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Abstract

The geometric nature of computational problems provides a rich source of solution
strategies as well as complicating obstacles. This thesis considers three problems
in the context of geometric network planning, data mining and spherical geometry.

Geometric Network Planning In the d-dimensional GENERALIZED MINIMUM
MANHATTAN NETWORK problem (d-GMMN) one is interested in finding a min-
imum cost rectilinear network N connecting a given set of n pairs of points in
R¢ such that each pair is connected in N via a shortest Manhattan path. The
decision version of this optimization problem is known to be NP-hard. The best
known upper bound is an O(log*™ n) approximation for d > 2 and an O(logn)
approximation for 2-GMMN.

In this work we provide some more insight in, whether the problem admits con-
stant factor approximations in polynomial time. We develop two new algorithms,
a ‘scale-diversity aware’ algorithm with an O(D) approximation guarantee for 2-
GMMN. Here D is a measure for the different ‘scales’ that appear in the input,
D € O(logn) but potentially much smaller, depending on the problem instance.
The other algorithm is based on a primal-dual scheme solving a more general,
combinatorial problem — which we call PATH COVER. On 2-GMMN it performs
well in practice with good a posteriori, instance-based approximation guarantees.
Furthermore, it can be extended to deal with obstacle avoiding requirements. We
show that the Path Cover problem is at least as hard to approximate as the HIT-
TING SET problem. Moreover, we show that solutions of the primal-dual algorithm
are 4w? approximations, where w < n denotes the maximum overlap of a prob-
lem instance. This implies that a potential proof of O(1)-inapproximability for
2-GMMN requires gadgets of many different scales and non-constant overlap in
the construction.

Geometric Map Matching for Heterogeneous Data For a given sequence of
location measurements, the goal of the geometric map matching is to compute a
sequence of movements along edges of a spatially embedded graph which provides
a ‘good explanation’ for the measurements.

The problem gets challenging as real world data, like traces or graphs from
the OpenStreetMap project, does not exhibit homogeneous data quality. Graph
details and errors vary in areas and each trace has changing noise and precision.
Hence, formalizing what a ‘good explanation’ is becomes quite difficult.

We propose a novel map matching approach, which locally adapts to the data
quality by constructing what we call dominance decompositions. While our ap-
proach is computationally more expensive than previous approaches, our exper-
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iments show that it allows for high quality map matching, even in presence of
highly variable data quality without parameter tuning.

Rational Points on the Unit Spheres Each non-zero point in R identifies a
closest point = on the unit sphere S¥~'. We are interested in computing an e-
approximation y € Q¢ for x, that is ezactly on S*~! and has low bit-size. We revise
lower bounds on rational approximations and provide explicit spherical instances.

We prove that floating-point numbers can only provide trivial solutions to the
sphere equation in R? and R3. However, we show how to construct a rational point
with denominators of at most 10(d — 1)/ for any given € € (O7 %], improving on
a previous result. The method further benefits from algorithms for simultaneous
Diophantine approximation.

Our open-source implementation and experiments demonstrate the practicality
of our approach in the context of massive data sets, geo-referenced by latitude and
longitude values.
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Zusammenfassung

Die geometrische Gestalt von Berechnungsproblemen liefert vielfaltige Losungs-
strategieen aber auch Hindernisse. Diese Arbeit betrachtet drei Probleme im Ge-
biet der geometrischen Netzwerk Planung, des geometrischen Data Minings und
der spharischen Geometrie.

Geometrische Netzwerk Planung Im d-dimensionalen GENERALIZED MINI-
MUM MANHATTAN NETWORK Problem (d-GMMN) méochte man ein giinstig-
stes geradliniges Netzwerk finden, welches jedes der gegebenen n Punktepaare
aus R? mit einem kiirzesten Manhattan Pfad verbindet. Es ist bekannt, dass
die Entscheidungsvariante dieses Optimierungsproblems NP-hart ist. Die beste
bekannte obere Schranke ist eine O(log®™ n) Approximation fiir d > 2 und eine
O(logn) Approximation fiir 2-GMMN.

Durch diese Arbeit geben wir etwas mehr Einblick, ob das Problem eine Approx-
imation mit konstantem Faktor in polynomieller Zeit zulasst. Wir entwickeln zwei
neue Algorithmen. Ersterer nutzt die ‘Skalendiversitdt’ und hat eine O(D) Ap-
proximationsgiite fiir 2-GMMN. Hierbei ist D ein Ma$ fiir die in Eingaben auftre-
tende ‘Skalen’. D € O(logn), aber potentiell deutlichen kleiner fiir manche Prob-
lem Instanzen. Der andere Algorithmus basiert auf einem Primal-Dual Schema
zur Losung eines allgemeineren, kombinatorischen Problems, welches wir PATH
COVER nennen. Die praktisch erzielten a posteriori Approximationsgiiten auf In-
stanzen von 2-GMMN verhalten sich gut. Dieser Algorithmus kann fiir Netzwerk
Planungsprobleme mit Hindernis-Anforderungen angepasst werden. Wir zeigen,
dass das Path Cover Problem mindestens so schwierig zu approximieren ist wie
das HITTING SET Problem. Dariiber hinaus zeigen wir, dass Losungen des Primal-
Dual Algorithmus 4w? Approximationen sind, wobei w < n die maximale Uberlap-
pung einer Probleminstanz bezeichnet. Daher missen potentielle Beweise, die kon-
stante Approximationen fiir 2-GMMN ausschliefen mochten, Instanzen mit vielen
unterschiedlichen Skalen und nicht konstanter Uberlappung konstruieren.

Geometrisches Map Matching fiir heterogene Daten Fiir eine gegebene Se-
quenz von Positionsmessungen ist das Ziel des geometrischen Map Matchings eine
Sequenz von Bewegungen entlang Kanten eines raumlich eingebetteten Graphen
zu finden, welche eine ‘gute Erklarung’ fiir die Messungen ist.

Das Problem wird anspruchsvoll da reale Messungen, wie beispielsweise Traces
oder Graphen des OpenStreetMap Projekts, keine homogene Datenqualitat aufwei-
sen. Graphdetails und -fehler variieren in Gebieten und jeder Trace hat wechseln-
des Rauschen und Messgenauigkeiten. Zu formalisieren, was eine ‘gute Erklarung’
ist, wird dadurch schwer.
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Wir stellen einen neuen Map Matching Ansatz vor, welcher sich lokal der Daten-
qualitat anpasst indem er sogenannte Dominance Decompositions berechnet. Ob-
wohl unser Ansatz teurer im Rechenaufwand ist, zeigen unsere Experimente, dass
qualitativ hochwertige Map Matching Ergebnisse auf hoch variabler Datenqualitét
erzielbar sind ohne vorher Parameter kalibrieren zu miissen.

Rationale Punkte auf Einheitsspharen Jeder, von Null verschiedene, Punkt in
R? identifiziert einen nichsten Punkt 2 auf der Einheitssphire S*~'. Wir suchen
eine e-Approximation y € Q7 fiir  zu berechnen, welche exakt auf S*! ist und
niedrige Bit-Grole hat. Wir wiederholen untere Schranken an rationale Approxi-
mationen und liefern explizite, sphéarische Instanzen.

Wir beweisen, dass Floating-Point Zahlen nur triviale Losungen zur Sphéaren-
Gleichung in R? und R3? liefern konnen. Jedoch zeigen wir die Konstruktion
eines rationalen Punktes mit Nennern die maximal 10(d — 1)/e? sind fiir gegebene
€€ (0, %], was ein bekanntes Resultat verbessert. Dariiber hinaus profitiert die
Methode von Algorithmen fiir simultane Diophantische Approximationen.

Unsere quell-offene Implementierung und die Experimente demonstrieren die
Praktikabilitat unseres Ansatzes flir sehr grofle, durch geometrische Langen- und
Breitengrade referenzierte, Datensatze.
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Introduction

Algorithm Engineering denotes the complete process of actually finding solutions
to problems raised by applications. This includes the interactions between formal-
izing a computational objective that meets application needs, analyzing theoretical
aspects within the formalized frame and solving the objective with available ma-
chinery. While either one of these scientific directions has merit on its own, solely
focusing on single aspects of this interaction can very well lead to huge gaps be-
tween algorithm theory and applicability or computation goals and application
needs. For instance, an algorithm with a polynomial bound on the number of op-
erations that has huge constants or an enormous degree might well be insufficient
for even the smallest problem instances in an application domain. On the other
hand, an NP hardness proof for a computational objective might well construct
instances that do not occur in an application domain. A similar gap exists be-
tween application needs and formalized computation goals. A relaxed goal might
allow a concise formalization and efficient, implementable algorithms, but lack to
meet application needs. Conversely, heuristics that work well on machinery and
instances of an application domain might well have an unclear computational ob-
jective — putting results for yet unobserved instances in the application domain in
questionable light.

Many applications deal with objects of some geometry and the geometric ap-
proach to problems provides a rich source of solutions strategies as well as com-
plicating obstacles. Each of the three chapters of this thesis eventually provides
algorithms that allow for implementation and execution on contemporary com-
puting hardware. The contents of Chapter 1 mainly relate to algorithm theoretic
aspects, Chapter 2 to the aspect of objective formalization and Chapter 3 to as-
pects of computing machinery.

Model of Computation

In order to provide some concise statement on how complex the computational
task is, one conveniently switches from Turing Machines to the RANDOM AcC-
CESS MACHINE (RAM). The RAM can store arbitrary large integers in each of its
infinitely many cells, perform exact arithmetic operations, comparisons and cell
access, by the value of another, in unit time. By means of successive squaring, such
machines can well double the bit-size of a number in each step. Note that despite
such a model does not provide additional power in terms or problem decidability,
such machines can decide NP-complete problems in polynomial time. E.g. the
satisfiability problem in conjunctive normal form (CNF) allows arithmetic coding
of the variables appearing in a clause as integers. Transferring the CNF in a dis-
junctive normal form via the distributive law for V, A can be achieved with the

11
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arithmetic operations +, . The decision is due checking if there is a clause not
simultaneously containing a variable and its negation by means of checking the
respective bits of their arithmetic coding [Sch79].

Therefore, such unrealistic computational power is usually limited in the RAM
by a cost measure of arithmetic operations that depends on the operands bit-size.
A more pragmatical solution for algorithm analysis is to provide, along with bounds
in uniform cost measure, an upper bound on the magnitude of the biggest integer
that is computed during the algorithm — this bounds simulation time on non-
uniform cost machines. Analyzing problems and algorithms in Euclidean geometry
often requires to deal with & hence one allows the machine to exactly handle
numbers of R in each cell — the Real RAM model. Unrealistic computational power
appears in a similar fashion if exact rounding to the closest integer is allowed.
Therefore, authors consider machines that can only apply rational functions to
cells [BSS89] or limit the comparison operations to a fixed precision [BH98].

12



Chapter 1

The Generalized Minimum
Manhattan Network Problem

A shortest Manhattan path for two points s,¢ € R? is a sequence of connected,
axis parallel line segments of length ||s — ¢||; and therefore contained in the axis
aligned bounding box, called box(s, t). We study the d-dimensional GENERALIZED
MINIMUM MANHATTAN NETWORK problem (d-GMMN):

Input: A set R = {(51, t1)y oy (Snytn) @ Siyti € Rd} of terminals pairs.

Goal: Determine a finite set N of axis parallel line segments of minimum total
length that contains a shortest Manhattan path for each pair.

With ¢(N) = 2, penllp — all1, we denote the total length of the line segments in
N. We further call ¢(N) the cost of a solution, which is always non-negative.

An algorithm that outputs a solution within a number of operations, that is
polynomial in the input size, is called approximation algorithm. Further, it is
called a-approximation if, for all problem instances, the solution’s cost is within
a factor of « of the cost of an optimal solution. Hence, o > 1 for minimization
problems with non-negative cost functions.

The problem is closely related to the rectilinear Steiner network problem, where
the goal is to connect designated pairs in a minimum cost network but not neces-
sarily on shortest paths. In the context of circuit design (d = 2 or d = 3) — one of
the main application areas of many Steiner-type problems — restricting to shortest
paths for interconnection corresponds to keeping the latency low. See Figure 1.1
for an example.

Related Work

d-GMMN is a generalization of the d-dimensional MINIMUM MANHATTAN NET-
WORK problem (d-MMN; all pairs over T" are present in R, for a set of terminal
points T' C Rd) and the d-dimensional RECTILINEAR STEINER ARBORESCENCE
problem (d-RSA, each pair in R contains the origin as one of its elements). The

13



Chapter 1 The Generalized Minimum Manhattan Network Problem

s

Figure 1.1: A 2-GMMN instance with 3 terminal pairs (red), axis-parallel bounding
boxes of terminal pairs (blue), and line segments of a solution (black).

decision problems of 2-RSA and 2-MMN are strongly NP-complete [SS05, CGST1].
Unless P = NP, there is no algorithm scheme that achieves approximations within
(1+¢) of the optimal cost in a time that is polynomial in the number of terminals
and in 1/e. Such algorithm schemes are called Fully Polynomial Time Approxi-
mation Scheme (FPTAS).

For 2-RSA several O(1)-approximation algorithms are known. The algorithm
given in [RSHS92] is conceptually simple and achieves a 2-approximation. There is
also a polynomial time approximation scheme (PTAS) based on Arora’s shifting-
technique [LROO].

The situation for MMN problems is slightly different. We know that 3-MMN
does not admit a PTAS, unless P = NP [Engl0, MSU09]. [GLNO1] gives an
O(1)-approximation. Several subsequent papers improve on the running time
and the constant factor of the O(1)-approximation. [CNVO08] gives the first 2-
approximation for 2-MMN. Their approach is based on a multiphase flow ILP
formulation of polynomial size and iteratively rounding an optimal fractional so-
lution. The authors introduce 2-GMMN in their discussion section and point out,
that their approach might not translate easily.

Das et al. [DFK*17] provide a O(log**' n) approximation for d-GMNN with
n terminal pairs. They could even prove an O(logn) upper bound for d = 2.
Their approach follows the divide-&-conquer paradigm by subsequently solving
sets of terminal pairs which can be connected via a common point in space; these
base cases are solved with a known d-RSA approximation algorithm. They also
provide an instance showing the analysis for their algorithm is essentially tight
(not excluding other, better algorithms).

Contribution

We study theoretical aspects of the d-GMMN problem that lead to a somehow
practical algorithm. On the theoretical side, we state simple decomposition and

14



scaling properties that clarify that d-GMMN problem instances, whose associ-
ated geometric intersection graph has degree of at most A, allow simple (A + 1)-
approximations.

The results in Section 1.1.3 are along the lines of [DFIK"17]. However, the
approximation ratio of our ‘scale-diversity aware’ algorithm depends rather on the
scale diversity D of the input, than on its arrangement. More concretely, we show
that our algorithm computes an O(D) approximation to the 2-GMMN problem.
Since D € O(logn), this result always matches the result in [DFK™17], but is
better if the scale diversity of R is small — e.g. D € o(logn).

Section 1.2 establishes the so-called Hanan property via a constructive plane
sweeping argument. This reduces d-GMMN to a combinatorial problem on a graph
of polynomial size, for fixed dimension d. We call this problem PATH COVER.
Regarding approximability in polynomial time, one may well assume that every
polynomial time approximation algorithm for the geometric problem outputs a set
of Hanan grid edges — one simply uses the plane sweeping as post-processing.

Apart from brute force algorithms, combinatorial problems allow for integer
linear programming (ILP) formulations. Cut based formulations seem ill-suited to
formalize the problem’s shortest path requirements. We turn to a more flexible
formulation that bases on, what we call, separation sets. Such formulations not
only model the connectivity requirements of &-GMMN in the Hanan grid graph but
the potentially more general Path Cover problem as well. We derive a primal-dual
scheme for the Path Cover problem and show that solutions of this algorithm have
costs within a factor of 4w? of the optimum, where w € {1,...,n} is the maximum
number of pairs that can share an edge of the graph in solutions. In terms of
the geometric intersection graph of the d-GMMN instance, w denotes the clique
number. Moreover, we extend the in-approximability results of the well known
Hitting Set problem with a reduction to Path Cover.

On the practical side, the primal-dual approach produces lower bounds during
its execution which — at least in our experiments with an implementation for d = 2
— turn out to be very close to the costs of the computed networks.

Chapter Outline and Pre-Releases

This chapter starts with observations on basic decomposition properties in Sec-
tion 1.1 that lead to the ‘scale-diversity aware’ algorithm. Apart from the (A+1)-
approximation, these results can also be found in our contribution to the proceed-
ings of the 26th Canadian Conference on Computational Geometry [F'S14].
Section 1.2 establishes the Hanan property and thereby the reduction to the Path
Cover problem. This statement, with focus on the existence of optimal solutions to
the geometric &-GMMN problem, is contained in [FS14], as well. Our new results
of Section 1.3 clarify that the (potentially) more general Path Cover problem is at

15
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least as hard to approximate as the Hitting Set problem. Section 1.4 reviews cut
based combinatoric network design problems.

Section 1.5 describes the separation sets, which are the basis or our ILP formu-
lation to the Path Cover problem. Section 1.6 describes the primal-dual method
which is naturally linked to such separation set formulations. As presented here,
the method avoids redundant constraints in the ILP formulation and now pro-
vides better lower bounds for a particular family of instances than our version in
[['S14]. Section 1.7 provides a new, upper bound on the approximation ratio of
the primal-dual algorithm for the Path Cover problem.

Section 1.8 discusses issues for a practical implementation and Section 1.9 pro-
vides experimental results for the primal-dual algorithm. Section 1.10 concludes
this chapter with a brief summary on the approximability results for d-GMMN
and potential extensions and improvements of the presented methods.

1.1 Scale-Diversity Aware Approximation

Let us first make some general observations about decomposition properties in the
d-GMNN problem.

Lemma 1.1.1 ([F'S14]). The cost of an optimal solution to any subset R' of a
GMDMN instance R is a lower bound to the cost of an optimal solution for R.

Proof. Consider an optimal solution N for R having a strictly lower cost than an
optimal solution N’ for R’. However, N contains a shortest path for each pair in
R’. A contradiction to the optimality of N'. O

This simple lemma gives rise to the following decomposition property of GMMN
instances.

Lemma 1.1.2 ([I'S14]). Let R = Ry U ... U Ry (not necessarily disjoint). If
each N; is an o;-approzimation for R;, then N = |J, N; is a solution for R with
¢(N) <OPT(R) - >, a.

Proof. N clearly connects each pair in R. By Lemma 1.1.1 we have OPT(R;) <
OPT(R) and ¢(N) <> .c¢(N;) <>, a; - OPT(R;) < . oy - OPT(R). O

This Lemma already provides some insight regarding approximability of d-
GMMN. We consider the geometric intersection graph of the associated boxes

of the terminal pairs in problem instance R. That is the simple, undirected graph
G = ({vi,..., v}, E) with E = {{v;,v;} : box(s;, ;) N box(s;,t;) # 0}.

Theorem 1.1.3. Let A denote the mazimum degree of vertices in the geometric in-
tersection graph of a d-GMMN instance R. Then R allows a (A+1)-approximation
within O(n?) time.

16



1.1 Scale-Diversity Aware Approximation

Proof. Building a graph representation for the instance R takes no more than
O(n?) operations. For a graph, with maximum degree A, it is simple to color the
vertices with at most A+ 1 colors, such that adjacent vertices are in different color
classes [Diel0]: We color the vertices in a fixed sequence vy,...,v, by greedily
assigning the smallest, free color to vertex v;.

Now, the set of vertices with an equal color is an independent set. Moreover, a
trivial assignment of line segments to these terminal pairs is an optimal solution
for this subset of terminal pairs. Given above Lemmas 1.1.2 and 1.1.1, the union
of A + 1 trivial solutions provides a solution as stated. O

1.1.1 Shape Properties

Let us now turn to more shape-dependent properties of GMMN. We first show that
if all terminal pairs (s,t) € R exhibit the same shape, that is, if in one dimension
every terminal pair has ‘about’ the same extent, then we can decompose R into
constantly many, not necessarily disjoint instances. Each of these instances has a
very special structure, which allows for a constant approximation. Recall that we
associate with each pair (s,t) € R the minimum area, axis-parallel box, having s
and t as corners. Moreover, we denote the distance of points (ay, as), (b, by) € R?
in the dimension j € {1,2} with d;((a1, as), (b1, b)) = |a; — bj].

