
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Design and Development of
Software Agents for Location

Privacy-risk estimation

Shashank Sharma

Course of Study: Information Technology

Examiner: Prof. Dr. Kurt Rothermel

Supervisor: M. Sc. Zohaib Riaz

Commenced: June 5, 2018

Completed: December 5, 2018

Abstract

The usage of mobile devices has become ubiquitous in today’s world. More people are
adopting smartphones to be able to connect with family and friends, easily perform
day-to-day tasks, discover new facets, etc. The smartphones are location-enabled and
because of this, the rise of Location-Based Applications (LBAs) in the last decade has
been phenomenal. Different LBAs use location information for advertising, recommen-
dations, finding new friends, suggesting a new point of interests, etc., based on user
trends. However, sharing location data can reveal personality traits, illnesses, political
inclinations and religious views. When the location data is collected for a certain pe-
riod, whereabouts can be easily guessed. For instance, once the location information
is collected for a few days, the arrival and departure time from “work” location can be
easily estimated. Thus, the characteristics revealed just by location details are narrowly
perceived by most users and imposes a privacy risk.

To address this privacy risk, a software agent is developed which helps to estimate and
visualize this threat. It can push notifications and aware the user about the privacy risk
before he/she decides to share the location with LBAs. In this thesis, we present an
algorithm that predicts the user’s future movements with confidence percentages. This
algorithm processes the raw location coordinates and extracts the meaningful locations.
Based on the meaningful locations, a prediction model is formed. This model is used
to predict future visits based on the user’s current location. The algorithm is evaluated
using real-life data from Microsoft Geolife dataset. To inform the user about the privacy
threat, a visualization of future visits with confidence percentages is implemented.
Finally, a prototype on an Android device is developed to help user estimate the privacy
risk before sharing location information on LBAs.

3

Acknowledgement

I would like to thank my thesis supervisor, M. Sc. Zohaib Riaz, for his valuable assistance,
useful critiques, time and suggestions during the thesis. His willingness to give me
constructive advice has been very much appreciated. I’m also grateful to Prof. Dr. Kurt
Rothermel for allowing me to do my thesis in the department of Distributed Systems.

I would like to extend my thanks to my family members, for their enthusiastic encour-
agement, and to all my friends for the motivation.

5

Contents

1 Introduction 13
1.1 Motivation . 14
1.2 Goals . 15
1.3 Contribution and Thesis Outline . 15

2 Related Work 17
2.1 Location Privacy . 17
2.2 Extracting Interesting Locations . 18
2.3 Next Location Prediction . 20
2.4 Algorithms Comparison . 22

3 System Model and Problem Statement 25
3.1 System Model Overview . 25
3.2 Problem Statement . 26

4 Privacy-risk Estimation 27
4.1 Location Prediction Model: Overview . 27
4.2 Markov Chain Model . 29

4.2.1 Time-slotted Data . 31
4.2.2 Transition Probabilities . 33
4.2.3 Algorithm . 34
4.2.4 Additional Steps . 35

4.3 Privacy-risk Estimation Algorithm . 37
4.3.1 Approach . 38
4.3.2 Proposition: Calibration of Privacy-risk Estimation 40

5 State Formation 43
5.1 Variables Used . 43
5.2 Stay-points Detection . 44

5.2.1 Sporadic GPS Trajectories . 44
5.2.2 Estimating Arrival and Departure times of Stay-points 45
5.2.3 Algorithm . 46

7

5.3 State Formation from Stay-points . 48
5.3.1 Drifting Problem . 49
5.3.2 Algorithm . 50

6 The PRE Android Application 53
6.1 Objective . 53
6.2 User Interface Design . 53

7 Evaluation 57
7.1 The Dataset and its Analysis . 57
7.2 Evaluation and Results . 59

7.2.1 Stay-points Evaluation . 59
7.2.2 Time-slotted data Results . 60
7.2.3 Privacy-risk Estimation Evaluation 64

7.2.3.1 Survey for Memory-loss Factor 65
7.2.4 Prediction Performance . 68

7.2.4.1 Metric . 68
7.2.4.2 Results . 71

7.2.5 PRE Application Performance . 71

8 Conclusion and Future Work 73
8.1 Conclusion . 73
8.2 Discussion . 73
8.3 Future Work . 74

Bibliography 75

8

List of Figures

2.1 Time-based clustering [7] . 19

3.1 System Model(left) and PRE Application Components(right) 25

4.1 Flow-chart describing the elements of the Prediction Model 28
4.2 GPS coordinates to Markov Chain Model 29
4.3 Markov chain example on a map . 30
4.4 Path modeled using Markov Chain . 31
4.5 State transitioning . 32
4.6 State weights in each time-slot . 33
4.7 State weights normalized . 33
4.8 Markov chain derived from state . 34
4.9 State transition matrix . 35
4.10 Markov Chain Model example with two states 35
4.11 Forming time-slotted data from states . 36
4.12 Transition matrix for state 1 and state 2 for time-slot 5 (left without and

right with addition of the dummy values) 37
4.13 Steps followed to add noise in the transition matrix 37
4.14 Privacy-risk estimation Algorithm using Markov Chain Model 39
4.15 Steps to apply memory-loss factor to the Markov Chain 40
4.16 Example of application of memory-loss factor 41

5.1 List of Variables . 43
5.2 Example 1 of sporadic GPS trajectories 45
5.3 Example 2 of sporadic GPS trajectories 46
5.4 Extracting stay-points from GPS Trajectories 46
5.5 Snapping stay-points to states . 49
5.6 Drifting problem while snapping stay-points to the states 50
5.7 Markov chain on states . 51

6.1 Android application screen 1 . 55
6.2 Android application screen 2(left) and 3(right) 56

7.1 Geolife dataset user transportation mode 58

9

7.2 Geolife dataset trajectory average speed 58
7.3 start and end points from each trajectory 59
7.4 Stay-points count for different time and distance thresholds 61
7.5 User 1 raw trajectory data vs. stay-points extracted 62
7.6 User 1 eight days’ time-slotted; 1. Top: Raw Trajectory Data, 2. Middle:

Stay-points within trajectories only, 3. Bottom: Stay-points with our
approach . 63

7.7 User 1 time-slotted data for the November 2008 64
7.8 Path prediction for user 1 . 65
7.9 User 1 November 2011 hourly distributed data 66
7.10 Path prediction user 1 with minimum confidence of 50% 66
7.11 Path prediction result for user 1 without changes in the algorithm 67
7.12 Path prediction result for user 1 with memory-loss factor of 0.22 67
7.13 Memory-loss factor from survey result 68
7.14 Correct(left), Incorrect(middle) or none(right) prediction scenario . . . 69
7.15 Evaluation for Geolife dataset . 70
7.16 Number of states vs Time(sec) on Android Application 71

10

List of Algorithms

4.1 markovModel() : Create the Markov Chain Model with transition proba-
bilities . 36

5.1 extractStayPoints() : Stay-point Detection 47
5.2 adjustStartEndStaypoint() : Adjust start-end time of stay-points 48
5.3 formStates() : Form states from stay-points 51

11

1 Introduction

Personal computers and mobile devices have become part of everyday life. It is ubiquitous
to interact with computers on an everyday basis. Some of these computers are capable
of location awareness, for instance, a smartphone. The geographic location can be
shared from many sources like Global System for Mobile Communication (GSM), Global
Positioning System (GPS), Wi-Fi network location and so on. The most predominant
use of location data is by the Location-Based Applications (LBAs) like Google Maps and
social networking websites like Facebook, Google+ and Instagram.

There are many LBAs in our mobiles which uses location data for personalized recom-
mendations and advertisements. These are location-based services that runs as LBAs
on user’s device. The LBAs uses user location data while the application is active and
inactive. The information is often stored on the application’s back-end-servers. Every
LBA has in its terms and conditions mentioned the usage of the location data which
are easily ignored or misunderstood. Consider an example of a weather application
forecasting the weather for the next few days on your mobile device. The weather
application is using the current location every time the user is moving to a new location
for fitting weather forecasts. Another example is of a social networking website like
Facebook. The user check-ins and shares location uninterruptedly to find friends and
recommendations. On one hand, it enhances quality-of-life by means of the obtained
services. On the other hand, the data shared with these applications can reveal private
mobility patterns to the service providers as well as to the online social contacts, thus
leading to privacy concerns.

For instance, the user shares outdoor movements with an application to receive path
recommendations or share some events with friends and family on social networking
application. The path reveals three important facts, the source location, the destination
location, and the path taken. The source location could be “home”, “shopping mall”
or a “restaurant” location and so could be the destination. The social events shared
can reveal a user’s favorite restaurant types or a club/gym he/she has been visiting in
the past. When this information is collected for several days, it could reveal the user’s
“home”, “work” and other important locations. Also, it reveals, the time spent at these
locations, arrival and leaving times and the transitions from one place to another. This
could help, for instance, a restaurant application to suggest a new restaurant, keeping in

13

1 Introduction

mind the user’s home location, type of food he/she prefers and his/her time preference
of visiting a restaurant.

1.1 Motivation

An overwhelming number of personal characteristics can be predicted online based on
location data. It can reveal user’s private information like the illnesses based on the
specialist he/she has been visiting, vacation locations he/she has been to and political
inclinations based on the promotion event he/she has attended.

If the location-based data is collected for a few weeks, it is easy to answer questions
like, where does user live/work? Where is the user’s club/gym located? What restaurant
does he/she likes? Where is he/she at weekends? Which hospital has he/she been
visiting? The answers to these questions can give an insight about the user’s private
life and whereabouts. When this data is collected for few days, the user’s movement
trends, his/her favorite places, his/her lifestyle, etc., can be precisely guessed. With
continuous learning, this data can be updated and have the user’s “home” location and
“work” location updated with time. This is a privacy attack which makes use of the user’s
past location data.

Several cases have been emerged in the past where the location data is used unlawfully.
Listing one of such examples, Michael Cunningham and his family [14] was tracked
for 24 hours for a period of two months using a GPS device. This was initiated as an
investigation on whether he filled out his time sheets at work accurately. Cunningham
was terminated at work based on the GPS data reports which tracked his whereabouts
outside the working hours as well, in which he lied about being at work.

Although in the case of smartphone users, the location sharing is consensual, the privacy
risk associated with it is often not well understood by the users. The LBAs use the
location data in the background when the application is not even in use. According to a
Pew survey [1], 91% of Americans agree that they have lost control over their private
data and 64% reported that government must regulate advertisers. It was also reported
that only 9% users are confident that social media companies will protect their data.

To understand the privacy threats imposed by LBAs in detail, we must also consider the
storage of user location histories on the back-end-servers of such applications. When the
location data is continuously collected and stored, a prediction model can be created.
This model can make predictions based on a user’s current location. For instance, if the
user is at “home” at 9 am, the prediction model can reveal his next locations for the rest
of the day. Hence, it can be easily estimated where the user would be at any hour of

14

1.2 Goals

the day. The predictions can be used to draw inferences on user’s daily routines and
habits.

The outcome of such predictions can be distributed to third parties, service providers
and social contacts. This could be an attack on user’s private life. This information can
also be leaked on third-party applications and can have unauthorized access. It is easy
to oversee the privacy threats that location-based services can impose. With the progress
of Machine Learning algorithms and Artificial Intelligence, it has become even easier
to exploit this data, understand bulk geographic data and infer meanings from several
locations.

1.2 Goals

In this regard, the goal of this thesis is to acquaint users about the consequences of
location sharing and the predictability of their future visits. A software application
called Privacy-Risk-Estimator (PRE) on smartphone is to be implemented as a solution.
This application makes location predictions based on location data previously shared
by the user. The future location predictions are shown to the users with confidence
percentages. This enables the users to visualize the consequences of sharing location
data and understand the privacy risk involved, before sharing the location information
on LBAs.

For example, a user wants to share a location data with Google+. The user can use PRE
application before doing so. The PRE application will predict the future locations based
on user’s current location and location history. By analyzing the prediction output, the
user can visualize the privacy threats and make an informed decision before sharing the
location information with Google+ application.

