
Modeling properties of the vapor-liquid interface using
classical density functional theory and density gradient

theory

Von der Fakultät Energie-, Verfahrens- und Biotechnik der
Universität Stuttgart zur Erlangung der Würde eines Doktors
der Ingenieurwissenschaft (Dr.-Ing.) genehmigte Abhandlung

Vorgelegt von

Jonas Mairhofer

aus Stuttgart

Hauptberichter: Prof. Dr.-Ing. Joachim Groß
Mitberichter: Prof. Dr. habil. rer. nat. Sabine Enders

Tag der mündlichen Prüfung: 19.11.2018
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Kurzzusammenfassung

Für die Modellierung vielzähliger Prozesse der chemischen Industrie ist die genaue Vorher-

sage von Grenzflächeneigenschaften eine wichtige Voraussetzung. In dieser Arbeit werden

sowohl die klassische Dichtefunktionaltheorie, als auch die Dichtegradiententheorie ver-

wendet, um die Oberflächenspannung sowie die Dichteprofile über die Phasengrenz-

fläche für eine Vielzahl von Systemen zu bestimmen. Grenzen der Anwendbarkeit beider

Modelle sowie Aspekte wie die effiziente Lösung des nichtlinearen Gleichungssystems zur

Bestimmung der Gleichgewichtsdichteprofile mit der klassischen Dichtefunktionaltheorie

und der praktische Nutzen eines binären Korrekturparameters in der Kombinationsre-

gel des Kreuzeinflussparameters für die Dichtegradiententheorie werden behandelt. Der

Anwendungsbereich der klassischen Dichtefunktionaltheorie wird erweitert auf Stoffe,

deren thermodynamischen Eigenschaften nur über Gruppenbeitragsmethoden zugänglich

sind. Hierfür wird ein Helmholtzenergiefunktional entwickelt, welches konsistent zum

heterosegment-basierten Gruppenbeitragsmodell der PCP-SAFT Zustandsgleichung ist.

Die Ergebnisse dieser Arbeit zeigen, dass die Vorhersage der Oberflächenspannung aus

der klassischen Dichtefunktionaltheorie für die meisten Systeme so genau ist - oder sogar

genauer - als Ergebnisse der Dichtegradiententheorie mit an experimentelle Oberflächen-

spannungsdaten angepasstem Einflussparameter.

Summary

The accurate prediction of interfacial properties is an important requirement in modeling

many processes of chemical industry. In this thesis, classical density functional theory and

density gradient theory are applied to determine surface tension and the interfacial density

profiles for a variety of systems. Limitations of both models are addressed and aspects

such as the efficient solution of the non-linear system of equations to obtain the equilib-

rium density profiles by classical density functional theory as well as the practical utility

of a binary correction parameter in the combining rule for the cross-influence parameter

of density gradient theory are presented. Furthermore, the range of applicability of classi-

cal density functional theory is extended to compounds whose thermodynamic properties

can only be obtained by group-contribution methods. This is achieved by developing

a Helmholtz energy functional consistent with the heterosegmented group-contribution

PCP-SAFT equation of state. Results of this work show that for most systems, sur-

face tension predicted by classical density functional theory is as accurate, or even more

accurate, as values obtained from density gradient theory with the component specific

influence parameters adjusted to experimental surface tension data.
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Chapter 1

Introduction

Processes, where phenomena occurring at the interface between a vapor and a liquid

phase have a determining impact on the overall process performance, are ubiquitous in

the chemical industry. Interfacial properties such as surface tension play a governing

role for the hydrodynamics of multi-phase flow e.g. in distillation columns, film reactors,

evaporators and condensers and thus strongly impact the central step of these applications:

the interfacial heat and mass transfer. Determination of surface tension is thus a crucial

step in understanding, modeling and optimizing these processes.

The experimental determination of surface tension is tedious and expensive. Further-

more, the interfacial density profiles, which reveal details at the molecular level e.g. the

accumulation of certain components at the interface, can only be determined indirectly

and with great uncertainty by experimental methods. The models applied and developed

in this thesis aim at providing surface tension as well as information on the vapor-liquid

interface at the molecular length scale. The knowledge gained from their predictions can

then be used for optimization at the process level.

1.1 Phenomenology of the vapor-liquid interface

In a heterogeneous system at equilibrium, consisting of a liquid and its coexisting vapor,

the thermodynamic properties are constant within the liquid and the gas phase and both

phases are separated by an interface. Properties such as density may change drastically

across interfaces. From a macroscopic perspective, these changes appear as sharp jumps.

However, for the vapor-liquid interface, it was already postulated by Laplace and Pois-

son in the early 19th century [1] that density changes continuously across the interface.

Josiah Willard Gibbs, in the time around 1876, wrote his influential article-series On

the Equilibrium of Heterogeneous Substances that is based on continuous transitions of

thermodynamic properties across an interface on the microscopic scale. This was con-

firmed experimentally more than a century later using optical reflectivity measurements

12



[2, 3, 4]. This implies that a transition layer exists where density changes from the value

of the liquid phase to the value of the gas phase. The forces acting on molecules inside

this layer differ significantly from the forces acting on molecules in the liquid or vapor

bulk phases far away from the interface. Interactions between molecules can be split in

a short-range repulsive contribution which determines the structure of dense fluids and

a longer-ranged attractive part which forms a uniform background potential [5]. In bulk

phases, molecules are surrounded isotropically by other molecules and the resulting force

vector on the molecules averaged over time is zero [6]. Interfaces, on the other hand, are

not isotropic. Within the range of the attractive interactions, there are more molecules

to the liquid side of the interface than to the vapor side. There is thus a net force vector

acting on molecules in the transition layer and work must be done to move molecules

from the bulk liquid to the interface. The macroscopic equivalent of this energy required

to increase the interface is called surface tension γ and its value is a direct measure for

the forces acting on the molecular level.

A thermodynamic definition of γ follows from the fundamental equations, e.g. the Gibbs

energy G,

dG = −SdT + V dp+
∑

µidNi +

(
∂G

∂A

)
T,p,Ni

dA (1.1)

with entropy S, temperature T , pressure p, volume V , chemical potential and particle

number of component i, µi and Ni, respectively, as well as interfacial area A, as γ =(
∂G
∂A

)
T,p,Ni

. Surface tension is thus defined as the change of Gibbs energy related to a

change in interfacial area at constant T , p and Ni.

For a system at equilibrium, G is minimal and for a given value of surface tension γ,

the system will minimize its interfacial area A. The same follows from the remaining

fundamental equations for systems at equilibrium for specified conditions other than p

and T .

The definition of surface tension γ given by eq. 1.1 is valid for the planar interfaces studied

in this work. A definition of γ for the more general case of curved interfaces can be found

in the study of Rehner and Gross [7].

1.2 Measuring interfacial properties

1.2.1 Surface tension

Experimental methods for surface tension can be classified as static or dynamic. From

static methods, the value of surface tension is obtained for a system which has reached its

equilibrium state. Dynamic methods measure the course of surface tension over time while

the system approaches its equilibrium state, e.g. while large surface-active substances

13



are still diffusing towards their preferred location at the interface. In this thesis, only

equilibrium surface tension results are of concern.

Many different static methods exist. Widely applied is the method of capillary rise, where

surface tension is determined from the rise of a liquid in a narrow capillary tube. It

is considered the simplest and most accurate method for liquids which do not form an

appreciable capillary-liquid contact angle [8]. From the Young-Laplace equation for the

pressure difference across a curved surface and the condition of mechanical equilibrium,

surface tension γ is obtained as [9]

γ =
rhg∆ρ

2cosθ
(1.2)

where r and h denote the radius of the capillary and the rise of the liquid in the capillary,

respectively, g is the acceleration of gravity, θ is the fluid-capillary contact angle and ∆ρ

is the density difference between the liquid and the coexisting vapor phase.

The pendant drop method uses information of the shape of a droplet hanging from a

capillary [10]. The shape of the droplet is recorded optically and surface tension can be

obtained by solving a set of differential equations arising from the Young-Laplace equation

as well as the influence of gravitational forces on the droplet shape. Further alternative

methods include the method of weight of a drop, ring detachment methods or the method

of maximum bubble pressure [11]. Large sets of experimental surface tension for many

compounds and mixtures can be found in the compilation of Jasper [8] and the book of

Lechner et al. [11] or in databases such as the Design Institute for Physical Properties

(DIPPR) [12] or the Dortmund Data Bank [13].

1.2.2 Interfacial density profiles

Optical measurement techniques such as reflectivity measurements can be applied to ob-

tain information on the structure of interfaces such as the thickness of the interface and

the interfacial density profiles. First results are due to Webb an coworkers [2, 3, 4]. The

general procedure can be outlined as follows [3]: one first assumes a certain functional

form for the interfacial density profiles ρ(z), where z denotes the direction normal to the

interface. Plausible candidates are for example a hyperbolic form

ρ(z) =
1

2
(ρliq + ρvap) +

1

2
(ρliq − ρvap)tanh (2z/L) (1.3)

the error function

ρ(z) =
1

2
(ρliq + ρvap) +

1

2
(ρliq − ρvap)erf

(
π1/2z/L

)
(1.4)

an exponential form
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ρ(z) =

ρvap + 1
2
(ρliq − ρvap)exp (2z/L) , z < 0

ρvap − 1
2
(ρliq − ρvap)exp (−2z/L) , z ≥ 0

(1.5)

or a profile proposed by Fisk and Widom [14]

ρ(z) =
1

2
(ρliq + ρvap) +

1
2
(ρliq − ρvap)

√
2tanh

(
61/2z/L

)(
3− (tanh (61/2z/L))

2
)1/2

(1.6)

where ρliq and ρvap denote the liquid and vapor bulk densities, respectively. The value of

the parameter L may be defined in several ways to ensure comparability of the different

ansatz functions [3]. The assumption is made that the indices of refraction n(z) at any

given location in the interface are proportional to the local density ρ(z). It is then possi-

ble to calculate the interfacial normal incidence reflectivity profiles of the assumed model

functions for ρ(z). Comparing these calculated reflectivity profiles to measured values, the

best ansatz function can be identified and a good guess of the actual density profile is ob-

tained. Results for sulphur hexafluoride [4] and the binary mixture methanol-cyclohexane

[3] show that the error function (eq. 1.4) and the function of Fisk and Widom (eq. 1.6)

are in better agreement with the measured reflectivity profiles than eqs. 1.3 and 1.5. Al-

ternative measurement techniques to study interfaces in detail include specular neutron

reflection [15] or X-ray reflection [16]. Furthermore, infrared-visible sum-frequency anal-

ysis [17, 18] can be applied to study the orientation of polar molecules such as alcohols

at the interface.