Lemma 1.1.4 ([F'S14], Shapes in 2-GMMN). Let v > 0 be constant and R a
2-GMMN instance. If for one dimension j € {1,2} each pair (s,t) € R has
v < dj(s,t) < 2v, then R can be decomposed into a constant number of (not
necessarily disjoint) instances R = RogU Ry -+ U Rs. Bozes in each R; have either
a common axis parallel intersection line or no intersection at all.

Proof. Let 7 be the dimension fulfilling the shape property. Consider lines that
are axis-orthogonal to dimension 7 with distance v in dimension j. These lines are
axis-parallel to the other dimension. Each box of a pair (s,t) € R intersects at least
one and at most three lines. If boxes r and ' contain lines ¢ and ¢’ respectively,
then |i — /| > 6 implies that » N7’ = (). This gives rise to the decomposition
where R; C R consists of all pairs that contain a line k£ with kK =4 mod 6 in their
box. O

See Figure 1.2 for an illustration of this statement and proof.

1.1.2 Scale Properties

We call a d-GMMN instance R’ scaled, if it is derived from an instance R by
dividing each coordinate of a terminal by a fixed ¢ > 0. We have an one-to-
one correspondence between the original and the scaled solutions, because a line
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4 :
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Figure 1.2: Illustration of Lemma 1.1.4 on shapes in a 2-GMMN problem with 3
pairs (blue rectangles) of terminals (red points).

segment between two points can be scaled up or down in the same way. Moreover,
the cost of a network is o times the cost of the corresponding network. If we have
an instance of d-GMMN where some of the boxes associated with terminal pairs
are very ‘small’” compared to the other boxes, we can essentially connect them
naively without losing more than a constant factor in the total connection cost.

Lemma 1.1.5 ([F'S14]). Let R be a d-GMMN instance with n = max(syer |[s—t|]1-
Further, let R, :== {(s,t) € R: ||s—t|}s < d}. If N' is an a-approximation for the
instance R\ R., then R can be approzimated within O(«).

Proof. Since there exists a (s,t) with ||s — t||; = n, we know that the cost of the
optimal solution to R must be at least n. Connecting all terminal pairs in R, has
cost at most (n — 1)d. The lemma follows. O

1.1.3 Scale-Diversity Aware Approximation for 2-GMMN

The algorithm in this section is based on the combination of decomposition, shape
and scale properties. For a set U C (1,n| of numbers, we denote with

gU):=|{ieNg | JueU:2 <u<2™}

the scale diversity of U. Intuitively, g(U) describes how many different magnitudes
of numbers appear in the set U. Clearly g(U) € O(logn). In a 2-GMMN instance,
each pair (s,t) € R naturally gives rise to 2 distance values d;(s,t) — their distance
in the j-th coordinate. The preceding section argues that scaling, such that the
biggest [; distance of a pair is exactly n, does not affect the form of solutions. After
scaling, pairs with [; distance of no more than a constant can be neglected when
aiming for a constant approximation. With U; := { d;(s,t) € (1,n] : (s,t) € R },
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1.1 Scale-Diversity Aware Approximation

we denote the spread in dimension j of the pairs, after scaling. The quantity

D = max{g(Uh),9(Uz)}

denotes the scale diversity of R and essentially captures how many really different
magnitudes of spreads with respect to the maximum extent appear in R.

We borrow the following lemma to solve the partitions in each of the six covers of
one shape class. Note that this algorithm uses a PTAS (based on Arora’s shifting
technique) for 2-RSA as sub-procedure.

Lemma 1.1.6 (Lemma 7in [DFK"17] ). Let R be a 2-GMMN instance. If all boxes
of R have a common, axis-parallel intersection line, then R can be approximated

within O(1).

1. Scale the instance R such that |R| = max(er||s — t]1.

2. Partition R into
R.={(s,t) € R : |[s— 1|1 <2},
Ry ={(s,t) € R\ Re : di(s,t) > da(s,1)},
and Ry = R\ (R; UR,).

3. Partition R; into g(U;) shape classes and solve.
4. Partition Ry into g(Us) shape classes and solve.

5. Solve R, trivially.

Algorithm 1: Scale-Diversity Aware Approximation

Essentially, after scaling we partition the problem instance into three instances
R., Ry and Ry, where R. contains terminal pairs with ‘very small’ boxes, R; all
terminal pairs whose box is wider than tall, and Ry the remaining ones. Then for
each R; we consider the scale classes in dimension ¢ and solve each of them using
Lemmas 1.1.4 and 1.1.6. The R, are solved trivially.

Theorem 1.1.7 ([I'S14]). If R is a 2-GMMN instance with scale diversity D =
max{g(U;), g(Us)}, then Algorithm 1 computes an O(D) approzimate solution.

Proof. The scaling property preserves optimality of solutions. The pairs in R.
can essentially be ignored according to Lemma 1.1.5. R; can be decomposed into
g(Uy) shape classes of boxes. Using Lemma 1.1.4, each shape class in Ry can
again be decomposed into a constant number of instances each of which allows a
partition in boxes sharing a common intersection line or not having an intersection
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Chapter 1 The Generalized Minimum Manhattan Network Problem

at all. The disjoint parts of these instances with the common intersection line are
solved with Lemma 1.1.6 within a constant factor of their optimum — their disjoint
union remains within a constant factor of their optimum. Using Lemma 1.1.2 the
approximation ratio of the possibly non-disjoint union follows. The same argument
holds for R,. O

Clearly D € O(logn) but might be smaller in some applications. We give an
example that occupies many shape classes. Let s, denote the point (z,0) and ¢,
the point (0,y). The arrangement {s,/2, 8y, .-, 5172} X {tnj2:tna; ..., t1/2} has
an optimal solution of cost n. Consider the 2-GMMN instance R that contains
n/logj(n) disjoint copies of this arrangement (|R| = n). We have an optimal
solution of cost n?/ log;(n) and all shape classes in dimension 1 and 2 are occupied
with g(Uy), g(Us) € ©(logn).

1.2 Reduction to a Combinatorial Problem

Let us first make the following observation which reduces the potentially very large
number of line segments to consider for a solution network.

1.2.1 Restriction to the Hanan Grid

We consider the undirected, simple graph H(R) induced by the instance R. Let
P; be the projection of R onto the i-th coordinate. The vertices are the Cartesian
product Hfil P; and have an edge if and only if they are identical in all, but
neighbored in one, coordinate. We call the difference in this coordinate the cost
ce of the edge e. Any d-GMMN instance with n pairs has a Hanan Grid of size
at most (2n)? vertices and O(d(2n)?) edges. This is polynomial for fixed d. See
Figure 1.3 for an example. Given two vertices we call a simple path connecting
them a monotonous path (m-path) if the sequence of the coordinates of the vertices
along the path is monotonous in each dimension.

The Hanan grid is known to be a valuable tool for many geometric problems
in the rectilinear setting. We adapt a simple proof that follows the argument for
the 2D Rectilinear Steiner Tree Problem over weighted regions [ZacO1]. A similar,
but far more lengthly, argument for the d-dimensional Rectilinear Steiner Minimal
Tree Problem is given in [Sny92].

Theorem 1.2.1 ([F'S14]). Let R be a d-GMMN instance and H(R) = (V, E) the
associated Hanan grid. For any solution N to R, there is a solution N C E to R
with

¢(N) <¢(N) .
The time to compute the edge set N is polynomial in the cardinality of N and E.
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1.2 Reduction to a Combinatorial Problem

! ______________,

Figure 1.3: Example Hanan Grid H(R) for the 2-GMMN instance R =
{{(0,1.5),(1.5,0)},{(1.2,.3),(2.7,1.8)},{(1.8,0),(3.3,1.5)}}. Termi-

nals are indicated in red and terminal pairs with blue rectangles.

Given a solution N of line segments for R. We call a point in the cut of at least
two segments a node. This proof constructs a set of line segments in which nodes
coincide with vertices of H(R). We apply an argument that orthogonally sweeps
a hyperplane over one dimension after the other (c.f. Figure 1.4):

Proof. Let N be a solution to R. We describe the sweep over the x; dimension.
After the sweep, the x; coordinate of each node in N will be identical to one in
P;.

Consider the non-vertex nodes of N with maximum x; coordinates and their
hyperplane h containing them. Now ‘above’ or ‘below’ h denotes that a point has
a higher or respectively lower z; coordinate than h. Inductively, every node above
h already has x;-coordinates as desired. Let ¢ denote the distance in z; to the
next above coordinate in P; and ¢~ the distance in z; to the smaller of either the
next lower set of such nodes of N or to the next lower point in P;. Let also S™
and S~ denote the set of line segments parallel to x; and incident to a node in h
above and below respectively. The change in total cost for jointly moving the line
segments of N, that are contained in h, along the z; direction by § € [—e~,e™] is

6(1571-18*) -

If |S*| > |S™| we simply move the segments in h upwards by e otherwise we move
them downwards by €~. The total costs do not increase in either case. Since h does
not contain terminals, jointly moving all nodes in h does not violate monotonicity
of any m-path between terminals in N. After this sweep, the z; coordinates of a
node in N is identical to one in PP, and the total number of non-vertex nodes did
not increase. After d sweeps, no non-vertex nodes are left. n
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Chapter 1 The Generalized Minimum Manhattan Network Problem

e let
-« N

Figure 1.4: Illustration of the proof of Theorem 1.2.1.

The sweeping hyperplane method of above’s proof is constructive. In terms of
polynomial time approximability of &-GMMN, one may well assume that any d-
GMMN approximation algorithm returns a set of edges of the respective Hanan
grid as solution — Post-processing with aboves method requires only a polynomial
time overhead and does not increase solution costs.

Corollary 1.2.2 ([F'S14]). For any d-GMMN instance R, there is an optimal
solution N wusing only edges of H(R) as line-segments.

This property of the Hanan grid enables us to compute an optimal solution
to d-GMMN with a brute-force approach. Every feasible network consists of a
covering of n m-paths, connecting a pair of terminals each. The number of m-
paths for two vertices is generally exponential in n. For small instances however,
one can enumerate all feasible networks living on the Hanan grid to find optimal
solutions to the d-GMMN problem. Moreover, if the problem instance has a simple
combinatorial structure, one can use a dynamic programming approach on the
Hanan grid to obtain an optimal solution in polynomial time: one of these cases
is that the intersection graph of the boxes, that are associated with the terminal
pairs of a d-GMMN instance, has constant degree and constant tree-width. Such
an overlay tree structure can guide a dynamic programming approach to solve
level-wise in a leaf-to-root fashion by storing subtree costs for each of the constant
interface configurations [Sch15].

1.2.2 The Path Cover Problem

Given an undirected graph G = (V, E') with non-negative edge costs ¢ : F — Q and
a set of n vertex pairs {{si,ti} CV:1<:< n} The goal of the PATH COVER
problem is to choose a path p; C FE, from the set of shortest paths between s;
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and t;, for each i € {1,...,n} such that )" __ c(e) is minimal, where N = JI"_, p;
denotes the set of edges contained in these paths.

Clearly, the problem is trivial on instances with unique shortest paths between
each vertex pair. Due to Corollary 1.2.2, d-GMMN is a special case of the path
cover problem on the Hanan grid graph.

1.3 Reducing Hitting Set to Path Cover

We consider the unweighted HITTING SET problem over the universe U = {ey, ... e}
Given a family of n subsets S = {S; C U : 1 < i < n}, the goal is to find a mini-
mum cardinality set H C U such that HN.S; # () for all ¢. This problem is equiv-
alent to cardinality SET COVER by interchanging the role of sets and elements —
The set cover problem seeks to cover all n elements with a minimum number sets.
The greedy algorithm for set cover, that is repeatedly choosing a set that covers a
maximum number of currently uncovered elements, is well known to provide ap-
proximations for the set cover problem no worse than a factor H, [Vaz03]. Where
H, =Y., 1/i denotes the n-th harmonic number and H, < 1+ ;" 2dz = 1+Inn.
[Fei98] shows that, for any constant 6 > 0, the existence of an (1 — d) Inn approx-
imation algorithm for cardinality set cover implies NP C DTIME(nCUoglen)),
Even more, it is NP-hard to approximate within a factor (1 — d)Inn for every
d > 0 [DS14]. In this sense, the greedy algorithm provides the best achievable
approximation factor for the set cover and hitting set problem.

Let Uy = {u11,...,u1m} and Uy = {ugy, ..., usm} denote two disjoint copies of
U. We define an undirected graph Gs = (V, E) on

V=A{s1,t1,.. ., S, tn } UU; U U, .
With Cy = {{s;,u1;} :e; € S;} and Cy = {{t;,u;} : €; € S;}, the edge set is
E = {{ulﬂ-,u%} 1< §m} uc,udy.
See Figure 1.5 for an example. Let ¢ = 1/(2>"" | |Si|). We set the edge costs to

{8 fore € Cl U 02
cle) =

1 otherwise
and the shortest path requirement pairs to
Cl UCQU {{Sl,tl} 01 S 7 S TL}

In this Path Cover problem instance, one is required to connect n+23% " | |S;| €
O(nm) node pairs with shortest paths in Gs (c.f. Section 1.2.2). Since all edges
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Chapter 1 The Generalized Minimum Manhattan Network Problem

Figure 1.5: Graph of the hitting set instance S = {S; = {1,2,4}, 52 = {2,3,4,5}}
on U =1{1,2,3,4,5}.

have positive cost, there is exactly one shortest path for each pair in C and in Cs.
Hence each solution to the path covering problem contains all e-cost edges C7 U Cs
and has total cost of at least 1. The shortest path distance of s; and ¢; in Gg is
2+ 1 and there are |S;| different shortest paths for each i € {1,...,n}. Moreover,
we have a one-to-one correspondence between subsets of U and the subsets of the
m edges of cost 1.

Considering a path covering solution N C FE., we have a shortest path between
each s;,t; pair. The cost 1 edges on these paths identify elements in U that hit
each set S;. On the other hand, every hitting set H C U identifies |H| of the cost
1 edges that augment the e-cost edges to shortest paths for each s;,t; pair. The
cost of such a Path Cover solution N C F is

¢(N)=> cle)=|H|+e2) |S;|=|H|+1.
eeN i=1

For non-trivial instances of the cardinality hitting set problem, solutions H
contain at least one element. Now, any polynomial time, factor o approximation
algorithm for Path Cover also provides solutions to the cardinality hitting set
problem of cost

|H| -+ 1 S OéC(NQpT) = Oé(|HopT| + 1) S 2a|HOPT|

From above’s discussion on the approximability of the hitting set problem, it is
unlikely to expect the existence of polynomial time algorithms with o < In\/n
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for the general Path Cover problem. Note that this reduction easily translates to
Path Cover problems in directed graphs. Moreover, strengthening the reduction
to avoid the ‘+1’ in the cost or having only n required vertex pairs is possible by
expense of a slightly more complicated argument.

Unfortunately, this construction does not trivially extend to d-GMMN. An em-
bedding of such graphs on grid graphs in R?, that preserves shortest path dis-
tances (to some extend), would establish a stronger in-approximability result for
d-GMMN (c.f. Theorem 1.2.1). For general, planar graphs with non-negative
weights it is already NP-hard to decide if there exists a geodesic embedding on a
grid graph in R? [KKRW10].

1.4 Review of Network Design Problems

A canonical framework to study combinatorial optimization problems is the theory
of integer linear programming (ILP). The textbook [WS11] provides a comprehen-
sive introduction. Network design problems seek to choose a minimum cost subset
of graph edges under certain connectivity constraints. This broad category con-
tains problems like the shortest s-t path problem or the NP-complete Steiner tree
problem. Problems without special restrictions on the form of a connection path
are well studied in form of cut-sets, which are subsets of the graph vertices that
are connected under some subset of edges. Cut-sets provide a simple and flex-
ible, combinatorial tool to formalize if a solution network meets or violates the
problem-specific connectivity constraints. This section reviews some key prop-
erties, applied as requirements to cut-sets, that immediately establish constant
factor approximations in polynomial time [Jai0O1].

Let (V, E) be an undirected graph with non-negative edge weights ¢ : E — Q.
The boundary-set §(S) for a cut-set S C V' is given by the mapping

i(S)={e€E : lenS|=1}.

We introduce binary variables z. € {0,1} and constants ¢, = c¢(e) for each e €
E. The following cut-set formulation is common basis of many network design
problems [WS11].

minimize Z CeTe
ccE

subject to Z ze > f(5) vSesS (1.1)
e€5(S)
z. € {0,1} Veec E
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Chapter 1 The Generalized Minimum Manhattan Network Problem

where S denotes a set of cut-sets and f : 2V — N is the requirement function
describing how many edges of a specific boundary-set 4(S) are required in a feasible
solution network.

Shortest s-t Path Problem The problem of finding a minimum cost s-t path
in an undirected graph (V, E) with non-negative edge costs ¢ : E — Q% can be
considered as a network design problem [GWO95] by requiring every cut-set, that
separates s from t, to contain at least one edge. That is

S={SCV : S£0,5+V}
f(S):{1 1SN {s,t} =1

0 otherwise

Generalized Steiner Network Problem In this problem one is given n vertex
pairs s;,t; € V in an undirected graph (V, F) with non-negative edge costs ¢ : £ —
Q*. The goal is to find a minimum cost network N C FE that contains a path
between every s;-t; vertex pair [WS11].

S={SCV : S£0,S#V}
J(5) = {O otherwise

1.4.1 Approximability from Requirement Functions

Further classification of combinatoric optimization problems with cut-set formu-
lations is possible by distinguishing classes of requirement functions.

Definition 1.1. A requirement function f : 2V — N is called proper, if f(V) =10
and the following two conditions hold.

1. For all S CV, we have f(S) = f(V\59).
2. For all A, B CV with AN B = (), we have f(AU B) < max{f(4), f(B)}.

There is a long line of work studying problems with proper requirement func-
tions, which leads to a primal-dual algorithm (c.f. Section 1.6 ) to achieve constant
factor approximations [GW95].

Definition 1.2. A requirement function f : 2V — Z is called weakly-supermodular,
if f(V) =0 and for every A, B C V one of the following conditions holds.

L f(A)+ f(B) < f(ANB) + f(AUB) .
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1.5 Separation Set Formulation for Path Cover

2. f(A)+f(B) < f(A\B)+ f(B\ 4) .

This is a generalization over supermodular requirement functions, since only
one of the conditions is required. In fact, every proper requirement function is
weakly-supermodular [GGP794]. The authors show as well, that the an extended
primal-dual method provides factor 2Hy,,  approximations for these problems,
where H, =14+ 1/2+ ...+ 1/n and fr.x = maxgcy f(.5). Jain’s iterative round-
ing method [Jai0l] improves upon this and allows to find 2-approximations for
such network design problems in polynomial time. The author provides a com-
pressed formulation of the linear program and subsequently uses Tardos’ polyno-
mial time LP solver to derive 2-approximations for such network design problems
in O(|V|'°|E|") time.

However, it is unclear how to capture the required monotonicity property of
solution paths with boundaries of cut-sets. E.g. the cut-set {s} that separates a
s-t pair might well have a selected edge e = {s,v} in it’s boundary that is not
monotonous for s-t. Moreover, following edges that cross the boundary of the
cut-set {s,v} might not provide a monotonous s-t path.

1.5 Separation Set Formulation for Path Cover

We turn to a more flexible modeling concept than boundary-sets of cut-sets. Given
a graph (V, E) and two vertices s,t € V, we call a set of edges S C F a s-t
separation set, if (V,E \ S) contains no admissible s-t path. The Shortest s-t
Path (c.f. Section 1.4) network design problem solely requires a simple path that
connects the graph nodes s and t. Given any cut-set A C V' with [AN{s,t}| =1,
the boundary-set 6(A) is an example of a s-t separation set, since s and ¢ are in
different connected components of (V, £\ §(A)). However, smaller sets might well
suffice for more restrictive requirements to s-t connectivity.

