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A New Simulation Framework for 
Soil–Root Interaction, Evaporation, 
Root Growth, and Solute Transport
Timo Koch,* Katharina Heck, Natalie Schröder, Holger Class, 
and Rainer Helmig
We have developed a general model concept and a flexible software framework 
for the description of plant-scale soil–root interaction processes including the 
essential fluid mechanical processes in the vadose zone. The model was devel-
oped in the framework of non-isothermal, multiphase, multicomponent flow 
and transport in porous media. The software is an extension of the open-source 
porous media flow and transport simulator DuMux to embedded mixed-dimen-
sional coupled schemes. Our coupling concept allows us to describe all processes 
in a strongly coupled form and adapt the complexity of the governing equations 
in favor of either accuracy or computational efficiency. We have developed the 
necessary numerical tools to solve the strongly coupled nonlinear partial dif-
ferential equation systems that arise with a locally mass conservative numerical 
scheme even in the context of evolving root architectures. We demonstrate the 
model concept and its features, discussing a virtual hydraulic lift experiment 
including evaporation, root tracer uptake on a locally refined grid, the simultane-
ous simulation of root growth and root water uptake, and an irrigation scenario 
comparing different models for flow in unsaturated soil. We have analyzed the 
impact of evaporation from soil on the soil water distribution around a single 
plant’s root system. Moreover, we have shown that locally refined grids around 
the root system increase computational efficiency while maintaining accuracy. 
Finally, we demonstrate that the assumptions behind the Richards equation may 
be violated under certain conditions.

Abbreviations: DUNE, Distributed Unified Numerics Environment; PDE, partial differential equation.

Natural vegetation as well as cultivated crops play an important role in the global 
water budget, above and below the surface. Therefore understanding transpiration from 
vegetation is essential and has to be considered in land–atmosphere models used in clima-
tology and hydrology. The interactions of water and plants need to be analyzed on a broad 
range of temporal and spatial scales (Fatichi et al., 2016), one of them focusing on the inter-
action of the root system of a single plant with the surrounding soil. Mathematical models 
and simulation of the relevant processes can help with the fundamental understanding of 
plants’ reactions to their environment, how plant roots contribute to soil water distribu-
tion and flow or adapt to drought, or how they are influenced by soil water contamination 
or salinization (Shani and Ben-Gal, 2005). Although in situ monitoring methods of the 
physical processes at the soil–root interface are continuously being improved, measure-
ments remain difficult (Zarebanadkouki et al., 2013).

Mathematical models of coupled soil–root systems have been developed to study 
the transfer processes between the soil and root systems. Such models can also help in 
analyzing and interpreting measurements and the design of future experimental setups. 
Challenges include large differences in spatial and temporal scales and the combination of 
physical, chemical, and biological processes in a single model. Soil–root models range from 
single root segment models (Roose and Schnepf, 2008) for local soil–root interface studies, 
crop models used to predict yields (Malézieux et al., 2009), and models with empirical root 
uptake functions (Somma et al., 1998), to plant-scale models (Javaux et al., 2008) using 
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an explicit description of the three-dimensional root system and 
root system growth. Dunbabin et al. (2013) recently compiled a 
detailed overview of plant-scale models. This kind of model was 
also the focus of this study.

Plant-scale models include an explicit description of one or 
more plant root system architectures embedded in the surround-
ing soil. The root system is usually represented by a network of 
discrete cylindrical segments, while physical quantities, such as 
water pressure, are averaged across the cross-section of the cylinder. 
This simplification of the root system architecture increases the 
computational efficiency in comparison with a three-dimensional 
resolution of roots. As a consequence, the mathematical model is 
reduced to a one-dimensional partial differential equation (PDE) 
system formulated on a network domain. The root network is 
geometrically embedded into the three-dimensional soil system, 
generally using independent, non-matching meshes. The explicit 
geometrical description of the root system inside the soil allows 
modeling of transfer processes at the soil–root interface, as well 
as a natural description of sap and nutrient transport within the 
root system. The mathematical model is a coupled PDE system 
involving one- and three-dimensional PDEs. We subsequently 
refer to such a system as an embedded mixed-dimension system. 
Formulating the coupling conditions for the coupled PDE systems 
on two independently meshed domains with different dimensions 
can be challenging. For the mathematical analysis of similar sys-
tems, see D’Angelo and Quarteroni (2008), Köppl and Wohlmuth 
(2014), and Roose and Schnepf (2008).

Looking at the processes in the unsaturated soil (vadose zone) 
around a plant’s root system, we can identify typical processes of 
flow and transport of water and nutrients. An overview is given 
in Fig. 1. In the root system, important processes are root water 
uptake, xylem flow and transport of minerals, and root growth. In 
the soil, root water uptake is a driver for water movement. However, 
there are competing driving forces like gravity, soil water evapora-
tion into the atmosphere, and water precipitation during rainfall 
events or irrigation.

To formulate mathematical models of those processes, an abstrac-
tion of the system is necessary. To this end, the system is described as 
a porous medium (soil) with embedded hierarchical biological net-
works (roots, themselves porous media), adjacent to a free flow domain 
(atmosphere). Each process in Fig. 1 is either localized in a subsystem or 
describes a process at the interface of subsystems, effectively coupling 
together subsystem models to an integrated system model.

Many algorithms have been developed to model soil–root 
interaction and root architecture. We mention here only a selec-
tion that features three-dimensional embedded models interacting 
with the soil (Pagès et al., 2004; Lynch et al., 1997; Leitner et al., 
2010; Diggle, 1988; Clausnitzer and Hopmans, 1994; Postma et 
al., 2017; Schneider et al., 2010). However, these models are either 
restricted to the Richards or strongly simplified soil flow models, 
or they lack the description of soil flow and transport completely 
and are restricted to specific models for the description of xylem 
flow and water and nutrient uptake (for a review of the capabilities, 
see Dunbabin et al., 2013). The numerical schemes of the avail-
able models are not generally locally mass conservative, which can 
be an issue if quantification of tracers and root water uptake is 
of interest. Only one of the models mentioned by Dunbabin et 
al. (2013) is publicly available under an open-source license. The 
root system architecture model SimRoot (Lynch et al., 1997) has 
been recently extended by a hydrology module and is now avail-
able under an open-source license (Postma et al., 2017). However, 
the models describing water and nutrient movement in the soil 
and evaporation from soil use, as the authors state, “a simplified 
C++ implementation of the SWMS model,” which is restricted 
to an incompressible Richards model description of soil f low 
(see Šimůnek et al., 1995). In contrast, we propose a simulation 
framework with strong emphasis on a consistent and generalized 
formulation of the fluid mechanical processes. Furthermore, a flex-
ible structure allows the framework to be coupled with established 
root system architecture models. Such a complex framework is nec-
essary to analyze process interdependencies in more detail, as well 
as the relevance of a certain process within the overall system set-
ting. The understanding gained from such analysis may motivate 
improved models for water distribution influenced by vegetation 
for models and simulations at the field scale.

In this study, we developed a generalized computational frame-
work for modeling such coupled systems in the vadose zone. The 
coupling between the root and the soil is flexible in the sense that

ʶʶ models for the subsystems root and soil can easily be exchanged, 
i.e., computing the soil flow with the Richards equation or a 
compositional, non-isothermal, two-phase model;

ʶʶ it is a fully implicit, nonlinear framework using a Newton–
Raphson scheme with numerical differentiation, i.e., nonlinear 
constitutive equations, complex boundary conditions and 
boundary models, and fluid and material relations can be easily 
modified, added, or exchanged;

Fig. 1. Typical processes in the vadose zone: (a) 
flow and transport in unsaturated soil, (b) xylem 
flow and transport, (c) root water uptake, (d) 
transpiration, (e) root growth, (f ) soil evapora-
tion and water precipitation.
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ʶʶ numerical details and implementation of the coupling condi-
tions are designed independently of the subsystem models, i.e., 
it is possible to modify the numerical coupling scheme when 
improved or more efficient versions are available, without 
changing the models.

The models use locally mass-conservative finite volume 
schemes in space and implicit Euler in time and are general in that

ʶʶ equations are only restricted to have a general structure of a 
conservation equation, ¶x/¶t + Ñ×f(x) = q(x), with a storage, 
flux f, and source term q, respectively, for the conserved quan-
tity x and t as time;

ʶʶ constitutive relations in the fluid and material framework are 
modular and set as properties of the problem;

ʶʶ grids can be unstructured and locally refined.

The code is available under an open-source license (GNU 
General Public License). The framework is implemented as an 
extension to the open-source simulator DuMux (Flemisch et al., 
2011) specializing in flow and transport processes in porous media. 
To our knowledge, there currently exists no framework with these 
characteristics for plant-scale soil–root interaction modeling in 
the vadose zone.

Here we present a consistent approach for modeling evapora-
tion from the soil using boundary layer models for the atmosphere 
and non-isothermal, miscible, two-phase, two-component subsur-
face flow. The results suggest that evaporation has a significant 
effect on soil water management, particularly for young plants. We 
present a coupling scheme modeling root growth and water uptake 
simultaneously, with improved numerical properties compared 
with existing growth algorithms concerning mass conservation. 
We show numerically that we can improve the computational effi-
ciency while preserving accuracy by using soil grids that are locally 
refined around the embedded root system.