1.3 Contribution and Thesis Outline

The thesis contributions are:

• Design and development of location prediction algorithm.

• Process the raw location coordinates for stay-point detection and state formation.

• Evaluate the algorithm on real-life location data from Microsoft Geolife dataset.

• Implement the markov chain model algorithm and privacy-risk estimation on
android device.

15

1 Introduction

This thesis is organized as follows:

Chapter 2 (Related Work) briefs the related work researched in location prediction and
presents the basic understanding of the topics.

Chapter 3 (System Model and Problem Statement) describes the building blocks of
the system and the problem statement this thesis is addressing.

Chapter 4 (Privacy-risk Estimation) explains the concepts build for future location
predictions and privacy-risk estimation. This chapter explains the aspects for building
a location prediction model and use this model to portray the privacy threats to the
users.

Chapter 5 (State Formation) discusses the details to form states from raw location
coordinates. The concepts and implementations details along with the algorithms are
also discussed here.

Chapter 6 (The PRE Android Application) contains the user interface of android
implementation and details about the Privacy-Risk-Estimator (PRE) application.

Chapter 7 (Evaluation) contains the evaluation of each individual approach and results
of the location prediction model. The outcome of the algorithm on the Geolife dataset is
also discussed here.

Chapter 8 (Conclusion and Future Work) concludes this thesis by summarizing the
work done, results obtained, open topics and future work.

16

2 Related Work

In this section, we introduce the related work in the field, the references and motivational
work and few parts in detail.

2.1 Location Privacy

The modern computing devices are location-aware. This could pose several privacy
threats. The authors [6] surveys how the location-aware computers can be a threat
to our private information. The attacker can gain access to this data and reveal many
private elements of user behavior.

The authors [6] describes that the information can be gained by first-hand commu-
nication and second-hand communication, observation, or inference. The first-hand
communication takes place when the user provides the information to the attackers
first-hand. An example of first-hand communication is WLAN providing the MAC address.
Another example is the location-based services like Google Maps. The second-hand
communication takes place when the attacker gains the information from third party.
In ubiquitous computing, this is often the case where the information shared with one
website is often spread with the others to gain knowledge on user preferences. The
attacker may also gain information by observing the user environment. An example of
observation attack is the cameras installed in public. The last approach is the inference
where with the enough data about the user, inferences can be drawn. For instance,
if a user is often visiting a Cardiac Care, he/she has some heart related issues. With
enough data, the modern algorithms like Machine Learning algorithms can easily draw
inferences based on the data collected. The authors also proposes solutions like policies,
limiting first-hand communication or reducing amount of information disclosed to third
parties. In this thesis, we propose to limit the first-hand communications.

The topic of location privacy has been discussed by other authors as well. The authors
[13] discusses a "location obfuscation" technique in order to make it difficult for the
attacker to precisely locate the users. The authors [13] claim that it is still easier for the
attacker to retain important information from obfuscated data with high precision. They
introduces the approach of using Hidden Markov Model to predict the user movements.

17

2 Related Work

In another paper [12], the author discusses the privacy concerns while using social
networking platforms like Facebook. They indicate that there must be more research
and implementations for privacy protection as the existing approaches are not enough
to curb the user privacy on such platforms.

2.2 Extracting Interesting Locations

In this thesis, we recommend a prediction model which informs user about the privacy
risk associated with location sharing. The first step for location prediction is to extract
meaningful information from location data. This can take place with first-hand commu-
nication. An example of this is Google Maps asking the user to tag locations like “home”
or “work”. This reveals directly the most important locations for the user. Another
approach of finding the significant places from raw GPS trajectories is inferences. The
inferences can be drawn based on few weeks of the location data, which in turn, reveal
the locations like “home”, “work”, “favorite restaurant”. This can be done using several
clustering algorithms. It is important to understand that the fundamental clustering
algorithms like k-mean clustering is insufficient to extract meaningful locations. The
typical clustering algorithm do not consider factors like travelling GPS coordinates or
short duration stays. We discuss some related work in this subsection for extracting the
interesting locations.

Researchers [7] investigate how to extract significant places for the users from raw
coordinates data. The author suggests that users are more interested in “places” rather
than location. By “places” they mean where the user work/live/play and so on.

Since the Wi-Fi shares the MAC address periodically, hence, the location information is
received continuously if the Wi-Fi is connected. The researchers used Place Lab to collect
user location data from Wi-Fi enabled devices which works best also for indoor locations.
This MAC addresses are then converted into latitude and longitude information with
an estimate of 50-100m. The estimation works best in urban areas where the density
of access points is high. The authors [7] compared the typical clustering algorithms,
k-mean and Gaussian mixture model, on the location data received from Place Lab.
Two major drawbacks reported are, the input of the number of clusters in advance, and
clusters becoming large comprising of unimportant locations. Knowing the count of
clusters or significant locations in advance is difficult as it can vary with users. There
are several known algorithms to compute the number of ideal clusters on its own, but
it simultaneously increases the complexity of the algorithm. Another issue with these
clustering was the increased size of clusters. These large clusters contain unimportant
locations because of several transitions between the locations.

18

2.2 Extracting Interesting Locations

Figure 2.1: Time-based clustering [7]

The authors [7] introduces a time-based clustering algorithm to determine user’s in-
teresting locations. The algorithm is depicted in the figure 2.1. The several small dots
represent the location coordinates received in an online manner. This algorithm waits
for the next location to determine if it belong to the significant place cluster or not. The
cluster within a distance threshold which is stayed for at least a given time threshold
is considered as a significant place. If the next point is moving geographically away
from the cluster mean location, then the new point is not added to this cluster. At this
point, the previous cluster total duration stay is checked. If the stay duration is greater
than certain time threshold, the cluster is regarded as a significant location, otherwise
the cluster is deleted. Hence, this clustering excludes all irrelevant or shortly stayed
locations. In the figure 2.1, the clusters a and b are considered as a significant place and
the intermediary clusters like i1, i2, i3 are rejected as the duration of the stay was less
than the threshold.

The location data is collected from Place Lab and tracked every second. Their [7] results
show that the algorithm could extract significant places and works better than k-mean
or Gaussian mixture model clustering on location data. The researchers also suggest
that the locations must be labelled to extract semantic meaning behind the location
coordinates like work/restaurants and so on. The time-based clustering, with some
extensions, is also used in this thesis for stay-points extraction.

A research done by [17] also investigate in the direction of mining the interesting
locations from location data. The authors aim to extract the interesting locations
and classical travel sequences based on GPS trajectory data. Based on multiple GPS
trajectories, a Tree-based Hierarchical Graph (TBHG) is created. After this, an approach
called Hypertext Induced Topic Search (HIT) is applied.

In this approach [17], a user will be linked to many locations and a location will be
linked to many users. The links between users and locations are weighted based on user
GPS trajectory data. A hub score is given to a geographical region for a user based on

19

2 Related Work

the travel experiences of the user. It is suggested that a user with a high hub score in
a region will visit many places in that region and has a rich travel experience in that
region. Considering the hub scores from several users, many interesting places can be
mined in the regions. This provides each location within the hub regions an authority
score. A user with high travel experience in one region will contribute more to estimate
an interesting location in that region.

The researchers [17] system is used by 107 users and the work is also part of the Geolife
location dataset from Microsoft [17] [15] [16]. A comparison with rank-by-count and
rank-by-frequency is done. Rank-by-count ranks a location interesting if more users
have visited that place and rank-by-frequency ranks a location interesting if the location
has been visited by the users more frequently. Their approach outperformed these two
algorithms. Since this approach requires travel experiences from multiple user location
trajectories to extract the significant location for one user, we keep this methodology for
potential future work.

2.3 Next Location Prediction

After extracting the interesting locations, the next step is to use them for location
predictions. The next location prediction can inspect user’s day-to-day locations. This
can also suggest user’s future placements. Research was done by [11] in the field of
next place location prediction which suggests the next predicted location based on
user behavior. The main idea is to use user check-ins on Foursquare to predict user
movements. The data of 35 million check-ins from across the globe over the period of 5
years is used. The idea is explained how user check-ins not only allows us to see the
locations user visited in the past but also help us understand the mobility patterns of the
users. They have used prediction features like user preferences, the popularity of the
places and geographic distance between places. On these features, they have applied
supervised learning with linear model and M5 model trees.

One of the first tasks addressed [11] is the next check-in prediction. The next check-in
is predicted based on the current check-in data and several other factors. First, all the
possible next location check-in based on current check-in are ranked. It is suggested
that 99% of the next check-ins are within 10 kilometers radius from the current check-
in. The check-ins are also mostly in urban areas. The ranking is performed based on
historical visits by the user to a place, categorical preferences based on what category
of places have user checked-in in the past and social filtering based on where user’s
friends are checked-in. The next task is a global mobility feature to determine check-in
patterns irrespective of user preferences. This uses the popularity of the geographic
location, geographic and relative distance of all the other locations from user’s current

20

2.3 Next Location Prediction

location and activity transition where few locations are visited after specific locations,
for instance going to a hotel after an airport or railway station visit. Next, they assign
the temporal features to each place. Based on the hour category, what type of place has
been checked-in in a particular hour of the day or week?

After the assignment of these features, the ranks(k), percentile rank (PR) and average
percentile rank (APR) are defined for each venue. The highest rank is given to the
location where the next check-in could take place. The analyses from the researchers
suggest that APR is scored higher for categorical preferences with 0.84 when compared
to historical visits with APR 0.68 and social filtering with APR 0.61. In global mobility
section, place popularity has better APR which is 0.86. Activity transition features
also achieve only 0.60. The study [11] also suggested that people tend to stick to
their set of location check-ins during the day time but visited new locations during
evening. All these features suggest that there could be many factors which can affect
user movement patterns. They finally used all these features and combined them
into a supervised learning framework. With M5 tree, they have received an APR of
0.94 and linear regression model only resulted with an APR of 0.81 which is less than
many individual feature APR. The authors explained how the prediction model can
have better performances with several features combined. The evaluation is done on a
social networking check-in dataset and hence, this could have influenced the evaluation
results.

Authors [5] also discusses mobile based next location prediction based on current
location. They suggest using contextual data along with spatial and temporal data
associated with location. The mobile call/SMS logs, accelerometer and Bluetooth
can have additional information which has not been investigated before for location
predictions. The researchers explain how location prediction is very user specific, the
data is evolving with changing city/work location, etc. and it is possible to have missing
location data.

The model [5] pre-process the raw data which keeps the short-term data with its
contextual information. The model should accept and integrate new location data and
an updated check of actual next location vs. predicted next location is performed to keep
an updated accuracy rate. This model is implemented in an online manner on a mobile
device. The data used as an input is from Nokia Mobile Data Challenge (MDC) [9]
from 200 participants over one year. First, the raw data is processed to extract temporal
features, phone status, phone usage and other features. These features include the hour
and time duration of a visit, the ring-tone used, last call/SMS log and others. Then a
classification technique is used with a software named WEKA.

The results [5] suggested that the regular users were easy to predict with an accuracy
percentage of 80% whereas the users with irregular movement patterns are difficult to
predict. In feature selection phase, it has been found that keeping all the features gives

21

2 Related Work

the best results with accuracy of 92%. The contextual information addition is added as
a potential future work of this thesis.

The paper [5] also suggests an alternative advertisement approach. For instance, a
user will be more interested in dinner promotion/discount before he/she goes outside
on dinner time. The user can share the location-based data with the telecom provider,
and the telecom service provider can act as an intermediary between the user and the
restaurant advertisement company. The third party like, in this case, the restaurant
company, can push the relevant advertisements on the user’s phone based on the
predictions result shared by the telecom provider, without disclosing user’s information
or location data to the third parties. In this scenario, the user can receive more relevant
advertisements and still have not shared his private information with advertisement
companies. This can help in preventing personal data to be shared with companies and
third parties and hence, preserving user privacy.