Definition 1.3. Let (V| E) be a graph with non-negative edge costs ¢ : E — Q
and s,t € V. A set S C E is called a s-t separation set if the graph (V, E '\ 5)
contains no path, that is a shortest s-t path in (V, F).

There are no more than 2¥! separation sets in a graph and adding edges to a
separation set preserves the separation property. Hence the union of separation
sets of different vertex pairs is still a separation set. A separation set is called
minimal (under inclusion) if removing any edge of S allows a shortest s-t path in
(V,E\ S).

Finding some separation sets is simple for many combinatorial network design
problems. If some graph traversal algorithm can test a subnetwork N C E for
admissible s-t paths, one can often extend the traversal to an oracle algorithm.
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That is a polynomial time algorithm that either certifies N to be a feasible solution
or provides separation sets {S1,..., Sk} with S; NN =0 for j € {1,...,k}.

Given an s-t vertex pair, we assign two labels to the vertices of (V, E). One
label for the vertex’ shortest-path distance from s and one for the distance to t.
Considering the labels on adjacent vertices of an edge allows to judge if the edge
is on a shortest s-t path. For the Hanan grid of a d-GMMN instance, such prepro-
cessing is unnecessary as the spatial embedding of the vertices already provides
such labels. In a query, the oracle is presented with a traversable edge set N C E
as input. A depth-first search from s either finds a shortest s-t path contained in
(V, N) or reaches a set of edges S C E'\ N that extend shortest paths to (under V)
unreachable vertices. We denote this edge set with S5 and a traversal from vertex
t provides the set S;. Hence, the described Path Cover oracle returns no more than
k = 2n separation sets and a single call to the depth-first search takes no more
than O(|E|) time, given the discussed preprocessing labels. Section 1.8.1 describes
an output sensitive method for sequenced calls to the separation set oracle when
edges are added to V.

Figure 1.6 illustrates this on a 2-GMMN instance of three terminal pairs. The
black edges denote the input subnetwork N C E. The 6 depth-first search calls
return four separation sets, since terminal pair 3 has a monotonous path in V.
The blue edges indicate the two separation sets of the s; and t; call (left part) and
the separation sets of s, ty (right part).

St,
° 9
’ 4 —— — $d—

St

1

Figure 1.6: Example of separation sets (blue edges) from the oracle on a 2-GMMN
instance with three terminal pairs. Black edges denote the input sub-
network N C E.

1.5.1 Linear Programming on Separation Set Constraints

If the connectivity requirements of a network design problems can be captured
as separation sets, one immediately has a natural formulation as integer linear
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1.5 Separation Set Formulation for Path Cover
program:

minimize Z CeTe
eclk
subject to er > 1 vSeS (1.2)

e€eS

z. € {0,1} Vee £

This primal ILP contains a binary variable z. € {0,1} and a constant ¢, for the
associated cost of every graph edge e € E. The set S contains all separation sets,
hence we have no more than 2/*! row constraints.

For the Path Cover problem with the required vertex pairs s;,%; € V, we have
S ={5 C E: S is a separation set for some s;-t; pair} .

Solutions N C E of the Path Cover problem instance and feasible assignments
x € {0, 1}l of the ILP have a one-to-one correspondence. Given a solution set
N C FE for the Path Cover problem instance. Let s, € V be a vertex pair that
is separated by a row constraint, say S. Since N contains a shortest s-t path, at
least one edge in N needs to cross S. Conversely, given a feasible assignment x,
calling the oracle algorithm on the corresponding edge set N cannot return any
separation set. Hence, N contains a shortest path for each s;-t; pair.

The relaxation to non-integral variables . > 0 provides the primal LP. An
optimal solution X € RI®! to the LP provides a lower bound to the objective value
of optimal integral solutions, since any optimal integral solution x is also feasible
for the LP.

In the primal LP (minc - X, A - X > 1) the objective-coefficients are non-negative
and the constraint-coefficients are either 0 or 1. Consider an inequality of the single
row-constraint S € § of A multiplied by some small y > 0. That is

y(As x) 2y 1. (13)

For y < min{c. : e € E}, the multiplied constraint coefficients y A g are component-
wise smaller than the objective coefficients c. Therefore, the right hand side of
inequality (1.3) is a lower bound to the objective value c - X, for arbitrary non-
negative assignments X. Any conical combination (1.5) of row-constraints in which
the coeflicients are still component wise smaller than the objective-coefficients (1.4)
provides this property. This canonical method leads to the dual LP, in which the
objective is to find a maximal lower bound using such conical combinations of
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row-constraints:

maximize g Ys

Ses

subject to Z ys < ce Veec E (1.4)
SeS : eeS

ys > 0 vSeS (1.5)

This described property is well known as weak duality [Vaz03, Chapter 12.1].
We summarize these facts in the following Lemma.

Lemma 1.5.1. For a feasible assignment y € RIS for the dual LP and feasible
assignments Xopr € R xopr € {0, 1}|E| with optimal objective value for the
primal LP and ILP, respectively, we have

y-1<c-xopr<c-xppr.

The maximum ratio (c - xopr)/(c - XopT), observed over all instances of a prob-
lem, is called the integrality gap of a particular formulation.

1.6 The Primal-Dual Method

The method is coined by extensive research [Wil02] on the Generalized Steiner
Network Problem (see Section 1.4 for the definition). The idea of a primal-dual
algorithm scheme is to start with a pair of assignments. An infeasible integral
assignment to the primal ILP (x = 0) and a feasible, however far from optimal,
assignment (y = 0) to the dual LP. By alternately improving the dual assignment
and making the primal assignment more feasible, one obtains a lower bound that
might have a close relation to the eventually feasible, primal assignment. If a
polynomial time oracle reveals some violated constraints based on an infeasible
primal assignment, storing the dual assignment sparsely or solely the dual objective
value is sufficient.

We now describe the adaption to problems with separation set oracles, as dis-
cussed in Section 1.5. Given an infeasible, primal assignment x € {0, 1}/¥!, we run
a separation set oracle on the respective set of edges. The resulting violated sep-
aration sets V = {51, S5s,...Sc} C S contain edges, that extend admissible path
pre- or suffixes that are contained in x. Continuous, uniform increase of the dual
variables yg,, ..., ys, by some € > 0 eventually packs a dual’s inequality constraint
tightly, with equality. Meaning for the inequality of some row constraint we have

Ce = Z Ys -

SES : eeS
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We add the edges with tight dual constraints to x (c.f. Line 9 in Algorithm 2)
and repeat until primal feasibility is reached. This creates an ordered sequence
for the edges of x and a lower bound Y = ) ¢ s ys value. After the sequence is
feasible, unnecessary edges are pruned in reverse sequence order (c.f. Lines 15-19
in Algorithm 2).

In each step, one of the polynomially many edges is added to x and proceeding
oracle calls do not contain edges of x in the separation sets. A run of this algo-
rithm represents a feasible dual assignment. The initial dual assignment (y = 0) is
feasible and, by keeping track of the inequality slack, no dual constraint becomes
violated by the variable increases. Hence the objective value of this dual assign-
ment, stored in the variable Y, is a lower bound on the cost of a optimal integral
solution (c.f. Lemma 1.5.1). The pruning phase preserves primal feasibility of x.

1 x:=0; /* Edge list */
2 Y :=0; /* Dual objective value */
3 c:=c; /* Slack in dual constraints */
4 while 0 < ‘V := oracle(x)| do
/* Let v: E — N denote the edge’s frequency */
5 | vie)=NHSieV : ee S}
6 e:=min{ c'[e]/v(e) : v(e) >0}
7 | foreach e € E with v(e) > 0 do
8 Decrement c'[e] by ev(e)
9 if c’[e] = 0 then
10 ‘ x. append(e)
11 end
12 end
13 | Increment Y by ¢|V|
14 end
15 foreach e € x in LiFo order do
16 if x — {e} primal feasible then
17 | x.remove(e)
18 end
19 end

20 return Y and x

Algorithm 2: Primal-Dual Scheme on Separation Set Oracles. See Fig-
ure 1.7 for an example with the 2-GMMN separation set oracle.
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Figure 1.7: Protocol of a run of Algorithm 2 on the 2-GMMN instance
R= {{(0, 1.5), (1.5,0)}, {(1.2,.3), (2.7, 1.8)}, {(1.8, 0), (3.3, 1.5)}}.
Steps are listed from left to right and top to bottom. The first 6 steps

illustrate the dual’s slack (partially red edges) during the while loop.

39 Remaining steps illustrate the LiFo pruning decisions (black edges).



1.7 The Primal-Dual Analysis

1.7 The Primal-Dual Analysis

The Primal-Dual method has several interesting features [Wil02]. Beside a solution
for the primal ILP, the method also provides a feasible assignment for the dual LP.
This establishes a lower bound on the optimal objective value of the LP relaxation
of a particular problem instance. Thereby, a bound on the approximation quality
of a solution is known after execution.

Let E; denote the edge set stored in x in step ¢ of the while loop and N the final
edge set after the reverse pruning. With N; = N \ E;, we denote the edges added
after step ¢ and kept in the reverse pruning. We have

Ey C ...
Ny O ...

El g El+1
N D Njyi=0

U 1N

and F;UN; is a solution for each i € {1,... 14 1}. Moreover, let V; denote the set
of separation sets and ¢; the increment in step ¢ (c.f. lines 4 and 6 of Algorithm 2).
The method, as used in Algorithm 2, provides two interesting properties

l

ZZ/S = Z Viles (1.6)

SeS i=1

Ce = Z Ys Ve € E; (17)

SES : e€eS

Equation 1.6 describes the contributions to the lower bound value over the steps
1 of the while loop in Algorithm 2 and Equation 1.7 provides means to charge the
costs of a particular edge of a solution against a set of dual variables. This allows
to rewrite the cost of a calculated solution N C Ej to the primal ILP as

D=2, ). s

eeEN eeN  SeS : ecS

=Y ysINN S|

SeS

=Y INNS| > &

SesS i SeV;
=> & (Z |NﬂS\) (1.8)
i SeV;

Given Lemma 1.5.1 and Equation 1.6, it is sufficient for an o approximation to
bound the last sum in Equation 1.8 with a|V;| for each step i € {1,...,{} of the
algorithm.
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The Shortest s-t Path Problem (c.f. Section 1.4) provides a simple example
with @« = 1. A separation set oracle for this problem simply determines the
connected component A C V of s in (V, E;) and returns the boundary-set §(A) as
the minimal separation set, if ¢ is in a different component. Hence, there is just
one violated separation set [V;| = 1 in every step i and we denote the sequence
of these separation sets with Sy,...,S;. The reverse pruning strategy provides
IN N S;| =1, by an inductive argument. Say we keep edge e, which was added in
step 4, in the final set N. Then no other edge €’ € S; with j < is kept, if e € 5.

1.7.1 Path Cover Problem

The Path Cover problem (c.f. Section 1.2.2) is no simpler to approximate than
the Hitting Set problem (c.f. Section 1.3). This section provides a bound on the
worst-case approximation ratio of Algorithm 2 for the Path Cover Problem.

Let G = (V, E) denote the graph, ¢ : E — Q the non-negative edge costs, and
{si,t;} the n vertex pairs that require a shortest path in a solution network. With
II; we denote the set of shortest s;-t; paths

I, = {p C E : pis ashortest path for s;,¢; in G}
and E(I1;) = U, ¢y, p denotes the edges of shortest s;-¢; paths. With the mapping
o:E —{0,...,n}, that is

ole) =

{ie{l,...,n}:eEE(Hi)}‘ :

we describe how many pairs can share a particular edge. We define the parameter
w of an instance with w = max.cg o(e). For problem instances that originate from
a d-GMMN problem R, the parameter w(R) simply captures the maximum overlap
of the bounding boxes associated to terminal pairs. That is

R pum
U =

{(s,t) €ER :pe€ box(s,t)}

Let r; € {0,...,n} denote the number of s-t pairs without shortest path in the
edge set F; of step 7. The separation set oracle, as introduced in Section 1.5, returns
the set V; of violated separation sets on input of F;. That is V; = {Si,..., Sk}
where each S; originates from the guided depth-first search starting from the ter-
minal vertices. Hence k € {1,...,2r;}. Since a separation set S C E for s;-t; is
always a subset of E(II;), we have

Ti/w §|Vz’| < 2r; (1-9)

for each step ¢ € {1,...,1}. We now turn to a property of the reverse pruning.
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1.7 The Primal-Dual Analysis

Lemma 1.7.1. For each step i € {1,...,l}, we have
INNEWV)| < 2r; .

Proof. Let eq, ..., e denote the sequence in which the edges were added. Note that
E; = {e1,...,ei1} and N; = N \ E;. If edge e; survives the reverse pruning, it
has a list of s-t pairs as labels. Each such pair-label is witness that the respective
pair has no shortest path in (V, E; U N;41). Moreover, e; is in the separation set
of this pair in V;.

Suppose |N; N E(V;)| > 2r;. Then there are at least three edges e;,,ej,,€j,
with 77 < Jo < 73 in this set intersection that have the same s-t pair-label. Note
that E;, U N;, contains a shortest s-t path p. Such a path consists of three parts
P = PsPmpPt, Where the prefix p, and the suffix p, are contained in £}, and the
middle part p,, = {ej,,...,ej,} is contained in N;,. The s-t pair has at most two
separation sets S5, S; € V; for any step i. W.lo.g. e;, € Ss and ej, € S;. Hence
ej, is in the separation set that contains e;, or e;,. However, a shortest s-t path
contains at most one edge of a minimal s-t separation set. Hence, the F; U Nj,
contains a shortest s-t path via p, and e;, is not labeled with this pair by the
reverse pruning — a contradiction. O]

Theorem 1.7.2. Algorithm 2 provides solutions to the Path Cover problem within
a factor 4w? of the optimal cost, for instances with maximum overlap of w.

Proof. We use aboves standard Primal-Dual analysis and show that

> INNS| < 4w’V

SeV;

holds for each step i € {1,...,l}. Let E(V;) = Jgey, S denote the edges in some
separation set of step 7. Rewriting the sum provides

ST INasi= Y ’{SGVi:eES}‘
Sev; e€ENNE(V;)
< Z 2w = ‘NQE(V@-)
eeENNE(V;)
< A|V|w?

2w

The first inequality is due o(e) < w and that each pair has at most two sets in V.
The last inequality is due to Lemma 1.7.1 and the left side of inequality (1.9). O

See Figure 1.8 for an illustration of the proof.

Corollary 1.7.3. For fized d, instances of the d-GMMN problem with mazimum
overlap of w allow 4w?* approzimations in polynomial time.
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S1

S2

S3

E(VZ) = Sl U SQ U 53

Figure 1.8: Illustration of the proof of Theorem 1.7.2

This corollary is not trivial regarding the decomposition results in Section 1.1.
In terms of the geometric intersection graph, w equals the size of a maximum
clique. Another complexity parameter in the context of the d-GMMN problem
is the maximum vertex degree A in the geometric intersection graph (c.f. Sec-
tion 1.2.1). We have w < A + 1. However, A might well be much bigger leading
to poor approximations of the greedy coloring-decomposition of Theorem 1.1.3.
There is extensive research on chromatic numbers of geometric intersection graphs
[PIICT13]. [AGG60] shows the existence of a w(4w — 3) bound on the chromatic
number of the geometric intersection graph of axis-aligned rectangles in R?. How-
ever, [Bur65] provides a construction of a family of axis-aligned boxes in R? that
have arbitrary large chromatic numbers.

1.8 Implementation for d-GMNN

Using floating point arithmetics of contemporary computing hardware is problem-
atic for algorithms that rely on value increments or decrements. Operations with
a relatively small operand might well lead to an unchanged value. The Primal-
Dual scheme in Algorithm 2 only uses increments of the lower bound value Y
by €|V| and decrements of the slack value of a dual constraint by ev(e), where
v(e) € {1,...,2n}. Since all operands are positive, consequently incrementing less
and decrementing more keeps the dual assignment y feasible. Moreover, the value
Y is a lower bound to the objective value of this assignment. Using certain round-
ing modes allows to avoid the use of arbitrary precision arithmetic libraries in this
case. A more pragmatical way is to over- and underestimate ¢ and the arithmetic
result by the machine precision. Even tough these lower bound values hold for
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1.8 Implementation for d-GMNN

the problem instance, the edge sequence, which is basis of the reverse pruning, is
affected by these rounding errors.

A naive implementation for the oracle calls of Algorithm 2 on the Hanan grid
(V, E)) uses two depth-first searches for a terminal pair (c.f. Section 1.5). A separa-
tion set of such a traversal is no bigger than |E| and there are at most | E| iterations
of the while loop body, since at least one edge is added in each step. Hence, the
while loop takes no more than O(n|E|*) operations, which is also sufficient for
the reverse pruning. Therefore, the number of operations in Algorithm 2 is poly-
nomial for fixed dimension d. The naive implementation for 2-GMMN enabled
us to find solutions and lower bounds for instances up to a size of n = 128 (c.f.
Figure 1.9), which is considerably more than n = 7 with the brute-force approach
(c.f. Section 1.2.2). For the instances of those experiments, the reverse pruning
phase takes the majority of the execution time. For an output sensitive approach,
it is desirable to perform fewer operations only for those elements that remain in
the solution N C E. E.g. depth-first searches on the sparser edge set N; rather
than EZ @) Nz

The remainder of this section describes a speed-up method that invests addi-
tional storage to save computation time. We explicitly store the coordinates in
spatial embedding of the Hanan grid with the vertices of the graph (c.f. Sec-
tion 1.5). The edges that are added to x are stored on a stack and we use the
index in this array as a unique tag value for the edges. Moreover, we allow each
graph edge to store such a tag value. Using tag values in a graph traversal allows
to restrict the search to edges with tag values in a certain range — e.g. edges that
were added after step i.

1.8.1 Maintaining Separation Sets

We store two search trees for each pair of vertex terminals s,t € V. Each search
tree only needs to store reachability information of nodes that are on a shortest
s-t path (c.f. Section 1.5 ). We describe the search tree and its maintenance under
insertions of edges for the search from s to t — maintaining the tree from ¢ to s is
done analogously.

Instead of a Boolean reachability flag for a vertex v, the search tree labels vertices
with the smallest tag 7 such that there exists a shortest path from s to v with
edges that have a tag value of at most 7. Initially, no edge has a tag value and the
separation set S; C E of the search tree contains only edges that are incident to
vertex s and on a shortest s-t path (c.f. Section 1.5). Maintaining the search tree,
and thereby its separation set, under insertions of an edge e with tag value 7 is
simple. If e ¢ S, the edge does not extend a shortest path prefix in the search tree.
Hence, no update is performed. Otherwise we label the newly reachable vertex v
in the search tree of s with 7. Moreover, we continue the depth-first search from s
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at vertex v on edges with tag value at most 7. All vertices newly reachable vertices
are labeled with 7 in the search tree. In the same run, we can drop edges of S;
that are incident to the newly reachable vertices. Eventually, we add new fringe
edges to the separation set S;.

Over all edge insertions, no edge is traversed twice by the depth-first search.
Hence, a total of O(|E|) operations is sufficient for building a search tree that
labels the vertices with the smallest tag value under which they are reachable
from s.

1.9 Experimental Results

The results and running times of our single-threaded Java implementation were
derived on rather old desktop hardware (Intel i5-2500K) running OpenJDK version
1.7.0_151 on a 64Bit Ubuntu 16.04.3 LTS system. The proposed primal-dual
strategy with reverse pruning has the advantage of also constructing a lower bound
to the optimal cost of a solution. Let xopt and Xopr be optimal solutions for the
primal ILP and LP respectively. Consider x and Y as calculated from Algorithm 2.
Given Lemma 1.5.1, we have that the actual approximation ratio is bounded:

c-X c-X c-X
< <

c-Xopr C-Xopr Y

The rightmost term — we call it approximation guarantee in the remainder of this
chapter — is explicitly calculated by Algorithm 2.