1.3 Engineering models for surface tension

Many simple engineering models to determine surface tension have been proposed. Prob-

ably the oldest one is the so called parachor method of Macleod and Sudgen [19, 20]. In

its final form, surface tension γ is determined from the value of the parachor P and the

densities of the corresponding liquid and vapor phases, ρliq and ρvap, respectively, as

γ(T ) =
[
P
(
ρliq(T )− ρvap(T )

)]4
(1.7)

The value of P is calculated as the sum of the single contributions from the structural

groups that make up the molecule. Parachor values for a large number of structural

groups adjusted to surface tension data of the DIPPR database can be found in the

work of Knotts et al. [21]. Several extensions of the parachor method to mixtures exist

[22, 23, 24] which differ in the mixing rules applied to the parachor and the value of the

scaling exponent (in the original form of the parachor method, the scaling exponent is 4,

eq. 1.7). However, one fundamental problem arises when the parachor method is applied
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to mixtures [6]: the composition in the interface may be very different from the composi-

tion in the bulk phases. Mixing rules weighting the contributions of the single components

based on the vapor and liquid compositions therefore often produce unsatisfactory results.

Corresponding state theory offers an alternative to determine surface tension. Based on

the work of van der Waals, Guggenheim [25] proposed the relationship

γ(T ) = k0

(
1− T

Tc

)r
(1.8)

where r = 11/9, k0 = (Vc)
2/3/Tc [6] and Tc and Vc denote the critical temperature and

volume, respectively. However, accurate results can only be obtained for very simple

molecules such as argon, nitrogen or oxygen [25]. In a different approach based on the

corresponding state principle, Hirschfelder et al. [26] introduced the concept of reference

fluids. The surface tension of a given compound i is then obtained as

γi(T ) =

(
T ic

T refc

)(
V ref
c

V i
c

)2/3

γref
(
T · T refc

T ic

)
(1.9)

The superscript ref indicates properties that have to be evaluated for the reference fluid.

Several modifications of eq. 1.9 have been proposed [27, 28, 29] to overcome the limited

number of compounds which can accurately be described by eq. 1.9. However, the problem

of choosing a suitable reference fluid remains.

Besides equations based on quantitative structure–property relationship such as the para-

chor method or expressions derived from the corresponding state principle, a great variety

of empirical correlations for surface tension exists in the literature [30, 31, 32, 33, 34, 35].

A common drawback of most simple engineering equations for surface tension is their need

for liquid and vapor densities or critical properties as input. These properties have to be

known experimentally or obtained by auxiliary methods. Furthermore, their predictive

capabilities for mixtures are very limited. Additionally, these simple equations can only

provide values for surface tension but no information on microscopic properties such as

the interfacial density profiles.

1.4 Perturbed-Chain Polar Statistical Associating Fluid

Theory

The Perturbed-Chain Polar Statistical Associating Fluid Theory (PCP-SAFT) [36, 37, 38,

39, 40] is applied in this thesis to determine the equilibrium properties of coexisting vapor

and liquid phases. Furthermore, the models to determine interfacial properties presented

in section 1.5 also apply or are developed to be consistent with PCP-SAFT.
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The development of PCP-SAFT is based on the repetitive application of a perturbation

approach. The goal of perturbation theory is to obtain the thermodynamic properties

of a target fluid which interacts via the potential U target from a reference fluid with well

known properties and interaction potential U ref . The difference between both potentials

represents the perturbation Upert = U target − U ref . For pairwise additive and spherically

symmetric perturbing potentials Upert =
∑

i>j u
pert(rij), where rij denotes the distance

between particles i and j, Zwanzig [41] developed the so called high-temperature expansion

which leads to the following expression for the Helmholtz energy A of the target fluid [42]

Atarget

NkT
=

Aref

NkT
+
Apert

NkT
=

Aref

NkT
+

1

2
βρ

∫
upert(r)gref (r)dr +O(β2) (1.10)

where β = 1/kT with temperature T and Boltzmann’s constant k, ρ = N/V denotes

the number density and gref (r) is the pair correlation function of the reference fluid.

Contributions beyond the first-order term generally also require higher-order correlation

functions of the reference fluid. The expansion given by eq. 1.10 converges the quicker,

the more the correlation functions of the reference and the target fluid agree. A successful

application of perturbation theory for target and reference fluids where this is not the case

is the Thermodynamic Perturbation Theory (TPT) of Wertheim [43, 44, 45, 46]: TPT

allows to treat fluids with highly directional attractive forces using the hard-sphere model

as the reference fluid. Depending on the strength of these attractive forces, they can

model hydrogen bonding or cause complete polymerization of the hard-sphere monomers

to chain-fluids. In both cases, the correlation functions of the target fluid and the hard-

sphere reference fluid differ significantly [47].

Based on Wertheim’s results, Chapman et al. [48, 49] and Jackson et al. [50] developed the

Statistical Associating Fluid Theory (SAFT) which results in Helmholtz energy contribu-

tions for the formation of repulsive chains from hard-sphere segments [48, 51], AHC , and

association (hydrogen bonding) between segments [51, 52], AAssoc. The Helmholtz energy

of the hard-sphere reference fluid, AHS, can be obtained from the accurate equation of

state presented by Boublik [53] and Mansoori et al. [54].

In PCP-SAFT, the contribution to the Helmholtz energy due to dispersive interactions

between the chain molecules, ADisp, are treated as a perturbation to the hard-chain ref-

erence fluid using the second-order perturbation theory of Barker and Henderson [42, 55]

which does not require higher-order correlation functions of the reference fluid beyond

the pair correlation function. The perturbing potential is of Lennard-Jones type. The

integrals over the pair correlation function of the reference fluid and the perturbing po-

tential in the expansion of the perturbation (as shown for the first-order term in eq. 1.10)

are approximated as power-series in density and the coefficients of these power-series are

adjusted to experimental vapor pressure and PvT data of n-alkanes [36].

17



The Helmholtz energy contributions of dipolar-dipolar, Add, quadrupolar-quadrupolar,

Aqq, and dipolar-quadrupolar, Adq, interactions were developed by Gross [39], Gross and

Vrabec [38] and Vrabec and Gross [40] using a third-order perturbation presented by Stell

et al. [56, 57] to the two-center Lennard-Jones fluid. The integrals over the correlation

functions of the reference fluid and the polar perturbing potential are approximated as

power-series in density with parameters which depend on the elongation of the molecule

and constants that are adjusted to results of molecular simulations.

The final expression for the residual Helmholtz energy of PCP-SAFT Ares ≡ A(T, ρ, x)−
AIG(T, ρ, x), where AIG denotes the Helmholtz energy of an ideal gas, is given by the sum

Ares = AHS + AHC + ADisp + AAssoc + Add + Aqq + Adq (1.11)

A non-associating, non-polar compound i is characterized by three parameters in PCP-

SAFT: the segment number mi, the segment diameter σi and the dispersive energy param-

eter εi. To include associative interactions, two additional parameters are required: the

energy parameter εAiBi
characterizing the association strength and the association volume

κAiBi
. Here, A and B denote association sites located on compound i. The aforemen-

tioned parameters are usually regressed to experimental vapor pressure and liquid density

data. For polar compounds, also the dipolar and/or quadrupolar moments, µi and Qi,

need to be specified. For both, literature values can be used. For mixtures, appropriate

combining rules have to be applied to the pure-component parameters [36, 37].

A group-contribution PCP-SAFT (GC-PCP-SAFT) has been developed by Gross et

al. [58] and Sauer et al. [59]. The core idea of group-contribution methods is to as-

sume that the properties of a molecule can be determined as a function of the functional

groups which make up the molecule. Only parameters for the distinct functional groups

are then required and component-specific equation of state parameters are obsolete.

1.5 Fundamentals of classical Density Functional The-

ory and Density Gradient Theory

The shortcomings of simple engineering models for surface tension presented in section 1.3

clearly reveal the need for more predictive and comprehensive models. Classical density

functional theory (DFT) and density gradient theory (DGT) are two approaches that

meet these requirements. Both approaches do not rely on auxiliary models and allow to

obtain not only the value of surface tension but also the interfacial density profiles. In

this section, the basic equations of DFT and DGT are summarized. Both approaches are

applied to study the one-dimensional vapor-liquid interface of a system of N components.

The value of temperature T is specified and by choosing a suitable computational domain,
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which has to accommodate the interface, the volume V of the system is also known. Only

systems at thermodynamic equilibrium are considered, i.e. the chemical potential µi of

every component i is constant throughout the system. The equilibrium properties of the

coexisting vapor and liquid phases are determined by a preceding flash calculation.

Volume, temperature and chemical potential are the natural variables of the grand po-

tential Ω, which, in the absence of an external field, is defined as

Ω[{ρk}] = A[{ρk}]−
N∑
i

∫
µiρi(r)dr (1.12)

where A[{ρk}] is the intrinsic Helmholtz energy of the system. The square brackets make

the functional dependency of Ω and A on the density profiles explicit, the curly brackets

denote the dependency on all species-density profiles ρi(r) and k is a generic component

index. For brevity, the dependencies of Ω and A on T , µi and V are omitted. For the

imposed variables {µk, T, V }, the density profiles ρk are internal degrees of freedom of the

considered system. In equilibrium, Ω[{ρk}] reaches its minimum value and the functional

derivatives with respect to the systems internal degrees of freedom, i.e. the species-density

profiles ρk(r), vanish

δΩ]{ρk}
δρi(r)

=
δA[{ρk}]
δρi(r)

− µi = 0, i = 1, ..., N. (1.13)

From eqs. 1.12 and 1.13, the working equations of DFT and DGT are derived. Both

approaches only differ in the way the intrinsic Helmholtz energy A[{ρk}] is determined.