The authors [2] design hierarchical hidden semi-markov-model concerning spatio-
temporal location data to predict human mobility patterns. In this model, each state
denotes either a stay-point or a transition from one place to another. The states which are
more visited will be super states consisting of other states, and the states geographically
closer or spatio-temporally closer are more likeable to be in one state. Hence, there are
super states which contain other states. The next step is to map each location coordinate
in a grid with cell id. The algorithm becomes expensive with increasing states. The states
can be reduced by using states at a higher level in the hierarchy. This, in turn, reduces
the total complexity of the algorithm. The researchers have used real-life location data
Geolife dataset [17] [15] [16] and Capricorn dataset [3] [8]. The approach has better
results in the presence of noise and missing data.

2.4 Algorithms Comparison

The author [4] compared 18 different location prediction algorithms. The focus here is
on the accuracy of prediction along with other parameters to compare these algorithms
with each other. Based on their analysis and knowledge gained during the algorithm
comparison, they also present a new next-place prediction algorithm called MAJOR. The
dataset used by the researchers is Nokia Mobile Data Challenge (MDC) [9]. It contains
37 user mobile phone data over 1.5 years.

They [4] have considered several spatial and temporal features with different combina-
tions and named each algorithm based on the features used. For instance, the features
used are, current location of the user P1, current and previous location of the user P2,
time of the day H, Day of the week D, weekday or weekend W. Here P1 and P2 are

22

2.4 Algorithms Comparison

spatial features and H, D and W are temporal features. Using the combination of these
spatial and temporal features, they have formed several algorithms e.g., DP1, WHP2
and so on. On these algorithms, several performance metrics are calculated, which
contains factors like accuracy percentage A1 which is the ratio of correct predictions to
the total predictions. Other performance factors which included the true positive, false
positive, true negative and false negative with respect to transitions. For example, a true
positive transition is the transition which is correctly predicted from one place to another.
True positive transition rate TTPR is the ratio of true positive transitions over the total
transitions. Similarly, other rates like false positive transition rate, are calculated. Some
other interesting performance parameters included transition precision ratio which is
calculated as ratio of number of correctly predicted transitions and the total predicted
transitions. The researchers also considered the arrival and departure events prediction
from a particular place as a performance metric.

Using the combination of different spatial and temporal features, they [4] have compared
18 different prediction algorithms for their predefined performance metrics. The first
comparison is highlighted for algorithms considering only spatial features, only temporal
features or both together. Most algorithms which can achieve a good prediction accuracy
fail to predict a transition and vice-versa. This concludes that there exists a trade-
off between prediction accuracy and transition prediction. This is overcome by the
novel approach introduced in the paper called MAJOR. This new approach runs all 18
algorithms (spatial and temporal combinations) together and selects the one with the
highest votes. This means that, if the highest vote among the 18 algorithms suggests a
transition, then the transition is predicted, otherwise not. The same voting approach
is applied for the prediction of next place. This gave MAJOR an accuracy of 82%
but only 21% detection of true transition. To improve the transition detection ability,
they have introduced a voting threshold. The analyses suggested that a median of 8
approaches predict a true transition and a median of 3 approaches predict a transition
when no transition occurs. This will help to decide the voting threshold offline. If the
minimum number of approaches voting for the transition is greater than or equal to
the threshold, then it is considered a transition, otherwise not. The researchers [4]
help us to understand the different metric which is important in location prediction
algorithms.

23

3 System Model and Problem Statement

This chapter consist of the system model describing the system components and present
the problem statement addressed in this thesis.

3.1 System Model Overview

Our system model comprises two components, namely: mobile phone and location-based
services as shown in figure 3.1. An assumption is made that the user makes the location
sharing decision manually.

The mobile phone is equipped with location determination technologies like GPS. This
smartphone is capable of outdoor location tracking. The mobile phone exchanges
information with several location-based services.

This mobile phone also runs the Privacy-Risk-Estimator (PRE) application. The location
data is updated and shared regularly with the PRE application. PRE informs the user
about his/her predictability and privacy threats related to location sharing. Hence, the
user can make an informed decision before sharing location information with other
location-based services. The decision is made by the smartphone users and hence, giving
the users more authority on their privacy. The decision can protect the user privacy and
attack on his/her location data.

Figure 3.1: System Model(left) and PRE Application Components(right)

25

3 System Model and Problem Statement

The components of the PRE application are shown in 3.1 on the right. The application
receives location data for a few weeks. This data is used to create a prediction model.
This prediction model keeps a track of user visits and transitions from different locations.
Finally, the prediction model is used to visualize the privacy threat. This visualization
includes the future locations predictions based on current location. In other words, it
can aware the users about the consequences of sharing the location with other LBAs.

For example, a user named Carl wants to share his current location gym with Google+
application. He also has PRE installed in his smartphone. Before sharing the location
with the Google+ application, Carl checks the privacy risk involved using PRE application.
PRE application suggests Carl all the locations which are predictable after gym, based on
his location history. The estimations suggest that Carl would visit a particular restaurant
in the coming hours and then he would go back to his home location. Carl can now
decide if he want to continue sharing the gym location with Google+ or not.

3.2 Problem Statement

The threat of location prediction and exploitation of user privacy is to be shown to the
users so that they can make a wise decision before sharing the location with third-party
applications on mobile devices. In this regard, we define the following requirements:

1. An algorithm should be developed which can make realistic and accurate future
location predictions based on location history of the user.

2. These predictions should be available for privacy-risk estimation locally on user’s
smartphone.

3. The privacy threat should be visualized in a way that it is easily understandable by
most users irrespective of their educational background.

4. The detail of the privacy risk should be realistic. User should be able to calibrate
the risk estimates.

5. The algorithm should be simple enough to be able to run on a mobile device with
limited CPU and memory.

26

4 Privacy-risk Estimation

In this chapter, a privacy-risk estimation approach is discussed. A location prediction
model (markov chain model) that predicts the future visits of a user based on their
current location is examined. This model is then used for privacy-risk estimation. The
idea is to raise awareness to users about the privacy risk while sharing the location with
applications on mobile phones.

4.1 Location Prediction Model: Overview

The human mobility pattern can be dependent on several features like user’s occupation.
For instance, if the user is a salesperson or has an occupation which requires daily
travel, it is very unlikely that the user has a regular “home-work-home” pattern. These
users are difficult to be predicted. Oppositely, users who have very regular movement
patterns are easily predictable. The idea is to have a prediction model which can work
for everyone.

The user tends to have a pattern where the next location is dependent on their current
location. For example, the “work” location is often visited directly after “home” or in
many cases, after the visit to the “supermarket”, the user tends to go back to “home.”
These trends could be often predictable but sometimes they are not obvious. For instance,
a “restaurant” visit could occur after “home” or “work” visit or even after a “shopping
mall” visit. But most people have a pattern of transitioning between the places, where
the next visit is dependent on their current location. To keep the model simple, a markov
chain prediction model is suggested. This model makes predictions based on current
location only.

The prediction model contains several steps. The flow chart depicted in 4.1 explains
how the model works. The location coordinate data with the date and time information
is fed as input to the model. The model receives the location coordinates in an online
manner. This is to simulate how user shares the location details with other LBAs like
Google+, Facebook, etc. The model keeps collecting the GPS points till the end of a
time-slot, which is depicted using the “hour change” decision block. The prediction
model works on discrete time-slots t. These time-slots are divided based on the hours of

27

4 Privacy-risk Estimation

Figure 4.1: Flow-chart describing the elements of the Prediction Model

the day. Hence, time-slots t ranges from 0 to 23. After the end of each time-slot, several
steps are performed on the points from the previous hour. These steps are:

• Stay-points detection (discussed in chapter 5)

• Group the stay-points to form states (discussed in chapter 5)

• Create time-slotted data (discussed in current chapter 4)

• Apply markov chain model (discussed in current chapter 4)

The location coordinates P[x, y, d], where x, y and d are latitude, longitude and date-
time information respectively, are received and after each time-slot, significant locations
called stay-points as sp = {sp1, sp2, . . . spn} are extracted. These stay-points are the
locations where user has spent significant amount of time. This step removes the noise
(travelling locations coordinations or short stay locations like post-office visit) and makes
sure that the model is built on stable and longer stayed locations only. As a next step,
the stay-points are clustered together to form states as st = {st1, st2, . . . stn}. The states
are formed by combining the similar stay-points based on their geographical distance
from each other. These states are used to form the time-slotted data and finally creating
the markov chain model.

28

4.2 Markov Chain Model

Figure 4.2: GPS coordinates to Markov Chain Model

A more detailed depiction is done in figure 4.2. The top layer depicts the incoming
location points. The longer stayed locations are tracked down as stay-points as shown
in the second layer of the figure 4.2. The stay-points are combined, and the states are
formed as the next step. These states are then weighted within their corresponding
time-slot which forms the time-slotted data.

Please note, this is just a quick introduction of the different elements of the prediction
model. In this chapter, we introduce the prediction model and privacy-risk estimation
algorithms in detail, assuming that the states are already available. The formation of
states from raw location coordinates is described in further chapters.

4.2 Markov Chain Model

The markov chain model for location prediction is formed based on states. In this
chapter, we assume the states are already available.

The model of markov chain is created to calculate the probability of going from one
location to another. The figure 4.3 shows on a geographical map how the markov chain
looks like. There are four important locations marked on the map. These marked loca-
tions are called states. The markov chain model will contain the transition probabilities
from one of these important places to all the other places (including self) as depicted in
the figure 4.3. The arrow depicts the transitions from one location to another (including
self). It is important to understand that the model proposed in this thesis considers
only the significant locations and the transitions between them. Hence, the travelling

29

4 Privacy-risk Estimation

Figure 4.3: Markov chain example on a map

location coordinates will be ignored as noise and will not be part of the markov chain
model. The extraction of these important locations from the raw location coordinate
points is detailed in the further chapters.

Once the model is created, the transition probabilities for each time-slot are available.
Based on the transition probabilities for each time-slot, a path can be predicted. A path is
the series of locations visit in the coming time-slots. The path prediction uses the current
location, current time-slot and the markov chain model. The example is extended on a
geographical map as shown in the figure 4.4. For instance, the model can suggest, if the
user is found to be at state 1 at 7am, the next visits will be at location 2, 3, 4, 3, 1 at
corresponding time-slots as shown in the figure 4.4. This results into a path which is
predicted using the markov chain model. The green arrow depicts the transition from
state 1 to 4 and the red arrows depicts the transition from state 4 back to 1. Each next
visit is predicted with a corresponding confidence percentage which is derived from the
markov chain model. The path prediction is done to indicate the predictability of a user
knowing the current location, current time-slot and past location trends. This is done

30

4.2 Markov Chain Model

Figure 4.4: Path modeled using Markov Chain

to estimate the privacy risk involved. The privacy-risk estimation is detailed in further
sub-chapters.

4.2.1 Time-slotted Data

Since, we assume that the states are already available at this moment, we continue
the discussion of state processing. The next step is to create time-slotted data. The
time-slotted data is nothing but the state weights in discrete time-slots.

The states st = {st1, st2, . . . stn} are used for calculating the weight w = {w1, w2, . . .
wk} of each state in each time-slot. It is important to know that there can be many
states in one time-slot. The weight wi represents the stay at state sti in a time-slot. Since
states itself carry some semantic meaning like “home”, “work” or others, the weights w
represents how long did the user stay at “home” in this time-slot.

31

4 Privacy-risk Estimation

Figure 4.5: State transitioning

The same state can appear in different time-slots. The set of states st = {st1, st2, . . . stn}
are assigned with weights at each time-slot to form wt = {w1, w2, . . . wn} for time-slot
t, where w1 to wn represents the weights of states st1 and stn respectively. In our case,
time-slots are divided into hours of the day. Hence, the hourly weights of each state
form the time-slotted data. Hence, we use the terms time-slotted data and hourly state
weights interchangeably.

