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Abstract

Deep learning models are complex neural networks that are able to accomplish a large range of
tasks effectively, including machine translation, speech recognition, and image classification.

However, recent research has shown that transformations of input data can deteriorate the perfor-
mance of these models dramatically. This effect is especially startling with adversarial perturbations
that aim to fool a deep neural network while being barely perceptible. The complexity of these
networks makes it hard to understand where and why they fail.

Previous work has attempted to provide insights into the inner workings of these models in various
different ways. A survey of these existing systems is conducted and concludes that they have failed
to provide an integrated approach for probing how specific changes to the input data are represented
within a trained model.

This thesis introduces Advis, a visualization system for analyzing the impact of input data transfor-
mations on a model’s performance and on its internal representations. For performance analysis,
it displays various metrics of prediction quality and robustness using lists and a radar chart. An
interactive confusion matrix supports pattern detection and input image selection. Insights into
the impact of data distortions on internal representations can be gained by the combination of a
color-coded computation graph and detailed activation visualizations. The system is based on a
highly flexible architecture that enables users to adapt it to the specific requirements of their task.
Three use cases demonstrate the usefulness of the system for probing and comparing the impact of
input transformations on performance metrics and internal representations of various networks.

The insights gained through this system show that interactive visual approaches for understanding
the effect of input perturbations on deep learning models are an area worth further investigation.
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1 Introduction

We have entered an era of enormous amounts of data. In 2013, reports estimated that 2.5 quintillion
bytes of data were created every day and that “90% of the data in the world today has been created
in the last two years” [IBM13]. With Google processing “more than 23 petabytes of data per day”
[Joh14], we have long crossed the threshold into a territory where the sheer amount of data is
unimaginable, let alone making sense of its structure or contents. Dedicated systems that support
these tasks are needed.

1.1 Motivation

The acquisition of raw data has ceased being a problem. Instead, the focus has shifted towards the
challenge of extracting valuable knowledge from these vast data sets, and especially automating
this process of knowledge extraction and subsequent decision making. This challenge has inspired
the development of a multitude of approaches for automatic data analysis. A prominent approach
promotes the idea of supervised learning from examples. Using a set of annotated training samples,
a model is trained to predict the classification of previously unseen data samples [MCM13]. Al-
gorithms for accomplishing this task include Decision Trees [Qui86], Support Vector Machines
[HDO+98], and Artificial Neural Networks [Hay94]. Especially the latter have proven their ability
to achieve a high performance [CN06] and have continuously gained in popularity.

As researchers continually improve the performance of these networks, they tend to grow more
complex, until their size had risen far enough to warrant calling them Deep Learning (DL) models.
Now that not only the size and complexity of data amounts had grown beyond comprehension,
but also the size and complexity of models created to make sense of this data, another challenge
has emerged: We have to understand how these processes and models work and what knowledge
they have internalized to have the tools necessary for “constructive evaluation, correction and
rapid improvement” [KAF+08]. As an added bonus, knowing how a model works will allow us to
communicate about it meaningfully and gain trust in its decisions.

1.2 Research Problem

The goal of providing insights into the inner workings of DL models spurred the development of a
large array of visualization systems, each focussing on a different set of network attributes. They
aim to allow users to understand how a model works, how it makes its decisions, and – maybe most
importantly – when and why it fails.
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1 Introduction

Research has shown that distorted input images can be the cause for some of these failures. They can
seriously deteriorate the performance of deep neural networks [HCD12]. These input manipulations
can consist of operations such as cropping the image, rotating it, occluding parts of it or altering its
lighting.

Recently, an even more intriguing type of input manipulation has received increasing amounts of
interest. So-called adversarial input perturbations attack deep networks, altering input images in a
barely perceptible way while making the model’s predictions practically unusable [SZS+13]. Even
more fascinating, universal adversarial perturbations are able to fool networks across input images
[MFFF17].

Understanding why and how these adversarial perturbations work on different network architectures
is not only crucial for defending against those attacks but can reveal inherent structures and attributes
of networks. In general, learning about how robust different models are to input transformations
and how these transformations affect their internal representations can be useful for gaining insights
on how deep neural networks work, providing a first step for improving them.

At the time of writing, there is no visualization system that offers an integrated and flexible way for
analyzing the impact of input transformations on deep neural networks, and in particular not for
adversarial perturbations. The system developed in this thesis aims to fill this gap.

1.3 Contribution

The contribution of this thesis consists of the following parts:

• A comparative survey of existing visualization systems for understanding, improving, com-
paring, and explaining deep learning models.

• Advis, a highly extensible visualization system for comparing the robustness of deep learn-
ing models to arbitrary input distortions and analyzing their impact on a model’s internal
representations.

• A set of use cases demonstrating the usefulness of the system for realistic analysis tasks.
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2 Foundation

The topic of this thesis is set in the realm of Visual Analytics, applied to the area of Deep Learning
models. This chapter will provide the necessary theoretic groundwork.

2.1 Visualization

In order to solve problems of information overload, the research field of visualization can provide
valuable tools for making large amounts of data accessible to human beings. In a general definition,
Card et al. describe visualization as “the use of computer-supported, interactive, visual representa-
tions of data to amplify cognition” [CMS99], with cognition being the acquisition of knowledge
from data. According to them, a visualization’s purpose is insight, reached through the generation of
visual representations from large data sets by potentially transforming data and extracting features
to enable the viewer to see its essential structure.

Card et al. [CMS99] identify three main goals of visualization, with the first one being discovery.
Allowing an undirected search for structures can generate valuable insights. Visualization tools can
aid this exploratory analysis by extracting information content and making previously non-apparent
coherences visible by the means of visual representation. On top of that, knowledge obtained through
visualization enables better decision making. Finally, data visualized in a meaningful way can
assist in explaining its contents to both experts and laymen and therefore improve communication.
Together with benefits to other cognitive activities, visualizations are an indispensable tool when
confronted with large amounts of data.

Within the area of visualization, two related subfields can be discerned, Scientific Visualization
and Information Visualization. The former encompasses the visual representation of scientific
data, and especially physically-based data. In contrast, the field of Information Visualization is
concerned with abstract data and non-physical information [CMS99]. Commonly, there is no natural
interpolation, no given spatial embedding, and few obvious hierarchies and connections, increasing
the complexity of creating meaningful visual representations even further.

The task at hand is concerned with visualizing internal representations of learned machine learning
models. Therefore, the data to be visualized is abstract and falls into the realm of Information
Visualization, which will be outlined in further detail below.

2.1.1 Information Visualization

With a slight variation of the general definition of visualization, the field of Information Visualization
can be described as “the use of computer-supported, interactive, visual representations of abstract
data to amplify cognition” [CMS99]. Furthermore, Information Visualization systems are especially
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Figure 2.1: Reference model for Information Visualization (Adapted from Card et al. [CMS99]).

well-suited for exploratory tasks, with the user browsing a large information space but having no
specific goal or question in mind [FVSN08]. Actual tasks or questions might arise during the process
of examining the data. This application of Information Visualization as an exploratory aid can be
especially useful when users have a lack of understanding of how a system is structured and prefer
an approach with a comparatively low cognitive load to explore the system [Mar97], as can be the
case with complex machine learning models. For these reasons, Information Visualization can be a
powerful tool for a better understanding of deep learning models.

Card et al. [CMS99] introduce a reference model for Information Visualization as seen in figure 2.1
that describes the necessary steps for creating such a visualization system. This model was applied
in various ways during the creation of Advis and will be explained in more detail hereafter.

In the reference model, raw data flows through a series of transformations until it reaches the human
user of the system. The user can then decide to adjust each of the transformations using controls
that work as an interface between the human and the system.

Data Transformations

Raw data is at the very start of the pipeline. This data is abstract and might be in a peculiar form. It
usually cannot be made sense of without any assistance. Therefore, this data is transformed into a
set of relations. Along with metadata, these relations can then make up so-called data tables. In
these data tables, rows represent variables within the input data and columns represent cases (a set
with values for each of the variables).

When creating these data tables, raw data is usually transformed in some way, creating data tables
with derived values, structure, or both. Common examples of such data transformations are binning
variables into a number of classes or aggregating their values. Variables can be nominal, ordinal or
quantitative, and which transformations to apply to which variables has to be carefully considered.
These transformations can be chained until the desired structure has been reached.

16



2.1 Visualization

Visual Mappings

After data tables have been created, they can then be mapped into visual representations. To do so,
the designer of the visualization system has a large array of visual structures at their disposal, but
depending on the data structure and variable types only some of them might be a good choice. A
visual mapping is said to be expressive if its representation does not omit any data, but also does not
erroneously include more information than what is available in the data. On top of that, a mapping is
called effective if it can be interpreted quickly and correctly and is sufficiently informative. In order
to find such a mapping, attributes of human perception have to be considered. Exemplary features
used to create visual mappings are the spatial position of elements, connection and enclosure, their
color, shape or size. On top of that, these attributes can be varied temporally to encode more
information. Using these features, viable mapping strategies can be found, such as histograms for
frequency data, scatter plots for the value distribution over two variables, parallel coordinates for
multivariate relations [ID91], representations based on glyphs [BKC+13] or stacked displays like
tree maps [Shn92] or cushion maps [VV99] for hierarchical data.

View Transformations

The final step of the pipeline augments these visual structures to increase the amount of information
that can be visualized. The structures are packaged into interactive views, turning static visual
structures into dynamic visualizations and adding context.

Interaction techniques include brushing and linking, where data values marked in one view affect
another view. By controlling the viewpoint by zooming, panning, and clipping, certain areas of
interest can be brought into focus. Filtering and sorting can be used to find interesting data values.
All of these techniques have been applied in the user interface of Advis.

2.1.2 Visual Analytics

Information Visualization can provide important tools to make sense of data. However, when the
rapid extraction of relevant information from a flood of heterogeneous data is necessary, this data
analysis process has to be automated. But creating, evaluating, and improving such a process is a
difficult task. The field of Visual Analytics tries to tackle this problem by combining visualization,
data analysis, and human analysts, therefore harvesting human “flexibility, creativity, and back-
ground knowledge with the enormous storage capacity and the computational power of today’s
computers” [KMS+08]. Visual Analytics “combines automated analysis techniques with interactive
visualizations for an effective understanding, reasoning and decision making on the basis of very
large and complex data sets” [KAF+08].

Visual Analytics can be described as an iterative process as depicted by figure 2.2. At the very start
is the input data, from which a selection is chosen and preprocessed, for example by transforming,
cleaning, and integrating or by selecting subsets as needed. This data can then be either visualized
directly or used to generate hypotheses that form a model. These models can also be visualized.
Conversely, visualizations can be used to generate hypotheses. Given models and visualizations,
the user can conclude insights from either one and add them to their knowledge base. Furthermore,
they can manipulate visualizations directly, for example by selecting or zooming, and generate new

17



2 Foundation

Visualization

Models

KnowledgeData

Feedback Loop

Input

Preprocess
D

ata

Vi
su

al
iz

e
M

od
el

s

G
enerate H

ypotheses
from

 Visualizations

Visualize
Data

Manipulate
Visualization

Generate Hypotheses
from Existing Ones

Conclude Insights
from Visualizations

Conclude Insights
from Models

Generate Hypotheses
from Data

Figure 2.2: Process of Visual Analytics (Adapted from Keim et al. [KAF+08; KMS+08]). User
interactions are underlined.

hypotheses from the set of existing ones by adjusting parameters in the analysis process. Finally,
this process is not run only once but iteratively until the desired amount of insight has been achieved,
using feedback from previous iterations each time.

Building upon the visual information seeking mantra “Overview first, zoom and filter, then details
on demand” [Shn96], Keim et al. [KMS+08] formulate a Visual Analytics mantra: “Analyze first.
Show the important. Zoom, filter and analyze further. Details on demand.”

In its current state, Visual Analytics is split up and dispersed in a number of related areas, with each
of them applying its pieces as needed. Instead of relying on ad-hoc applications, the field could
benefit from infrastructure and standardization that crosses discipline boundaries [KAF+08]. These
areas include visualization as described above, the management of large and possibly heterogeneous
data which was a challenge during the implementation of Advis, research perception, cognition,
and human-computer interaction, as well as data analysis methods like deep learning which will be
outlined in the next section.

2.2 Deep Learning

Standard Neural Networks (NN’s) can be understood as a collection of simple, connected processors
called neurons. Each neuron receives input values and in turn produces a sequence of real-valued
activations by multiplying each input with a weight, summing them up and adding a bias value, and
passing the result of this calculation through a so-called activation function. Common activation
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2.2 Deep Learning

functions include the hyperbolic tangent function, the Sigmoid function or a linear rectification
function. These inputs can be either data from the environment or the outputs of other neurons,
received through weighted connections [Sch15].

A network’s topology might change over time, but at any given point in time it can be described as
a finite set of the aforementioned neurons and a finite set of directed edges between them. Neurons
receiving input from external sources and passing their output into the network are part of the
input layer, and ones receiving input from within the network and whose activation represents the
network’s result are part of the output layer. Neurons in between are said to be part of so-called
hidden layers.

The network’s behavior on a set of input data is determined by its set of weights and biases. In order
to make the NN exhibit a desired behavior, one has to find appropriate weights and biases. The
process of finding these values is called Learning [Sch15].

Simple applications of this idea have first been introduced under the name of Feed-forward Multilayer
Perceptrons [IL66] and usually had few hidden layers. Since then, many variations and improvements
have been developed. An especially promising and rapidly evolving area of research increased the
length of the causal chains of computational stages within shallow networks, yielding deep network
architectures [Sch15]. This field has since been called Deep Learning (DL). These types of models
have achieved breakthrough performances in tasks such as image recognition [KSH12] and speech
recognition [HDY+12], leading to a quick adoption. Reasons for their popularity include increased
chip processing abilities, e.g. with General-Purpose Computing on Graphics Processing Units
(GPGPU’s), an increased size of available data that can be used for training, as well as advances
in Machine Learning and Information Processing research [DY+14]. Due to its bright future, the
visualizations discussed hereafter will focus on DL models.

There is neither a certain depth threshold to distinguish Deep Learners and Shallow Learners, nor is
there a final definition for DL. However, most definitions share the themes that models consist of
multiple layers of non-linear information processing and that methods for supervised or unsupervised
learning find feature representations at increasingly higher and more abstract levels [DY+14]. An
example for such an hierarchical abstraction is a digital image. At its lowest level, its contents are
represented by an array of pixel values, potentially separated into color channels. A DL model
might combine these pixel values into edges with their orientations and locations. At the next level,
edges with particular arrangements might be combined into motifs. Multiple of these motifs could
make up parts of objects, which could then be combined into whole objects [LBH15].

2.2.1 Methods and Applications

DL models can be designed and trained in various ways. Important training methods include
Supervised Learning (SL) and Unsupervised Learning (UL). An example for SL is the classification
of an input image into one of multiple classes. The model receives an image as its input data and
produces a vector of outputs. These outputs can be scores, each one corresponding to a category
and indicating the certainty of the model that the input belongs to that category. When performing
SL, one has to supply the desired label of each training input sample, for example the ground-truth
category. It is assumed, that input events are independent of each other and earlier output events
[Sch15]. Using the model’s output and the desired output, a function is computed that measures the
error between the actual and the desired output. In order to improve the model, this error value has to
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be minimized by modifying the model’s internal parameters accordingly. To do so, a gradient vector
for each weight is computed, indicating how the error would change when the weight would be
adjusted in correspondence with the gradient. By adjusting weights according to the negative value
of their gradient, the error value can be reduced, for example using Stochastic Gradient Descent
[Bot10]. The most popular error minimization technique in current networks is Backpropagation,
which can be used to train networks with stacks of multiple levels [LBH15]. SL has been dominant
in recent competitions. Supervised deep NN’s have proven especially powerful and have won many
international pattern recognition competitions [Sch15].

In contrast, UL techniques are able to “capture high-order correlation of the observed or visible data
for pattern analysis or synthesis purposes when no information about target class labels is available”
[DY+14]. Use cases include the generation of encodings for raw data that lend themselves better for
subsequent goal-directed learning [Sch15].

On top of these learning techniques, there are multiple ways in which DL networks can be constructed.
The first major class is comprised of Feed-Forward Neural Networks (FNN’s), which map a fixed-
size input (e.g. an image) to a fixed-size output (e.g. the probabilities of every possible category of
object that may be visible in the image). On the other hand, in a Recurrent Neural Network (RNN),
external input is processed sequentially one element at a time. Neurons can receive input from
other neurons at previous discrete time steps. Due to this property, RNN’s are able to maintain a
state vector in their hidden units that implicitly contains historical information about earlier input
elements [LBH15]. Using the graph notation from above where neurons were understood as nodes
connected by weighted directed edges, FNN’s would form acyclic graphs and RNN’s would form
ones containing cycles [Sch15].

In FNN’s, the weighted sum of inputs from the previous layer is computed and then passed through
a non-linear function onto the next layer. The most popular way of introducing non-linearity is by
using a Rectified Linear Unit (ReLU) [NH10], which simply implements the half-wave rectifier. This
method turned out to work well and promote fast learning in networks with many layers. When done
right, this transformation of input data in a non-linear way can make categories linearly separable
by the last layer [LBH15].

Recently, a special type of FNN called Convolutional Neural Network (CNN) has proven to train
more easily and achieve better performances than networks where adjacent layers are fully connected.
Their key ideas are local connectivity between layers, shared weights reducing the NN’s descriptive
complexity [Sch15], pooling, and a large amount of layers.