Along with the O(logn) approximation algorithm for 2-GMMN, Das et al. also
provided a family of recursively defined, overlapping instances that show the tight-
ness of the approximation ratio of their algorithm. We evaluated several of those
instances and found them all to be solved optimally with a tight lower bound by
Algorithm 2 (data not shown).

1.9.1 Randomly Sampled Instances

We evaluated Algorithm 2 on random 2-GMMN instances. To rule out solely good
behavior on uniformly chosen points of some square, we sampled different aspect
ratios (z-range / y-range) and densities (number of vertices in x / z-range). For a
given number of pairs n of a instance, we first choose an aspect ratio a € {1,...,9}
uniformly at random. Second we choose a density d € {1n,2n,...,10n} uniformly
at random. Finally we choose n times the two z-coordinates in {1,...,d - a}
and the two y-coordinates in {1,...,d} uniformly at random. Out of these, we
evaluated a total of 19,050 random instances of several sizes (150 replicates for
eachn € {2,...,128}). Figure 1.10 shows the achieved distribution of the sampling
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Figure 1.9: Execution times of the primal-dual algorithm in seconds on each of the
sampled random instances of 2-GMMN. Time by number of terminal
pairs (top) and by number of Hanan grid edges (bottom).
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strategy in the parameter space and Figure 1.9 the execution times. See Figure 1.11
for the observed approximation guarantees.

Algorithm 2 seems to find solutions that are optimal and close to optimum in
many cases. We found approximation guarantee worse than 2.0 on instances hav-
ing many terminals and a wvery high degeneracy in the aspect ratio and density
at the same time. Using this observation, the worst experimentally observed ap-
proximation guarantee on a random 2-GMMN instance (n = 90, aspect ratio of
10000/1, density of 2/100000) was 2.856.

1.10 Summary and Open Problems

We summarize the observations on the polynomial time approximability in this
chapter with the following Table 1.1. Note that 2-GMMN is a special case of d-
GMMN, which is a special case of Path Cover (c.f. Theorem 1.2.1). Section 1.1
provides an algorithm that achieves an approximation factor constant in the scale
diversity D of a 2-GMMN problem. This result always matches the O(logn)-
approximation given in [DFK™17], but is considerably better if the scale diversity
is small. For a Path Cover instance, the parameter w captures the maximum
overlap of the shortest path edge sets of vertex pairs. For d-GMMN instances,
the maximum degree A refers to the geometric intersection graph of a problem
instance and w equals the clique number. For every d-GMMN instance, we have
that w < A+1<n.

Problem ‘ Parameter ‘ Approximability
2-GMMN - within O(logn) [DFK*17]
x- and x/y-separated | within O(1) [DFK*17]
scale diversity D within O(D) Theorem 1.1.7
d-GMMN - not within (14 2-107?) [MSU09]
- within O(log"™ n) [DFK+17]
maximum degree A | within (A + 1) Theorem 1.1.3
Path Cover - not within (1 — §)In+/n for every § > 0
Section 1.3
maximum overlapp w | within 4w?, Theorem 1.7.2

Table 1.1: Summary of polynomial-time approximability. Inapproximability state-
ments rely on the complexity assumtion P # NP.

These polynomial time algorithms have implications on potential O(1)-inapprox-
imability proofs. Such a proof for 2-GMMN must use gadgets of many different
scales. This is in contrast to the proof in [CGS11]. There the existence of a FPTAS
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for 2-MMN is disproved (unless P = NP) by arranging gadgets of about the same
shape. Moreover, such a construction needs to present a non-constant overlap w
of the boxes associated to the terminal pairs.

On the practical side we have presented a primal-dual algorithm for the more
general Path Cover problem in graphs. The algorithm is applicable for d-GMMN
and generalizations that require obstacle avoiding for all or some of the pairs. The
approach performs well on instances of 2-GMMN and produces instance based
lower bounds that are close to the cost of the solutions. However, we could only
prove a rather weak a priori bound on the approximation ratio of 4w? for instances
with a maximum overlap of w. The primal-dual algorithm also solves instances
optimal that are worst case instances for [DFIK™17].

The O(1) approximability of 2-GMMN is still unsolved. Given the good prac-
tical approximations achievable and the rather specific requirements for O(1)-
inapproximability proofs for 2-GMMN — we conjecture that 2-GMMN admits an
O(1) approximation.
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Chapter 2

Geometric Map Matching on
Heterogeneous Data

In the geometric Map Matching problem one is presented with a sequence of sam-
pled locations, called trace, for which one seeks to find a sequence of movements
along directed edges of a graph with straight-line embedding.

The basic data mining problem has many applications in spatial domains but
varies on data characteristics. Real world data, like traces or graphs from the
OpenStreetMap project [OSM13], does not have homogeneous data quality. Graph
details and errors, like missing or misdirected/-placed edges, vary in areas. Each
trace has changing sampling density and precision originating from means of travel,
measurement errors dependent on locality, different sensors (GPS, GPRS, WLAN,
gyroscope, accelerometer) and filter models as well as preprocessing with partially
snapping to closest roads of different graphs. Therefore it is unclear how to for-
malize what a ‘good explanation’ for the spatial measurement is. Especially in the
on-line problem setting, in which a data stream is revealed sample-by-sample.

Related Work

There exists a multitude of approaches using additional knowledge of travel means
(car, foot, train, etc.) to solve map matching problems for traces with similar
characteristics on similar graphs. Survey articles [QONO7, Zhel5] describe the
challenges and existing approaches and technical report [WWFEFZ13] compares a
variety of different methods on data. There are two conceptually different cate-
gories:

The vast majority of methods use hard (e.g. semantic meta-data [AY15]) and
soft numeric parameters to filter and combine properties of the input data. These
numeric parameters are used to balance data characteristics and guide through
some selection process [NK09, WZ14]. As it is common to many data mining prob-
lems the computation time and quality of the results are mainly determined by the
choice of these parameters. Therefore a clear formalized objective for the result
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is missing or determined indirectly by the choice of the parameters. Within this
category there are on-line methods that use greedy strategies and global methods
that often use dynamic programming. [WWIF'Z13] compares 10 incremental and
5 global approaches. Eventually additional quality measures are used to compare
input data and results. However, careful parameter tuning is required which makes
unsupervised mining questionable — This is especially problematic with heteroge-
neous data. Changing data characteristics along and between traces and graphs
might require as many as one parameter for each sample and could still fail if the
model lacks a parameter accounting for data characteristics. Furthermore, results
with bad quality do not guarantee optimality in these additional quality measures.
The parameters might just be ill suited. Other approaches leverage homogeneity
directly for traces of similar data origin by optimizing a numeric model jointly for
a set of input traces [LHIKT13].

The other category contains the few non-parametric methods. Most promi-
nent approaches clearly define the objective of the problem as minimizing some
fixed geometric distance for the poly-line of the trace over all paths in a spatially
embedded graph (c.f. Section 2.2). Often dynamic programming or parameter
search is used making these methods computationally more demanding on long
traces (c.f. Section 2.1.1). This guards against situations where filters and ill ad-
justed or learned numeric parameters lead to high values in the geometric quality
measure. Therefore these methods are better suited for unsupervised approaches.
However, the fundamental mining problem is moved to the question: What is the
correct quality measure for the input data? In [BPSWO05] the Fréchet distance
showed good behavior for rather densely sampled vehicle data on graphs repre-
senting road networks. But the results under this geometric similarity measure
are very sensitive to single outliers and sparse sampled data limiting the usage
of poly-line simplifications to speed up calculations [WWFZ13]. Using average or
summed Fréchet distances on the other hand suffers if sensor noise is present in
some parts of the input when searching for global optimal paths. If the objective
asks to globally minimize the similarity measure, algorithms have to go through
great length to shave off even small values from an outlier sample. Loosely speak-
ing this effect is similar to over-fitting the flexibility of the metric and increases if
data is sampled sparsely.

Some approaches add a numeric model on top of the geometric optimization to
overcome heterogeneous data quality [WWEFZ13] or restrict geometric optimization
on areas provided sensor precision knowledge [WSP0G, BBWO09] for localization.
For sparsely sampled traces of known precision the usage of shortest-paths as
connections between candidates showed good results [LZZ"09, EFH"11]. However,
the position in the graph closest to a sampled geo-location might well not be the
correct position. This moves the question to determining how much ‘flexibility’ in
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Figure 2.1: OSM trace 1396953 with heterogeneous precision and additional noise
(thin line in alternating colors). Graph edges (thin black lines) and
dominance decomposition (thick line in alternating colors) are aug-
mented by the result’s candidate search space (dots in alternating col-
ors).

the candidate choice is required for each geo-location to achieve a solution that is
a ‘good’ explanation for every part of the trace.

Contribution

We study what quality is achievable for geometric map matching on heterogeneous
data. Our concept solely relies on the spatial information of the input and the
observation that optimal geometric similarity of parts of the input is limited by
the local data quality.

The proposed approach does not focus on filtering or correcting geo-locations
of a trace. Using information about the origin of data, sensor type and filtering
or error models can clearly improve data quality. However, knowledge on rea-
sonable filter models might often be unknown and different for each trace. We
avoid incorporating additional knowledge like hard cut-off filters or soft numeric
parameters.

We leverage the graph’s edge metric as a tool for localization. This leads to a
formalization of a novel objective that is free of numeric parameters and robust
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in presence of heterogeneous sampling and graph errors: Find a decomposition
of the trace into parts along with a sequence of connected paths in the directed
graph. Each path must be shortest in the graph’s edge metric and minimal in the
geometric distance to its respective part of the trace.

The succinctness of the dominance decomposition (DD) objective allows to meet
other spatial data mining problems by exchanging graph metric or geometric simi-
larity measure. Computationally, DDs seem more challenging than single objective
optimizations. However, DDs allow identification of parts with inherent bad data
quality or detail as indication of bad sampling or graph errors. Furthermore, the
DD approach provides a simple lossy compression scheme for spatial data with
adjustable quality.

We provide a simple algorithm suited for on-line, data stream processing and
generic speed-up techniques for exact and approximate calculations. Furthermore,
we demonstrate effectiveness and robustness of our methods with experiments on
real world datasets with very heterogeneous characteristics. We provide theoretical
and empirical comparison with other map matching approaches.

Chapter Outline and Pre-Releases

This chapter reviews well studied geometric similarity measures of curves in Sec-
tion 2.1. Subsection 2.1.1 describes computational aspects and points out why
some measures are theoretically and practically demanding. Section 2.2 describes
known extensions to map matching and simplifications, used in practical process-
ing.

Section 2.3 categorizes data characteristics that adversely affect the meaning of
global optimization objectives. Section 2.4 derives a new, more locally optimization
objective, that is fully formalized in Subsection 2.4.1. Section 2.5 provides an
algorithm to solve this objective, along with generic speed-up methods that allow
to determine exact and approximate solutions in practice.

Section 2.4.2 provides case studies and extensive comparisons with other opti-
mization approaches for map matching on real world data. Section 2.6 provides
details on the empirical evaluation, robustness experiments as well as result qual-
ity and time metrics for the algorithm of Section 2.5. Section 2.7 concludes this
chapter with a brief discussion on potential extensions and improvements of the
new method.

The contents of Sections 2.3-2.7 can also be found in our contribution to the
proceedings of the 17®" STAM International Conference on Data Mining [Sey17].
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2.1 Geometric Similarity Measures

For two points ¢, g2 € R? we have the p-norms ||¢; — ||, with

2, =

d
il
i=1

and
[zl > [zl > ... > (2]l

for all x € R A curve is a continous mapping f : [a,b] — R? with a,b € R.
Moreover, a curve P : [0,n] — R? is called polygonal or poly-line, if n € N and

P(i+ X)) =(1—=XNP(@#)+AP(i+1)

for all i € {0,...,n — 1}, X € [0,1]. Meaning a poly-line is uniquely determined
by a sequence of n + 1 points with p; # p;11 where points between p; and p;,; are
given by affine combinations. The number of line-segments is denoted by n and

U(P) =) |IP(i) = P(i+1)||2

i<n
is called length.
A parametrization of a poly-line is a continuous mapping « : [0, 1] — [0, n] with
a(0) = 0 and «(1) = n. Moreover, it is called the arc-length parameterization, if

= l(P‘ )/I(P)

(0,0(2)]
for all z € [0,1]. E.g. P(«(0.5)) is the half-way point on P.

Let t,t" be poly-lines of n and respectively m line-segments and «y, ay their
arc-length parameterizations. We define

dalt 1)) i= mae e (2)) = ¥ (o )]}

dF(t7 t/) = a,B mIg}liortlonous { :rlg[%,)l(] {”t (Oé (LC)) B t/(ﬁ(ﬂf)) HQ}}
parameterizations

dwr(tt) = min { max {[[t(a@) - £B@)],}

dg(t,t'):= min { max {”t (a(z)) — t/<ﬁ(x)>H2}}

a:[0,1]—[0,n] z€[0,1]
5:[0,1]—[0,m]

49



Chapter 2 Geometric Map Matching on Heterogeneous Data

The distance under arc-length parametrizations d, and the Hausdorff distance dg
are classical measures of curve similarity. A frequently used illustration of the
Fréchet distance dp is the minimum length leash that is required for a dog and it’s
owner to traverse their respective poly-lines in a monotonous fashion. We have
the following relation between these distance measures for all poly-lines ¢,t'.

dg(t,t) < dwp(t,t") < dp(t,t') < da(t,t)

There are further, discrete variants of the Fréchet and the Weak-Fréchet distance
that minimize over the parameterizations of sets {0,...,n} — {0,...,n} rather
than the intervals. Moreover, there are variants that minimize over discrete or
integrated mean values instead of the maximum.

Example 2.1.1. Considert' = (0,0)(1,0) and t = (0,0)(1,0)(0,0)(2,0). We have
I(t)y =1, I(t) =11/4 and

1 1
dnlt, ) =0 dwp(t,t) =5 de(t,t) =5 da(t,) = T

2.1.1 Computation

Given two line-segments in R?, the maximal closest-pair distances between their
points are also realized with a pair that contains a line-segment’s end point. Based
on a machine model that provides random access and the arithmetic operations
+,—, %, /, e and the comparisons <,= on R, one can compute d4 of poly-lines
with n and m line-segments within O(n + m) operations (c.f. Algorithm 3).

Input: to...t,, 8 ... 1,

1. Calculate [(t) and the relative positions in [0, 1] for the points ¢; on the
curve t, and for t' as well.

2. Perform a merge-like sweep over the relative positions while keeping
the maximum Euclidean distance between points and the respective
interpolations on the other curve.

Algorithm 3: Computation of the Arc-length Distance

A naive approach for calculating dy computes the perpendicular distances for a
point on t to the line-segments of ¢, and vice versa. This takes O(nm) operations
on such a machine model. In 1997, [BCNS97] proposed a Scaling Algorithm for
computing dy in [,-norms of polygonal curves with #;,t; € {0,... , 28 — 132 and
1 # p # oo in O(k(n + m)) time. The algorithm considers implicit quadtree
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2.1 Geometric Similarity Measures

simplifications of ¢ and t, by rounding to the ¢ < k most significand bits: Maintain
a set of pairs, of points on ¢ and ¢, that realize maximal closest-pair distances under
scaling from coarse to fine (with subsequent pruning).

For computing the Fréchet distance dg, there is a known, conditional lower
bound on algorithms prohibiting strongly sub-quadratic algorithms. The Strong
Exponential Time Hypotheses (SETH) conjectures that there is no 6 > 0 such
that the k-Satisfiability problem (k-SAT) has an O((2 — §)") algorithm for all
k, where N denotes the number of variables. Assuming this hypothesis, [Bril4]
derives a lower bound on algorithms that compute the Fréchet distance. Given a
logic formula in conjunctive normal form (CNF) with N variables, M clauses and
an £ > 0, the construction provides two curves ¢, with O(M - 2"/2) line-segments
with dp(t,t') < 1 for satisfiable and dp(t,t) > 1+ ¢ for unsatisfiable formulas.
Hence, any algorithm running in O(n?~?), where § > 0 is a small constant, provides
an O(M?79 . (2179/2)N) algorithm for the CNF satisfiability problem.

Alt and Godau [AG95] provide a simple O(n®logn) algorithm. Their method
performs binary search on O(n?) distance values paired with solving the decision
problem in O(n?) operations. This simple approach has the disadvantage, that
many, potentially irrelevant, distance values are computed and sorted. The au-
thors achieve a theoretical runtime of O(n?logn) by using complicated methods
for Parametric Search that sequentially simulate relevant portions of a parallel
run on an AKS sorting network (involving impractically huge constants from ex-
pander constructions). The steps to achieve this are much more tedious than the
description in [AG95]. Subsequent works [vOV04, vOV05] provide a more practi-
cal approach by using Quick Sort for standard Parametric Search, leading to an
expected run time of O(n?log”n). While the authors provide more details than
[AGI5], they do not clearly state polynomials for the Parametric Search. They pro-
vide computation times around 2 seconds for random input with 128 line-segments
on an 667 MHz Pentium III with 128MB RAM. However, the author’s proposed
extension package to CGAL is, even after more than ten years, not available to
the public. See also [GP13] for a practical approach that uses randomization and
Box Sort to meet the asymptotic run time of Cole’s Parametric Search, with high
probability.

The discrete Fréchet distance, as mentioned above, allows computation with a
simple O(n?) dynamic program [EEM94]. Moreover, there is also a known weakly
sub-quadratic algorithm for the discrete Fréchet distance [AAKS14].
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Chapter 2 Geometric Map Matching on Heterogeneous Data

2.1.2 Computing the Fréchet Distance

To get a handle on pairs of points that are no further than € apart, [AG95] defines
the Free Space

F = {(p,q) € [0,n] x [0,m] : ||tp) — £(a)], gg} .

Note that F. C F. for ¢ < &’. The reader may consider FE<(0, 3)(8,3),(2,0)(8, 6))
for e € {0,1,2,4} and Fy ((O, 1)(2,1),(1,0)(3, O)) as illustrations. The Free Space

has a natural decomposition into cells, induced from two line segments

Each F.NC;; is convex, e.g. intersection of the unit square and an ellipse (possibly
degenerated to a line). To see that, extend the two affine mappings 7, 7" of the

line-segments from their interval domains to whole R. The mapping f : R? — R?
with (r,s) — 7(r) — 7/(s) is affine as well. The e-disk D, = {zr € R? : |z|] <&}
is convex, and so is

F.NCiyj=fYD.) N [i,i+1] x[j,5+1]

since convexity is preserved under affine mappings and intersections. As a repre-
sentation of a cell F, N C;;, we consider it’s (potentially empty) 1D intervals on
the left side L;; = [a;;,b; ;] and on the bottom side B;; = [¢;;, d; ;] of the Free
Space diagram:

a;; =min{z € [i,i+ 1] : |[t(x) —t'(H)|2 < e}
bi; =max{z € [i,i+ 1] : |[t(x) —t'(H)|l2 < e}
ci;j=min{z € [j,j+ 1] : [[t(i) —t'(x)]2 < e}
dij =max{x € [j,j+ 1] : |t(i) —t'(x)]2 < e}

Note that these values can be determined as solutions of two quadratic equations.
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2.1 Geometric Similarity Measures

Cit1,j dit1;
R
Bi+1,j ‘
bi j bij+1
IR
F.Nn Cm Li7j+1
Q4,5 A j+1
R
Bi’j ‘

Every monotonous curve in F. from (0,0) to (n,m) represents two parameteri-
zations, one for ¢ and one for ¢, with a leash length of no more than «.

Remark 2.1.2. For the Weak-Fréchet distance dy r, such paths do not need to
be monotonous.

Consider aboves t, t' example with ¢ = 1/4 as illustration. Therefore, we consider
this subset of F., which is

R. = {(p, q) € F. : 3 a monotonous curve from (0,0) to (p,q) in Fa} )

This translates to sub-intervals L[, = L;; N R. and Bf;, = B;; N R. containing
the points that are reachable with a monotonous path from (0,0). Their decision
algorithm [AG95] is based on the fact

R

n,m—1

dp(t,t') <e<= (n,m) € L | <<= (n,m) € B

n—1m

and that the monotonous reachable top and right intervals of a cell can be com-
puted if left and bottom intervals are already computed. Executing the dynamic
program of Algorithm 4 takes no more than O(nm) operations.