This said, it should be pointed out that the classification of DFT and DGT as two distinct

models is not clear-cut as shown by Evans [60]. Rather, density functional theory can be

seen as a generalization of density gradient theory.

1.5.1 Density Gradient Theory

Density gradient theory dates back to the work of van der Waals [61] and was later re-

formulated by Cahn and Hilliard [62]. In DGT, the local Helmholtz energy density a

of the inhomogeneous fluid at position r is developed as an expansion about the local

density approximation a0({ρk}) truncated after the square density gradient term. Odd

terms in the expansion, such as the first order term, vanish, which is understood because

the Helmholtz energy has to be invariant towards the orientation of the coordinate sys-

tem. The value of a is then obtained as the sum of the Helmholtz energy density of a

hypothetical homogeneous fluid with density ρk = ρk(r) and a correction term to account

for the inhomogeneity [62]
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a ({ρk}, {∇ρk}) = a0({ρk}) +
1

2

N∑
i

N∑
j

cij∇ρi∇ρj (1.14)

with the local density gradient ∇ρi and the influence parameter cij. Density gradient the-

ory thus only requires the value of the local Helmholtz energy density of the homogeneous

fluid a0({ρk}), which can be obtained from a bulk equation of state, as well as a value for

the influence parameter cij. The equation, of course, is an approximation, if cij is treated

as a function of temperature only, because higher order terms are neglected (or if cij is

even assumed constant altogether, as usually done in DGT applications). Theoretically

derived expressions exist to calculate the influence parameter from the direct correlation

function of the homogeneous fluid [60, 63, 64]. However, the direct correlation function is

tedious to obtain and in practical application, the value of the pure-component values, cii,

are usually regressed to experimental surface tension data. This procedure to determine

cii is also adopted in this thesis and PCP-SAFT is applied to calculate a0({ρk}). With

eq. 1.14 and eq. 1.12, the grand potential of the system is given by

Ω =

∫ (
a0({ρk}) +

1

2

N∑
i

N∑
j

cij∇ρi∇ρj −
N∑
i

µiρi

)
dr (1.15)

The equilibrium density profiles minimize Ω. For variational problems of the type given

by eq. 1.15, where the integrand L is of the form L = L (r, {ρk(r)},∇{ρk(r)}), the optimal

solution has to satisfy the Euler-Lagrange equations [65]

∂L
∂ρi
−∇ · ∂L

∂∇ρi
= 0, i = 1, ..., N (1.16)

for every component i at any location r. It is common practice in DGT to assume density-

independent and temperature-independent influence parameters. For density-independent

and symmetric (cij = cji) influence parameters, the Euler-Lagrange equations for the

equilibrium density profiles for a flat vapor-liquid interface, where properties vary only

along the z-axis normal to the interface, take the form

∂a0({ρk})
∂ρi

− µi −
N∑
j

cij
∂2ρj
∂z2

= 0, i = 1, ..., N. (1.17)

The system is thought to expand towards the liquid bulk phase for z → ∞ and to-

wards the vapor bulk phase for z → −∞. The boundary conditions of eq. 1.17 are thus

ρi(z → ∞) = ρliqi , ρi(z → −∞) = ρvapi . Several approaches have been developed to

solve this system of non-linear second-order partial differential equations: the frequently

applied reference component approach and the path function approach of Liang et al. [66]

reduce eq. 1.17 to a set of algebraic equations by introducing a reference function which
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changes monotonically across the interface and requiring the cross-influence parameter

to be calculated by the geometric combining rule
(
cij =

√
ciicjj

)
. In the stabilized DGT

algorithm of Qiao and Sun [67], an artificial time-dependency is introduced in eq. 1.17

and the resulting set of equations is discretized in time and space. The solution to eq. 1.17

is then obtained by performing the integration in quasi-time until the steady-state solu-

tion has been reached. This approach allows to introduce an adjustable binary correction

parameter βij in the calculation of the cross-influence parameter
(
cij =

√
ciicjj(1− βij)

)
.

This additional degree of flexibility comes at the prize of substantially higher computa-

tion time compared to the reference component or path function approach. In Chapters

1 and 3, these three approaches to solve eq. 1.17 will be presented in detail and applied

to determine interfacial density profiles and surface tensions of a variety of systems.

1.5.2 Classical Density Functional Theory

Density functional theory was developed by Hohenberg and Kohn [68] as well as Mermin

[69] to study the inhomogeneous electron gas. First applications to classical systems

are due to Ebner et al. [70, 71]. In contrast to the expansion about the local density

approximation of density gradient theory, the Helmholtz energy of the inhomogeneous

system, A[{ρk}], is developed as the sum of Helmholtz energy functionals according to

the PCP-SAFT model in the density functional theory applied in this work

A[{ρk}] = AIG[{ρk}] + AHS[{ρk}] + AHC [{ρk}] + ADisp[{ρk}]

+ AAssoc[{ρk}] + Add[{ρk}] + Aqq[{ρk}] + Adq[{ρk}] (1.18)

Furthermore, DFT requires no adjustable parameter such as the influence parameter of

density gradient theory. Interfacial properties are determined in a completely predictive

manner. The development of the individual contributions of eq. 1.18 follows similar

lines as the development of the Helmholtz energy contributions of PCP-SAFT, eq. 1.11.

Starting point is again Wertheim’s TPT, which does not only apply to homogeneous bulk

systems but also to the more general case of inhomogeneous fluids. In the derivation, the

pair distribution function of the inhomogeneous hard-sphere reference fluid ghs (r1, r2) is

required. Rigorous and accurate approaches to obtain ghs (r1, r2) are computationally

demanding [72]. Thus, simple approximations based on the pair distribution function

of the homogeneous hard-sphere fluid are commonly applied. A list of frequently found

approximations is presented in [72].

In this thesis, two DFT approaches are applied, one consistent with PCP-SAFT, the

other consistent with heterosegmented group-contribution PCP-SAFT. Consistency in

this context requires the developed Helmholtz energy functional A[{ρk}] to reduce to
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the expression for the Helmholtz energy A({ρk}) of the corresponding equation of state

when applied to a homogeneous system. Besides the underlying equation of state, the

fundamental difference between both approaches are the entities for which density profiles

are determined: in the former approach, one density profile per specie is calculated while

in the latter approach, density profiles are obtained for the individual functional groups

which make up the molecules (the generic index k thus identifies individual groups instead

of molecules in this approach). This results in a significant increase of computation time

but also in a more detailed picture of the interface.

DFT consistent with PCP-SAFT The hard-sphere contribution, AHS[{ρk}], of the

DFT consistent with PCP-SAFT is determined from Rosenfeld’s Fundamental Mea-

sure Theory (FMT) [73] in the modified form of Roth et al. [74] and Yu and Wu [75].

Chain formation, AHC [{ρk}], is treated using the iSAFT functional developed by Tri-

pathi and Chapman [76] with the adaptations of Gross [77] and Klink and Gross [78].

The weighted-density approximation developed by Sauer and Gross [79] is applied for

dispersive (ADisp[{ρk}]) as well as polar contributions (Add[{ρk}], Aqq[{ρk}], Adq[{ρk}]).
In this approach, the local Helmholtz energy density at a position in the interface r is

obtained from the corresponding Helmholtz energy contributions of PCP-SAFT, eq. 1.11,

evaluated at a density which is averaged over an interaction volume around r. Finally,

the functional of Bymaster et al. [80], a modification of the work of Segura et al. [81], is

adopted for associative interactions, i.e. hydrogen bonding. A detailed description of the

single functionals of this DFT is presented in Chapter 2.

DFT consistent with GC-PCP-SAFT In the DFT consistent with heterosegmented

GC-PCP-SAFT, the same functionals as in the DFT consistent with PCP-SAFT are ap-

plied for the hard-sphere and association contributions, AHS[{ρk}] and AAssoc[{ρk}]. The

dispersive and polar terms are again obtained from the weighted-density approximation

of Sauer and Gross [79]. However, the local Helmholtz energy density is now obtained

from the corresponding Helmholtz energy contributions of heterosegmented GC-PCP-

SAFT. AHC [{ρk}] is obtained from the modified iSAFT functional of Jain et al. [82].

This functional is a modification of the work of Tripathi and Chapman [76] with cor-

rected description of the stoichiometry of chain formation from the single segments. The

detailed expressions of these functional are given in Chapter 4.

Most functionals have a similar structure. For illustrative purposes, this is presented for

the hard-sphere contribution of the DFT consistent with PCP-SAFT:

AHS[{ρk}] =

∫
aHS (nα[{ρk(r)}]) dr (1.19)

22



Here, aHS is the local Helmholtz energy density of a hard-sphere fluid, which is a function

of a set of weighted densities nα (the index α runs over different types of weighted densities)

which themselves are functionals of the density profiles. The prototype form of a weighted

density nα is

nα[{ρk(r)}] =
N∑
i

mi

∫
ρi(r’)ωi,α(r− r’)dr’ (1.20)

The weight functions ωi,α determine the volume around r over which the local densities

ρi(r) are averaged into the weighted density nα at r as well as the weight of the local

densities in this averaging step. Typical weight functions applied in DFT lead to an

averaging of local densities within a sphere of given radius around r or on a spherical shell

of given distance to r.

For the planar vapor-liquid interface studied in this work, densities vary only in the dimen-

sion normal to the interface. Introducing two cylindrical coordinate systems according to

Fig. 1.1 with z and ẑ as the coordinates normal to the interface, the three-dimensional

integral (eq. 1.20) can be reduced to one dimension.

z

r

z

ẑ

r̂

^

r

r'

r^

Figure 1.1: Illustration of the two coordinate systems used to carry out the integrations
e.g. for the weighted densities nα. The origin of the coordinate system (r, φ, z) is space-
fixed while the origin of the coordinate system (r̂, φ̂, ẑ) moves with r.