The architecture of a CNN consists of multiple stages. The first stages contain alternating con-
volutional layers and pooling layers. Convolutional units have a typically rectangular receptive
field with a given weight vector, a filter. This filter is shifted step by step across a two-dimensional
array of input values, producing the unit’s output [Sch15]. This discrete convolution efficiently
emulates the activations of individual neurons. Instead of having to store and use a bias value and a
set of weights for each individual neuron, the amount of parameters can be significantly reduced by
sharing them via a convolution filter. The freed up resources can then be invested into increasing the
depth of a network. This convolutional approach works well on natural array data such as images
because of the high correlation of local groups of values.

The output of these convolutional units is then passed through a non-linearity. A popular choice in
modern networks are ReLU’s, which simply perform half-wave rectification of their input values.
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(a) A Convolutional Neural Network (CNN) processes an input image through repeated steps of convolution
and subsampling, leading into fully connected and output layers (Adapted from LeCun et al. [LB+95]).

σ σ tanh

ht-1

xt-1

σ

× +

××
tanh

σ σ tanh

ht

xt

σ

× +

××
tanh

σ σ tanh

ht+1

xt+1

σ

× +

××
tanh

Forget
Gate

Input
Gate

Output
Gate

(b) A schematic of modules of a Long Short-Term Memory (LSTM) network, unrolled in time. The horizontal
arrow at the top represents the explicit memory carried through time steps. A module reads the input of a
discrete time step, chooses whether to remove parts of its memory or add new values to the memory, and
finally creates an output for each time step. Rectangles inside modules represent network layers, ovals
represent point-wise operations (Adapted from Olah [Ola15]).

Figure 2.3: Exemplary architectures of a Convolutional Neural Network (CNN) and an Long
Short-Term Memory (LSTM).

Afterwards, a pooling layer decreases the data’s dimensions by downsampling feature positions,
thereby merging semantically similar features [Sch15]. Examples include Max Pooling, which
returns the maximum value of each cluster, and Average Pooling, which returns the average of all
values of each cluster.

These stages are followed by further convolutional layers and finally by fully-connected layers,
leading up to the model’s output [LBH15]. A schematic of how a CNN works on image input can
be seen in figure 2.3a.

CNN’s work well for data that is in the form of multiple arrays, such as the color channels of a two-
dimensional image. By exploiting the fact that many natural signals are made up of compositional
hierarchies they score highly in competitions, especially in combination with strong GPU’s [LBH15].
Recently, one such model even reached a super-human level of visual pattern recognition [CMMS12]
in a competition with the goal of recognizing German traffic signs [SSSI11]. Because they have
become the dominant approach for almost all visual recognition and detection tasks [LBH15],
convolutional example models will be prominent among the presets for Advis.

RNN’s on the other hand are especially useful for tasks that involve sequential inputs with temporal
ordering, such as speech and language. Even if hidden units can affect themselves at different time
steps, the network can be theoretically unfolded in time, revealing a particularly deep multi-layer
network. This both enables RNN’s to find solutions to deep problems and makes it possible to

21



2 Foundation

apply back-propagation for training, although this type of training might introduce a new problem:
Back-propagated gradients tend to grow or shrink at each time step, leading to them exploding or
vanishing over longer time periods. A solution to this problem is augmenting the network with
explicit memory in the form of a memory cell. This cell carries memorized values through time
steps using a connection to itself with weight 1. This connection is gated by another unit that learns
to decide when the memory cell should be cleared. This type of augmented RNN is called LSTM
[LBH15]. Figure 2.3b contains a schematic outlining its architecture.

Applications for DL models are diverse [DY+14] and include but are not limited to:

• Computer Vision and Object Recognition [KSH12]

• Speech and Audio Processing [DLH+13]

• Language Modeling and Natural Language Processing [CW08]

• Information Retrieval [PDS+16]

• Multimodal and Multi-Task Learning [NKK+11]

• Artistic Applications, such as DeepDream [MOT15] or transferring image styles [JAF16]
[UVL16]

The scope of the framework developed in this thesis will be limited to models for image classification
but can be expanded to more areas in the future.

2.2.2 Model Evaluation

After a network has been trained, its performance has to be measured. The data needed for these
performance measures is collected by running the model on the data samples within an evaluation
set and recording its output. These outputs can then be compared to the known ground-truth values
of the samples. To be able to test the model’s predictive capabilities, the test set must not contain
samples that have been part of the training set. If the model is able to predict samples it has not
seen before, it is able to generalize [LBH15].

There are various performance metrics for classification models [FHM09]. Perhaps the simplest one
is the model’s accuracy, which is defined as the percentage of right predictions among all predictions.
In the following, this metric will be either called top-1 accuracy or accuracy for simplicity’s sake,
whereas a metric such as the top-5 accuracy measures the percentage of model outputs where the
right category was among the five predictions with the highest certainty. Given the model’s top
predictions and the ground-truth labels of samples from the test set, the predictions can be categorized
into true positives, false positives, false negatives, and true negatives. Dividing the number of
true positives by the number of total positives yields the model’s precision. Conversely, dividing
the number of true positives by the total number of samples predicted as positives (true positives
and false negatives) yields the model’s recall. By calculating the harmonic mean of precision
and recall, one gets another important performance metric, the F1 score. Another performance
metric usually encountered in the context of DL models is the Area Under the Receiver Operating
Characteristic Curve (AUC) [Faw06], which “is equivalent to the probability that the classifier
will rank a randomly chosen positive instance higher than a randomly chosen negative instance”
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[FHM09]. A big advantage of this metric over the simple accuracy is its invariance to potentially
imbalanced category distributions within the evaluation set. Originally defined for binary classifiers,
these measurements can be extended to classifiers with multiple categories [FHM09].

These metrics measure a model’s overall performance but fail to provide a view on where the
classifier makes mistakes. Because these insights are crucial for improving a model, confusion
matrices [Ste97] have emerged as a popular and intuitive way for visualizing a classifier’s predictions
on different categories. The columns of such a confusion matrix contain actual classes of input
samples, the rows contain classes as predicted by the classifier. Each cell’s value corresponds to the
amount of samples that are labeled as the cell’s actual class, and have been predicted as the cell’s
predicted class. Therefore, correct classifications are situated across the diagonal of this quadratic
matrix, while misclassifications outside of the diagonal represent a classifier’s mistakes. Sometimes,
cell values are emphasized by coloring them according to a color scale.

The previously mentioned metrics of precision and recall can be defined intuitively based on the
confusion matrix. Each row and column contains one true positive value where the actual class
equals the predicted class. Dividing the value of this true positive cell in a row by the sum of all
values in the row yields its precision. Conversely, dividing the value of the true positive cell in a
column by the sum of all values in the row yields its recall.

Confusion matrices only represent the single top class predictions of a model. They omit important
aspects like individual classification scores or error severity, whereas an error can be considered
worse if the model has a high confidence in its misclassification. Multiple visualization techniques
have been proposed to alleviate this problem, usually by encoding more information in more complex
representations. Some examples for these alternatives to confusion matrices will be presented in
section 4.2.1.

The aforementioned metrics provided a starting point for researchers to compare the performance of
their models and contest each other, accelerating research. In order to establish consistent test sites
for DL models, a multitude of challenges has been created where researchers can compete with each
other by comparing their model’s performance metrics on a given task, sometimes with monetary
prices. Perhaps the most basic benchmark for computer vision is the Modified National Institute
of Standards and Technology Database (MNIST), a dataset of 60,000 training images and 10,000
test images of handwritten digits between 0 and 9 that have to be classified [LeC98]. In 2013, a
DL model achieved a record error rate of only 0.21% for this task [WZZ+13]. Other challenges
include the yearly ImageNet Large Scale Visual Recognition Competition (ILSVRC) [RDS+15],
where images have to be classified and objects detected on a vast set of 1.2 million input images
with 1000 classes which are a subset of the ImageNet dataset [DDS+09]. The annual Conference
on Neural Information Processing Systems (NIPS) offers more competitions, with the task of 2017
focussing on adversarial attacks and defenses [KGB+18], a topic close to the focus of this thesis.
The platform Kaggle1 has established itself as a central host for these and many more challenges.

Test datasets from some of these challenges will be used to evaluate models within Advis.

1https://www.kaggle.com
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(a) Adversarial examples generated for three in-
put images and the AlexNet model [KSH12]
(Adapted from [SZS+13]). Each input image
has a unique perturbation.

(b) Universal adversarial examples for three in-
put images and the initial Inception model
[SLJ+15] (Adapted from [MFFF17]). Each
input image is perturbed in the same way.

Figure 2.4: Examples for adversarial perturbations. Left columns contain unmodified input images,
central columns contain visual representations of the perturbation added to the input
image, right columns contain modified input images causing a misclassification.

2.2.3 Input Image Perturbations

A network’s performance can be affected if its input images have been manipulated. For example,
the predictions of object detectors can deteriorate if objects are partly occluded or if their size is
changed [HCD12].

Contrarily, image transformations can also be used to improve the performance of DL classification
networks by data augmentation [How13]. Images from the training set can be cropped, flipped,
or their contrast, brightness, and color varied randomly to generate more training samples. These
variations can also be used at test time to generate a list of predictions that are then combined into a
final prediction, which is hoped to be more accurate than a single prediction on the non-transformed
input image.

Recently, a targeted type of image transformation has evoked special interest. By maximizing a
network’s prediction error, a perturbation of the input image can be found that is hardly perceptible
as seen in figure 2.4a but causes the model to misclassify the image [SZS+13]. Even worse, these
so-called adversarial perturbations tend to generalize well, both across models with different hyper-
parameters such as their number of layers, regularization, and initial weights, as well as across
training sets [SZS+13].

Using a faster method of creating adversarial input data, these samples can be continually added to
the pool of training images, hardening the model against adversarial attacks. However, when fooled,
the model’s confidence of its wrong classification remains quite high [GSS14]. In the advent of
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these surprisingly effective attacks, CleverHans has been developed, a software library providing
standardized reference implementation of attacks for benchmarking an existing model’s robustness
or improving it through the aforementioned method of adversarial training [PGS+16].

Continuing in this track of adversarial input data, Moosavi-Dezfooli et al. [MFFF17] found a single
perturbation that can be applied to all input images of a deep neural network, fooling it with a high
probability. By successively aggregating minimal perturbations that send the current perturbed
points out of their corresponding classification region, an image-agnostic perturbation is found that
fools models reliably but is again barely visible when applied to input images as seen in 2.4b. Using
this technique, attacking a model no longer involves solving an optimization problem for each set of
input data. Simply adding a pre-computed perturbation vector to the input image suffices, leading to
significant consequences for the security of applied Machine Learning systems [BNS+06; HJN+11].
Furthermore, fine-tuning the model using adversarial input images leads to small improvements but
not full immunity against those attacks [MFFF17]. This technique of creating universal adversarial
input images is available as a preset in Advis.

2.2.4 Frameworks for Implementing Deep Learning

With DL quickly and continually gaining popularity, many frameworks have been released for imple-
menting and evaluating models. Relieving researchers and practitioners of minute implementation
details, they offer varyingly high-level interfaces to realize commonly needed concepts of deep
neural networks. In combination with good support for modern hardware, these frameworks have
become indispensable for DL research and application.

An excerpt of popular frameworks can be found in table 2.1. Moreover, table 2.2 contains some
popular high-level wrappers for these aforementioned frameworks, abstracting from some of their
implementation details. When designing Advis, the compatibility with models implemented in
these frameworks was an important factor and their popularity had to be considered.
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Name Authors Reference License APIs Website

Caffe Berkeley Vision and
Learning Center

[JSD+14] BSD Python, MATLAB, C++ http://caffe.berkeleyvision.org

Caffe2 Berkeley Vision and
Learning Center

N/A BSD Python, C++ https://caffe2.ai

Chainer Preferred Networks,
Inc.

[TOHC15] MIT Python https://chainer.org

Cognitive
Toolkit (CNTK)

Microsoft Research [SA16] MIT Python, C++, C#/.NET, Java https://www.microsoft.com/en-

us/cognitive-toolkit/

Deeplearning4j Eclipse Foundation N/A Apache 2.0 Java, Scala, Clojure, Kotlin https://deeplearning4j.org

MatConvNet Oxford Visual
Geometry Group

[VL15] BSD MATLAB http://www.vlfeat.org/matconvnet/

MXNET Apache Software
Foundation

[CLL+15] Apache 2.0 Python, C++, Scala, Julia,
Perl, R

https://mxnet.apache.org

PyTorch Adam Paszke et al. [PGC+17] BSD Python https://pytorch.org

scikit-learn David Cournapeau et
al.

[PVG+11] BSD Python http://scikit-learn.org

TensorFlow Google Brain Team [ABC+16] Apache 2.0 Python, C++, Java, Go, Swift,
and more community-
developed bindings

https://www.tensorflow.org

Theano Theano Development
Team

[The16] BSD Python http://www.deeplearning.net/

software/theano/

Torch Ronan Collobert et al. [CKF11] BSD Lua, C http://torch.ch

Table 2.1: An excerpt of popular frameworks for implementing deep learning models.
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2.2
D

eep
Learning

Name Authors Reference License Wrapped
Frameworks

APIs Website

Keras François Chollet et al. [Cho+15] MIT TensorFlow,
CNTK, Theano

Python,
community-developed
binding for R

https://keras.io

Lasagne Lasagne Contributors [DSR+15] MIT Theano Python http://lasagne.readthedocs.io

TFLearn Aymeric Damien et al. [Dam+16] MIT TensorFlow Python http://tflearn.org

Table 2.2: An excerpt of popular high-level interfaces that wrap frameworks for implementing deep learning models.
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3 Related Work

DL models can be used to great effect for solving difficult classification tasks. However, in order
to accommodate for the difficulty of these tasks, networks have steadily increased in complexity
and size. Their inner workings have ceased being transparent and interpretable. There is no readily
available explanation for their decisions, resulting in a lack of trust. Instead, DL systems are often
used as black boxes, with the hope that they work well enough for the task at hand.

Equipping users and researchers with the necessary tools to find out how a model works, what it
does, when it fails and why it fails can open up this black box, restoring understanding and trust.
Only recently, many Visual Analytics systems have been proposed to this extent, enabling users
to interpret models, explain their decisions, compare them, debug them, and ultimately improve
them. Section 3.1 will outline related systems and their characteristics. Afterwards, section 3.2 will
describe a selected set of systems that are the most relevant to the task of this thesis and explain
how they differ from Advis.

3.1 Survey of Deep Learning Visualization Approaches

Hohman et al. [HKPC18] introduce a set of attributes that can be used to classify Visual Analytics
systems in the context of DL. These attributes include the visualization’s goals, what elements of
a model are being visualized, how they are being visualized, and when they are being visualized.
This classification will be used to provide a structured overview over existing systems.

3.1.1 Visualization Goals

The most common underlying reason for visualizing DL models and processes is to provide inter-
pretability and explainability [HKPC18]. By allowing the user to understand decisions of a model
and the representations it has learned, they are more likely to trust it. Moreover, while traditional
performance metrics allow a quantitative evaluation measure, the model’s interpretation can be
their qualitative counterpart. Olah et al. [OSJ+18] provide a framework of building blocks that
constitute such a system for improving interpretability. Although nearly all systems in this overview
share this goal of interpretability, some have made it their focus. For example, some try to build
trust by explaining a classifier’s predictions [FH03; KPN16; RSG16]. Krause et al. [KPN16] even
try to explain them well enough that medical professionals can gain actionable insights to change
the prediction of a patient’s illness. Others allow users to gain insights into different model’s inner
workings, either by allowing them to provide input data [SGPR18; YCN+15] or by visualizing the
evolution of a model [CPMC17; SWA01; ZBM16].
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Other systems understand the creation of a model as an iterative process with many parameters that
have to be adjusted and fine-tuned. They aim to support this process of debugging and improving
models [HKPC18] by helping developers quickly identify and fix problems. In order to achieve this
goal, some systems enable users to recognize patterns that might hint at issues within a model’s
structure or trained parameters which can then be fixed [ACD+15; AHH+14; Bru14; Goo17a;
KAKC18; PHV+18; ZBM16]. Another domain where issues might need to be revealed is within
the training data [AJY+18; RAL+17]. Other systems allow informed decisions for guiding a
model during its training process [CGR+17; CSP+16; ZXZ+17]. Others simply convey a better
basic understanding of a model and its mechanisms that might enable users to improve it [KFC16;
LSL+17; NQ17]. Talbot et al. [TLKT09] enable the informed creation of ensemble classifiers that
are superior to their single components.

Another area where DL visualizations can be helpful is the comparison and selection of models
[HKPC18]. This area encompasses both the comparison of the same model at different training
stages [Goo17a; ZHP+17] and the comparison of multiple different models [AHH+14; HHC17;
KFC16; KPN16; MCZ+17; RAL+17; TLKT09]. In practice, some of these systems simply display
resulting visualizations of different models next to each other [AHH+14; Goo17a; HHC17; MCZ+17;
RAL+17] while others employ more advanced visualizations to compare multiple models in one
view [KFC16; KPN16; TLKT09; ZHP+17].

The final reason for visualization is an educational one, the teaching of deep learning concepts
[HKPC18]. These systems are usually lightweight and contain visualizations that are easy to
interpret. Non-expert users can interactively play with aspects of DL, either by manipulating models
and their hyper-parameters [Kar14; NQ17; SCS+17] or by supplying input data themselves, for
example by writing [CHJO16; Har15], selecting input images [HHC17] or via a webcam [Goo17b].
After manipulating some part of the process, users generally receive quick feedback that can build
understanding and intuition.

Advis provides information about layer activation differences and the distribution of misclassifi-
cations across categories when transforming input images, supporting the goal of debugging and
improving models. On top of that, multiple performance metrics of a list of models are generated
and visualized, targeting the goal of comparing and selecting models that are well-suited for a
specific task, especially when robustness against input transformations is of interest.