First, we introduce the general concepts for modeling non-
isothermal multiphase multicomponent processes in porous 
media. Second, we refine those concepts for each of the identified 
fluid mechanical processes. All processes are coupled, resulting 
in a system of partial differential equations (PDEs) for the multi-
physics, mixed-dimension soil–root interaction model. We briefly 
present the techniques used to solve the model equation systems 
numerically. We describe the details of the implementation of a 
generalized numerical framework for such models in DuMux. We 
show four applications realized with the developed model concept, 
a soil–root model including soil evaporation, a tracer study for root 
water uptake, a root growth model with simultaneous root water 
uptake, and an irrigation example. Finally, the presented novelties 
of the simulation framework are discussed.

Table 1 introduces the symbols used in this paper. Table 2 lists 
the governing conservation equations necessary to describe the 
flow and transport processes in the soil and the root system. The 
constitutive relations used to describe interdependencies between 
variables can be found in Table 3.

Table 1. List of symbols and abbreviations.

Symbol Description

a a Î {w, n, s}, wetting fluid, non-wetting fluid, solid 
phase (subscript)

cs heat capacity of the solid phase, J K−1

|
eff ,Dk p

a
effective diffusion coefficient of the components k 

and p in phase a , m2 s−1

|Dk p
a

binary diffusion coefficient of the components k 
and p in phase a , m2 s−1

g gravitational acceleration, m s−2

ha enthalpy of the fluid phase a , J

k k Î {H2O, D2O, air, …}, water, heavy water, air, etc., 
components (superscript)

K intrinsic permeability, m2

Kax axial root conductance, m4 s−1 Pa−1

Krad radial root conductance, m s−1 Pa−1

kra relative permeability of the fluid phase a

leff
effective thermal conductivity, W m−1 K−1

la thermal conductivity of phase a , W m−1 K−1

La mobility of phase a , Pa−1 s−1

Ma , M k average molar mass of phase a , molar mass 
of component k , kg mol−1

f, fr, fs
porosity of an (unspecified) porous medium, root 

porosity, soil porosity

pa pressure of the fluid phase a , Pa

pc pc = pn − pw, capillary pressure in a 
two-phase system, Pa

pa
k partial pressure of the component k 

in the fluid phase a , Pa

psat
k saturation vapor pressure of the component k , Pa

pw,root, pw,soil pressure of the wetting phase (i.e., aqueous phase) 
in root and soil, Pa

q volume source term, reaction term, kg s−1 m−3

q̂ line source term, kg s−1 m−1

R root segment radius, m

R universal gas constant, J mol−1 K−1

Sa , Sae, Sar
saturation, effective saturation, residual saturation 

of the fluid phase a

t tortuosity of the porous medium

T temperature, K

ua internal energy of the fluid phase a , J

xa
k , Xa

k mole, mass fraction of the component k in the phase a

ma dynamic viscosity of the fluid phase a , Pa s

ra density of the fluid phase a , kg m−3

rm,a molar density of the fluid phase a , mol m−3

z local axial coordinate of the root, m

z height, z = 0 at the soil surface, upward-pointing axis, m
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66Non-isothermal Multiphase Multi-
component Processes in Porous Media

We consider the entire vadose zone including root systems 
to be a non-isothermal, multiphase, multicomponent system. In 
most natural systems, roots will grow in the unsaturated zone. The 
unsaturated soil, excluding roots, can be described as a two-(fluid)-
phase, multicomponent, non-isothermal porous media system, with 
water and air as the two partly miscible fluid phases. In this study, 
we neglect mechanical deformation of the solid soil matrix. The 
governing equations of such a system are given by the conservation 
equations for mass, momentum, and energy (see Eq. [1], [2], and [7] 
in Table 2). Choosing the primary variables wetting-phase pressure 
pw and non-wetting-phase saturation Sn, the subsequent assump-
tions and constitutive relations are necessary to close the system.

We assume local thermodynamic equilibrium (e.g., Class 
et al., 2002). This means that the temperature is the same in 
all phases, the capillary pressure will be a function of only the 
saturation, and the chemical activity of all components is locally 
equal in all phases. We compute the phase composition by means 
of Raoult’s and Henry’s law, Eq. [11] and [12]. To this end, we 
postulate the restriction that the mole fractions of all compo-
nents in a phase add up to 1 (see Eq. [13]). Because there is no 
void space, the saturations have to add up to 1 (see Eq. [14]). Heat 
conduction is described with an effective thermal conductivity 
leff, Eq. [17], depending on the local volume fractions and the 
thermal conductivities of all f luid phases and the solid phase. All 
phases can store energy. The diffusive component f luxes within 
a phase are described by Fick’s law, with effective diffusion 

Table 3. Constitutive relations and constraints for the partial differential equation systems in Table 2.

Constitutive relation or constraint Eq. Notes

Sw = [1 + (apc)
n]m where pc = pn − pw, m = 1 − 1/n [8] van Genuchten (1980); parameters a, m, and n depend on the soil type; used in miscible two-phase, 

two-component flow, Eq. [1] and [2], and the Richards flow, Eq. [3]

( )
2

1/
rw we we1 1

mmk S Sé ù
= - -ê úê úë û

( ) ( )21/3 1/
rn we we1 1

mmk S S= - -
 

where
 

w wr
we

wr1
S S

S
S
-

=
-

[9] Luckner et al. (1989), van Genuchten (1980), Mualem (1976); used in miscible two-phase, two-
component flow, Eq. [1] and [2], and the Richards flow, Eq. [3]

n
n

n

p
x

p

k
k = [10] mole fraction in gas phase after Dalton’s law (ideal gas mixture); used in miscible two-phase, two-

component flow, Eq. [1] and [2]

( )
2

n
w sat satH O

sat

,
p

x p p T
p

k
k k k= =

for k as the main component of a

 [11] mole fraction of the main component in the water phase calculated with the saturated vapor 
pressure (Raoult’s law); used in miscible two-phase, two-component flow, Eq. [1] and [2]

( )n
w w w

w

,
p

x H H T
H

k
k k k

k= =

for k as solutes with small mole fractions 

[12]
mole fraction of components in the water phase after Henry’s law (thermodynamic equilibrium) for 

solutes with small mole fraction in liquid; used in miscible two-phase, two-component flow, Eq. 
[1] and [2]

1x Xk k
a a

k k

= =å å
 

[13] used in multicomponent models, Eq. [1], [2], [4], and [6]

n w 1S S+ =  [14] used in miscible two-phase, two-component flow, Eq. [1] and [2], and the Richards flow, Eq. [3]

m, x Mi ii

a
a k

r
r =

å  

[15] molar density in mol m−3; used in multicomponent models, Eq. [1], [2], [4], and [6]

/
eff ,D S Dk k p

a a a=f t
 

[16] effective diffusion coefficient in m2 s−1; p is the main component of phase a; used in 
multicomponent models, Eq. [1], [2], [4], and [6]

( )eff dry w wet drySl =l + l -l

1
wet s w

-f fl =l l
1

dry s n
-f fl =l l

 

[17] effective thermal conductivity coefficient in W m−1 K−1 (Somerton et al., 1974); used in non-
isothermal models, Eq. [7]



VZJ | Advancing Critical Zone Science� p. 6 of 21

coefficients depending on porosity, saturation, and tortuosity of 
the porous structure (see Eq. [16]). Moreover, constitutive models 
relating capillary pressure pc = pn − pw and relative permeability 
kra to water saturation Sw are necessary (see Eq. [8] and [9]). In 
this work, a van Genuchten type model (van Genuchten, 1980) 
is used. Note that the modular DuMux material framework also 
offers other pre-implemented choices like Brooks–Corey type 
models (Brooks and Corey, 1964).

Fluid properties, such as dynamic viscosity, density, and 
binary diffusion coefficients are functions of pressure and tem-
perature. The pressure dependence of the water density may be 
non-negligible under conditions of very high negative pressures 
(Davitt et al., 2010), depending on the application. However, under 
such conditions it is generally questionable whether the presented 
theory holds. Gray and Hassanizadeh (1991) discussed the theory’s 
paradoxes—in particular, the questionable assumption that at zero 
flow velocity, the water phase will exhibit a hydrostatic pressure 
distribution—and the very high negative water pressures often 
accepted at low water saturations. Nevertheless, it is still the most 
commonly applied theory for flow in the unsaturated zone. For 
more information on modeling multiphase flow in porous media, 
see Helmig (1997).

66Modeling Processes 
in the Vadose Zone

The following sections describe in detail which model 
assumptions are sensible to formulate consistent mathematical 
models and coupling conditions for the various processes occur-
ring in the vadose zone, focusing on the processes depicted in Fig. 1.

Flow and Transport in Unsaturated Soil
As described above, the unsaturated soil can be described as a 

two-(fluid)-phase, multicomponent, non-isothermal porous media 
system (see Eq. [1] and [2]). Below, we discuss possible simplifica-
tions of the model and their limitations.

Often, we can exploit the fact that the viscosity of air 
mn is much smaller than the viscosity of water. Therefore, air 
can be assumed infinitely mobile, with the mobility of air 
Ln = krn/mn ® ¥ in comparison to the mobility of water Lw. In 
that case, the conservation equations need to be computed only 
for the water phase. Note that as a consequence, the pressure of air 
inside the soil pores is constant and equivalent to the atmospheric 
pressure. The resulting water mass balance, Eq. [3], still contains 
the influence of air in the storage term and the constitutive rela-
tionship for the relative permeability krw (see Eq. [9]). Assuming 
incompressibility of water (rw = constant) and constant water vis-
cosity mw, this model is known as the Richards equation (Richards, 
1931). We will, however, more generally assume that density and 
viscosity are functions of pressure and temperature. Note that in 
soil science, the Richards equation is usually formulated using the 
water content q, which can be easily transformed into the water 
saturation Sw by multiplication with the soil porosity fs, q := fsSw.