For one of the weighted-densities of FMT, n3, this procedure is demonstrated here: with

the weight function ωi,3 = Θ(Ri − |r− r’|), where Θ denotes the Heaviside step function

and Ri = σi/2, n3 is obtained as
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n3[{ρk(r)}] =
N∑
i

mi

∫
ρi(r’)Θ(Ri − |r− r’|)dr’ (1.21)

This integration is most conveniently performed in the coordinate system (r̂, φ̂, ẑ) with

origin at r, see Fig. 1.1. From r̂ = r’ − r and because the integration is performed for a

fixed value of r, it follows dr̂ = dr’. In this coordinate system, n3 reads

n3[{ρk(r)}] =
N∑
i

mi

∫
ρi(r + r̂)Θ(Ri − |r̂|)dr̂ (1.22)

In coordinate system (r̂, φ̂, ẑ), r̂ is given as

r̂ =

 r̂cosφ̂

r̂sinφ̂

ẑ

 (1.23)

with r̂ = |r̂| =
√
r̂2 + ẑ2 and dr̂ = r̂dr̂dφ̂dẑ. For densities which vary only in z-direction,

the resulting integrals in cylindrical coordinates read

n3[{ρk(z)}] = 2π
N∑
i

mi

∫ ∫
ρi(z + ẑ)Θ(Ri −

√
r̂2 + ẑ2)r̂dr̂dẑ (1.24)

where the multiplication by 2π follows from the integration over φ̂. The integration bounds

for r̂(ẑ) as well as for ẑ follow from the definition of the Heaviside function Θ which is

non-zero only for Ri −
√
r̂2 + ẑ2 > 0 and thus r̂(ẑ) <

√
R2
i − ẑ2 and −Ri < ẑ < Ri. The

final result is then

n3[{ρk(z)}] = 2π
N∑
i

mi

∫ Ri

−Ri

∫ √R2
i−ẑ2

0

ρi(z+ẑ)r̂dr̂dẑ = π
N∑
i

mi

∫ Ri

−Ri

ρi(z+ẑ)
(
R2
i − ẑ2

)
dẑ

(1.25)

Once the complete Helmholtz energy functional is established, the equilibrium density

profiles are obtained by minimizing the grand potential Ω of the system. The minimization

procedure applied in classical density functional theory differs from the route taken in

density gradient theory: in DGT, the local grand potential density ω at position r depends

only on local densities and density gradients (eq. 1.15). The local optimality conditions

for the density profiles ρi(r) are given by the Euler-Lagrange equations, eq. 1.17, which

also only depend on the values of {ρk} and ∇{ρk} at r. Thus, the set of Euler-Lagrange

equations for different locations are not coupled.

In DFT, the local Helmholtz energy density and consequently the local density of the

grand potential ω[{ρk}] = a[{ρk}] −
∑N

i µiρi(r) depend not only on local variables but
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are functionals of the density profiles. The simple Euler-Lagrange formalism to obtain the

local optimality conditions for the equilibrium density profiles, eq. 1.16, thus no longer

applies. Instead, the minimal value of Ω is determined directly from eq. 1.13, i.e. by

identifying the density profiles ρi(r) for which the functional derivatives of Ω with respect

to all ρi(r) vanish. The local optimality conditions are obtained by discretizing eq. 1.13

on a one-dimensional grid. In contrast to the Euler-Lagrange equations of DGT, where

the set of equations of dimension N for every point in the interface r can be solved

independently, the non-local information required to evaluate a[{ρk}] leads to a spatially

coupled system of non-linear equations of dimension ngrid · N , where ngrid denotes the

number of grid points used in the discretization.

The step of calculating functional derivatives is presented exemplary again for the hard-

sphere contribution and the weighted density n3:

δAHS[{ρk}]
δρi(z′)

=

∫
δaHS(nα{ρk(z)}])

δρi(z′)
dz =

∫ ∑
α

∂aHS(nα{ρk(z)}])
∂nα

δnα[{ρk(z)}]
δρi(z′)

dz

(1.26)

In general, the functional derivative of a functional F [f1(x), f2(x), ..., fn(x)] = F [{fk(x)}]
with respect to the function fi(x) at position x′ can be obtained as

δF [{fk(x)}]
δfi(x′)

= lim
ε→0

F [{fk 6=i(x)}, fi(x) + εδ(x− x′)]− F [{fk(x)}]
ε

(1.27)

with the Dirac function δ. For the weighted density n3, eq. 1.25, this results in

δn3[{ρk(z)}]
δρi(z′)

= lim
ε→0

π

ε

[
N∑
j 6=i

mj

∫ Rj

−Rj

ρj(z + ẑ)
(
R2
j − ẑ2

)
dẑ (1.28)

+ mi

∫ Ri

−Ri

(ρi(z + ẑ) + εδ(ẑ − z′))
(
R2
i − ẑ2

)
dẑ

−
N∑
j

mj

∫ Rj

−Rj

(ρj(z + ẑ)))
(
R2
j − ẑ2

)
dẑ

]

= lim
ε→0

1

ε
πmi

∫ Ri

−Ri

εδ(ẑ − z′)
(
R2
i − ẑ2

)
dẑ

= πmi

(
R2
j − (z′)2

)
where the last step follows from the sifting property of the Dirac function

∫
f(x)δ(x′ −

x)dx = f(x′).
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1.6 Outline of this thesis

In Chapter 2, interfacial properties of multicomponent mixtures, which are prototypes of

reservoir fluids, are studied using DGT with the simple reference component approach

to solve eq. 1.17. Limitations of this approach for mixtures of components with strongly

differing attractive interactions, such as alkane-alcohol mixtures, are discussed and a

measure of its applicability based on the values of the activity coefficients at infinite

dilution is proposed.

Chapter 3 is dedicated to identifying efficient algorithms to solve the resulting equations

of DFT for the one-dimensional vapor-liquid interface, i.e the discretized form of eq. 1.13.

The performance of five algorithms is evaluated for several test systems: Picard iter-

ations, Anderson mixing, a restarted quasi Newton method as well as two versions of

the matrix-free inexact Newton method, one using analytical the other using numeri-

cally approximated directional derivatives. Aspects such as suitable stopping criteria and

parallelization are addressed as well.

Interfacial properties for a variety of non-polar, non-associating as well as polar and

associating pure components and mixtures are studied in Chapter 4 using the purely

predictive DFT consistent with PCP-SAFT and DGT with influence parameters adjusted

to experimental surface tension data. Here, the path function approach of Liang et al. [66]

and the stabilized DGT algorithm of Qiao and Sun [67] are applied to solve the optimality

conditions of DGT, eq. 1.17. The practical utility of a binary interaction parameter βij

in the combining rule of the cross-influence parameters cij is assessed and discussed.

A DFT consistent with heterosegmented group-contribution PCP-SAFT is developed in

Chapter 5. In a preliminary step, GC-PCP-SAFT results for vapor pressure and mixture

vapor-liquid equilibria (VLE) are improved by introducing and adjusting a component

specific parameter to experimental vapor pressure data as well as transferable group-

group interaction parameters to experimental VLE results of binary mixtures. Interfacial

properties obtained from the presented DFT are evaluated for many pure components

and mixtures including polar and associating compounds. Special attention is given to

systems where a group-contribution approach is particularly desirable such as biodiesel

systems and long alkane molecules.

In Chapter 6, the capability of DFT to predict interfacial properties is exploited and

experimental surface tension data is included in the adjustment of pure-component PCP-

SAFT parameters. Results obtained with parameters adjusted to experimental surface

tension and liquid density for bulk properties such as vapor pressure and enthalpy of

evaporation are evaluated and compared to results obtained with parameters adjusted to

results of molecular simulations.
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Chapter 2

Modeling of Interfacial Properties of

Multicomponent systems using

Density Gradient Theory and

PCP-SAFT

The content of this chapter is a literal quote of the publication

Mairhofer, Gross, Fluid Phase Equilibria, 439, 2017, 31-42.

In comparison to the published work, the abstract is here omitted. Additions or deletions

compared to the published work are marked with angular brackets.

Interfacial properties such as surface tension, surface thickness and interfacial density

profiles play an important role in many industrial applications ranging from the design

of nanomaterials [1] to the design of destillation columns [2] [3] [4]. Methods to calcu-

late surface tensions such as the Parachor method of Macleod [5] and Sudgen [6], the

corresponding-state principle of Guggenheim [7] and more recently of Queimada et al.

[8] as well as simple thermodynamic relations such as those of Girifalco and Good [9],

Fowkes [10] and Winterfeld et al. [11] have been available for a long time. However, in

order to obtain more detailed information about the interface such as density profiles,

more predictive and comprehensive models are required.

A viable approach to predict the interface on an atomistic level is using molecular dy-

namics simulations. Early works focussed on the description of the phase interface of

the Lennard-Jones fluid [12] [13] [14] [15] [16] or alkanes [17]. More complex, molecular

systems were recently studied including mixtures of alkanes and solvents [18] [19], the

Lennard-Jones plus quadrupole fluid [20], ternary aqueous systems [21] [22] and other

complex mixtures [23].
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The framework of density functional theory (DFT) offers a versatile alternative at lower

computational demands. DFT requires an expression of the Helmholtz energy as a func-

tional of the density profile across the interface. The equilibrium density profile is found

by minimizing the grand potential energy of the system. For more detail on DFT we refer

to introductions [24] [25] and review articles [26] [27] [28] [29]. Recent results for interfa-

cial properties for a broad class of systems including polar components and liquid-liquid

equilibria obtained by DFT are available from our group [30] [31] [32].