3.1.2 Visualized Elements

DL models have a set of prominent attributes that lend themselves to visualization. One of these
attributes is the model’s computation graph and network architecture [HKPC18]. Often, the
network’s topology is used as an entry point to the system. Users can click on a node to expand
its visualizations. This topology can either be shown explicitly as a graph [Bru14; KAKC18] or
explicitly as a more compact table or list of layers [Kar14; PHV+18; YCN+15; ZXZ+17]. Another
possibility is encoding relevant information within this graph using visual representations such as
size or color of nodes and edges [CSP+16; Har15; LSL+17; SCS+17; SWA01; ZHP+17]. This is
especially useful for conveying information that is bound to individual parts within the network’s
architecture. Moreover, some systems simplify graphs before displaying them to allow for an easier
overview [Goo17a; LSL+17].
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Another attribute that can be visualized are learned model parameters [HKPC18]. These include
filters and weights of individual layers [Bru14; CSP+16; Har15; Kar14; PHV+18; SWA01; WGYS18;
ZHP+17], for example as colored maps. Learned features might be shown using one of various
specialized feature visualization techniques [AHH+14; CGR+17; HHC17; LSL+17; SCS+17;
YCN+15; ZHP+17; ZXZ+17], some of which will be outlined later. Architecture-specific parameters
include hidden state clusters of RNN’s [KPN16].

Furthermore, information about individual computational units [HKPC18] might be of interest.
These include activations of individual neurons shown as color maps [Bru14; CHJO16; CSP+16;
Kar14; PHV+18; WGYS18; YCN+15] or in more advanced ways that emphasize their connection
to individual neurons [Har15; SCS+17; ZBM16; ZXZ+17]. Especially for visualizing a unit’s
training progress, showing error gradients can be useful [CPMC17; Kar14; ZBM16]. Other systems
visualize model-specific data such as individual hidden states inside of an LSTM [SGPR18].

Deep neural networks contain a large amount of neurons in each layer, resulting in a high dimension-
ality of output data. Visualizing these neurons in high-dimensional space [HKPC18] in a meaningful
way can contribute to a user’s understanding. For example, some systems project the neuron’s
activations of a layer into two-dimensional space [CHJO16; KAKC18; Kar14; PHV+18; ZXZ+17],
using dimensionality reduction techniques such as t-SNE [MH08]. Sometimes, this projection is
only performed on the last layer, allowing a clustering of input samples [Bru14; ZBM16]. Chung et
al. [CSP+16] not only show a two-dimensional embedding of activation maps and gradients, but
also of filter coefficients and gradients.

All of these detailed visualizations can be complemented by a more macroscopic view on aggregated
information [HKPC18] across a model. A common way of providing this information is by displaying
traditional performance metrics such as accuracy or AUC [CGR+17; CSP+16; Kar14; KFC16;
KPN16; TLKT09; WGYS18]. During training, other scalars such as test and training loss can be of
interest [Goo17a; SCS+17]. Some systems try to enrich these conventional metrics by subsuming
them with different visualizations that can carry even more information [AHH+14; KAKC18], for
example by using the positioning of color-coded boxes and bars [ACD+15; RAL+17]. Confusion
matrices are another way of aggregating model predictions [AJY+18; Bru14; TLKT09]. Similarly,
other systems simply collect a model’s predictions on a test set [CGR+17; Kar14; KFC16; WGYS18]
or neuron activations over time [CHJO16; ZBM16]. Furthermore, systems may visualize an overview
of the values of all layers using metrics they have defined before, such as discriminability [ZXZ+17]
or perplexity [PHV+18]. As further variations, Ming et al. [MCZ+17] display the distribution of
RNN model responses to a selected word, Strobelt et al. [SGPR18] match and display similar hidden
state patterns of LSTMs from different input samples, Frank et al. [FH03] plot class probability
estimates as a function of two of the data attributes, Liu et al. [LSL+17] show multiple important
facets of a neuron at once and Streeter et al. [SWA01] give an overview of weight matrices of a
network family tree that has been created by an evolutionary algorithm, as well as a fitness graph
for generations of a population of networks.

Advis displays the computational graph, both as an entry point to more detailed visualizations
and to encode information about activation differences using color. The activation of individual
computational units on original and transformed input images can be viewed and compared. Aggre-
gated information is shown in the form of detailed performance metrics of individual models and a
large-scale confusion matrix.
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3.1.3 Visualization Methods

After elements that should be shown have been identified, a system’s designer has to decide on
how to visualize them. Of the many possibilities for data visualization, a selection of methods has
proven especially prominent among DL visualizations, one of which are node-link diagrams for
network architectures [HKPC18], as used by Wongsuphasawat et al. [WSW+18]. These graphs can
be used as an entry point whereas clicking on a node reveals further information [Bru14; KAKC18;
ZHP+17] or they can encode further information about nodes and edges using variables such as
color or scale [CSP+16; Har15; LSL+17; SCS+17; SWA01].

Scatter plots and dimensionality reduction [HKPC18] can be used to provide a comprehensive
view on activations [CSP+16; KAKC18; Kar14; ZBM16], filters [CSP+16; PHV+18], features
[ZXZ+17] or data samples [AHH+14; FH03; Goo17a; SCS+17].

When showing the evolution of a model, line charts [HKPC18] are used to visualize changes in
temporal metrics, for example a model’s training loss [CSP+16; Goo17a; Kar14; PHV+18; SCS+17]
or performance [CGR+17; Goo17a; PHV+18; SWA01; WGYS18].

Drilling down from higher-level to more concrete information pertaining to input instances, many
systems allow an instance-based analysis and exploration [HKPC18]. This can be achieved by
allowing the user to select and inspect a single instance [Bru14; CGR+17; CHJO16; Har15;
MCZ+17; NQ17; RSG16; SGPR18; ZBM16; ZHP+17] or a subset of instances [AHH+14; AJY+18;
HHC17; KAKC18; KFC16; KPN16]. Some systems allow the live creation of input data [Goo17b;
YCN+15] or bookmarking and tracking changes across single instances [ACD+15; RAL+17;
WGYS18].

Rather than relying on input samples, some systems try to directly visualize a network’s learned
representations through attribution and feature visualization [HKPC18]. The former can be shown
using saliency maps [AJY+18; ZBM16]. The latter can be created using a host of different techniques.
Popular ones include the so-called deconvolution process which maps activations back into input
pixel space by reversing convolution operations [ZF14], visual back-propagation [BCC+16] or by
finding pixels in an input image that maximize or minimize the activation of a specific decision
[ZCAW17]. Hohman et al. [HHC17], Yosinski et al. [YCN+15] and Zhong et al. [ZXZ+17] make
use of these techniques to represent learned features.

Finally, especially educational systems include opportunities for interactive experimentation
[HKPC18], such as the interactive modification of a network’s topology [Kar14; SCS+17], hyper-
parameters [HHC17; Kar14; SCS+17], weights [SWA01] or classifier combination of an ensemble
model [TLKT09].

Advis extends the node-link diagram for computation graphs included in TensorBoard [WSW+18] by
simplifying it, improving its layout, and encoding hierarchically-aggregated relevant information in
its node’s colors. Instance-based analysis and exploration is possible by selecting both a distortion
method and an individual input image through an interactive confusion matrix.
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3.1.4 Visualization Timing

The last characteristics of the systems in this overview is the timing of their visualization. Some
systems visualize models during training [HKPC18]. In practice, visualizations might update
dynamically while the training process progresses [ACD+15; CPMC17; CSP+16; Goo17a; Kar14;
PHV+18; SCS+17; WGYS18; ZXZ+17]. Others allow the selection of a training stage, for example
with a slider [AJY+18; Bru14; CGR+17; SWA01; ZHP+17].

The majority of systems however visualize models after training [HKPC18] by initializing all
visualizations on user-supplied models that have already been trained [AHH+14; CHJO16; FH03;
Har15; KAKC18; KFC16; KPN16; LSL+17; MCZ+17; NQ17; RAL+17; RSG16; SGPR18;
TLKT09; YCN+15; ZBM16] or by letting the user train a model interactively and then evaluate it
afterwards [Goo17b; HHC17].

Advis also visualizes models after training. However, model modules carry a version attribute that
can be used to load and compare multiple snapshots of a model.

3.2 Selected Approaches

Four of the systems outlined in section 3.1 that come the closest to solving the task of probing
learned models in the context of input perturbations have been selected. The user interfaces of these
systems can be seen in figure 3.1. Their approaches will be described in further detail hereafter.

3.2.1 ActiVis

ActiVis [KAKC18] aims to combine instance- and subset-based exploration. Individual instances are
usually more familiar to a user and can build a fast understanding of a model, whereas subset-based
exploration is more abstract and therefore more effective on large datasets. This goal is achieved
through a three-tiered user interface.

A central computation graph provides an overview of the model, allowing users to understand its
structure before deciding on which layers they want to analyze further.

After a node from the graph has been selected, the neuron activation view shows up below the
graph. Next to the name of the selected node and its neighbors, its central component is the neuron
activation matrix view. Columns in this matrix represent neurons, rows represent instances or
instance subsets, and cells contain the activation of a neuron on an instance or its average activation
on an instance subset. Users can define these subsets using rich queries on raw data attributes,
labels, features, output scores or predicted labels. Next to this matrix view, instance activations are
projected into two dimensions using t-SNE [MH08]. Instance selections in this view are interactively
linked to the matrix. Finally, multiple instances of this neuron activation view can be shown below
each other, allowing the comparison of multiple layers.

The instance selection view provides users with an overview of instances and prediction results.
Squares represent instances and are vertically grouped based on their true labels. Left columns show
correctly classified instances sorted by their prediction scores, right columns contain misclassified

33



3 Related Work

(a) ActiVis [KAKC18] (b) Adversarial Playground [NQ17]

(c) Blocks [AJY+18] (d) CNNComparator [ZHP+17]

Figure 3.1: User interfaces of applications that are closely related to the topic of this thesis. Screen-
shots have been retrieved from the respective proposals.

instances, with each square’s fill color representing its true label and its border color representing
the predicted label. Clicking on one of these instances adds it as a new row to the neuron activation
matrix view.

ActiVis is the most useful for data types other than images, such as text and numerical data. Queries
are less effective on image instances and showing a row of neuron activations in the matrix view
removes important context contained in the two-dimensional shape of convolutional layers, while
their size will seriously overflow this view with content. Furthermore, both inside the matrix and
inside the color-coded projected view and instance selection view, users will struggle to discern
classes and retrieve useful information when presented with classification tasks that contain a
large number of categories, as is the case with the popular ILSVRC’s [RDS+15] 1,000 classes.
Furthermore, in contrast to Advis, there is no integrated way of perturbing images and no way of
comparing multiple models.
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3.2.2 Adversarial Playground

The Adversarial Playground [NQ17] enables a better understanding of how different types of adver-
sarial attacks can fool deep neural networks. It is mainly an educational tool aimed at non-experts
that can interactively generate different adversarial samples on-demand. Due to its modularity, it
can be extended to other models and attack algorithms and plugged into benchmarking frameworks
which might make it interesting to experts and model builders.

The interface of the Adversarial Playground is lightweight and rather simple. An options view
shows a set of images, one from each category in the dataset. The user can select such a seed image,
the desired attack strength and the target class if they are using an algorithm for targeted attacks.
After confirming their input, an adversarial sample is created and displayed alongside the original
input image. Under both the original and adversarial input image, the model’s classification scores
are shown. The options view displays the final prediction for the adversarial image.

The framework contains three preset attack modules, the Fast Gradient Sign Method and the
Jacobian Saliency Map Approach from the CleverHans library [PGS+16], as well as a custom
improved Fast Jacobian Saliency Map Approach.

The Adversarial Playground prides itself in being the first DL visualization system with a focus
on adversarial samples, but its educational target audience quickly becomes apparent in its rather
limited set of functionality. Contrarily to Advis, no direct comparison between attacks and models
is possible and no aggregated information such as performance metrics is shown. There is no graph
view to provide an overview for the model architecture and no visualization of the activations of
individual computational units. Furthermore, there is no way to inspect more instances than the
pre-defined seed images and the classification score diagram will become cluttered and confusing
when more than a handful of classes are available.

3.2.3 Blocks

Blocks [AJY+18] supports the analysis of three important data facets – input images, network-
internal data, and classification results – to highlight hierarchical patterns of misclassification. Its
user interface is separated into four interactively linked views, with the option to either show a large
confusion matrix or response map as the central view.

The hierarchy viewer to the side of the central view shows the hierarchy inherent in a large set of
categories as a horizontal icicle plot. These hierarchies can either be pre-defined or interactively
defined using a seriation algorithm. Individual rectangles within the icicle plot can be colored to
encode information about a group, such as a group-level performance metric or the performance
difference between two classification result sets when the confusion matrix is active. When the
response map is active, they can be colored to show the average response of a selected neuron. Child
rectangles can be sorted by size or performance. Clicking on a rectangle selects the corresponding
classes in all views.

A central confusion matrix displays a model’s classifications, with actual classes as rows and
predicted classes as columns. Cells are colored according to their value, with an optional logarithmic
color mapping to emphasize less frequent confusions. Correct classifications along the diagonal of
the matrix can be excluded to highlight misclassifications. Moreover, single non-zero cells might
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disappear due to the large matrix size, which can be mitigated with a halo effect around these cells.
This ordered visualization reveals a pattern of block-like misclassifications which can be emphasized
by automatically drawing boxes around them. Finally, the matrix contents can be filtered by cell
value, top-k results or classification probability. Samples can be selected by drawing a box around
them or by clicking on a group in the hierarchy.

Instead of the confusion matrix, a response map can be shown that displays the average response for
every class of every neuron in the selected layer, using a heat map of downsampled and linearized
activation maps. Individual neuron columns can then be ordered according to their relevance
for a specific hierarchy group, revealing potential patterns. Their headers can encode summary
information about a neuron using color, such as their average activation for a selected class. Clicking
on a profile header makes the sample viewer show images that highly activate the corresponding
neuron. Furthermore, latent sub-classes within a single class can be explored in a dedicated window
containing a correlation matrix, a sample-level response map, and an ordered list of corresponding
samples.

To the right of the interface, a sample viewer shows thumbnails of the selected sample images.
They can be grouped by their actual class and filtered by class membership, activation of a selected
neuron or classification result. On top of that, the sample viewer can display saliency maps.

Using their visualization system, the authors conclude that early layers are able to separate high-level
category groups even after little training, whereas latter layers separate lower-level groups and take
more time. To speed up this process, they propose a hierarchy-aware model architecture. On top of
that, they are able to highlight quality issues within their dataset.

Blocks allows loading and comparing two sets of classification results, which may be used for a
rudimentary analysis of the effect of image perturbations. Other than Advis, these image trans-
formations and especially adversarial perturbations are not integrated and have to be performed
outside of the system. Even then, only two classification results can be compared at once and the
creation or comparison of multiple distorted versions of input images is impossible. On top of that,
there is no graph to give the user an overview of the network architecture. Instead, layers have to be
selected by their number using a small slider which is cumbersome and impractical, especially in
today’s large networks. No immediate performance metrics of models are available. Finally, the
two-dimensional structure and potentially important data of neuron activations is lost in the process
of downsampling and linearization.

3.2.4 CNNComparator

The focus of CNNComparator [ZHP+17] is the analysis of differences between two model snapshots
after different epochs in the same training process. Its user interface is split into four quadrants.

The network architecture view provides an overview of the network structure and of parameter
differences among layers, which are encoded as the node’s colors. On hover, the overall kernel
difference of a layer is shown.

The difference distribution view is situated to the right of the network architecture view, showing
the distribution of parameter differences in the selected layer. For clarity in the face of vast amounts
of weights, bins are created based on their absolute change. For each bin, the relative change is
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quantified into one of several levels which are then shown as a stacked chart. The size of each
rectangle in this chart encodes the number of weights it contains, the color encodes the change level.
Clicking on a rectangle highlights the corresponding weights in the convolutional operation view.

The task of this convolutional operation view is to show differences in activation. A two-dimensional
matrix displays convolution operations, with columns representing kernels and rows representing
channels. Cells encode their value difference between the two model snapshots using their color.
Users can zoom and pan to explore, and click to show a corresponding kernel matrix. By clicking
on a rectangle of the row or column header, corresponding image patches are displayed in the
performance comparison view.

This performance comparison view shows a side-by-side comparison of the two model snapshot’s
classifications using bar charts after the user has selected an input image. On top of that, image
patches from this sample are chosen and ranked by their activation value on the selected channel.

While this system can be useful for analyzing the evolution of a model, it is limited to two snapshots
from the same model and training process. In contrast to Advis, comparing multiple models with
different architectures is impossible, and aggregated information such as model performance metrics
are missing. There is no way of performing input image perturbations or visualizing their impact on
a model. Activations of individual computational units cannot be shown. Furthermore, state-of-
the-art image classification tasks will introduce scalability issues: The classification bar chart will
be cluttered with more than a handful of categories and input images can only be selected from a
single long list which is impractical with datasets containing tens of thousands of samples.
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In this chapter, the requirements will be outlined that have to be fulfilled to solve the task of probing
the response of learned models to transformed input images. Afterwards, the system’s design and
how it meets these requirements will be described.

4.1 Requirements

The following six requirements have to be met in order to solve the concrete task of this thesis while
adhering to the guidelines for a high-quality Visual Analytics visualization system [KAF+08].

R1. Comparison of models. Users have to be able to compare the performance of models at
a glance and retrieve more detailed information on demand. This comparison should be
focussed on the model’s performance on a set of user-defined input transformations. Using
these insights, users should be able to find a model that is robust enough for the task at hand
or decide on a model that they can improve further.

R2. Analysis of the impact of input perturbations on internal representations. Users have to
be supported in the task of visually exploring models and how they react to perturbed input
data. They have to be able to gain insights that can be used to debug and improve their model.