The actual calculation of dg (to U S 7 t;n) is now due to finding the smallest
¢ such that F. contains a monotonous curve. There are three kinds of ‘critical’
values, that potentially change the reachability.

i) < € {lito — thllo 1tn — tll>}

ii) ¢ minimal with L;; or B, ; becoming non empty

111) ¢ minimal with Qi = bi,k: (j < k) or ¢;; = dk:,j (’l < k)
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Chapter 2 Geometric Map Matching on Heterogeneous Data

Input: ¢y...¢,,t,...1,

Compute L; ; and B, ; for each (i, j)

Compute B/} for each i € {0,...,n — 1}

Compute Lg; for each j € {0,...,m — 1}

Compute L% 1, Bt ; from L; jy1, By, LY, Bl for each
i€{0,...,n—1} and each j € {0,...,m — 1}

return (n,m) € L |,

Algorithm 4: Decision Algorithm for the Fréchet Distance

N

(S

Figure 2.2: Categories of critical values in the Fréchet distance calculation process.

Figure 2.2 shows an illustration of these categories. The O(nm) values of ii) are
the perpendicular distance of a point to a line-segment and the O(n?*m + nm?)
values of iii) are due the intersection of a bisector (of two points on one poly-line)
with a line-segment (on the other poly-line). The algorithm is now standard binary
search on the sorted sequence of these values, resulting in a total of (’)((an +
nm?)lognm) operations.

Theoretical Speedup with Parametric Search

The running time of aboves Binary Search is dominated by sorting the critical
values of type iii). The authors achieve an improvement to just O(nmlognm)
by the expense of a complicated approach with impractical, huge constants. The
basic idea is to use Cole’s improved version of Megiddo’s Parametric Search on a
set of input polynomials of degree one. This approach uses AKS sorting networks
and was later extended to allow polynomials of low degree as input. The following
sketches the major ideas.

Restricting to type i) and ii) values provides a minimal, continuous interval
I = (ey1,¢e9) that contains €* = dp(t,t'). Some of the type iii) values might now
be in this interval and aboves reachability predicate evaluates to false for all such
values smaller than €*. Parametric Search seeks to find a result interval, containing
solely €* and no other type iii) values, by means of shrinking the interval around
e*. In computing the Fréchet distance, the actual value of €* is obtainable from the
result’s interval boundaries. Their approaches seek to exploit monotonicity of the
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2.1 Geometric Similarity Measures

decision problem together with the monotonous increase of the interval boundaries
bk, d; j and decrease of the inverval boundaries a; j, ¢; ; (functions in €).

For an ¢ € I, the authors consider the set A(e) = {a;;,b;ij,cij,di;} of the
O(nm) non-empty Free Space interval boundaries. Sorting such an A(e) reveals
horizontal (a;; = b;)) and vertical (¢;; = di;) passages. Hence, relevant type
iii) values in I change the sort order of A(e). This seemingly more demanding
approach can save unnecessary comparisons in a way that sorting algorithms do.

When aiming for asymptotic bounds, Parametric Search is typically described on
a sequential simulation of a parallel sorting algorithm (e.g. AKS sorting networks)
involving additionally linear time median calculations and a weighting scheme for
the simulation. We describe the more recent, asymptotically weaker but practical
approach, that uses QuickSort at two conceptional stages. To provide a simpler
but more detailed presentation than [vOV04], we consider the sets

Az<8) = {aiyj(e),bi,j(e) : 0 S j < m} 0 S 1< n
C)(e) = {ci,j(g),di,j(e) : O§i<n} 0<j<m

of mappings. Since these mappings are either monotonous increasing or decreasing
for ¢ € I, two mappings f,g € A; have at most one intersection point r € I.
Moreover, one derives the order of f(e*) and g(¢*) from the order of r and e*.
The main idea is to simulate the sorting of the sets A;(¢*), C;(¢*), despite e* is
unknown, to derive subsequently smaller interval bounds.

We start the iterative QuickSort variant on the sub-arrays

{Si} = {Ai(a*) 0<i< n} U {Cj(e*) 0<j< m}

and describe one step. Choose a pivot mapping p; from each S; and collect the
intersections points of p; and mappings of S; within 7 in a set B, called batch. Sort
these O(nm) values:

B:{rl,...,rl}
Use Binary Search paired with calls to the (expensive) decision algorithm to find
a new, smaller interval I = [r;,r;;1] that contains €* — This takes O(nm - log nm)
operations. Now, use the new I to actually pivot each S; into two sub arrays, one
with f(e*) < p;(e*) and one with f(e*) > p;(¢¥).

The expected number of such pivoting steps is O(log(n+m)), leading to a total,
expected running time of O(nm -log® nm) for QuickSort based Parametric Search
for computing dp(t,t').

However, exact calculations of intersection points of quadratic solution formulas,
which contain square roots, is a problem in practice. Neither the works of [AG95]
nor [AERWO3] provide a reduction to a sorting problem of simpler, polynomial
functions in € — Tough [vOV04] claims that this is possible in one, short sentence.
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Chapter 2 Geometric Map Matching on Heterogeneous Data

2.2 Fréchet Map Matching in Graphs

The described decision algorithm for dp (c.f. Algorithm 4) allows to fill the dy-
namic programming table in several sequences — e.g. column-wise from bottom to
top. This allows a simple generalization to graphs with straight-line embedding of
the nodes.

U3

% (%)
\
\
U1
Uy

Figure 2.3: Illustration of a poly-line t = tit5t3 and a spatially embedded graph
graph (left) and the induced Free Space Surface (right).

Consider each edge as the directed line-segment connecting its nodes. The regu-
lar Free Space of the edge and a polygonal curve t = t; ...t is a single strip of Free
Space cells, say from left to right. The Free Space Surface is obtained by gluing
together all these Free Space strips at the nodes of the graph. One may think of
this construction as [ copies of the graph, stacked from left-to-right. There are
O(|E] - 1) cells in the Free Space Surface and adjacent edges in the graph have
adjacent cells in the construction. Moreover, a monotonous curve from some edge
at the left (the copy of t1) to some edge at the right (the copy of ¢;) identifies,
again, two continuous, monotonous parameterizations of ¢t and some directed path
in the graph.

Aboves decision algorithm is adapted by filling the dynamic programming table
columns, in a sweep-line fashion, from left-to-right. In this setting, the result
path is not yet fixed, as is the sequence in which the cells of a column need to
be determined. However, one simply updates the cell’s ij values (the intervals
stacked above the graphs nodes) in the sequence that the sweep-line intersects their
left boundary. Using Fibonacci Heaps in column steps, this decision algorithm
takes O(l (IE|+ |V]log \V\)) operations.

The actual optimization is performed analogously to aboves discussion on para-
metric search, adding a O(log(l|E|)) factor with the impractical huge constants.

For graphs with |E| € O(|V]), this method of [AERWO03] provides a geometric
map matching algorithm with

O( 1B tog(i|E]) log|E| )
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2.2 Fréchet Map Matching in Graphs

operations. However, the simple binary search algorithm takes O(I|E|*log(l| E|))
operations to sort type iii) values on a graph with |E| > [.

2.2.1 Weak-Fréchet Map Matching in Undirected Graphs

The Weak-Fréchet distance is an alternative, with simpler decision and computa-
tion algorithms [AG95] (c.f. Section 2.2.1). An experimental study on 45 GPS
tracks of vehicles (30s sampling, < 100 line segments on average) on a road net-
work graph (14,356 edges for Athens, Greece) finds that global geometric map
matching, based on approximations to Fréchet and Weak-Fréchet distances, pro-
vides better results, measuring average Fréchet distance between input and out-
put, than an ad-hoc incremental algorithm [BPSWO05]. The authors did not find
differences in Fréchet and Weak-Fréchet results on this dataset and undirected
graph. However, the Weak-Fréchet objective does not respect edge directions, since
non-monotonous parameterizations are used, and the binary search on the deci-
sion problem is much slower than their incremental map matching approach. An
output sensitive Weak-Fréchet map matching algorithm is presented in [WSP06].
This approach consequently extends ideas from [AG95] to decide and compute
the Weak-Fréchet distance based on graph traversal. To avoid storing the whole
Free Space Surface of the graph, their Adaptive Clipping algorithm uses a fixed,
numeric bound to consider only relevant parts of the graph for computation. The
authors achieve computation times around 45 seconds for the longest poly-lines
(around 200 points) on an Intel Pentium 4 with 3.6GHz and 2GB RAM.

This section provides a simple algorithm formulation that does not require the
knowledge of a clipping bound value. A practical approach can use Hashing to
store relevant cells of the Free Space Surface.

We consider the graph G, = (V,, E,.) that originates from placing nodes on the
4 cell boundaries over the Free Space Surface of G = (V, E) and t = t;...t,. The
node set V, = E x {0,...,n} UV x {1,...,n} and there are 6 edges per Free
Space cell to connect the 4 boundary nodes (c.f. Figure 2.4). The graph G, has
O(|E|n) nodes and edges. For adjacent (k,1), (k’,1") € V., we set the edge weight
c(k,l,k',1") to the smallest £ such that the two Free Space intervals become non-
empty. That is the maximum of the two respective type ii) critical values. See
Algorithm 5 for a search of a minimum bottleneck value path in G,.

For the analysis, we assume O(1) operations for weight calculation and oper-
ations on the hash set reachable, that contains pairs of integers which identify
nodes in V.

The procedure Q.enqueue is called at most a total of O(n|E|) times. Apart
from that, the while loop is executed no more than O(n|E|) times, leading to an
total of

O(n|E]log(n|E]))
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Chapter 2 Geometric Map Matching on Heterogeneous Data

U
t; i1

Figure 2.4: Illustration of the overlay graph G, over one cell of the Free Space
Surface of G = (V,FE) and t = ty...t,. The cell originates from an
edge {u,v} € E and a line-segment ¢;t;;1 on t [AG95].

Input: G=(V,E),t =1y...1,
res := —00
reachable := ()
for e € ' do
| Q.add(e, 0, minDist(e, ) /* type i) critical values */
end
Q.makeHeap()
while @ # () do
(k,l,e) := Q.extractMin()
res := max(e, res)
reachable.add(k, ()
if (k,1) € E x {n} then
return res
end
for (k',1') € neighbours(k, ) \ reachable do
‘ Q.enqueue(k', ', c(k, 1, k' 1"))
end

© 00 N O A W N =

[ e T e =
[ S N VUR CRE N

=
[=2]

17 end

Algorithm 5: Weak-Fréchet Dijkstra
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operations. Path computation can be achieved by storing additional predecessor
nodes.

There are many ways to avoid the |E| elements in the heap initialization for a
map-matching query — E.g. restricting to paths that start at a node of G. This
allows to find such nodes, on demand, with a precomputed geometric nearest-
neighbor-search data structure that enumerates the next closest node. In practice,
many graphs allow to simply store and retrieve the next closest edge of GG to the
point ty based on a simple grid data structure.

2.3 Obstacles in Formalizing Objectives

Streams of spatial data present different kinds of data problems [QQONO7]. Iso-
lated samples have been stored or transmitted that are not even close to the real
position (sporadic errors). These problems are often successfully overcome with
very simple filters ignoring the sample. Some traces use GPS correction maps for
the sampling but others have a slight offset to true locations. Geo-locations were
rounded to numbers with lower precision. These systematic errors are resolvable
by smoothing, learning a correction map with very few numeric parameters or al-
lowing some fixed precision radius when candidates for a geo-location are chosen.
This work focuses on the robustness against data problems that are heterogeneous
along a trace as well as across traces. We distinguish between the following three
conceptual categories.

[ ] [ ] (]
L ]
o l S
Figure 2.5: Categories of input characteristics in trace (red, t = t; ...t14 from left

to right) and graph (black) data. Grid cells (light gray) indicate a
distance of 1 in x and y direction.

Heterogeneity Some samples have higher precision than others or some parts of
the trace describes movement that can not originate from moves along edges in
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Chapter 2 Geometric Map Matching on Heterogeneous Data

the graph. See Figure 2.9 for an example. Reasons for that include missing edges,
erroneous edge directions, filtering of geo-locations due to local GPS precision,
disturbances through glass, steel, reflections, weather, tunnel, trees or clear sky.

Density Discrepancy between the density of geo-location sampling and edges in
the graph. E.g.: i) changing travel means (foot, bike, car ...), ii) parts of the
graph may be detail rich or iii) geo-locations were sparsified in a preprocessing.
See Figure 2.11 for an example.

Noise Sensor noise when there is no movement at all — e.g. stop at a traffic
light. Connecting positions on edges that are closest to geo-locations might require
moving along edges far away from this part of the trace. See Figure 2.10 for an
example.

Figure 2.5 illustrates the three categories with trace ¢t = ¢;...ty4 (red, left to
right). The spatially embedded graph in this example consists of three blocks of
similar structure. The left block allows traversal via a detour d; (upper part), a
direct path s; (middle part) and a maze m; (lower part). The middle block allows
traversal via d,,, (upper part) and m,, (lower part), while the right block has the
paths d,, s, and m,. We consider how paths with globally minimal geometric
similarity measures (c.f. Section 2.1) are affected by these data characteristics.

e Weak-Fréchet Distance: The path p = mym,,s, provides minimal dy g (p, t)
in this graph. This is determined by the Euclidean distance of 1.5 of sample
ti0 to s,.. Therefore, any traversal in the left block and m,, in the middle
block are allowed.

e Fréchet Distance: The path p = dym,,d, provides minimal dg(p,t) in this
graph. It is determined by the Euclidean distance (=~ 1.86) of a point around
the half-way point, between tg and ¢7, and the lower right corner node of m,,,.
This is less than 1.9, as provided from the traversal via d,,. This allows any
of the s or d traversals for the left and right block.

e Hausdorff Distance: A path with minimal dy can essentially start on
mid of m,, traverse m,, and end on mid of s,. This is determined by the
Euclidean distance of 1.5 of sample ¢4 to s,.

One may well think of additional cases, in which a local data problem affects global
optimization of a geometric similarity measure.
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2.3.1 Notation

We describe our approach in the setting of geo-locations and graph nodes lying in
the plane to simplify notation. In the geometric map matching problem we are
provided with an input poly-line t = ¢, ...t, of geo-locations t; € R? that might
have heterogeneous precision, noise and varying density. Furthermore, a directed
graph G = (V, E) with straight-line embedding n : V' — R? and an edge weight
function v : ' — N is provided. In all our experiments we set y(e) to the length of
the edge e in the embedding, rounded to a certain precision (c.f. Section 2.6). Note
that the objective and our methods allow different edge weights for different spatial
data mining applications. To simplify notation of the following, we assume that G
is strongly connected and shortest paths are unique (e.g. symbolic perturbation
of the edge metric 7).

A geo-location t; € R? has up to |E| candidates of the form (e,p) €
E x [0, 1]. Here p is such that the Euclidean distance between ¢; and the
relative position p on the directed edge e (regarding its node embedding)
is minimal. Note that if the edge allows movement in both directions, @
the candidate positions of both directed edges coincide. Furthermore,
the candidate positions on two adjacent edges might coincide in their
common graph node. We denote the set of candidate positions of ¢;
with C(i) and one may think of it as a list of (e,p) pairs, sorted by
their Euclidean distance to ¢;. Given the true candidates ¢ and ¢ for
positions ¢; and t; one can derive a movement along the edges between @
these two candidates by choosing the shortest path with respect to the
edge weights v. We denote this path with SP,(c,¢). This is a natural
choice for dense and sparse sampling [LLZZ709, EFHT11], if the true candidates
are known. Such a +y-shortest path between candidates in turn has a poly-line
originating from the straight-line embedding of the graph. In the following we
frequently compare these with the poly-lines of a part ¢;...t¢; with a geometric
similarity measure (lower values indicate higher similarity).

In the remaining sections of this chapter, we frequently use the geometric simi-
larity measure d = d4 as introduced above. Such parameterizations are computa-
tionally simple and a pessimistic measure of similarity (c.f. Section 2.1). However,
they provide a simple bijective mapping between the two poly-lines which makes
them suited for lossy compression. If d(p,t) does not exceed a desired quality,
one can store the poly-line p rather than ¢ (c.f. Figure 2.17). This is a metric on
poly-lines. However, the proposed decomposition approach only needs a geometric
similarity measure of poly-lines. Hausdorff or Fréchet distances are less pessimistic
choices for d.
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2.4 What is a ‘good explanation’

Our approach is based on the idea that parts of the spatial measurement have
different data quality and we seek to explain the input poly-line with a sequence of
~v-shortest paths. Other than global geometric optimization, we leverage the edge
metric of the graph as a tool for localization. For a poly-line with n points we
have O(2") decompositions into parts, where each part ¢; .. .¢; might be explained
with any of the O(|E|?) paths connecting a ¢ € C(i) with some ¢’ € C(j).

For only two geo-locations t1,t; in R? the choice of a ‘good’ D
matching is simple: Choose ¢ € C(1) and ¢ € C(2) such that
d(SP.(c, ), tits) is minimal. This is a natural choice irrespective of
coarse or fine sampling that implicitly defines the required ‘flexibility’
for the candidate selection of ¢; and t5. Having a better geometric
similarity than the other vy-shortest paths is the motivation for our ®
formal definition of a dominating path.

However, lifting this idea to a map matching objective for the
entire trace poses a problem. On the one hand, geometric mini-
mal y-shortest paths of two consecutive pairs of geo-locations are
not necessarily connected, but on the other hand, the ground truth
movement may consists of several vy-shortest paths leading to rather
high d(p,t; .. .t,) values for any y-shortest paths p between C'(1) and
C(n).

We address this in our novel map matching objective by requiring
connectivity but allow each part of the poly-line ¢;...%¢, to be ex-
plained by a different ~-shortest path. Provided k such decomposition parts and
shortest paths, we can think of an explanation as a vector of length n — 1 listing
the k values of the geometric similarity measure d in sequence. There are many
ways to formalize an map matching objective based on such a decomposition. For
example, minimizing the maximum d value of a part suffers similarly to global ge-
ometric optimization, if parts of the input have inherent bad data quality (e.g. a
missing graph edge). We aim for an objective that allows evaluation in an on-line,
stream processing, fashion but still provides optimality. Consequently, we allow to
decline some earlier candidate choices, if ignoring them allows a 7-shortest path
to provide a better explanation for the suffix, in terms of the geometric similarity
measure d.

2.4.1 Dominance Decompositions

Each ground truth movement along the graph edges is a sequence of ~-shortest
paths of maximal length. Let g be one of these rather long paths and ¢t =t;...¢t, a
perfectly sampled poly-line with d(g,t) = 0. Since a splitting of a y-shortest path
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results in two y-shortest paths, the perfect sampling ¢ further refines g = s1s5 . .. s,
where each s; originates from a rather short y-shortest path. Now, heterogeneous
precision, noise and varying density lead to the fact that each t; € R? bears a
different Euclidean distance to its true position on g. A t; might now be closer to
different candidates in the graph G than to its true position on g.

Figure 2.6: Example graph (thin black lines), location samples ¢ = ¢ ... ¢4 (thick
red line) and v-shortest path decomposition of the ground truth move-
ment g = $182 .. .13 (thick black line), as induced by t.

Therefore, if we were forced to extend a fixed path that is a ‘good explanation’
for to...t; to one of the |F| candidates of t5, all such choices of p could be a
‘poor explanation’ for ¢;...t5. If there is a ‘better explanation’ for t;...ts we
would rather use this v-shortest path ¢ as an explanation for the entire part than
explaining t; ...ty with such a p. (c.f. Figure 2.6).

Note that the sample t5 does not necessarily need a small Euclidean distance
to its ground truth position. It is sufficient that ¢ = sys9 is geometrically more
similar to ¢y ...ty than a pisto ¢y ...ty. If the sampling, in light of parts underlying
different kinds of errors, provides some samples which make ¢ a better geometric
explanation, we can reconstruct the ~-shortest paths of g from t.