In this work, we focus on density gradient theory (DGT). This theory was first developed

by Van der Waals [33], reformulated by Cahn and Hilliard [34]. Compared to DFT the

implementation of DGT is less demanding, the only inputs being the Helmholtz energy

density of the homogeneous fluid which can be obtained from a bulk equation of state

and the so called influence parameter cii which is a component specific property (index

i). In practical application, the influence parameter is a determining difference to DFT-

approaches: DFT is entirely predictive, whereas DGT requires adjusting the influence

parameter to (some sort of) experimental interfacial data. Bongiorno et al. [35], Yang et

al. [36] as well as later Evans [37] showed that the influence parameter can be obtained

from the direct correlation function of the homogeneous fluid. However, this property

is tedious to obtain and therefore simpler correlations for cii have been derived from its

theoretical expression. Examples of these correlations can be found in the works of Breure

and Peters [38], Cornelisse et al. [39], Miqueu et al. [40], Lin et al. [41] as well as Garrido

et al. [42]. Most often however, the influence parameter cii is regressed to experimental

pure component surface tension data.

Density gradient theory has been used with many different equations of state as the model

for the Helmholtz energy density. Early studies by Carey et al. [43] and Cornelisse et

al. [44] used the Peng-Robinson (PR) equation of state [45] and obtained surface tension

results in good agreement with experimental data for hydrocarbons while results for po-

lar components are poor. Volume-corrected cubic equations of state were applied in the

works of Miqueu et al. [40] [46] and Lin et al. [41] to non-polar as well as polar pure

components and mixtures.

In order to study more complex systems including associating components, Cornelisse et

al. [47] used the associated perturbed anisotropic chain theory [48] in their study of mix-

tures composed of one or more associating components. As a further variation of cubic

equations of state, Oliveira et al. [49] used the Cubic-Plus-Association (CPA) equation of

state [50] and showed that it can be successfully applied to pure components and binary

mixtures of associating components such as alcohols.

Kahl and Enders [51] used the statistical associating fluid theory (SAFT) [52] [53] to inves-

tigate the surface properties of non-polar and polar binary mixtures including liquid-liquid

equilibria and obtained results in good agreement with experimental surface tension data.
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Since then, different SAFT-type equations of state have been employed in density gra-

dient theory. Lafitte et al. [54] and later Miguez et al. [21] as well as Chow et al. [55]

used SAFT-VR Mie [56] to study the interfacial properties of aqueous systems of up to

three components. PC-SAFT [57] was first applied by Fu and coworkers to systems of

pure n-alkanes [58] and later also to polar components and their mixtures [59] [60] [61].

Li et al. [62] studied similar systems using PC-SAFT and Mousazadeh and Faramarzi

[63] applied DGT and PC-SAFT to pure molten metals. Furthermore, Breure and Peters

[38] achieved good agreement with experimental surface tensions of hydrocarbon mixtures

when they applied PC-SAFT and the theoretical approach of Bongiorno et al. [35] to ob-

tain the pure component influence parameters once a correction term had been applied.

Vinš et al. [64] showed that the polar extension to PC-SAFT, PCP-SAFT [65] [66] [67],

is superior to PC-SAFT in describing surface properties of systems containing polar com-

ponents. PCP-SAFT was also applied by Schäfer et al. [68] in their study of azeotropic

binary mixtures of DMF and n-alkanes. Simplified PC-SAFT, sPC-SAFT [69], was used

by Khosharay et al. [70] to calculate surface tensions of aqueous systems.

The studies listed so far all deal with systems of up to three components. Only recently,

results have been reported for multicomponent systems. The interfacial properties of

multicomponent systems are relevant for example in reservoir modeling where interfacial

tension largely influences the necessary effort of oil recovery [71] [72].

The most common approach to apply DGT to mixtures is to define one component to be

the reference and to calculate the densities of the remaining components from the known

density of this reference component. The only requirement which qualifies a component

to be the reference is that its density has to change monotonically between the vapor

and the liquid bulk phase, i.e. there cannot be any enrichment of this component in the

interface.

Miqueu et al. [73] [74] used DGT with the volume-corrected PR equation to calculate

surface tensions of multicomponent systems whereby the reference component was chosen

beforehand by the physical argument that the less volatile compounds will not show any

enrichment in the interface; therefore, their density profiles should exhibit a monotonic

behaviour.

Larsen et al. [75] implemented a computationally efficient method based on a refinement

strategy where the density profile is first obtained for a few points in the interface and

then refined as needed. This approach also uses a reference component, however, it is

not chosen a priori but during execution based on the chemical potential gradient at

the vapor side of the interface. The CPA equation of state is used and surface tensions

values of many binary systems including strongly associating mixtures are compared to

experimental values. A speed up of their algorithm is shown for mixtures of up to eleven

components. However, no surface tensions are reported for these mixtures. Kou et al.
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[76] report an alternative to the reference component approach by using a linear transfor-

mation which reduces the Euler-Lagrange equations. Density profiles and surface tensions

are reported for up to five components using the PR equation to calculate the Helmholtz

energy density but no comparisons to experimental results are shown.

In this work, we use PCP-SAFT as the model for the Helmholtz energy density and

compare the calculated surface tensions of systems of up to twenty components including

systems with supercritical and polar components to experimental data. We apply the

reference component approach and the physical argument of Miqueu et al. [73] [74] of

choosing this reference component.

2.1 Development of the Density Gradient Theory for

an N -component mixture

The basics of density gradient theory has been described in detail in the literature [34] [77]

[78] and we only repeat the main equations of the theory here. The DGT is developed

as an expansion of the Helmholtz energy density of an inhomogeneous fluid about the

local density approximation a0(ρk), truncated after the square density gradient term. We

consider N components with local species-densities ρi(z), varying with some space coordi-

nate z. For the Helmholtz energy density, a0(ρk), we introduce index k as a generic index,

representing the full vector of all species-densities and, for brevity, we don’t make the de-

pendence on temperature T explicit. The Helmholtz energy density of the inhomogeneous

system then has two contributions, the Helmholtz energy density a0(ρk) evaluated at the

local density value, i.e. for a hypothetically homogeneous fluid with density ρk = ρk(z),

and a second order (square) gradient correction term to account for the inhomogeneity of

the fluid [34]

a(ρk,∇ρk) = a0(ρk) +
1

2

N∑
i

N∑
j

cij∇ρi∇ρj (2.1)

where ∇ρi is the local density gradient of component i and cij = (1 − βij)
√
ciicjj is the

influence parameter. Like in most other DGT-studies, we treat the influence parameters

as temperature-independent. From a theoretical standpoint [36], one would expect cij

to vary significantly with temperature and it is thus surprising to observe that DGT-

calculations with this assumption give valuable results. In this work, we further use the

simple geometric combining rule for cij, i.e. βij = 0, and we use the PCP-SAFT equation

of state for a0(ρk).

The equilibrium density profile minimizes the grand potential Ω of the system given by
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Ω =

∫ (
a(ρk,∇ρk)−

N∑
i

µiρi

)
dr (2.2)

We regard flat vapor-liquid interfaces in this work, where properties vary only in one

direction z of the positional vector r. The vapor and liquid phase are thought to extend

towards z → −∞ and z → +∞, respectively. The chemical potential µi of component

i, is for these cases equal to the equilibrium chemical potential of the two bulk phases.

Assuming a density-independent influence parameter, the equations for the surface tension

γ and the density profile follow from the resulting Euler-Lagrange equation as

z(ρ1) = z0 +

∫ ρ1

ρ1(z0)

√
cmix

2∆ω0

dρ1 (2.3)

γ =

∫ ρl1

ρv1

√
2∆ω0cmixdρ1 (2.4)

where ρ1, ρv1 and ρl1 denote the local density, the bulk vapor density, and the bulk liquid

density of the reference component, respectively. Furthermore, the mixture influence

parameter cmix is given by

cmix =
N∑
i

N∑
j

cij
dρi
dρ1

dρj
dρ1

(2.5)

and ∆ω0 denotes the difference of the grand potential energy density of the local homo-

geneous fluid to its bulk value, ∆ω0 = a0(ρk)−
∑N

i ρiµi + p, with equilibrium pressure p

of both bulk phases.

At every point in the interface, the local species-densities need to satisfy the Euler-

Lagrange equation

N∑
j

cij∇2ρj = µi,0(ρk)− µi i = 1, .., N (2.6)

where µi,0 = ∂a0
∂ρi

.

The left hand sides of eq. (2.6) for every pair of components k and l can be eliminated

by multiplying the equation of component k by
√
cll and the one of component l by

√
ckk

and subsequently subtracting the results. Doing so for all combinations of the reference

component (l = 1) with all other components leads to a set of (N-1) equations for the

(N-1) unknown species-densities of the non-reference components

√
c11 (µ0,k − µk) =

√
ckk (µ0,1 − µ1) , k = 2, ..., N (2.7)

The derivative of eq. (2.7) with respect to the reference density ρ1, taking into account
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that at constant temperature and pressure dµ0,k =
∑N

n
∂µ0,k
∂ρn

dρn and therefore
dµ0,k
dρ1

=∑N
n

∂µ0,k
∂ρn

dρn
dρ1

as well as the constant equilibrium chemical potential, i.e. dµk
dρ1

= 0, yields a

set of (N-1) linear equations for the derivatives dρk
dρ1

(for k=2,...,N ) which are needed to

evaluate eq. (2.5)

√
c11

N∑
n

∂µ0,k

∂ρn

dρn
dρ1

=
√
ckk

N∑
n

∂µ0,1

∂ρn

dρn
dρ1

, k = 2, ..., N (2.8)

This set of equations can be rewritten in matrix form and solved by LU [lower-upper]

decomposition.