R3. Wide extensibility. Deep learning models and their application fields are evolving rapidly.
A real-world task might involve any kind of dataset and model as well as a specific set of
distortions. Therefore, it is essential that the system provides an appropriate interface that
allows users to extend it by defining their own datasets, models, and distortions.

R4. Scale with data volumes and dimensions. State-of-the-art models contain overwhelming
volumes of high-dimensional data. This data has to be made accessible to the user by
representing it appropriately. A global overview has to be combined with visualizations of
analysis details, with several levels of detail and abstraction in between. Drilling down from
the overview allows the user to find areas of interest.

R5. Intuitive user interface. The user has to be able to focus solely on the task at hand rather
than dealing with an overly complex or distracting interface. Therefore, the interface should
be easy to use, consistent, seamless, and intuitive.

R6. Appropriate infrastructure. To allow users a smooth interaction with the system, it should
respond at least every 100 milliseconds. Therefore, the system needs to be able to manage
large amounts of data and perform computations asynchronously and without blocking the
interface. Furthermore, the visual representation algorithms have to be fast and dynamic
enough to accommodate for large data sizes.
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Figure 4.1: A high-level view on the interaction flow within Advis.

4.2 Design

Both the system’s architecture as well as its views had to be carefully designed in order to fulfill
the requirements outlined above. A process of iterative improvements produced the system design
outlined in this section.

4.2.1 Interaction Flow

A defining feature of Advis was adhering to the principle of providing an overview before letting
the user dive deeper into more detailed visualizations (R4). This decision yielded an interface
of multiple interwoven tiers, where a selection in a higher-level interface element influences the
available options in lower-level elements. On top of that, each option in such a view has to represent
sufficient information that allows an informed decision about what to select. For example, a user
might specify a set of distortions that should be applied to a data set. From there, they might choose
a model that they are interested in. Within this model they can then choose an interesting layer and
view its activations on an input image they have selected.

40



4.2 Design

An overview of possible interaction flows within Advis is depicted in figure 4.1 and will be described
in further detail hereafter.

The interaction flow of Advis begins outside of its graphical User Interface (UI), with users supplying
models, datasets, and distortions specific to their analysis tasks (R3). The system has to support
state-of-the-art models supplied using an easy-to-use and popular protocol. Furthermore, arbitrary
datasets have to be able to be used to evaluate models. These datasets have to include actual image
samples, a list of classes and the ground-truth label for each sample. Finally, users have to be able to
specify a set of input image distortions that will be used to analyze a model’s response and evaluate
its performance on perturbed input data. Depending on the analyst’s task, these distortions can
range from simple image manipulations such as rotating or adjusting brightness, through using
custom libraries to perform specialized transformations, to running another specialized network
within the distortion that creates the perturbed output image. Moreover, distortions should be able
to depend on a set of parameters that can be interactively configured through the UI. Configurations
should persist through restarts.

Models, datasets, and distortions are fed into the system and displayed as a list of distortions and
models. The distortion list allows users to select a subset of distortions, and the model list displays
all models along with a host of performance metrics that signify their robustness to the selected
set of distortions. Due to screen space concerns, these metrics have to be displayed in a rather
compact form. Therefore, users have to be able to open a view with all detailed performance metrics.
These high-level insights into performance metrics of individual models enable users to compare
models and select one that is the most robust to the desired list of distortions (R1). However, rather
than making users compare numbers, a subset of models can be selected from the list that is then
displayed in a radar chart. This radar chart shows the robustness profiles of models on all selected
distortions, so users can assess the strengths and weaknesses of a model.

When a user has found a model and distortion combination they want to analyze, they can simply
click on its entry in the model list to dive deeper. The model analysis view that appears thereafter
needs two types of input. Firstly, the desired distortion has to be selected from a dropdown menu.
Secondly, an input image from the dataset associated with the model has to be selected. This
input image selection has proven to be difficult to conceptualize in an efficient way. First versions
included a simple grid of thumbnails with additional information which was impractical for datasets
that often contain thousands of images. A solution to this problem that enables users to make an
informed decision on what input image to choose was a confusion matrix alongside a sorted grid of
image thumbnails, displaying further information such as the model’s prediction certainty for the
ground-truth label of that image. Displaying this confusion matrix was a challenge in itself. The
commonly used ImageNet dataset [DDS+09] sorts its images into one of 1,000 classes, which would
be far too much to display at once in the matrix’s rows and columns. Instead, the matrix has to
implement some sort of level of detail system itself (R4). This can be achieved by sorting categories
into a hierarchy, defined by the dataset. This was especially helpful with the popular aforementioned
ImageNet dataset, since its categories correspond to noun leaves in WordNet [Mil95], a lexical
database for the English language. A meaningful hierarchy could then be built according to the
recursive hypernyms of these nouns.

Before deciding on using a confusion matrix for input image selections, various alternatives had
to be considered. These proposals criticize that confusion matrices omit important data by only
representing the single top class predictions of a model, rather than its individual classification
scores and error severities.
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An example for such an alternative is Squares [RAL+17]. It represents class predictions as parallel
coordinates, with each class displayed as a color-coded column with its class name and optional
summary statistics below. Prediction scores of individual instances are binned and shown as
bars. Individual instances are represented by boxes, strips or stacks, with errors subsumed by the
position and fill pattern of these boxes. The prediction scores of a single instance across all parallel
coordinates are displayed on hover, and confusion between classes is shown with spark lines above
each class axis. This rather complex representation aims to lower the barrier between performance
analysis and debugging root causes of problems within a model.

In another approach, Alsallakh et al. [AHH+14] proposed the Confusion Wheel. Classification
results for each class are divided into four sets: True positive, false positive, true negative and false
negative classifications. The results within each of these groups are then binned and visualized as
stacked histograms for each class, centered within circle sectors of the wheel. Individual sample
groups are colored according to their classification results. Furthermore, chords of varying thickness
between sectors depict class confusions. This visualization encodes more information than traditional
confusion matrices, such as the amount of discrimination between classes. The chords between
sectors represent class confusions less accurately than confusion matrices but are easier to read at a
glance than raw numbers in separated matrix cells.

Although useful for their application domain and worth the consideration, these alternatives to
confusion matrices have proven to be inviable for visualizing a model’s prediction performance
within Advis since they encode even more information than only prediction results. When confronted
by datasets with 1,000 classes, the clutter within confusion matrices already became problematic
and had to be improved. The aforementioned much more complex alternatives to confusion matrices
would have been hopelessly overloaded with this amount of categories.

Therefore, a hierarchy-aware interactive confusion matrix was chosen to represent model predictions.
Having retrieved the aforementioned category hierarchy, various display options were considered.
The first approach involved only displaying direct children of a hierarchy level within the confusion
matrix, with cell values aggregated from the bottom up. Clicking on a cell would recursively update
the matrix to show the corresponding sub-hierarchy. This approach faced the problem of omitting
misclassifications that fall completely out of the sub-hierarchy that is currently being displayed. To
this extent, a variation was introduced that collapses deselected sub-hierarchies rather than hiding
them, inspired by the Table Lens [RC94].

The second approach for the confusion matrix displayed all cells at once, color-coded and with
dendrograms as row and column headers representing the hierarchy. However, since the hierarchy
can be quite deep, these dendrograms can become cluttered.

The third approach – with basic interaction patterns inspired by Clustergrammer [FGR+17], a
heat map visualization for high-dimensional biological data – proved the most successful. The
whole confusion matrix is again displayed in its entirety as a color map without grid lines or cell
values, and therefore not omitting any outliers or patterns like the first approach. In the row and
column headers, two levels of the hierarchy are displayed. As the user zooms into the matrix, these
headers move outwards, revealing lower levels of the hierarchy until the class level has been reached.
Headers are also synchronized with the user panning the matrix. When zoomed in far enough, grid
lines and cell values fade in. Outside of each header, a smaller rectangle contextualizes the current
view by displaying the path through the hierarchy to get to the current level. This approach displays
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an overview of all cells and offers a responsive, intuitive and seamless way for drilling down into
sub-hierarchies. It can reveal interesting patterns, such as misclassification outliers or buckets like
in the figures 6.4 and 6.10.

As the user explores the confusion matrix, the grid of input image thumbnails updates continuously,
corresponding to the input samples present in the current viewport of the confusion matrix. Alterna-
tively, the user can shift-click to create a custom selection rectangle. One of the items in the image
list can then be selected as the new input image. The schematic in figure 4.2 outlines the process of
selecting an input image using this interactive confusion matrix.

The central model analysis view allows access to two types of information. Firstly, users can explore
the model’s prediction on the selected input image and the average prediction on a set of distorted
versions of the input image. These distorted versions are generated by varying ranged parameters,
such as for example the amount of degrees an image should be rotated. These predictions are
ordered by certainty and displayed side by side, allowing a quick comparison. If users are interested
in the performance of the model for individual distorted versions, they can select one of them using
the distorted image selection. This view shows a grid of thumbnails of distorted versions alongside
the prediction certainty of the model for the input image’s ground-truth class. For a better overview,
this grid can be sorted by image index, model certainty, and all varied range parameters. Selecting
one distorted version shows its predictions in the previous image prediction screen next to the
predictions on the original version. This in-depth instance-level exploration can help users explore
model predictions on perturbed input images, for example to find out at what point a model fails on
a specific input sample outlier (R2).

The second and most important part of the model analysis view starts out with a network architecture
chart. This node-link diagram displays the computation graph of the model. Since this graph can
be cluttered with many implementation-specific nodes, it is by default simplified. Unimportant
nodes are removed while the edge topology of neighboring nodes is preserved. Finally, the graph
encodes information about the difference in activation of individual computational units between
original and distorted input using color. To be able to compute these colors, a metric had to be
found that quantifies activation differences. In a first try, the simple Euclidean distance turned out
to be impractical because its values correlated heavily with the dimensions of the activation matrix.
Since these dimensions are usually smaller for every subsequent operation in a deep network, this
metric failed to reveal activation differences. Another metric turned out to be much more useful for
this task: Cosine similarity is invariant to both matrix dimensions and magnitude. Coloring nodes
using this metric can reveal interesting patterns and provide an insight into the impact of perturbed
input images on internal representations (R2), as can be seen in the usage scenarios in chapter 6.

In the last part of the system, the user can dive even deeper into the activations by clicking on one
of the nodes in the graph, thus revealing both its activations on the input image and its average
activations on distorted versions of the input images. The specific input image and distortion that is
used to evoke these activations are chosen using the aforementioned two selection elements. The
activations themselves are displayed as a set of slices of the cubic activation matrix, with individual
values encoded as greyscale pixels. Since these activation maps can be similar and difficult to
compare in detail, the user is supported by a variety of comparison aids. Complementing a side-
by-side view of both activation maps, users can drag a slider across an overlay of both maps, with
original activations displayed to the left and distorted activations displayed to the right of the slider.
Furthermore, another view can be used to adjust the opacity of both overlaid maps, crossfading
between them. Finally, a fourth view calculates the pixel-wise difference of both activation maps
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Figure 4.2: An activity diagram detailing how a user interacts with the confusion matrix to select
an input image. The user stays in the loop at all times and can iteratively steer the
exploration process towards the desired direction.
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Figure 4.3: Checkerboard patterns in activation visualizations deep within the Inception
V3 model. This exemplary visualization depicts the activations of operation
InceptionV3/InceptionV3/Mixed_7a/Branch_1/Conv2d_0a_1x1/Conv2D.

and displays it as a heat map. In all of these views, a user can click on a single tile they are interested
in to open a zoomed-in version with additional information. This process enables a deep dive into
how individual computational units react to input perturbations and how their responses change
compared to original input images (R2). By doing so, it can reveal interesting patterns. For example,
the activations of early layers in deep neural networks often act like edge detectors, while the
information in later layers gets more and more abstract. On top of that, these activation maps can
reveal flaws in network architectures. For example, the activation visualizations of the units of some
model’s layers stay completely black or white for all input images, suggesting that they might be
dead and could be pruned. As another example, exploration has revealed that operations deep within
the state-of-the-art Inception V3 model exhibit checkerboard artifacts that can be seen in figure 4.3.
These patterns might be caused by overlap within convolutional operations [ODO16]. They can
be detrimental for the model’s performance, lowering the amount of information passing through
the layer. Avoiding these artifacts by appropriately adjusting the stride and size of responsible
convolutional operations might be a way to improve the network.

The interface described in this section has been implemented iteratively, with each iteration contain-
ing improvements and solutions for problems encountered in the last iteration. Before implementing
the interface, mockups were created. An excerpt of the main screens within these mockups can be
seen in figure 4.4, depicting the evolution of the interface’s structure.

4.2.2 Principles

In order to implement this visualization system, the necessary infrastructure had to be designed (R6).
An appropriate architecture had to include caching mechanisms in order to be able to quickly access
the results of computations that have been executed before. Furthermore, splitting up the system
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into a server and a client can speed up visualizations. The server can be equipped with powerful
hardware and does the heavy lifting, while the client only needs to display the visualizations and
handle user interactions. Implementing the client’s frontend as a browser application simplifies
access and enhances the range of potential clients further. Of course, both the server and the client
can run on the same device if so desired. The system architecture will be described in chapter 5.

The frontend also had to adhere to a host of principles (R5). The UI had to always be responsive and
communicate with the user. All computations are performed asynchronously, and while waiting on
data from the server, visualizations and interface elements display progress bars or spinners. Due to
the hierarchical nature of the visualizations described before, sometimes elements are empty if no
selection has been made on a higher hierarchy level. In this case, empty state views describe why
an element is empty and what the user has to do to fill it with content. High-density visualizations
such as the confusion matrix have been specifically implemented in a way that makes use of high-
resolution displays. Every dialog in the system always opens and closes with a zoom animation
from and to the target element that caused its activation, intuitively informing the user about where
the dialog belongs to. Finally, all elements of the UI are consistently styled, modular and obtain
data through dynamic data binding, allowing easy and fast changes to the interface.
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(c) June 2018: Two major changes took place
in this final version. Rather than limiting the
user to selecting a single distortion, a list now
allows the selection of multiple distortions at
once, with their average effects being visu-
alized in the other views. Configuring dis-
tortions has been moved into its own dialog,
accessible through a button in the distortion
list. Furthermore, the input image selection
has been moved out of the sidebar and on top
of the activation visualization, where predic-
tions can be accessed as well. The space that
has been freed up in the side bar is used for a
radar chart displaying the robustness profiles
of individual models to the list of selected dis-
tortions. Models that should be displayed in
this chart can be selected using checkboxes in
the model list.

Figure 4.4: The evolution of the user interface of Advis, represented as mockups that were created before implementing the corresponding version.
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5 Implementation

This chapter will introduce the implementation details of Advis as well as all important views within
the system. Furthermore, it will explain how models, datasets, and distortions are being processed
within the system.

5.1 Used Tools

Creating Advis would not have been possible without the support of numerous libraries and frame-
works, applied throughout the whole application. Both the frontend and the backend are built
and assembled using Bazel1, a fast and scalable build system for a large variety of programming
languages, and with many community-supported extensions.

An overview of tools used in the backend and frontend as well as their licenses and URL’s can be
seen in the tables 5.1 and 5.2 respectively.

5.1.1 Backend

The backend was developed using Python 32. It relays Hypertext Transfer Protocol (HTTP) requests
between the client and server using Werkzeug, a utility library for implementing Web Server Gateway
Interface (WSGI) applications.

Models are being run, predictions retrieved and activation maps generated using TensorFlow
[ABC+16]. This machine learning framework was chosen from the selection shown in table 2.1 due
its popularity and its usage in many wrapper APIs. Furthermore, it offers the first-party visualization

Name License URL

TensorFlow Apache License 2.0 https://www.tensorflow.org

Werkzeug BSD-3-Clause http://werkzeug.pocoo.org

NumPy BSD-3-Clause http://www.numpy.org

scikit-learn BSD-3-Clause http://scikit-learn.org

scikit-image BSD-3-Clause https://scikit-image.org

Pillow PIL Software License https://python-pillow.org

Table 5.1: Frameworks and libraries used in the backend of Advis.

1https://bazel.build
2https://www.python.org
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5 Implementation

Name License URL

TensorBoard Apache License 2.0 https://github.com/tensorflow/tensorboard

Polymer BSD-3-Clause https://www.polymer-project.org

Polymer Elements BSD-3-Clause https://github.com/PolymerElements

Paper Range Slider MIT License https://github.com/IftachSadeh/paper-

range-slider

Chart.js MIT License http://www.chartjs.org

Palette.js Apache License 2.0 https://github.com/google/palette.js

Chroma.js BSD-3-Clause https://github.com/gka/chroma.js

Table 5.2: Frameworks and libraries used in the frontend of Advis.

framework TensorBoard [Goo17a] which provides a flexible plugin system. On top of that, users
can use one of many available conversion tools if their models are present in a non-TensorFlow
format. TensorFlow allows users to create and run static computation graphs. The multi-dimensional
matrices flowing through the operations of these graphs are called tensors within the framework.

For various matrix operations and calculations outside of TensorFlow, NumPy is used. Furthermore,
parts of the machine learning library scikit-learn [PVG+11] are put to use in order to calculate the
cosine similarity of activations and model performance metrics such as F1 score, precision, and
recall.

Two other libraries ease the task of handling and processing input images. Pillow is employed
for converting pixel arrays into valid image data, for overlaying and blending a set of images,
and for compositing individual activation visualization slices into larger activation maps. Using
scikit-image, input images are loaded from disk and preprocessed for feeding them into a model. On
top of that, it is used within the implementations of preset distortions, perturbing input images.