To understand this in detail, consider an example as shown in the figure 4.5. There are
three states st1, st2 and st3 which exists between hour 4-6, 5-9 and 9-11 respectively. We
consider the time slot between hour 4-5 as 4 for simplicity. Hence, we have a total of 24
time-slots ranging from 0 to 23 in a day, representing each hour of the day. The vertical
drawn lines represent the hour of the day and the width of a state rectangle represents
the duration of the stay at that state. For instance, st1 stay is recorded at time-slot 4 and
5. The states can exist in more than one time-slot, like st1. There can be many states in
one time-slot, like st1 and st2 in time-slot 5.

Let us consider the example of transitioning from hour 4 to hour 5 as depicted in figure
4.6. In this example, the state transition from hour 4 to hour 5 is from st1 to st1 and st1

to st2, represented by dotted arrows. The state weights represent the duration of stay at
the state in that time-slot. The weight of state st1 is 60/60 as the duration of stay at st1

in time-slot 4 is for 60 minutes. Similarly, the weights of st1 and st2 are calculated in
time-slot 5, which is also indicated in the figure 4.6.

The time-slotted data is normalized before the markov chain is calculated. The normal-
ization is done by dividing the weights of all the states in a time-slot with the sum of
all the weights in that time-slot. Let us consider the time-slot 5 in our example figure
4.6. The state weights for state st1 = 0.17 and for state st2 = 0.58 in time-slot 5 are
divided with the sum both the weights i.e. 0.75. After the normalization step, the states
are shown in the figure 4.7. This is done to smooth the data in each time-slot. The sum
of the weights in time-slot 5 is now 1.

32

4.2 Markov Chain Model

Figure 4.6: State weights in each time-slot

Figure 4.7: State weights normalized

4.2.2 Transition Probabilities

Creating the markov chain model involves calculation of the transition probabilities. The
transition probabilities indicate the chances of transitioning from one state to another.
The markov chain holds the probability of transitioning from one state to another, in
discrete time-slots. The time-slots are represented by hour of the day, as shown in figure
4.8. Hence, the markov chain records all the transitions from hour t to hour t+1.

The markov chain built is standard and the probability only depends on the current
location and not the locations before. The model is updated after each day to keep a
track of all the new locations user has visited in the previous day and update the mobility
pattern. The continuous update of the markov chain model helps to track the changes in
user behavior. For instance, user may change the work location, working hours, join a
new gym or move to a new city.

33

4 Privacy-risk Estimation

Figure 4.8: Markov chain derived from state

The states st = {st1, st2, . . . stn} has corresponding probabilities p = {p1, p2, . . . pn} in
a time-slot. Let us continue the previous example from figure 4.7. The probability of
transitioning from st1 to st1 from hour 4 to 5 is calculated based on the hourly weight of
st1 in hour 4 and hourly weight of st1 in hour 5. Similarly, the probability of transitioning
from st1 to st2 from hour 4 to 5 is calculated based on the hourly weight of st1 in
hour 4 and hourly weight of st2 in hour 5. The weight vector wt = {w1, w2, . . . wk}
represents the weight of states from state 1 to k for time-slot t. The weights vector
w4 = {w1, w2} for time-slot 4 can be defined as w4 = {1, 0}, where the 1 represents
the weight of state st1 and 0 represents the weight of state st2 in time-slot 4. A similar
weight vector w for the next time-slot 5 can be represented as w5 = {0.23, 0.77}. The
multiplication w4(transpose)* w5 results into a matrix as represented in the figure 4.9.
Several such matrices are generated for each time-slot. For each time-slot, there are also
many matrices generated on different days. The matrices for same time-slots are added.
The resultant matrix rows are normalized which results into the sum of each row as 1.
The matrix now represents the transitions probabilities among states st1 and st2 from
time-slot 4 to time-slot 5. The first row represents the transition probabilities from state
st1 all the other states i.e. st1 and st2. Similarly, the second row represents the transition
probabilities from state st2 to all the other states. This represents now a markov chain
model for the given time-slot which includes all the known states.

The markov chain for transition from hour 4 to hour 5 is called mc5 which is depicted
in the figure 4.10. The arrows indicate the transition probabilities from one state to
another. A transition can be a self-transition, for instance, st1 to st1 or a transition to
another state, for instance, st1 to st2. These transitions represent human mobility from
one important place to another. To understand this process in detail, please refer the
paper [13].

4.2.3 Algorithm

Algorithm 4.1 describes the creation of markov chain model. After state weights w
= {w1, w2, . . . wk} are calculated, the next step is to build the markov chain model

34

4.2 Markov Chain Model

Figure 4.9: State transition matrix

Figure 4.10: Markov Chain Model example with two states

mc. For each t hour of the day, the transposed weight vector wt is multiplied with the
weight vector wt+1. This gives the transition matrix trn_matt+1. The transition matrix for
time-slot t is added with the transition matrix of the same time-slot t, for all the days. To
keep it understandable, this step is not shown in the algorithm. The resultant transition
matrix trn_matt+1 is used to calculate the markov chain by dividing each cell element of
the matrix with the sum of the row. This converts the cell elements into probabilities.
The sum of each row is now 1. Note, for the last time-slot of the day, i.e. 23, the weight
for time-slot 23 and the weight of time-slot 0 for the next day is used. To keep it simple,
this next day is also not indicated in the algorithm.

4.2.4 Additional Steps

Once the markov chain is calculated for each time-slot, some additional steps are
performed. Consider the figure 4.11 as an example. The weights of state st1 and st2

for hour 4 and 5 are depicted in this figure. There is a transition from hour 4 to 5
from state st1 to st1 and another transition from st1 to st2. The corresponding state
weights represents the normalized duration of stay in that time-slot. Hence, the w1 is 1
at time-slot 4, because the entire stay at this time-slot is at state st1, w1 is 0.33 (20/60)
between time-slot 5 and 6 as the stay at state st1 between 5 and 6 hours is 20 minutes.
Similarly, the weights of the other states are calculated.

35

4 Privacy-risk Estimation

Algorithm 4.1 markovModel() : Create the Markov Chain Model with transition proba-
bilities

Input: State Weights w
Output: Markov Chain Model mc

1: for each t− hour from 0to23 do
2: if t! = 23 then
3: trn_matt+1 ← wt[T] ∗ wt+1

4: mct+1 ← eachCell(trn_matt+1)/rowSum(trn_matt+1)
5: else
6: trn_mat0 ← w23[T] ∗ w0

7: mc0 ← eachCell(trn_mat0)/rowSum(trn_mat0)
8: end if
9: end for

Figure 4.11: Forming time-slotted data from states

The transition matrix for time-slot 5 is shown on the left part of the figure 4.12. The
rows and the columns are representing each state and each cell represent the transition
from one state to another. The first row represents the transition from st1 to all the other
states i.e. st1 and st2. To calculate the probability of transitioning from st1 to all the
other states can simply be calculated by dividing each cell elements with the sum of the
row. If the sum of the row is zero, this indicates that we have no information about this
transition. In this case, equal probabilities are assigned to all the states. This is shown
on the right of the figure 4.12, where the transitions from state st2 are assigned with
equal probabilities i.e. 0.5.

There could also be cases where only few cells in a particular row of the transition matrix
are 0. In this case, the sum of these rows will still result in 1 and not in 0. In such cases,
the 0 cell values are replaced with a very small noise value. This is done to ensure that
the chances of transitioning from a known state to another known state is never 0. The
figure 4.13 explains the process of replacing the zero probabilities. The first step shows

36

4.3 Privacy-risk Estimation Algorithm

Figure 4.12: Transition matrix for state 1 and state 2 for time-slot 5 (left without and
right with addition of the dummy values)

Figure 4.13: Steps followed to add noise in the transition matrix

the transition matrix calculated as discussed earlier. This transition matrix has a cell
value 0 for transitioning from st1 to st3. In step 2, 0 is replaced by a 0.00001, a small
weight. In step 3, each cell value is divided by the sum of the row, making the transition
probability from state st1 to st3 non-zero.

4.3 Privacy-risk Estimation Algorithm

The privacy-risk estimation is to inform the user about his/her predictability. The idea
is to predict several paths that user may take, from a known location, in future time-
slots. For example, user’s current location is known to be at “work” at 8 am. Knowing
his/her location data for few weeks, the markov chain model is built. The privacy-risk
estimation can be done using this model. The model is used to predict all the locations
in consecutive time-slots. One of the paths predicted could suggest that he will stay at
"work" location till 5pm with very high confidence. Another path could suggest that he
will go back to his “home” location at 3 pm with medium to low confidence. Each next
location is predicted with a confidence percentage. There could be several such paths
that could be predicted.

The paths are predicted only based on the markov chain model. If the model is not
recent or is built with very limited data, the predicted paths may not make much sense.

37

4 Privacy-risk Estimation

For example, the markov chain model is build based on the 2 days data where user
transitioned between “home”, “shopping malls” and “restaurants” only. The two days do
not include “work” location. It could have been a weekend, public holidays or user has
taken a vacation. Now, on third day, if the paths are predicted, only these locations are
taken into consideration and the paths could be misleading if user started working from
day 3. Hence, the markov chain model must be built on several days location data and
the data should be recent to make realistic predictions.

4.3.1 Approach

The markov chain model contains the transition probabilities from one state to all the
other states. The states st = {st1, st2, . . . stn} has corresponding probabilities p = {p1,
p2, . . . pn} in a time-slot. These state probabilities are used for privacy-risk estimation.
For this, a state (current location) and a time-slot (current hour) is required as input.
Based on these inputs, the future locations are predicted to showcase the privacy-risk to
the users.

Each next location is predicted with a confidence percentage. We define a confidence
threshold value which can range from 10-100%, since the confidence of 0% would not
produce any meaningful results. The prediction stops one step after the confidence
drops less than the confidence threshold value.

Consider the figure 4.14, as an example figure for markov chain model. The start state is
i (current location) with a probability of pi at time-slot t (current hour). The predictions
are made for the future time-slots i.e. t+1 and further. At each time-slot, there exists
probabilities for all the other states, denoted by p = {p1, p2, . . . pn}. The confidence
percentage, at any time-slot, is calculated by multiplying the probability of the state at
this time-slot with the state probability at the previous time-slot. Hence, at time-slot
t+1, the confidence to be at state st1 is calculated as (pi*p1). The confidence calculated
should be more than certain threshold to continue the prediction in this direction.

Continuing the previous example, confidence vector CP at time-slot t+1 would look like
CP = {pi*p1, pi*p2, . . . pi*pn}. At this step, the vector CP is put into a priority queue.
The queue sorts the values in CP vector in a way that the highest confidence value is
put at the top of the queue. This means, if the value (pi*p1) resulted into the highest
confidence value, the path prediction continues from state st1 for next time-slot t+2.
The process is repeated for each coming time-slot, until the confidence drops below the
threshold value.

The selected paths are all the states selected with confidence greater than the threshold.
The confidence reduces as we go further from the start time-slot. In the figure 4.14, the

38

4.3 Privacy-risk Estimation Algorithm

Figure 4.14: Privacy-risk estimation Algorithm using Markov Chain Model

selected paths are i-1-5 and i-1-4. This means the final confidence calculated for path
i-1-5, which is (pi*p1*p5) is greater than or equal to the confidence threshold and for
path i-1-4, which is (pi*p1*p4) is also greater than or equal to the confidence threshold.
The process continues till the confidence drops below the threshold value. At the end of
each predicted path, an additional state is also represented. For this additional state,
the confidence will be less than threshold value. This is done to indicate the confidence
drop right after the last selected state, in each predicted path.

39

4 Privacy-risk Estimation

Figure 4.15: Steps to apply memory-loss factor to the Markov Chain

4.3.2 Proposition: Calibration of Privacy-risk Estimation

The privacy-risk estimation algorithm is to suggest a user his/her predictability. The
algorithm reduces the confidence as we go further away from the starting time-slot. This
is because of the way markov chain model works. The model keeps a record of each
transition.

