholders to generate “fresh” nonces as described in our communication model (see

Definition 6). Table B.2 shows a list of all placeholders used.

B.1.10. OAuth Providers

An OAuth provider i ∈ OAPs is a web server modeled as an atomic process (Ii, Zi, Ri, si0) with

the addresses Ii := addr(i). Its initial state si0 contains a list of its domains and (private) TLS

keys, the paths for the endpoints (authorization and token), a list of users, a list of clients, and

information about the corruption status (initially, the OAP is not corrupted). Besides this, the

full state of i further contains a list of issued authorization codes and access tokens.

Once the OAP becomes corrupted (when it receives the message corrupt), it starts collecting

all input messages and nondeterministically sending out whatever messages are derivable from

its state.
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Placeholder Usage

ν1 HTTP request nonce

ν2 lookup key for pending DNS entry

ν3 service token

ν4 HTTPS response key

ν5 HTTP request nonce

ν6 lookup key for pending DNS entry

ν7 CSRF token

ν8 login session cookie

ν9 HTTP request nonce

ν10 lookup key for pending DNS entry

ν11 HTTP request nonce

ν12 lookup key for pending DNS entry

ν13 HTTP request nonce

ν14 lookup key for pending DNS entry

Table B.2. List of placeholders used in the client algorithm.

Otherwise, OAPs react to three types of requests:

Requests to the authorization endpoint path: In this case, the OAP expects a POST request

containing valid user credentials. If the user credentials are not supplied, or the request is not a

POST request, the answer contains a script which shows a form to the user to enter her user

credentials. In our model, the script just extracts the user credentials from the browser and

sends a request to the OAP containing the user credentials and any OAuth parameters contained

in the original request (e.g., the intended redirect URI).

If the OAP received a POST request with valid user credentials, it checks the contained client

identifier against its own list of clients. If the client identifier is unknown, the OAP aborts.

Otherwise, it ensures that the redirect URI, if contained in the request, is valid. For this, it

checks the list of redirect URIs stored along with the client identifier. If none of the redirect

URIs match the redirect URI presented in the request (see “Matching Redirect URIs” below),

the OAP aborts. If no redirect URI is provided in the request, the first URI in the list of redirect

URIs is chosen as the redirect URI.

Now the OAP creates a new authorization code and saves this code together with the client

identifier and the redirect URI (if provided in the request) to the list of authorization codes.

Now, if the response type parameter in the request is “code”, the OAP issues a Location

redirect header to the redirect URI, appending (as parameters) the newly created authorization

code and the state (if provided in the request).

If the reponse type is “token”, the OAP redirects the browser to the redirect URI, but appends

the authorization code, the state (if provided) and a fixed string (containing the token type,

which is “bearer”) to the hash of the redirect URI.
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Requests to the token endpoint path: Requests to the token endpoint path are only accepted

by the OAP if they are POST requests. The OAP then checks that the request either contains

a valid client ID, provided as a parameter, or a pair of client ID and client password in a basic

authentication header.

If the grant type parameter is authorization code, then the OAP checks that the authorization

code delivered to it is contained in the list of codes. It checks that the client ID and redirect

URI are the same as those stored in the list of codes. It then creates an access token and returns

it in the HTTPS response (with token type “bearer”).

If the grant type is password, the OAP checks the provided username and password and

creates an access token as above.

If the grant type is client credentials, the OAP checks that the client was authorized with

client ID and client password above. If so, it creates an access token as above.

Requests to the introspection endpoint path: In this case, the OAP expects an access token

in the parameters of the request. If the access token is valid, the OAP returns the client and

user id for which the access token was issued along with the protected resource for this client,

user, and OAP.

Formal description

In the following, we first define the (initial) state of i formally and afterwards present the

definition of the relation Ri.

To define the initial state, we need to add a list of all protected resources that this OAP

manages. We therefore define

srlist i := 〈{resourceOf(i, c, u) | c ∈ Clients ∪ {⊥}, u ∈ ID}〉

for some OAP i. (We do not use this term for term manipulations in the algorithm. Instead,

this term ensures that the output of the atomic process is derivable from the input.)

Definition 54. A state s ∈ Zi of an OAP i is a term of the form 〈tlskeys, srlist , authEndpoint ,

tokenEndpoint , introspectEndpoint , clients, codes, corrupt〉 where tlskeys = tlskeys i, srlist =

srlist i, authEndpoint , tokenEndpoint , introspectEndpoint ∈ S, clients ∈
[
S× TN

]
, codes ∈ TN ,

atokens ∈ [N × S].

An initial state si0 of i is a state of the form 〈tlskeys i, srlist i, w, x, y, clients i, 〈〉, 〈〉,⊥〉 for

some strings w, x and y and a dictionary clients i that for each client r contains an entry

of the form 〈clientID(r, i), z〉 where z is a sequence of URL terms that may contain the wild-

card ∗ (see Definition 11) where for every u ∈〈〉 z we have that u.protocol ≡ S, u.host ∈
dom(r), u.parameters[iss] ≡ d for some d ∈ dom(i), u.parameters[client id] ≡ clientID(r, i),

u.fragment ≡ 〈〉, and u.path ≡ /redirectionEndpoint.

The relation Ri that defines the behavior of the OAP i is defined by Algorithm B.5.

166



Algorithm B.4 Relation of a Client Rr.

Input: 〈a, f,m〉, s
1: if s′.corrupt 6≡ ⊥ ∨m ≡ CORRUPT then
2: let s′.corrupt := 〈〈a, f,m〉, s′.corrupt〉
3: let m′ ← dV (s′)
4: let a′ ← IPs
5: stop 〈〈a′, a,m′〉〉, s′

6: if ∃ 〈reference, request , key , f〉 ∈〈〉 s′.pendingRequests
↪→ such that π1(decs(m, key)) ≡ HTTPResp then → Encrypted HTTP response

7: let m′ := decs(m, key)
8: if m′.nonce 6≡ request .nonce then
9: stop

10: remove 〈reference, request , key , f〉 from s′.pendingRequests
11: let mode := π1(reference)
12: if mode ≡ code ∨mode ≡ password ∨mode ≡ client credentials then
13: let oap, a′, f ′, n′, k′ such that 〈mode, oap, a′, f ′, n′, k′〉 ≡ reference

↪→ if possible; otherwise stop
14: let token := m′.body[access token]
15: let introspectionEndpoint := s′.oaps[oap].introspectionEndpoint
16: let parameters := introspectionEndpoint .parameters
17: let parameters := parameters +〈〉 〈token, token〉
18: let host := introspectionEndpoint .domain
19: let path := introspectionEndpoint .path
20: let message := 〈HTTPReq, ν1, GET, host , path, parameters, 〈〉, 〈〉〉
21: let s′.pendingDNS[ν2] := 〈〈introspect,mode, oap, a′, f ′, n′, k′〉,message〉
22: stop 〈〈s′.DNSaddress, a, 〈DNSResolve, introspectionEndpoint .domain, ν2〉〉〉, s′
23: else if mode ≡ introspect then
24: let resource, clientId , user such that

↪→ 〈〈protected resource, resource〉, 〈client id, clientId〉, 〈user, user〉〉 ≡ m′.body
↪→ if possible; otherwise stop

25: let mode ′, oap, a′, f ′, n′, k′ such that 〈introspect,mode ′, oap, a′, f ′, n′, k′〉 ≡ reference
↪→ if possible; otherwise stop

26: if mode ′ ≡ client credentials then
27: stop → In client credential grant mode, no service token is issued.

28: let goal ← {authz, authn} → Proceed with authorization or authentication.
29: if goal ≡ authz then
30: let headers := 〈〉
31: else
32: if clientId ≡ s′.oaps[oap].clientId ∨ (clientId ≡ 〈〉 ∧mode ≡ password∧

↪→ s′.oaps[oap].clientPassword ≡ ⊥) then
33: if user ≡ 〈〉 then
34: stop

35: else
36: stop

37: let serviceToken := ν3
38: let s′.serviceTokens[serviceToken] := 〈user , oap〉
39: let headers := 〈〈Set-Cookie, 〈〈serviceToken, 〈serviceToken,⊥,⊥,>〉〉〉〉〉
40: let headers := headers +〈〉 〈ReferrerPolicy, origin〉
41: let m′ := encs(〈HTTPResp, n′, 200, headers, 〈script client index, 〈〉〉〉, k′)
42: stop 〈〈f ′, a′,m′〉〉, s′

43: stop
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44: else if m ∈ DNSResponses then → Successful DNS response
45: if m.nonce 6∈ s.pendingDNS ∨m.result 6∈ IPs

↪→ ∨ m.domain 6≡ s.pendingDNS[m.domain].2.host then
46: stop

47: let 〈reference, request〉 := s.pendingDNS[m.nonce]
48: let s′.pendingRequests := s′.pendingRequests +〈〉 〈reference, request , ν4, m.result〉
49: let message := enca(〈request , ν4〉, s′.keyMapping [request .host])
50: let s′.pendingDNS := s′.pendingDNS−m.nonce
51: stop 〈〈m.result, a,message〉〉, s′
52: else if m ≡ TRIGGER then → Start Client Credentials Grant
53: let oapEntry ← s′.oaps
54: let oap := π1(oapEntry)
55: let tokenEndpoint := s′.oaps[oap].tokenEndpoint → tokenEndpoint is a URL
56: let host := tokenEndpoint .domain
57: let path := tokenEndpoint .path
58: let parameters := tokenEndpoint .parameters
59: let headers := 〈〈Authorization, 〈s′.oaps[oap].clientId, s′.oaps[oap].clientPassword〉〉〉
60: let message :=

↪→ 〈HTTPReq, ν5, POST, host , path, parameters, headers, 〈〈grant type, client credentials〉〉〉
61: let s′.pendingDNS[ν6] := 〈〈client credentials, oap,⊥,⊥,⊥,⊥〉,message〉
62: stop 〈〈s′.DNSaddress, a, 〈DNSResolve, oap.tokenEndpoint.domain, ν6〉〉〉, s′
63: else → Handle HTTP requests
64: let mdec, k, k′, inDomain such that

↪→ 〈mdec, k〉 ≡ deca(m, k
′) ∧ 〈inDomain, k′〉 ∈ s.tlskeys

↪→ if possible; otherwise stop
65: let n, method , path, parameters, headers, body such that

↪→ 〈HTTPReq, n,method , inDomain, path, parameters, headers, body〉 ≡ mdec

↪→ if possible; otherwise stop
66: if path ≡ / then → Serve index page.
67: let headers := 〈〈ReferrerPolicy, origin〉〉
68: let m′ := encs(〈HTTPResp, n, 200, headers, 〈script client index, 〈〉〉〉, k)
69: stop 〈〈f, a,m′〉〉, s′
70: else if path ≡ /startInteractiveLogin ∧method ≡ POST then
71: if headers[Origin] 6≡ 〈inDomain, S〉 then → CSRF protection.
72: stop

73: let oap := body
74: if oap 6∈ s′.oaps then
75: stop

76: let state := ν7
77: let mode ← {code, token}
78: let responseStatus ← {303, 307}
79: let authEndpoint := s′.oaps[oap].authorizationEndpoint → authEndpoint is a URL
80: let authEndpoint .parameters := authEndpoint .parameters +〈〉 〈response type,mode〉
81: let authEndpoint .parameters := authEndpoint .parameters +〈〉

↪→ 〈client id, s′.oaps[oap].clientId〉
82: let authEndpoint .parameters := authEndpoint .parameters +〈〉 〈state, state〉
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83: let redirectUri ← {⊥,>}
84: if redirectUri ≡ > then
85: let tlskey ′ ← s′.tlskeys → Choose one of client’s domains nondeterministically
86: let host ′ := π1(tlskey ′)
87: let redirectUri := 〈URL, S, host ′, /redirectionEndpoint, 〈〈oap, oap〉〉, 〈〉〉
88: let redirectUri .parameters := redirectUri .parameters +〈〉 〈redirect uri,mode〉
89: let loginSessionId := ν8
90: let session := 〈loginSessionId , 〈oap, state,mode, redirectUri〉〉
91: let s′.loginSessions := s′.loginSessions +〈〉 session
92: let headers := 〈〈Location, authEndpoint〉〉
93: let headers := headers +〈〉 〈Set-Cookie, 〈〈loginSessionId, 〈loginSessionId ,>,>,>〉〉〉〉
94: let headers := headers +〈〉 〈ReferrerPolicy, origin〉
95: let m′ := encs(〈HTTPResp, n, responseStatus, headers,⊥〉, k)
96: stop 〈〈f, a,m′〉〉, s′
97: else if path ≡ /redirectionEndpoint then
98: let loginSessionId := headers[Cookie][loginSessionId]
99: let oap, state, mode, redirectUri such that 〈oap, state,mode, redirectUri〉 ≡

↪→ s′.loginSessions[loginSessionId ] if possible; otherwise stop
100: let clientId := s′.oaps[oap].clientId
101: if oap 6≡ parameters[iss] ∨ clientId 6≡ parameters[client id] then
102: stop

103: if mode ≡ code then → Continue Authorization Code Grant
104: if parameters[state] 6≡ state then
105: stop

106: let code := parameters[code]
107: let trHeaders := 〈〉
108: let trBody := 〈〈grant type, authorization code〉, 〈code, code〉〉
109: if redirectUri 6≡ ⊥ then
110: let trBody := trBody +〈〉 〈redirect uri, redirectUri〉
111: let clientPassword := s′.oaps[oap].clientPassword
112: if clientPassword ≡ ⊥ then
113: let trBody := trBody +〈〉 〈client id, clientId〉
114: else
115: let trHeaders := trHeaders +〈〉

↪→ 〈Authorization, 〈clientId , clientPassword〉〉
116: let te := s′.oaps[oap].tokenEndpoint
117: let message :=

↪→ 〈HTTPReq, ν9, POST, te.domain, te.path, te.parameters, trHeaders, trBody〉
118: let s′.pendingDNS[ν10] := 〈〈code, oap, a, f, n, k〉,message〉
119: stop 〈〈s′.DNSaddress, a, 〈DNSResolve, te.domain, ν10〉〉〉, s′
120: else if mode ≡ token then → Continue Implicit Grant
121: let headers := 〈〈ReferrerPolicy, origin〉〉
122: let m′ := encs(〈HTTPResp, n, 200, headers, 〈script client implicit, oap〉〉, k)
123: stop 〈〈f, a,m′〉〉, s′

124: stop
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125: else if path ≡ /passwordLogin ∧method ≡ POST then
126: if headers[Origin] 6≡ 〈inDomain, S〉 then → CSRF protection.
127: stop

128: let oap, username, password such that 〈〈username, oap〉, password〉 ≡ body
↪→ if possible; otherwise stop

129: let trHeaders := 〈〉
130: let trBody := 〈〈grant type, password〉, 〈username, 〈username, oap〉〉,

↪→ 〈password, password〉〉
131: let clientId := s′.oaps[oap].clientId
132: let clientPassword := s′.oaps[oap].clientPassword
133: if clientPassword 6≡ ⊥ then
134: let trHeaders := trHeaders +〈〉 〈Authorization, 〈clientId , clientPassword〉〉
135: let te := s′.oaps[oap].tokenEndpoint
136: let message := 〈HTTPReq, ν11, POST, te.domain, te.path, te.parameters, trHeaders, trBody〉
137: let s′.pendingDNS[ν12] := 〈〈password, oap, a, f, n, k〉,message〉
138: stop 〈〈s′.DNSaddress, a, 〈DNSResolve, te.domain, ν12〉〉〉, s′
139: else if path ≡ /receiveTokenFromImplicitGrant ∧method ≡ POST then
140: if headers[Origin] 6≡ 〈inDomain, S〉 then → CSRF protection.
141: stop

142: let loginSessionId := headers[Cookie][loginSessionId]
143: let oap, state, mode, redirectUri such that 〈oap, state,mode, redirectUri〉 ≡

↪→ s′.loginSessions[loginSessionId ] if possible; otherwise stop
144: let token such that 〈token, state, oap〉 ≡ body if possible; otherwise stop
145: let introspectionEndpoint := s′.oaps[oap].introspectionEndpoint
146: let parameters ′ := introspectionEndpoint .parameters
147: let parameters ′ := parameters ′ +〈〉 〈token, token〉
148: let host := introspectionEndpoint .domain
149: let path ′ := introspectionEndpoint .path
150: let message := 〈HTTPReq, ν13, GET, host , path ′, parameters ′, 〈〉, 〈〉〉
151: let s′.pendingDNS[ν14] := 〈〈introspect, implicit, oap, a, f, n, k〉,message〉
152: stop 〈〈s′.DNSaddress, a, 〈DNSResolve, introspectionEndpoint .domain, ν14〉〉〉, s′

153: stop
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Algorithm B.5 Relation of an OAP Ri.

Input: 〈a, f,m〉, s
1: if s′.corrupt 6≡ ⊥ ∨m ≡ CORRUPT then
2: let s′.corrupt := 〈〈a, f,m〉, s′.corrupt〉
3: let m′ ← dV (s′)
4: let a′ ← IPs
5: stop 〈〈a′, a,m′〉〉, s′

6: let s′ := s
7: let mdec, k, k′, inDomain such that

↪→ 〈mdec, k〉 ≡ deca(m, k
′) ∧ 〈inDomain, k′〉 ∈ s.tlskeys

↪→ if possible; otherwise stop
8: let n, method , path, parameters, headers, body such that

↪→ 〈HTTPReq, n,method , inDomain, path, parameters, headers, body〉 ≡ mdec

↪→ if possible; otherwise stop
9: if path ≡ s.authEndpoint then → Authorization Endpoint.