5.1.2 Frontend

The frontend’s code was developed using a mixture of three languages. The interface’s structure
was described using Hypertext Markup Language (HTML) and styled via Sass3, an extension to
Cascading Style Sheets (CSS) with syntactical sugar such as variables and nesting. While building,
it cross-compiles to plain CSS. The interface’s scripting was done using TypeScript4, which is a
statically typed superset of JavaScript that cross-compiles to standard JavaScript.

The frontend is based upon the infrastructure of TensorBoard [Goo17a], a framework for visualizing
various kinds of data a TensorFlow model can output during its training process. TensorBoard
requires users to programmatically add so-called summary operations to their computation graph.
These write data to a logging directory that can be read and visualized afterwards by TensorBoard.

3https://sass-lang.com
4https://www.typescriptlang.org
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5.2 System Architecture

This infrastructure was not extensible enough for creating the dynamic model visualizations Advis
offers. Instead, Advis builds on top of TensorBoard and runs models and distortions while the
visualization is active, allowing users to configure distortions within the frontend.

The UI is implemented using Polymer. Every part of the UI is a custom module, often containing
even more nested modules. These modules encapsulate their own Document Object Model (DOM),
a style sheet and TypeScript code. The latter includes a set of observable properties, functions, and
observers. Communicating properties between modules and from code into the DOM is achieved
using data binding, either one-way or two-way. Observing these design patterns leads to an interface
that is modular, easily modifiable and extensible, containing properly encapsulated data.

Standard UI elements in a consistent design language have been retrieved from the Polymer Elements
repository. Since this repository was missing a range slider with two knobs for specifying minimum
and maximum values, this component was retrieved from another open source repository5.

Multiple JavaScript libraries are used for single visualizations within the system. Chart.js is used to
display the dynamic radar chart. Its data interface has been wrapped and the component itself has
been embedded in a Polymer component. Palette.js is used to create high-quality color palettes,
of which each model is assigned a color. Finally, color scales for heat maps are created using
Chroma.js.

5.2 System Architecture

The system’s architecture is split into two parts, a server and a client. An overview of how these
parts are connected can be seen in figure 5.1.

Advis is implemented as a highly customized plugin for TensorBoard. When the system is started, a
logdir is specified using a command line parameter. This directory contains all user data, consisting
of models, datasets, and distortions. The system launches a server that reads this data and sets up
a set of routers. Each of these routers has a specific set of features, such as retrieving an image
from a dataset, running a model to predict the class of an input image or higher-level operations
like calculating model performance metrics, comparing activation matrices or creating confusion
matrices. A cache component stores all kinds computation results for faster access at a later time.
The contents of this cache are persisted to disk periodically in an asynchronous manner if not
specified otherwise. A special cache router allows eagerly caching all important data at once to
make computations during the visualization nearly immediate.

These routers offer their services through an HTTP Application Programming Interface (API),
returning data in JavaScript Object Notation (JSON). Due to this decoupled architecture, clients
can use the information retrieved through the backend in any way they desire. The routes provided
by the backend are documented in section A.1.

The frontend accesses visualization data by querying these routes. The UI itself consists of a
large array of nested decoupled components as seen in the schematic in figure 5.1, each of them
containing their own build target, HTML content description, style sheet, and TypeScript code.

5https://github.com/IftachSadeh/paper-range-slider
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Figure 5.1: A high-level view of the system architecture of Advis.
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5.3 Data Processing

Special modules include a set of shared configuration constants, icons, styles, libraries, and a highly
customized graph view component, originally proposed by [WSW+18], that allows encoding further
information using node color scales.

5.3 Data Processing

The data processing within the system’s architecture had to be carefully considered in order to
achieve the goal of enabling users to apply Advis for all kinds of tasks involving transforming input
data for DL models. Models, distortions, and datasets available within the system had to be flexible
and extensible. A straight-forward way of allowing this kind of flexibility was by letting users define
their own elements using Python modules that are then read and evaluated by the system. With this
approach, users can rely on any library, data base or code snippet they desire.

Upon starting the system, the plugin creates managers for models, datasets, and distortions. These
managers read and instantiate all modules within the working directory, making them accessible
to be used for creating visualizations. Furthermore, Advis delivers some preset modules when
started on an empty working directory. These include a set of state-of-the-art models with popular
evaluation datasets, as well as some image distortions. Models and datasets have been reformatted
to be compatible with Advis using the external demo data repository, with models being initialized
using the Slim infrastructure [GS16]. These presets can be used as a template for custom modules,
for demonstrating the system, and for initial exploration.

The structure of each individual module type and the presets included within Advis will be described
hereafter.

5.3.1 Models

The main data of models is contained within their trained checkpoint, which has to be available
in the standard TensorFlow format. This model is then loaded and evaluated. Furthermore, every
node within the computation graph whose activations should be visualized is annotated with a set
of tensor transformation operations, creating image slices from activation tensors. After a model
has been loaded and annotated for the first time, the final computation graph is cached to speed up
later system starts.

Models are Python modules containing the following functions:

• get_display_name(): Returns a human-readable name of the model.

• get_version(): Returns a version number of the model. This has no actual effect on the
visualization but can be used to distinguish between different iterations of the same model.
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Name Description

VGG 19 Very deep network proposed by Simonyan et al. [SZ14], trained checkpoint
retrieved from http://download.tensorflow.org/models/vgg_19_2016_08_28.

tar.gz.
Inception V1 Modular convolutional network proposed by Szegedy et al. [SLJ+15],

trained checkpoint retrieved from http://download.tensorflow.org/models/

inception_v1_2016_08_28.tar.gz.
Inception 5h Inception model optimized for inference, trained checkpoint retrieved

from https://storage.googleapis.com/download.tensorflow.org/models/

inception5h.zip.
Inception V3 Improved Inception architecture proposed by Szegedy et al. [SVI+16],

trained checkpoint retrieved from http://download.tensorflow.org/models/

inception_v3_2016_08_28.tar.gz.
ResNet V2 Residual network proposed by He et al. [HZRS16b], trained checkpoint re-

trieved from http://download.tensorflow.org/models/resnet_v2_101_2017_

04_14.tar.gz.
MobileNet V1 A light-weight network proposed by Howard et al. [HZC+17], trained check-

point retrieved from http://download.tensorflow.org/models/mobilenet_v1_

2018_02_22/mobilenet_v1_1.0_224.tgz.

Table 5.3: Models that are included as preset modules. For an overview of the performance of these
models, please refer to table 5.4.

• get_checkpoint_directory(): Returns the directory where the model’s checkpoint has been
saved using the standard tf.train.Saver6. The input has to be a floating point placeholder with
the shape [image_size, image_size, 3]. The output of this function has to be a dictionary
with the elements type (which should be custom for non-preset models) and directory which
points to the checkpoint.

• get_dataset(): Returns the identifier of a dataset that this model works with.

• get_input_image_size(): Returns the size of quadratic input images as an integer. Has to
match the input placeholder’s shape.

• get_input_node(): Returns the name of the node that the input image should be fed into.

• get_output_node(): Returns the name of the node that contains the model’s final classification
prediction.

• annotate_node(node): Should return True if and only if the given node is of interest and can
be visualized. Most of the time, this includes nodes with operations such as Conv2D, Relu,
MaxPool, AvgPool or ConcatV2.

6https://www.tensorflow.org/api_docs/python/tf/train/Saver
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5.3 Data Processing

Name Proposal Accuracy Precision Recall F1 Score
Top-1 Top-5

VGG 19 [SZ14] 68.11% 87.86% 68.69% 68.11% 68.69%
Inception V1 [SLJ+15] 67.16% 87.72% 68.02% 67.16% 66.71%
Inception 5h N/A 66.70% 87.37% 68.09% 66.70% 66.40%
Inception V3 [SVI+16] 76.02% 92.85% 76.72% 76.02% 75.71%
ResNet V2 [HZRS16b] 70.53% 89.58% 70.88% 70.53% 70.05%
MobileNet V1 [HZC+17] 66.36% 86.93% 68.38% 66.36% 66.07%

Table 5.4: Models included in Advis, ordered by date of proposal or availability. The values of
the reported performance metrics have been calculated using Advis by evaluating all
models on all 50,000 images from the ILSVRC validation set [RDS+15], cropped to
their biggest possible central square and then resized to fit the input dimensions of each
respective network.

The following six exemplary CNN’s for image classification are included within the presets of Advis
and ready for analysis. They are listed in table 5.3. All trained networks have been retrieved from
[GS16] with the exception of Inception 5h, whose trained configuration has been retrieved from
[Ten15]. An overview along with performance metrics can be found in table 5.4. The following
section will outline these model’s architectures and peculiarities.

VGG 19

The VGG architecture [SZ14] is characterized by an increased network depth with more convolu-
tional layers. This depth is made feasible by only using small convolution filters with a receptive
field of up to 3 × 3. Its architecture includes a stack of convolutional layers with these small filters
and Max Pooling. These convolution layers are followed by three fully-connected layers, with the last
one containing an amount of channels that equals the desired amount of classes to be categorized.
The final prediction is created by the following Soft Max layer. All hidden layers also contain
ReLU’s.

This network is available in five slightly different configurations, with the last one containing the
most weight layers. This configuration with 19 weight layers is used in Advis.

VGG’s architecture is appealingly straight-forward and achieves a good performance, but this comes
at the price of computationally expensive evaluations.

Inception V1

The first iteration of the Inception architecture [SLJ+15] aims to increase the network’s depth and
width while keeping the computational budget constant, using readily available dense convolutional
components.
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Its architecture is made up of stacked Inception modules. These consist of parallel 1 × 1, 3 × 3,
and 5 × 5 convolutions, each using rectified linear activation and dimensionality reduction where
needed in order to reduce computational load, as well as Max Pooling layers. After each module,
the outputs of all parallel branches are concatenated. Occasional Max Pooling layers between stacks
halve the grid resolution. For better memory efficiency during training, these modules are only
used at layers further down the network’s depth, with earlier layers using a standard convolutional
setup.

Szegedy et al. [SLJ+15] create a particular instance of this architecture and dub it GoogLeNet, which
is equivalent to what is called Inception V1 within this thesis. It adopts the architecture described
before and ads an Average Pooling layer before the classifier. Moreover, auxiliary classifiers, made
up of smaller convolutional networks on top of the output of Inception modules, are positioned in
the middle of the network. Their output is considered during loss calculation and used to combat
problems of effectively back-propagating gradients through all layers of this deep network, improving
convergence during training.

Inception 5h

The Inception 5h model has nearly no documentation but its topology is very similar to Inception
V1. It has been optimized for inference, evaluates input images fast and its saved training data is
smaller. In turn, it trades these improvements for a slightly worse accuracy.

This model has been included in Advis because it has been used in the code accompanying the
proposal for creating universal perturbations [MFFF17]. Therefore, it is of interest to find out how
it performs on adversarial input data and how this performance compares to that of Inception V1.

Inception V3

The Inception V3 model [SVI+16] aims to improve the performance of the first iteration described
above while keeping the computational cost low. It does so by improving some of the original
topologies. Most notably, expensive convolutions with larger patch sizes are replaced by multiple
chained smaller ones. For example, a 5 × 5 convolution can be replaced by two 3 × 3 convolutions.
The computational cost freed up by using this technique can be invested into larger filter banks.
Furthermore, the original architecture used convolutions with a stride of 1 before pooling which
again is computationally expensive. Inception V3 introduces a technique to reduce grid sizes more
efficiently.

Moreover, so-called “label-smoothing regularization” [SVI+16] is introduced. By estimating the
marginalized effect of label dropout during training, the classifier layer can be regularized.

Finally, the fully connected layer of the auxiliary classifier is also batch-normalized, instead of just
the convolutions.
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ResNet V2

When increasingly deep networks start converging, their accuracy can get saturated and start
degrading rapidly. To solve this problem, deep residual networks [HZRS16a] were proposed that
explicitly let layers fit a residual mapping by introducing so-called shortcut connections that perform
identity mappings, skipping over one or more layers. With this idea in mind, residual units can be
constructed that allow input to either flow through a weight layer, a batch-normalization layer, a
ReLU, another weight layer and batch-normalization layer and then into an element-wise addition
operation and from there on through another ReLU to the output, or the input can skip the previous
layers and flow directly into the addition operation. By stacking these residual units a deep residual
network can be constructed.

The included ResNet V2 [HZRS16b] improves upon this idea by establishing a direct path for
propagating information, both forward and backward, through the entire network instead of only
within the residual units. This goal is achieved by replacing the final ReLU function with an identity
function and altering the order of operations within the unit. In the proposed unit, input can either
flow through a batch-normalization layer, a ReLU, a weight layer, another batch-normalization
layer, ReLU, and weight layer into an element-wise addition operation, or skip these steps and flow
directly to the addition operation. In this order, batch-normalization and ReLU can be understood
as the pre-activation of the weight layers instead of post-activation as in the original architecture.

This new architecture has two advantages: Optimization becomes easier and batch-normalization
improves the regularization of the model, reducing overfitting.

MobileNet V1

The main goal of MobileNet V1 [HZC+17] is to build deep but light-weight neural networks
that can be used in mobile applications. Standard convolution operations filter features based on
convolutional kernels and then combine them to create a new representation. However, these filtering
and combination steps can be separated. By factorizing such an expensive standard convolution
into a depth-wise convolution and a 1 × 1 point-wise convolution, computation and model size can
be reduced.

The first layer of the architecture of MobileNet V1 is fully convolutional. It is followed by multiple
layers that make use of the described separated convolutions. Finally, an Average Pooling layer
reduces the spatial resolution to 1, feeding into a fully-connected layer which in turn outputs
its classification through a Soft Max layer. All of these layers, with the exception of the final
fully-connected and output layer, are followed by a batch-normalization layer and a ReLU unit.

On top of that, the architecture defines two hyper-parameters that can be set to trade off latency and
accuracy while instantiating a network: The width multiplier α thins the network uniformly at each
layer and the resolution multiplier ρ implicitly reduces the internal representation’s resolutions by
setting the resolution of the input image. The model included in Advis uses the base configuration
that offers the best performance, with α = ρ = 1.
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Name Description

NIPS 2017 1,000 input images7 from the NIPS 2017 Adversarial Learning Challenges
[KGB+18].

ILSVRC 2012 50,000 input images8 from the ImageNet Large Scale Visual Recognition Chal-
lenge 2012 [RDS+15].

Table 5.5: Datasets that are included as preset modules. Every image in both datasets is annotated
with one of the 1,000 ImageNet [DDS+09] categories. The category hierarchy has been
reconstructed from the WordNet [Mil95] corpus, using the Natural Language Toolkit9.

5.3.2 Datasets

Datasets mainly consist of a list of labeled input images, a list of all classes as well as a nested JSON
tree representing a hierarchy of all classes to be used for confusion matrices. All included preset
datasets are listed in table 5.5. They are represented by Python modules containing the following
functions:

• get_display_name(): Returns a human-readable name of the dataset.

• get_categories(): Returns an ordered list of all available classification categories, with list
indices corresponding to the number of each respective category. Usually, this list is loaded
from a separate JSON file.

• get_category_hierarchy(): Returns a user-defined category hierarchy which will be used to
display confusion matrices in a manageable way even if a lot of categories are present. This
hierarchy is given as a tree of nested JSON objects, each with a name and a list of children
objects. Leaf nodes should correspond to actual categories and therefore have no children

but a category index. Usually, this hierarchy is loaded from a separate JSON file.

• get_all_images(): Returns a list of all images in the dataset. Each image is described by
a dictionary with the elements id (a unique identifier), index (the image’s index within
the dataset), path (the absolute path to this image), categoryId (the ground-truth category
number), and categoryName (the name of the ground-truth category). Again, most of this
information is usually loaded from a separate JSON file and enriched with absolute file paths
within the script.

5.3.3 Distortions

Distortions receive an image and map it to an output image. They define a set of parameters that
allow configuring the distortion. For each distortion step, they are passed a configuration containing
current parameter values. This enables the creation of multiple distorted version of a single input
image if ranged parameters are available. All included preset distortions are listed in table 5.6.

7https://www.kaggle.com/google-brain/nips-2017-adversarial-learning-development-set
8http://www.image-net.org/challenges/LSVRC/2012/index
9http://www.nltk.org
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5.3 Data Processing

Name Description

Adversarial Add a pre-computed universal adversarial perturbation [MFFF17] to the input
image.

Crop Crop the input image according to a zoom factor and vertical and horizontal
position range.

Noise Add a configurable amount of random noise to an image.
Rotate Rotate an image according to a configurable rotation range, symmetrically filling

in visible background parts.
Skew Skew an image by a configurable ranged amount, symmetrically filling in visible

background parts.
Style Transfer Apply a painting style to an image with the fast style transfer technique proposed

by Johnson et al. [JAF16] and Ulyanov et al. [UVL16]. The network performing
the style transfer has been trained using the also included VGG 19 model.
Model checkpoints have been retrieved from https://github.com/hwalsuklee/

tensorflow-fast-style-transfer and include “La Muse” by Pablo Picasso,
“Rain Princess” by Leonid Afremov, “The Shipwreck” by J. M. W. Turner, “The
Scream” by Edvard Munch, “Udnie” by Francis Picabia, and “The Great Wave
off Kanagawa” by Katsushika Hokusai.

Table 5.6: Distortions that are included as preset modules.

Distortions are Python modules containing the following functions:

• get_display_name(): Returns a human-readable name of the distortion.

• get_parameters(): Returns a list of dictionaries, each describing a parameter. Parameters
have to define a unique name, a human-readable display_name, a default value, and a type.
Parameter types include:

– constant: A numeric value that will stay the same for each distorted image. The
parameter has to also define minimum and maximum values as constraints.

– range: A range (lower and upper bounds) from which a numeric value will be sampled.
The parameter has to also define minimum and maximum values as constraints.