The humans may have different expectations for their predictability. Most of us ignore
the infrequent and minor transitions. For instance, the exact place and time for the lunch
1 week ago is easily forgettable. But markov chain model record each of these transitions.
This affects the predictions made during these hours where several infrequent transitions
take place. Hence, markov chain model also need to forget these minor transitions
to have the same results as expected by the users of the application. This is called as
applying memory-loss factor to the markov chain model.

The memory-loss factor mlf can be calculated and applied to the markov chain model.
This can be implemented if the probabilities are reduced by a factor and then normalized
again. This will strengthen the higher probabilities and diminish the lower probabilities
completely. The process is explained with the help of a the figure 4.15 . It is important
to remember that the markov chain model contains probabilities of transitioning from
one state to another. In step 1, the relevant probability vector is extracted. In step
2, the memory-loss factor mlf is subtracted from each of these probabilities and if the
subtraction results into a negative number then it is zeroed. In step 3, the vector is
re-normalized by dividing each element with the sum of the vector.

Figure 4.16 depicts an example with memory-loss factor mlf as 0.05. When this factor is
applied to the probability vector P, the stronger probabilities like 0.79 is strengthened to
0.91 and all the other probabilities are reduced. The very small transition probabilities
like 0.03 are zeroed.

40

4.3 Privacy-risk Estimation Algorithm

Figure 4.16: Example of application of memory-loss factor

The application of memory-loss factor on markov chain model will make the strong
probabilities stronger and the weak probabilities weaker. The privacy-risk estimation
algorithm will consider these new probabilities. The so-called confidence percentage,
which is calculated as the multiplication of the probabilities from one time-slot to the
next, will be large for important locations and diminish quickly for infrequent locations.
The estimation will result into path predictions closer to human expectations. Hence,
this step calibrates the privacy-risk estimation algorithm.

41

5 State Formation

In this chapter we introduce the of state formation for the prediction model. The sections
include the explanation of each component involved in detail and the corresponding
algorithms.

5.1 Variables Used

Figure 5.1 is to provide an overview of the variables used in the further sub-sections.
The variables are used in algorithms and in explanation. The list of variables covers
majority of variables used in further sections, but the list is not exhaustive. Few new
variables are introduced and explained in the coming sections for clear understanding
of concepts.

Figure 5.1: List of Variables

43

5 State Formation

5.2 Stay-points Detection

The first step for state formation is stay-point detection. Stay-points are those important
places where user spends ample amount of time. Distance and time-based clustering
work best in case of location data as explained by the authors [7].

This clustering approach is not so complex and can be run on a mobile device as a
background process. The clustering has two thresholds, one for distance th_d and one
for time th_t. These thresholds help us to determine the stay-points in an online fashion.
The location points within the radius of distance threshold th_d where the time spent is
greater than or equal to the time threshold th_t, are together regarded as a stay-point.
For example, a set of points within 50m of radius and total duration of stay greater
than 10 minutes, can be regarded as a stay-point. This step help to remove noise, like
travelling location coordinates or short stay locations. Hence, only significant locations
from the trajectory are used.

5.2.1 Sporadic GPS Trajectories

A GPS trajectory or location trajectory is the path taken by the user where the GPS points
are continuously received i.e. every 5-10 seconds a coordinate is received. A trajectory
can end for several reasons. For example, if the user turns-off the phone or turns-off
location sharing, or the user enters a low network area. The clustering approach works
adequately if the GPS points are received continuously. But if the location information is
collected only at intermittent intervals, the extraction of all the important locations is
incomplete. This type of GPS trajectories contributes to the sporadic GPS trajectories.

Stay-points are any points which are stayed by the user during the user GPS trajectories
or it is the start or the end of the GPS trajectory. For example, if the user starts his/her
trajectory at “home” location, the “home” itself is a stay-point. Now he moves towards
“work”, but he visits a “café” in between for breakfast. The “café” is also, a stay-point
and then he finishes his trajectory at “work”, where “work” is again a stay-point. Hence,
it is important to detect the start and end of the trajectories.

The time difference greater than tracking time threshold th_tck between two location
coordinates breaks the old trajectory and starts a new one. This means, if the location
coordinates are received continuously for few hours, and then the location coordinates
are stopped, therefore ending this trajectory. As soon as the new location coordinate
starts, a new trajectory will start. Please note, the stay-points within the trajectory
are found using the time and distance clustering algorithm [7]. But, the location
coordinate points where user has ended or started his/her trajectory, are also considered
for stay-point detection.

44

5.2 Stay-points Detection

Figure 5.2: Example 1 of sporadic GPS trajectories

5.2.2 Estimating Arrival and Departure times of Stay-points

After the collection of stay-points, the stay-points entering and leaving time is recalcu-
lated. This is done to estimate the time of leaving a stay-point and the time of entering
the next stay-point.

Case 1:

Let us understand this using an example as depicted in figure 5.2. In this example, we
consider the distance threshold th_d to be 200 meters or 0.2 kms. For instance, user is
reported to be at “home” location at 7am and then the next stay-point is found to be
“work” location at 8 am. The time of departure from “home” location and the time of
arrival at “work” location can be estimated.

Furthermore, in figure 5.2, the distance between these two locations is x kms, which is
easy to calculate as the “home” location coordinates and “work” location coordinates are
known. Let’s consider the distance x to be 6 kms between “home” and “work” location.
The time difference t between the two points “home” and “work” is also known, which
is 1 hour in this example. This information helps us to estimate the actual leaving time
from “home” location and actual arriving time at “work” location. The speed of user
spd can be calculated as (x kms / t minutes) i.e. (6/60) kms/mins or 0.1 kms/mins.
Now, the delta time delta_t is calculated as minimum(th_d, x)/spd i.e. minimum(0.2,
6)/0.1 or 1 minute. The delta_t is added in the departure time of “home” location and
subtracted from the arrival time of “work” location. So, the estimated departure time at
“home” location is 7am + delta_t i.e. 7am + 1 minute and the estimated arrival time at
“work” locations is 8am – delta_t i.e. 8am - 1 minute.

Case 2:

Although, there could be the case where the user is not travelling or moving from one
location to another, but rather the user stays at a location after some missing data.
Consider the example shown in figure 5.3 where user is at “home” location at 18:00 and
now the location data is not shared for some reason for the next few hours. The next
location shared is again “home” location at 06:00 the next day. The missing location
data is most likely the “home” location for the entire time-slots between 18:00 on this

45

5 State Formation

Figure 5.3: Example 2 of sporadic GPS trajectories

Figure 5.4: Extracting stay-points from GPS Trajectories

day till 6:00 on the next day. Since the distance between these two points is 0, the speed
spd of travel will also results in 0 km/hour. Now, the estimated time of being at “home”
location is recalculated. The time difference between the two known points is 12 hours.
The time of leaving “home” location is recalculated as (18:00 + 12/2) i.e. at 00:00 on
this day and the time of arriving at “home” location for the next day is (06:00 – 12/2)
i.e. at 00:00 on the next day. In other words, it is estimated that the user stayed at
“home” location for this period.

5.2.3 Algorithm

The stay-points are extracted from raw location points to remove the noisy points. The
noisy points could be travelling with the bus or train or a short stop at the letter box.
The stay-point extraction is the process of extracting longer stayed locations from raw
GPS trajectories. The figure 5.4 shows the transition from “home” to “work”. In this case,
both “home” and “work” are extracted as stay-points. The two bigger circles denote the
stay-points and the smaller dots within represents the location coordinate points. The
radius of the stay-point circles is the distance threshold th_d.

The extraction of stay-points takes lst_hr_pts as input and generates stay-points sp =
{sp1, sp2, . . . spn} as output. The algorithm cluster the points within the radius of
stay-point distance threshold th_d. The selection of distance and time threshold is

46

5.2 Stay-points Detection

very important. If the distance threshold value is too large, the mean of the stay-point
locations will be a confusing location on the map and many unimportant locations will
become part stay-points. If the time threshold value is very small, a lot of insignificant
locations with short stay duration will be added as stay-points. A balanced selection
of distance and time threshold can range from 100-300 meters and 10-30 minutes
respectively. This range can vary depending upon the type of data.

Algorithm 5.1 explains the approach used for stay-point extraction. The GPS location
points P[x, y, d] are received and stored in last hour points lst_hr_pts until the next hour.
The points from lst_hr_pts is read and the points which are within the threshold th_d
are added to the same cluster. A new location from lst_hr_pts is added to the cluster if
the distance between the new point and the cluster mean is less than or equal to the
distance threshold th_d. Every time a new point is added to the cluster, a new mean of
the cluster is calculated and the process repeats. If the new point is moving away from
the cluster mean, then the point is not added to the same cluster. This means, that if the
distance between the mean of the cluster and the new point is greater than threshold
th_d, then the new point is not added to the same cluster. At this point, this cluster
duration is checked. The cluster duration is nothing but the largest date-time – smallest
date-time from the cluster elements. If the cluster duration is greater than or equal to
th_t, then the cluster is added as the stay-point sp with latitude and longitude as cluster
mean. Otherwise the cluster is not added as a stay-point and the cluster is removed.

A new point is also considered for stay-point if the difference of time between the new
point and the previous point is greater than time tracking threshold th_tck. This is to
ensure that if the location coordinate points are not received for a long time then, end of
the previous trajectory and the start of the new trajectory points are also considered.

Algorithm 5.1 extractStayPoints() : Stay-point Detection
Input: Last hour GPS points lst_hr_pts[x, y, d]
Output: Stay-points sp

1: for each lst_hr_pts[x, y, d]i in lst_hr_pts[x, y, d] do
2: if di − di+1 > th_tck then
3: sp← lst_hr_ptsi, lst_hr_ptsi+1

4: else if distanceBtw(lst_hr_ptsi, cluster) <= th_d then
5: cluster ← lst_hr_ptsi

6: Update Cluster Mean
7: else if (cluster! = empty) And duration(cluster) >= th_t then
8: sp← cluster

9: end if
10: end for

47

5 State Formation

Algorithm 5.2 adjustStartEndStaypoint() : Adjust start-end time of stay-points
Input: Stay-points sp
Output: Stay-points with adjusted start and end points sp

1: for each spi in sp do
2: d← distanceBtw(spi, spi+1)
3: t← timeDiff(spi, spi+1)
4: s← d/t

5: if s! = 0 then
6: delta_t← min(d, th_d)/s

7: else
8: delta_t← t/2
9: end if

10: Update end_time de+delta_t for spi

11: Update start_time ds-delta_t for spi+1

12: end for

Once the stay-points are collected, we adjust the starting time and the leaving time of
each stay-point. The algorithm 5.2 details how to achieve this. A comparison of each
stay-point in sp = {sp1, sp2, . . . spn} to it’s very next stay-point is done. Now, the
distance d and time difference t between the two stay-points spi and spi+1 is calculated.
Using distance d and time t, the average speed s of travel can be easily calculated, which
is d/t. If the speed s is not 0, the delta time delta_t is calculated as division of minimum
of distance between spi and spi+1 i.e. d and threshold distance th_d, to the average
speed s. If the speed s is 0, this means that the user has not displaced from the previous
location and hence, the time difference t is filled with the same location. In this case,
the delta_t is simply calculated as t/2. Now we add the delta time delta_t to spi end
time, to change the leaving time at the spi location and subtract delta_t for spi+1 start
time to change the entering time at location spi+1.

5.3 State Formation from Stay-points

From the stay-points sp, the states st = {st1, st2, . . . stn} are formed. This process snaps
the geographically close-by stay-points to one state. Similarly, several states are formed
from stay-points. The number of states can be less than or equal to the number of
stay-points. These states are used later for markov chain model. The states’ st represent
“home”, “work” and other important visited places. This means, the same locations
visited are snapped to the same state ids. For example, user has been at location “home”
during the early hours of the day. If location “home” is visited again during the day, it

48

5.3 State Formation from Stay-points

Figure 5.5: Snapping stay-points to states

will be extracted as a new stay-point. But, since “home” location was visited already
known, it will be snapped to an existing state.