The Richards equation is the most commonly applied model 
in the unsaturated zone. However, the model’s applicability is 
limited if one of the assumptions is violated or the application has 
a focus on air f low, e.g., volatile components transported in air 
(Szymkiewicz, 2013). For example, when soil dries by evaporation, 
water vapor transport in the pore space is particularly important 
as soon as a dry zone is established inside the porous medium. 
Szymkiewicz (2013) listed several cases where the Richards equa-
tion inaccurately describes the problem, even when the focus is on 
water flow. The mobility ratio Ln/Lw can become small for small 
air saturation as the relative permeability krn decreases, while krw 
is high. This violates the Richards assumption of infinite mobility 
and introduces significant errors (Forsyth, 1988). Szymkiewicz 
(2013) mentions that the Richards equation produces insufficient 
results if obstacles (e.g., highly water saturated layer) hinder the 
air contact with the atmosphere. All three cases readily occur in 
applications with plants in the vadose zone. We consider a detailed 
analysis on the limitations of the Richards equation beyond the 
scope of this work. However, we provide the necessary tools and 
modeling to tackle unsaturated flow problems according to the 
individual requirement of the application and provide an example 
to support this claim below.

We can describe the transport of components other than 
the main components (water and air) in the soil by additional 
advection–diffusion–reaction equations (see, e.g., Eq. [4]). For 
the simplified, Richards-type model, it is then assumed that the 
component exists only in the water phase. Note that the dissolved 
component might influence fluid properties like water density 
and viscosity in addition to pressure and temperature. For more 
complex applications, DuMux contains specialized soil f low 
models than can replace the two-phase flow model, such as soil 
flow models including biomineralization (Hommel et al., 2015), 
salt precipitation (Jambhekar et al., 2016), or miscible three-phase 
flow for soil remediation applications in the vadose zone (Class 
and Helmig, 2002).

Regarding the discretization of the soil domain, to our knowl-
edge, all currently available computational soil–root models use 
structured Cartesian grids. We have no such technical restriction 
and can describe irregularly shaped geometries like plant pots 
(see example below) and layered and fractured soil domains with 
unstructured or locally refined grids (see example below).

Root Xylem Flow and Transport
Inside the plant roots, water flows through the root xylem, 

a bundle of tubes composed of cell walls. The driving force for 
xylem flow is the pressure gradient caused by the transpiration in 
the stomata of the leaves (cohesion–tension theory [Tyree, 1997]).

The single-phase f low in each tube can be described by 
Poiseuille’s law. Averaging leads to a Darcy’s law analogy for the 
model equations, where the axial conductivity Kax and the pres-
sure gradient in the xylem is used to describe the one-dimensional 
f low (Doussan et al., 1998). The mass balance equation for sap 
flow in the xylem, Eq. [5], is also referred to as the single-phase 
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flow equation in a rigid porous medium or bundle-of-tubes model. 
The axial root conductivity is a parameter gained from measure-
ments and changes with root age (Steudle and Peterson, 1998), 
root radius (Vercambre et al., 2002), or environmental conditions 
(Lovisolo and Schubert, 1998).

The transport of, for example, minerals in the xylem sap can be 
modeled by one or more additional advection–diffusion–reactions 
(see Eq. [6]). A one-dimensional advection–diffusion–reaction 
equation can be derived by integrating the three-dimensional 
equations over a cross-section of a segment.

To the end of modeling a hierarchical network of root seg-
ments, the segment equations have to be coupled at branching 
points by appropriate coupling conditions. We enforce continuity 
of pressure and mole fractions at the junctions. For the advective 
term, we use a first-order upwind scheme generalized for bifurca-
tion as described by Sandve et al. (2012).

Root Water Uptake
At the soil–root interface, water and solutes are exchanged 

between the root system and the embedding soil. Water flow from 
soil into the root is mainly driven by pressure differences between 
the soil close to the root and the pressure inside the roots (Steudle 
and Peterson, 1998) and can be described by

( )uptake rw rad s r w2q̂ Rk K p p= p - r  	 [18]

where Krad is the radial conductivity, an effective parameter includ-
ing effects of all possible transport paths through outer root layers 
to the xylem tubes, and sp  and pr are the water pressures in the sur-
rounding soil and the xylem, respectively. As addition to Steudle 
and Peterson (1998), we introduce krw, the previously described 
dimensionless relative permeability, to account for the reduction 
in water mobility in the drying soil around the root. When the 
residual saturation Swr of the soil around the root is reached, the 
relative permeability tends to zero, with the effect that the root 
segment at this location cannot take up water anymore. However, 
note that this affects only the locality of the water uptake in our 
model. The full physiological response to drought and the result-
ing reduction in the transpiration rate, hydraulic conductivities in 
stem and leaves, and wilting (Bartlett et al., 2016) are beyond the 
scope of this work.

Integrating uptakeq̂  over the length of a root segment with 
length l yields the net uptake flux Quptake = ò 0 ˆl q dz. In a coupled 
soil–root model, sp  = sp (z) is the average soil pressure on the 
surface, computed as the mean pressure on a circle with radius R 
(the root segment radius) at each integration point (cf. D’Angelo 
and Quarteroni, 2008):

2
s s0

1
d

2
p p R

R
p

= q
p ò  	 [19]

Note that simply evaluating the soil pressure at the root seg-
ment centerline is mathematically not defined because the soil 
pressure solution is singular at that point. Moreover, it is physi-
cally sensible that the water uptake depends on the pressure at 

the soil–root interface. The averaging operator, Eq. [19], occurs 
naturally when deriving the reduced network model (D’Angelo 
and Quarteroni, 2008).

If component transport is considered, e.g., to describe the 
root uptake of nutrients, salts, pesticides, or fertilizers, the uptake 
mechanisms are specific to the considered solute molecule. Here, 
concentration gradients, solubility, and plant type inf luence 
the transfer. Varying demand for nutrients by the plant alters 
active uptake rates. Solute uptake maybe described by Michaelis–
Menten-type descriptions for active uptake or passive models like 
an advection–diffusion model for solutes transported with the 
water.

If non-isothermal processes are important, for example, 
when considering evaporation, an additional energy conservation 
equation (see Eq. [7]) needs to be solved in the root and the soil 
domains. This leads to additional but analogous coupling terms 
describing conduction and convection at the soil–root interface.

The uptake model enters the equations of both systems, 
xylem flow and soil f low, as a source–sink term. The source of 
one subsystem depends on the difference between the water 
pressures in both subsystems. Let W denote the soil domain, L the 
root domain, and G = W Ç L their interface. For the soil system, 
inserting the source term in Eq. [16] yields

( )
( )

( )

s w w rw
w w w

w

rad rw s r2  in 

S k
p g z

t
RK k p p G

é ù¶ f r ê ú-Ñ× r Ñ +r Ñ =ê ú¶ më û
- p - d W

K
 [20]

while the root system equation becomes

( )

( )

r w2 w
w ax w

rad rw s r2  in 

p zR K g
t

RK k p p

é ùæ ö¶ f r ¶ ¶ ÷çê ú÷p -Ñ× r +r =ç ÷ê úç ÷ç¶ ¶z ¶zè øë û
p - L

 [21]

The delta distribution dG in Eq. [20] restricts the source term 
q to the soil–root interface:

ˆ d dˆq x qGW G
d = zò ò  	 [22]

hence it has units of m−2 and the property òWdGdx = 1.
During the daytime, the pressure difference between the soil 

and the root system, sp  − pr, is usually positive, resulting in a posi-
tive source at the root subsystem and a negative source (sink) at 
the soil subsystem. In this case, water is transferred from the soil 
into the root. During nighttime or during water scarcity the flux 
can also be locally negative. The root gives back water to the soil 
in what is known as hydraulic redistribution (often also hydraulic 
lift but redistribution can be observed in any direction) (Richards 
and Caldwell, 1987; Smart et al., 2005). Hydraulic redistribution 
is a phenomenon seen in many different plant species and regions. 
More information on the topic can be found in Caldwell et al. 
(1998), Caldwell and Richards (1989), Neumann and Cardon 
(2012), and Manoli et al. (2017).
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Transpiration
Transpiration occurs due to the difference in vapor pressure 

in the stomata of the leaves and the atmosphere and is the driving 
force in root water uptake and sap flow (cohesion–tension theory). 
Rates depend on wind speed and the temperature of the atmo-
sphere as well as net radiation receipt by the leaves, which triggers 
stomata opening to take up CO2 (Bierhuizen and Slatyer, 1965; 
Jarvis and McNaughton, 1986) and increases water losses due to 
evaporation. During nighttime, the stomata usually close, which 
leads to a decline in transpiration, although nighttime transpira-
tion has been observed in several species and can be up to 10% of 
daytime transpiration (Snyder et al., 2003).