– enum: An enumeration of which the chosen option will be used for each distorted image.
The parameter has to also define a list of options.

• distort(image, configuration): Returns a distorted version of the input image which is
supplied as a NumPy array of shape [width, height, 3] with values between 0 and 1. Any
library or operation desired by the user can be used here. Current values of the previously
defined parameters are supplied via the configuration dictionary, which maps parameter
names to their values.

• get_icon(): Returns a Scalable Vector Graphics (SVG) path as a string which will be used as
the distortion’s icon within the UI. Icons should be quadratic with all coordinates between 0
and 24 pixels. This function is optional. If it is not defined, a generic placeholder icon will
be used.
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5 Implementation

Figure 5.2: The main screen of Advis, with the sidebar to the left and the main view in the center,
divided into the network graph at the top and the activation visualization at the bottom.

5.4 Views

When the system has been started and its address has been opened in a browser, a web interface
displays a variety of visualizations. An overview of the main screen can be seen in figure 5.2. It
is divided into three main views, a sidebar to the left, a network graph in the top right, and an
activation visualization in the bottom right. More visualization views can be accessed via buttons
in the interface. The individual parts of the interface will be described hereafter.

5.4.1 Sidebar

The sidebar has a light-gray background and can be seen in the left part of figure 5.2. It is the
main starting point of the visualization. The top part of the sidebar contains two lists, one with
all distortion modules and one with all models. The distortion list shows all available distortion
modules and their icons. The user can select a subset of these distortions that will be used in later
visualizations. An edit button at the bottom opens the distortion configuration dialog described in
section 5.4.7.

The model list shows all models and their versions. Every model displays the average change of
their performance metrics between original input images and input images perturbed by the set of
selected distortions. Clicking on the metrics of one of these models opens a dialog with detailed
model performance metrics, described in section 5.4.6. Clicking on a model list item itself makes
the network graph display the model’s architecture.
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5.4 Views

Model items can be toggled using checkboxes to their left. Active model items are assigned a color
and displayed in the radar chart at the bottom. In this radar chart, model’s change profiles between
original and distorted input data for a specific metric are displayed in their respective color. Detailed
information is available when hovering over a node. The node corresponding to the currently
selected distortion for the activation visualization described in section 5.4.3 is highlighted.

Finally, the cog at the bottom left reveals a settings dialog for configuring the sidebar. Users can
select the performance metrics that should be displayed in the model list and the metric whose
changes should be represented in the radar chart.

5.4.2 Network Graph

The network graph displays the computation graph of the model that has been selected. For a better
overview, nodes are grouped in multiple nested levels of sub-groups. Users can expand sub-groups
by double-clicking on them.

Most computation graphs contain lots of clutter in the form of implementation-specific nodes, such
as nodes dedicated to loading input images or trained values. They do not have activations that
can be visualized. For this reason, their activation similarity between original and distorted input
also cannot be computed. They would appear grey in the network graph. By default, this clutter
is combated by simplifying the graph. All nodes that have no activation visualization annotations
attached as specified in section 5.3.1 are iteratively removed while the system is being launched.
The edge topology is retained during this process. If a node from this directed computation graph
is removed, edges between its input nodes and its output nodes are inserted. This simplification
is performed on the Protobuffer message containing the graph structure and is cached for later
launches. Within the UI, the user can switch between the simplified graph and the full graph. Nodes
that are not annotated appear grey in the full graph, and node value aggregation only considers child
nodes that actually have values.

Nodes are colored according to their similarity in activation between normal and distorted input
images. Each leaf node within the simplified hierarchical computation graph that is displayed in the
network graph view corresponds to a computation operation that has been outfitted with further
operations that extract their activation tensors. This activation tensor extraction is the first step for
further operations transforming the activations into greyscale images for the activation visualization
in section 5.4.3.

The computation graph can be executed within TensorFlow in such a way that evaluates the activation
extraction operations for a specific input image. In order to calculate node similarity values, the
system retrieves a configurable amount of input images from the dataset associated with the model
that is displayed in the network graph. It then iterates through all of these input images and through
all distortions. The system extracts the activation of all nodes for all original input images and all
distorted versions of these images. For each pair of an original input image and its distorted version,
the cosine similarity of their extracted node activations is computed. This yields a value between
−1 and 1 that is invariant to the size and magnitude of activation tensors. Instead, it quantifies
insightful activation differences. This value is then normalized to be between 0 and 1 and multiplied
by 100 to reflect a similarity percentage. Low values represent large activation differences between
original and distorted image versions, while high values represent high similarities. By default,
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(a) Minimum Aggregation

(b) Maximum Aggregation

(c) Average Aggregation

Figure 5.3: Different aggregation options for the node activation similarity visualization. The
legend in the top left displays the range of activation similarity values to the right and
the value of the currently selected node to the left. Different aggregation methods can
be preferable for different tasks.

this operation is repeated for all selected distortions and a configured amount of images within the
dataset. The activation similarities for each leaf node are then averaged and used to color the node
using a configurable color scale.

The color of each parent node is recursively aggregated from all of their child nodes. The legend in
the top left displays the color scale, with the present range of minimum and maximum similarity
values to the right, and the similarity value of the currently selected node to the left. Clicking on a
leaf node displays its activations in the activation visualization at the bottom as described in section
5.4.3.

62



5.4 Views

(a) Side by Side (b) Swipe

(c) Crossfade (d) Difference

Figure 5.4: Different comparison views for activation visualizations.

By clicking the cog in the bottom left of the network graph, a settings dialog can be opened that
allows the user to configure the view. They can switch between displaying the simplified graph or
the original one and specify a color scale for node activation differences as well as an aggregation
method for calculating activation difference values for parent nodes. Possible options are the
minimum of all child values, the maximum or the average. These options determine how similarity
values for higher-level nodes in the graph representation should be aggregated from child nodes.
Their effect can be seen in figure 5.3.

Furthermore, users can specify whether a configured amount of input images in the dataset or
only the single selected input image should be used for calculating activation differences. The
former allows insights about the average activation similarities for the whole dataset, while the
latter focusses on a single sample. Similarly, users can select whether all active distortions from the
distortion list or only the selected one should be used for this calculation. For the former option,
activation similarities for all distortions selected in the distortion list will be averaged. Finally, users
can toggle the visibility of the color scale legend, of a box with detailed node information upon
selection, and of a mini map of the graph in the bottom right.

5.4.3 Activation Visualization

The activation visualization view in figure 5.4 displays the selected layer’s activations for both the
original input image and the average activations for all of its perturbed versions. The input image
and distortion that should be used for the visualization can be selected using the two dropdown
menus above the visualization. Individual tiles are sized and arranged in a way that is optimal for
the available screen space. Clicking on a tile opens a larger view of it in a new dialog, along with
some additional information. Within this larger view, a single tile can be compared using the same
four comparison views that are used for activation maps.
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Figure 5.5: A dialog for selecting an input image using an enhanced confusion matrix.

Using the tabs at the bottom, one of four comparison views can be selected to ease the exploration
of differences between the two activation maps. The side by side view in figure 5.4a simply displays
both maps next to each other. The swipe view in figure 5.4b overlays both visualizations and lets
the user control the visibility of them by moving a slider. Parts of the overlay left of the slider
will display the original activation map, parts to the right will display the distorted activation map.
Similarly, the crossfade comparison in figure 5.4c employs a slider that fades between both activation
maps. Finally, the difference comparison in figure 5.4d calculates the per-pixel difference of both
maps and displays them as a heat map, with its color scale to the left of it. The color scale that
should be used can be selected by clicking on the legend.

5.4.4 Input Image Selection

The input image selection dialog as seen in figure 5.5 enables users to make an informed decision
on which one of the often large amount of input images to select.

This goal is achieved by employing a confusion matrix. When zoomed out, it acts as an overview
and displays a heat map of its cells. To explore the matrix, the user can zoom in and pan, while
the column and row headers fluently and interactively display the class hierarchy as an icicle plot
[KL83], down to individual categories. As the user zooms in, the labels to the left and on the top
of the matrix seamlessly move outwards, revealing labels further down in the class hierarchy. The
outer rectangle of both column and row headers contextualize the current viewport by displaying the
path through the hierarchy to get there. When zoomed in far enough, grid lines and individual cell
values appear. The confusion matrix at multiple zoom levels can be seen in figure 5.6. Hovering
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5.4 Views

(a) Low Zoom Level (b) Medium Zoom Level (c) High Zoom Level

Figure 5.6: The interactive confusion matrix at different zoom levels. As the user zooms in, the
icicle plot representing the class hierarchy moves outwards and becomes more detailed.
At high zoom levels, grid lines and individual cell values fade in. Best viewed in
electronic format.

(a) Original Confusion Matrix (b) Confusion Matrix Difference (c) Distorted Confusion Matrix

Figure 5.7: The confusion matrix can be set to one of three modes. The original and distorted mode
visualize cell values using a singe-hue blue color scale, the difference mode visualizes
cell value differences between the two using a diverging color scale. Best viewed in
electronic format.

over a cell displays its actual and predicted class as well as its value. Hovering over a category label
reveals the path through the hierarchy tree to get to it. Moreover, precision and recall values for
columns and rows are displayed analogously.

This confusion matrix is available for original input images, distorted ones and the delta between
the two using the tab bar below. Original confusion matrices are calculated by making the model
predict all images within its associated dataset. Using the known ground-truth label and the retrieved
predicted label, the value of the confusion matrix cell corresponding to this actual and predicted class
is incremented for each predicted image. Distorted confusion matrices are computed analogously,
but input images are distorted before making the model predict their class. Finally, difference
confusion matrices are created by computing both the original and distorted confusion matrix and
subtracting the values of the latter from the former in a cell-wise manner.
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(a) The colors of the diagonal of correct classifi-
cations overpower outlying misclassifications.

(b) When the diagonal is hidden, interesting
block-like misclassification patterns along the
diagonal can be made out whose bounds cor-
respond to higher-level nodes in the classifi-
cation hierarchy. Similarly to the findings by
Alsallakh et al. [AHH+14], this indicates that
the model is able to distinguish higher level
concepts but has trouble with fine-grained
classification.

Figure 5.8: The user can specify whether correct classifications along the matrix diagonal should
be shown in the color map. Best viewed in electronic format.

After the matrix data has been calculated by the backend, the frontend displays it as a heat map. For
the original and distorted confusion matrices, cells are colored according to a single-hue color scale
that is white for the cell value of zero and blue for the maximum value within the matrix. For the
difference matrix, a diverging color scale is used. It colors cells with the value zero white, while
negative values are assigned a red hue and positive ones are assigned a blue hue according to their
absolute values. The resulting color maps can be seen in figure 5.7.

In functional classifiers, the diagonal of the confusion matrix containing correct classifications
will contain the highest values by far. This might cause outliers and patterns outside of correct
classifications to become barely visible, although these are the observations that are actually
insightful. To circumvent this problem, users can click on the cog to the bottom left of the matrix
and open a settings dialog. Within this dialog, they can choose to exclude the matrix diagonal from
the heat map. By doing so, color scales will be adjusted using only maximum and minimum values
of cells that are not on the diagonal. Cells on the diagonal will display their values when zooming
in but appear white. This exclusion can reveal interesting patterns, as seen in figure 5.8.

While interacting with the confusion matrix, the list of input images to the right updates as the
viewport changes to represent the samples in all visible cells. Alternatively, the user can shift-click
to create a fixed selection rectangle. This list of input images can be sorted by their loss of certainty
in the ground-truth label between original and distorted input images, in ascending or descending
order. Alternatively, they can be sorted by their indices. Each item in the input image list shows a
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5.4 Views

(a) Average predictions for multiple rotated versions
of the input image.

(b) Predictions for a single image, perturbed using
the style transfer distortion.

Figure 5.9: Class predictions of a model on an original input image and its distorted versions.

thumbnail of the image. Depending on the selected matrix mode, this thumbnail shows either the
original input image or its distorted version. Moreover, each item displays its actual class as a bold
headline and its predicted class as a caption. When the original matrix mode has been selected,
these captions will show the model’s predictions on original input images. Otherwise, they will
show its predictions on the image transformed by the chosen distortion. At the bottom of each item,
three bars indicate the certainty for the original and distorted input image respectively as well as
the loss of certainty. Additional information and exact values can be retrieved from tooltips upon
hovering. The list itself is populated dynamically while scrolling and only renders items within the
current viewport, speeding up the visualization considerably.

Clicking on an item in the input image list highlights it as selected. When the input image dialog is
closed, this image is used as the new input for visualizations.

5.4.5 Image Prediction

Clicking on the three bars between the input image and distortion selector in the main screen opens
a dialog that shows the model’s predictions on both the original and distorted input image, both
of which are shown above the predictions. The predictions themselves are sorted by certainty and
displayed as a list of bar charts. The label of the ground-truth class is highlighted using its color.

This dialog can either show predictions of an input image and its single distorted version as seen in
figure 5.9b or the average predictions of multiple distorted versions as seen in figure 5.9a. Clicking
on the distortion preview opens another dialog with a list of all distorted versions. Within this dialog
in figure 5.10, thumbnails of distorted versions are shown along with a bar at the bottom representing
the model’s certainty for the ground-truth label. The list can be sorted by certainty, image index
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Figure 5.10: Prediction certainties for multiple distorted versions of an input image.

or by any of the ranged parameters present in the selected distortion. Each image’s value of the
variable that is used for sorting is displayed in the top right of the thumbnail. Clicking on one of
these distorted versions closes the dialog and shows its predictions in the previous dialog.

5.4.6 Detailed Model Performance

By clicking on the performance metric of a model in the model list, a dialog can be opened that
contains detailed values for all performance metrics. This dialog, as seen in figure 5.11, includes
baseline values for undistorted input images, as well as values for different distortions and an average
value for all distortions along with indicators that show by how much they differ from the baseline
performance.

5.4.7 Distortion Configuration

Distortion modules can define parameters that can be configured by the user. The dialog seen in
figure 5.12 provides an interactive and intuitive interface for adjusting these parameters.

Individual distortion modules can be selected from the list to the left. Subsequently, all of their
configurable parameters are shown in the center. These parameters can be constants, configured by
using a slider, ranges, configured by using a ranged slider, or enumerations, configured by using
a group of radio buttons. After any value has been changed, the distortion preview immediately
updates, showing four exemplary distorted versions of an input image.
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Figure 5.11: A dialog with detailed performance metrics for a single model.

Figure 5.12: A dialog for configuring the parameters of individual distortion modules.
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Distortions whose parameters have been modified are marked by a star and italic title text in the list.
Clicking apply persistently saves the values that have been selected and invalidates all cached data
that relies on distortions that have been changed. Furthermore, the user has the option to rebuild
this portion of the cache. If they decide to do so, another dialog with a progress bar indicating the
caching progress shows up.
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6 Use Cases

Advis has been developed with the focus of supporting a wide array of applications, enabled by the
support of highly flexible modules for models, datasets, and distortions.

This chapter will spotlight a selection of usage scenarios, describing how machine learning applicants
and researchers might adopt the system in order to gain valuable insights. The use cases rely on
preset models (see table 5.3), datasets (see table 5.5), and distortions (see table 5.6). Whenever a
user starts Advis on an empty working directory, all of these preset modules are loaded into the
directory for demonstration purposes. Models and datasets had to be converted into a compatible
format before they could be included. This conversation process was completed using the separate
advis-demo-data codebase.

6.1 Choosing a Model for a Specific Task

Alice is a software engineer creating a mobile application that allows users to take pictures of food,
upload them to their profile and share them with friends. During the process of creating a post,
users of her application have to specify what kind of food they have photographed. Since this
task can be tedious and boring, Alice would like to streamline the process by offering users a few
suggested labels they can choose from. She knows that for the task of finding appropriate labels for
an individual image, DL models can be a good choice. However, Alice is not a machine learning
expert and would like to use a model that already exists. She decides to use Advis to compare
models and select the one that suits her task the best, using all preset models as potential options.

She creates an evaluation dataset using some images from her application that have been manually
annotated. She creates a directory with all images and a JSON file connecting image file names
with their respective categories. Using this data, she creates a Python module for the dataset and
puts it into the working directory of Advis.

On top of that, Alice knows that dishes in the images uploaded by her users can be slightly rotated or
cropped. Taking images using a smartphone in low-light conditions like restaurants also introduces
noise into the photographs. Fortunately, all of these distortions are available as presets in Advis.

With all modules in place, Alice starts Advis. First of all, she tweaks the configuration of the
three distortions she is interested in until the resulting distorted versions are similar to the images
uploaded by her users. The live distortion preview helps her in achieving this task.

After applying the changes she has made to the distortion configurations, the system automatically
evaluates all models on her input data set. Because Alice aims to show five options to her users, she
opens the sidebar options and configures it to display each model’s top 5 accuracy change in the
model list. Finally, she selects the crop, rotate, and noise distortions from the distortion list.

71



6 Use Cases

Figure 6.1: A model list displaying the robustness of individual models to a user-defined selection
of distortions, using metrics specified by the user.

Figure 6.2: When opening the detailed model performance dialog, only distortions that have been
activated by the user are shown. Indicators show how individual distortions alter the
model’s prediction performance for different metrics.
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6.2 Analyzing the Effect of Manipulations of Input Data

Looking at the model list in figure 6.1, Alice can make out the most robust model at a glance: The
Inception V3 network only loses 11% of its top 5 accuracy. She clicks on the metric and opens the
detailed model performance values in figure 6.2, revealing an impressive 100% top 5 accuracy on
undistorted input images within her dataset. ResNet V2 comes in as a close second, with a baseline
accuracy of 98% and a drop of 13% on distorted images. With all of this in mind, Alice concludes
to deploy the Inception V3 model for her application.