2.2 Solution procedure

The following steps summarize the algorithm. First, the phase equilibrium state is de-

termined leading to values of the coexisting liquid and vapor bulk densities, ρli and ρvi ,

respectively, as well as equilibrium chemical potentials µi of all components. Secondly,

the bulk density difference of the reference component has to be discretized in ngrid steps

as ∆ρ1 =
ρl1−ρv1
ngrid

. The starting point of the calculation is given by z = 0, ρold
i = ρvi (for

i=1...,N ) and with derivatives dρk
dρ1

(for k=2,...,N ) obtained by solving eq. (2.8). The

following steps have to be repeated ngrid times (i.e. until ρnew
1 = ρl1)

1. Update density of reference component: ρnew
1 = ρold

1 + ∆ρ1

2. Set initial values for remaining densities: ρnew,0
k = ρold

k + dρk
dρ1

∆ρ1, k = 2, ..., N

3. Solve the nonlinear system, eq. (2.7), for the remaining densities ρnew
k , k = 2, ..., N

4. Calculate ∆ω0 and
dµ0,i
dρj

, i, j = 1, ..., N

5. Solve the linear system, eq. (2.8), for dρk
dρ1
, k = 2, ..., N

6. Update z according to eq. (2.3)

7. Set ρold
i = ρnew

i , i = 1, ..., N

Once the density profile is known, the value of surface tension can be calculated according

to eq. (2.4). We solve the set of nonlinear equations, eq. (2.7), using standard routines

from Minpack [79] and for the linear system, eq. (2.8), we use LU decomposition. The

derivatives
∂µ0,k
∂ρl

in eq. (2.8) are calculated using automatic differentiation [80]. The

number of discretization steps ngrid is set depending on the system under study to values

between 1,000 and 10,000. Higher numbers are required especially at low pressure, low

temperature conditions.
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During the calculations we observed that the algorithm shown above sometimes ap-

proaches negative species-densities as intermediate values of the iterative procedure, es-

pecially in the low pressure, low temperature region. A simple remedy to circumvent

problems resulting from negative species-densities is to set the value of the corresponding

density to a small positive number. This recipe stabilized our iteration in all cases.

An alternative approach which never approached negative densities during iterative so-

lution in all our calculations is to eliminate the left hand side of eq. (2.6) not only for

the combinations of the reference component with the remaining components but for all

pairwise combinations. This leads to a set of
∑N−1

i=1 i equations for the (N-1) unknown

densities, i.e. the system is overdetermined for N > 3. The resulting overdetermined

set of linear equations, corresponding to eq. (2.8), can be solved by QR [orthogonal-

triangular] decomposition. However, the increased number of equations which need to be

solved (mildly) increases the calculation time. Therefore, we used the simple approach of

resetting negative densities to a small positive number.

2.3 Results and Discussion

In this section we show that DGT results of multicomponent systems with symmetric or

weakly asymmetric interactions are in good agreement with experimental data for surface

tension. We evaluate DGT results for alkane and alkane-CO2 mixtures of up to twenty

components. The experimental data is taken from studies of Ng et al. [81] and Danesh

et al. [82] where surface tensions of model reservoir fluids have been measured for several

isotherms and for a large range of pressures. Some of the components in the systems under

study are supercritical at the considered state conditions (if they were pure). Following

the results of Amézquita et al. [83], it is assumed that it is still a valid approximation to

use the constant influence parameter for these supercritical components. The influence

parameters are adjusted to experimental surface tension data of pure fluids and the cross-

influence parameters are determined from a geometric combining rule. The values of

the influence parameters are presented in the appendix [Tables 2.4, 2.5 and 2.6]. If not

indicated otherwise, no binary interaction parameters are used in the combining rules of

the PCP-SAFT equation of state.

As presented by Liang et al. [84], no reasonable results can be obtained for the sys-

tem ethanol-hexane using DGT in combination with the PC-SAFT and CPA equations

of state, density independent influence parameters and a geometric combining rule for

cij. In the appendix we show DGT results for this mixture and use results obtained by

density functional theory as a reference. This comparison helps to analyze why DGT

results for surface tension deviate significantly from experimental values. Furthermore,

we suggest the value of the activity coefficient at infinite dilution γ∞ij as an indicator for
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the applicability of DGT.

2.3.1 Comparison to experimental data of Ng et al.

Ng et al. [81] report results of four multi-component systems: a seven-component mixture

denoted wet gas, an eleven-component mixture denoted associate gas and both mixtures

with additional CO2. The overall compositions of these mixtures are given in the appendix

[Tables 2.2 and 2.3]. Besides surface tension results, the corresponding bulk densities are

also reported [81]. That is important, because it allows us to first evaluate whether

PCP-SAFT is able to calculate the equilibrium states sufficiently well. Only when this

is the case, we can expect meaningful results of the subsequent DGT calculation because

bulk densities and equilibrium chemical potentials directly enter the equations of density

gradient theory.

Wet Gas results

Fig. 2.1 shows a comparison of calculated results to experimental data for the seven-

component mixture denoted wet gas and three of the four isotherms reported by Ng et al.

[81]. Fig. 2.1a confirms that PCP-SAFT results for the bulk liquid and vapor densities

are in very good agreement with experiments. The averaged relative deviation for all

reported data points is 3% for both the liquid and vapor bulk densities. Larger deviations

only occure at T = 283.15 K and T = 227.59 K (results not shown in Fig. 2.1) at the

highest experimental pressure value where the relative deviation of the liquid bulk density

increases to 8%. Results of the DGT for surface tensions follow the experimental values

closely, see Fig. 2.1b. Averaged overall results of a given isotherm, absolute deviations

decrease with increasing temperature from 1.2 mN/m to 0.002 mN/m.

Wet Gas + CO2 results

Fig. 2.2a shows that the coexisting bulk densities of the eight-component mixture for all

isotherms reported by Ng et al. [81] are very satisfyingly reproduced by PCP-SAFT.

The averaged relative deviation of the vapor and liquid bulk densities is 3%. Only at

T = 283.15 K and the highest experimental pressure, deviations are 14% and 7% for the

liquid and vapor density, respectively.

These deviations in bulk densities cause a deviation of the calculated surface tension at

this state point, see Fig. 2.2b. The relative deviation of calculated surface tensions at

T = 283.15 K and the highest experimental pressure value reaches 64%. On the other

hand, the agreement between experimental and calculated results is very good for those
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Figure 2.1: Experimental [81] (symbols) and calculated (lines) results of bulk densities
(a) and surface tensions (b) of the seven-component mixture wet gas at T = 255.37 K
(black), T = 283.15 K (blue) and T = 310.93 K (red).
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Figure 2.2: Experimental [81] (symbols) and calculated (lines) results of bulk densities
(a) and surface tensions (b) of the eight-component mixture wet gas + CO2 at at T =
227.59 K (black), T = 255.37 K (blue), T = 283.15 K (red) and T = 255.37 K (purple).

state points where bulk densities are reproduced with good accuracy, with relative devi-

ations usually well below 10%. The process of injecting CO2 into oil reservoirs is called

carbon dioxide flooding and has the primary goal of increasing oil recovery e.g. by reduc-

ing oil viscosity or miscibility effects [85]. Comparing experimental results of [81] shown

in figures 2.1b and 2.2b for given values of temperature and pressure shows that, for this

model reservoir fluid, adding CO2 increases surface tension on average by 11%. DGT also

predicts an increase of surface tension. However, averaged over the state points where

experimental data is available, the predicted increase is only 4%.

Fig. 2.3 shows the species-density profiles of the eight-component mixture at T = 255.37 K

and p = 10 bar. Evidently, there is an accumulation of the light n-alkanes, especially

methane, at the interface. CO2 also exhibits an accumulation, albeit less pronounced.

The relative enrichment of one component in a binary mixture has been studied in several
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studies using DGT including those of Carey et al. [43] and Amézquita et al. for under-

critical and supercritical components [86] [83] and the works of Telo de Gama and Evans

[87], Llovel et al. [88] and Klink and Gross [31] using density functional theory. As Fig.

2.3 and also the study of Miqueu et al. [73] show, in the case of multicomponent mix-

tures, more than one component can accumulate at the interface. The implication of an

enriched species at the interface for mass transport is analyzed by Klink et al. [89], who

determine the resistance of the interface to heat and (coupled) mass transport through

the interface, a phenomena also studied in detail by Glavatskiy and Bedeaux [90] [91].
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Figure 2.3: Species-density profiles of the eight-component mixture wet gas + CO2 at
T = 255.37 K and p = 10 bar. The components are indicated by colors: butane (black),
propane (dark blue), ethane (red), methane (purple), heptane (orange), methylcyclohex-
ane (brown), toluene (light blue) and CO2 (green).

Associate Gas results

The eleven- and twelve-component mixtures studied by Ng et al. [81], associate gas

and associate gas + CO2, contain 3-methylnonane. For this compound no experimental

surface tension data could be found so that the influence parameter of 3-methylnonane

could not be obtained in the same way as for the other components of this work. As

shown in Fig. 2.4, the influence parameter of many compounds is a well-behaved func-

tion of molecular mass. We note, the value of the influence parameter of several simple

branched alkanes closely follows the trend (with molecular mass) as n-alkanes, see Fig. 2.4.

Therefore, we approximate the influence parameter of 3-methylnonane by the value of a

hypothetical n-alkane of same molecular mass. A least-squares fit of the influence param-

eters for n-alkanes results in the correlation c = 3.5980 ·10−23Jm5/mol2 · (M/(g/mol))2.051

where M denotes the molecular mass. From this correlation, the influence parameter of

3-methylnonane is obtained as c = 9.3784 · 10−19Jm5/mol2.

For the eleven-component mixture associate gas, PCP-SAFT predictions of bulk densities

are in very good agreement with experimental results, see Fig. 2.5a. Averaged relative

deviations are 2% and 6% for the liquid and vapor phase, respectively. As Fig. 2.5b
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Figure 2.4: Values of the influence parameter, individually adjusted to surface tension
data, and displayed against molar mass for n-alkanes (black), branched alkanes (blue), 1-
alcohols (purple), carboxylic acids (orange) and 2-ketones (red). The solid line represents
a least-squares fit to the results of n-alkane.

shows, DGT results overpredict surface tension for most of the state points especially at

lower temperatures. In this case, these deviations cannot be explained by deviations in

bulk densities, as was the case for the associate gas. With 2% at T = 310.93 K and 1%

at T = 366.48 K, averaged relative deviations of liquid bulk density are similar at both

temperatures. For vapor densities, we obtain relative deviations of 4% at the lower and

8% at the higher temperature, i.e. deviations in vapor bulk densities are larger at the

isotherm where surface tension values are predicted in better agreement with experiments.
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Figure 2.5: Experimental [81] (symbols) and calculated (lines) results of bulk densities (a)
and surface tensions (b) of the eleven-component mixture associate gas at T = 310.93 K
(black) and T = 366.48 K (blue).
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Associate Gas + CO2 results

As can be seen from Fig. 2.6a, PCP-SAFT predicts the equilibrium bulk densities of

the twelve-component mixture in good agreement to experimental values. Relative devia-

tions of the DGT-results for surface tensions increase with pressure along a given isotherm.