Transpiration rates are typically imposed as Neumann bound-
ary conditions at the root collar (Javaux et al., 2008). It is possible 
to simulate diurnal variations of the transpiration rate as a time-
dependent Neumann boundary condition. In experimental setups, 
transpiration rates can often be measured. As noted by Javaux et 
al. (2008), such imposed flux conditions can lead to water stress, 
when the plant is not able to extract enough water from the soil to 
meet the transpirational demand. Following Javaux et al. (2008), 
we switch to a Dirichlet condition enforcing the permanent wilt-
ing point pressure (pw = −1.5 MPa) after this pressure is reached 
at the root collar. This boundary condition assumes that the root 
collar pressure is kept constant by the stomatal response of the 
plant to water stress. The transpiration rate subsequently decreases. 
We switch back to prescribing a transpiration rate if the transpira-
tion rate predicted with the Dirichlet boundary condition would 
exceed the transpiration rate predicted by the usual diurnal cycle 
(see below).

For growing root systems, we follow Clausnitzer and 
Hopmans (1994) and estimate the transpiration rate as a function 
of the root volume, Vroot, with the following ratios:

L T L

root root L T
root r:s :s :

root shoot shoot L
, , ,A r A

m m A r
V m m A

r = j = j = j =  [23]

where rroot is the root (mass) density; jr:s is the ratio between 
the root biomass, mroot (below the surface) and the shoot biomass, 
mshoot (above the surface); 

L :sAj  is the ratio between leaf area, 
AL, and the shoot biomass; and 

T Lr A  is the ratio between the 
transpiration rate, rT, and the leaf area. These ratios are generally 
varying with time and environmental factors. However, for the 
sake of simplicity, we here assume constant ratios (see below).

Root Growth
For applications like evaluating agricultural irrigation plans 

or soil stabilization by plant roots, it is important to focus closely 
on water management in the soil during plant growth, i.e., when 
the plant’s root system grows. Root growth depends on soil prop-
erties (Hewitt, 2004; Jakobsen and Dexter, 1987; Dunbabin et 
al., 2011) and root water uptake on the root architecture (Tron 
et al., 2015; Lynch, 1995). Models of root growth, with explicit 
description of the root system architecture, coupled with root 
water uptake and subsurface nutrient transport processes are 

important to analyze the interaction of the evolving root system 
with the embedding soil.

The root growth model is based on a recent C++ implemen-
tation of the RootBox algorithm (Leitner et al., 2010; Leitner 
and Schnepf, 2016; Schnepf et al., 2018), an algorithm based on 
a recursively applied branch growth procedure (see L-systems, 
e.g., Prusinkiewicz, 2004). The root extends at a certain growth 
rate. The direction has a random component emulating a finite 
number of possibilities for growth paths in the porous soil. It is 
further determined by a tropism, an active direction decision by 
the plant. Tropisms usually result from external stimuli like gravity 
(gravitropism), soil water content (hydrotropism), or the plant’s 
tendency to continue growing in an already established direction 
(exotropism). When reaching a certain length, root branches create 
daughter branches, and the same growth procedure is applied to 
those branches. The algorithm results in a hierarchical tree struc-
ture and can mimic the growth of different plant species. To this 
end, all parameters assigned to branches are stochastically distrib-
uted parameters following experimental observations.

While not all features of RootBox are available in the cur-
rent implementation, we improved several aspects concerning the 
numerical properties of the soil–root coupling. The aspect of local 
mass conservation is usually overlooked in the current root growth 
literature. In addition to locally mass conservative discretization 
methods for the governing equations, growing root systems intro-
duce mass into the system. On the one hand, this is the biomass 
of a new root segment that reduces the soil pore space, effectively 
reducing the soil porosity, fs in Eq. [3]. Due to the discrete descrip-
tion of the root network, the volume fraction taken up by the root 
segments contained in a discrete soil cell can be easily computed 
by dividing the root volume in that cell by the cell volume. On 
the other hand, new pore space gets created in the form of the 
root xylem that needs to be filled with water. This is accounted 
for in the xylem flow balance’s storage term. Looking at Reynold’s 
transport theorem for the change of water mass in the root, mw,root,

( )w,root
r w w r( ) ( )

d
d d

d V t V t

m
V A

t t ¶

¶
= f r + r ×

¶ ò ò v n
 
 	 [24]

for a growing control volume V(t), e.g., at the root tip, where vr 
denotes the fluid velocity relative to the moving control volume 
boundary ¶V(t), we see that the storage integral is not constant 
with time. Assuming that a newly growing root segment is 
instantaneously filled with water during growth, we can replace 
the relative velocity on the root segment boundary with the fluid 
velocity vr » v. Using an implicit Euler time discretization to 
approximate the time derivative yields

( )

( ) ( )r r1
r

1
d k k

V t k k

V V
V

t t t
a a+

a
+

f r - f r¶
f r »

¶ -ò  	 [25]

i.e., the control volume size V has to be evaluated at the next (tk+1) 
and current (tk) time discretization point, effectively increasing the 
storage term by a contribution from the volume change.
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Another improvement concerns continuous growth and tiny 
elements occurring during growth that can cause ill-conditioned 
linear systems. For large time steps, the algorithm already con-
trols the proper discretization of the created root segments and 
branches by a maximum segment length. However, because the 
branching point positions are determined by a dice roll at the 
creation of the branch, respecting those positions can lead to tiny 
elements. For small time steps, the RootBox algorithm ignores 
tiny segments, thus leading to discontinuous growth with time, 
i.e., the branch would not grow in one time step and then, for 
example, grow twice as much in the following time step. We 
avoid these small elements by allowing the vertex of the existing 
element at the root tip to move to increase the segment length 
instead of creating a new small segment. This leads to a better 
distribution of element sizes, with small elements occurring only 
at the tip of a growing branch. Moreover, this allows segments to 
continuously grow and thus avoids additional mass balance errors 
that destabilize the numerical scheme. Similar considerations 
have been made in the latest version of CRootBox (Schnepf et 
al., 2018).

Evaporation from Soil
Evaporation is a process driven by the difference in water 

vapor pressure in the soil and the atmosphere and therefore needs 
to be described by a non-isothermal, multiphase, multicompo-
nent model. Using the standard Richards model, it is not possible 
to describe evaporation consistently because vapor transport is 
not accounted for. It is possible to adapt the Richards equation, 
with the additional assumption that the air-phase velocities are 
zero, to account for additional diffusive vapor transport in the air 
phase (Vanderborght et al., 2017). However, we will focus on the 
description of evaporation using a full two-phase, two-component 
model where vapor transport is inherently considered and does not 
require additional model constraints. Consistent approaches to 
model soil evaporation are, to our knowledge, mostly neglected in 
state-of-the-art root architecture models, although soil evaporation 
plays a crucial role in soil–root–atmosphere interactions.

Evaporation can be divided into two distinct stages. In the 
atmosphere-driven Stage I, the liquid water phase is continuously 
connected to the soil surface, where water evaporates at the inter-
face with the atmosphere. Stage II evaporation begins with the 
successive disconnection of the liquid water phase from the sur-
face. The evaporation front sinks into the porous soil medium and 
the evaporation rate is limited by vapor diffusion in the porous 
medium, resulting in much lower evaporation rates than in Stage 
I. This phenomenon has been described in various studies, e.g., 
Scherer (1990) and Lehmann et al. (2008).

There are different approaches to model interactions between 
free flow and porous medium flow. One approach is to use a two-
domain model with a sharp interface separating the domains 
(Vanderborght et al., 2017; Mosthaf et al., 2011; Fetzer et al., 2016). 
The two domains are coupled at the interface. Coupling conditions 
need to be formulated for the balance of mass, momentum, and 

energy. A simplified version is described here, where no free flow 
equation system is explicitly solved.

Turbulent free f low leads to the formation of a viscous 
sublayer, referred to as a boundary layer. Assuming that the 
evaporation rate is mainly influenced by water vapor diffusion 
through that boundary layer (Haghighi et al., 2013), the coupling 
conditions can be simplified by not considering momentum 
transfer between the porous medium and the free flow domain. 
Moreover, heat conduction is assumed to dominate the energy 
transfer, simplifying the energy balance (Fetzer et al., 2016). 
Assuming that the boundary layer mole fraction of water vapor in 
the gas phase, 2H O,BL

nx , the boundary layer thickness, dBL, and the 
boundary layer temperature, TBL, are constant, the evaporation 
model reduces to a Robin-type boundary condition for the soil 
domain. The evaporation rate driven by diffusion is calculated as 
in Mosthaf et al. (2014) and Fetzer et al. (2016). The mass flux of 
the water component at the interface can be computed as

2 2
2 2 2

H O,BL H O,
H O H O H O n n

n n
BL

x x
f D M

G-
= r

d
 	 [26]

with 2H O,
nx G  denoting the mole fraction of the water component in 

the gas phase at the interface (here, the top of the soil), and 2H O
nD  

being the binary diffusion coefficient of water in the gas phase.
When assuming chemical equilibrium, the mole fraction of 

water in the gas phase can be computed using Raoult’s law (Eq. 
[11]). However, it is known that for very dry soil and thus high 
capillary pressure, stronger adhesion of water to the solid matrix 
reduces evaporation and shifts the liquid–vapor equilibrium in 
favor of the liquid phase. This relationship between the capillary 
pressure and the water vapor pressure 2H O

np  can be expressed by 
the Kelvin equation (Edlefsen and Anderson, 1943):
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 	 [27]

where 2H O
satp  is the saturation vapor pressure of water depending 

on the temperature T, 2H OM   is the molar mass of water, and R 
is the universal gas constant.