10: if method ≡ GET ∨ (method ≡ POST ∧ (body [username] ≡ 〈〉 ∨ body [password] ≡ 〈〉)) then
11: let data := parameters
12: let m′ := encs(〈HTTPResp, n, 200, 〈〈ReferrerPolicy, origin〉〉, 〈script oap form, data〉〉, k)
13: stop 〈〈f, a,m′〉〉, s′
14: else if method ≡ POST then
15: if headers[Origin] 6≡ 〈inDomain, S〉 then → CSRF protection.
16: stop

17: let username := body [username]
18: let password := body [password]
19: let clientid := body [client id]
20: let allowedredirects := s.clients[clientid ]
21: if password 6≡ secretOfID(username) then
22: stop

23: if allowedredirects ≡ 〈〉 then
24: stop

25: let redirecturi := body [redirect uri]
26: if redirecturi 6≡ 〈〉 then
27: if not redirecturi ∼̇ allowedredirects then
28: stop

29: else
30: let redirecturi ← allowedredirects → Take one from list of redir URIs.
31: if body [response type] ≡ code then → Create authorization code.
32: let s′.codes := s′.codes +〈〉 〈ν1, 〈clientid , body [redirect uri], username〉〉
33: let redirecturi .parameters := redirecturi .parameters +〈〉 〈code, ν1〉
34: let redirecturi .parameters := redirecturi .parameters +〈〉 〈state, body [state]〉
35: let m′ := encs(〈HTTPResp, n, 303, 〈〈Location, redirecturi〉〉, 〈〉〉, k)
36: stop 〈〈f, a,m′〉〉, s′
37: else → Assume response type token.
38: let s′.atokens := s′.atokens +〈〉 〈ν1, clientid , username〉
39: let redirecturi .fragment := redirecturi .fragment +〈〉 〈access token, ν1〉
40: let redirecturi .fragment := redirecturi .fragment +〈〉 〈token type, bearer〉
41: let redirecturi .fragment := redirecturi .fragment +〈〉 〈state, body [state]〉
42: let m′ := encs(〈HTTPResp, n, 303, 〈〈Location, redirecturi〉〉, 〈〉〉, k)
43: stop 〈〈f, a,m′〉〉, s′
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44: else if path ≡ s.tokenEndpoint then → Token Endpoint.
45: if method 6≡ POST then
46: stop

47: let auth := ⊥
48: let clientid := ⊥
49: if body [client id] 6≡ 〈〉 then → Only client ID is provided, no password.
50: let clientid := body [client id]
51: let clientinfo := s.clients[clientid ]
52: if clientinfo ≡ 〈〉 ∨ secretOfClientID(clientid , i) 6≡ ⊥ then → Empty client secret allowed?
53: stop

54: else if headers[Authorization].1 6≡ 〈〉 then
55: let clientid := headers[Authorization].1
56: let clientpw := headers[Authorization].2
57: if secretOfClientID(clientid , i) 6≡ clientpw ∨ clientpw ≡ ⊥ then
58: stop

59: let auth := clientid → Authentication with client credentials.
60: if body [grant type] ≡ authorization code then
61: if clientid ≡ ⊥ then
62: stop

63: let codeinfo := s.codes[body [code]]
64: if codeinfo ≡ 〈〉 ∨ codeinfo.1 6≡ clientid ∨ codeinfo.2 6≡ body [redirect uri] then
65: stop

66: let s′.codes := s′.codes − body [code]
67: let s′.atokens := s′.atokens +〈〉 〈ν1, clientid , codeinfo.3〉
68: let m′ := encs(〈HTTPResp, n, 200, 〈〉, 〈〈access token, ν1〉, 〈token type, bearer〉〉〉, k)
69: stop 〈〈f, a,m′〉〉, s′
70: else if body [grant type] ≡ password then
71: let username := body [username]
72: let password := body [password]
73: if password 6≡ secretOfID(username) then
74: stop

75: let s′.atokens := s′.atokens +〈〉 〈ν1, clientid , username〉
76: let m′ := encs(〈HTTPResp, n, 200, 〈〉, 〈〈access token, ν1〉, 〈token type, bearer〉〉〉, k)
77: stop 〈〈f, a,m′〉〉, s′
78: else if body [grant type] ≡ client credentials then
79: if auth ≡ ⊥ then
80: stop

81: let s′.atokens := s′.atokens +〈〉 〈ν1, clientid ,⊥〉
82: let m′ := encs(〈HTTPResp, n, 200, 〈〉, 〈〈access token, ν1〉, 〈token type, bearer〉〉〉, k)
83: stop 〈〈f, a,m′〉〉, s′

84: else if path ≡ s.introspectEndpoint then → Introspection Endpoint.
85: if method 6≡ GET then
86: stop

87: let atoken := parameters[token]
88: let clientid , userid such that 〈atoken, clientid , userid〉 ∈〈〉 s′.atokens

↪→ if possible; otherwise stop
89: let secret := resourceOf(i, clientid , userid)
90: let body ′ := 〈〈protected resource, secret〉, 〈client id, clientid〉, 〈user, userid〉〉
91: let m′ := encs(〈HTTPResp, n, 200, 〈〉, body ′〉, k)
92: stop 〈〈f, a,m′〉〉, s′

93: stop
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B.2. Formal Security Properties

The security properties for OAuth are formally defined as follows.

B.2.1. Authorization

Intuitively, authorization for OAuthWSn means that an attacker should not be able to obtain or

use a protected resource available to some honest client at an OAP for some user unless certain

parties involved in the authorization process are corrupted.

Definition 55 (Authorization Property). Let OAuthWSn be an OAuth web system with a net-

work attacker. We say that OAuthWSn is secure w.r.t. authorization iff for every run ρ of

OAuthWSn, every state (Sj , Ej , N j) in ρ, every OAP i ∈ OAP, every r ∈ Clients ∪ {⊥} with r

being honest in Sj unless r = ⊥, every u ∈ ID ∪ {⊥}, for n = resourceOf(i, r, u), n is derivable

from the attackers knowledge in Sj (i.e., n ∈ d∅(Sj(attacker))), it follows that

1. i is corrupted in Sj , or

2. u 6= ⊥ and (i) the browser b owning u is fully corrupted in Sj or (ii) some r′ ∈
trustedClients(secretOfID(u)) is corrupted in Sj .

The protected resource n being available to the attacker also models that the attacker can use

a service of the OAP i under the name of the user u (e.g., the attacker can post to the Facebook

wall of the victim).

B.2.2. Authentication

Intuitively, authentication for OAuthWSn means that an attacker should not be able to login at

an (honest) client under the identity of a user unless certain parties involved in the login process

are corrupted. As explained above, being logged in at a client under some user identity means

to have obtained a service token for this identity from the client.

Definition 56 (Authentication Property). Let OAuthWSn be an OAuth web system with a net-

work attacker. We say that OAuthWSn is secure w.r.t. authentication iff for every run ρ

of OAuthWSn, every state (Sj , Ej , N j) in ρ, every r ∈ Clients that is honest in Sj , every

i ∈ OAP, every g ∈ dom(i), every u ∈ S, every client service token of the form 〈n, 〈u, g〉〉
recorded in Sj(r).serviceTokens, and n being derivable from the attackers knowledge in Sj

(i.e., n ∈ d∅(Sj(attacker))), then the browser b owning u is fully corrupted in Sj (i.e., the value

of isCorrupted is FULLCORRUPT), some r′ ∈ trustedClients(secretOfID(〈u, g〉)) is corrupted in Sj ,

or i is corrupted in Sj .

B.2.3. Session Integrity for Authorization and Authentication

Before we can define the session integrity property for authorization and authentication, we

need to define the notion of Sessions and, in particular, OAuth Sessions. These capture series
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of processing steps related to a single OAuth flow. It is important to note that sessions here are

not the same as sessions in the web which are usually identified by some session identifier in a

cookie.

Notations

In the following, given a finite run ρ = ((S0, E0, N0), . . . , (Sn, En, Nn)) or an infinite run

ρ = ((S0, E0, N0), . . . ), we denote by Qi the processing step (Si, Ei, N i) −→ (Si+1, Ei+1, N i+1)

(with i ≥ 0 and, for finite runs, i < n).

Definition 57 (Emitting Events). Given an atomic process p, an event e, and a finite run ρ =

((S0, E0, N0), . . . , (Sn, En, Nn)) or an infinite run ρ = ((S0, E0, N0), . . . ) we say that p emits e

iff there is a processing step in ρ of the form

(Si, Ei, N i) −−−→
p→E

(Si+1, Ei+1, N i+1)

for some i ≥ 0 and a set of events E with e ∈ E. We also say that p emits m iff e = 〈x, y,m〉
for some addresses x, y.

Sessions and OAuth Sessions

We now define a relation between processing steps. Intuitively, we say that two processing steps

are connected if one processing step causes the other. This can happen either directly (i.e., one

DY process handles an event output by another process) or indirectly (e.g., a script that was

loaded from an earlier message runs in a browser and outputs a new message).

Definition 58 (Connected Processing Steps). We say that two processing steps

Qx = (Sx, Ex, Nx)
ein,x→px−−−−−−−→
px→Eout,x

(Sx+1, Ex+1, Nx+1) and

Qy = (Sy, Ey, Ny)
ein,y→py−−−−−−−→
py→Eout,y

(Sy+1, Ey+1, Ny+1)

are connected iff (1) ein,y ∈ Eout,x, or (2) py is a browser, ein,y is a trigger event, the browser

py selects to run a script (i.e., selects script in Line 9 of Algorithm A.11), and the document

selected in Line 13 was created as the result of an HTTP(S) message in Eout,x.

Based on the notion of connected processing steps, we now define sessions to be sequences of

connected processing steps.

Definition 59 (Sessions). A Session (in a run ρ of a web system) is a sequence of processing

steps (Q0, . . . , Qn) or (Q0, Q1, . . .) such that (1) for all Qi with i > 0, Qi is connected to some

processing step in (Q0, . . . , Qi−1), and (2) all processing steps appear in the same order as in ρ.
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We can now define OAuth Sessions. Intuitively, an OAuth session starts when a user expresses

her wish to use some identity at some client. Each session can only contain one such request. A

session ends when a authorization or log in is complete (which does not necessarily happen in

all OAuth Sessions).

Definition 60 (Start and End Processing Steps for OAuth). We write startsOA(Q, b, r, i) iff in

the processing step Q the browser b triggers the script script client index which selects some

domain of i (in Line 6 of Algorithm B.1) and instructs the browser b to send a message to r in

Line 15.

We write endsOA(Q, b, r, i, t) iff the client r in the processing step Q receives an HTTPS

response with a body of the form 〈〈protected resource, t〉, 〈client id, c〉, 〈user, u〉〉 for some

terms c and u from i and emits an event in Line 42 of Algorithm B.4 that is addressed to b.

Definition 61 (OAuth Sessions). Let OAuthWSw be an OAuth web system with web attackers

and ρ be a run of OAuthWSw. An OAuth Session in ρ by a browser b with a client r and

an OAP i is an infinite session (Q0, Q1, . . .) or a finite session (Q0, . . . , Qn) in ρ such that

startsOA(Q0, b, r, i), but there is no j > 0, i′ such that startsOA(Qj , b, r, i
′). If there are j > 0, t

such that endsOA(Qj , b, r, i, t), then the OAuth Session is finite and n = j.

We write OASessions(ρ, b, r, i) for the set of all OAuth Sessions in ρ by b with the client r and

the OAP i.

We now introduce a notation to associate an OAuth Session with the identity that the browser

selected during that session. This models the user intention to log in/authorize using a specific

identity. This expression of intent can take place in one of two steps, either during the first

request in an OAuth Session (in the resource owner password credentials grant) or at a later

time when the user logs in at the OAP (in the implicit grant and the authorization code grant).

Definition 62 (Selected Identity in an OAuth Session). Given a run ρ of an an OAuth web

system with a web attacker, a browser b, a client r, an OAP i, and an OAuth Session

o ∈ OASessions(ρ, b, r, i) we write selectednia(o, b, r, 〈u, g〉) iff b in (the first processing step of) o

selected id ≡ 〈u, g〉 in Line 4 of Algorithm B.1 and selected interactive ≡ ⊥ in Line 7.

We write selectedia(o, b, r, 〈u, g〉) iff b in (the first processing step of) o selected interactive ≡ >
in Line 7 and there is some Q′ in o such that b triggers the script script oap form in Q′ and

selects 〈u, g〉 in Line 4 of Algorithm B.3 and sends a message out to i.

Session Integrity Property for Authorization

This security property captures that (a) a client should only be authorized to access some

resources when the user actually expressed the wish to start an OAuth flow before, and (b) if

a user expressed the wish to start an OAuth flow using some honest OAuth provider and a

specific identity, then the OAuth flow is never completed with a different identity.
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Definition 63 (Session Integrity for Authorization). Let OAuthWSw be an OAuth web system

with web attackers. We say that OAuthWSw is secure w.r.t. session integrity for authorization

iff for every run ρ of OAuthWSw, every processing step Q in ρ, every browser b that is honest in

Q, every r ∈ Clients that is honest in Q, every i ∈ OAP, every identity 〈u, g〉, some protected

resource t, the following holds true: If endsOA(Q, b, r, i, t), then

(a) there is an OAuth Session o ∈ OASessions(ρ, b, r, i), and

(b) if i is honest in Q then Q is in o and we have that

selectedia(o, b, r, 〈u, g〉) ⇐⇒
(
t ≡ resourceOf(i, r, 〈u, g〉)

)
or

selectednia(o, b, r, 〈u, g〉) ⇐⇒
(
t ≡ resourceOf(i, r′, 〈u, g〉)

)
for some r′ ∈ {r,⊥}.

Session Integrity Property for Authentication

This security property captures that (a) a user should only be logged in when the user actually

expressed the wish to start an OAuth flow before, and (b) if a user expressed the wish to start

an OAuth flow using some honest OAuth provider and a specific identity, then user is not logged

in under a different identity.

Definition 64 (Session Integrity for Authentication). Let OAuthWSw be an OAuth web system

with web attackers. We say that OAuthWSw is secure w.r.t. session integrity for authentication

iff for every run ρ of OAuthWSw, every processing step Qlogin in ρ, every browser b that is

honest in Qlogin, every r ∈ Clients that is honest in Qlogin, every i ∈ OAP, every identity 〈u, g〉,
the following holds true: If in Qlogin a service token of the form 〈n, 〈〈u′, g′〉,m〉〉 for a domain

m ∈ dom(i) and some n, u′, g′ is created in r (in Line 38 of Algorithm B.4) and n is sent to the

browser b, then

(a) there is an OAuth Session o ∈ OASessions(ρ, b, r, i), and

(b) if i is honest in Qlogin then Qlogin is in o and we have that

(
selectedia(o, b, r, 〈u, g〉) ∨ selectednia(o, b, r, 〈u, g〉)

)
⇐⇒

(
〈u, g〉 ≡ 〈u′, g′〉

)
.

B.3. Proof of the OAuth Security Theorem

Before we present the proof for Theorem 1, we first provide a high-level proof outline. We then

show some general properties of OAuth web systems with a network attacker. Afterwards, we

first prove the authentication property and then the authorization property.
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B.3.1. Properties of OAuthWSn

Let OAuthWSn = (W , S , script, E0) be an OAuth web system with a network attacker. Let ρ be

a run of OAuthWSn. We write sx = (Sx, Ex, Nx) for the states in ρ.

Definition 65. We say that a term t is derivably contained in (a term) t′ for (a set of DY

processes) P (in a processing step si → si+1 of a run ρ = (s0, s1, . . .)) if t is derivable from t′

with the knowledge available to P , i.e.,

t ∈ d∅({t′} ∪
⋃
p∈P

Si+1(p)) .

Definition 66. We say that a set of processes P leaks a term t (in a processing step si → si+1)

to a set of processes P ′ if there exists a message m that is emitted (in si → si+1) by some p ∈ P
and t is derivably contained in m for P ′ in the processing step si → si+1. If we omit P ′, we

define P ′ := W \ P . If P is a set with a single element, we omit the set notation.

Definition 67. We say that an DY process p created a message m (at some point) in a run if m

is derivably contained in a message emitted by p in some processing step and if there is no earlier

processing step where m is derivably contained in a message emitted by some DY process p′.

Definition 68. We say that a browser b accepted a message (as a response to some request)

if the browser decrypted the message (if it was an HTTPS message) and called the function

PROCESSRESPONSE, passing the message and the request (see Algorithm A.10).

Definition 69. We say that an atomic DY process p knows a term t in some state s = (S,E,N)

of a run if it can derive the term from its knowledge, i.e., t ∈ d∅(S(p)).

Definition 70. We say that a script initiated a request r if a browser triggered the script (in

Line 10 of Algorithm A.8) and the first component of the command output of the script relation

is either HREF, IFRAME, FORM, XMLHTTPREQUEST, or WS OPEN such that the browser issues the

request r in the same step as a result.

The following lemma captures properties of a client when it uses HTTPS. For example, the

lemma says that other parties cannot decrypt messages encrypted by the client.

Lemma 8 (Client messages are protected by HTTPS). If in the processing step si → si+1 of a

run ρ of OAuthWSn an honest client r (I) emits an HTTPS request of the form

m = enca(〈req , k〉, pub(k′))

(where req is an HTTP request, k is a nonce (symmetric key), and k′ is the private key of some

other DY process u), and (II) in the initial state s0 the private key k′ is only known to u, and

(III) u never leaks k′, then all of the following statements are true:

177



1. There is no state of OAuthWSn where any party except for u knows k′, thus no one except

for u can decrypt req .

2. If there is a processing step sj → sj+1 where the client r leaks k to W \ {u, r} there is a

processing step sh → sh+1 with h < j where u leaks the symmetric key k to W \ {u, r} or

r is corrupted in sj .

3. The value of the Host header in req is the domain that is assigned the public key pub(k′)

in client’s keymapping s0.keyMapping (in its initial state).

4. If r accepts a response (say, m′) to m in a processing step sj → sj+1 and r is honest in

sj and u did not leak the symmetric key k to W \ {u, r} prior to sj , then either u or r

created the HTTPS response m′ to the HTTPS request m, in particular, the nonce of

the HTTP request req is not known to any atomic process p, except for the atomic DY

processes r and u.

Proof. (1) follows immediately from the condition. If k′ is initially only known to u and u

never leaks k′, i.e., even with the knowledge of all nonces (except for those of u), k′ can never

be derived from any network output of u, k′ cannot be known to any other party. Thus, nobody

except for u can derive req from m.

(2) We assume that r leaks k to W \ {u, r} in the processing step sj → sj+1 without u prior

leaking the key k to anyone except for u and r and that the client is not fully corrupted in sj ,

and lead this to a contradiction.

The client is honest in si. From the definition of the client, we see that the key k is always

a fresh nonce that is not used anywhere else. Further, the key is stored in pendingRequests

(ν4 in Lines 48f. of Algorithm B.4). The information from pendingRequests is not extracted or

used anywhere else, except when handling the received messages, where the key is only checked

against and used to decrypt the message (Lines 6ff. of Algorithm B.4). Hence, r does not leak

k to any other party in sj (except for u and r). This proves (2).

(3) Per the definition of clients (Algorithm B.4), a Host header is always contained in HTTP

requests by clients. From Line 49 of Algorithm B.4 we can see that the encryption key for the

request req was chosen using the Host header of the message. It is chosen from the keyMapping

in client’s state, which is never changed during ρ. This proves (3).

(4) An HTTPS response m′ that is accepted by r as a response to m has to be encrypted

with k. The nonce k is stored by the client in the pendingRequests state information (see Line 48

of Algorithm B.4). The client only stores freshly chosen nonces there (i.e., the nonces are not

used twice, or for other purposes than sending one specific request). The information cannot be

altered afterwards (only deleted) and cannot be read except when the client checks incoming

messages. The nonce k is only known to u (which did not leak it to any other party prior to

sj) and r (which did not leak it either, as u did not leak it and r is honest, see (2)). This

proves (4). �
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On a high level, the following lemma shows that the contents in the list of pending HTTP

requests are immutable.

Lemma 9 (Pending DNS messages become pending requests). Let r be some honest client in

OAuthWSn, ν ∈ N , l > 0 such that (Sl, El, N l) is a state in ρ, and let ref ∈ TN , req ∈
HTTPRequests such that Sl(r).pendingDNS ≡ Sl−1(r).pendingDNS +〈〉 〈ν, 〈ref , req〉〉. Then

we have that ∀l′: if there exist ref ′, req ′, x, y ∈ TN with req .nonce ≡ req ′.nonce and

〈ref ′, req ′, x, y〉 ∈〈〉 Sl′(r).pendingRequests then req ≡ req ′ ∧ ref ≡ ref ′.

Proof. We first note that Algorithm B.4 modifies the subterm pendingDNS of the client’s

state only in such a way that entries are appended to or removed from this subterm, but never

modified. Entries are appended in Lines 21, 61, 118, 137, and 151. At all these places in the

algorithm, an HTTP message term, say req , having a fresh (HTTP) nonce, is appended (together

with some term ref ) to the subterm pendingDNS . (A processing step executing one of these

parts of the algorithm results in the state (Sl, El, N l) of ρ.) Entries are only removed in Line 50.

In this part of the algorithm, a sequence 〈ref ′′, req ′′, x, y〉 with x, y ∈ TN and req ′′ ≡ req and

ref ′′ ≡ ref (which could not have been altered in any processing step) are appended to the

subterm pendingRequests of client’s state (in Line 48). Besides Line 10, where some entry is

removed from this subterm, there is no other part of the algorithm that alters pendingRequests

in any way. Hence, there we cannot have any state (Sl
′
, El

′
, N l′) of ρ where we have an request

in pendingRequests with the same (HTTP) nonce but a different req ′ or a different ref ′. �

Lemma 10 (Clients never send requests to themselves). An honest client never sends an HTTP

request to any client (including itself), and only sends HTTPS requests to clients that the

receiving client cannot decrypt.