The states are found using a distance threshold th_d. All the stay-points within this
threshold distance radius is grouped together as a single state. This is called snapping
stay-points to the states. This is depicted in the figure 5.5. The two stay-points are
snapped to states to form st1. The first stay-point between hour 5 and 7 is assigned to a
state st1. When the second stay-point between hour 9 and 11 is detected, the distance
between the stay-point and the state st1 is checked. Since the distance between the states
is less than the defined threshold distance th_d, this new stay-point is also snapped to
the same state st1. This makes sure that if a known location is visited after few days,
then it should get the same id as given before. The markov Chain model is applied to
these states.

5.3.1 Drifting Problem

The stay-points are snapped to an existing state with an exception. The figure 5.6 depicts
the drifting problem. The current mean of state sti is marked with black ×. A new
stay-point marked with a red dot on the right has arrived. The addition of the new
stay-point spj to this state will make the mean of the state shifted, denoted by red ×.
The new mean of the state sti will throw some of the existing points from left out of the
state radius. Therefore, the new stay-point spj is not added to a the state sti. Hence,
the idea is, while adding the new stay-point to an existing state, a check is done. If all
the existing stay-points stays within the radius of the state mean, then the stay-point
is snapped to the state, otherwise a new state is formed. So, if any of the existing

49

5 State Formation

Figure 5.6: Drifting problem while snapping stay-points to the states

stay-points, contributing to the state formation, is moving out of the state radius, then
the new stay-point is not added to this state to avoid the drifting problem.

5.3.2 Algorithm

Algorithm 5.3 explains the details of state formation from stay-points. Each new stay-
point goes through this step. When a new stay-point spn+1 is detected and added to the
stay-points sp = {sp1, sp2, . . . spn, spn+1}, the stay-point spn+1 distance is compared
with all the existing states in st = {st1, st2, . . . stn}. If the distance between a state and
the new stay-point spn+1 is less than the distance threshold th_d, then the stay-point
spn+1 added to the that state. Otherwise, a new state is formed. The drifting problem
discussed above is also considered before snapping any stay-point to a state.

In the algorithm, the states are represented with a numeric id number. The process
ensures that we keep snapping the known locations with the same ids. Once the day
is changed, the markov model mc is created. The algorithms of markov chain model
creation is explained in previous chapters.

As the number of states increase, the complexity of the markov chain model also increase.
Let us consider an example of markov chain with states. The figure 5.7, on the left,
depicts two states st1 and st2 markov model. This model involves 4 probabilities p1 to
p4. Each of these probabilities represents the transition probabilities from one state to
another. For instance, p1 is the transition probability from st1 and st2. Figure 5.7 on the
right, depicts a third state added to the model st3, which in turn, increase the probability
count from 4 to 9. This explains, how the complexity and the computation of the model
increase as the number of states increases in the model.

50

5.3 State Formation from Stay-points

Algorithm 5.3 formStates() : Form states from stay-points
Input: Stay-point spn+1 , States st
Output: States st

1: for each stj in st do
2: is_spn+1_added← False

3: if distanceBtw(spn+1, stj) <= th_d then
4: Add spn+1 to stj

5: newMean← mean(stj)
6: if distanceBtw(All sp′s of stj, newMean) <= th_d then
7: is_spn+1_added← True

8: Break
9: else

10: Remove spn+1 from stj

11: end if
12: end if
13: end for
14: if is_spn+1_added = False then
15: Add new state in st
16: end if

Figure 5.7: Markov chain on states

51

6 The PRE Android Application

A Privacy-Risk-Estimator android application is developed. This application is used to
showcase that the location data can be exploited and future visits can be predicted. The
PRE application will be used by the users before sharing the location data on LBA. The
data comes from Geolife dataset. In the actual scenario, this data will be fed from GPS
to the application.

The model implementation approach is same as discussed in the previous chapters. The
user can see the prediction results as path with corresponding confidence levels.

The android implementation has challenges like computational cost and visualization
on small screen.

6.1 Objective

The intention is to have an operational android application which can make path
predictions and showcase the privacy threats of location-based services. The locations
predicted in each step should be within a certain confidence percentage. Visualization
of the predicted paths should be understandable to the user.

6.2 User Interface Design

The user interface comprises of 3 sections. Each section consists of an independent
screen for user interface.

Screen 1: The start screen of the android application, as shown in the figure 6.1, has
two modes “GPS” or “Geolife User Data”. The option “Geolife User Data” is available
to use the Geolife user dataset. The drop down lists of choosing user and month is
available when "Geolife User Data" is chosen. The user and month must be selected from
this input screen to be able to go forward. The “GPS” mode will be used in the actual
application usage scenario where the user location data will be read for few weeks.

53

6 The PRE Android Application

Screen 2: Once the user has made the selection and hit “Continue” button on screen
1, the markov chain is built in the background from the user data file. The states are
extracted which represents the significant places for the user. These states are displayed
as shown on left of the figure 6.2. The states may not be the exact locations that the
user has visited, but rather in the vicinity, as these states represent the mean of several
coordinates within a range. The list is displayed to show the user all the visited placed
that has been tracked down as important places.

Screen 3: Once the user proceeds by pressing the button “Find Predictions”, user is
taken to the final prediction screen. Here the user can select from the list of states and
hour from the screen. The state selection is user’s current location and the hour selection
is the current time-slot. The markov chain model will use this input to predict the future
visits.

The confidence threshold input can be changed using the slider. The confidence threshold
ranges from 10% to 100%. A confidence threshold as low as 10% will generate many,
longer paths and a higher confidence threshold as 90% will produce fewer, shorter
paths.

Once the selection is done, the button “Run” can be hit to produce the predicted paths
and the privacy-risk can be estimated. The paths are displayed in the figure 6.2 on
the right. The paths are displayed with the help of states. The states confidence is
represented by the help of the font color. The darker state font colors depict higher
confidence and vice-versa. The start hour and end hour are shown in parentheses, at
the origin and the closing of the path respectively.

In the example figure 6.2 on the right, the current state is selected is 3 at hour 0. Based
on this data, two paths are predicted. The predicted paths start from hour 1 till hour 15.
The first path suggests that user will transition from state 3 to state 6 and will stay at
state 6 till hour 15. Whereas, the second path suggests that user will stay at state 3 for
longer duration. It is also easy to spot that the prediction confidence of the second path
drops earlier (as the color starts to fade away quite earlier) than that of the first path.
Hence, the prediction output for the first path is more confident than the second.

Using these details, the user can make an informed decision if he/she wants to share the
current location information with any LBA or not.

54

6.2 User Interface Design

Figure 6.1: Android application screen 1

55

6 The PRE Android Application

Figure 6.2: Android application screen 2(left) and 3(right)

56

7 Evaluation

In this chapter, we evaluate the prediction model explained in the previous chapters on
Geolife dataset. The result of application of each individual algorithm is also discussed
here.

7.1 The Dataset and its Analysis

The data used for this master thesis is Geolife dataset from Microsoft [17] [15] [16].
The dataset contains 182 users’ GPS trajectory data for the period of five years. The
trajectory data contains the latitude, longitude, date, time, altitude information which
is tracked every 1 to 5 seconds. Majority of the dataset was created in China with few
exceptions of USA and Europe. This included several different types of users, few with a
lot of trajectory data over years and few only for few weeks. For instance, user 17 has
1026179 trajectory points and user 72 has only 81.

A total of 73 users have also labelled their transportation mode while recording the GPS
trajectories. The figure 7.1 explains the distance travelled altogether using different
transportation modes.

The transportation labels summary helped us to understand that most users were
travelling while recording their GPS trajectories. The average trajectory speed, which is
calculated per trajectory file for each user in the dataset, is depicted in the box plot in
figure 7.2. The median travel speed was found to be 5.73 km/h. This indicate that most
users tracked the GPS trajectories outdoor.

The analysis of each user also shows some important patterns. For instance, the first
and last GPS coordinates of each trajectory for user 1 is depicted in the figure 7.3. The
green dots indicating the start of each trajectory and the red dots indicting the end of
each trajectory. This also shows a pattern indicating that the trajectory data was mostly
recorded outdoor. For example, the trajectory was starting at home and ending at work
and repeated in cycles. This analysis motivated us for considering the starting and the
ending point of each trajectory for stay-point detection.

57

7 Evaluation

Figure 7.1: Geolife dataset user transportation mode

Figure 7.2: Geolife dataset trajectory average speed

58

7.2 Evaluation and Results

Figure 7.3: start and end points from each trajectory

7.2 Evaluation and Results

In this section, we evaluate each individual component of the algorithm.

7.2.1 Stay-points Evaluation

The stay-points distance and time threshold values are important to be appropriate.
If the distance threshold is very large, a lot of insignificant locations will be part of
stay-point cluster and if the time threshold is very small, the short duration stays will

59

7 Evaluation

also be regarded as stay-points. The figure 7.4 shows the stay-point count on a user
trajectory trace for varying the distance and time threshold values in range 50m-350m
and 10min-30min (with an interval of 10 minutes) respectively. It is evident from the
figure 7.4 that the number of stay-points are very high with small time threshold and
reduces as the time threshold increases. The time threshold value at both the extremes
results either in very less stay-points or many stay-points, hence we select a value from
the middle. Performing several tests analysis, we chose 200 meters and 20 minutes for
distance and time threshold respectively. This threshold values can vary with the type of
data.

The stay-points found for user 1 for November 2008 as shown in the figure 7.5. The
trajectory is shown with the green line and the red arrows indicate the stay-points. The
green line has a lot of unimportant locations and short stays. These locations are ignored
for stay-point extraction and only the significant red arrows are marked as important
locations.

The stay-points algorithm considers the start and end trajectory points and smoothens
the data between two stay-points, based on the distance and time elapsed between them.
The result of this approach is compared against the stay-point extraction within the
trajectory points. The results are shown in figure 7.6. The data used is from Geolife
dataset for user 1 for the first few days in November. The x-axis shows the time-slots and
the y-axis shows the days. The top of the figure 7.6 shows the black marked rectangles
which represents the raw trajectory data. The figure indicates that a lot of time-slots
are missing data, especially the data after hour 23 till hour 7 in the morning. The
middle portion of the figure indicates the stay-points found only within the trajectory
points. The time-slotted data here does not represent any regular pattern and misses the
important locations. The bottom of the figure depicts the stay-points found using our
approach. Our approach seems to be able to find movement patterns from the location
data and hence, it does not misses the important locations.

7.2.2 Time-slotted data Results

The hourly weights associated with the states forms the time-slotted data which is used
as the base for markov chain model.

It is inferred that the occurrences of a few popular locations like “home” and “work”
for a user will be more, compared to other locations. It is very often that the user stays
at “home” location after the evening and spends more time at “work” location during
the day. Of course, there could be night-shifts, but then the duration of stay at “work”
location, which usually ranges from 8-9 hours, can help to make the right indications.
The “home” location is also often the one which has occurrences during weekends or

60

7.2 Evaluation and Results

Figure 7.4: Stay-points count for different time and distance thresholds

public holidays. These indicators help us in marking the “home” and “work” location
while analyzing the data.

The Geolife dataset date and time are represented in GMT, hence to have the correct
visualization, the date and time must be adjusted to the local time in the trajectory data.
The figure 7.7 below depicts the hourly weighted state data for user 1 for November
2008. The x-axis represents each hour of the day from 0 to 24 and the y-axis represent
the days. Each rectangle represents a state where the width of the rectangle represents
the weight of the state in the corresponding hour. For example, state 1 is the first state
between 9 am and 10 am on day 0. The distribution of the states over the hours and
days makes some hints about the semantic meaning behind the locations. For instance,

61

7 Evaluation

Figure 7.5: User 1 raw trajectory data vs. stay-points extracted

state 3 is most likely user’s home location as on most days’ user is at this location from 9
pm till next day 7 am and state 6 is most likely user’s work location as on most days’
user is at this location from 8 am till 8 or 9 pm. There are many other locations like 13,
22, 2, 16 and so on which could represent the supermarket, shopping mall, fitness club
and so on.