Since the graph might have ‘errors’ as well, the existence of a true move-
ment along the directed edges seems problematic for a real world GPS trace.
However, we can equally consider this part of the sampled trace as one with
bad data quality. Meaning, a ‘good explanation’ for this part has inherent
high geometric distance values.

We capture this in the following recursive, formal definition of the domi-
nating path for a suffix. Note that dominating candidates C' merely describe ends
of dominating paths, allowing us to enforce connectivity. Let C(1),...,C(n) be
the candidates for a poly-line t =t;...t,.

Definition 2.1. For n =1 all candidates of #; are called dominating candidate
for the trivial 1-suffix and C(1) = {1} x C(1).
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Figure 2.7: Illustration of the dominating candidates in C (n — 1) (orange). These
are starting points of y-shortest paths that are considered for the n-
suffixes.

For n > 1 consider all y-shortest paths p starting in a dominating candidate d
with (j,¢) € C(n — 1) and ending in some ¢ € C(n). We call ¢ the dominating
candidate iff. p minimizes d(p,t;...t,), resolving ties by choosing higher j. We
call p the dominating path for the n-suffixes. More formally, let

A= {(j,c’,c) L (j,d)eC(n—1),ce C(n)}

(4, ,¢) = argmin d( SP.(c,¢),t; .. .tn> :
(j,c/,c)eA
We call p = SP,(c/, ¢) the dominating path and (n,c) the dominating candidate
for the n-suffixes. We set C'(n) = C(n — 1) U {(n,c)}.

See Figure 2.7 for an illustration. Note that the dominating path is uniquely
defined and has optimal geometric similarity over the suffixes of the poly-line ¢.
One could aim for a more general definition of suffix dominating path by allowing
more than one dominating candidate for a sample, leading to a Pareto set of suffix
dominating paths for a trace. Now we can formally define the computational task
of the novel map matching objective.

Given: A tracet =t;...t, with ¢; € R* and a directed simple graph G = (V, E)
with straight-line embedding 1 : V — R? and edge costs v : £ — N.

Find: A decomposition {i1,...,i,} C {2,...,n} of t (i, = n) and a connected
sequence of ~-shortest paths p; ...p, such that each p; dominates the ;-
suffix of ¢.
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Figure 2.8: Example of a dominance decomposition with 6 parts for ¢; ... %14 (red).
Alternating colors indicate correspondence between ~-shortest paths
(green/blue) and respective parts of the poly-line (yellow/turquoise).
Values of the geometric similarity measure d are indicated in shades of

gray.

Such a solution is called dominance decomposition of t and each path p; is
optimal for the suffix of its respective part. Using the geometric similarity measure
d(, ), as introduced above, each solution provides a bijection between points along
the trace and points along the path. Note that the objective is not to globally
minimize the maximum error of piece-wise arc-length parameterizations, since we
require each factor to be locally minimal. There is always such a decomposition
since the graph is strongly connected and the decomposition is unique by definition.
For consistency consider an arbitrary path p in G and perfectly sampled geo-
locations — e.g. geo-locations of each node are present in the input. Each factor
of a y-shortest path factorization of p = p;...p,, dominates a suffix with a zero
value in the geometric similarity measure. See Figure 2.8 for a conceptual example
and Figures 2.1, 2.9, 2.10 and 2.11 for examples on real world data.

This geometric objective is independent of numeric parameters like allowed lo-
cal error-radii between geo-locations and candidates, relative importance between
keeping bearing, speed and other frequently used numeric parameters.

2.4.2 Other Map Matching Objectives

In contrast to globally minimizing a rather flexible geometric distance measure
or score, this objective formulates minimal solutions for each part of the trace.
Therefore parts of a DD with high yet optimal geometric (dis)similarity values
indicate data problems of trace or graph in this area. Applications can use this for
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Figure 2.9: Comparison of DD map matching (thick green/blue lines) with
HMM [NK09] map matching (thick magenta lines) and SP [EFH"11]
(thick black lines) map matching on real world trace data (thin yel-
low /turqoise or red lines). See Section 2.4.2 for details. OSM trace
1396953 track 16 exhibits heterogeneous data quality.

identifying errors in graph or trace data.

SPX map matching [EFH11] computes a shortest path, under the constraint
to traverse a sequence of sets of vertices, each of which contains the vertices that
are within a radius of X (in meter) around the respective location measurement.
We also provide comparison with [NIKX09] as provided by the GraphHopper Project
[Kar08, Hol] implementation. The method maximizes the probability score of a
Hidden Markov Model (HMM) globally. We use the default numeric parameters
of this implementation.

Figures 2.9, 2.10 and 2.11 provide case comparisons on data of the Open-
StreetMap trace database. DD factors of input poly-lines (thin lines) are plotted
with alternating yellow and turquoise and the respective y-shortest paths (thick
lines) with green and blue on top of underlying graph edges (thin black lines).
The background shows an underlying rendering from the OSM map in very light
opacity. For simple comparison we add the results of HMM as an overlay (very
thick magenta line). The results of SP9 and SP61 is given as a thick black line,
where the trace (thin red line) is augmented by circles indicating the respective
allowed candidate radius, containing at least one graph node, for each location
sample. See Section 2.6 for further details.
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Figure 2.10: Comparison of DD map matching (thick green/blue lines) with
HMM [NK09] map matching (thick magenta lines) and SP [EFH"11]
(thick black lines) map matching on real world trace data (thin yel-
low /turqoise or red lines). See Section 2.4.2 for details. OSM trace
537916 track 1 exhibits an intermediate part with noise.

Figure 2.11: Comparison of DD map matching (thick green/blue lines) with
HMM [NK09] map matching (thick magenta lines) and SP [EFH " 11]
(thick black lines) map matching on real world trace data (thin yel-
low /turqoise or red lines). See Section 2.4.2 for details. OSM trace
658956 track O exhibits missing graph edges.
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Figure 2.9 exhibits heterogeneous precision. The first parts of the sampled
poly-line have low precision. However, precision improves in between and later
on. DD identifies intermediate parts with better geometric matches. HMM (very
thick magenta line) tends to ignore these parts and provides unreasonable results
for the movement over the river’s bridge, which is sampled in low precision. SP9
(bottom left) returns several unreasonable detours, just to meet the fixed candidate
sets. This is not fully resolved with the parameters of SP61 (bottom right), which
ignores intermediate detours of rather good sampling precision.

Figure 2.10 exhibits intermediate sensor noise, after entering a parking lot. DD
does not lack to provide the parking lot detour in the explanation and is unaffected
by the sensor noise. HMM ignores the noise but the parking lot detour as well.
Furthermore, the noise part leads the global optimization of the probability score to
favor an unreasonable detour on a rather good sampled earlier part. SP9 provides
unreasonable results for the noisy parts and SP61 ignores the parking lot.

Figure 2.11 exhibits missing graph edges. This situation is similar to location
measurements and graph edges having different sampling densities. DD is only
affected in one part of the trace and provides high precision matching results later
on. HMM and SP61 provide very unreasonable results for this situation.

We conclude the section with an extensive comparison on a heterogeneous, real
world dataset (c.f. Table 2.2). Finding a measure to judge the quality of output
and input poly-line is equally hard as the map matching problem itself: One would
design an algorithm to return optimal results under this measure. Figure 2.12
simply shows the discrete average distances of the geometric similarity measure d,
comparing output with input poly-line. HMM was unable to find matchings for
2,128 traces (‘broken sequence’ exception), which we excluded from plotting in
Figure 2.12.

2.5 Finding Dominance Decompositions

Despite the potentially big sets of y-shortest paths considered for minimizing the
geometric poly-line distance, we can efficiently enumerate relevant candidates us-
ing the following simple observation: For two consecutive geo-locations t,t € R?
consider the candidate (e, p) closest to ¢t and (¢, p’) closest to t'. Their Euclidean
distance is g, = ||t, (e,p)||2 and € = ||t’, (¢/,p’)||2. Let ¢ denote the poly-line of
the ~-shortest path connecting (e, p) to (¢/,p’). The value ¢, = d(g, tt') is an up-
per bound on the Euclidean distances of potentially better candidates for ¢ and
' since every arc-length re-parameterization of a path using candidates of higher
distance immediately has higher d( ,...t") values, resulting from an endpoint.
Many geometric similarity measures d provide this property. We therefore call
d( , ) compatible to || ||2-
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Figure 2.12: Comparison of map matching methods. FEach trace is represented
with 4 points, where the z-coordinates are the discrete average error
of the DD and the y coordinates are discrete averages of similarity
measure d for SP20 (gray), SP60 (black), HMM (red) and, again, DD
(blue).

This self limiting nature between the ‘local errors’ ; and the ‘path errors’ g,
enables a search via local enumeration of candidates with Euclidean distance up to
ep. Algorithm 6 describes a dynamic programming approach for finding dominance
decompositions. Recall that C'(i) denotes the list of all candidates for ¢; in increas-
ing Euclidean distance. Given the recursive nature of the objective, we keep all
intermediate results and finally retrieve the decomposition parts with backtrack-
ing. The dom array contains the dominating candidate for each sample and the pre
array contains the sample index of its best predecessor. E.g. the last part of the

decomposition is tprefy - - - t, With the dominating path SP., <d0m[pre[n]], dom[n]) :

2.5.1 Speeding up the calculations

The running time of Algorithm 6 depends on how well the trace is mapable to the
graph. Let the complexity parameter K € O(|E|) denote the maximal number of
relevant candidates of a sample in the input (e.g. iterations of the repeat loop).
We use that each of the (n + 1) candidate sets can be determined and stored in
an min heap in O(|E]) time. Extracting a candidate with minimal distance costs
O(log|E|) time. The geometric poly-line distance d allows calculation in linear
time and each ~y-shortest path has no more than |E| edges. Based on an all-pair
shortest path lookup table for GG, we can retrieve each v-shortest path and evaluate
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Input: ty...t, witht, e R* , G=(V,E), v: E—=N,n:V = R? d(,)
compatible with || ||

1 Vars: dom|0 : n], pre[l : n]
2 g[l :n] =0; g,[1:n] = o0; dom[0] = C(0)

/* search while updating bounds */

sfori=1 ... ndo

4 repeat

5 ¢ = C(i).pop()

6 alfi] = ||t ||, /* raise lower bound */
7 forj=i—1 ... 0; ¢ € dom[j] do

8 6 =d(SP,(c,c) , tj...1;)

9 if 0 <¢,i] then

10 epli] =49 /* lower upper bound */
11 dom[i| = {c}; pre[i] = j

12 end

13 end

14 | until gi] > g,[i];
15 end

Output: Backtrack dom[n] using pre[n]

Algorithm 6: Basic Search Algorithm for Dominance Decompositions (c.f.
Section 2.5).
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Figure 2.13: Greedy upper bounds for the initialization of €,[i]. The dominating
candidate of t;_; and a candidate of ; are indicated with orange lines.

d in O(|E| + n). This leads to an asymptotic running time of
O(nK(log |E|+ (n+ K)(|E| + n)))

However, the closer the input poly-line ¢ is to a ground truth movement g along
edges (K =1 and d(t,g) = 0), the closer the running time gets to merely calcu-
lating d for consecutive parts of t.

In the following we describe speed-up techniques that allow for different edge
weights v and geometric similarity measures d at query time. Naive approaches
introduce a numeric parameter for a Douglas-Peucker poly-line simplification for
the input trace, leading to a reduced n. Alternatively, numeric parameters lim-
iting the length of a part in the decomposition or a hard limit for the maximum
allowed candidate distance g; in the search could be introduced. The latter even
compromises the optimality of parts in the resulting decomposition. In the follow-
ing we describe speed-up techniques that preserve optimality of the results. The
techniques base on using the currently best upper bound ¢,[i] of sample ¢; to prune
calculations of non-optimal alternatives.

Greedy Upper Bound Each sample has a candidate position on each edge of the
graph. Therefore, one can use the dominating candidate (e,p) of ¢;_; to obtain
an initial upper bound on ¢,[i|, without shortest path search. There is either a
v-shortest path from (e, p) to a candidate position of ¢; on e or one of the adjacent
edges of e. See Figure 2.13 for an illustration.

Shortest Path Pruning via Prefix Moats We traverse the graph edges in in-
verse direction to calculate all y-shortest paths in the graph that target the cur-
rent candidate ¢ originating from any of the dominating predecessors dom[j] with
|| dom[j], ¢]|2 < €,[i]. Furthermore, prior to the dominance search for sample i we
tag each graph edge with the minimum || ||» distance between one of the incident
nodes and points on the poly-line t;...%¢;. When searching for v-shortest paths
for candidates of ¢; we can stop the search on edges with higher tag-values than
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the currently best upper bound ¢,[i]. Any matching of these paths with a suffix
of ty...t; would result in higher d( , ) values of this part. Figures 2.15 and 2.1
illustrate graph edges (thin lines) having lower or higher distance tags with darker
and lighter shades of gray, respectively.

Early Exit During Metric Calculation Relative arc-length re-parameterizations
of poly-lines can be calculated in linear time - this extends to evaluating d( , ).
When calculating 0 for a new candidate path it is safe to abort calculations if §
already exceeded the upper bound ¢,[i].

Douglas-Peucker Simplifications This technique uses simplifications of the in-
put trace to reduce computation time. Douglas-Peuker simplifications recursively
divide an input poly-line in parts at a point, where the Hausdorff distance dy is
maximal to the straight line-segment spanning the entire part. The subset of split
points with distance at least ¢ is called a ¢ simplification of the poly-line.

Since the triangle inequality holds for many geometric similarity measures of
poly-lines (c.f. Section 2.1), such simplifications are usable for global geometric
map matching: If ¢’ is a simplification of ¢ with small dg(#',¢) and a poly-line p of
a path in the underlying graph minimizes dg(p,t’), then we also have

This translates to DD map matching based on the Hausdorff distance as geometric
similarity measure, since dg provides the following concatenation property of poly-
lines:

d(titats, pipeps) < max {dH(t1t2,P1p2)7 dH(t2t37p2p3)}

The same concatenation property holds for dp and dyr (c.f. Section 2.1). There-
fore, each part of a dominance decomposition of a simplification translates to a
part on the original trace.

More formally, let ¢y . . . ¢, be a poly-line and the indexes {s, ..., s} €{0,...,n}
a 0 simplification (sg = 0, s, = n) for some § > 0. Then for each poly-line p and

each part bs;bsgipn) - - .ts, with ¢ < j of a dominance decomposition, we have

di (p, ts,tsis1- - ts,) <0+ du(p, toitsin - - ts,)-

However, d4 does not provide aboves concatenation property in general. We
have dA< (0,0)(1,0)(0,0)(1,0), (0,0)(1,0) > = 2/3 and concatenating these poly-
lines with the line-segment (1,0)(4,0) leads to an value of at least 4/3 for d4.

Nevertheless, using DD map matching based on d4 on a Douglas-Peuker sim-

plification ¢’ of ¢ provides bounds on dy of the induced decomposition parts in ¢,
since dy (p,t') < da(p,t') (c.f. Section 2.1).
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2.6 Empirical Evaluation

We implemented the algorithms and speed-up techniques from Section 2.5 in an
interactive Java application with GUI. There exist many data structures that allow
fast enumeration of the nearest candidates of a geo-location t; € R?. We do not
take advantage of these advanced methods since the focus of this work is quality
rather than computational time. The implementation uses a simple grid with fixed
distances. On average 60.3% of the total running time for one trace is required
for the candidate lookups in the grid. The results and running times of our single-
threaded Java application were derived on rather old desktop hardware (Intel
i5-2500K) running OpenJDK version 1.7.0_111 on a 64Bit Ubuntu 14.04.4 LTS
system on kernel 3.13.0-91-generic. The implementation does not generalize
the DD approach using the directed acyclic graph (DAG) of strongly connected
components of a graph. We simply use the biggest strongly connected component
in the graph for the algorithm. For the edge metric v : E — N we used the geodesic
distance of the respective nodes rounded to a precision of 100 millimeters. We used
the geodesic variant of d( , ) as geometric similarity measure (c.f. Section 2.3.1).
Note that the DD approach allows other poly-line distances (e.g. Fréchet) and
edge metrics v for localization.

2.6.1 Real World Graph Data

We use graph data from the OpenStreetMap project [OSMI13] as of September
1st, 2016. This is an open data crowd-sourcing effort to create a detail rich map
of the world by manually integrating geo-location data provided by users. The
quality and details of the map vary strongly in different regions. E.g. the Bavaria
download has about twice the size than the whole of China [Geol6]. Evidently, the
map varies in how rich urban, sub-urban and nature areas are captured in their
details.
Region # nodes # edges
Washington State, US 4,490,823 | 9,189,076
Stuttgart, Germany, EU | 2,785,490 | 5,953,999
London, England, UK 816,557 | 1,709,438
Saarland, Germany, EU 625,815 | 1,301,997

We derived these graphs and their spatial embedding by extracting all OSM ‘ways’
allowing any kind of movement (e.g. foot, bicycle, car ...).

2.6.2 Robustness Experiments

Available datasets with ground-truth typically have homogeneous quality and are
unproblematic for many methods. We obtained the baseline results for our exper-
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ID | #samples length || length #parts max avg
1 2356 35.3 35.3 280 45.0 7.0
2 1070 22.6 22.6 90 19.6 5,1
3 1566 22.5 22.5 182 199 47
4 1177 28.3 28.3 178 399 5,6
5 884 9.5 9.4 106 28.1 3,7
6 1017 16.7 16.8 127 173 45
7 2368 26.3 26.3 212 222 49
8 1135 21.4 21.3 193 286 3,1
9 1543 34.4 34.4 282 19.9 5,1
10 1320 16.7 16.7 160 25.9 7,0

Table 2.1: Baseline DD matchings for the GISCup’12 training dataset. Columns
denote length [km] of the input and matched poly-lines, the number
of parts in the DD. Judging the derived bijective mapping of the DD
between the points on input and output poly-line, the columns max
and avg denote the maximum and the discrete average distance [m] of
matched points.

iments from a clean dataset with manual, visual inspection. The training dataset
of the GISCup’12 [AKRT12] contains 10 spatial poly-lines of 9 — 35km car rides
with an average sampling density of 10 — 24m and high precision in the area of
Redmond (Washington, US). Each of the 10 visually obtained baseline match has
an average value of the bijective mapping to its input poly-line below 7m (c.f.
Table 2.1).

We used Douglas-Peucker poly-line simplifications of the input traces to derive
traces with varying sampling densities. We used maximum allowed Hausdorff
distances of 1,2,5,10,20,40,80 and 100m. The 10 curves in the lower part of
Figure 2.14 relate to the right y-axis and show the percentage of surviving samples
for each of the 10 traces. The respective curves in the upper part relate to the
left y-axis and show the percentage of graph edges in the base line solution that
are met by the edges in the DD solution of the simplification. We consider the
baseline and the alternate solution paths as discrete strings of edge indexes. The
true positive rate is the edge count of longest-common-subsequence and baseline
path. Note that this is a rather pessimistic robustness measure — E.g. different
lanes in the same direction of a highways are often modeled with different edges
in the graph data.

In order to evaluate the stability of DD matching results under heterogeneous
precision and under noise, we introduced a random error for the points along the
poly-line. We sample uniformly isotropic error vectors from a 130 x 130m square.
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Figure 2.14: Robustness of DD under sampling densities. The lower ten curves
relate to the right y-axis whereas the upper ten curves relate to the
left y-axis.

In order to simulate heterogeneous data quality along each of the traces, we intro-
duced such error vectors to samples with a certain probability. E.g. a probability
of 0.1 means that about 10% of the samples along the poly-line of a trace re-
ceived this synthetic error offset. See Figure 2.1 for an example with a 35 x 35m
square and probability 1.0. Figure 2.15 provides an additional example. Note that
adding errors artificially renders a comparison to ground-truth eventually mean-
ingless. That is as soon as the heterogeneous errors are big enough to make an
alternative path more ‘reasonable’. Figure 2.16 shows the results of these experi-
ments for the 10 traces. The x-axis shows the applied error probabilities. Again,
the lower 10 curves relate to the right y-axis and show the geometric poly-line
distance d( , )[km] as a measure of (dis)similarity to the baseline. The respective
curves in the upper parts relate to the left y-axis. They show the true positive
rates achieved of the DD for the disturbed poly-lines compared to baseline paths.