Proof. Honest clients send HTTP requests only in Lines 20, 60, 117, 136, and 150. In all of

these cases, they send the HTTPS request to an endpoint configured in the state (in oaps).

With Definition 53, it follows that the domains to which these requests are sent, are never a

domain of a client. All requests are sent over HTTPS, and the “correct” encryption keys (as

stored in keyMapping) are used (i.e., even if the attacker changes the DNS response such that

an HTTPS request is sent to a client, it cannot be decrypted by the client). �

B.3.2. Proof of Authentication

We here want to show that every OAuth web system is secure w.r.t. authentication, and therefore

assume that there exists an OAuth web system that is not secure w.r.t. authentication. We

then lead this to a contradiction, thereby showing that all OAuth web systems are secure

w.r.t. authentication. In detail, we assume:

Assumption 1. There exists an OAuth web system with a network attacker OAuthWSn, a run

ρ of OAuthWSn, a state (Sj , Ej , N j) in ρ, some r ∈ Clients that is honest in Sj , some i ∈ OAP
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that is honest in Sj , some g ∈ dom(i), some u ∈ S with the browser b owning u being not fully

corrupted in Sj and all r′ ∈ trustedClients(secretOfID(〈u, g〉)) being honest, some client service

token of the form 〈n, 〈u, g〉〉 recorded in Sj(r).serviceTokens such that n is derivable from the

attackers knowledge in Sj (i.e., n ∈ d∅(Sj(attacker))).

To show that this is a contradiction, we first show some lemmas:

Lemma 11 (Attacker does not learn passwords). There exists no l ≤ j, (Sl, El, N l) being a state

in ρ such that secretOfID(u) ∈ d∅(Sl(attacker)).

Proof. Let s := secretOfID(〈u, g〉) and TC := trustedClients(s). Initially, in S0, s is only

contained in S0(b).secrets[〈d, S〉] for any d ∈
⋃
r′∈TC dom(r′) ∪ dom(i) and in no other states

(or waiting events). By the definition of the browser, we can see that only scripts loaded

from the origins 〈d, S〉 can access s. We know that i and all r′ ∈ TC are honest (from the

assumption). We therefore have that only the scripts script client index , script client implicit ,

and script oap form can access s (if loaded from their respective origins) and that the browser

does not use or leak s in any other way. script client implicit does not use any browser secrets.

We therefore focus on the remaining two scripts:

script client index. If this script was loaded and has access to s, it must have been loaded from

origin 〈d, S〉 for a domain d of some trusted client, say t (∈ TC ). If script client index

selects the secret s in Line 13 of Algorithm B.1, we know that it must have selected the

id u in Line 4. We therefore know that in Line 14, the browser b is instructed to send

(using HTTPS) 〈u, s〉 to the path /passwordLogin at d. If b sends such a request, t is the

only party able to decrypt this request. This message is then processed by t according to

Lines 125ff. There, username and password are forwarded to some OAP, say i′, using an

HTTPS POST request. More precisely, this request is sent to the domain of the token

endpoint URL contained in the OAP registration record for the domain contained in u.

From Definitions 52 and 53 and the fact that this part of the state (of clients) is never

changed, we can see that the request is sent to a domain of i, and therefore i′ = i. (The

attacker can also not modify or read this request, see Lemma 8.) The body of the HTTPS

POST request sent to i is of the following form:

〈〈grant type, password〉, 〈username, u〉, 〈password, s〉〉 .

Such a request can processed by the OAP only in Lines 70ff. of Algorithm B.5. There, the

OAP checks s and discards it. Therefore, s does not leak from i, t, or b to the attacker

(or any other party).

script oap form. If this script was loaded and has access to s, it must have been loaded from

origin 〈d, S〉 for a domain d of i. This script sends s to d in an HTTPS POST request. If b

sends such a request, i is the only party able to decrypt this request. This message is then
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processed by i according to Lines 14ff. of Algorithm B.5. There, the OAP i checks s and

discards it. Therefore, s does not leak from i or b to the attacker (or any other party).

This proves Lemma 11. �

Lemma 12 (Attacker does not learn authorization codes). There exists no l ≤ j, (Sl, El, N l) be-

ing a state in ρ, v ∈ N , y ∈ TN such that v ∈ d∅(Sl(attacker)) and 〈v, 〈clientID(r, i), y, u〉〉 ∈〈〉

Sl(i).codes.

Proof. Sl(i).codes is initially empty and appended to only in Line 32 of Algorithm B.5 (where

an authorization code is created). From Line 14ff. it is easy to see that the request which

triggers the creation of the authorization code must carry a valid password for the specific

identity in the request body. With Lemma 11, we can see that such a request can not come from

the attacker, as the attacker does not know the password needed in the request. It can also not

originate from an OAP, as OAPs do not send requests. Further, the request can not originate

from any corrupted party or an attacker-controlled origin in the honest browser (as otherwise

there would be a flow where the attacker would learn the password by sending it to himself,

which can be ruled out by Lemma 11). It is also impossible that the request originated from any

non-attacker controlled origin in the honest browser: Such a request could be caused by either

a Location redirect or a script. (We refer to the following as *.) A Location redirect must have

been issued by an honest party (otherwise, the attacker would have learned the password by

the time he issued the response, see Lemma 11). There are two occasions where honest parties

issue Location redirect headers:

OAP in Lines 35/42 of Algorithm B.5 In this case, an HTTP status code of 303 is sent. While

this causes the browser to do a new request, the new request has an empty body in any

case.5

Client in Line 95 of Algorithm B.4 In this case, a 307 redirect could be issued, causing the

browser to preserve the request body. We therefore have to check what could have caused

the browser to issue a request that caused this Location redirect response, and what body

could be contained in such a request. For clarity, we call the request causing the redirection

m. It is clear that m cannot come from the attacker (as it contains the password). It

must therefore come from an honest browser. If it was caused by a redirect in the honest

browser, (*) applies recursively. Otherwise, there are three scripts that could send such

a request to client: script client index , script client implicit , and script oap form. Of

these, only script client index causes a request for the path /startInteractiveLogin

(which triggers the redirection in Line 95 of Algorithm B.4), which, however, does not

contain any secret.

5At this point it is important that a 303 redirect is performed, not a 307 redirect. See Line 19 of Algorithm A.10
for details.
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A Location redirect can therefore be ruled out as the cause of the request. There are three scripts

that could send such a request: script client index , script client implicit , and script oap form.

The first two, script client index , script client implicit , do not send requests to any OAP

(instead, they only send requests to the client that sent the scripts to the browser, OAP does not

send these scripts to the browser). The latter script, script oap form, can send the request. In

this (last remaining) case, the OAP responds with a Location redirect header in the response,

which, among others, carries a URL containing the critical value v (in Line 35). In this case, the

browser receives the response, and immediately triggers a new request to the redirection URL.

This URL was composed by the OAP using the list of valid redirection URIs from Sl(i).clients,

a part of the state of i that is not changed during any run. Definition 54 defines how Sl(i).clients

is initialized: For the client id c := clientID(r, i), all redirection URLs carry hosts (domains) of r,

have the protocol S (HTTPS), and contain a query parameter component identifying the OAP

i. In the checks in Lines 20ff., it is ensured that in any case, this restriction on domain and

protocol applies to the resulting redirection URI (called redirecturi in the algorithm) as well.

Therefore, the browser’s GET request which is triggered by the Location header and contains

the value v is sent to r over HTTPS.

The client r can process such a GET request only in Lines 66 and 97 of Algorithm B.4. It is

clear, that in Line 66, the value v does not leak to the attacker: An honest script is loaded into

the browser, which does not use v in any form. If this script causes a request to the attacker

(or causes a request which would be redirected to the attacker), the request does not contain

v. In particular, v cannot be contained in the Referer header, because this is prevented by the

Referrer Policy.

In Lines 97ff., v is forwarded to the OAP for checking its validity and retrieving the access

token (there is also code for retrieving the access code from the implicit flow in this part of

the code, which is not of interest here). When sending the authorization code, it is critical to

ensure that v is forwarded to an honest OAP (in particular, i), and not to the attacker. This

is ensured by checking the redirection URL parameters, which, as mentioned above, contain a

hint for the OAP in use, in this case i. In Line 101 it is checked that the OAP, to which v is

eventually sent, is i.

Therefore, we know that v is sent via POST to the honest OAP i. There, it can only be

processed in Lines 44ff. Here, it is easy to see that the value v (called body [code] in the algorithm)

is checked. However, the value is never sent out to any other party and therefore does not leak.

We have shown that the value v cannot be known to the attacker, which proves Lemma 12.�

Lemma 13 (Attacker does not learn access tokens). There exists no l ≤ j, (Sl, El, N l) being a

state in ρ, v ∈ N , such that v ∈ d∅(Sl(attacker)) and 〈v, clientID(r, i), u〉 ∈〈〉 Sl(i).atokens.

Proof. Initially, we have S0(i).atokens ≡ 〈〉. Sl(i).atokens is appended to only in Lines 38,

67, 75, and 81 (where in each an access token is issued) of Algorithm B.5 and not altered in any

other way.
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In Line 81, a term of the form 〈∗, ∗,⊥〉 is appended, which is not of the form 〈v, clientID(r, i), u〉.
In what follows, we distinguish between the lines of Algorithm B.5 were 〈v, clientID(r, i), u〉 is

created:

Line 38. It is easy to see, that i must have received an HTTPS POST request containing an

Origin header with one of its HTTPS origins and containing (in its body) a dictionary

with the entries 〈username, u〉, 〈password, secretOfID(u)〉, and 〈client id, clientID(r, i)〉.
(In this case, clientID(r, i) 6= ⊥, and therefore, r 6= ⊥.) From Lemma 11 it follows that

such a request cannot be assembled by the attacker. Also, neither an OAP nor a client

sends such a request. Hence, this request must have be sent from a browser. In the

browser, only the scripts script oap form and the attacker script Ratt can instruct the

browser to send such a request. From Lemma 11 we know that the attacker script cannot

access secretOfID(u) (otherwise, there would be a run ρ′ in which the attacker script would

send secretOfID(u) to the attacker instead). Hence, this request must originate from a

command returned by script oap form and it must be created by the browser b (which is

ownerOfID(u)). This script only sends such a request to its own origin, which must be an

HTTPS origin (it would not have access to secretOfID(u) otherwise). The OAP responds

with a Location redirect header in the response, which among others, carries a URL

containing the critical value v (in Line 42) in the fragment of the URL. In this case, the

browser receives the response, and immediately triggers a new request to the redirection

URL. This URL was composed by the OAP using the list of valid redirection URIs from

Sl(i).clients, a part of the state of i that is not changed during any run. Definition 54

defines how Sl(i).clients is initialized: For the client id c := clientID(r, i), all redirection

URLs carry hosts (domains) of r, have the protocol S (HTTPS), and contain a query

parameter component identifying the OAP i. In the checks in Lines 20ff., it is ensured that

in any case, this restriction on domain and protocol applies to the resulting redirection

URI (called redirecturi in the algorithm) as well. Therefore, the browser’s GET request

which is triggered by the Location header and contains the value v in the fragment, is

sent to r over HTTPS.

The client r can process such a GET request only in Lines 66 and 97 of Algorithm B.4.

It is clear, that in Line 66, the value v does not leak to the attacker: The honest script

script client index is loaded into the browser, which does not use v in any form.

In Lines 97ff., client’s algorithm branches into two different flows: (1) The client takes

some value from the URL parameters (which do not contain v) and sends it to some

process. The client defers its response to the browser and will (later) only send out the

response in Lines 37ff. This response, however, does not contain a script and hence, the

browser will not be instructed to create any new messages from the resulting document.

Hence, v does not leak in this case. (2) The client sends an HTTPS response containing

the script script client implicit (and, in the script’s initial state, a domain of i derived

from the redirection URL), which takes v from the URL parameters and instructs the
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browser to send an HTTPS POST request containing v and the domain of i to the script’s

(secure) origin at path /receiveTokenFromImplicitGrant. The client processes such a

request in Lines 139ff. where it forwards v to the OAP for checking its validity. Here, it

is critical to ensure that v is forwarded to an honest OAP (in particular, i), and not to

the attacker. This is fulfilled since a domain of i is contained in the request’s body, and,

before forwarding, it is checked that v is only forwarded to this domain.

Therefore, we know that v is sent via GET to the honest OAP i. There, it can only be

processed in Lines 84ff. Here, it is easy to see that the value v is never sent out to any

other party and therefore does not leak.

Line 67. In this case, i must have received an HTTPS POST request carrying a dictionary in

its body containing the entries 〈grant type, authorization code〉 and 〈code, code〉 with

code ∈ N such that 〈code, 〈clientID(r, i), y, u〉〉 ∈〈〉 Sl′(i).codes for some y ∈ TN and l′ ≤ l.
(As above, clientID(r, i) 6= ⊥, and therefore, r 6= ⊥.) From Lemma 12 it follows that such

a request can neither be constructed by the attacker nor by a browser instructed by the

attacker script Ratt. In a browser, the remaining honest scripts do not instruct the browser

to send such a request. (Honest) OAPs do not send such requests. Hence, such a request

must have been constructed by an (honest) client. A client prepares such a request only in

Lines 108ff. (of Algorithm B.4) and finally sends out this request in Line 51 (after a DNS

response). With Lemma 9 and Lemma 8 we know that reference contains a term of the

form 〈code, oap, ∗, ∗, ∗, ∗〉 with oap ∈ dom(i) (as the request was sent encrypted for and

to i). When the client receives the response from i, it processes the response in Lines 6ff.

where it distinguishes between two cases based on the first subterm in reference. As we

know that this subterm is code, we have that the response is processed only in Lines 13ff.

The client takes a subterm from the response’s body which might contain6 v in Line 14

and prepares an HTTPS POST request to an URL of i (which is taken from the subterm

oaps of the client’s state and this subterm is never altered and initially configured such

that the URLs under the dictionary key oap are actually belonging to i). This HTTPS

POST request contains v in the parameter token. This request is finally sent out this

request in Line 51 (after a DNS response) encrypted for and to i.

It is now easy to see that i only processes the request in Lines 84ff. of Algorithm B.5. There,

the OAP only checks the parameter token against its state and discards it afterwards.

Hence, v does not leak.

Line 75. In this case, i must have received an HTTPS POST request carrying a dictionary

in its body containing at least the three entries 〈grant type, password〉, 〈username, u〉,
and 〈password, secretOfID(u)〉. From Lemma 11 it follows that such a request cannot be

constructed by the attacker, dishonest scripts in browsers, or any other dishonest party.

(Honest) OAPs do not construct such a request. All honest scripts do not instruct a

6The subterm actually is v.
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browser to send such a request. Hence, the request must have been constructed by an

honest client. A client prepares such a request only in Lines 130ff. (of Algorithm B.4)

and finally sends out this request in Line 51 (after a DNS response). With Lemma 9 and

Lemma 8 we know that reference contains a term of the form 〈password, oap, ∗, ∗, ∗, ∗〉
with oap ∈ dom(i) (as the request was sent encrypted for and to i). When the client

receives the response from i, it processes this response in Lines 6ff., where the client

distinguishes between two cases based on the first subterm in reference. As we know that

this subterm is code, we have that the response is processed only in Lines 13ff. The client

takes a subterm from the response’s body which might contain7 v in Line 14 and prepares

an HTTPS POST request to an URL of i (which is taken from the subterm oaps of the

client’s state and this subterm is never altered and initially configured such that the URLs

under the dictionary key oap are actually belonging to i). This HTTPS POST request

contains v in the parameter token. This request is finally sent out this request in Line 51

(after a DNS response) encrypted for and to i. It is now easy to see that i only processes

the request in Lines 84ff. (of Algorithm B.5). There, the OAP only checks the parameter

token against its state and discards it afterwards. Hence, v does not leak.

We have shown that the value v cannot be known to the attacker, which proves Lemma 13.�

We can now show that Assumption 1 is a contradiction.

Lemma 14. Assumption 1 is a contradiction.

Proof. The service token 〈n, 〈u, g〉〉 can only be added to the state Sj(r).serviceTokens in

Line 37 of Algorithm B.4. To get to this point in the algorithm, in Line 25, it is checked

that reference is a tupel of the form 〈introspect,mode, g, a′, f ′, n′, k′〉. This is taken from

the pending requests, where the value is transferred to from the pending DNS subterm (see

Lemma 9). Such a term (starting with introspect) is added to the pendingDNS subterm only

in Lines 21 and 151. We can now do a case distinction between these two possibilities to identify

the request m′ to which the response containing the service token will be sent.

Subterm was added in Line 21. In Line 13, an entry of the form 〈mode, g, a′, f ′, n′, k′〉 must

have existed as a reference in the pending HTTP requests, where mode is either code or

password.8 Such entries are created in the following lines:

Line 118. Here, a request m′ must have been received which contained a valid autho-

rization code for the identity u at the OAP i.9 The attacker cannot know such an

7The subterm actually is v.
8If mode was client credentials, no service token is created.
9Otherwise, the OAP would not have returned an access token for the identity u. As g = oap is the value stored

in the reference, it is also clear that the authorization code was, in fact, sent to i for retrieving the access
token, and not to the attacker or another OAP. Also, the request to i was sent over HTTPS, and therefore,
Lemma 8 applies.
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authorization code (see Lemma 12). The client r does not send requests to itself or

to other clients (see Lemma 10), and no OAPs send requests. Therefore, m′ must

have originated from an honest browser.

Line 137. In this case, a request m′ was received which contained a valid username and

password combination for u at i. (As above, we know that i was used to verify that

information as g is a domain of i, and oap = g. Only the honest browser b and some

clients know this password (see Lemma 11), but the clients would not send such a

request. The request m′ was therefore sent from the browser b.

Subterm was added in Line 151. If the subterm 〈introspect,mode, g, a′, f ′, n′, k′〉 was added

in this line, the request causing this (m′) must have carried a valid access token for the

identity u at i. (As above, the access token was sent to i for validation.) The attacker

does not know such an access token (see Lemma 13), and other clients or OAPs cannot

send m′. Therefore, an honest browser must have sent m′.

We therefore have that in all cases, m′ was sent by an honest browser. Further, m′ must

have been an HTTPS request (by the definition of clients). If the request was sent as the result

of an XMLHttpRequest command from a script, that script must have been loaded from the

origin 〈gr, S〉 with gr ∈ dom(r). This is a contradiction (there are no honest scripts that use

XMLHttpRequest). Otherwise, it was a “regular” request. In this case, the browser tries to

load the service token as a document (which will fail). In particular, the service token 〈n, 〈u, g〉〉
never leaks to the attacker.

We therefore know that the attacker cannot know the service token, which is a contradiction

to the assumption. �

B.3.3. Proof of Authorization

As above, we assume that there exists an OAuth web system that is not secure w.r.t. authorization

and lead this to a contradiction. In the following, some of the lemmas shown in Appendix B.3.2

are used.

Assumption 2. There exists a run ρ of an OAuth web system with a network attacker OAuthWSn,

a state (Sj , Ej , N j) in ρ, an OAP i ∈ OAP that is honest in Sj , a client r ∈ Clients ∪ {⊥} with

r being honest in Sj unless r = ⊥, some u ∈ ID ∪ {⊥}, some n = resourceOf(i, r, u), n being

derivable from the attackers knowledge in Sj (i.e., n ∈ d∅(Sj(attacker))), and u = ⊥ or ((i) the

browser b owning u is not fully corrupted in Sj and (ii) all r′ ∈ trustedClients(secretOfID(u)) are

honest Sj).