62

7.2 Evaluation and Results

Figure 7.6: User 1 eight days’ time-slotted; 1. Top: Raw Trajectory Data, 2. Middle: Stay-
points within trajectories only, 3. Bottom: Stay-points with our approach

63

7 Evaluation

Figure 7.7: User 1 time-slotted data for the November 2008

7.2.3 Privacy-risk Estimation Evaluation

The algorithm takes the current hour, location and minimum threshold as input and
uses the markov model to predict the several paths representing the several locations in
consecutive time-slots with their confidence percentages.

The figure 7.8 shows the paths predicted for user 1 for state 3 at hour 7 with minimum
confidence 0.1. The x-axis denotes the hour of the day and each path starts in a new
line. There exist two paths. The circle with the number denotes the state predicted and
the color of each circle is to indicate the confidence of the prediction. The first predicted
state at hour 8 in path 1 is 6. Similarly, the first predicted states at hour 8 in path 2
is state 3. The states with darker color indicate a high confidence and the states with
lighter color indicates the lower confidence. The confidence reduces as we go further
away from the starting hour i.e. 7. The path continues until the confidence drops below
the threshold confidence. There is an additional state shown after the drop of confidence

64

7.2 Evaluation and Results

Figure 7.8: Path prediction for user 1

below threshold. This additional state is shown to see the drop in the confidence of the
next state after the minimum confidence.

The privacy-risk estimation is done to aware the user about the different paths which
are predictable based on his/her location history. The known location was only state 3
at hour 7, which is used to predict the paths for several hours.

7.2.3.1 Survey for Memory-loss Factor

The predicted paths follow a very strict markov chain model. The model is counting
each transition. The users of the application would not expect such strict behavior and
tend to forget many previous visits. As proposed in the earlier chapters, we can apply
this behavior to our model using a memory-loss factor. The memory-loss factor can be
calculated using the feedback from the users directly.

Consider the example of user 1 data for November 2011 for first few days as depicted
in figure 7.9. During the evening the user has been visiting many new places. The
transition from hour 18 and 19, as marked in the figure 7.9, is interesting to focus. The
state 6 seems to be user’s “work” location. The user has visited states 5 and 14 on day 5
and 7 respectively at hour 19, after state 6 “work” location at hour 18. On other days
like 3 and 6, he stays at “work” location 6 at hour 19. The markov chain will remember
these transitions. This in turn reduces the probability of user to be at state 6 “work”
location at hour 19.

As a result of this, the path predicted with state 6 “work” at hour 14 is shown in figure
7.10. Because of several possibilities at hour 19, the confidence drops instantly.

But humans do not consider each detail while thinking about the transitions. It is easy
to forget the places we have visited 2 weeks before. To improve the path prediction
algorithm, it is interesting to forget some minor transitions like humans do. This can be
done using the inputs from the user, hence, a small survey is conducted.

65

7 Evaluation

Figure 7.9: User 1 November 2011 hourly distributed data

Figure 7.10: Path prediction user 1 with minimum confidence of 50%

Survey:

The survey contained 10 participants with the median age of 26.5 years. The participants
are shown the time-slotted data as in figure 7.7 for 1 minute of time. Before showing
the time-slotted data, the participants are explained that the x-axis represents the hour
of the day and the y-axis represents several days the data is collected for. Each rectangle
represents a location with the id inside the rectangle. They are also told to focus on
user’s working hours and movement trends. After this, all participants are asked a same
question.

“How long will the user stay at location “Work” if he was observed at location “Work” at x
hour.”

The variable x is replaced with an actual hour value based on the data. The question is to
understand how the participants forget the minor transitions and expects the user to be
at “work” for longer hours. One of the Geolife user data is shown to the participants was
figure 7.7. The x in the question was 8am. The average time reported by the participants
was 8pm. Which means, on an average, the participants thought that the user will stay
at state 6 till 8:00pm. The path prediction from our algorithm resulted in figure 7.11.
The prediction is very strict which says user will stay at state 6 “work” only till 14 hours.

66

7.2 Evaluation and Results

Figure 7.11: Path prediction result for user 1 without changes in the algorithm

Figure 7.12: Path prediction result for user 1 with memory-loss factor of 0.22

The minimum confidence considered here is 80% and the prediction of state 6 at hour
14 is already below the minimum confidence. The way participants have observed the
movements and how the markov chain model has calculated the transitions, are not
same. Most participants ignored the infrequent and minor transitions like from state
6 to state 11 from hour 13 to 14 on day 4, and so on. But markov model recorded
these transitions and this in turn reduced the probability of staying at state 6 at hour 14.
Hence, markov model also need to forget these minor transitions.

The memory-loss factor is calculated for each participant. The factor is simply calculated
by changing the markov model to produce the same output as the participant has
suggested. For example, if the participant suggested that the user will stay at state 6 till
9pm, the same output should be produced with our path prediction.

After application of a memory-loss factor, we get the following result as shown in the
figure 7.12. The memory-loss factor of 0.22 changes the path predicted and suggests the
stay at state 6 till 21 hours.

The figure 7.13 depicts the memory-loss factor from the survey performed for two
different data with 10 participants. The median memory-loss factor calculated is 0.17.

The survey was only conducted with 10 participants. The results can change with
more participants and with different age groups. More research must be done in this
direction.

67

7 Evaluation

Figure 7.13: Memory-loss factor from survey result

7.2.4 Prediction Performance

The location prediction algorithm implemented on Geolife dataset for 182 users. The
data is divided for training and test purposes. The user month, with most trajectory
points, is selected as the training month and the closest month available to the training
month is selected as the test month. This is done to build the model for the month where
highest data is available. The closest available month, next to training month, is selected
as the test month as this is most likely to have the same pattern as the training month.

7.2.4.1 Metric

The prediction algorithm is evaluated for three parameters, accuracy correctness Ac,
accuracy precision Ap and cosine similarity C.

The accuracy correctness Ac is the defined as the ratio of total correct predictions Pc to
the total prediction Pt:

Ac = P c/P t (7.1)

The prediction is counted to be made only from the known locations. The known
locations are the ones which are present in the markov model. A prediction is counted
as correct, if the predicted vector with highest weight is also the one visited (present
in ground truth vector) in the next hour slot, else an incorrect prediction. Consider an
example as shown in figure 7.14. On the left of the 7.14, from the training model, it is

68

7.2 Evaluation and Results

Figure 7.14: Correct(left), Incorrect(middle) or none(right) prediction scenario

suggested to transition from state st1 to st2 and st3 from hour 5 to hour 6. The actual
transition is made from st1 to st2. In this case the prediction is considered as correct as
the prediction suggested to be at state st2 with highest weight. In the middle of the 7.14,
the prediction is made from st1 to st3 from hour 5 to hour 6 and the actual transition is
made from st1 to st2 from hour 5 to hour 6. Hence, this is considered as the incorrect
prediction. On the right, the prediction is neither correct or incorrect as there is no
stay-point found in the hour 6. The predictions are rated only for the time-slots where
an actual transition has been occurred.

The accuracy precision Ap is defined as:

Ap = 1− |P −GT |/2 (7.2)

Where P is the prediction vector, GT is the ground truth vector. From the 7.14, the
left most scenario yields the prediction vector states as P = [st2, st3] and the ground
truth vector contains states as GT = [st2, 0]. This approach calculates 1-total distance
variation. The distance variation calculates the distance between the predicted values
and the ground truth and hence, evaluates the quality of the prediction. To understand
this approach in detail, please refer the book [10].

The cosine similarity C is defined as:

C = (P.GT)/(||P ||||GT ||) (7.3)

The numerator is the dot product of the prediction vector P and ground truth vector GT
and the denominator is the magnitude product of the two vectors. The cosine similarity
C = 1 represents the vectors are exactly same, which means the prediction is 100%

69

7 Evaluation

Figure 7.15: Evaluation for Geolife dataset

matching as the actual transitions. A cosine similarity C = 0 represents orthogonality,
which means that the prediction is completely wrong.

The probability of transition from the current state to all the other state in the next
time-slot is fetched from the markov chain model as p = {p1, p2, . . . , pn} where pi

indicates the probability of state i. The true stay in the next time-slot is also stored as a
vector gt = {gt1, gt2, . . . , gtn} where gti represents the true or actual stay of state i. These
two vectors are compared to determine the cosine similarity. Hence, in contrast with the
accuracy correctness Ac and accuracy preciseness Ap, the cosine similarity C considers
the probability of prediction from markov chain and the true duration of the stay. It
means, even if the prediction and ground truth are same, if the prediction suggests very
less duration stay in the next hour but the ground truth is for longer duration in the
next hour, the cosine similarity will be smaller. Let us consider the example shown in
the 7.14 on the left. The transition from st1 to st2 is predicted and the ground truth is
also the same. The prediction is correct but to what extend? The prediction suggests a
very short duration stay at state st2 in the next hour, whereas the actual stay at hour 6 at
state st2 is longer. This will result in smaller cosine similarity value. Hence, the cosine
similarity C will be close to 1 only if the duration of stay in ground truth matches with
the prediction, otherwise it will be close to 0.

70

7.2 Evaluation and Results

Figure 7.16: Number of states vs Time(sec) on Android Application

7.2.4.2 Results

The first evaluation done is to find out the accuracy correctness and accuracy precision.
For a total 182 users, the box plots are shown in figure 7.15. The mean accuracy
correctness Ac for 182 users is found to be 92.7%. The mean accuracy precision Ap

for 182 users is found to be 63.7%. The lower accuracy precision indicates that all the
correct predictions did not predict the exact duration of the stay as the ground truth.

The cosine similarity C mean for 182 users is found to be 0.725 as shown in the figure
7.15.

7.2.5 PRE Application Performance

The PRE application creates markov chain based on time-slotted data. The time taken to
create a markov chain model is evaluated. Since, the prototype application uses Geolife
dataset, the evaluation is done with real-life dataset.

The application is run on an emulator Nexus 5X API 28 on Android Studio. The resolution
of the device was 1080x1920: 420dpi, CPU x86 with 1536 MB RAM. As the number
of states vary, so does the time to calculate the markov chain. The figure 7.16 lists
the states versus time in seconds. The states data is taken from the users from Geolife
dataset. The time for 23 states is relatively low and increases as the states increases. This
evaluation is done only to indicate that state count will affect the performance of the
android application. This time can be affected by many factors, for instance, emulator
behaviors, cache usage and many more.

71

8 Conclusion and Future Work

In this chapter we summarize the thesis contribution and work, the overall evaluation
results and possible aspects of future work.

8.1 Conclusion

The Location-Based Applications (LBAs) keep collecting the user location-based data.
Based on the collected location information, user’s whereabouts can be easily guessed.
To help the user understand the consequences of sharing location details with LBAs, a
location prediction model is built. The markov chain model is suggested for location
prediction on mobile devices.

The prediction model is used for privacy-risk estimation. An Android application called
Privacy-Risk-Estimator (PRE) is developed. The PRE application predicts the future
locations based on current location and location history. The locations are predicted
with a confidence indicating the predictability of the users. The users can use the PRE
application before sharing their location information with the LBAs. A calibration for
the privacy-risk estimation algorithm is also suggested.

The approach is tested and evaluated on real-life Geolife dataset from Microsoft [17]
[15] [16]. The dataset contains 182 user GPS trajectory data over a period of 5 years.
The algorithm resulted in 92.7% mean accuracy correctness, 63.7% mean accuracy
preciseness and average cosine similarity of 0.725 for 182 different users. The evalua-
tion result suggests that this approach can predict movements with an above average
accuracy.

8.2 Discussion

In this thesis, we presented an algorithm for location prediction using markov chain
model. The prediction approach is simple enough to be able to run on smartphones and
applicable for most users.

73

8 Conclusion and Future Work

The thesis work had several challenges as it dealt with real-life data. It was difficult
to generate a stay-point clustering algorithm as many users have missing data. The
basic clustering algorithm did not result into any particular pattern. It was an important
investigation that the most GPS trajectories are tracking outdoor movements. As a result
of this investigation, the start and end points of trajectories are considered for stay-point
detection. Since, the users were real, user evaluation was an important section.