The heat flux, f h, due to heat conduction driven by the tem-
perature differences of the soil surface and the boundary layer are 
accounted for by Fourier’s law inside the boundary layer:

BL
h

n
BL

T Tf
G-

=l
d

 	 [28]

where ln denotes the thermal conductivity of the non-wetting gas 
phase, and T G is the soil surface temperature. The boundary layer 
model can be extended to include velocity-dependent boundary 
layer thickness or surface roughness. For further information on 
the theory of boundary layers and evaporation processes, see Fetzer 
et al. (2017) and Vanderborght et al. (2017). Several boundary layer 
models as well as sharp interface models solving the Navier–Stokes 
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equations in the free f low have been successfully realized with 
DuMux (Mosthaf et al., 2014; Fetzer et al., 2016) but are out of 
the scope of this work.

66Numerical Model and Discretization
The introduced soil–root models result in coupled systems 

of nonlinear PDEs to be solved in two domains of different 
dimensionality. The soil problem is posed on a three-dimen-
sional domain, the root problem on a one-dimensional network 
domain embedded in the three-dimensional soil domain. Both 
domains are discretized independently in space. The resulting 
meshes are non-matching. We use a finite volume method for 
the space discretization resulting in a locally mass-conservative 
scheme. In time, we discretize using the unconditionally stable 
implicit Euler scheme. Consequently, a system of nonlinear 
equations has to be solved in each time step. We use Newton’s 
method and numerical differentiation.

In the following, we discretize Eq. [3] and [5] as examples. The 
other equations are discretized analogously to numerically solve 
the PDE system. Let W and L denote the soil and root domains, 
respectively. We discretize W and L into a finite number of control 
volumes. The discrete soil domain, Wh, consists of, for example, a 
set of n hexahedrons, EW

i, so that Wh = 1
n i
i EW= , and the discrete 

root domain of a set of m lines, EL
i, so that Lh = 1

m i
i EL- . The 

discretization process is pictured in Fig. 2. Integrating Eq. [16] and 
[18] over a control volume EW

i and EL
i, respectively, and using the 

divergence theorem yields
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Note that the delta distribution restricts the source term inte-
gral to the intersection of EW

i with Lh, EW
iÇLh:
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Figure 2 (right) shows such an intersection marked in red.
Note that to compute the integrals over the exchange source 

term between the root and the soil domain, Eq. [18], we need to 
compute the actual intersection lines of all EW

i with Lh. The inte-
grals over each intersection are approximated by a quadrature rule. 
At each quadrature point, the average soil pressure is evaluated on 
the perimeter of the corresponding cross-section, Eq. [19]. The 
soil–root interface coincides with the dashed lines in Fig. 2 paral-
lel to the root segment centerline (black lines). For the integration, 
the soil pressure is considered constant per soil element, and no 
additional interpolation is applied.

66Software Concept 
and Implementation

In the following section we present a software concept that is 
tailored for the numerical models arising for plant-scale soil–root 
interaction processes.

DuMux and the DUNE Framework
Our models are implemented using the software DuMux— 

an open-source simulator for f low and transport processes in 
porous media (Flemisch et al., 2011; Ackermann et al., 2017). 
DuMux has been successfully applied in numerous technical, 

Fig. 2. Independent discretization of the two subdomains: the two continuous domains (left); both domains are discretized independently in space 
(middle); the resulting meshes are intersected (right), where EW

i Ç Lh denotes the intersection between the soil domain element EW
i and the discrete 

root domain Lh. The degrees of freedom for both subdomains, using a cell-centered finite volume scheme, are located at the centroid of the cells, where 
a cell in the root system is a line segment between two nodes.
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biological, and hydrological applications including porous media 
(see the software’s website at http://www.dumux.org/publica-
tions.php). DuMux is based on the Distributed Unified Numerics 
Environment (DUNE) (Bastian et al., 2008a, 2008b, 2011), an 
open-source scientific numerical software framework for solving 
PDEs. It uses modern C++ programming techniques, including 
templates for efficiency and general interfaces. The DUNE core 
modules provide an iterative solver back end (Blatt and Bastian, 
2007), various grid managers, a linear algebra back end, and par-
allel computing features used by DuMux. While the idea of a 
plant-scale model is not new, the implementation inside a frame-
work like DuMux brings several advantages and new features.

One advantage is that DuMux is free and open-source soft-
ware, which makes the software framework sustainable and assures 
the quality and reproducibility of the simulation results, recently 
improved through the dumux-pub project (Flemisch, 2011). It facil-
itates and encourages each scientific publication to be accompanied 
by the source code necessary to reproduce the simulation results. 
The source code to reproduce the results of this study can be found 
at https://git.iws.uni-stuttgart.de/dumux-pub/Koch2017a or upon 
request from the authors. The software quality is another focus of 
DUNE and DuMux and is ensured through automated testing in 
a continuous integration work flow, recently extended by tools for 
system testing (Kempf and Koch, 2017).

Another advantage of using DuMux is the availability of 
many porous media models including compositional, multiphase, 
and non-isothermal models and a variety of constitutive laws. 
While most plant-scale models simulate soil water dynamics with 
the Richards equation only, DuMux is not restricted to a single 
soil f low model. Various available porous media models can be 
easily used in its place, e.g., a miscible two-phase two-component, 
non-isothermal model (see below), including evaporation pro-
cesses. DUNE has been recently provided with the grid manager 
dune-foamgrid (Sander et al., 2017), specialized for one- and two-
dimensional surface and network grids embedded in a world of 
arbitrary dimension. The grid manager was developed for, among 
others, applications like growing root networks.

While single plant models can usually be run on a desktop 
computer within minutes to hours, scenarios with multiple plants 
or more complex physical processes have to be run on clusters with 
modern parallel architectures. DUNE provides DuMux with the 
necessary parallel features (currently: distributed memory with mes-
sage passing interface [MPI]). While parallel soil simulations are 
currently possible in DuMux, root system simulations are sequential 

only due to dune-foamgrid not being parallel yet (Sander et al., 2017). 
A parallel dune-foamgrid grid manager and a suitable parallel grid 
coupling concept can enable fully parallel simulations in the future.

Implementation of Generalized Embedded 
Mixed-Dimension Models

We developed a modular software concept based on two goals: 
the flexible combination of existing models and constitutive laws 
into mixed-dimensional soil–root models, and a simple user prob-
lem setup.

DuMux introduces the notion of a problem. A problem defines 
a simulation scenario including domain definition and boundary 
and initial conditions. Traditionally, problem classes in DuMux 
also contain methods controlling simulation flow (assembly and 
solving). The notion of a model describes a mathematical model 
consisting of a system of coupled PDEs including constitutive 
equations needed for closure. The term discretization refers to the 
spatial and temporal discretization scheme to solve the model equa-
tion systems numerically. Each problem has an associated model 
and a discretization method that can be easily changed through 
a traits class. This means that changing, for example, from a 
Richards model to a two-phase model requires changing one line 
of C++ code for the model and a few lines for adapting the bound-
ary and initial conditions (two equations instead of one).

Embedded mixed-dimensional problems are meta problems, 
problems that couple two regular problems: a bulk problem and an 
embedded problem. The sub-problems have their own domain, ini-
tial and boundary conditions, model, and discretization method. The 
meta problem controls the simulation flow and delegates single tasks 
to the sub-problems. The coupling, in terms of domain intersection 
and coupling conditions, is delegated to an implementation class that 
we call the coupling manager. The relations are depicted in Fig. 3.

Customized coupling managers can be used to implement 
a large variety of coupling schemes. We provide an implementa-
tion for embedded mixed-dimensional problems as described 
here. Tasks of the coupling manager include the computation of 
grid intersections to compute the coupling integrals and find the 
degrees of freedom of the sub-problem having dependence on the 
degrees of freedom of the other sub-problem. The intersections 
are computed using efficient algorithms based on axis-aligned 
bounding box volume hierarchy data structures (Ericson, 2004). 
Furthermore, the coupling manager transfers data between sub-
problems. For example, to compute a coupling source term, Eq. [18], 
a root problem needs information about the soil water pressure.

Fig. 3. Schematic of the implementation concept. The 
mixed-dimension meta problem combines two inde-
pendent sub-problems to which it delegates tasks. In the 
context of soil–root models, the bulk domain is the soil 
domain and the embedded domain is the root system; 
PDE is partial differential equation, BC is boundary con-
dition, and IC is initial condition. The coupling manager 
computes domain intersections and transfers data between 
the sub-problems on request.
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Because the meta problem controls simulation flow, it can 
choose different solver strategies to achieve the coupling. Recall 
that the PDE system to be solved is nonlinear. Using Newton’s 
method requires solving a linear system in each Newton iteration. 
If the equation systems are weakly coupled, an iterative procedure 
can be chosen to solve the linear system, where the sub-problems 
are solved sequentially until convergence. On the other hand, 
strongly coupled equation systems can be assembled into a single 
system matrix and solved monolithically. To this end, we assemble 
the linear system in the form

be B B

eb E E

é ù é ù é ù
ê ú ê ú ê ú=ê ú ê ú ê úë û ë û ë û

B C u r
C E u r

 	 [30]

where B and E are the Jacobians of the bulk problem and the 
embedded problem, respectively, and C is the coupling Jacobian 
with derivatives of bulk residuals with respect to embedded degrees 
of freedom (Cbe) and vice versa (Ceb), uB and uE denote the solu-
tion vectors of the sub-problems, and rB and rE are the residuals. 
The linear system can be solved using appropriately preconditioned 
iterative linear solvers.