We first show the following lemma:

Lemma 15 (Attacker does not learn client secrets.). There exists no l ≤ j, (Sl, El, N l) being a

state in ρ such that secretOfClient(r, i) ∈ d∅(Sl(attacker)) unless secretOfClient(r, i) ≡ ⊥.
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Proof. Following the definition of the initial states of all atomic processes (in particular

Definition 53), initially, secretOfClient(r, i) is only known to r.

The secret is being used and sent out in an HTTPS message in Lines 53ff. of Algorithm B.4 The

message is being sent to the token endpoint configured for i, which, according to Definition 52,

bears a host name belonging to i. With the definition of tlskeys in Definition 53 and Lemma 8 it

can be seen that this outgoing HTTP POST request can therefore only be read by the intended

receiver, i.

In i, the message cannot be processed in the authentication endpoint, Lines 14 to 43 of

Algorithm B.5, since it does not carry an Origin header. It can be processed in Lines 44 to 83.

It is easy to see that the secret in the message is not used in any outgoing message, neither

stored in the OAP’s data structures. The message not be processed in Line 84ff., since it is a

POST request.

The same applies when the client sends the password in Line 111ff. or Line 131ff. of

Algorithm B.4.

Therefore, the secret secretOfClient(r, i) cannot be known to the attacker. �

Lemma 16. Assumption 2 is a contradiction.

Proof. At the beginning of each run, the attacker cannot know n (as defined in the initial states).

Only the OAP i can send out the protected resource n, in Line 91 of Algorithm B.5. In a state

(Sl
′
, El

′
, N l′) in ρ for some l′ < j, for i to send out n, an HTTPS request must be received by i

which contains, among others, an access token a such that 〈a, clientID(r, i), u〉 ∈〈〉 Sl′(i).atokens.

We therefore note that for the attacker to learn n, it has to know a. We also note that if r

requests n at the OAP i, the attacker cannot read n or a from such messages (see Lemma 8).

We now have to distinguish two cases:

Anonymous Resource, i.e., u ≡ ⊥. In this case, the access token a was chosen by i in Line 81 of

Algorithm B.5. There, a is sent out in response to a request that must have contained the

client credentials for r, where the client secret cannot be ⊥ (see Line 54. With Lemma 15

we see that the attacker cannot send such a request, and therefore, cannot learn a. This

implies that the attacker cannot send the request to learn n from i.

User Resource, i.e., u 6≡ ⊥. In this case, Lemma 13 shows that it is not possible for the attacker

to send a request to learn n.

With this, we have shown that the attacker cannot learn n, and therefore, Assumption 2 is a

contradiction. �

B.3.4. Proof of Session Integrity

Before we prove this property, we highlight that in the absence of a network attacker and with

the DNS server as defined for OAuthWSw, HTTP(S) requests by (honest) parties can only be
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answered by the owner of the domain the request was sent to, and neither the requests nor

the responses can be read or altered by any attacker unless he is the intended receiver. This

property is important for the following proof.

We further show the following lemma, which says that an attacker (under the assumption

above) cannot learn a state value that is used in a login session between an honest browser, an

honest OAP, and an honest client.

Lemma 17 (Third parties do not learn state). Let ρ be a run of an OAuth web system with web

attackers OAuthWSw, (Sj , Ej , N j) be a state of ρ, r ∈ Clients be a client that is honest in Sj ,

i ∈ OAP be an OAP that is honest in Sj , b be a browser that is honest in Sj .

Then there exists no l ≤ j, with (Sl, El, N l) being a state in ρ, a nonce loginSessionId ∈
N , a nonce state ∈ N , a domain h ∈ dom(r) of r, terms x, y, x′, y′, z ∈ TN , cookie

c := 〈loginSessionId, 〈loginSessionId , x′, y′, z〉〉, an atomic DY process p ∈ W \ {b, i, r} such

that state ∈ d∅(Sl(p)), 〈loginSessionId , 〈g, state, x, y〉〉 ∈〈〉 Sl(r).loginSessions and 〈h, c〉 ∈〈〉

Sl(b).cookies.

Proof. To prove Lemma 17, we track where the login session identified by loginSessionId is

created and used.

We have that 〈h, c〉 ∈〈〉 Sl(b).cookies. Login sessions are only created in Line 91 of Algo-

rithm B.4 (and never altered afterwards). After the session identifier loginSessionId was chosen,

its value is sent over the network to the party that requested the login. We have that for

loginSessionId , this party must be b because only r can set the cookie c for the domain h in the

state of b10 and Line 91 of Algorithm B.4 is actually the only place where r does so.

Since b is honest, b follows the location redirect contained in the response sent by r. This

location redirect contains the state (as a URL parameter). The redirect points to some domain

of i.11 The browser therefore sends (among others) state to i. Of all the endpoints at i where

the request can be received, the authorization endpoint is the only endpoint where state could

potentially leak to another party. (For all other endpoints, the value is dropped.) If the request

is received at the authorization endpoint, state is only sent back to b in the initial scriptstate

of script oap form. In this case, the script sends state back to i in a POST request to the

authorization endpoint. In the steps outlined here, the value client id = clientIDOfClient(r, i) is

transferred alongside with state (and not altered in-between). Now, after receiving state and

client id in a POST request at the authorization endpoint, i looks up some redirection URI for

client id , which, by Definition 54, is some URI at a domain of r. The value state is appended

to this URI (either as a parameter or in the fragment). The redirection to the redirection URI

is then sent to the browser b. Therefore, b now sends a GET request to r.

If state is contained in the parameter, then state is immediately sent to r where it is compared

to the stored login session records but neither stored nor sent out again. In each case, a script is

sent back to b. The scripts that r can send out are script client index and script client implicit ,

10We have only web attackers.
11This follows from Definition 52 and Definition 53.
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Figure B.1. Events as described in Lemma 18. Here, e·· denotes events containing HTTP(S) messages,
d·· denotes events containing DNS messages. (B.1) applies to the resource owner password credentials
grant, (B.2) applies to the authorization code grant, and (B.3) applies to the implicit grant.

none of which cause requests that contain state. Also, since both scripts are always delivered

with a restrictive Referrer-Policy header, any requests that are caused by these scripts (e.g.,

the start of a new login flow) do not contain state in the Referer header.12

If state is contained in the fragment, then state is not immediately sent to r, but instead, a

request without state is sent to r. Since this is a GET request, r either answers with an empty

response (Lines 39ff. of Algorithm B.4), a response containing script client index (Lines 66ff.),

or a response containing script client implicit (Line 122). In case of the empty response, state

is not used anymore by the browser. In case of script client index , the fragment is not used.

(As above, there is no other way in which state can be sent out, also because the fragment part

of an URL is stripped in the Referer header.) In the case of script client implicit being loaded

into the browser, the script sends state in the body of an HTTPS request to r (using the path

/receiveTokenFromImplicitGrant). When r receives this request, it does not send out state

to any party (see Lines 139ff. of Algorithm B.4).

This shows that state cannot be known to any party except for b, i, and r. �

Definition 71. Let e1 = 〈a1, f1,m1〉 and e2 = 〈a2, f2,m2〉 be events with m1 being a DNS

request and m2 being a DNS response or m1 being an HTTP(S) request and m2 being an

HTTP(S) response. We say that the events correspond to each other if m1 and m2 use the same

DNS/HTTP(S) message nonce, a1 = f2 and a2 = f1, and (for HTTP(S) messages) either both

m1 and m2 are encrypted or both are not encrypted.

Given a run ρ, and two events e1 and e2 where e1 is emitted in a processing step Q1 in ρ

before e2 is emitted in a processing step Q2 in ρ, we write e1  e2 if e1 corresponds to e2 and

we write e1 99K e2 if Q1 is connected to Q2.

Lemma 18. Given a run ρ, a client r, and a browser b, if r, in the run ρ, emits an event, say

eresp
auth, in Line 42 of Algorithm B.4 that is addressed to b, and b and r are not corrupted at this

point in the run, then all of the following statements hold true:

(a) Events of one of the forms shown in Figure B.1 exist in ρ.

12Without the Referrer Policy, state could leak to a malicious OAP or other parties.
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(b) The event ereq
auth was emitted by b and is addressed to r.

(c) Let eresp
intr = 〈aresp

intr , f
resp
intr ,m

resp
intr 〉 with f resp

intr being an IP adress of some party, say, i. Then

there is a Qstarts such that startsOA(Qstarts, b, r, i) and we have that (1) dreq
auth was emitted

in Qstarts, or (2) there are events

dreq
strt  dresp

strt 99K e
req
strt  eresp

strt

such that dreq
strt was emitted in Qstarts and eresp

strt was received by r before ereq
auth was received

by r.

Proof. (a) We have that eresp
auth = 〈aresp

auth, f
resp
auth,m

resp
auth〉 was emitted by r in Line 42 of Al-

gorithm B.4. (We note that aresp
auth is an address of b.) This requires that r received (and

further processed) an HTTPS response in eresp
intr . Also, it is required that (before receiv-

ing this event) there is an entry in the state of r in the subterm pendingRequests of the

form ref = 〈reference, request , key , f 〉 for some terms request , key , and f . In this subterm,

request .nonce must be the nonce used in the HTTPS response in eresp
intr , and reference must be

of the form 〈introspect,mode ′, oap, f resp
auth, a

resp
auth, n

′, k′〉 where n′ is the nonce used in mresp
auth, k′

is the key used to encrypt mresp
auth, and oap is some domain.

A subterm of the form of ref therefore had to be created in pendingRequests before. This

term is only appended to in Line 48 of Algorithm B.4. There, the message in request was sent

out because a DNS response with some message nonce n′′ was received and in the state of r the

following holds true: pendingDNS[n′′] ≡ 〈reference, request〉. Such entries in pendingDNS can

only be created when a corresponding DNS request is sent out, which can happen in Lines 20,

60, 117, 136, and 150. We therefore have that the events dreq
intr, d

resp
intr , and ereq

intr exist and have

the mutual relations shown in (B.1), (B.2), and (B.3).

The string introspect is set as the first part of reference in Lines 151 and 21. We examine

these cases separately.

In the case that reference was created in Line 151 (where also the second part of reference is

set to implicit), an incoming HTTPS request from aresp
auth, i.e., from b, must have been received.

This shows the existence and mutual relations of all events depicted in (B.3) for the implicit

grant.

Otherwise, reference was created in Line 21. This requires that r must have received an

HTTPS response (eresp
cred or eresp

tokn), that, as above, has a matching entry in pendingRequests,

which, as above, was created by sending out an HTTPS request, which, again as above, was

preceded by a DNS request and response. We therefore have that (in the resource owner

password credentials grant) dreq
cred, dresp

cred, ereq
cred, eresp

cred or (in the authorization code grant) dreq
tokn,

dresp
tokn, ereq

tokn, eresp
tokn exist and have the mutual relations shown in‘ (B.1) and (B.2), respectively.

It is further required that another reference term, reference ′ was in pendingRequests when
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eresp
cred or eresp

tokn was received. The term reference ′ must be of the following form:

reference ′ = 〈w, oap, f resp
auth, a

resp
auth, n

′, k′〉

with w ∈ {password, code}.
Now, as above, we can check where reference ′ was created as an entry in pendingDNS. This

can only happen in Line 137 (w ≡ password) and 118 (w ≡ code). In both cases, an incoming

HTTPS request from aresp
auth, i.e., from b, must have been received. This shows the existance and

mutual relations of all events depicted in (B.2).

For (B.1), it is easy to see (as above) that dreq
auth and dresp

auth exist and have the mutual relations

as shown.

(b) As already shown above, in all cases, ereq
auth was sent by b to r.

(c) We have that eresp
intr was received from i. Therefore, ereq

intr must have been sent to i. Therefore,

r requested the IP address of some domain of i in dreq
intr. This DNS request was created for the

domain of a token endpoint which was looked up in an OAP registration record stored under

the key oap. From Definitions 53 and 52 it follows that oap is a domain of i.

As above, we now have to distinguish where the value reference is created such that the first

part is introspect. This can happen in Lines 21 and 151. We examine these cases separately.

– From (a) above we have that reference ′ (which contains oap) was created as an entry in

pendingDNS in Line 137 or 118.

In the case that reference ′ was created in Line 137 we have that the HTTPS request ereq
auth

(which was sent by b as shown above) must have been received by r and that this request

was a POST request for the path /passwordLogin, with a message body body such that

π2(π1(body)) ≡ oap, and that contains an Origin header for some domain of r. Such a

request can only be caused by script client index loaded into b from some domain of r.

Hence, this script selected the domain oap in Line 6 of Algorithm B.1 and we have that

startsOA(Qauth, b, r, i) where Qauth is the processing step that emitted dreq
auth.

In the case that reference ′ was created in Line 118 we have that (*) the HTTPS request ereq
auth

must have been received by r and that in this request there is a cookie loginSessionId

with a value, say, l such that in the state of r (when receiving the request) in the subterm

loginSessions under the key l there is a sequence with the first element being oap.

Since we have that ereq
auth was sent by b (as shown above) we have that b must have

received an HTTP(S) response from r which contains a Set-Cookie header for the cookie

loginSessionId with the value l.13 We denote the event of this message as eresp
strt . This

message must have been created in Line 95 and, in the same processing step, an entry

in loginSessions under the key l as described above is created in Line 91. (There are

no other places where login session entries are created.) We have that the corresponding

13This cookie cannot be set by any party except for r and there are no scripts sent out by r that set cookies.
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request ereq
strt is a POST request with an Origin header for some domain of r, the path

/startInteractiveLogin, and that the body must be oap. As above, such a request can

only be caused by script client index loaded into b from some domain of r. Hence, this

script selected the domain oap in Line 6 of Algorithm B.1, which output an HREF-command

to the browser to send ereq
strt to r. This request is preceded by a pair of corresponding

DNS messages dreq
strt and dresp

strt as defined in the browser relation. We therefore have that

startsOA(Qstrt, b, r, i) where Qstrt is the processing step that emitted dreq
strt.

– In the case that reference was created in Line 151 we have the same situation as in (*)

and the proof continues exactly as in (*).

This concludes the proof of Lemma 18. �

Lemma 19. Let OAuthWSw be an OAuth web system with web attackers, then OAuthWSw is

secure w.r.t. session integrity for authorization.

Proof. We have to show that for all OAuth web system with web attackers OAuthWSw, for

every run ρ of OAuthWSw, every processing step Qends in ρ, every browser b that is honest

in Qends, every r ∈ Clients that is honest in Qends, every i ∈ OAP, every identity 〈u, g〉, some

protected resource t, the following holds true: If endsOA(Qends, b, r, i, t), then

(a) there is an OAuth Session o ∈ OASessions(ρ, b, r, i), and

(b) if i is honest in Qends then Qends is in o and we have that

selectedia(o, b, r, 〈u, g〉) ⇐⇒
(
t ≡ resourceOf(i, r, 〈u, g〉)

)
or

selectednia(o, b, r, 〈u, g〉) ⇐⇒
(
t ≡ resourceOf(i, r′, 〈u, g〉)

)
for some r′ ∈ {r,⊥}.

We can see that Lemma 18 applies, since endsOA(Qends, b, r, i, t) where Qends is the processing

step in which eresp
intr was received by r from i and eresp

auth was emitted to b. With Lemma 18 (c) and

Definition 61 it immediately follows that there is an OAuth Session o ∈ OASessions(ρ, b, r, i).

For part (b), we now show the connection between Qends and o and show that one of the

logical equivalences in (b) hold true. In the following, we therefore have that i is honest.

In Lemma 18 we have already shown the existence of and the relations between the events of

one of the forms shown in Figure B.1. For any two events e1  e2 in Figure B.1, the processing

steps where these events where emitted are connected (as i and DNS servers are honest).

Authorization Code Mode. We now show that if the events are structured as shown in (B.2)

in Figure B.1 then there also exist events as shown in (B.4) in Figure B.2. (The event ereq
auth is

the same in both figures.)
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Figure B.2. Structure of run from start to redirection endpoint.

Since we have that ereq
auth exists and was sent by b, the DNS messages dreq

auth and dresp
auth (as

shown) follow immediately. The request ereq
auth contains a session cookie containing a session id,

say, l. The request also contains a URI parameter state with some value, say, z.14

With Lemma 17, we can see that the attacker (or any other party except for i, b, and r)

cannot instruct the browser to send ereq
auth. Also, r does not instruct the browser to send such a

request, and neither does any honest script. The request must therefore have been caused by a

redirection contained in an event eresp
aep2 that was sent from i to b (see Line 35 of Algorithm B.5).

(The redirection must have included the state parameter in the URI as above.) This requires

that an event eresp
aep2 was sent from b to i. (Which, as above, was preceded by DNS messages

dreq
aep2 and dresp

aep2.) This event must contain an HTTP(S) POST request, with an Origin header

value of some domain of i, and in the body there must be a dictionary with an entry for the

key client id containing the client id c = clientIDOfClient(r, i), and an entry for the key state

with the value z. (In this case, c 6= ⊥.)

This request can only be caused by the script script oap form because of the Origin header

value. This script extracted c and z from its initial scriptstate, which was a dictionary with the

keys as above.15 The initial scriptstate must have been sent by i in an event eresp
aep1. Such an

event can only be sent out in Line 12 of Algorithm B.5.

The event eresp
aep1, as above, must have been preceded by connected events dreq

aep1, dresp
aep1, and

ereq
aep1. In ereq

aep1 the message must be an HTTP(S) request which must have two parameters, first,

under the key state, the value z, and second, under the key client id, the value l. (These

parameters are used as the initial scriptstate for the script script oap form above.)

Similar to above, with Lemma 17, we have that the event ereq
aep1 (and, with that, dreq

aep1) must

have been caused by a redirect that was sent from r to b. Such a response is only created by r

14 From the proof of Lemma 18 we follow that ereqauth must be an HTTPS request for the path
/redirectionEndpoint containing the parameters code, state, iss, and client id.

15This initial scriptstate is never changed if the script runs under the origin of an honest OAP, which it does in
this case.
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in Line 95 of Algorithm B.4. Since the state value is always chosen freshly, and we have that in

this case it is z, the event containing this redirect is eresp
strt .

It is now easy to see that the sequence of processing steps emitting the events in (B.4) and

(B.2) is a session (as in Definition 59), say, o. We already know that startsOA(Qstarts, b, r, i)

where Qstarts is the processing step in which dreq
strt was emitted. There is no other processing step

in o in which the browser b triggers the script script client index . The processing step Qends

(in which eresp
auth is emitted) is the only processing step in which r receives a protected resource

from i and emits an event in Line 42 of Algorithm B.4. Therefore, o is an OAuth session, and

Qends is in o.

We now show that

selectedia(o, b, r, 〈u, g〉) ⇐⇒
(
t ≡ resourceOf(i, r, 〈u, g〉)

)
.

Iff selectedia(o, b, r, 〈u, g〉) then we have that b in Qstart selected interactive ≡ > in Line 7 and

there is some Qselect in o such that b triggers the script script oap form in Qselect and selects

〈u, g〉 in Line 4 of Algorithm B.3 and sends a message out to i.

We therefore have that Qselect is the processing step where dreq
aep2 was emitted. (This is the

only processing step in which the browser triggers the script script oap form.) We have that

in this step, the browser selected 〈u, g〉 in Line 4 of Algorithm B.3. Then, and only then, the

HTTPS POST request in ereq
aep2 contained, in the body, the credentials (username and password)

for the identity 〈u, g〉. From the proof of Lemma 18 we see that in eresp
strt , in the redirection URI,

and hence in the URI in ereq
aep1, the parameter response type must be code. We therefore have

that the initial scriptstate of script oap form in eresp
aep1 contains the entry 〈response type, code〉.