With little effort and programming needed, Advis enabled Alice to comprehensively compare
models on a very specific set of data and distortions, allowing her to make an informed decision on
which model to use for her task.

6.2 Analyzing the Effect of Manipulations of Input Data

A few months later, Alice’s mobile app has found a large audience of users. They are uploading many
images every day, so naturally many image labels have to be created. This has put an increasing
amount of strain on Alice’s server, so she hired Bob, who has applied DL models before and has a
deeper knowledge of their internal structure.

Bob notices that Alice has chosen the Inception V3 network for classifying images. This was a
natural choice due to its high performance and robustness to cropped, noisy or rotated input images.
However, this robustness comes at the price of a comparatively large model and long inference
times. In order to relieve Alice’s server, Bob would like to deploy the classification models on the
user’s phones themselves by packaging them into the app. As another advantage, this would allow
users to choose a label even if they have no network connection. However, Inception V3 is far too
large and computationally expensive to run on weaker phones. Instead, Bob would like to use a
light-weight model that has been specially constructed for mobile deployment.

To start his exploration, Bob launches Advis using the same set of models that Alice had used before
and the NIPS 2017 [KGB+18] dataset for evaluation. This configuration includes MobileNet V1, a
light-weight model for mobile inference. Although Bob would like to use this fast model instead of
the slow and large Inception V3, he can immediately make out the reason why Alice did not choose
MobileNet V1 from the same model list that can be seen in figure 6.1. Its average robustness to the
distortions of interest is the second lowest in the list, with its top 5 accuracy falling by 20%.

Bob would like to investigate why this model performs so badly on distorted input images. As a first
step, he compares the robustness profiles of both MobileNet V1 and Inception V3 by selecting their
checkboxes in the model list. The radar chart in the sidebar updates and shows the robustness of both
models to the three selected distortions, as can be seen in figure 6.3. Interestingly, the robustness of
both models to rotation and cropping is comparable. Only on noisy input does MobileNet V1 fare
significantly worse than Inception V3. Bob would like to know why.

He selects the MobileNet V1 model and the noise distortion by clicking on the corresponding node
in the radar chart and moves his focus from the sidebar to the central visualization view. As a first
step in his model exploration, Bob would like to know which input images cause problems for the
model’s predictions. He opens the input image selection and inspects the confusion matrix. To
get an idea of how predictions change between undistorted and noisy input images, Bob selects
the difference tab that displays how a model’s classifications have changed through the distortion
using a diverging color scale. He notices that correct classifications along the matrix’s diagonal
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Figure 6.3: A comparison of the robustness profiles of two models to cropped, rotated, and noisy
input images, with Inception V3 in blue and MobileNet V1 in red.

(a) Unmodified MobileNet V1 model exhibiting line
patterns.

(b) Re-trained MobileNet V1 model without line
patterns but with some misclassification noise,
which can be reduced through further training.

Figure 6.4: Confusion matrices for both the original and the re-trained MobileNet V1 model. Nega-
tive cell value changes between original and distorted input images are shown in red,
positive ones in blue. Best viewed in electronic format.
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Figure 6.5: The rectangle selection reveals a list of misclassified input images, all predicted to be
fountains. Input image thumbnails show distorted versions of input images along with
their actual and predicted categories.

deteriorate. On top of that, he recognizes an interesting pattern of misclassifications: Predictions
seem to be collected in a handful of bin classes which are completely unrelated to the actual labels
of samples, forming vertical lines in the confusion matrix, as can be seen in figure 6.4a. Bob zooms
into one of these lines and drags open a selection rectangle over it. He sorts the list of corresponding
input images by their ascending loss of certainty. Using this sorted list, he can easily select an
input image where the model had a high confidence of its correct classification before the distortion,
but where the prediction accuracy has deteriorated completely after adding noise (see figure 6.5).
Having made his selection, Bob closes the dialog to inspect the model’s predictions on both the
original and distorted version using the prediction dialog seen in figure 6.6. As expected, the model
produces fairly outlandish class predictions for the noisy input image.

To find out what is happening within the network, Bob inspects the computation graph. First of all,
he needs to configure the graph view to suit his needs. He opens the settings dialog using the cog in
the bottom left and configures the graph view to use only the currently selected input image and
distortion to compute node activation differences. On top of that, he chooses to aggregate activation
similarities using the minimum values of all children in order to highlight low similarity values
within higher-level nodes. After closing the settings dialog, the node visualization immediately runs
the model in the background, retrieves all similarity values and updates the node colors.

Bob expands the network graph and is presented with the expected architecture, consisting mostly
of a chain of separated depth-wise and point-wise convolutions, a main idea of MobileNet V1 for
speeding up inference. The node colors represent the similarity of activations between original
and distorted input image versions within the corresponding layer. They can provide clues as to
where a model fails. Bob knows that the model is fairly robust to rotated input images. Therefore,
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Figure 6.6: The original MobileNet V1 misclassifies a noisy input image, labeling it with entirely
wrong categories. The left half of the dialog contains a thumbnail and predictions for
the original input image, the right half contains both for the distorted input image.

he compares node similarity values for both rotated input images (see figure 6.7b) and noisy input
images (see figure 6.7a) by switching between the distortions using the dropdown menu. While
doing so, the system retains the current viewport of the graph and smoothly fades between node
colors. Inspecting these two specific sets of node activation similarities reveals similar patterns.
However, the Logit nodes that compute final predictions at the very end of the model stand out.
Not only do they have very low similarity values, but in contrast to rotated input images, the final
convolutional operation has a lower similarity value than the average pooling operation before it.

Bob suspects that the final layers of the model cannot deal with noisy values propagated through
the network. Indeed, clicking on nodes within the main part of the network reveals that they are still
able to function with noisy input as seen in figure 6.8. Their activations are neither all minimal or
maximal nor are they random noise but instead look similar to the feature extraction steps performed
on non-distorted input images. Bob concludes that the model itself is still functional on noisy input
images, but the combination of features into the final predictions is broken. He decides to re-train
the Logit layers to solve this issue.

First of all, Bob needs a training set. He decides to use the ILSVRC evaluation set [RDS+15] with
its 50,000 labeled images and makes sure that they do not contain any images that are present in his
test set. For each of these images, Bob creates a new input image by adding the same noise he uses
in Advis. He then randomly splits the resulting 100,000 images into 80,000 training images and
20,000 validation images.
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(a) Activation similarities for noisy input images. Similarity decreases from the average pooling to the
convolution operation within the Logit scope.

(b) Activation similarities for rotated input images. Similarity increases from the average pooling to the
convolution operation within the Logit scope.

Figure 6.7: Node activation similarities for individual nodes, for noisy and rotated input images.

Bob loads the original trained MobileNet V1 model but excludes all weights and biases in the Logit
scope. Instead, he trains these final layers from scratch on his training dataset using RMSprop
[TH12] for gradient descent optimization with a learning rate of 0.01 and a weight decay of 0.00004
for 3000 steps.

Finally, Bob loads his re-trained model as a new Advis module. He increases the module’s version
number to be able to easily differentiate between both models within the UI. After launching Advis,
he recognizes that his re-training has been successful. The model’s robustness to noisy input images
has doubled, as seen in figure 6.9. On top of that, the vertical line patterns in the confusion matrix
have disappeared (see figure 6.4b).

Of course, these are only intermediate results since the training parameters have been chosen
intuitively and the amount of training steps is very low for this first test because Bob did not have
access to specialized powerful hardware. On top of that, Bob might be interested in adding rotated
and cropped input images into the mix of training images. Advis will support Bob through all of
these iterative steps of improvement and fine-tuning, providing insights into where changes might
be necessary and evaluating their impact.
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Figure 6.8: Activation visualization for a layer that is situated deep in the MobileNet V1 model for
both original and noisy input images.

Figure 6.9: Robustness of both the original MobileNet V1 model and its re-trained version on noisy
input images.

Through deep network analysis, Advis enabled Bob to find the weakness of a specific model and
recognize problems at specific points in its computation graph, informing him of steps he can take
in order to debug the network.

6.3 Defending Against Adversarial Perturbations

Through Bob’s efforts, Alice’s app quickly became the largest competitor in its market. To further
its growth, Alice has decided to widen the app’s scope to images of all kinds rather than just food.
To make uploading even easier, she has done away with selectable image labels and has instead
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deployed the Inception 5h model on her server. This model is a simplified variant of Inception V1,
optimized for fast inference. When a user uploads an image, the server automatically classifies
its contents using the model’s top prediction. Other users can then explore images within these
categories or subscribe to a few of them to find corresponding images in their feeds.

Unfortunately, popularity can beget envy and rivalry. Through an informant, Alice has gathered
that Eve – her fiercest competitor – is planning on attacking her system in order to damage her
app’s reputation. As a matter of fact, shortly thereafter new images with clearly visible contents
are uploaded that are put into entirely wrong categories, cluttering her user’s feeds with posts they
are not interested in. Alice suspects that Eve might be at fault for these errors and quickly starts
investigating.

First of all, she analyzes the misclassified photos. She recognizes them from before, realizing that
they are copies of older images uploaded to the system but with very slight alterations. Eve might
have chosen this approach to make it harder for Alice to remove the images of her attack but leave
actual user content unharmed in the process. Alice compares the original and distorted images and
recognizes that the latter seem to have been created by always adding the same pattern of values
to the image pixels. This reminds Alice of a paper about universal perturbations [MFFF17] she
has read recently, where an adversary was able to fool a deep neural network by adding a barely
perceptible pattern to input images, without the need of access to the network or performing an
optimization problem for each input sample. Alice extracts the changes made to each image and
creates a new Advis distortion module that performs these same changes. She starts Advis with her
Inception 5h model and her new distortion and opens the interface.

Alice selects her adversarial distortion and immediately notices from the sidebar that her model is
very vulnerable to this attack. To find out what exactly is happening, she selects the network and
opens the image selection dialog. Within this dialog, she selects the difference confusion matrix
and notices an interesting pattern. As seen in figure 6.10, correct classifications along the diagonal
deteriorate significantly. Instead, classifications of distorted input images form a vertical line across
the confusion matrix. This pattern suggests that a large amount of completely unrelated input images
are put into one bucket class. Alice zooms in on the matrix and selects a few samples within this
line using the rectangle selection tool. As a matter of fact, she sees a large list of input images
with entirely different ground-truth labels, all predicted to be “strainers”. This result corresponds
to the aforementioned technique of universal adversarial perturbations which aims to iteratively
push samples beyond their classification regions and into bucket classes [MFFF17]. To investigate
further, Alice sorts the list and selects one with a large loss of certainty.

Closing the input image selection dialog sets the selected image as the new input sample. Alice
validates her suspicion by opening the detailed prediction dialog. As seen in figure 6.11, this dialog
reveals that the distorted input image is indeed classified as a “strainer”. The visual difference
between the original and distorted image is barely perceptible, but the model is still very confident
of its misclassification.

To investigate further, Alice takes a look at the network graph. She configures it to only use the
single selected input image and distortion method for activation similarity calculations and sets
the aggregation method to use minimal values. Interestingly, the activation similarities decrease
steadily as the input data flows through the network, as can be seen in figure 6.12. In the first
layer, the very similar adversarial version of the input image produces very similar activations,
whereas these activations start diverging increasingly until the final layer, which produces entirely
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Figure 6.10: Differences in the confusion matrices for original and adversarial input. Negative cell
value changes between original and distorted input images are shown in red, positive
ones in blue. A single vertical line becomes apparent. The input image list to the right
shows thumbnails of adversarial input images within the selection rectangle, all of
which are classified as a “strainer”. Best viewed in electronic format.

wrong predictions. The technique of optimizing universal adversarial samples [MFFF17] seems to
have been successful on her model. Alice concludes that there is a structural problem within her
network, making it vulnerable to adversarial input samples. Potential solutions for this problem
include increasing a model’s robustness through adversarial training [MMS+17] or defending against
adversarial perturbations by adapting the technique of neural network distillation [PMW+16]. As
another approach, Alice might try to detect adversarial samples from artifacts they produce within
the network [FCSG17]. However, all of these approaches require significant effort and Alice wants
to stop the ongoing surge of misclassifications as quickly as possible. Therefore, she postpones
these more profound solutions, noting that Advis will support her in evaluating whether they have
made the network more resistant.

As a quick fix, Alice collects all the insights about the characteristics of adversarial samples she has
gained through Advis. Using this knowledge, she decides to remove all recent images that have been
classified as a “strainer” and restricts new images with these characteristics from being uploaded.
With her categorization mechanism back in order, her users are happy again and Alice can start
hardening her network against adversarial perturbations.

With its highly flexible modular distortion and model system, Advis enabled Alice to find patterns
within the large-scale malfunction of her model, discovering how adversarial perturbations affect
the internal representations of her network and giving clues as to how to defend against them.
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Figure 6.11: The Inception 5h network spectacularly misclassifies an adversarial input image.

Figure 6.12: Node activation similarities within the Inception 5h network decrease steadily for
adversarial input images.
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The visualization system for deep neural networks presented in this thesis allows a comprehensive
comparison of models and their performance, focussed on the robustness of these models to input
perturbations. Insights gained by this functionality can be especially useful while evaluating how
well a model handles distorted input data compared to related models. Furthermore, it enables users
to make informed decisions on what network to use for their task.

Going beyond the comparison of robustness metrics, the system lets users dive into the internal
components of a network, analyzing how distortions affect internal representations. An interesting
input image can be selected using an interactive confusion matrix that is able to handle large
amounts of data classes. The network itself can be explored using an interactive color-coded node-
link diagram. Selecting a layer reveals its activations on the original input image and its distorted
versions, as well as a set of advanced comparison methods. Finally, users can choose to display the
model’s predictions on an individual input image and its distorted versions in detail. All of these
visualizations can be useful for gaining an understanding of how networks function and how they
react to distorted input data.

All visualizations are contained within an intuitive, consistent, and highly responsive UI. They are
implemented by an architecture that separates server-side computations and client-side visualizations,
supporting scaling the system when confronted with ever increasing model and data sizes, retaining
responsiveness.

Finally, the infrastructure lets users define their very own models, datasets, and distortion methods
in code for their specific use cases in a highly modular manner, extending the amount of potential
use cases. It includes a comprehensive set of state-of-the-art models and datasets as well as some
distortions that user can build upon. To the author’s best knowledge, this is the first system for
visualizing deep learning models that allows this range and ease of extensibility, as well as the first
system that makes use of it to visualize the impact of adversarial perturbations in a non-educational
way.

However, in its current state the system’s scope is limited to deep neural networks for image
classification. Although an interesting and lively research topic, there are many more application
fields such as object detection and different types of input data such as audio or text that is not
covered by the system. These tasks often go beyond assigning a single class to input data. Moreover,
non-feed-forward networks are not supported in the current state of the system.

Furthermore, a host of features included in related visualization systems can be useful for furthering a
user’s understanding but is missing from Advis. This includes visualizing learned model parameters
such as weights, filters or features. The display of neuron activations in high-dimensional space via
dimensionality reduction is possible through TensorBoard’s native embedding projector functionality
but could be included into the interface of Advis in a way that makes it easily accessible and
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connects it to the other visualization views. Finally, the system supports instance-based analysis
and exploration but misses out on the potential of letting users define subsets of multiple instances
that share interesting characteristics.

Fortunately, the system has been implemented with important software engineering principles like
data encapsulation, modularity, loose coupling, and maintainability in mind, so these features can
be easily implemented and integrated into the frontend in future work.
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Deep learning models are steadily gaining in both popularity and complexity. While deep neural
networks continue to break records in computer vision tasks, their internal structure and learned
representations have become opaque. This is detrimental for both researchers and applicants. The
process of building and improving networks far too often relies on guesswork and trial and error.
The resulting network is often seen as an inexplicable black box, mapping input data to the desired
output values more or less successfully.

Many research projects have set out to alleviate this problem through visualization systems and
techniques. However, none of them offer an integrated way of analyzing the impact of input data
transformations on both internal representations as well as a model’s performance. In particular, a
better understanding of the mechanics of adversarial perturbations can generate valuable insights
on how to defend against them and on the inner workings of deep neural networks in general. This
thesis set out to fill this gap.

8.1 Results

As a first step, this thesis has outlined the theoretical foundation of Visual Analytics and how it
can be useful for gaining insights into Deep Learning models. Furthermore, a comprehensive set
of visualization systems for Deep Learning has been listed and described. These systems, most
of which originate from relatively recent research, have been compared according to common
characteristics, such as the visualization’s goals, what elements of a model they visualize in what
way, and whether these visualizations take place during or after training. Finally, four specific
systems that are the closest to the topic of this thesis have been selected and described in more
detail.

The main contribution of this thesis is Advis, a visual approach for probing Deep Learning models
that goes beyond the surveyed system’s abilities in terms of visualizing the impact of input transfor-
mations. It offers both a comprehensive comparison of models and their prediction’s robustness
to input transformations as well as deeper insights into the structure of deep neural networks and
how their layer’s activations change when distorting input images. Moreover, the system’s highly
flexible architecture has been described, which includes an easy way for users to define their own
models, datasets, and distortions.

Finally, three use cases have been presented that demonstrate the usefulness of the system for gaining
insights into the impact of input transformations on deep neural networks. The first use case has
shown the system’s ability to support comparing models and their robustness to input distortions,
aiding in the selection of a network that suits a task’s specific requirements the best. The second and
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third scenario presented ways in which the system allows users a deeper look into their networks
and the impact of input distortions on their internal representations, offering support for the task of
debugging and improving networks.

8.2 Open Questions and Future Tasks

The system was able to provide valuable insights into deep neural networks and uncover intriguing
patterns within their learned representations. But despite the system’s large array of functionality,
some questions remain unanswered. These questions will have to be addressed in future work.