66Numerical Examples
The following examples show some results gained with the 

previously described models and implementations. A hydrostatic 
pressure profile for the water pressure was assumed in all simula-
tions. At the top of the soil, the air pressure was assumed to be 
atmospheric at 0.1 MPa. Therefore, the water pressure can be 
calculated over the constitutive relation for the capillary pressure 
with pc = pn − pw and the van Genuchten pc–Sw relationship, see 
Eq. [8]. Initial temperatures were 20°C and assumed to be constant 
in isothermal calculations. The axial and radial permeability of the 
root were uniformly chosen as Kax = 5 ´ 10−17 m4 s−1 Pa−1 and 
Krad = 2 ´ 10−13 m s−1 Pa−1 (Huang and Nobel, 1994). The root 
architecture was taken from Schröder (2013). The grid is based 
on the reconstruction of magnetic resonance imaging data of a 
2-wk-old white lupin (Lupinus albus L., total root length 1.56 m).

The uptake and redistribution of a tracer is simulated with 
a locally refined grid, which shows the simulation of simultane-
ous root growth and water uptake. We show the influence of soil 
evaporation on soil water management in an experiment-like setup. 
Hydraulic uplift can be observed in the model, especially if the soil 
dries out inhomogeneously due to a low-permeability soil layer. 
Finally, we show a comparison of different soil flow models with 
an irrigation example. All observations shown here, and even more 
comprehensive data, can be reproduced using the code provided in 
the dumux-pub repository (see above).

Tracer Transport in the Unsaturated Zone 
Including Roots

The following example shows a model of tracer transport and 
uptake by a root system. It demonstrates that grids locally refined 

around the embedded root network can significantly improve com-
putational performance while maintaining a good approximation 
of the numerical solution.

We simulate an experiment where heavy water is used as a 
marking tracer to track root water uptake. The soil water dynam-
ics are modeled with the Richards equation and xylem flow with 
the bundle-of-tubes model, while transport is modeled with an 
additional advection–diffusion equation in soil and xylem, Eq. [4] 
and [6]. The heavy water tracer ( 2D O

wx  = 3.0 ´ 10−7) is initially 
concentrated in a small region (yellow cells in Fig. 4 at t = 0) in 
proximity to the root system of a white lupin. As the plant tran-
spires, the tracer gets taken up with the rest of the regular water 
and continues to travel within the root’s xylem. A constant transpi-
ration rate of rT = 2.15 ´ 10−8 kg s−1 = 1.858 g d−1 is enforced at 
the root collar as a Neumann boundary condition. The transport 
involves both diffusion and advection, while isotropic dispersion 
due to local velocity inhomogeneities is included effectively via the 
diffusion coefficient.

The soil grid is locally refined around the root system, leading 
to better approximations of pressure and concentration gradients at 
the soil–root interface. We refine the soil elements that are inter-
sected by root segments. The soil has a homogeneous porosity 
fs = 0.4 and intrinsic permeability K = 2.57 ´ 10−12 m2. The van 
Genuchten parameters a and n are set at 0.0003 and 2.68, respec-
tively. Figure 4 shows the simulation results. It can be seen that the 
cells in the vicinity of the root system are much smaller than the 
cells at a distance from the root system. At the tip of the root, heavy 
water is taken up by the root system and transported into the root 
xylem. In the upper part, the heavy water molecules leave the root 
domain back into the soil due to a reverse concentration gradient. 
Figure 5 shows the accumulated tracer mass that left the domain 
through the root collar after a given time for different soil grids: a 
coarse grid with 1000 soil domain grid cells (cell size, lc = 1.0 cm), 
a uniformly refined grid with 64,000 grid cells (lc = 0.25 cm), and 
a grid locally refined around the root, resulting in 12,186 grid cells 
(lc,max = 1.0 cm, lc,min = 0.25 cm). While the coarse resolution 
introduces a large error in the predicted exited mass, the locally 
refined grid solution is very close to the fine grid solution, with 
relative errors <3%. The simulation with the locally refined grid 
is significantly more efficient, with only a fifth of the number of 
unknowns. The root domain is discretized in all cases with 3476 
segments (lc,max = 0.06 cm, lc,min = 0.02 cm). Refining the root 
domain grid (6952 segments, lc,max = 0.03 cm, lc,min = 0.01 cm) 
did not change the result significantly (<0.1% difference to the 
curves in Fig. 5 measured in relative l2-norm). The maximum 
global mass conservation error with respect to the initial tracer 
mass in the system, 1.087 mg, is <1.0 ´ 10−9 mg in all simulations.

Water Uptake of a Growing Root System
This short example shows two growing root systems in a plant 

pot, using the model described above for root growth. The cou-
pling is locally mass conservative considering the pore space created 
by the growing root in the root domain and the corresponding pore 
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space reduction in the soil. The growth is continuous with time. 
Small segments are avoided by moving vertices. To capture the 
geometry of the pot, we used an unstructured hexahedral grid for 
the soil domain. For simplicity, any kind of competition between 
the two plants, e.g., for space, water, or sunlight, is neglected.

We describe soil water dynamics with the Richards equa-
tion, Eq. [3], and root xylem flow with a bundle-of-tubes model, 
Eq. [5]. The initial pressure profile is hydrostatic, with a fixed water 

saturation of Sw = 0.3 at the soil surface. The plant pot’s walls are 
modeled as no-flow boundaries. We neglect soil evaporation and 
diurnal changes of the boundary conditions for simplicity. The tap 
root initially consists of a single segment of length L = 1 mm without 
daughter branches. The growth is parameterized using stochastic 
parameters fit to a white lupin according to Leitner et al. (2014).

The root system is grown at the beginning of each time step. 
In this example, the growth is not dependent on soil parameters 

Fig. 4. Visualization of root water uptake of a heavy water tracer. The color bar represents the mole fraction of D2O in the xylem sap. All soil cells 
exceeding a mole fraction of 2.0 ´ 10−8 are shaded. The domain is box shaped [−0.05, 0.05] ´ [−0.05, 0.05] ´ [−0.1, 0.0] m.

Fig. 5. Deviation of the tracer mass that left the subsurface domain through the root for a coarse grid (1000 soil domain grid cells, wall-clock time »3 min), 
a uniformly refined grid (64,000 soil cells, wall-clock time »30 min), and a grid locally refined around the root system and the initial heavy water reservoir 
(12,186 soil cells, wall-clock time »6 min). All computations were done on a laptop (Lenovo ThinkPad T450s, 2.3-GHz, Intel Core i5-5300U).
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because we want to focus on the feature of mass conservation. In 
case the Newton method fails to converge in 10 steps, the time step 
size is cut in half. In this case, the root system is first reset to the 
last time step and then regrown for the smaller time step.

At the root collar, we prescribe the transpiration rate rT as a 
Neumann boundary condition. We recompute the transpiration 
rate as a function of the root volume, Vroot, after every growth 
step using

L T L

root root
T :s :

r:s
A r A

V
r

r
= j j

j

with the ratios introduced above. We chose rroot = 750 kg m−3, 
jr:s = 0.5, 

L :sAj  = 20 m2 kg−1, 
T L:r Aj  = 2.78 ´ 10−8 m3 s−1 m−2; 

see Clausnitzer and Hopmans (1994) for comparable values. For 
instance, for a root mass of 10 g, this results in a maximum transpi-
ration rate of 1 g d−1. Figure 6 shows the resulting root architecture 
at t1 = 49 h and t2 = 119 h, together with the soil water saturation. 
It can be seen on the right and the bottom of the plant pot that the 
root system respects the domain boundaries.

Errors in the water mass balance stayed within the range 
of the numerical precision (»1.0 ´ 10−12 g d−1). The mass bal-
ance error, if it is not considered that growing roots have to be 
filled with water, is on average 0.015 g d−1 on the first day and 
rises to 0.075 g d−1 at the end of 1 wk. To better understand the 
magnitude of the error, we computed it as a percentage of the 
transpiration rate, an indicator of the magnitude of the mass 
f low rates of interest. The error is 17 and 2% of the average tran-
spiration rate on the first day and at the end of 1 wk, respectively. 
Recall that the transpiration rate in this example is a function of 
root volume, while the error depends on the newly created root 
tip volume and the growth rate.

Evaporation from Soil and Root Water Uptake
The last example demonstrates the complex interactions that 

can be captured with the model applied to a scenario with plant 
transpiration and evaporation from the soil.

Evaporation dries the soil and is a fundamental process in 
every bare natural soil. To see the influence of evaporation on 
soil water management, we define three scenarios. Two scenarios 
show natural evaporation from a bare soil, where Case A features 
an embedded root system and Case B does not. In the third sce-
nario (Case C), the soil surface is sealed, hence it is showing plant 
transpiration without the effect of evaporation from the soil. All 
scenarios feature soil in an acrylic box under realistic environmen-
tal conditions. The box has a cubic shape with a side length of 
a = 10 cm. During the simulation, there is no irrigation. Key driv-
ing processes are thus the plant’s transpiration and evaporation 
processes drying the soil.