Now, in ereq
aep2, the body also contains the same entry. Therefore, iff i receives ereq

aep2, then it

creates an entry in the subterm codes of its state (in Line 32 of Algorithm B.5) of the form

〈code, 〈c, redirecturi , 〈u, g〉〉〉

(where redirecturi is some URI and code is a freshly chosen nonce).

Then, and only then, eresp
aep2 contains code in the parameter code of the location redirect URI

(which is the URI for the HTTPS request in ereq
auth). Client sends (as shown in the proof of

Lemma 18) code to OAP in ereq
tokn. This request contains the body

〈〈grant type, authorization code〉, 〈code, code〉〉 .

Then, and only then, OAP processes ereq
tokn (in Line 67 of Algorithm B.5) and creates an entry

in the subterm atokens of its state of the form

〈atoken, 〈c, 〈u, g〉〉〉

for a freshly chosen nonce atoken (as there exists an entry in the subterm code of the form
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〈code, 〈c, redirecturi , 〈u, g〉〉〉). Then and only then, atoken is contained in eresp
tokn. Then and only

then, r sends atoken to i in ereq
intr. (In this request, atoken is contained in the URI parameter

token.)

Iff there is an entry of the form 〈atoken, 〈c, 〈u, g〉〉〉 in the subterm atokens in the state of i

and i receives ereq
intr (containing atoken as shown) then i processed ereq

intr in Line 84ff. and emitted

an event (eresp
intr ) containing resourceOf(i, r, 〈u, g〉).

Implicit Mode. This case is very similar to the authorization code grant above. We therefore

only describe the differences between the two grants.

In this case, with the proof of Lemma 18, we have that ereq
auth is an HTTPS POST request

to the path /receiveTokenFromImplicitGrant with an Origin header being some domain of

r. Further, as above, ereq
auth contains the state z. This request must have been created in the

browser by script client implicit running under an origin of r. This script retrieves the state

value from the fragment of the URI from which the script was loaded. Therefore, there must

have been a request, ereq
impl containing such a fragment in the URI. This implies the presence of

the events dreq
impl, d

resp
impl, and eresp

impl.

We can now that Qends is in o and selectedia(o, b, r, 〈u, g〉) ⇐⇒
(
t ≡ resourceOf(i, r, 〈u, g〉)

)
by applying the same reasoning as above, with the following differences:

– The event ereq
impl takes the role of ereq

auth in the proof above.

– We can show that the sequence of processing steps emitting the events in (B.3) in Figure B.1

and (B.5) in Figure B.2 are the OAuth session o and (as above) that Qends is in o.

– Where the parameter response type was code above, it now is token. The same applies

to the initial scriptstate of script oap form.

– Instead of creating code in the processing step that emits eresp
aep2, this step now creates an

access token token (in the same way as the token was created in the authorization grant in

the processing step that emits eresp
tokn). The steps dreq

tokn, dresp
tokn, ereq

tokn, and eresp
tokn are skipped.

– The redirection URI contained in eresp
aep2 contains an access token instead of an authorization

code, and the access token and the state value are contained in the fragment instead of in

the parameters.

– As already discussed, ereq
auth was created by the script script client implicit which relays

the access token from the URI fragment to r.

Resource Owner Password Credentials Mode. It is easy to see that the sequence of

processing steps emitting the events in (B.1) is a session (as in Definition 59), say, o. In this case,

startsOA(Qstarts, b, r, i) holds true if Qstarts is the processing step in which dreq
auth was emitted. As

above, o is also an OAuth session, and Qends is in o.

We now show that

selectednia(o, b, r, 〈u, g〉) ⇐⇒
(
t ≡ resourceOf(i, r′, 〈u, g〉)

)
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for some r′ ∈ {r,⊥}. Iff selectednia(o, b, r, 〈u, g〉) then we have that b in Qstart selected id ≡ 〈u, g〉
in Line 4 of Algorithm B.1 and selected interactive ≡ ⊥ in Line 7.

Then and only then, ereq
auth is an HTTPS POST request for the path /passwordLogin with an

Origin header containing some domain of r and with the identity 〈u, g〉 and the corresponding

password, say p, in the body. Then and only then, the body in ereq
cred is of the form

〈〈grant type, password〉, 〈username, 〈u, g〉〉, 〈password, p〉〉 .

Then, and only then, OAP processes ereq
cred (in Line 70ff. of Algorithm B.5) and creates an

entry in the subterm atokens of its state of the form

〈atoken, 〈c′, 〈u, g〉〉〉

for a freshly chosen nonce atoken (as there exists an entry in the subterm code of the form

〈code, 〈c, redirecturi , 〈u, g〉〉〉) and for c′ ∈ {clientIDOfClient(r, i),⊥}. Then and only then, atoken

is contained in eresp
cred. Then and only then, r sends atoken to i in ereq

intr. (In this request, atoken

is contained in the URI parameter token.)

Iff there is an entry of the form 〈atoken, 〈c′, 〈u, g〉〉〉 in the subterm atokens in the state of i

and i receives ereq
intr (containing atoken as shown) then i processed ereq

intr in Line 84ff. and emitted

an event (eresp
intr ) containing resourceOf(i, r, 〈u, g〉) if c′ 6= ⊥ and containing resourceOf(i,⊥, 〈u, g〉)

otherwise. �

Lemma 20. Let OAuthWSw be an OAuth web system with web attackers, then OAuthWSw is

secure w.r.t. session integrity for authentication.

Proof. We have that r sends a service token to b, and thus, endsOA(Qlogin, b, r, it) for some

term t. Since OAuthWSw is secure w.r.t. session integrity for authorization, we have that (a)

holds true. For (b), we see from Line 84ff. that honest OAPs, at their introspection endpoint,

if they send out an HTTPS response, the body of that response is of the form

〈〈protected resource, resourceOf(i′′, r′′, 〈u′′, g′′〉)〉, 〈client id, c′′〉, 〈user, 〈u′′, g′′〉〉〉

for any 〈u′′, g′′〉 and some c′′, i′′, r′′. We therefore have that

(
t ≡ resourceOf(i, r, 〈u, g〉)

)
⇐⇒

(
〈u, g〉 ≡ 〈u′, g′〉

)
.

Since OAuthWSw is secure w.r.t. session integrity for authorization, we have that (b) holds

true. �

With Lemma 14, Lemma 16, Lemma 19 and Lemma 20 we have proven Theorem 1. �
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C. Analysis of OpenID Connect

In this appendix, we present our model of OpenID Connect, the formalization of the security

properties, and the proof of the OpenID Connect Security Theorem (Theorem 2).

C.1. Formal Model of OpenID Connect with a Network Attacker

We start with the full details of our formal model of OIDC which we use to analyze the

authentication and authorization properties. This model contains a network attacker. We will

later derive from this model a model where the network attacker is replaced by a web attacker.

We use this modified model for the session integrity properties.

We model OIDC as a web system (in the sense of Appendix A.3). We call a web system

OIDCWSn = (W , S , script, E0) an OIDC web system with a network attacker if it is of the form

described in what follows.

C.1.1. Outline

The system W = Hon∪Net consists of a network attacker process (in Net), a finite set B of web

browsers, a finite set RP of web servers for the relying parties, a finite set OP of web servers

for the identity providers, with Hon := B ∪ RP ∪ OP. More details on the processes in W are

provided below. We do not model DNS servers, as they are subsumed by the network attacker.

Table C.1 shows the set of scripts S , their string representations that are defined by the mapping

script, and the algorithms that define the respective scripts. The set E0 contains only the trigger

events as specified in Appendix A.3.

s ∈ S script(s) defined in

Ratt att script Definition 26

script rp index script rp index Algorithm C.1

script rp get fragment script rp get fragment Algorithm C.2

script op form script op form Algorithm C.3

Table C.1. List of scripts in S , their respective string representations, and their definitions.

This outlines OIDCWSn. We now define the DY processes in OIDCWSn and their addresses,

domain names, and secrets in more detail.
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Algorithm C.1 Relation of script rp index .

Input: 〈tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets〉
1: let switch ← {auth, link}
2: if switch ≡ auth then
3: let url := GETURL(tree, docnonce)
4: let id ← ids
5: let url ′ := 〈URL, S, url .host, /startLogin, 〈〉, 〈〉〉
6: let command := 〈FORM, url ′, POST, id ,⊥〉
7: stop 〈scriptstate, cookies, localStorage, sessionStorage, command〉
8: else
9: let protocol ← {P, S}

10: let host ← Doms
11: let path ← S
12: let fragment ← S
13: let parameters ← [S× S]
14: let url := 〈URL, protocol , host , path, parameters, fragment〉
15: let command := 〈HREF, url ,⊥,⊥〉
16: stop 〈scriptstate, cookies, localStorage, sessionStorage, command〉

Algorithm C.2 Relation of script rp get fragment .

Input: 〈tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets〉
1: let url := GETURL(tree, docnonce)
2: let url ′ := 〈URL, S, url .host, /redirect ep, [iss : url .parameters[iss]], 〈〉〉
3: let command := 〈FORM, url ′, POST, url .fragment,⊥〉
4: stop 〈scriptstate, cookies, localStorage, sessionStorage, command〉

Algorithm C.3 Relation of script op form.

Input: 〈tree, docnonce, scriptstate, scriptinputs, cookies, localStorage, sessionStorage, ids, secrets〉
1: let url := GETURL(tree, docnonce)
2: let url ′ := 〈URL, S, url .host, /auth2, 〈〉, 〈〉〉
3: let formData := scriptstate
4: let identity ← ids
5: let secret ← secrets
6: let formData[identity] := identity
7: let formData[password] := secret
8: let command := 〈FORM, url ′, POST, formData,⊥〉
9: stop 〈scriptstate, cookies, localStorage, sessionStorage, command〉

C.1.2. Addresses and Domain Names

The set IPs contains for the network attacker in Net, every relying party in RP, every identity

provider in OP, and every browser in B a finite set of addresses each. By addr we denote the

corresponding assignment from a process to its address. The set Doms contains a finite set of

domains for every relying party in RP, every identity provider in OP, and the network attacker

in Net. Browsers (in B) do not have a domain.

By addr and dom we denote the assignments from atomic processes to sets of IPs and Doms,

respectively.
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C.1.3. Keys and Secrets

The set N of nonces is partitioned into five sets, an infinite sequence N , an finite set KTLS, an

finite set Ksign, and a finite set Passwords. We thus have

N = N︸︷︷︸
infinite sequence

∪̇KTLS︸ ︷︷ ︸
finite

∪̇Ksign︸ ︷︷ ︸
finite

∪̇Passwords︸ ︷︷ ︸
finite

.

These sets are used as follows:

– The set N contains the nonces that are available for each DY process in W (it can be

used to create a run of W ).

– The set KTLS contains the keys that will be used for TLS encryption. Let tlskey : Doms→
KTLS be an injective mapping that assigns a (different) private key to every domain. For

an atomic DY process p we define tlskeysp = 〈{〈d, tlskey(d)〉 | d ∈ dom(p)}〉.

– The set Ksign contains the keys that will be used by OPs for signing id tokens. Let

signkey : OP → Ksign be an injective mapping that assigns a (different) signing key to

every OP.

– The set Passwords is the set of passwords (secrets) the browsers share with the identity

providers. These are the passwords the users use to log in at the OPs.

C.1.4. Identities and Passwords

Identities are defined as in the model for OAuth (see Section B.1.4), except that we do not need

the mappings trustedClients, clientID, secretOfClient, and secretOfClientID in OpenID Connect.

C.1.5. Corruption

Just as in OAuth, RPs and OPs can become corrupted. See Section B.1.5 for details.

C.1.6. Network Attacker

The network attacker is defined as in the model for OAuth. See Section B.1.7 for details.

C.1.7. Browsers

Each b ∈ B is a web browser as defined in Appendix A.6, with Ib := addr(b) being its addresses.

To define the inital state, first let IDb := ownerOfID−1(b) be the set of all IDs of b. We then

define the set of passwords that a browser b gives to an origin o: If the origin belongs to an OP,

then the user’s passwords of this OP are contained in the set. To define this mapping in the

initial state, we first define for some process p

Secretsb,p =
{
s
∣∣ b = ownerOfSecret(s) ∧ (∃ i : s = secretOfID(i) ∧ i ∈ IDp)

}
.
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Placeholder Usage

ν1 new login session id

ν2 new HTTP request nonce

ν3 new HTTP request nonce

ν4 new service session id

ν5 new HTTP request nonce

ν6 new state value

ν7 new nonce value (for the implicit flow)

Table C.2. List of placeholders used in the relying party algorithm.

Then, the initial state sb0 is defined as follows: the key mapping maps every domain to its public

(TLS) key, according to the mapping tlskey; the DNS address is an address of the network

attacker; the list of secrets contains an entry 〈〈d, S〉, 〈Secretsb,p〉〉 for each p ∈ RP ∪ OP and

d ∈ dom(p); ids is 〈IDb〉; sts is empty.

C.1.8. Relying Parties

A relying party r ∈ RP is a web server modeled as an atomic DY process (Ir, Zr, Rr, sr0) with

the addresses Ir := addr(r). Next, we define the set Zr of states of r and the initial state sr0
of r.

Definition 72. A state s ∈ Zr of an RP r is a term of the form

〈DNSaddress, pendingDNS , pendingRequests, corrupt , keyMapping , tlskeys,

sessions, issuerCache, oidcConfigCache, jwksCache, clientCredentialsCache〉

with DNSaddress, pendingDNS , pendingRequests, corrupt , keyMapping , tlskeys as in Defini-

tion 50, sessions ∈
[
N × TN

]
, issuerCache ∈

[
TN × TN

]
, oidcConfigCache ∈

[
TN × TN

]
,

jwksCache ∈
[
TN × TN

]
, and clientCredentialsCache ∈

[
TN × TN

]
.

An initial state sr0 of r is a state of r with sr0.corrupt = ⊥, sr0.keyMapping being the

same as the keymapping for browsers above, sr0.tlskeys = tlskeysr, sr0.pendingDNS = 〈〉,
sr0.pendingRequests = 〈〉, sr0.sessions = 〈〉, sr0.issuerCache = 〈〉, sr0.oidcConfigCache = 〈〉,
sr0.jwksCache = 〈〉, and sr0.clientCredentialsCache = 〈〉.

The relation of a relying party r, Rr, is based on the generic HTTPS servers (see Appendix A.7).

Algorithms C.4–C.9 further define the relation (we only specify those algorithms that differ from

or do not exist in the generic server model). Table C.2 shows the list of placeholders used.

C.1.9. Identity Providers

An identity provider i ∈ OP is a web server modeled as an atomic process (Ii, Zi, Ri, si0) with

the addresses Ii := addr(i). Next, we define the set Zi of states of i and the initial state si0 of i.
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Algorithm C.4 Relation of a Relying Party Rr: Processing HTTPS Responses.

1: function PROCESS HTTPS RESPONSE(m, reference, request , key , a, f , s′)
2: let session := s′.sessions[reference[session]]
3: let id := session[identity]
4: let issuer := s′.issuerCache[id ]
5: if reference[responseTo] ≡ WEBFINGER then
6: let wf := m.body
7: if wf [subject] 6≡ id then
8: stop

9: if wf [links][rel] 6≡ OIDC issuer then
10: stop

11: let s′.issuerCache[id ] := wf [links][href]
12: call START LOGIN FLOW(reference[session], s′)
13: else if reference[responseTo] ≡ CONFIG then
14: let oidcc := m.body
15: if oidcc[issuer] 6≡ issuer then
16: stop

17: let s′.oidcConfigCache[issuer ] := oidcc
18: call START LOGIN FLOW(reference[session], s′)
19: else if reference[responseTo] ≡ JWKS then
20: let s′.jwksCache[issuer ] := m.body
21: call START LOGIN FLOW(reference[session], s′)
22: else if reference[responseTo] ≡ REGISTRATION then
23: let s′.clientCredentialsCache[issuer ] := m.body
24: call START LOGIN FLOW(reference[session], s′)
25: else if reference[responseTo] ≡ TOKEN then
26: if token ∈〈〉 session[response type] ∧ useAccessTokenNow ≡ > then
27: call USE ACCESS TOKEN(reference[session], m.body[access token], s′)

28: call CHECK ID TOKEN(reference[session], m.body[id token], s′)

29: stop

Definition 73. A state s ∈ Zi of an OP i is a term of the form

〈DNSaddress, pendingDNS , pendingRequests, corrupt , keyMapping , tlskeys,

registrationRequests, clients, records, jwk〉

with DNSaddress, pendingDNS , pendingRequests, corrupt , keyMapping , tlskeys as in Defini-

tion 50, registrationRequests ∈ TN , clients ∈
[
TN × TN

]
, records ∈ TN , and jwk ∈ Ksign.

An initial state si0 of i is a state of i with si0.pendingDNS = 〈〉, si0.pendingRequests =

〈〉, si0.corrupt = ⊥, si0.keyMapping being the same as the keymapping for browsers above,

Placeholder Usage

ν1 new authorization code

ν2, ν3 new access tokens

ν4 new client secret

Table C.3. List of placeholders used in the identity provider algorithm.
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Algorithm C.5 Relation of a Relying Party Rr: Processing HTTPS Requests.

1: function PROCESS HTTPS REQUEST(m, k, a, f , s′)
2: if m.path ≡ / then → Serve index page.
3: let headers := [ReferrerPolicy:origin]
4: let m′ := encs(〈HTTPResp,m.nonce, 200, headers, 〈script rp index, 〈〉〉〉, k)
5: stop 〈〈f, a,m′〉〉, s′
6: else if m.path ≡ /startLogin ∧m.method ≡ POST then → Serve start login request.
7: if m.headers[Origin] 6≡ 〈m.host, S〉 then → CSRF protection.
8: stop

9: let id := m.body
10: let sessionId := ν1
11: let session := [startRequest:[message:m, key:k, receiver:a, sender:f ], identity:id ]
12: let s′.sessions[sessionId ] := session
13: call START LOGIN FLOW(sessionId , s′)
14: else if m.path ≡ /redirect ep then
15: let sessionId := m.headers[Cookie][sessionId]
16: if sessionId 6∈ s′.sessions then
17: stop

18: let session := s′.sessions[sessionId ]
19: let id := session[id]
20: let issuer := s′.issuerCache[identity ]
21: if m.parameters[iss] 6≡ issuer then
22: stop

23: let oidcConfig := s′.oidcConfigCache[issuer ]
24: let responseType := session[response type]
25: if responseType ≡ 〈code〉 then → Auth. code mode.
26: let data := m.parameters
27: else → Hybrid or implicit mode.
28: if m.method ≡ GET then
29: let headers := 〈〈ReferrerPolicy, origin〉〉
30: let m′ := encs(〈HTTPResp,m.nonce, 200, headers, 〈script rp get fragment,⊥〉〉, k)
31: stop 〈〈f, a,m′〉〉, s′
32: else
33: let data := m.body

34: if data[state] 6≡ session[state] then
35: stop

36: let s′.sessions[sessionId ][redirectEpRequest] := [message:m, key:k, receiver:a, sender:f ]
37: if id token ∈〈〉 responseType then
38: if code ∈〈〉 responseType then → In hybrid mode, only one of two id tokens is checked.
39: let checkIdTokenNow ← {>,⊥}
40: else
41: let checkIdTokenNow := >
42: if checkIdTokenNow ≡ > then → Nondeterministically omit ID token check.
43: call CHECK ID TOKEN(sessionId , data[id token], s′)

44: let useAccessTokenNow ← {>,⊥}
45: if token ∈〈〉 responseType ∧ useAccessTokenNow ≡ > then
46: call USE ACCESS TOKEN(sessionId , m.body[access token], s′)

47: if code ∈〈〉 responseType then
48: call SEND TOKEN REQUEST(sessionId , m.body[code], s′)

49: stop
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Algorithm C.6 Relation of a Relying Party Rr: Request to token endpoint.