Possible extensions of Advis include the visualization of learned parameters, for example using
feature visualization. Adding this functionality can give users insights into the representations a
model has learned. Furthermore, model exploration based on instance subsets and bookmarked
activations or layers can be a useful extension of the present exploration based on single instances,
supporting the process of making sense of a model’s decisions and mistakes. Finally, future research
might address the question of how the scope of Advis can be widened to include Deep Learning
models from other application areas than image classification, which have different types of input
data and produce outputs that are more complex than a simple class mapping. Retrieving structured
feedback from Deep Learning experts evaluating the system will be useful for determining the future
path of development.

On top of its already present functionality, the architecture of Advis can provide a flexible and
future-proof foundation for all of these potential extensions, aiming towards the ultimate goal of
improving the understanding of the inner workings of deep neural networks.
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A.1 Routes

The backend of Advis defines a set of HTTP routes that are used by the frontend to retrieve all
necessary data. These routes, their input parameters, and their outputs are documented in this
section.

A.1.1 Models

Retrieve information about all models that have been loaded.

/models

Fetch a list of all loaded models.

Parameters: None.

Response: A list of all loaded models with their name, display name, version number, and the name
of the dataset they are associated with.

A.1.2 Graphs

Retrieve the computation graphs of models.

/graphs

Fetch the graph structure of a specific model.

Parameters:

• model: The name of the model whose graph structure should be retrieved.

• mode: Can be either full (all nodes and edges of the graph) or simplified (all nodes that
cannot be visualized are removed and their edges transferred to their parent and child nodes).

Response: A Protobuffer1 string with the graph structure of the specified model.

1https://developers.google.com/protocol-buffers/
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A.1.3 Predictions

Make models predict the class of an image and retrieve information concerning these predictions.

/predictions/single

Fetch a model’s prediction of a single input image.

Parameters:

• model: The name of the model that should perform the prediction.

• imageIndex: The index of the input image within the dataset associated with the model that
should be classified.

• distortion (Optional): The name of a distortion that should be applied to the input image
before performing the classification.

• distortionAmount (Optional): If the applied distortion should be repeatable rather than
random, this parameter defines the total amount of distorted versions that should be generated.

• distortionIndex (Optional): The index of the distorted version within the set of all versions.
Should be between 0 and distortionAmount.

• predictionAmount (Optional): The amount of predictions that should be returned. The default
value is 5. If this parameter is set to -1, all available predictions will be returned.

• onlyCategory (Optional): If only the prediction certainty of a specific classification category
should be returned, this parameter can be used to set the index of this category.

Returns: Information about the input data and potentially the distortion that has been applied, as
well as a list of predictions returned by the model with their category number, name, and certainty,
ordered by certainty.

/predictions/average

Fetch a model’s average predictions on a set of randomly distorted versions of a single input image.

Parameters:

• model: The name of the model that should perform the prediction.

• imageIndex: The index of the input image within the dataset associated with the model that
should be classified.

• distortion: The name of a distortion that should be applied to the input image before
performing the classification.

• distortionAmount: The amount of distorted versions of the input image that should be
generated.
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Returns: Information about the input data and the distortion that has been applied, as well as a list
of predictions returned by the model with their category number, name, and certainty, ordered by
certainty. These predictions have been generated by running the model on all distorted versions of
the input image and calculating the average certainty of each category.

/predictions/accuracy

Fetch some metrics about the model’s performance on a set of input images which may be distorted
if so desired.

Parameters:

• model: The name of the model that should perform the prediction.

• inputImageAmount: The amount of random input images that should be chosen from the
dataset associated with the model and used to calculate the performance metrics.

• distortion (Optional): The name of a distortion that should be applied to the input images
before performing the classification and subsequent performance metric calculation.

Returns: Information about the model and input data as well as the model’s top 1 and top 5 accuracy,
F1 score, precision, and recall when classifying the input images.

A.1.4 Confusion Matrices

Retrieve data for displaying a model’s predictions on original or distorted input images as a confusion
matrix.

/confusion/matrix/full

Create a confusion matrix with all input images and all categories within a model’s dataset.

Parameters:

• model: The name of the model that should perform the predictions.

• distortion: The name of a distortion that should be applied to the input images before
performing the classification and confusion matrix generation.

• mode: The confusion matrix generation mode. Can be either original to use predictions of
original input images, distorted to use predictions of distorted input images or difference
to perform both of the aforementioned predictions and return each cell’s difference.

Returns: The rows and columns of the confusion matrix as a two-dimensional array, its value range,
the list of labels in hierarchical ordering as well as two arrays with precision and recall values of
columns or rows.
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/confusion/matrix/superset

Create a confusion matrix with all input images and the child categories immediately below a
specific superset category within a model’s dataset. Individual cell values will be aggregated from
the bottom to the child categories.

Parameters:

• model: The name of the model that should perform the predictions.

• distortion: The name of a distortion that should be applied to the input images before
performing the classification and confusion matrix generation.

• mode: The confusion matrix generation mode. Can be either original to use predictions of
original input images, distorted to use predictions of distorted input images or difference
to perform both of the aforementioned predictions and return each cell’s difference.

• superset (Optional): The name of the superset to be used. If none is given, the most high-level
superset will be used.

Returns: Information about the input, the rows and columns of the confusion matrix as a two-
dimensional array, two arrays with precision and recall values of columns or rows, as well as a list
with the amounts of children categories of each cell.

/confusion/images/superset

Fetch all images that fall into cells within a specific superset confusion matrix.

Parameters:

• model: The name of the model that should perform the predictions for the confusion matrix.

• distortion: The name of a distortion that should be applied to the input images before
performing the classification and confusion matrix generation.

• superset (Optional): The name of the superset to be used. If none is given, the most high-level
superset will be used.

• sort: The way that the list of images should be sorted. Can be either ascending to sort by an
increasing amount of certainty change, descending to do the same but in reverse or index to
sort by image indices.

Returns: A list of all images within the cells of the specified superset confusion matrix as well as
their prediction certainties for original and distorted input.
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/confusion/images/subset

Fetch all images that fall into a subset of actual and predicted categories in the full confusion matrix.
All four parameters for defining this subset have to be given as category indices in hierarchical
order.

Parameters:

• model: The name of the model that should perform the predictions for the confusion matrix.

• distortion: The name of a distortion that should be applied to the input images before
performing the classification and confusion matrix generation.

• inputMode: Defines the confusion matrix that should be used for compiling the image list. Can
be either original to use the confusion matrix created by predicting original input images or
distorted to use the confusion matrix created by predicting distorted input images.

• sort: The way that the list of images should be sorted. Can be either ascending to sort by an
increasing amount of certainty change, descending to do the same but in reverse or index to
sort by image indices.

• actualStart: The starting ground-truth category index of the subset.

• actualEnd: The ending ground-truth category index of the subset.

• predictedStart: The starting prediction category index of the subset.

• predictedEnd: The ending prediction category index of the subset.

Returns: A list of all images within the cells of the specified subset of the confusion matrix as well
as their prediction certainties for original and distorted input.

A.1.5 Distortions

Retrieve information about loaded distortions, apply them on an input image and update distortion
parameters.

/distortions

Fetch a list of all available distortion methods.

Parameters: None.

Returns: A list of all distortion methods, with their name, display name, type, icon, and detailed
information about their parameters.
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/distortions/single

Distort a single input image and retrieve the resulting image.

Parameters:

• distortion: The name of the distortion method that should be used.

• dataset: The name of the dataset that contains the desired input image.

• imageIndex: The index of the desired input image within its dataset.

• distortionAmount (Optional): If the applied distortion should be sequential rather than
random, this parameter defines the total amount of distorted versions that should be generated.

• distortionIndex (Optional): The index of the distorted version within the set of all versions.
Should be between 0 and distortionAmount.

• parameters (Optional): If different parameter values rather than the currently active configu-
ration of the distortion should be used, they can be supplied as a JSON list. This list must
contain all parameters that are needed by the distortion. They are only used for distorting the
input image and will not change the configuration of the distortion.

Returns: The input image, distorted using the specified method.

/distortions/update

Update the parameter values of a list of distortions. After the update has been performed, all portions
of the cache concerning these distortions will be invalidated and might have to be re-cached.

Parameters:

• distortions: The JSON dictionary that maps all distortions that should be updated to their
set of new parameter values.

Returns: None.

A.1.6 Datasets

Retrieve information about all loaded datasets or retrieve individual input images.

/datasets

Fetch a list of all available datasets.

Parameters: None.

Returns: A list of all datasets, with their name, display name, and amount of images in the dataset.
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/datasets/categories/list

Retrieve a list of all categories within a dataset.

Parameters:

• dataset: The name of the dataset whose categories should be retrieved.

• ordering (Optional): The way the list of categories should be ordered. Can be index if the
categories should be ordered in the way they appear in the list or hierarchical if they should
be ordered in the way they appear in the category hierarchy. Defaults to index.

Returns: A list of all categories within the dataset in the specified order.

/datasets/categories/hierarchy

Retrieve a hierarchy of all categories within a dataset.

Parameters:

• dataset: The name of the dataset whose categories should be retrieved.

Returns: Hierarchically nested dictionaries of all categories within the dataset.

/datasets/images/list

Fetch a list of all input images within a dataset.

Parameters:

• dataset: The name of the dataset whose images should be retrieved.

Returns: A list of all images within the dataset, with their index, ID, ground-truth category number,
and category name.

/datasets/images/image

Fetch a single input image from a dataset.

Parameters:

• dataset: The name of the dataset that contains the desired input image.

• index or id: Either the index of the image within the dataset or its ID.

Returns: The image as specified by its index or ID.
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A.1.7 Layer

Retrieve visualizations of activations within a single model layer that appear when the model is
used to classify an input image.

/layer/single/image

Fetch the activation visualization of a single slice within a single network layer of a model.

Parameters:

• model: The name of the model that contains the layer that should be visualized.

• layer: The name of the layer which corresponds to its TensorFlow node name.

• imageIndex: The index of the input image within the dataset associated with the model.

• unitIndex: The index of the slice whose activation visualization should be retrieved.

• distortion (Optional): The name of a distortion that should be applied to the input image
before being fed into the model.

• imageAmount (Optional): The amount of distorted versions that should be created and fed into
the model. The resulting visualization will be the average of the activations on all distorted
versions. This parameter is only needed if a distortion has been specified.

Returns: The activation visualization image of the specified slice when the model is run on the
specified input image.

/layer/single/meta

Fetch meta information about a network layer which can be visualized.

Parameters:

• model: The name of the model that contains the layer that should be visualized.

• layer: The name of the layer which corresponds to its TensorFlow node name.

• imageIndex: The index of the input image within the dataset associated with the model.

• distortion (Optional): The name of a distortion that should be applied to the input image
before being fed into the model.

• imageAmount (Optional): The amount of distorted versions that should be created and fed into
the model. The resulting visualization will be the average of the activations on all distorted
versions. This parameter is only needed if a distortion has been specified.

Returns: The amount of slices within the resulting visualization.
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/layer/composite/image

Fetch the composite activation visualization of all slices of a network layer which can be visualized.
In a composite activation visualization, the single visualizations of all slices are combined into a
collage in a grid-like fashion. This is done in a way that ensures that the final collage’s size matches
a desired width and height. For example, the width and height might be specified as the size of a
frontend container that should display the visualization in an optimal manner.

Parameters:

• model: The name of the model that contains the layer that should be visualized.

• layer: The name of the layer which corresponds to its TensorFlow node name.

• imageIndex: The index of the input image within the dataset associated with the model.

• width: The desired width of the resulting composite visualization.

• height: The desired height of the resulting composite visualization.

• distortion (Optional): The name of a distortion that should be applied to the input image
before being fed into the model.

• imageAmount (Optional): The amount of distorted versions that should be created and fed into
the model. The resulting visualization will be the average of the activations on all distorted
versions. This parameter is only needed if a distortion has been specified.

Returns: The resulting composite activation visualization image.

/layer/composite/meta

Fetch meta information about the composite activation visualization of all slices of a network layer
which can be visualized. In a composite activation visualization, the single visualizations of all
slices are combined into a collage in a grid-like fashion. This is done in a way that ensures that the
final collage’s size matches a desired width and height. For example, the width and height might
be specified as the size of a frontend container that should display the visualization in an optimal
manner.

Parameters:

• model: The name of the model that contains the layer that should be visualized.

• layer: The name of the layer which corresponds to its TensorFlow node name.

• imageIndex: The index of the input image within the dataset associated with the model.

• width: The desired width of the resulting composite visualization.

• height: The desired height of the resulting composite visualization.

• distortion (Optional): The name of a distortion that should be applied to the input image
before being fed into the model.
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• imageAmount (Optional): The amount of distorted versions that should be created and fed into
the model. The resulting visualization will be the average of the activations on all distorted
versions. This parameter is only needed if a distortion has been specified.

Returns: Information about the input data that has been specified as well as a list of all tiles within
the composite image with their indices, row and column numbers, as well as their pixel bounds.

A.1.8 Node

Retrieve information about how the activation of single nodes differs when input images fed into the
model are being distorted. Individual activation tensors are compared using their cosine similarity.
Contrary to the Euclidean distance, this metric is invariant to the size of the activation tensors.

/node

Fetch the average difference in activation of a single layer between original input images and their
distorted versions being fed into the model.

Parameters:

• model: The name of the model that contains the layer.

• layer: The name of the layer which corresponds to its TensorFlow node name.

• distortion: The name of a distortion that should be applied to the input image before being
fed into the model.

• inputImageAmount: The amount of input images that should be used to compare activations.
They will be chosen randomly from the dataset associated with the model. Afterwards, each
one will be distorted randomly once and the layer’s activation on the original and distorted
version will be compared. To calculate the final activation difference, individual differences
for single input images will be averaged.

Returns: Information about the input data as well as the average difference in activation, represented
as a single scalar value.

/node/list

Fetch the percentual differences in activation of all annotated layers within the model and higher-level
nodes between original input images and their distorted versions being fed into the model.

Parameters:

• model: The name of the model that contains the layer.

• distortion: A comma-separated list of the names of all distortions that should be applied to
the input images before being fed into the model.
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• inputImageAmount: The amount of input images that should be used to compare activations.
They will be chosen randomly from the dataset associated with the model. Afterwards, each
one will be distorted randomly once for each distortion and the layer’s activation on the
original and distorted version will be compared. To calculate the final activation difference,
individual differences for single input images will be averaged.

• accumulationMethod: The method that should be used to combine the activation difference
values for a set of child nodes into their parent node. Available methods are minimum, where
the lowest of all values will be used; maximum, where the highest of all values will be used;
and average, where the average of all values will be used.

• percentageMode: Defines whether percentages should be calculated as the position of the
value on the scale between 0 and the highest activation difference value (absolute) or on the
scale between the lowest and highest activation difference values (relative).

• imageIndex (Optional): If this parameter is defined, only node difference values in activations
for this specific image within the dataset will be computed. If it is not defined, average node
difference values for a set of input images will be computed.

• outputMode (Optional): Defines whether the node names and resulting values should be
returned as a simple node-value mapping (mapping) or as a JSON dictionary hierarchy,
representing the computation graph of the model (graph). The default value is mapping.

Returns: Meta information about the input data and the value range, as well as the percentual
activation differences of all annotated layers using all specified distortions.

/node/list/meta

Fetch meta information about the percentual differences in activation of all annotated layers within
the model and higher-level nodes between original input images and their distorted versions being
fed into the model.

Parameters:

• model: The name of the model that contains the layer.

• inputImageAmount: The amount of input images that should be used to compare activations.
They will be chosen randomly from the dataset associated with the dataset. Afterwards,
each one will be distorted randomly once for each distortion and the layer’s activation on the
original and distorted version will be compared. To calculate the final activation difference,
individual differences for single input images will be averaged.

• accumulationMethod: The method that should be used to combine the activation difference
values for a set of child nodes into their parent node. Available methods are minimum, where
the lowest of all values will be used; maximum, where the highest of all values will be used;
and average, where the average of all values will be used.

• percentageMode: Defines whether percentages should be calculated as the position of the
value on the scale between 0 and the highest activation difference value (absolute) or on the
scale between the lowest and highest activation difference values (relative).
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• imageIndex (Optional): If this parameter is defined, only node difference values in activations
for this specific image within the dataset will be computed. If it is not defined, average node
difference values for a set of input images will be computed.

• distortion (Optional): A comma-separated list of the names of all distortions that should be
applied to the input images before being fed into the model. If it is not defined, all available
distortions are used.

Returns: The minimum and maximum activation difference values among all nodes within the
model.

A.1.9 Cache

Depending on the specified parameters, some of the routes are computation-intensive and might take
a long time on weaker hardware. To circumvent this problem and allow an interactive visualization,
computation results can be cached and persisted to disk. This cache will be extended lazily after a
computation has completed. Additionally, these routes allow creating such a cache for all intense
operations eagerly and before using the visualization.

/cache

Eagerly cache graph structures, single predictions, prediction accuracies, node difference values,
and confusion matrices for all models, datasets, and distortions and write them to disk. Calculations
whose results already have been cached will be skipped.

Parameters:

• modelAccuracy: The amount of images that should be chosen to calculate each model’s
prediction accuracy and performance metrics. The higher this value, the more accurate these
metrics will be.

• nodeActivation: The amount of images that should be chosen to calculate each node’s
activation differences. The higher this value, the more accurate these difference values will
be.

Returns: The amount of seconds that the caching progress has taken, after the caching process has
been completed.

/cache/progress

Fetch the current progress of an active caching process, possibly one that has been initiated through
the /cache route.

Parameters: None.

Returns: The status message of the caching process that is currently in progress, as well as the
total number of steps needed for completing the caching, the current step, and the current progress
represented as a percentage value.
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