The soil has an initial saturation of Sw = 0.99 and a temper-
ature of T = 275.15 K. It is then placed in a wind tunnel with 
perfectly controlled atmospheric conditions such that the evapo-
rated water is immediately transported away from the plant and 
the soil and the water vapor mass fraction above the soil stays 
constant at Xref = 0.008, corresponding to a relative humidity of 
55% at 20°C. The atmospheric temperature is varied sinusoidally 
between 10°C at night and 20°C during the day to simulate night–
day cycles. The air is flowing over the box that is open on the top 
for the bare soil scenario, with a stable boundary layer of thickness 
dBL = 0.0016 m. The local influence of the plant’s stem and leaves 
on the atmospheric flow and the boundary layer are neglected. The 
acrylic box has a thermal conductivity of lpg = 0.184 W m−1 K−1, 
a homogeneous thickness of dpg = 0.005 m, and exchanges energy 
with the atmosphere and the soil system through heat conduc-
tion. Values for the thermal conductivity lr = 0.5 W m−1 K−1 and 

Fig. 6. Root water uptake of two growing root systems driven by transpiration at the plants’ leaves as a function of the respective root volume, 
rT = rT(Vroot), with a locally mass conservative coupling scheme. Vertical cut through a plant pot with the shape of a truncated cone. The root segments 
are visualized as tubes scaled with the segment radius. The soil color visualizes the water saturation. The domain is 10 cm high, with an upper radius of 
5 cm and a lower radius of 2 cm (12,150 grid cells).
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heat capacity cs,r = 1637 J kg−1 K−1 of the roots were taken from 
Jayalakshmy and Philip (2010).

In the middle of the acrylic box, a thin soil layer with a much 
lower permeability and lower porosity divides the soil domain 
into a lower half and an upper half. The layer blocks water flow 
from the lower to the upper compartment. Thus, water passing 
the layer is forced through the root xylem. Spatial parameters and 
the position of the layer can be seen in Fig. 7. To describe the fluid 
mechanical processes in the soil accurately, we use the miscible 
two-phase, two-component non-isothermal porous medium model, 
Eq. [1], [2], and [7], described above. The root xylem flow by a non-
isothermal bundle-of-tubes model, Eq. [5] and [7].

At the root collar, a sinusoidal transpiration rate with a peak 
of rT = 2.314 ´ 10−7 kg s−1 (20 cm3 d−1, assuming rw = 1.0 g cm3) 
is prescribed, simulating night–day cycles. This accumulates to 
10 cm3 d−1.

Figure 8 shows the evaporation rates and transpiration rates 
simulated during a week for the three test cases. On the top, the 
evaporation rates with (Case A, red line) and without plant (Case 
B, blue line) are plotted. The solid red line shows the total evapo-
transpiration rate, i.e., soil evaporation and plant transpiration. The 
transition to the Stage II evaporation regime, driven by water vapor 
diffusion in the gas phase (Lehmann et al., 2008), is clearly visible 
starting on the first day. Stage II evaporation with the root starts ear-
lier due to the additional drying effect by the transpiring plant. Note, 
however, that the effect of the plant above the surface on the flow in 
the wind tunnel is neglected in the model. Leaves throw shadows 
on the soil, and transpiration at the stomata would cool down the 
atmospheric air, leading to an even more reduced evaporation rate. It 
can be seen that during Stage I evaporation is the dominant effect for 
water transport to the atmosphere, whereas during Stage II transpi-
ration exceeds evaporation during the daytime. First, the roots take 
up water from deeper soil layers where water is still available, while 
evaporation is limited to the top layer of the soil, which is already 
dry. Second, the vapor transport through the dry porous medium is 
slow and diffusion driven, whereas the transport of water through 
the root xylem is driven by advection and is thus faster.

Figure 8 (bottom) shows transpiration rates for the case with 
evaporation (Case A) compared with the scenario with a sealed soil 
surface (Case C). Recall that we switch to a Dirichlet boundary 
condition when the plant is under water stress (pw = −1.5 MPa at 
the root collar), hence the transpiration rate decreases significantly. 
It is obvious that evaporation will lead to water stress occurring 
much earlier. Without soil evaporation, the maximum transpira-
tion rate can be kept up throughout the simulation. For the test 
case including evaporation, the permanent wilting point pressure 
at the root collar is reached after 4 d and transpiration rates start 
to decrease. When potential transpiration rates drop during the 
night, then the maximum transpiration occurs at higher pressures 
again. However, with growing transpiration rates during the day, 
the plant is under stress conditions again, at an even earlier time 
than the day before. Note that the complex physiological reaction 
of the plant to drought cannot be captured by the presented model. 

The simulation provides only an estimate when wilting or other 
reactions to drought can be expected.

Figure 9 shows the three-dimensional water distribution in 
the soil box. Evaporation dries out the soil predominantly at the 
soil surface. At night, an additional effect of the root on the water 
distribution in the soil can be observed. The figure shows the source 
terms of the root and saturation in the soil in the beginning of the 
simulation, after t = 1.5 d, and at t = 4 d at night for the scenario 
with bare soil. During the night, as the transpiration rates are smaller 
and the pressure in the root rises and is higher than in the surround-
ing soil in the upper soil layer, leading to exudation of water into the 
soil, while in the lower soil layer, water enters the root. This hydraulic 
lift through the root system cannot be seen in the scenario without 
evaporation (not depicted in Fig. 9) because the soil dries out more or 
less evenly in all soil layers by root water uptake, whereas evaporation 
only dries out the upper soil layer due to the low permeability layer in 
the middle of the box. The effect of evaporation on local root water 
uptake can also be seen in the result after 1.5 d during the day, where 
root water uptake happens only in the lower soil layers, which are 
still saturated. This supports the proposition that soil evaporation 
has a major influence on the locality of water distribution, root water 
uptake, and hydraulic redistribution in the vadose zone.

Water Irrigation and Different Models 
for Flow in Unsaturated Soil

Finally, we model an irrigation event and demonstrate how the 
model can be used to analyze the limitations of the assumptions 

Fig. 7. A root system embedded in a cubic acrylic box ( [−0.05, 0.05] 
´ [−0.05, 0.05] ´ [−0.1, 0.0] m) filled with soil in contact with the 
free flow in the wind tunnel, the upper and lower parts of the soil are 
separated by a low permeability layer (black); the soil parameters are 
K1 = 2.57 ´ 10−12 m2, K2 = 2.57 ´ 10−15 m2, f1 = 0.3, f2 = 0.01, 
van Genuchten parameters a = 5.8 ´ 10−4 Pa−1, n = 17.8.
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made to derive the Richards equation. In a setting such as given 
above, we look at an acrylic box filled with homogeneous soil and 
containing the same white lupin root system. Without loss of 
generality of our results, we assume isothermal processes. The soil 
water pressure initially follows a hydrostatic pressure distribution 
with water saturation at the top at Sw,top = 0.3. The soil is heavily 
irrigated for 5 min, modeled by fixing the top pressure to pw = 
pn − pc (Sw = 0.98) with pn = 0.1 MPa. Subsequently, an evapora-
tion boundary condition, as described in the previous example, is 
prescribed. The boundary conditions for the irrigation episode are 
chosen to demonstrate the largest difference between the Richards 
soil flow model, Eq. [3], and the two-phase two-component soil 
f low model, Eq. [1] and [2], whereas the evaporation episode is 
expected to be described well by both models.

While the Dirichlet boundary conditions for the irrigation 
episode show the difference between the models well, they may be 
hard to realize in an experiment. Neumann boundary conditions, 
prescribing an influx, model a flow-controlled pump. In a second 
numerical irrigation experiment, we inject 187 g of water during 
5 min at a constant flow rate, resulting in the same injected water 
mass as with Dirichlet boundary conditions, for the two-phase, 
two-component model.

Prescribing Neumann boundary conditions fixes the flow rate, 
independent of the resistance of the air phase. The infiltrating water 
decreases the effective soil permeability for the air phase, hindering 
the air from leaving the soil domain. However, because air has to 
leave the domain at the soil surface to allow more water to infiltrate, 
water accumulates in the upper part of the soil. Once the soil close to 
the soil surface is fully saturated, the air phase is completely trapped. 
Still, the boundary condition enforces the same flow rate, which 
leads to compression of the air phase and consequently to a large 
pressure increase. This is not expected from an irrigation experiment 
with a free surface. Using the two-phase two-component model, a 
third type of boundary condition can be realized. In a third numeri-
cal irrigation experiment, we artificially extend the box domain at 
the soil surface by 5 mm. Although the domain extension is not a 
porous medium, we use the same equations as in the soil domain 
to approximate a free surface. We assign a value of fs = 1.0 to the 

porosity, use a high intrinsic permeability value to minimize the 
flow resistance, and neglect capillary pressure, pc = pn − pw = 0. At 
the top of the domain extension, the air pressure is fixed at pn = 0.1 
MPa, the water saturation at Sw = 0, and the mass fraction of water 
in the air phase at 2H O

nX  = 0.008. On the sides, the domain exten-
sion is closed (no-flow Neumann boundary conditions). We inject 
187 g of water during 5 min at a constant flow rate through a source 
term in the first cell layer of the domain extension (right above the 
soil surface). The domain extension creates a reservoir that allows 
the water to pond on the soil surface.