1: function SEND TOKEN REQUEST(sessionId , code, s′)
2: let session := s′.sessions[sessionId ]
3: let identity := session[identity]
4: let issuer := s′.issuerCache[identity ]
5: let credentials := s′.clientCredentialsCache[issuer ]
6: let headers := []
7: let body := [grant type:authorization code, code:code, redirect uri:session[redirect uri]]
8: let clientId := credentials[client id]
9: let clientSecret := credentials[client secret]

10: if clientSecret ≡ 〈〉 then
11: let body [client id] := clientId
12: else
13: let headers[Authorization] := 〈clientId , clientSecret〉
14: let url := s′.oidcConfigCache[issuer ][token ep]
15: let message := 〈HTTPReq, ν2, POST, url .domain, url .path, url .parameters, headers, body〉
16: call HTTPS SIMPLE SEND([responseTo:TOKEN, session:sessionId ], message, s′)

Algorithm C.7 Relation of a Relying Party Rr: Using the access token (no response expected).

1: function USE ACCESS TOKEN(sessionId , token, s′)
2: let session := s′.sessions[sessionId ]
3: let identity := session[identity]
4: let issuer := s′.issuerCache[identity ]
5: let headers := [Authorization : 〈Bearer, token〉]
6: let url := s′.oidcConfigCache[issuer ][token ep]
7: let url .path ← S
8: let message := 〈HTTPReq, ν3, POST, url .domain, url .path, url .parameters, headers, 〈〉〉
9: call HTTPS SIMPLE SEND([responseTo:RESOURCE USAGE, session:sessionId ], message, s′)

si0.tlskeys = tlskeys i, si0.registrationRequests = 〈〉, si0.clients = an, si0.records = 〈〉, and

si0.jwk = signkey(i).

Algorithms C.10 and C.11 define the relation Ri. Again, we only specify algorithms that differ

from or do not exist in the generic server model. Table C.3 shows the list of placeholders used.
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Algorithm C.8 Relation of a Relying Party Rr: Check ID token.

1: function CHECK ID TOKEN(sessionId , id token, s′)
2: let session := s′.sessions[sessionId ]
3: let identity := session[identity]
4: let issuer := s′.issuerCache[identity ]
5: let oidcConfig := s′.oidcConfigCache[issuer ]
6: let credentials := s′.clientCredentialsCache[issuer ]
7: let jwks := s′.jwksCache[issuer ]
8: let data := extractmsg(id token)
9: if data[iss] 6≡ issuer then

10: stop

11: if data[aud] 6≡ credentials[client id] then
12: stop

13: if checksig(id token, jwks) 6≡ > then
14: stop

15: if nonce ∈ session then
16: if data[nonce] 6≡ session[nonce] then
17: stop

18: let s′.sessions[sessionId ][loggedInAs] := 〈issuer , data[sub]〉
19: let s′.sessions[sessionId ][serviceSessionId] := ν4
20: let request := session[redirectEpRequest]
21: let headers := [ReferrerPolicy:origin]
22: let headers[Set-Cookie] := [serviceSessionId:〈ν4,>,>,>〉]
23: let m′ := encs(〈HTTPResp, request [message].nonce, 200, headers, ok〉, request [key])
24: stop 〈〈request [sender], request [receiver],m′〉〉, s′
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Algorithm C.9 Relation of a Relying Party Rr: Continuing in the login flow.

1: function START LOGIN FLOW(sessionId , s′)
2: let redirectUris := {〈URL, S, d, /redirect ep, 〈〉, 〈〉〉| d ∈ dom(r)} → Set of redirect URIs.
3: let session := s′.sessions[sessionId ]
4: let identity := session[identity]
5: if identity 6∈ s′.issuerCache then
6: let host := identity .domain
7: let path := /.wk/webfinger
8: let parameters := [resource : identity ]
9: let message := 〈HTTPReq, ν5, GET, host , path, parameters, 〈〉, 〈〉〉

10: call HTTPS SIMPLE SEND([responseTo:WEBFINGER, session:sessionId ], message, s′)

11: let issuer := s′.issuerCache[identity ]
12: if issuer 6∈ s′.oidcConfigCache then
13: let host := issuer
14: let path := /.wk/openid-configuration
15: let message := 〈HTTPReq, ν5, GET, host , path, [], 〈〉, 〈〉〉
16: call HTTPS SIMPLE SEND([responseTo:CONFIG, session:sessionId ], message, s′)

17: let oidcConfig := s′.oidcConfigCache[issuer ]
18: if issuer 6∈ s′.jwksCache then
19: let url := oidcConfig [jwks uri]
20: let message := 〈HTTPReq, ν5, GET, url .host, url .path, [], 〈〉, 〈〉〉
21: call HTTPS SIMPLE SEND([responseTo:JWKS, session:sessionId ], message, s′)

22: if issuer 6∈ s′.clientCredentialsCache then
23: let url := oidcConfig [reg ep]
24: let message := 〈HTTPReq, ν5, POST, url .host, url .path, [], 〈〉, [redirect uris : 〈redirectUris〉]〉
25: call HTTPS SIMPLE SEND([responseTo:REGISTRATION, session : sessionId ], message, s′)

26: let credentials := s′.clientCredentialsCache[issuer ]
27: let responseType ← {〈code〉, 〈id token〉, 〈id token, token〉, 〈code, id token〉,

↪→ 〈code, token〉, 〈code, id token, token〉}
28: let redirectUri ← redirectUris
29: let data := [response type:responseType, redirect uri:redirectUri ,

↪→ client id:credentials[client id], state:ν6]
30: if code 6∈〈〉 responseType then → Implicit flow requires nonce.
31: let data[nonce] := ν7

32: let s′.sessions[sessionId ] := s′.sessions[sessionId ] ∪ data
33: let authEndpoint := oidcConfig [auth ep]
34: let authEndpoint .parameters := authEndpoint .parameters ∪ data
35: let headers := [Location:authEndpoint , ReferrerPolicy:origin]
36: let headers[Set-Cookie] := [sessionId:〈sessionId ,>,>,>〉]
37: let request := s′.sessions[sessionId ][startRequest]
38: let m′ := encs(〈HTTPResp, request [message].nonce, 303, headers,⊥〉, request [key])
39: stop 〈〈request [sender], request [receiver],m′〉〉, s′
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Algorithm C.10 Relation of an OP Ri: Processing HTTPS Requests.

1: function PROCESS HTTPS REQUEST(m, k, a, f , s′)
2: if m.path ≡ /.wk/webfinger then
3: let user , domain such that 〈user , domain〉 ≡ m.parameters[resource]

↪→ ∧〈user , domain〉 ∈ IDi if possible; otherwise stop
4: let descriptor := [subject:〈user , domain〉, links: [rel:OIDC issuer, href:m.host]]
5: let m′ := encs(〈HTTPResp,m.nonce, 200, 〈〉, descriptor〉, k)
6: stop 〈〈f, a,m′〉〉, s′
7: else if m.path ≡ /.wk/openid-configuration then
8: let metaData := [issuer:m.host]
9: let metaData[auth ep] := 〈URL, S,m.host, /auth, 〈〉, 〈〉〉

10: let metaData[token ep] := 〈URL, S,m.host, /token, 〈〉, 〈〉〉
11: let metaData[jwks uri] := 〈URL, S,m.host, /jwks, 〈〉, 〈〉〉
12: let metaData[reg ep] := 〈URL, S,m.host, /reg, 〈〉, 〈〉〉
13: let m′ := encs(〈HTTPResp,m.nonce, 200, 〈〉,metaData〉, k)
14: stop 〈〈f, a,m′〉〉, s′
15: else if m.path ≡ /jwks then
16: let m′ := encs(〈HTTPResp,m.nonce, 201, 〈〉, pub(s′.jwk)〉, k)
17: stop 〈〈f, a,m′〉〉, s′
18: else if m.path ≡ /reg ∧m.method ≡ POST then
19: let s′.registrationRequests := s′.registrationRequests +〈〉 〈m, k, a, f〉
20: stop → Stop here to let attacker choose the client id.
21: else if m.path ≡ /auth then
22: if m.method ≡ GET then
23: let data := m.parameters
24: else if m.method ≡ POST then
25: let data := m.body

26: let headers := [ReferrerPolicy:origin]
27: let m′ := encs(〈HTTPResp,m.nonce, 200, headers, 〈script op form, data〉〉, k)
28: stop 〈〈f, a,m′〉〉, s′
29: else if m.path ≡ /auth2 ∧m.method ≡ POST ∧m.headers[Origin] ≡ 〈m.host, S〉 then
30: let identity := m.body[identity]
31: let password := m.body[password]
32: if identity .domain 6∈ dom(i) ∨ password 6≡ secretOfID(identity) then
33: stop

34: let responseType := m.body[response type]
35: let clientId := m.body[client id]
36: let redirectUri := m.body[redirect uri]
37: let state := m.body[state]
38: let nonce := m.body[nonce]
39: if clientId 6∈ s′.clients then
40: stop

41: let clientInfo := s′.clients[clientId ]
42: if redirectUri 6∈〈〉 clientInfo[redirect uris] then
43: stop

44: let record := [client id:clientId ]
45: let record [redirect uri] := redirectUri
46: let record [subject] := identity
47: let record [issuer] := m.host
48: let record [nonce] := nonce
49: let record [code] := ν1
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50: let record [access tokens] := 〈ν2, ν3〉
51: let s′.records := s′.records +〈〉 record
52: let responseData := []
53: if code ∈〈〉 responseType then
54: let responseData[code] := ν1

55: if token ∈〈〉 responseType then
56: let responseData[access token] := ν2
57: let responseData[token type] := bearer

58: if id token ∈〈〉 responseType then
59: let idTokenBody := [iss:record [issuer], sub:record [subject],

↪→ aud:record [client id], nonce:record [nonce]]
60: let responseData[id token] := sig(idTokenBody , s′.jwk)

61: if state 6≡ 〈〉 then
62: let responseData[state] := state

63: if responseType ≡ 〈code〉 then → Authorization Code Flow
64: let redirectUri .parameters := redirectUri .parameters ∪ responseData
65: else → Implicit/Hybrid Flow
66: if code 6∈〈〉 responseType ∧ id token ∈〈〉 responseType ∧ nonce ≡ 〈〉 then
67: stop → Nonce is required in implicit mode.

68: let redirectUri .fragment := redirectUri .fragment ∪ responseData

69: let redirectUri .parameters[iss] := record [issuer]
70: let m′ := encs(〈HTTPResp,m.nonce, 303, 〈〈Location, redirectUri〉〉, 〈〉〉, k)
71: stop 〈〈f, a,m′〉〉, s′
72: else if m.path ≡ /token ∧m.method ≡ POST then
73: if client id ∈ m.body then → Only client id is provided, no client secret.
74: let clientId := m.body[client id]
75: let clientSecret := 〈〉
76: else
77: let clientId := m.headers[Authorization].username
78: let clientSecret := m.headers[Authorization].password

79: let clientInfo := s′.clients[clientId ]
80: if clientInfo ≡ 〈〉 ∨ clientInfo[client secret] 6≡ clientSecret then
81: stop

82: let code := m.body[code]
83: let record , ptr such that record ≡ s′.records.ptr ∧ record [code] ≡ code ∧ code 6≡ ⊥

↪→ if possible; otherwise stop
84: if record [client id] 6≡ clientId then
85: stop

86: if not (record [redirect uri] ≡ m.body[redirect uri]∨
↪→ (|clientInfo[redirect uris]| = 1 ∧ redirect uri 6∈ m.body)) then

87: stop → If only one redirect URI is registered, it can be omitted.

88: let s′.records.ptr [code] := ⊥ → Invalidate code
89: let accessTokenChoice ← {1, 2}
90: let accessToken := record [access tokens].accessTokenChoice
91: let idTokenBody := [iss:record [issuer]]
92: let idTokenBody [sub] := record [subject]
93: let idTokenBody [aud] := record [client id]
94: let idTokenBody [nonce] := record [nonce]
95: let id token := sig(idTokenBody , s′.jwk)
96: let body := [access token:accessToken, token type:bearer, id token:id token]
97: let m′ := encs(〈HTTPResp,m.nonce, 200, 〈〉, body〉, k)
98: stop 〈〈f, a,m′〉〉, s′
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Algorithm C.11 Relation of an OP Ri: Processing other messages.

1: function PROCESS OTHER(m, a, f , s′)
2: let clientId := m → m is client id chosen by and sent by an attacker process.
3: if clientId ∈ s′.clients then
4: stop

5: let m, k, a, f such that 〈m, k, a, f〉 ∈〈〉 s′.registrationRequests if possible; otherwise stop
6: remove 〈m, k, a, f〉 from s′.registrationRequests
7: let redirectUris := m.body[redirect uris]
8: let regResponse := [client id:clientId ]
9: let issueSecret ← {>,⊥}

10: if issueSecret ≡ > then
11: let clientSecret := ν4
12: let regResponse[client secret] := clientSecret

13: let clientInfo := regResponse
14: let clientInfo[redirect uris] := redirectUris
15: let s′.clients[clientId ] := clientInfo
16: let m′ := encs(〈HTTPResp,m.nonce, 201, 〈〉, regResponse〉, k)
17: stop 〈〈f, a,m′〉〉, s′
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C.2. Formal Security Properties

The security properties for OIDC are defined as follows.

C.2.1. Authentication

Intuitively, authentication for OIDCWSn means that an attacker should not be able to login at

an (honest) RP under the identity of a user unless certain parties involved in the login process

are corrupted. As explained in Section 4.5.2, being logged in at an RP under some user identity

means to have obtained a service token for this identity from the RP.

Definition 74 (Service Sessions). We say that there is a service session identified by a nonce

n for an identity id at some RP r in a configuration (S,E,N) of a run ρ of an OIDC web

system iff there exists some session id x and a domain d ∈ dom(governor(id)) such that

S(r).sessions[x][loggedInAs] ≡ 〈d, id〉 and S(r).sessions[x][serviceSessionId] ≡ n.

Definition 75 (Authentication Property). Let OIDCWSn be an OIDC web system with a network

attacker. We say that OIDCWSn is secure w.r.t. authentication iff for every run ρ of OIDCWSn,

every configuration (S,E,N) in ρ, every r ∈ RP that is honest in S, every browser b that is

honest in S, every identity id ∈ ID owned by b with governor(id) being an honest OP, every

service session identified by some nonce n for id at r, n is not derivable from the attackers

knowledge in S (i.e., n 6∈ d∅(S(attacker))).

C.2.2. Authorization

Intuitively, authorization for OIDCWSn means that an attacker should not be able to obtain or

use a protected resource available to some honest RP at an OP for some user unless certain

parties involved in the authorization process are corrupted.

Definition 76. We say that a client id c has been issued to r by i iff i has sent a response to

a registration request from r in Line 17 of Algorithm C.11 and this response contains c in its

body under the dictionary key client id.

Definition 77 (Authorization Property). Let OIDCWSn be an OIDC web system with a network

attacker. We say that OIDCWSn is secure w.r.t. authorization iff for every run ρ of OIDCWSn,

every configuration (S,E,N) in ρ, every r ∈ RP that is honest in S, every i ∈ OP that is honest

in S, every browser b that is honest in S, every identity id ∈ IDi owned by b, every nonce n,

every term x ∈〈〉 S(i).records with x[subject] ≡ id , n ∈〈〉 x[access tokens], and the client

id x[client id] has been issued by i to r, we have that n is not derivable from the attackers

knowledge in S (i.e., n 6∈ d∅(S(attacker))).

C.2.3. Session Integrity for Authentication and Authorization

The two session integrity properties capture that an attacker should be unable to forcefully log

a user in to some RP. This includes attacks such as CSRF and session swapping.
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Session Integrity Property for Authentication

This security property captures that (a) a user should only be logged in when the user actually

expressed the wish to start an OIDC flow before, and (b) if a user expressed the wish to start an

OIDC flow using some honest identity provider and a specific identity, then user is not logged

in under a different identity.

We first need to define notations for the processing steps that represent important events

during a flow of an OIDC web system.

Definition 78 (User is logged in). For a run ρ of an OIDC web system with web attacker

OIDCWSw we say that a browser b was authenticated to an RP r using an OP i and an

identity u in a login session identified by a nonce lsid in processing step Q in ρ with

Q = (S,E,N) −−−−−→
r→Eout

(S′, E′, N ′)

(for some S, S′, E, E′, N , N ′) and some event 〈y, y′,m〉 ∈ Eout such that m is an HTTPS

response matching an HTTPS request sent by b to r and we have that in the headers of m there is

a header of the form 〈Set-Cookie, [serviceSessionId:〈ssid ,>,>,>〉]〉 for some nonce ssid and

we have that there is a term g such that S(r).sessions[lsid ] ≡ g, g[serviceSessionId] ≡ ssid ,

and g[loggedInAs] ≡ 〈d, u〉 with d ∈ dom(i). We then write loggedInQρ (b, r, u, i, lsid).

Definition 79 (User started a login flow). For a run ρ of an OIDC web system with web attacker

OIDCWSw we say that the user of the browser b started a login session identified by a nonce lsid

at the RP r in a processing step Q in ρ if (1) in that processing step, the browser b was triggered,

selected a document loaded from an origin of r, executed the script script rp index in that

document, and in that script, executed the Line 7 of Algorithm C.1, and (2) r sends an HTTPS

response corresponding to the HTTPS request sent by b in Q and in that response, there is a

header of the form 〈Set-Cookie, [sessionId:〈lsid ,>,>,>〉]〉. We then write startedQρ (b, r, lsid).

Definition 80 (User authenticated at an OP). For a run ρ of an OIDC web system with web

attacker OIDCWSw we say that the user of the browser b authenticated to an OP i using an

identity u for a login session identified by a nonce lsid at the RP r if there is a processing step

Q in ρ with

Q = (S,E,N) −→ (S′, E′, N ′)

(for some S, S′, E, E′, N , N ′) in which the browser b was triggered, selected a document loaded

from an origin of i, executed the script script op form in that document, and in that script,

(1) in Line 4 of Algorithm C.3, selected the identity u, and (2) we have that the scriptstate

of that document, when triggered, contains a nonce s such that scriptstate[state] ≡ s and

S(r).sessions[lsid ][state] ≡ s. We then write authenticatedQρ (b, r, u, i, lsid).

Definition 81 (RP uses an access token). For a run ρ of an OIDC web system with web attacker

OIDCWSw we say that the RP r uses some access token t in a login session identified by the
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nonce lsid established with the browser b at an OP i if there is a processing step Q in ρ with

Q = (S,E,N) −→ (S′, E′, N ′)

(for some S, S′, E, E′, N , N ′) in which

(1) r calls the function USE ACCESS TOKEN with the first two parameters being lsid and t,

(2) S(r).issuerCache[S(r).sessions[lsid ][identity]] ∈ dom(i), and

(3) 〈sessionid, 〈lsid , y, z, z′〉〉 ∈〈〉 S(b).cookies[d] for d ∈ dom(r), y, z, z′ ∈ TN .

We then write usedAuthorizationQρ (b, r, i, lsid).