2.6.3 Real World Trace Data

In this section we demonstrate the effectiveness of our methods and speed-up tech-
niques on heterogeneous, real world data. The OpenStreetMap project [OSM13]
provides a dataset of all user uploaded data until 9th of April 2013 (257.2 GiB . gpx
files). We extracted all traces that are fully contained in the boundary polygon
of the regions Saarland, London and Stuttgart. We process this highly heteroge-
neous data sets without advanced cleaning methods. We simply required traces to
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Figure 2.15: Trace 2 of the GISCup’12 training dataset under poly-line simplifi-
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cation and heterogeneous, noisy errors. The disturbed trace is given
as fine line in colors alternating between turquoise and yellow. The
resulting parts of DD map matching are depicted as thick lines in
colors alternating between blue and green. Filled dots indicate the
respective candidate search spaces and the opacity of the underlying
graph edges (thin black lines) illustrates the prefix moats speed-up
technique.
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Figure 2.16: Robustness of DD under heterogeneous precision and noise. The lower
ten curves relate to the right y-axis whereas the upper ten curves
relate to the left y-axis.

Region || Stuttgart London| Saarland

no. traces 17,710 4,375 2,572

no. points [100] 7 5 (13.7) (23 4) 0 (15.1)
length [km] 7 (15.9) 1(7.2) 11 4 (15.1)
density [10/km] 15 3 (24 5)|21. 5 (53 6) | 14. 8 (46 7)
max. spread [km] | 4.1 (6.9)| 2.2 (3.1)| 44 (6.2)
max. hop [10m] || 11. 7 (20.0) | 10. 5 (18.0) [ 11. 5 (18.4)

Table 2.2: Mean and standard deviation statistics for the 24, 657 spatial poly-lines
in the datasets.

have at least 50m in length, dropped sampling duplicates and single samples show-
ing a zig-zag outlier pattern with their neighbouring samples. Table 2.2 provides
statistics on some data characteristics.

We use all three speed-up techniques and simplify each input trace to a maximum
Hausdorff distance of 20m with the Douglas-Peucker Algorithm. See Figure 2.17
(top left) for computation times. We further limit the search of the dominating
candidates to a maximum distance of 400m for each sample. This is indicated by
the vertical line in Figure 2.17 (top right), showing that only very few of the 24, 657
results are not guaranteed to be optimal. Note than an average value of 10m in
the bijective mappings of the geometric similarity measure d (c.f. Section 2.3.1) is
a very convenient result for such a heterogeneous dataset.
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Adaptive Lossy Compression

The simple bijective mapping provided from a DD allows an adjustable lossy com-
pression scheme: The parts of the trace not exceeding some desired quality value
are stored as shortest paths rather than geo-locations. See Figure 2.17 (bottom)
for the compression rates and average errors obtained by DD map matching.

2.7 Research Directions

In future work, we seek to provide more efficient speed-up techniques. The property
of simplifications or fixing a geometric edge weight for the graph seems promising.
On the experimental side, we are interested in evaluating the quality of dominance
decompositions under different geometric poly-line distances, like Hausdorff or
strong, weak and average Fréchet.
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Figure 2.17: Running times (top left), result quality (top right and mid right) and

spatial compression rates (mid left and bottom) of Algorithm 6 using
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traces is depicted as a dot in the scatter plots. 79






Chapter 3

Rational Points on Unit Spheres

Figure 3.1: Spherical Delaunay triangulation (gray) constrained to contain all line
segments (black) of streets in Ecuador. Intersections of constraints are
given in red.

3.1 Introduction

Many mathematical sciences use trigonometric functions in symbolic coordinate
transformations to simplify fundamental equations of physics or mathematical sys-
tems. However, rational numbers are dominating in computer processing as they
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allow for simple storage as well as fast exact and inexact arithmetics (e.g. GMP
[Gt12], IEEE Float, MPFR [FHL"07]). Therefore problems on spherical surfaces
often require to scale a point vector, as in choosing a point uniform at random
[Mar72], or to evaluate a trigonometric function for a rational angle argument, as
in dealing with geo-referenced data (e.g. rational longitude and latitude values).

A classical theoretical barrier is Niven’s theorem [Niv&5], which states that the
sole rational values of sine for rational multiplies of 7 are 0,4+1/2 and £1. The
well known Chebyshev polynomials have roots at these values, hence give rise
to representations for these algebraic numbers. However, arithmetics in a full
algebraic number field might well be too demanding for many applications. For
products of sine and cosine, working with Euler’s formula on the complex unit
circle and Chebyshev polynomials would suffice though.

This manifests in problems of exact geometrical computations, since standard
methodology relies on Cartesian input [LPY05]. Spheres and ellipsoids are com-
mon geometric objects and rational solutions to their defining quadratic poly-
nomials are closely related to Diophantine equations of degree 2. The famous
Pythagorean Triples are known to identify the rational points on the circle S*.
Moreover, the unit sphere has a dense set of rational points and so do ellipsoids
with rational half-axes through scaling. Spherical coordinates are convenient to
reference such Cartesians with angle coordinates and geo-referenced data denotes
points with rational angles. Standard approximations of Cartesians do not nec-
essarily fulfill these equations, therefore subsequent algorithmic results can suffer
greatly.

This chapter focuses on finding rational points ezactly on the unit sphere S4—! =
{z eR? : > .27 =1} with bounded distance to the point z/||z||s — its closest
point on S?!. In this work, z € R? can be given by any finite means that
allow to compute a rational approximation to it with arbitrary target precision.
Using rational Cartesian approximations for spherical coordinates, as derived from
MPFR, is just one example of such a black-box model. Moreover, we are interested
in calculating rational points on S¢ with small denominators.

Related Work

Studies on spherical Delaunay triangulations (SDT), using great-circle segments
on the sphere S?, provide common ways to avoid and deal with the point-on-sphere
problem in computational geometry. We list the approaches by the categories of
Robust Computational Geometry [She97].

The fragile approaches [PZ15, JGR™13, Ren97] ignore that the input may not
be on S? and succeed if the results of all predicate evaluations happen to be
correct. Input point arrangements with close proximity or unfortunate locations
bring these algorithms to crash, loop or produce erroneous output. The quasi-
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robust approaches [Bro79, BDIH96] weaken the objective and calculate a Delaunay
tessellation in d-Simplexes. Lifting to a d + 1 convex hull problem is achieved by
augmenting a rational coordinate from a quadratic form — The augmented point
exactly meets the (elliptic) paraboloid equation. However, the output only identi-
fies a SDT if all input points are already on the sphere, otherwise the objectives are
distinct. Equally unclear is how to address spherical predicates and spherical con-
structions. The robust approaches [Saa99] use the circle preserving stereographic
projection from S? to the plane. The perturbation to input, for which the output
is correct, can be very large as the projection does not preserve distances. Fur-
thermore, achieving additional predicates and constructions remains unclear. The
stable approaches provide geometric predicates and constructions for points on S?
by explicitly storing an algebraic number, originating from scaling an ordinary
rational approximation to unit length [{CCLT09]. Algebraic number arithmetics
can be avoided for S?, but exact evaluation relies on specifically tailored predicates
[CACLT10], leaving the implementation of new constructions and predicates open.

Kleinbock and Merrill provide methods to quantify the density of rational points
on S% [KM15], that extend to other manifolds as well. Recently, Schmutz [Sch0g]
provided a divide-&-conquer approach on the sphere equation, using Diophan-
tine approximation by continued fractions, to derive points in Q¢ N S?! for a
point on the unit sphere S*~'. The main theorem bounds the denominators in
e-approximations, under the || ||o norm, with (v/32[log, d]/¢)?M°#29]. Based on
this, rational approximations in the orthogonal group O(n,R) and in the unitary
matrix group U(n,C) are found. This is of particular interest for sweep-line algo-
rithms: [CDR92] studies finding a rotation matrix with small rationals for a given
rational rotation angle of an 2D arrangement.

Contribution

The strong lower bound on rational approximations to other rational values does
not hold for geo-referenced data, considering Niven’s theorem. We derive explicit
constants to Liouville’s lower bound, for a concrete geo-referenced point, that is
within a factor 2 of the strong lower bound. Moreover, we prove that floating-point
numbers cannot represent Cartesian coordinates of points that are exactly on S!
or S%.

We describe how the use of rotation symmetry and approximations with fixed-
point numbers suffice to improve on the main theorem of [Sch08]. We derive
rational points ezactly on S¥~! with denominators of at most 10(d — 1) /&2 for any
S (0, %} Moreover, our method allows for even smaller denominators based
on algorithms for simultaneous Diophantine approximations, though a potentially
weaker form of approximation would suffice.

The controlled perturbations provided by our method allow exact geometric
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algorithms on S? to rely on rational rather than algebraic numbers — e.g. enabling
convex hull algorithms to efficiently obtain spherical Delaunay triangulations on
S? and not just Delaunay tessellations. Moreover, the approach allows for inexact
but e-stable geometric constructions — e.g. intersections of Great Circle segments.

We demonstrate the quality and effectiveness of the method on several, including
one whole-world sized, point sets. We provide open-source implementations for the
method and its application in the case of spherical Delaunay triangulations with
intersections of constraints.

Chapter Outline and Pre-Releases

Section 3.2 reviews results on Diophantine approximation and establishes an ex-
plicit lower bound on a point with rational angle coordinates. Section 3.3.1 clarifies
that floating-point numbers cannot represent Cartesian coordinates of points on
unit spheres, for certain dimensions. Section 3.3.2 describes the approximation
method and Sections 3.3.3 and 3.3.4 provide bounds on quality and denominator
size. Section 3.4 discusses implementation issues and Section 3.5 the experimental
results. Section 3.6 closes the chapter with directions for future work.

The method of Section 3.3.2 found application in our contribution to the pro-
ceedings of the 19" Workshop on Algorithm Engineering and Experiments [BBF17].
Apart from the tighter analysis in Section 3.3.3, the results of this chapter are con-
tained in our contribution to the proceedings of the International Symposium on
Symbolic and Algebraic Computation [BS17a].

3.2 Definitions and Tools

The 2nd Chebyshev polynomials U, of degree n are in Z[X], given their recursive
definition:

Up(x) = Uy(x) =2x
Upi1(z) = 22U, (x) — Up—1 () .

It is well known [Riv74], that the n roots of U,, are exactly the values
{cos(mk/(n+1)) : k=1,...,n} .
Hence the polynomials U, give rise to algebraic representations for cosine values

of rational multiples of w. This is particularly useful in conjunction with classic
results on Diophantine approzimations, that are known since 1844 [Lio51]:
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Theorem 3.2.1 (Liouville’s Lower Bound). For any algebraic o € R of degree
n > 2, there is a positive constant c(a)) > 0 such that

c(e)

qn

gz

3

for anyp € Z and q € N.

This nice proof was translated from the German wikibooks Project — thanks to
the anonymous authors. See [[.io51] for the original proof in French language.

Proof. Let a € R be algebraic of degree n and root of the corresponding polynomial
f(X) € Z]X] of degree n, meaning

fla)=ap+aa+ -+ a,a" =0

with ag, ..., a, € Z and a, # 0. Polynomial division with the linear factor X — «
in the ring C[X] provides

f(X) = (X —a)-g(X). (3.1)

Note that the polynomial g(X) has algebraic coefficients and is not necessarily
in Z[X]. However, the mapping R — C, t — ¢(t) is continuous, by means of real
numbers ¢; > 0, co > 0 with

9(z)| < (3.2)

for |a — | < ¢o. Since n < oo, we can assume w.l.o.g. that no additional roots are
in this neighborhood of «, meaning

flx) #0 (3.3)

for |a — 2| < ¢ and = # .
Claim: The statement of the Theorem holds for ¢ := min {CQ, é}
Suppose there are p,q € Z, ¢ > 0 with

04—12‘<— . (3.4)

a——‘<c<02, (3.5)
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leading (3.2) to imply ‘g(%) < ¢1. We derive, from (3.1) and again (3.4), that

PO L -l k)

i (5)] <

However ¢" - f(ﬂ) = apq" + a1pg" ' + - + a,p" € Z and its absolute value is

1
q’

C
<—n'61§
q

meaning

q
smaller than 1, hence has to be 0. Moreover, f(£) = 0 and (3.5) with (3.3) imply

a= 1507 which closes the argument. ]

Apart from this lower bound on rational approximations, there is another impor-
tant folklore result on the existence of simultaneous Diophantine approximations.
Such approximations have surprisingly small errors, despite their rather small com-
mon denominator.

Theorem 3.2.2 (Dirichlet’s Upper Bound). Let N € N and o € R? with 0 <
a; < 1. There are integers p € Z¢, q € Z with 1 < ¢ < N and

1
< .
~qVN
The folklore proof bases on Dirichlet’s famous Pigeonhole Principle.
See proofwiki.org or Chapter 11.12 in [HW54].

Pi
q

a; —

Proof. We consider the partition of [0, 1]? in N regular d-cubes of length L = v/ N.
|7 - ] (component wise operations). There are indices k > [ such that the points
a® and a) are contained in the same d-cube. We have the (component wise)
inequalities

1 1
-7 <a® — g < -
—l<k — |ka] —la+ |1 J<l
7 a « « a] <7
1 1
-7 < (k—Da—(lka] — [la]) < I
Setting ¢ = k — [ and p; = |ka;| — |loy] provides integers as required. O

For d = 1, the continued fraction (equivalently the Euclidean) algorithm is fa-
mous [HW54] for finding approximations with |a — p/q| < 1/2¢*. This spurred the
field of number theory to study generalizations of the continued fraction algorithm
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that come close to Dirichlet’s upper bound, but avoid brute-force calculations.
Some more recent methods are discussed in Section 3.3.4.

Our approach uses the Stereographic Projection in R%. Let p = (0,...,0,1) € R¢
be the fixed point for the projection 7, mapping all points of a ray from p to the
intersection with the hyperplane x4 = 0.

T RT\ (R x {1}) - R

T xd—1>
1— x4 T 1— 2y

o

The surjective mapping 7 is injective as well, when restricted to the domain S41\
{p}. We further define the mapping o, which is

o: R R\ {p}

< 25(71 2[Ed_1 —1—|—S2)
14827 777714827 14682

2 _ N\d—-1 2 ; d—1
where S5° = ijl z;. We have imgo C S, since

(=14 822+ 30 (22,)?

2 _ _
lo(@)l2 = (1+ 52)2 =1
Furthermore, x = 7 o o(z) for all z € R?™!, since
2z;
= 1+S2 = ¢ = .
(TOU)Z-(x) 1__11::95;2 1+52+1—92 Z;

holds for all 1 < i < d. Hence, o and 7 are inverse mappings. Note that images of
rational points remain rational in both mappings, establishing a bijection between
rational points in R?~! and S

3.2.1 Lower Bounds and Instances for Geo-referenced Data
on S¢

It is well known in Diophantine approximation that rational numbers have alge-
braic degree 1 and are hard (in the following qualitative sense) to approximate
with other rational numbers. The following folklore observation is an analog to
Liouville’s lower bound.

Observation 1. For rational numbers 3 g, we have

@ _p|_
bq_

aq—bp‘ 1

>
bg | bg
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If ¢ < b, we have a lower bound of 1/¢* for rational approximations to 7 with
denominators up to ¢. Pythagorean triples (z,%,2) € N? provide such rational
points on S', since (z/2)® + (y/2)*> = 1. We have a lower bound of 1/z? for
approximations with denominators g < z. See Section 3.3.4 for rational points on
S? with the same denominator property.

The situation might look different when dealing with geo-referenced data (ratio-
nal angle arguments) only. However, using Chebyshev’s polynomials in conjunc-
tion with Liouville’s lower bound (c.f. Theorem 3.2.1) allows to derive explicit
constants for Diophantine approximations of cos (108°).

Given spherical coordinates, the first coordinate of a point on S? might well have
algebraic values of r; = cos(£m) for i € {1,2,3,4}.

1+v5 —1+v5 1-v5 —1-+/5
(7’1,7”2,7’3,7’4) = 4 ) 4 ) 4 3 4

~ (+0.8090, +0.3090, —0.3090, —0.8090)
Over Z[X], the polynomial Uy(z) = 162* — 122% + 1 has the irreducible factors

Us(z) = (42 — 22 + 1) (42* + 22 — 1)
e e
=f(z)

Since r; and r3 are the roots of the polynomial f, they have algebraic degree n = 2.
Using Liouville’s lower bound for r3, we have for all %’ eQ

min{cs, é}

qn

SEHE

q
with constants ¢; and ¢y according to the proof of Liouville’s Theorem [Lio51]. The
constants ¢y, ca > 0 exist, since the polynomial division of f with the linear factor
(z — rs) results in the continuous function g(z) = (z — ry). For ¢y = 1/2 < /5/2,
the interval I := [r3 — cg, 73+ ¢o] C R is sufficiently small to exclude different roots
of f and the inequality

max‘g(m)| = max‘:c—rl’ <
xzel xel

is met with a generous choice of ¢; = 2. This leads to an explicit lower bound on
the approximation error to r3 with denominators ¢ of

1
2.q%

cos (108°) — E‘ >

q
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3.3 Results

Apart from integers, contemporary computing hardware heavily relies on floating
point numbers. These are triplets (s, m,e) with s € {0,1}, m € {0,...,2' —1} and
ec{—2¥14+1,...,21 —1}. The IEEE standard for Float is (I, k) = (23,8) and
(52,11) for Double. The rational number described by such a triplet is

(2[
;mQE e>0
—(_1)s. 2l+m 1
Val<57m76)_( 1) Tﬁ e<0
0+m 1 B
[ 20 92k1-2 e=0

where the latter case describes ‘denormalized’ numbers. In each case, the un-
canceled rational value has some power of 2 as the denominator. Since powers of
two are the sole divisors of a 2¢, the denominator of the canceled rational has to be
a power of 2, too. Hence, rational values representable by floating point numbers
are a subset of the following set P and fixed-point binary numbers are a subset of
P

imgval C {% ieNzeZ, z odd} =P

{%:zEZ}:PigP

3.3.1 Floating Point Numbers are Insufficient

Fix-point and floating-point arithmetics of modern CPUs work within a subset of
rational numbers, in which the denominator is some power of two and the result
of each arithmetic operation is ‘rounded’.

Theorem 3.3.1. There are only 4 floating point numbers on S* and 6 on S?.

Proof. We show S ' N P4 ¢ {—1,0,1}¢ implies d > 4. Suppose there is a non-
trivial p € SN P? with d minimal. Let x;/2% denote the canceled fraction of its
i-th coordinate. We have that all z; # 0, z; are odd numbers and all e; > 0 (since
p is not one of the 2d poles and d is minimal).

W.lo.g e <ey <...<ey We rewrite the sphere equation 1 = 2?21(%/2@1-)2
to

d
x% — 44 _ E 4617(3]'1_2
J

Jj=2
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For an odd integer y, we have y?> = (2k + 1)? = 4(k* + k) + 1, leading to the
congruence

d
150—erl(ej) mod 4 .
j=2

Where the characteristic function y., (¢;) is 1 for e; = e; and 0 otherwise. For d €
{2, 3} the right hand side can only have values of 0, —1 or —2, a contradiction. [

Note that Theorem 3.3.1 translates to spheres with other radii through scaling.
Suppose a sphere in R? of radius 27 has a non-trivial solution y € P3, then y/2/ €
P? and would be on S?, too.

3.3.2 Snapping to Rational Points

We now describe how to compute a good rational approximation exactly on the
unit sphere S*"'. The input point € R? can be given by any finite means that
allows to compute rational approximations of arbitrary target precision — E.g.
rational approximations of Cartesians for spherical coordinates. For the input x, we
denote its closest point on S¢~! with x/||x||>. The stereographic projection 7 and
its inverse mapping o provide o (7 (z/||z[|2)) = x/||x||2, since the argument is on
S9!, Instead of determining the value of 7 exactly, we calculate an approximation
y € Q7 and finally evaluate o(y) under exact, rational arithmetics. Hence, the
result o(y) is exactly on S41.