Similar to the results of the associate gas mixture, surface tension is more prominently

overpredicted by DGT at lower temperatures - and more so, than could be explained by

deviations in bulk densities. The averaged relative deviations of liquid density at the lower

depicted isotherm is 2% and is therefore only slightly larger than for the higher isotherm

where the value is 0.9%. However, like in the previous section, for the vapor bulk densities

the averaged relative deviation is higher at the isotherm where the agreement of DGT

surface tension results with experiments is better (6% at T = 310.93 K compared to 8%

at T = 366.48 K).

For this model reservoir fluid, the effect of adding CO2 is not uniform. Experimental

results of ref. [81] show a maximum increase of surface tension of 23% at the lowest

temperature and the highest pressure and a maximum decrease of 8% at the same tem-

perature and intermediate pressure. For most of the state points, DGT predicts the

correct sign of the change in surface tension. However, the magnitude of this change is

usually underpredicted.
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Figure 2.6: Experimental [81] (symbols) and calculated (lines) results of bulk densities
(a) and surface tensions (b) of the twelve-component mixture associate gas + CO2 at
T = 310.93 K (black) and T = 366.48 K (blue). Results obtained with the Peng-Robinson
equation of state at T = 366.48 K are shown for comparison (dashed lines).

2.3.2 Comparison to experimental data of Danesh et al.

Danesh et al. [82] measured surface tensions of two five-component mixtures (denoted

Fluid A and Fluid B) and a twenty-component hydrocarbon system (Fluid C ). Fluid B
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is composed of the same five components as Fluid A but has a different overall compo-

sition. The overall molar compositions of all three mixtures are given in the appendix.

No experimental bulk densities are reported. Therefore, the capability of PCP-SAFT

to predict the phase equilibrium of these systems cannot be evaluated and only surface

tension results of DGT are compared to the reported experimental results.

For the five-component mixture Fluid A, experimental results are reported for two isotherms,

T = 313.15 K and T = 353.15 K, and a pressures of up to 30 MPa. Results for Fluid

B are given for T = 303.15 K and T = 308.15 K and a similar pressure range as for

Fluid A. Fig. 2.7b shows surface tension results of Fluid A at T = 353.15 K and Fluid B

at T = 303.15 K. Calculated results agree very well with the experimental values over

the complete pressure range. The averaged absolute deviations for the results depicted

in Fig. 2.7b is 0.06 mN/m for Fluid A and 0.03 mN/m for Fluid B. For Fluid B at the

second reported isotherm, T = 308.15 K, this value reduces to 0.015 mN/m. For Fluid

A, experimental values are also reported at T = 313.15 K. At this temperature, the

averaged absolute deviation is 0.2 mN/m. The importance of an accurate reproduction of

bulk densities as a prerequisite for a reliable description of interfacial properties is reem-

phasized by comparing results obtained with PCP-SAFT to results of the Peng-Robinson

equation of state for Fluid B. Results for bulk densities differ greatly between both equa-

tions of state (fig. 2.7a) and it follows that values for surface tension are also different

(fig. 2.7b). Since no experimental bulk densities are reported for this system, only the

surface tension results can be validated. As fig. 2.7b shows, surface tensions obtained

with PCP-SAFT are in very good agreement with the experimental results while results of

the Peng-Robinson equation are too low and vanish too early. This suggests that a more

accurate description of bulk densities by PCP-SAFT compared with the PR model leads

to lower errors of PC-SAFT for surface tensions. For other systems studied in this work

both, the PCP-SAFT and the PR model accurately describe bulk densities and, conse-

quently, also surface tension, as shown in fig. 2.6 for the example of a twelve-component

mixture associate gas + CO2.

Fluid C is a mixture of twenty n-alkanes. Experimental surface tension values are re-

ported for three isotherms, T = 338.65 K, T = 366.45 K and T = 394.25 K, and three

values of pressure in the range of 32 MPa to 35 MPa per isotherm. As was the case for

the previous systems, DGT results of surface tension calculated with PCP-SAFT repro-

duce the experimental values closely. Absolute deviations between DGT calculation and

experiment are largest for the lowest and highest temperature and take on values between

0.05 mN/m and 0.08 mN/m. At the intermediate temperature all absolute deviations are

below 0.023 mN/m. The results for this isotherm are shown in Fig. 2.8 together with the

experimental results of [82].
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Figure 2.7: (a) Bulk densities of the five-component mixture Fluid B at T = 303.15 K
obtained with PCP-SAFT (solid line) and the Peng-Robinson equation of state (dashed
line). (b) Surface tension of both five-component mixtures, Fluid A at T = 353.15 K
(black) and Fluid B at T = 303.15 K (blue). Comparison of DGT results obtained with
PCP-SAFT (solid lines) to experimental data (circles and squares). In addition, DGT
results obtained with the Peng-Robinson equation of state for Fluid B are shown (dashed
line). Experimental results are taken from [82].
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Figure 2.8: Surface tension of the twenty-component mixture Fluid C at T = 366.45 K.
Comparison of DGT results (solid line) to experimental data (circles). Experimental
results are taken from [82].

2.4 Conclusion

Interfacial properties of multicomponent mixtures are studied by density gradient the-

ory in combination with PCP-SAFT. The overall agreement of the calculated results for

surface tension with experimental data is good for hydrocarbon mixtures as well as for

systems including carbon dioxide. The prerequisite for accurate surface tensions is a

precise description of the bulk densities. PCP-SAFT is shown to predict bulk densities

reliably without adjustable binary interaction parameters.
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Appendix

The binary mixture ethanol-hexane

The results of the previous sections showed that density gradient theory is capable of

describing the interfacial properties of multicomponent mixtures including molecules that

differ significantly in size, e.g. methane and eicosane. Furthermore, other studies show

results of systems such as the binary mixtures water and ethanol, water and acetic-acid

or water and acetone [75] where both components exhibit associative interactions and/or

cross association occurs in the mixture. However, for sufficiently non-ideal mixtures DGT

with common assumptions, i.e. density independent influence parameters and geometric

combining rule for cij, fails to give accurate results. The mixtures are particularly non-

ideal when substances have very asymmetric attractive interactions, such as the binary

mixture consisting of ethanol and hexane or water and hexane. Our hypothesis is thus:

DGT with these assumptions gives unreliable results for sufficiently non-ideal mixtures.

As a measure for the non-ideality we take the activity coefficient at infinite dilution γ∞ij

(with index i: solvent, j: solute). The more ln(γ∞ij )-values deviate from zero, the more

non-ideal is component j in solvent i.

Table 2.1: Activity cofficients at infinite dilution at T = 298.15 K, unless indicated
otherwise, taken from refs.[92] and [93]

mixture lnγ∞12 lnγ∞21

ethanol(1)-hexane(2) 2.4 4.1
water(1)-hexane(2) 11.5 7.6
water(1)-ethanol(2) 1.3 1.06 (at 373K)
water(1)-acetone(2) 2.0 1.9
hexane(1)-hexatriacontane(2) -0.45 (at 349K) -0.68 (at 280K)

Table 2.1 lists values of activity coefficient at infinite dilution for several mixtures. The

first two mixtures (ethanol-hexane) and (water-hexane) can not reliably be predicted

with the DGT, as reported in ref.[84] and they indeed have the highest deviation from

ln(γ∞ij ) = 0. Other mixtures with more reliable DGT-results, such as water-ethanol and

water-acetone have ln(γ∞ij )-values much closer to zero. The deviation from ideal behavior

(ln(γ∞ij ) = 0) is thus mainly caused by asymmetric attractive interactions. Asymmetric

molecular size or shape also leads to deviation from ideal behavior, however, to lesser

extent as the example of hexane-hexatriacontate (C36) in Table 2.1 shows. The mixture

hexane-hexatriacontate was not considered in this work, but was chosen as a representative

shape-asymmetic mixture, where values for the activity coefficients at infinite dilution

were available in literature[93].

In the case of ethanol-hexane, the influence of a third bulk phase, albeit not physically
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present [94], might also affect the results. Liang et al. [84] have studied the mixture

ethanol-hexane in detail using the CPA and PC-SAFT equation of state and a path

function approach to solve the DGT equations for mixtures. With PC-SAFT, results could

be obtained for all compositions, however, the resulting density profiles were unphysical

over a wide concentration range. Using the CPA equation of state, convergence could

only be achieved at very low and high ethanol concentrations.

As Fig. 2.9a shows, the reference component approach used in this work yields a similar

result. Only for low ethanol concentrations physically reasonable surface tensions and

density profiles can be obtained. However, even then the DGT severely underpredicts

the experimental surface tension. Density functional theory, on the other hand, does not

suffer from these shortcomings for the mixture ethanol-hexane, as Fig. 2.9a shows. Sur-

face tensions are in very good agreement with experimental results except at high ethanol

concentrations and density profiles look reasonable in the complete concentration range.

We reemphasize that DFT does not offer any adjustable parameters for calculating inter-

facial properties (such as the influence parameter of DGT) so that the DFT calculations

are full predictions for both, the pure component results and for the mixture behavior.

The different results for surface tension of DFT and DGT can be explained by the density

profiles depicted in Fig. 2.9b. By performing this comparison at an ethanol concentration

where DFT results for surface tension are in very good agreement to experimental values,

we can use the density profiles calculated using DFT as a reference for the density profiles

of DGT: while DFT predicts only a slight accumulation of ethanol in the interface, this

accumulation is strongly overpredicted by DGT leading to a value of surface tension which

is by far too low. The accumulation of ethanol in the interface also shows that it is not

always the component having the higher vapor pressure at mixture temperature that will

be enriched at the interface as postulated for example in the studies of Amèzquita et al.

[86] [83]. Rather, the enrichment of a component at the interface has to be attributed

to a general asymmetry in the component properties such as chain lengths or interaction

energies as noted by Llovel et al. [88].