Definition 82 (RP acts on the user’s behalf). For a run ρ of an OIDC web system with web

attacker OIDCWSw we say that the RP r acts on behalf of the user with the identity u at an

honest OP i in a login session identified by the nonce lsid established with the browser b if there

is a processing step Q in ρ with

Q = (S,E,N) −→ (S′, E′, N ′)

(for some S, S′, E, E′, N , N ′) in which

(1) r calls the function USE ACCESS TOKEN with the first two parameters being lsid and t,

(2) we have that there is a term g such that g ∈〈〉 S(i).records with t ∈〈〉 g[access tokens]

and g[subject] ≡ u, and

(3) 〈sessionid, 〈lsid , y, z, z′〉〉 ∈〈〉 S(b).cookies[d] for d ∈ dom(r), y, z, z′ ∈ TN .

We then write actsOnUsersBehalfQρ (b, r, u, i, lsid).

For session integrity for authentication we say that a user that is logged in at some RP must

have expressed her wish to be logged in to that RP in the beginning of the login flow. If the

OP is honest, then the user must also have authenticated herself at the OP with the same user

account that RP uses for her identification. This excludes, for example, cases where (1) the user

is forcefully logged in to an RP by an attacker that plays the role of an OP, and (2) where an

attacker can force a user to be logged in at some RP under a false identity issued by an honest

OP.

Definition 83 (Session Integrity for Authentication). Let OIDCWSw be an OIDC web system

with web attackers. We say that OIDCWSw is secure w.r.t. session integrity for authentication

iff for every run ρ of OIDCWSw, every processing step Q in ρ with

Q = (S,E,N) −→ (S′, E′, N ′)
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(for some S, S′, E, E′, N , N ′), every browser b that is honest in S, every i ∈ OP, every

identity u, every r ∈ RP that is honest in S, every nonce lsid , and loggedInQρ (b, r, u, i, lsid) we

have that (1) there exists a processing step Q′ in ρ (before Q) such that startedQ
′

ρ (b, r, lsid),

and (2) if i is honest in S, then there exists a processing step Q′′ in ρ (before Q) such that

authenticatedQ
′′

ρ (b, r, u, i, lsid).

For session integrity for authorization we say that if an RP uses some access token at some

OP in a session with a user, then that user expressed her wish to authorize the RP to interact

with some OP. If the OP is honest, and the RP acts on the user’s behalf at the OP (i.e., the

access token is bound to the user’s identity), then the user authenticated to the OP using that

identity.

Definition 84 (Session Integrity for Authorization). Let OIDCWSw be an OIDC web system

with web attackers. We say that OIDCWSw is secure w.r.t. session integrity for authoriza-

tion iff for every run ρ of OIDCWSw, every processing step Q in ρ with

Q = (S,E,N) −→ (S′, E′, N ′)

(for some S, S′, E, E′, N , N ′), every browser b that is honest in S, every i ∈ OP, ev-

ery identity u, every r ∈ RP that is honest in S, every nonce lsid , we have that (1) if

usedAuthorizationQρ (b, r, i, lsid) then there exists a processing step Q′ in ρ (before Q) such that

startedQ
′

ρ (b, r, lsid), and (2) if i is honest in S and actsOnUsersBehalfQρ (b, r, u, i, lsid) then there

exists a processing step Q′′ in ρ (before Q) such that authenticatedQ
′′

ρ (b, r, u, i, lsid).

C.3. Proof of the OpenID Connect Security Theorem

Before we prove Theorem 2, we show some general properties of OIDC web systems with a

network attacker. We then first prove the authentication, authorization, and session integrity

properties separately. In the following, we use the terms introduced in Definitions 65–70.

C.3.1. Proof of Authentication

We here want to show that every OIDC web system is secure w.r.t. authentication, and therefore

assume that there exists an OIDC web system that is not secure w.r.t. authentication. We

then lead this to a contradiction, thereby showing that all OIDC web systems are secure

w.r.t. authentication. In detail, we assume:

Lemma 21 (Integrity of Issuer Cache). For any run ρ of an OIDC web system OIDCWSn with

a network attacker or an OIDC web system OIDCWSw with web attackers, every configuration

(S,E,N) in ρ, every OP i that is honest in S, every identity id ∈ IDi, every relying party r that

is honest in S, we have that S(r).issuerCache[id ] ≡ 〈〉 (not set) or S(r).issuerCache[id ] ∈
dom(i).
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Proof. Initially, the issuer cache of an honest relying party is empty. The issuer cache can only

be modified in Line 11 of Algorithm C.4. There, the value of Sl(r).issuerCache[id ′] (for some

l < j) is taken from an HTTPS response. The value of id ′ is taken from session data (Line 3)

which is identified by a session id that is taken from the internal reference data of the incoming

message. This internal reference data must have been created previously in Algorithm A.12

(HTTPS SIMPLE SEND) which must have been called in Line 10 of Algorithm C.9 (since this is

the only place where the reference data for a webfinger request is created). In this algorithm, it

is easy to see that the request to which the request is sent (see Line 6) is the domain part of the

identity. We therefore have that a webfinger request must have been sent (using HTTPS) to the

OP i. (An attacker can neither decrypt any information from this request, nor spoof a response

to this request. The request must therefore have been responded to by the honest OP.)

Since the path of this request is /.wk/webfinger, the OP can respond to this request only in

Lines 3ff. of Algorithm C.10. Since the OP there chooses an issuer value that is one of its own

domains (see Line 4), we finally have that S(r).issuerCache[id ] ≡ 〈〉 (if the response is blocked

or the webfinger request was never sent) or we have that S(r).issuerCache[id ] ∈ dom(i), which

proves the lemma. �

Lemma 22 (Integrity of oidcConfigCache). For any run ρ of an OIDC web system OIDCWSn

with a network attacker or an OIDC web system OIDCWSw with web attackers, every configura-

tion (S,E,N) in ρ, every OP i that is honest in S, every domain d ∈ dom(i), every relying party

r that is honest in S, l ∈ {1, 2, 3, 4} we have that S(r).oidcConfigCache[d] ≡ 〈〉 (not set) or

S(r).oidcConfigCache[d] ≡ [issuer : d, auth ep : u1, token ep : u2, jwks ep : u3, reg ep : u4]

with ul being URLs, ul.host ∈ dom(i), and ul.protocol ≡ S.

Proof. This proof proceeds analog to the one for Lemma 21 with the following changes: First,

the OIDC configuration cache is filled only in Line 17 of Algorithm C.4. It requires a request

that was created in Line 16 of Algorithm C.9. This request was not sent to the domain contained

in an ID (as above) but instead to the issuer (in this case, d). The issuer responds to this request

in Lines 8ff. of Algorithm C.10. There, the issuer only choses the redirection endpoint URIs

such that the host is the domain of the incoming request and the protocol is HTTPS (S). This

proves the lemma. �

Lemma 23 (Integrity of JWKS Cache). For any run ρ of an OIDC web system OIDCWSn with

a network attacker or an OIDC web system OIDCWSw with web attackers, every configuration

(S,E,N) in ρ, every OP i that is honest in S, every domain d ∈ dom(i), every relying party

r that is honest in S, we have that S(r).jwksCache[d] ≡ 〈〉 (not set) or S(r).jwksCache[d] ≡
pub(S(i).jwks).

Proof. This proof proceeds analog to the one for Lemma 22. The relevant HTTPS request

by r is created in Line 21 of Algorithm C.9, and responded to by the OP i in Lines 15ff. of

Algorithm C.10. There, the OP chooses its own signature verification key to send in the response.

This proves the lemma. �
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Lemma 24 (Integrity of Client Registration). For any run ρ of an OIDC web system OIDCWSn

with a network attacker or an OIDC web system OIDCWSw with web attackers, every con-

figuration (S,E,N) in ρ, every OP i that is honest in S, every domain d ∈ dom(i), every

relying party r that is honest in S, every client id c that has been issued to r by i, every URL

u ∈〈〉 S(i).clients[c][redirect uris] we have that u.host ∈ dom(r) and u.protocol ≡ S.

Proof. From Definition 76 it follows that an HTTPS request must have been sent from r to

i in Lines 23ff. of Algorithm C.9. This request must have been processed by i in Lines 18ff. of

Algorithm C.10, and, after receiving the client id from some other party (usually the attacker),

in Algorithm C.11. From the latter algorithm it is easy to see that the redirection endpoint

data must have been taken from r’s initial registration request to create the dictionary stored

in S(i).clients[c]. This data, however, was chosen by r in Line 2 of Algorithm C.9 such that

u.host ∈ dom(r) and u.protocol ≡ S for every u ∈〈〉 S(i).clients[c][redirect uris]. �

Lemma 25 (Third Parties do not Learn Passwords). For any run ρ of an OIDC web system

OIDCWSn with a network attacker or an OIDC web system OIDCWSw with web attackers,

every configuration (S,E,N) in ρ, every OP i that is honest in S, every identity id ∈ IDi,

every browser b with b = ownerOfID(id) that is honest in S, every p ∈ W \ {b, i} we have that

secretOfID(id) 6∈ d∅(Sl(p)).

Proof. Let s := secretOfID(id). Initially, in S0, s is only contained in S0(b).secrets[〈d, S〉]
with d ∈ dom(i) and in no other states of any atomic processes (or in any waiting events). By

the definition of the browser, we can see that only scripts loaded from the origins 〈d, S〉 can

access s. We know that i is an honest OP. Now, the only script that an honest OP sends to the

browser is script op form. This scripts sends the form data only to its own origin, which means,

that the form data is sent over HTTPS and to the honest OP. In this request, the script uses

the path /auth2. There, identity and password are checked, but not used otherwise. Therefore,

the form data cannot leak from the honest OP. It could, however, leak from the browser itself.

The form data is sent via POST, and therefore, not used in any Referer headers. A redirection

response from the server contains the status code 303, which implies that the browser does not

send the form data again when following the redirection. Since there are also no other scripts

from the same origin running in the browser which could access the form data, the password s

cannot leak from the browser either. This proves Lemma 25. �

Lemma 26 (Attacker does not Learn ID Tokens). For any run ρ of an OIDC web system

OIDCWSn with a network attacker or an OIDC web system OIDCWSw with web attackers,

every configuration (S,E,N) in ρ, every OP i that is honest in S, every domain d ∈ dom(i),

every identity id ∈ IDi with b = ownerOfID(id) being an honest browser (in S), every relying

party r that is honest in S, every client id c that has been issued to r by i, every term y, every id

token t = sig([iss : d, sub : id , aud : c, nonce : y], k) with k = S(i).jwks, every attacker process

a we have that t 6∈ d∅(S(a)).
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Proof. The signing key k is only known to i initially and at least up to S (since i is honest).

Therefore, only i can create t. There are two places where an honest OP can create such a

token in Algorithm C.10: In Line 59 (immediately after receiving the user credentials) and in

Lines 91ff. (after receiving an authorization code).

We now distinguish between these two cases to show that in either case, the attacker cannot

get hold of an id token. We start with the first case.

ID token was created in Line 59. To create t, the OP i must have received a request to the

path /auth2 in Lines 29ff. of Algorithm C.10. It is clear that i sends the response to this

request to the sender of the request, and, if that sender is honest, the response cannot

be read by an attacker. The request must contain secretOfId(id). Only b and i know this

secret (per Lemma 25). Since i does not send requests to itself, the request must have

been sent from b. Since the Origin header in the request must be a domain of i, we know

that the request was not initiated by a script other than i’s own scripts, in particular, it

must have been initiated by script op form.

Now it is easy to see that this script does not use the token t in any way after the token

was returned from i, since the script uses a form post to transmit the credentials to i,

and the window is subsequently navigated away. Instead, i provides an empty script in

its response to b. This response contains a Location redirect header. It is now crucial to

check that this location redirect does not cause the id token to be leaked to the attacker:

With Lemma 24 we have that the redirection URIs that are registered at i for the client

id c only point to domains of r (and use HTTPS).

We therefore know that b will send an HTTPS request (say m) containing t to r. We have

to check whether r or a script delivered by r to b will leak t. Algorithm C.5 processes all

HTTPS requests delivered to r. As i redirected b using the 303 status code, the request

to r must be a GET request. Hence, r does not process this request in Lines 6ff. of

Algorithm C.5. Lines 2ff. do only respond with a script and do not use t in any way. We

are left with Lines 14ff. to be analyzed.

As in m the id token t is always contained in a dictionary under the key id token and

this dictionary is either in the parameters, the fragment, or the body of m, it is now easy

to see that r does not store or send out t in any way.

We now have to check if a script delivered by r to b leads to t being leaked. First note

that r always sets the header ReferrerPolicy to origin in every HTTP(S) response r

sends out. Hence, t can never leak using the Referer header.

There are only two scripts that r may deliver: (1) The script script rp index either issues

a FORM command to the browser, which does not contain t, or this script issues a HREF

command to the browser for some URL, which also does not contain t. (2) The script

script rp get fragment takes the fragment of the current URL (which may be a dictionary

that contains t under the key id token) and the iss parameter and issues an HTTPS
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request to r for the path /redirect ep, which will be processed by r in Lines 14ff. of

Algorithm C.5. Now, the same reasoning as above applies.

ID token was created in Lines 91ff. In this case, the id token is created by i only when an

HTTPS request was received by i that matches the following criteria: (a) it must be for the

path /token, (b) it must contain the client id c in the body (under the key client id),

and (c) it must contain a authorization code in the body (under the key code) that

occurs in one of i’s internal records with a matching subject, issuer, and nonce. To be

more precise, the request must contain a code code such that there is a record rec with

rec ∈〈〉 S(i).records and rec[issuer] ≡ d, rec[subject] ≡ id , rec[client id] ≡ c, and

rec[code] ≡ c. Such a record can only be created and the authorization code code issued

under exactly the same circumstances that allow an id token (of the above form) to be

created in Line 91. Similar to the reasoning for the id token above, we can follow that

code does not leak to the attacker. (Here it is important that the iss parameter ensures

that the code is not sent to third parties.)

We have therefore shown that no attacker process can get hold of the id token t. This proves

the lemma. �

Assumption 3. There exists an OIDC web system OIDCWSn with a network attacker such that

there exists a run ρ of OIDCWSn, a configuration (S,E,N) in ρ, some r ∈ RP that is honest in

S, some identity id ∈ ID with governor(id) being an honest OP (in S) and ownerOfID(id) being

an honest browser (in S), some service session identified by some nonce n for id at r, and n is

derivable from the attackers knowledge in S (i.e., n 6∈ d∅(S(attacker))).

Lemma 27. Assumption 3 is a contradiction.

Proof. We first recall how the service session identified by some nonce n for id at r is de-

fined. It means that there is some session id x and a domain d ∈ dom(governor(id)) with

S(r).sessions[x][loggedInAs] ≡ 〈d, id〉 and S(r).sessions[x][serviceSessionId] ≡ n. Now

the assumption is that n is derivable from the attacker’s knowledge. Since we have that

S(r).sessions[x][serviceSessionId] ≡ n, we can check where and how, in general, service

session ids can be created. It is easy to see that this can only happen in Algorithm C.8, where,

in Line 19, the RP chooses a fresh nonce as the value for the service session id, in this case x.

In the line before, it sets the value for S(r).sessions[x][loggedInAs], in this case 〈d, id〉. In

the Lines 9ff., r performs several checks to ensure the integrity and authenticity of the id token.

The function function CHECK ID TOKEN can be called in either (a) Line 43 of Algorithm C.5

or (b) in Line 28 of Algorithm C.4.

We can now distinguish between these two cases.

Case (a). In this case, we can easily see that the same party that finally receives the service

session id x, must have provided, in an HTTPS request, an id token (say, t′) with the
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following properties (for some l < j):

extractmsg(t′)[iss] ≡ d

extractmsg(t′)[sub] ≡ id

extractmsg(t′)[aud] ≡ Sl(r).clientCredentialsCache[d][client id]

checksig(t′, pub(Sl(i).jwks)) ≡ > .

The attacker (and, by extension, any other party except for i, b, and r), however, cannot

know such an id token (see Lemma 26). Since r and i do not send requests to r, the id

token must have been sent by b to r. As the service session id x is only contained in

a Set-Cookie header with the httpOnly and secure flags set, b will only ever send the

service session id x to r (contained in a Cookie header). As b does not leak x in any other

way and as r does not leak information sent in cookie headers, the service session id x

does not leak.

Case (b). Otherwise, the party that finally receives the service session id x needs to provide

a code c such that, when this code is sent to the token endpoint of i (Algorithm C.6), i

responds with an id token matching the criteria listed in Case (a). This, however, would

mean that an attacker, knowing this code, could do the same, violating Lemma 26. (Note

that for every run where a client secret is associated with the client id there is also a run

where the client secret is not used; the client secret does not prevent the attacker from

requesting an id token at the token endpoint for a valid code.)

We therefore have shown that the attacker cannot know x, proving the lemma and showing that

Assumption 3 is, in fact, a contradiction. �

C.3.2. Proof of Authorization

As above, we assume that there exists an OIDC web system that is not secure w.r.t. authorization

and lead this to a contradiction.

Assumption 4. There exists an OIDC web system with a network attacker OIDCWSn, a run ρ

of OIDCWSn, a state (Sj , Ej , N j) in ρ, a relying party r ∈ RP that is honest in Sj , an identity

provider i ∈ OP that is honest in Sj , a browser b that is honest in Sj , an identity id ∈ IDi owned

by b, a nonce n, a term x ∈〈〉 Sj(i).records with x[subject] ≡ id , n ∈〈〉 x[access tokens],

and the client id x[client id] has been issued by i to r, and n is derivable from the attackers

knowledge in Sj (i.e., n ∈ d∅(Sj(attacker))).

Lemma 28. Assumption 4 is a contradiction.

Proof. We have that n ∈ d∅(Sj(attacker)) and therefore, there must have been a message from

a third party to attacker (or any other corrupted party, which could have forwarded n to the
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attacker) that contained n. We can now distinguish between the parties that could have sent n

to the attacker (or to the corrupted party):

The access token n was sent by the browser b: We now track different cases in which

the access token n can get into b’s knowledge. We omit the cases in which b learns n from any

dishonest party as in such a case there is a different run ρ′ of OIDCWSn in which this dishonest

party immediately sends n to the attacker.

(I) First, we analyze the case in which b has learned n from an honest (in Sj) identity provider,

say i′. In this case, b must have received an HTTPS response from i′ (honest identity providers

do not send out unencrypted HTTP responses). Honest identity providers send out HTTPS

responses in Lines 6, 14, 17, 28, 71, and 98 of Algorithm C.10 and Line 17 of Algorithm C.11.

It is easy to see that i′ does not send out n in Lines 6, 14, 17, and 28 of Algorithm C.10 and

Line 17 of Algorithm C.11 (given that the attacker does not know n), leaving Lines 71, and 98

of Algorithm C.10 to analyze.

(a) If i′ sends out n in Line 71 of Algorithm C.10, b must have sent an HTTPS POST request

bearing an Origin header for one of the domains of i′ to i′. As i′ only delivers the script

script op form, only this script could have caused this request (using a FORM command). Hence,

b will navigate the corresponding window to the location indicated in the Location header of

the HTTPS response assembled in Lines 29ff. of Algorithm C.10. The body of this response

can consist of an authorization code (a fresh nonce), an access token (a fresh nonce), and an id

token consisting of one domain of i, a valid username for i′, a client id, and a nonce (say n′)

from the request.

We now reason why i′ must be i, and the access token in the response must be n. In the

id token, only the client id and the nonce n′ could be n. As the client id is always set by the

attacker during registration, the client id cannot be n. The nonce n′ originates from the request

sent by b on the command of script op form. In this request, the nonce n′ must be contained in

the URL, which is the URL from which the script was loaded before. Hence, the browser must

have been navigated to this URL. As the attacker does not know n at this point, only honest

scripts or honest web servers could have navigated the browser to such an URL (containing n).