The stereographic projection does not preserve (0,1)
distances, leaving it open to bound the approx-
imation error and the size of the resulting de-
nominators. We use the rotation symmetry of
the sphere to limit the stretching of o (c.f.
Lemma 3.3.3): For a non-zero point x € R? we can
assume that ¢ = d maximizes |z;| and x4 < 0, oth-
erwise we change the standard orthonormal basis
by swapping dimension ¢ and d and using a neg-
ative sign for dimension d. Note that such rotations do not change the actual
coordinate values. To keep the size of denominators in o(y) small, we use fixed-
point arithmetics to determine y € Q4! (c.f. Lemma 3.3.5).

See Algorithm 7 for a precise description. Note that the rational point y in state-
ment 2 solely needs to meet the target approximation in the individual coordinates
for

7 (2/[]l2)

‘o

7/ ||z)s) = ——

 lwll2 — za
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In: xeRY, c¢ (0, %}
1. Assert x4 = min; —|z;|

2. Choose y € Q4! with |y; — 7 (z/||z]l2) | < VT

3. Return o(y) € Q%

Algorithm 7: PointToSphere

Generally, this can be determined with methods of ‘approximate expression evalu-
ation’ to our target precision [LPY05]. If 2 is an approximation to a geo-referenced
point, this denominator is well conditioned for calculations with multi-precision
floating-point arithmetics [BFS98, FHLT07]. Using exact rational arithmetics for
statement 3, we obtain rational Cartesian coordinates on the unit sphere.

Observation 2. For d > 1 and x € S¢! with 74 = min; —|x;|, we have
Vd—1
Vid+1

Proof. Using x4 = min; —|z;| and Y, z? = 1, we have the bounds 1/d < 27 < 1
and

[m(@)]l2 < <1

ST 1-af :1+xd<1—1/\/3
(1—2zq)* (1—2q)® l1-z4 14+1/Vd

Where the latter term is in (0,1) for any d. O

Ir(@)ll5 =

Hence the (d — 1)-ball B{™' = {z € R? : ||z|]y < 1} contains 7(z).

3.3.3 Approximation Quality

See [BS17a] for an earlier version of this work with a weaker, but elementary,
analysis.

We consider the problem in the 2D hyperplane H,,,/, defined by two points
y=o(x),y = o(x’) on ST and the projection pole p € R%. Given the rotation
step in Algorithm 7, the projection plane Hy = {z € R?: 2, = 0} separates p and
y,y' in R? and in H,,,. Since each ¢ € HyN S? ! has ||¢ — p|la = V2 (consider
Pq in Hyy,), the circumcircle C of p,y and y' contains exactly two of these points.
Hence, the line of H,,,, N Hy is orthogonal to the circumcircle’s diameter through
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p. Moreover, the circles diameter is in [\/§7 2]. We denote with z the point that
is closer to p in H,,,/, meaning ||z||s < ||2'||2. Note that 2’ and = can be on the
same or opposite circumcircle halves.

In this section we denote with B = bz the perpendicular from z on py/, E = za,
L =yy and L, = Ta its triangle scaled version meeting x. Note that B and L,
are above Hy, hence above F.

Lemma 3.3.2. For x,2' € B{™! with |||y < ||2'||2, we have

||p—x||2 / /
T lo(@) —o(@)]l2 < flo — 2|2 .
lp — o ()]l
Proof. We show L, < E by proofing a < [ for the two angles
B = Lbxa'
a:= Laxb .

The inner angle sum of Azab with a supplementary angle argument and triangle
scaling provide £py'y = 90° 4+ «. Let m denote the center of C. Since pm is
orthogonal on Hy and £bx'z = 90° — 3, we have £mpz’ = (. In the isosceles
triangle Apy'm, the central angle v = 180° — 24. Fixing arc py’ on C for the
inscribed angle theorem provides £y'yp = /2.

The inner angle sum of Apyy’ states

0 < Ly'py = 180° — £Ly'yp — Lpy'y
= 180° — Ly'yp — (90° + )
= 180° — v/2 — (90° + )
=—a+f3.
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Lemma 3.3.3. For z,z' € BI™! | we have

Ha(m) —o(z))

<2 ||z — 2o
2

Proof. Using Lemma 3.3.2, we have L, < E and the statement follows via triangle
scaling:

since pr > 1 and py < 2. O

This statement is tight, considering the two points x = 0 and 2’ = (\/dgj, cee ij)

We have ||z — 2/||s = € and ||o(z) — o(2')]], = Zﬁe.

Theorem 3.3.4. Algorithm 7 calculates an e-approximation exactly on the unit
sphere.

Proof. Let x* = x/||x|]2 and o(y) denote the result. Given the rotation, z* holds
for Observation 2. Hence, we can use Lemma 3.3.3 to derive

lo(y) = 2l = llo(y) = o(T(27))[lo
< llo(y) = a(r(@"))ll2
i

< 2[ly = 7(27)]2

as upper bound on the approximation error. O]
This analysis is rather tight, as demonstrated by the red curve and points in

Figure 3.2.

3.3.4 Denominator Sizes

We now describe a relation between rational images of ¢ and the lowest common
multiple of denominators of its rational pre-images. This leads to several strategies
for achieving small denominators in the results of Algorithm 7.

Lemma 3.3.5 (Size of images under o). Let 2 € Q¥ ' N B¢ with 2; = p;/q; and

Q =lem(q, ..., qa—1) be the lowest common multiple, then
N
xr)=—
7 (7) m

with integers n;,m € {—2Q%,...,2Q%} for all 1 < k < d.
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Proof. Let ¢; € {1,...,Q} such that ¢, - ¢; = Q for all 7. Since the formula of o
is similar in all but the last dimension, we describe the following two cases. For
k = d, we have

o (1) = 1+ g QP+

= = - —:
L+ n/e QP+ Xiidt  m

Using the bound = € B¢, we have 0 < Y0 ¢/*p? < @ and we derive for ny,
and m

] = | - @2+ Z(fpf

m= Q"+ ZQQQPZZ <2Q°

For k < d, we have
21/ G

L+ 30 v/
_ @2/

Q*+ 2] 4}
_ Qq, - 2pr, _

@+ g m
Using the bound » € B{™', we have that each |p;| < ¢; and this bounds |n;| =
Qq,, - 2|px| < 2Q?. We already discussed the bound on m in the first case. O

o (z) =

Note that we apply this lemma in practice with fixed-point binary numbers
pi/q; € Ps. Meaning all ¢; = 2° = @ for some significant size s.
Theorem 3.3.6. Denominators in e-approzimations of Algorithm 7 are at most
10(d — 1)
g2 ’
Proof. Using standard multi-precision floating point arithmetics allows to derive

rational values y, with denominators that are @ = [2¥=!]. Using ¢ < 1/8 and
Lemma 3.3.5 bounds the size of the denominators in images o with

2
202 <2 (1+ 20

2
== | +edVd—1+4(d—1)
D e e

52
<(d-1)
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For certain dimensions and in practice (c.f. Section 3.5.1), we can improve
on the simple usage of fixed-point binary numbers. For S!' we can rely on the
continued fraction algorithm to derive rational approximations of a = 7(z/||z||2)
with |a — p/q| < 1/2¢?. Using this in Algorithm 7 leads to approximations with
e = 1/¢? on the circle S' with denominators of at most 2¢>.

Note that for S¢ with d > 2 one can rely on algorithms for simultaneous Dio-
phantine approximations (c.f. Theorem 3.2.2) to keep the lowest common multiple
@ in Lemma 3.3.5 small. Note that it might well be simpler to find Diophantine
approximations with small ).

There have been many approaches to find generalizations of the continued frac-
tion algorithm for d > 1. One of the first approaches is the Jacobi-Perron al-
gorithm, which is rather simple to implement [Tac94] (c.f. Section 3.5.1). More
advanced approaches [PPB17] rely on the LLIL-algorithm for lattice basis reduction
[LLL82]. For d = 2 there is an algorithm to compute all Dirichlet Approximations
[JIKP79], which we find hard to oversee given its extensive presentation. More-
over, their experimental comparison shows that the Jacobi-Perron algorithm is
practically well suited for d = 2.

We close this section with a transfer result of Theorem 3.2.2 with our Theo-
rem 3.3.4 and Lemma 3.3.5.

Corollary 3.3.7. Let v € S“! and N € N. Thereisp € Z ' andq € {1,...,N}
with
(1 )H < 24/d —1
r—a\~-p >
¢ )™ q'VN

and all denominators of o (%p) are at most 2q>.

This existence statement allows for brute-force computations. However, we just
use it for comparisons in Section 3.5.1.

3.4 Implementation

Apart from [CdCLT10] for S?, most implementations of spherical Delaunay trian-
gulations are not ‘stable’. Approaches based on d-dimensional convex hull algo-
rithms produce only a tessellation for input not exactly on S (c.f. Section 3.1).

Few available implementations allow dynamic point or constraint insertion and
deletion — not even in the planar case of R?. The ‘Computational Geometry
Algorithms Library’ (CGAL [Prol5]) is, to our knowledge, the sole implementation
providing dynamic insertions/deletions of points and constraint line segments in
R2.
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With [BS17¢], we provide open-source implementations of Algorithm 7 for S%.
In [BS17h], we provide an implementation for spherical Delaunay triangulations
on S? with e-stable constructions of intersection points of constraint line-segments
(c.f. Section 3.4.2).

3.4.1 RATional Sphere Snapping for S*

Libratss is a C++ library which implements Algorithm 7, based on the open-
source GMP library for exact rational arithmetics [Gt12] and the GNU ‘Multiple
Precision Floating-Point Reliably’(MPFR) library [FHL"07]. The implementation
allows both, input of Cartesian coordinates of arbitrary dimension and spherical
coordinates of S?. Note that this implementation allows geometric algorithms, as
for d-dimensional convex hull, to rely on rational input points that are exactly
on S In light of the discussion on the denominator sizes in Section 3.3.4, we
provide two additional strategies to fixed-point snapping, as analyzed in Theo-
rem 3.3.4. We implemented the Continued Fraction Algorithm to derive rational
e-approximations with small denominators and the Jacobi-Perron algorithm for S2.
The library interface also allows to automatically chose the approximation method
which results in smaller denominators, approximation errors or other objectives,
like byte-size.

3.4.2 Incremental Constrained Delaunay Triangulation on S?

Libdts2 implements an adapter for the dynamic constraint Delaunay triangulation
in the Euclidean plane R? of CGAL. Since this implementation requires an initial
outer face, we introduce a small triangle, that only contains the north-pole, to
allow subsequent insertions of points and constraints. For points ezactly on the
unit sphere, the predicate ‘is A in the circumcircle of B,C' and D’ reduces to
the well studied predicate ‘is A above the plane through B,C and D’. The
implementation overloads all predicate functions accordingly and uses Algorithm 7
for the construction of rational points on the sphere for intersections of Great Circle
segments.

Reductions of Spherical Predicates to Cartesian Orientation Predicates

We first describe a reduction from the spherical predicates to well studied Cartesian
predicates.

Lemma 3.4.1 (Great Circle Orientation Predicate). Let py,ps € S* with py # po
and P the plane containing py, pa and the origin (0,0,0) and C be the Great Circle
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through py and py. For ¢ € S* we have
q left-of P <= q left-of C
geP << qeC
q right-of P <= q right-of C

Proof. S°NP=C and S?=LUCUR. [

Lemma 3.4.2 (Circumsphere Predicate). Let P denote the plane through non-
identical points py,p2,p3 € S? and the half space containing the origin (0,0,0) is
called ‘below P’. We further call Sio3 C R? the closed volume of the sphere with
p1, P2, 3 and the origin on its surface. For a point ¢ € S* we have

q above P <= q € S1a3 \ 05123
q e P — qc 85123
q below P <= q & Sia3

Proof. P is uniquely determined because three different points on the unit sphere
are not co-linear. Since Sjo3 and S? are spheres, their cuts with P are circles in P
and the two circles are identical as they contain p;,ps and p3 on their boundary.
This circle C' has a radius of at most 1 and partitions the points of the unit sphere
into three sets

S*=AUCUB

where A C Sjo3 2 B. If C'is a Great Circle we resolve ambiguity for ‘above’ and
the center of Sie3 by choosing the open half spaces that first contain (0,0, 1), then
(0,1,0) and eventually (1,0,0). We have S? # 05143, since the origin is a fourth
point on Sia3 and ¢ € P iff. ¢ € C iff. ¢ € 0S123. Therefore it is sufficient to show
g € A < qabove P. To this end we consider the convex volume of the unit
sphere S C R? and D = S N Sja3. Note that D contains C' and A. Since the cut
with the closed half-space of the plane P cuts a convex body into at most three
parts and C' C P, we have that all of A is ‘above’ P. n

c-stable geometric constructions

Any means of geometric construction that allows to approximate a certain point,
can be used as input for Algorithm 7 — e.g. the intersection of Great Circle
segments. Consider two intersecting segments of rational points on S2. The two
planes, containing the segments and the origin as a third point, intersect in a
straight line. Each (rational) point on this line can be used as input for our method,
as they identify the two intersection points on the sphere. Using such input for
Algorithm 7 allows simple schemes to derive stable geometric constructions of
rational points on S¢ within a distance of € to the target point.
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Figure 3.2: Approximation quality and denominator size of 100 random points on
S? for various levels of target precision e and approximation strategies
(red, blue) of Algorithm 7. Theoretic bounds are indicated with lines.

3.5 Experiments

We used real world and synthetic data for our experiments. geo-referenced data
was sampled from regional extracts from the OpenStreetMap project [OSM17],
as of January 26th, 2017. Random Cartesian coordinates of points on S? were
created with the uniform generator 2 of [Mar72]. All benchmarks were conducted
on a single core of an Intel Xeon E5-2650v4. Peak memory usage and time were
measured using the time utility.

3.5.1 Approximation Quality and Size

We experimentally analyze the actual approximation error in results of Algorithm 7
for several levels of ¢ using the MPFR library. In this section e denotes the
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significands required in statement 2 of Algorithm 7 for the required result precision
e. This is

o= o ()]

We simply setup the MPFR data types with significand sizes up to 1024 Bits, and
conducted our experiments on much lower levels of e. This allows us to derive
some ‘measure’ of the actual approximation errors of our method.

We analyzed the approximation errors ¢ and denominator bit-sizes ¢ for 100
random points on S?. Figure 3.2 compares the results of our algorithm under
several levels of target precision e and strategies for statement 2 in our method.
The magenta line indicates the quality and size of the approach in [Sch08]. The
red line indicates the bounds of our Theorems 3.3.4 and 3.3.6 on the fixed-point
strategy, while the yellow line indicates the bound of Corollary 3.3.7. Note that
results using the Jacobi-Perron strategy (blue dots) allows our method to further
improve on the fixed-point strategy (red dots). Note that we use Liouville’s lower
bound as statement on the approximability of a worst-case point. There might
well be points of higher algebraic degree that allow better approximations (c.f.
Section 3.2.1).

Table 3.1 exhibits average approximation errors §, denominator bit-sizes ¢ and
the computation time ¢ of our method for millions of points. Synthetic data sets
have several dimensions, while the real world data sets have dimension 3. For
S?, we provide comparison of the fixed-point strategy (fx) with the Jacobi-Perron
strategy (jp) of our method. Using e = 31 is sufficient to obtain results ezactly
on S? with a § of less than lcm, relative to a sphere with radius of the earth.
This is enough for most applications dealing with spatial data and allows storage
within the word size of contemporary computing hardware. This allows practical
applications on S? to store 4 integer long values for the 3 numerators and the
common denominator (c.f. Lemma 3.3.5) occupying 32 Bytes. Note that storing 3
double values occupies 24 Bytes but cannot represent Cartesian coordinates exactly
on the sphere.

3.5.2 Constrained Delaunay Triangulation with Intersection
Constructions

A Constrained Delaunay Triangulation of a point set contains required line-segments
as edges, but is as close to the Delaunay triangulation as possible [Che&7]. We
used very large street networks of several regions from the OpenStreetMap project
for points and constraint edges — E.g. each line-segment of a street is an edge
in the result triangulation. Since ~ 0.5% of the line-segments in these data sets
intersect, we approximated the intersection points using e = 31 for Algorithm 7.
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Germany | Planet | u.a.r S?|u.a.r §*|u.a.r S»

dimension 3 3 3 10 100

size [103] 2,579.6|3,702.4| 1,000.0| 1,000.0 100.0
e=23

3[m] 07 07| 07] 1.0 3.2

& ql[l] 46.0| 46.0| 46.0| 46.0|  46.0

t [us] 17| 16 16| 117 546

3[m] 04] 04 05 - -

ip qll 33.6| 342|341 ; ;

t [us] 63| 57 58 : ;
e=31

d[m] 2.7e-3| 2.6e-3| 2.8e-3| 4.0e-3| 12.6e-3

& qll] 62.0| 62.0] 620 620/ 620

t [us] 17| 16 17| 118 554

d[m)] 1.7e-3| 1.7e-3| 1.8e-3 - -

P qll] 452 458| 458 ; ;

t [us] 7 72 73 - -
e=53

d[m]| 6.3e-10|6.2e-10| 6.6e-10| 9.6e-10| 30.1e-10

fx  ql1] 106.0| 106.0| 106.0| 106.0 106.0

t [us] 16| 16 17| 118 548

d[m]|  3.9e-10[3.9e-10 | 4.3e-10 - -

P qly 2| 18| 77 ] ;

t [us] 18| 111 112 . ;
e=113

d[m]| 5.5e-28|5.4e-28 | 5.7e-28 | 8.3e-28 | 26.1e-28

fx  ql1] 226.0] 226.0] 226.0] 226.0 226.0

t [us] 19 19 19| 126 617

d[m]| 3.4e-28|3.4e-28 | 3.7e-28 - -

ip q[l]|  1645| 165.1] 165.1 ; ;

t [us] 219| 218 220 : ;

Table 3.1: Mean-values of approximation error § [m|, denominator bit-size ¢ [1]
and computation time ¢ [us] for synthetic and real-world point sets for
various dimensions and levels of target precision e. The Jacobi-Perron
strategy is denoted by ‘jp’ and the fixed-point strategy by ‘fx’.
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\Saarland Germany Europe  Planet

Input
Segments [10] \ 0.32 25.75 22292  668.61
Output
Vertices [109] 0.29 24.45 213.01 634.42
Edges [10°] 0.87 73.37 639.04 1,903.27
Faces [109] 0.58 48.91 426.03 1,268.84
Resource usage
Time [h:m]| < 0:01 0:05 0:49 5:08
Memory [GiB | <0.4 27.7 2432 724.1

Table 3.2: Time and memory usage to compute spherical Delaunay triangulations
for OpenStreetMap data sets.

Table 3.2 exhibits total running time, peak memory usage and the result sizes
of our 1ibdts2 implementation. Small data sets like Saarland and Germany al-
low quick calculation on a recent workstation computer. See Figure 3.1 for the
Ecuador dataset. Note that the current implementation has a storage overhead
for each point, as we keep the results of the GMP library rather than truncating
to integers of architectures word size. Computing the triangulation for the planet
data set was only possible on rather powerful hardware with at least 768 gigabytes
of memory taking less than a quarter of a day.

3.6 Research Directions

From a practical point of view, it is of great interest to bound the storage size
of denominators to a maximum of 64Bits — the word size of current computing
architectures. We seek to improve our (already satisfactory) results by using ad-
vanced algorithms for simultaneous approximation, like the LLL-algorithm or the
Dirichlet approximation algorithm for S2.

For the theoretical part, we are interested if finding simultaneous rational ap-
proximations with small lowest common multiple of the denominators is simpler
than finding Dirichlet approximations. We are also interested in generalizing the
method to provide rational approximations with small absolute errors on ellipsoids
with rational semi-principal axes — e.g. the geographic WGS84 ellipsoid.
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