8.3 Future Work

The prediction model may have better prediction accuracy with more spatio-temporal
features. For instance, building separate transition matrices for weekdays and weekends
may increase the prediction accuracy for the users who have very distinctive movement
patterns on weekdays and weekends. The algorithm can also be tested in future to
accept more data like calendar entries or call/SMS log. As suggested by the paper [5], it
can reveal important information about user’s next movement. Even though, adding new
features will increase the complexity of the algorithm, it could be interesting to see the
effect on the prediction model accuracy, cosine similarity and privacy-risk estimation.

The user interface of PRE application can have several potential improvements. The
privacy-risk estimation visualization can be investigated for landscape mode of the
smartphones. The markov chain and privacy-risk estimation algorithms are implemented
on android device. But, the PRE application uses the smoothened data. This can be
extended in future to accept the raw GPS points as input on the android device and
create and update the markov model regularly. Currently, the time-slotted data is used as
the input for the android application. The algorithms explained in previous chapters can
be used as an example to extend the android application implementation. The finished
android application can be published on Google Playstore to collect user feedback.

The survey for calibration of the privacy-risk estimation had only 10 participants. The
survey must be conducted with more participants in order to learn the human expec-
tations on large scale. It will be interesting to see if there exist a general memory-loss
factor for most users or it varies a lot.

74

Bibliography

[1] “Americans’ complicated feelings about social media in an era of privacy con-
cerns.” In: P. R. Center (2018) (cit. on p. 14).

[2] M. Baratchi, N. Meratnia, P. J. M. Havinga, A. K. Skidmore, B. A. K. G. Toxopeus.
“A Hierarchical Hidden semi-Markov Model for Modeling Mobility Data.” In:
Proceedings of the 2014 ACM International Joint Conference on Pervasive and
Ubiquitous Computing. UbiComp ’14. Seattle, Washington: ACM, 2014, pp. 401–
412. ISBN: 978-1-4503-2968-2. DOI: 10.1145/2632048.2636068. URL: http:
//doi.acm.org/10.1145/2632048.2636068 (cit. on p. 22).

[3] M. Baratchi, N. Meratnia, P. Havinga, A. Skidmore, A. Toxopeus. “Sensing solu-
tions for collecting spatio-temporal data for wildlife monitoring applications: a
review.” English. In: Sensors (Switserland) 13.5 (May 2013). eemcs-eprint-23374,
pp. 6054–6088. ISSN: 1424-8220. DOI: 10.3390/s130506054 (cit. on p. 22).

[4] P. Baumann, W. Kleiminger, S. Santini. “The Influence of Temporal and Spatial
Features on the Performance of Next-place Prediction Algorithms.” In: Proceed-
ings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous
Computing. UbiComp ’13. Zurich, Switzerland: ACM, 2013, pp. 449–458. ISBN:
978-1-4503-1770-2. DOI: 10.1145/2493432.2493467. URL: http://doi.acm.org/
10.1145/2493432.2493467 (cit. on pp. 22, 23).

[5] J. B. Gomes, C. Phua, S. Krishnaswamy. “Where Will You Go? Mobile Data Mining
for Next Place Prediction.” In: Proceedings of the 15th International Conference
on Data Warehousing and Knowledge Discovery - Volume 8057. DaWaK 2013.
Prague, Czech Republic: Springer-Verlag New York, Inc., 2013, pp. 146–158.
ISBN: 978-3-642-40130-5. DOI: 10.1007/978-3-642-40131-2_13. URL: http:
//dx.doi.org/10.1007/978-3-642-40131-2_13 (cit. on pp. 21, 22, 74).

[6] A. Görlach, A. Heinemann, W. W. Terpstra. “Survey on Location Privacy in Per-
vasive Computing.” In: Privacy, Security and Trust within the Context of Pervasive
Computing. Ed. by P. Robinson, H. Vogt, W. Wagealla. Boston, MA: Springer US,
2005, pp. 23–34. ISBN: 978-0-387-23462-5. DOI: 10.1007/0-387-23462-4_3. URL:
https://doi.org/10.1007/0-387-23462-4_3 (cit. on p. 17).

75

http://dx.doi.org/10.1145/2632048.2636068
http://doi.acm.org/10.1145/2632048.2636068
http://doi.acm.org/10.1145/2632048.2636068
http://dx.doi.org/10.3390/s130506054
http://dx.doi.org/10.1145/2493432.2493467
http://doi.acm.org/10.1145/2493432.2493467
http://doi.acm.org/10.1145/2493432.2493467
http://dx.doi.org/10.1007/978-3-642-40131-2_13
http://dx.doi.org/10.1007/978-3-642-40131-2_13
http://dx.doi.org/10.1007/978-3-642-40131-2_13
http://dx.doi.org/10.1007/0-387-23462-4_3
https://doi.org/10.1007/0-387-23462-4_3

Bibliography

[7] J. H. Kang, W. Welbourne, B. Stewart, G. Borriello. “Extracting Places from Traces
of Locations.” In: Proceedings of the 2Nd ACM International Workshop on Wireless
Mobile Applications and Services on WLAN Hotspots. WMASH ’04. Philadelphia,
PA, USA: ACM, 2004, pp. 110–118. ISBN: 1-58113-877-6. DOI: 10.1145/1024733.
1024748. URL: http://doi.acm.org/10.1145/1024733.1024748 (cit. on pp. 18,
19, 44).

[8] C. Katsaounis. Habitat Use of the Endangered and Endemic Cretan Capricorn and
Impact of Domestic Goats. University of Twente Faculty of Geo-Information and
Earth Observation (ITC), 2012. URL: https : //books .google .de/books? id=
YH65AQAACAAJ (cit. on p. 22).

[9] J. K. Laurila, D. Gatica-Perez, I. Aad, B. J., O. Bornet, T.-M.-T. Do, O. Dousse,
J. Eberle, M. Miettinen. “The Mobile Data Challenge: Big Data for Mobile Com-
puting Research.” In: (2012) (cit. on pp. 21, 22).

[10] D. A. Levin, Y. Peres, E. L. Wilmer. Markov Chains and Mixing Times. American
Mathematical Society, 2009 (cit. on p. 69).

[11] A. Noulas, S. Scellato, N. Lathia, C. Mascolo. “Mining User Mobility Features for
Next Place Prediction in Location-Based Services.” In: Proceedings of the 2012
IEEE 12th International Conference on Data Mining. ICDM ’12. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 1038–1043. ISBN: 978-0-7695-4905-7.
DOI: 10.1109/ICDM.2012.113. URL: http://dx.doi.org/10.1109/ICDM.2012.113
(cit. on pp. 20, 21).

[12] Z. Riaz, F. Dürr, K. Rothermel. “Location Privacy and Utility in Geo-social Net-
works: Survey and Research Challenges.” In: 16th Annual Conference on Privacy,
Security and Trust (PST). Aug. 2018, pp. 1–10. DOI: 10.1109/PST.2018.8514193
(cit. on p. 18).

[13] Z. Riaz, F. Dürr, K. Rothermel. “Understanding Vulnerabilities of Location Privacy
Mechanisms Against Mobility Prediction Attacks.” In: Proceedings of the 14th EAI
International Conference on Mobile and Ubiquitous Systems: Computing, Networking
and Services. MobiQuitous 2017. Melbourne, VIC, Australia: ACM, 2017, pp. 252–
261. ISBN: 978-1-4503-5368-7. DOI: 10.1145/3144457.3144505. URL: http:
//doi.acm.org/10.1145/3144457.3144505 (cit. on pp. 17, 34).

[14] C. V. “Challenging Warrantless Gps Tracking Of State Employee’s Personal Car.”
In: New York State Department Of Labor (2013) (cit. on p. 14).

[15] Y. Zheng, Q. Li, Y. Chen, X. Xie, W.-Y. Ma. “Understanding Mobility Based on
GPS Data.” In: Proceedings of the 10th International Conference on Ubiquitous
Computing. UbiComp ’08. Seoul, Korea: ACM, 2008, pp. 312–321. ISBN: 978-1-
60558-136-1. DOI: 10.1145/1409635.1409677. URL: http://doi.acm.org/10.
1145/1409635.1409677 (cit. on pp. 20, 22, 57, 73).

76

http://dx.doi.org/10.1145/1024733.1024748
http://dx.doi.org/10.1145/1024733.1024748
http://doi.acm.org/10.1145/1024733.1024748
https://books.google.de/books?id=YH65AQAACAAJ
https://books.google.de/books?id=YH65AQAACAAJ
http://dx.doi.org/10.1109/ICDM.2012.113
http://dx.doi.org/10.1109/ICDM.2012.113
http://dx.doi.org/10.1109/PST.2018.8514193
http://dx.doi.org/10.1145/3144457.3144505
http://doi.acm.org/10.1145/3144457.3144505
http://doi.acm.org/10.1145/3144457.3144505
http://dx.doi.org/10.1145/1409635.1409677
http://doi.acm.org/10.1145/1409635.1409677
http://doi.acm.org/10.1145/1409635.1409677

[16] Y. Zheng, X. Xie, W.-Y. Ma. “GeoLife: A Collaborative Social Networking Service
among User, Location and Trajectory.” In: IEEE Data Eng. Bull. 33 (June 2010),
pp. 32–39 (cit. on pp. 20, 22, 57, 73).

[17] Y. Zheng, L. Zhang, X. Xie, W.-Y. Ma. “Mining Interesting Locations and Travel
Sequences from GPS Trajectories.” In: Proceedings of the 18th International Con-
ference on World Wide Web. WWW ’09. Madrid, Spain: ACM, 2009, pp. 791–
800. ISBN: 978-1-60558-487-4. DOI: 10.1145/1526709.1526816. URL: http:
//doi.acm.org/10.1145/1526709.1526816 (cit. on pp. 19, 20, 22, 57, 73).

All links were last followed on November 26, 2018.

http://dx.doi.org/10.1145/1526709.1526816
http://doi.acm.org/10.1145/1526709.1526816
http://doi.acm.org/10.1145/1526709.1526816

Declaration

I hereby declare that the work presented in this thesis
is entirely my own and that I did not use any other
sources and references than the listed ones. Neither
this work nor significant parts of it were part of an-
other examination procedure. I have not published this
work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Contribution and Thesis Outline

	2 Related Work
	2.1 Location Privacy
	2.2 Extracting Interesting Locations
	2.3 Next Location Prediction
	2.4 Algorithms Comparison

	3 System Model and Problem Statement
	3.1 System Model Overview
	3.2 Problem Statement

	4 Privacy-risk Estimation
	4.1 Location Prediction Model: Overview
	4.2 Markov Chain Model
	4.2.1 Time-slotted Data
	4.2.2 Transition Probabilities
	4.2.3 Algorithm
	4.2.4 Additional Steps

	4.3 Privacy-risk Estimation Algorithm
	4.3.1 Approach
	4.3.2 Proposition: Calibration of Privacy-risk Estimation

	5 State Formation
	5.1 Variables Used
	5.2 Stay-points Detection
	5.2.1 Sporadic GPS Trajectories
	5.2.2 Estimating Arrival and Departure times of Stay-points
	5.2.3 Algorithm

	5.3 State Formation from Stay-points
	5.3.1 Drifting Problem
	5.3.2 Algorithm

	6 The PRE Android Application
	6.1 Objective
	6.2 User Interface Design

	7 Evaluation
	7.1 The Dataset and its Analysis
	7.2 Evaluation and Results
	7.2.1 Stay-points Evaluation
	7.2.2 Time-slotted data Results
	7.2.3 Privacy-risk Estimation Evaluation
	7.2.3.1 Survey for Memory-loss Factor

	7.2.4 Prediction Performance
	7.2.4.1 Metric
	7.2.4.2 Results

	7.2.5 PRE Application Performance

	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Discussion
	8.3 Future Work

	Bibliography