Honest relying parties only populate the parameter nonce (bearing n′) in such a redirect with

a fresh nonce, honest identity providers do not populate such an URL parameter by themselves,

but could have used this parameter in a redirect based on a registered redirect URL. As honest

parties never register such a redirect URL, n′ cannot be n. Hence, only the access token in the

response above can be n. As the access token is a fresh nonce, we must have that i′ is i and

that i creates the term x ∈〈〉 Sj(i).records with x[subject] ≡ id , n ∈〈〉 x[access tokens] (i

will never create such a term at any other time), and the client id x[client id] has been issued

by i to r. Hence, the location redirect issued by i must point to an URL of r with the path

/redirect ep (see Lemma 24) and this URL contains the parameter iss with a domain of i.

The access token n is only contained in the fragment of this URL under the key access token.

Now, b sends an HTTPS request to r. This request does not contain n (as it is placed in the
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fragment part of the URL). The relying party r can (regardless of the path) send out only the

scripts script rp index and script rp get fragment as a response to such a request. The script

script rp index ignores the fragment of its URL. The script script rp get fragement takes the

fragment of the URL and uses it as the body of a POST request to its own origin (which is r)

with path /redirect uri. When r processes this POST request, r only ever uses n in Line 46

of Algorithm C.5. There, the access token n and the value of the parameter iss (a domain

of i) is processed by Algorithm C.7. From Lemma 22, we know that r will only send n to the

token endpoint of i in an HTTPS request. This request is then processed by i in Lines 72ff. of

Algorithm C.10. There, i only checks n, but does not send out n.

If b sends out a response, the same reasoning as above applies. Hence, we have that n does

not leak to the attacker in this case.

(b) If i′ sends out n in Line 98 of Algorithm C.10, we have that the response does not contain a

script or a redirect. The browser would only interpret such a response if the request was caused

by an XMLHTTPREQUEST command of a script. Honest scripts do not issue such a command,

leaving only the attacker script as the only possible source for such a request. If i′ is not i, it

is easy to see that this response cannot contain n. The identity provider i only sends out n

(taken from the subterm records from its state) if the request contains a valid authorization

code for this access token. With the same reasoning as for the authentication property above,

the attacker cannot know a valid id token for any user id owned by b. If the attacker would

know a valid authorization code, he could retrieve a valid id token (for such a user id) from i.

Hence, the attacker cannot know a valid authorization code. As this reasoning also applies for

the attacker script, the attacker script could not have caused a request to i revealing n.

(II) Now, we analyze the case in which b received n from some honest (in Sj) relying party,

say r′. In this case, b must have received an HTTPS response from r′ (honest relying parties

do not send out unencrypted HTTP responses). Honest relying parties only send out such

HTTPS responses in Lines 5 and 30 of Algorithm C.5, Line 24 of Algorithm C.8, and Line 39 of

Algorithm C.9. In the former three cases, r′ only sends out fixed information and fresh nonces

(either chosen by r′ directly before sending out the message or the HTTPS nonce and key chosen

by b when creating the request). In the latter case, r′ (besides the pieces of information as

before) also adds information from its OpenID Connect configuration cache (i.e., client id and

authorization URL). From Lemma 22 and 24 we know that if r′ gathered this information from

an honest party, this information cannot contain n. As the attacker does not know n at this

point, this registration information cannot contain n if r′ gathered this information from a

dishonest party. Hence, b cannot have learned n from any r′.

(III) b cannot have learned n from a different honest (in Sj) browser as honest browsers do

not create messages that can be interpreted by honest browsers.

(IV) b cannot have learned n from the attacker, as the attacker does not know n at this point.

The access token n was sent by the OP i: We can see that access tokens are sent by the

OP only after a request to the path (endpoints) /auth2 or to the path and /token.
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In case of a request to the path /auth2, a pair of access tokens is created and the first access

token in the pair is returned from the endpoint. If the attacker would be able to learn n from

this endpoint such that there exists a record x ∈〈〉 Sj(i).records with x[subject] ≡ id , then

the attacker would need to provide the user’s credentials to the OP i. The attacker cannot know

these credentials (Lemma 25), therefore the attacker cannot request n from this endpoint.

In case of a request to the path /token, the attacker would need to provide an authorization

code that is contained in the same record (in this case x) as n. Now, recall that we have that

x[subject] ≡ id and c := x[client id] has been issued to r by i. We can now see that if the

attacker would be able to send a request to the endpoint /token which would cause a response

that contains n, the attacker would also be able to learn an id token of the form shown in

Lemma 26 (the issuer is a domain of i, the subject is id , and the audience is c). This would be

a contradiction to Lemma 26.

We can conclude that the access token n was not sent by the OP i.

The access token n was sent by the RP r: The only place where the (honest) RP uses an

access token is in Algorithm C.7. There, the access token is sent to the domain of the token

endpoint (compare Algorithm C.6, where the authorization code is sent to that endpoint). We

can now see that the access token is always sent to i: If the access token would be sent to the

attacker, so would the authorization code in Algorithm C.6, and Lemma 26 would not hold

true. �

C.3.3. Proof of Session Integrity

Before we prove this property, we highlight that in the absence of a network attacker and with

the DNS server as defined for OIDCWSw, HTTP(S) requests by (honest) parties can only be

answered by the owner of the domain the request was sent to, and neither the requests nor the

responses can be read or altered by any attacker unless he is the intended receiver.

We further show the following lemma, which says that an attacker (under the assumption

above) cannot learn a state value that is used in a login session between an honest browser, an

honest OP, and an honest RP.

Lemma 29 (Third parties do not learn state). There exists no run ρ of an OIDC web system

with web attackers OIDCWSw, no configuration (S,E,N) of ρ, no r ∈ RP that is honest in S,

no i ∈ OP that is honest in S, no browser b that is honest in S, no nonce lsid ∈ N , no domain

h ∈ dom(r) of r, no terms g, x, y, z ∈ TN , no cookie c := 〈sessionId, 〈lsid , x, y, z〉〉, no atomic

DY process p ∈W \ {b, i, r} such that (1) S(r).sessions[lsid ] ≡ g, (2) g[state] ∈ d∅(S(p)), (3)

S(r).issuerCache[g[identity]] ∈ dom(i), and (4) c ∈〈〉 S(b).cookies[h].

Proof. To prove Lemma 29, we track where the login session identified by lsid is created and

used.

Login session ids are only chosen in Line 10 of Algorithm C.5. After the session id was

chosen, its value is sent over the network to the party that requested the login (in Line 39 of

220



Algorithm C.9). We have that for lsid , this party must be b because only r can set the cookie

c for the domain h in the state of b1 and Line 39 of Algorithm C.9 is actually the only place

where r does so.

Since b is honest, b follows the location redirect contained in the response sent by r. This

location redirect contains state (as a URL parameter). The redirect points to some domain of

i. (This follows from Lemma 22.) The browser therefore sends (among others) state in a GET

request to i. Of all the endpoints at i where the request can be received, the authorization

endpoint is the only endpoint where state could potentially leak to another party. (For all

other endpoints, the value is dropped.) If the request is received at the authorization endpoint,

state is only sent back to b in the initial scriptstate of script op form. In this case, the script

sends state back to i in a POST request to the authorization endpoint. Now, i redirects the

browser b back to the redirection URI that was passed alongside state from r via the browser to

i. This redirection URI was chosen in Line 2 of Algorithm C.9 and therefore points to one of r’s

domains. The value state is appended to this URI (either as a parameter or in the fragment).

The redirection to the redirection URI is then sent to the browser b. Therefore, b now sends a

GET request to r.

If state is contained in the parameter, then state is immediately sent to r where it is compared

to the stored login session records but neither stored nor sent out again. In each case, a script is

sent back to b. The scripts that r can send out are script rp index and script rp get fragment ,

none of which cause requests that contain state (recall that we are in the case where state is

contained in the URI parameter, not in the fragment). Also, since both scripts are always

delivered with a restrictive Referrer-Policy header, any requests that are caused by these

scripts (e.g., the start of a new login flow) do not contain state in the Referer header.2

If state is contained in the fragment, then state is not immediately sent to r, but instead, a

request without state is sent to r. Since this is a GET request, r either answers with a response

that only contains the string ok but no script (Lines 24ff. of Algorithm C.8), a response containing

script rp index (Lines 2ff. of Algorithm C.5), or a response containing script rp get fragment

(Line 30 of Algorithm C.5). In case of the ok response, state is not used anymore by the browser.

In case of script rp index , the fragment is not used. (As above, there is no other way in which

state can be sent out, also because the fragment part of an URL is stripped in the Referer

header.) In the case of script rp get fragment being loaded into the browser, the script sends

state in the body of an HTTPS request to r (using the path /redirect ep). When r receives

this request, it does not send out state to any party (see Lines 14ff. of Algorithm C.5).

This shows that state cannot be known to any party except for b, i, and r. �

1We have only web attackers.
2Without the Referrer Policy, state could leak to a malicious OP or other parties.
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Proof of Session Integrity for Authentication

To prove that every OIDC web system with web attackers is secure w.r.t. session integrity for

authentication, we assume that there exists an OIDC web system with web attackers which is

not secure w.r.t. session integrity for authentication and lead this to a contradiction.

Assumption 5. There exists an OIDCWSw be an OIDC web system with web attackers, a run ρ

of OIDCWSw, a processing step Q in ρ with

Q = (S,E,N) −→ (S′, E′, N ′)

(for some S, S′, E, E′, N , N ′), a browser b that is honest in S, an OP i ∈ OP, an identity u that is

owned by b, an RP r ∈ RP that is honest in S, a nonce lsid , with loggedInQρ (b, r, u, i, lsid) and (1)

there exists no processing step Q′ in ρ (before Q) such that startedQ
′

ρ (b, r, lsid), or (2) i is honest in

S, and there exists no processing step Q′′ in ρ (before Q) such that authenticatedQ
′′

ρ (b, r, u, i, lsid).

Lemma 30. Assumption 5 is a contradiction.

Proof. (1) We have that loggedInQρ (b, r, u, i, lsid). With Definition 78 we have that r sent

out the service session id belonging to lsid to b. (This can only happen when the function

CHECK ID TOKEN (Algorithm C.8) was called with lsid as the first parameter.) This means

that r must have received a request from b containing a cookie with the name sessionId

and the value lsid : The response by r (which we know was sent to b) was sent in Line 24 in

Algorithm C.8. There, r looks up the address of b using the login session record under the key

redirectEpRequest. This key is only ever created in Line 36 of Algorithm C.5. This line is

only ever called when r receives an HTTPS request from b with the cookie as described.

We can now track how the cookie was stored in b: Since the cookie is stored under a domain

of r and we have no network attacker, the cookie must have been set by r. This can only happen

in Line 39 in Algorithm C.9. Similar to the redirectEpRequest session entry above, r sends

this cookie as a response to a stored request, in this case, using the key startRequest in the

session data. This key is only ever created in Lines 6ff. of Algorithm C.5. Hence, there must

have been a request from b to r containing a POST request for the path /startLogin with an

Origin header for an origin of r. There are only two scripts which could potentially send such a

request, script rp index and script rp get fragment . It is easy to see that only the former send

requests of the kind described. We therefore have a processing step Q′ that happens before Q

in ρ with startedQ
′

ρ (b, r, lsid).

(2) Again, we have that loggedInQρ (b, r, u, i, lsid). Now, however, i is honest.

We first highlight that if r receives an HTTPS request, say m, which contains state such that

S(r).sessions[lsid ][state] ≡ state and contains a cookie with the name sessionId and the

value lsid then this request must have come from the browser b and be caused by a redirection

from i or a script from r. From loggedInQρ (b, r, u, i, lsid) it follows that there is a term g such that

S(r).sessions[lsid ] ≡ g, and g[loggedInAs] ≡ 〈d, u〉 with d ∈ dom(i). From the Algorithm C.8

222



we have that S(r).issuerCache[g[identity]] ≡ d. With Lemma 29 we have that only b, r, and

i know state.

We can now show that m must have been caused by i by means of a Location redirect that

was sent to b or by the script script rp get fragment . First, neither r nor i send requests that

contain cookies. The request must therefore have originated from b. Since no attacker knows

state, the request cannot have been caused by any attacker scripts or by redirects from parties

other than r or i (otherwise, there would be runs where the attacker learns state).

Redirects from r can be excluded, since r only sends a redirection in Line 39 in Algorithm C.9

but there, a freshly chosen state value is used, hence, there is only one processing step in which

r uses state for this redirect. This is the processing step where r adds state to the session data

stored under the key lsid . Since this is a session in which the honest OP i is used, and with

Lemma 22, we have that r does not redirect to itself (but to i instead).

The scripts script rp index and script op form do not send requests with the state parameter.

Therefore, the remaining causes for the request m are either the script script rp get fragment

or a location redirect from i.

If the request m was caused by script rp get fragment , then it is easy to see from the definition

of script rp get fragment (Algorithm C.2) that this script only sends data from the fragment

part of its own URI (except for the iss parameter) and it sends this data only to its own origin.

This script therefore must have been sent to b by r, which only sends this script after receiving

HTTPS request to the redirection endpoint (/redirect ep). With the same reasoning as above

this must have been caused by a location redirect from i.

For clarity, by mredir we denote the response by i to the browser b containing this redirection.

We now show that for mredir to take place, there must have been a processing step Q′′ (before

Q) with authenticatedQ
′′

ρ (b, r, u′, i, lsid) for some identity u′.

In the honest OP i, there is only one place where a redirection happens, namely in Line 71 in

Algorithm C.10. To reach this point, i must have received the login data for u′ in the HTTPS

request corresponding to mredir. This must be a POST request with an Origin header containing

an origin of i. As i only uses script op form, the request must have been caused by this script.

Hence, we have authenticatedQ
′′

ρ (b, r, u′, i, lsid). We now only need to show that u′ = u.

With loggedInQρ (b, r, u, i, lsid), we know that r must have called CHECK ID TOKEN (Algo-

rithm C.8). We further have that S(r).sessions[lsid ][loggedInAs] ≡ 〈d, u〉. We therefore have

that i must have created an id token with the issuer d and the identity u. CHECK ID TOKEN

can be called in Line 28 in Algorithm C.4 and in Line 43 in Algorithm C.5. We distinguish

between these two cases.

– CHECK ID TOKEN was called in Line 28 in Algorithm C.4: When the function is called

in this line, there must have been an HTTPS request reference with the string TOKEN (cf.

generic web server model, Algorithm A.12). Such a reference is only created in Line 16

of Algorithm C.6. With Lemma 22 we know that this HTTPS request was sent to the

token endpoint (path /token) of i (because the issuer, stored in the login session record,
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is i). Since the token endpoint returned an id token of the form described above, and i is

honest, there must have been a record in i, say v, with v[subject] ≡ u. In the request to

the token endpoint, r must have sent a nonce c such that v[code] ≡ c. This request, as

already mentioned, must have been sent in Line 16 of Algorithm C.6. This means, that

there must have been an HTTPS request to i containing the session id lsid as a cookie, c,

and state. Such a request can only be the request m as shown above, hence there must

have been the HTTPS response mredir containing the values c and state. Recall that we

have the record v as shown above in the state of i. Such a record is only created in i if

authenticatedQ
′′

ρ (b, r, u, i, lsid). Therefore, u = u′ in this case.

– CHECK ID TOKEN was called in Line 43 in Algorithm C.5: In this case, the id token

must have been contained in m and mredir as above. Such an id token is only sent out in

mredir by i if authenticatedQ
′′

ρ (b, r, u, i, lsid). Therefore, u = u′ in every case. �

Proof of Session Integrity for Authorization

To prove that every OIDC web system with web attackers is secure w.r.t. session integrity for

authorization, we assume that there exists an OIDC web system with web attackers which is

not secure w.r.t. session integrity for authorization and lead this to a contradiction.

Assumption 6. There is a OIDC web system OIDCWSw with web attackers, a run ρ of OIDCWSw,

a processing step Q in ρ with Q = (S,E,N) −→ (S′, E′, N ′) (for some S, S′, E, E′, N , N ′) a

browser b that is honest in S, an OP i ∈ OP, an identity u that is owned by b, an RP r ∈ RP

that is honest in S, a nonce lsid , with (1) usedAuthorizationQρ (b, r, i, lsid) and there exists no

processing step Q′ in ρ (before Q) such that startedQ
′

ρ (b, r, lsid), or (2) i is honest in S and

actsOnUsersBehalfQρ (b, r, u, i, lsid) and there exists no processing step Q′′ in ρ (before Q) such

that authenticatedQ
′′

ρ (b, r, u, i, lsid).

Lemma 31. Assumption 6 is a contradiction.

Proof. (1) We have that usedAuthorizationQρ (b, r, i, lsid). With Definition 81 we have that

r sent out the access token belonging to lsid to i. This can only happen when the function

USE ACCESS TOKEN (Algorithm C.7) was called with lsid . This function is called in Line 46

of Algorithm C.5 and in Line 27 of Algorithm C.4.

In both cases, there must have been a request, say m, to r containing a cookie with the session

id lsid . In the former case, this is the request that is processed in the same processing step as

calling the function USE ACCESS TOKEN. In the latter case, there must have been an HTTPS

request reference with the string TOKEN (cf. generic web server model, Algorithm A.12). Such

a reference is only created in Line 16 of Algorithm C.6. To get to this point in the algorithm,

a request as described above must have been received. Since we have web attackers (and no

network attacker), it is easy to see that this request must have been sent by b. With the same
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reasoning as in the proof for session integrity for authentication, we now have that there exists

a processing step Q′ in ρ (before Q) such that startedQ
′

ρ (b, r, lsid).

(2) We have that i is honest and actsOnUsersBehalfQρ (b, r, u, i, lsid). From (1) we know that

r must have received a request m from b containing a cookie with the session id lsid . Therefore,

we know that mredir exists just as in the proof for Lemma 30 (2). As in that proof, we have that

authenticatedQ
′′

ρ (b, r, u′, i, lsid) for some identity u′. We therefore need to show that u = u′.

Because of actsOnUsersBehalfQρ (b, r, u, i, lsid), r must have called USE ACCESS TOKEN with

some access token t (Algorithm C.7). We further have that there is a term g such that g ∈〈〉

S(i).records with t ∈〈〉 g[access tokens] and g[subject] ≡ u.

USE ACCESS TOKEN can be called in Line 27 in Algorithm C.4 and in Line 46 in Algo-

rithm C.5. We now distinguish between these two cases.

– USE ACCESS TOKEN was called in Line 27 in Algorithm C.4: When the function is called

in this line, there must have been an HTTPS request reference with the string TOKEN (cf.

generic web server model, Algorithm A.12). Such a reference is only created in Line 16 of

Algorithm C.6. With Lemma 22 we know that this HTTPS request was sent to the token

endpoint (path /token) of i (because the issuer, stored in the login session record, is i).

Since the token endpoint returned the access token t, and i is honest, there must have been

a record in i, say v, with v[subject] ≡ u. In the request to the token endpoint, r must

have sent a nonce c such that v[code] ≡ c. This request, as already mentioned, must have

been sent in Line 16 of Algorithm C.6. This means, that there must have been an HTTPS

request to i containing the session id lsid as a cookie, c, and state. Such a request can only

be the request m as shown above, hence there must have been the HTTPS response mredir

containing the values c and state. Recall that we have the record v as shown above in the

state of i. Such a record is only created in i if authenticatedQ
′′

ρ (b, r, u, i, lsid). Therefore,

u = u′ in this case.

– USE ACCESS TOKEN was called in Line 46 in Algorithm C.5: In this case, the access

token t must have been contained in m and mredir as above. This access token is only sent

out in mredir by i if authenticatedQ
′′

ρ (b, r, u, i, lsid). Therefore, u = u′ in every case. �

C.3.4. Proof of Theorem 2

With Lemmas 27, 28, 30, and 31, Theorem 2 follows immediately. �
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