Figure 10 shows the total water mass for the first numeri-
cal experiment (Dirichlet boundary conditions) in the soil box 
with time. Clearly, under the condition of heavy irrigation, the 
Richards assumptions are violated. Due to high water saturation at 
the soil surface, the air mobility becomes very low, while the water 
mobility is at its maximum. This leads to an overestimation of the 
infiltration velocity when using the Richards equation because the 
effect of the additional resistance caused by the trapped air on the 
water flow is neglected. The overestimation of the air-phase mobil-
ity results in a mass overhead of the total water mass in the soil box 
of approximately 20% after 5 min for the Richards model. In the 
subsequent evaporation period, in which the evaporation rate is 
constant due to a high availability of water, constant atmospheric 
conditions, and the assumption of an isothermal process, both 
models predict the same evaporation rates.

For the second experiment (Neumann boundary conditions), 
the upper part of the soil domain is increasingly saturated. After 
2.5 min, the saturation is so high, and thus the air mobility so 
low, that the remaining air in the soil box starts to compress and 
the pressure starts increasing with the two-phase two-component 
model. After 5 min, the air pressure has risen to pn = 0.2 MPa due 
to the Neumann boundary conditions, which continue to force the 
same constant irrigation flow rate into the domain. The Richards 
model, on the other hand, completely ignores the resistance that 
the water phase poses to the air phase and thus largely overesti-
mates the infiltration velocity.

The unrealistic conditions at the end of the second experi-
ment are addressed in the third experiment modeling a pseudo-free 

Fig. 8. Evaporation and evapotranspiration rates for Cases A and B (top), and transpiration rates for Cases A and C, i.e., with and without the influence 
of evaporation from the soil (bottom).
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surface, where the water is allowed to pond at the soil 
surface. As shown in Fig. 11, the water infiltrates and 
the saturation in the upper part of the soil rises as 
expected until t = 220 s. Then, the first cell of the 
domain extension starts to fill up with water, i.e., the 
water starts ponding. After 5 min, the ponding water 
table reaches 2.5 mm, corresponding to a water pres-
sure increase of 25 Pa at the soil surface.

Although ponding was neglected in the first 
experiment, the third experiment shows that the 
amount of water ponding at the given soil perme-
ability and irrigation rate is rather small and results 
in a very small pressure increase at the soil surface. 
In conclusion, the boundary conditions in the first 
experiment are realistic enough to assess the differ-
ence between the two soil models.

66Discussion and Model 
Limitations

A mass-conservative tracer transport model with 
a locally refined grid improves the approximation of 
gradients of tracer concentration in the vicinity of 
the root. Local refinement is a very simple measure to 
increase accuracy while maintaining computational 
efficiency. Refining the soil elements intersected by 
root segments led to significant improvement of the 
solution with respect to a uniformly refined solution 
with similar results to refinement strategies based on a 
priori and a posteriori error estimates (Schröder et al., 
2009). Using grid refinement has the advantage that 
no additional assumptions about the local pressure 
function, such as cylindrical symmetry for analytical 
solutions (Schneider et al., 2010), have to be imposed. 
Although not presented here, local refinement can be 
done adaptively in each time step when dealing with 
more complex propagation patterns. Mass conserva-
tion is an essential property when analyzing tracer 
substance transport such as for minerals, nutrients, 
or contaminants. For the transport of nutrients, the 
model currently includes only transport in the soil 
domain, uptake, and passive transport in the root 
xylem. However, nutrient transport can be more 
complicated, involving active transport and bidirec-
tional transport in the root phloem. Additionally, the 
model is currently disconnected from the total carbon 
balance of the plant, involving also above-surface pro-
cesses like photosynthesis and stem and leaf growth.

We have presented a root architecture model 
coupled with root water uptake, and we argued that 
growth models need to describe continuously growing 
root systems when coupling with hydro-mechan-
ical processes in the embedding soil to ensure mass Fi
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conservation. We have shown that the root xylem volume created by 
growing roots has to be considered to obtain a locally and globally 
mass conservative scheme; otherwise the global mass balance error 
was reported to be more than 2% of the transpiration rate for the 
presented example. The applied fully implicit coupling scheme has 
the advantage of no time step restriction regarding numerical stabil-
ity. Therefore, the new scheme is capable of modeling the strongly 
coupled processes on relevant time scales with reasonable compu-
tational effort. Note that the growth model, in its current state, 
does not include dependence on soil properties like permeability, 
porosity, and water saturation. However, such model extensions 
are anticipated in the model design so that models available in the 
literature can be incorporated. The effects of competition of plants 
for water, nutrients, or sunlight are not part of the current model. 
Again, growth is also influenced by above-surface processes that are 
out of the scope of the model presented here.

Introducing a boundary layer soil evaporation model as a com-
plex boundary condition for the soil surface allows a consistent 
description of evapotranspiration and the investigation of hydraulic 
redistribution. We show that evaporation and transpiration mutu-
ally influence each other, and both are important processes for water 
transport into the atmosphere. However, evaporation is particularly 
important in the well-saturated Stage I evaporation regime, whereas 
transpiration is dominant in the water vapor diffusion-driven Stage 
II evaporation regime. Soil evaporation rates are higher without 
plants, although looking at accumulated evapotranspiration rates 
in dry or plant-covered soils, plant transpiration plays a major role in 
water transfer to the atmosphere. The model allows analysis of every 
process in detail and singling out of the effect of certain processes. 
Such analysis is indispensable for understanding evapotranspiration 
in natural environments. Nonetheless, the current model concept is 
still limited in describing the feedback of processes above the surface, 

such as shadows cast by the vegetation, and the influence of atmo-
spheric conditions, such as the influence of wind speed on stomatal 
closure (Schymanski and Or, 2016).

Finally, the flexibility of the model and software concept to 
adapt to the required complexity, regarding the considered physi-
cal processes, is demonstrated above. The example suggests that 
for specific cases, a more complex model may help to analyze the 
simpler model’s limitations.

For complex process interdependencies, it is often hard to 
provide analytical estimations on which to base simplifying assump-
tions. For such cases, it is valuable to have a framework in which 
single processes can be eliminated to analyze process interdependen-
cies numerically. If a certain indicator can be identified (the total 
injected mass in the experiment above), it can be monitored while 
changing between different levels of complexity of the model. If a 
simplified model exhibits large errors compared with the reference 
solution of the most comprehensive model, the assumptions on 
which the simplification was based are most likely violated.

The Richards model assumptions are valid in a vast number 
of cases. However, there are specific processes where the Richards 
model needs to be extended (e.g., non-isothermal soil evaporation 
[Vanderborght et al., 2017]) or replaced by a more general two-
phase description, in particular, for cases with high water saturation 
or interest in volatile components. We show one example of an irri-
gated system where these assumptions are not valid anymore and 
a more complex description of the system is necessary. Specifically, 
the air phase is not freely connected to the atmosphere anymore 
but blocked by the infiltrating water. At high water saturations, the 
air mobility approaches zero and violates the assumption of a high 
mobility ratio of the water and gas phases. The experiment above 
shows how we use the presented model framework to assess model 
limitations for a specific application case.

Fig. 10. Comparison of the total water mass under the influence of strong irrigation (modeled by Dirichlet boundary conditions) and evaporation from 
the soil in the soil box using two different soil flow models: the Richards model and the two-phase, two-component model. The soil domain is box 
shaped  [−0.05, 0.05] ´ [−0.05, 0.05] ´ [−0.1, 0.0] m.
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66Summary and Outlook
We presented a simulation framework for plant-scale soil–root 

interaction modeling with a focus on fluid-mechanical processes. 
Four simulation experiments demonstrated its new features. The 
modular, f lexible software design and the generalized model 
concept make it a strong tool for developing complex, nonlinear 
soil–root interaction models. The software is publicly available 
under an open-source license.

Due to its modular structure, the framework allows a quick 
change between different implemented model concepts. Moreover, 
the framework makes it simple to add transport equations or an 
energy equation to the system, which may be strongly coupled to 
the equations governing water flow. Note that exchanging soil flow 
models is not the only benefit of a flexible framework. By using 
numeric differentiation and a Newton method, arbitrarily complex 
nonlinear boundary conditions or source and sink terms may be 
implemented, parameters can nonlinearly depend on the solution, 
and material laws and constitutive relations can be conveniently 
adapted. Last but not least, the coupling conditions at the soil–root 
interface, being a current topic of research, are customizable. Note 
that most flexibility comes at a low or no additional performance 
cost due to the implementation at compile time with C++ templates.

We suggest that locally refined grids for soil–root models 
can increase computational efficiency while maintaining accu-
racy of the solution. The uptake model is presented in a consistent 
framework resulting in a convergent and locally mass-conservative 
numerical scheme, including evolving computational grids. We 
present an analysis of the competing effects of plant transpira-
tion and evaporation from bare soil, under the limitation that the 
above-surface influence of the plant on the atmospheric conditions 
and vice versa was neglected. We showed that complex f luid-
mechanical models, such as the one presented, are important to 
verify model assumptions for specific simulation scenarios.

The model is yet to be coupled to physiological response 
models and models for processes above the surface such as sur-
face runoff, turbulent air flow, and the growth of plant stems and 
leaves. Such models would enable a detailed description of evapo-
transpiration and carbon balances. By combining established root 
architecture models with the presented comprehensive soil flow 
dynamic models, the framework is a valuable tool for analyzing 
root architecture dependence on water distribution and availability. 
The further development of the modeling framework also depends 
on an active community providing interesting features. Its focus 
on fluid mechanics, while being extensible and flexible, makes 
the simulation framework particularly appealing to researchers 
interested in the details of fluid-mechanical process interactions 
in coupled root–soil systems and the details of a numerical descrip-
tion of complex embedded mixed-dimensional processes.
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