For the DFT calculation shown in Fig. 2.9 we used the modified fundamental measure

theory functional for the hard sphere contribution to the helmholtz energy [95] [96], a

functional of Tripathi and Chapman for chain formation [97] which was made consistent

with PC-SAFT [30], a weighted density approach for dispersive interactions from our

group and the association functional of Bymaster and Chapman [98].

A more detailed comparison of DGT and DFT is in development in our group.
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Figure 2.9: (a) Surface tension of the binary mixture ethanol (1) and hexane (2) at
T = 283.15 K calculated using DGT (dashed line) and DFT (solid line). Experimental
results (symbols) are taken from Jimènez et al. [99]. A binary interaction parameter
of kij = 0.0285 which was adjusted to VLE data of Góral et al. [100] was used in the
calculations. (b) Comparison of density profiles of ethanol (1, bold lines) and hexane (2,
thin lines) obtained with DGT (dashed lines) and DFT (solid lines) at T = 283.15 K and
p = 0.24 bar (x1 = 0.02).

Molar overall compositions of the studied systems

Table 2.2: Molar overall compositions (%) of the systems studied by Ng et al. [81].

Component wet gas wet gas + CO2 asso. gas asso. gas + CO2

Methane 67.670 64.133 58.68 55.996
Ethane 19.171 15.365 4.98 4.797
Propane 7.683 6.145 1.94 1.87
Butane 3.880 3.080 0.98 0.975
Heptane 0.532 0.426 4.49 4.187

Methylcyclohexane 0.531 0.427 4.42 3.927
Toluene 0.533 0.426 4.74 4.462
Decane - - 5.09 4.716

3-Methylnonane - - 5.16 4.719
Butyl-Cyclohexane - - 5.00 4.716
1,3-Diethylbenzene - - 5.00 4.719

CO2 - 9.997 - 4.917
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Table 2.3: Molar overall compositions (%) of the systems studied by Danesh et al. [82].

Component Fluid A Fluid B Fluid C
Methane 82.05 82.32 80.11
Ethane - - 8.23
Propane 8.95 8.71 2.11
Butane - - 1.07
Pentane 5.00 5.05 0.80
Hexane - - 1.20
Heptane - - 0.96
Octane - - 0.55
Nonane - - 0.49
Decane 1.99 1.98 0.48

Undecane - - 0.45
Dodecane - - 0.44
Tridecane - - 0.44

Tetradecane - - 0.41
Pentadecane - - 0.41
Hexadecane 2.01 1.94 0.39
Heptadecane - - 0.38
Octadecane - - 0.37
Nonadecane - - 0.36

Eicosane - - 0.35

Equation of state parameters and influence parameters

The following tables show the parameters for the PCP-SAFT equation of state of all

components of this study. Furthermore, the values of the influence parameters as well

as the references to the experimental data which was used to adjust the values of c are

presented. The average absolute deviation is calculated as AAD% = 1
N

∑N
i=1

|γexp−γcalc|
γexp

·
100%
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Table 2.4: Values of PCP-SAFT parameters and influence parameters for unpolar and
non-associating components.

Component m σ/Å ε/k/K Ref. c/10−19/Jm5/mol2 T/K AAD% Ref.
Methane 1.0000 3.7039 150.03 [57] 0.1917554 105 - 180 7.07 [101]
Ethane 1.6069 3.5206 191.42 [57] 0.4972791 105 - 285 1.68 [101]
Propane 2.0020 3.6184 208.11 [57] 1.0300755 100 - 340 1.96 [101]
Butane 2.3316 3.7086 222.88 [57] 1.7228683 150 - 390 1.76 [101]
Pentane 2.6896 3.7729 231.20 [57] 2.5651212 160 - 460 5.11 [101]
Hexane 3.0576 3.7983 236.77 [57] 3.6444985 195 - 495 7.07 [101]
Heptane 3.4831 3.8049 238.40 [57] 4.9391699 200 - 500 2.70 [101]
Octane 3.8176 3.8373 242.78 [57] 6.0933095 230 - 560 7.31 [101]
Nonane 4.2079 3.8448 244.51 [57] 7.5417139 235 - 580 7.52 [101]
Decane 4.6627 3.8384 243.87 [57] 9.3629705 260 - 590 3.89 [101]
Undecane 4.9082 3.8893 248.82 [57] 11.508127 273 - 373 0.41 [102] [103]
Dodecane 5.3060 3.8959 249.21 [57] 13.769134 273 - 473 0.44 [102] [104]
Tridecane 5.6877 3.9143 249.78 [57] 16.4519049 273 - 443 0.50 [102] [105]
Tetradecane 5.9002 3.9396 254.21 [57] 18.2103532 273 - 353 0.50 [102]
Pentadecane 6.2855 3.9531 254.14 [57] 21.5025322 273 - 359 0.53 [102] [106]
Hexadecane 6.6485 3.9552 254.70 [57] 24.1825590 273 - 353 0.61 [102]
Heptadecane 6.9809 3.9675 255.65 [57] 27.5240777 273 - 473 0.53 [102] [104]
Octadecane 7.3271 3.9668 256.20 [57] 30.0556228 273 - 443 0.51 [102] [105]
Nonadecane 7.7175 3.9721 256.00 [57] 33.7122254 293 - 353 0.49 [107]
Eicosane 7.9849 3.9869 257.75 [57] 37.5930577 293 - 353 0.70 [108] [107]
Methylcyclohexane 2.6637 3.9993 282.33 [57] 4.1596579 180 - 555 6.25 [109]
Toluene 2.8149 3.7169 285.69 [57] 3.1517615 220 - 570 6.42 [101]
n-Butylcyclohexane 3.6023 4.0637 285.97 [110] 8.5438142 279 - 333 0.14 [111]
m-Diethylbenzene 3.6407 3.9049 287.43 [110] 6.8911789 283 - 373 0.53 [111]
3-Methylnonane 4.4407 3.8840 246.30 [110] 9.3784

Table 2.5: Values of PCP-SAFT parameters [112] and influence parameters for associating
components.

Component m σ/Å ε/k/K εAiBi/k/K κAiBi c/10−19/Jm5/mol2 T/K AAD% Ref.
Ethanol 2.3827 3.1771 198.24 2653.4 0.032384 0.5280672 200 - 505 2.96 [113]

Table 2.6: Values of PCP-SAFT parameters and influence parameters for polar compo-
nents.

Component m σ/Å ε/k/K |Q|/DÅ Ref. c/10−19/Jm5/mol2 T/K AAD% Ref.
CO2 1.5131 3.1869 163.33 4.4 [65] 0.2419666 230 -290 1.77 [101]
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Table 2.7: Equation of state and influence parameters for the Peng-Robinson equation.

Component Tc/K pc/bar ω Ref. c/10−19/Jm5/mol2 Ref. data
Methane 190.564 45.992 0.01142 [101] 0.164788 [101]
Ethane 305.33 48.718 0.0993 [101] 0.441159 [101]
Propane 369.825 42.4766 0.1524 [101] 0.977851 [101]
Butane 425.125 37.96 0.201 [101] 1.712732 [101]
Pentane 469.7 33.7 0.251 [101] 2.694158 [101]
Heptane 540.13 27.36 0.349 [101] 6.051802 [101]
Decane 617.7 21.03 0.488 [101] 13.52718 [101]
Hexadecane 723 14 0.718 [114] 46.72697 [102]
Methylcyclohexane 572.19 34.71 0.235 [114] 4.505940 [109]
Toluene 591.75 41.08 0.264 [114] 3.655061 [101]
CO2 304.2 73.74 0.225 [114] 0.294791 [101]
n-Butylcyclohexane 667.0 31.51 0.362 [115] 6.046241 [111]
m-Diethylbenzene 657.0 28.7 0.354 [115] 9.357979 [111]
3-Methylnonane 613.5 21.6 0.465 [115]
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[29] H. Löwen, “Density functional theory of inhomogeneous classical fluids: recent de-

velopments and new perspectives,” Journal of Physics: Condensed Matter, vol. 14,

no. 46, p. 11897, 2002.

[30] J. Gross, “A density functional theory for vapor-liquid interfaces using the pcp-saft

equation of state,” The Journal of chemical physics, vol. 131, no. 20, p. 204705,

2009.

[31] C. Klink and J. Gross, “A density functional theory for vapor–liquid interfaces

of mixtures using the perturbed-chain polar statistical associating fluid theory

equation of state,” Industrial & Engineering Chemistry Research, vol. 53, no. 14,

pp. 6169–6178, 2014.

56
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[99] E. Jiménez, H. Casas, L. Segade, and C. Franjo, “Surface tensions, refractive indexes

and excess molar volumes of hexane + 1-alkanol mixtures at 298.15 k,” Journal of

Chemical & Engineering Data, vol. 45, no. 5, pp. 862–866, 2000.

[100] M. Goral, P. Oracz, A. Skrzecz, A. Bok, and A. Maczyński, “Recommended vapor–
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Chapter 3

Numerical aspects of classical

Density Functional Theory for

one-dimensional vapor-liquid

interfaces

The content of this chapter is a literal quote of the publication

Mairhofer, Gross, Fluid Phase Equilibria, 444, 2017, 1-12.

In comparison to the published work, the abstract is here omitted. Additions or deletions

compared to the published work are marked with angular brackets.

Classical density functional theory (DFT) is a versatile framework to study the properties

of inhomogeneous systems and has been applied to many problems in chemical engineering

and material science [1] [2] [3] [4]. It is based on a thermodynamic minimization principle:

at equilibrium the grand potential Ω of a system consisting of N components at given val-

ues of temperature T , volume V and chemical potentials µi (i = 1, ..., N) is minimal with

respect to internal degrees of freedom. For inhomogeneous systems, the grand potential

is a functional of the spatially varying density. The goal of DFT applications is to de-

termine the equilibrium density profiles ρi(r̃) as an internal degree of freedom iteratively

until Ω has reached its minimum. The functional derivatives of Ω with respect to the

density profiles are thus zero at equilibrium conditions. Because the density profiles ρi(r̃)

are for practical applications discretized on a grid, the condition of vanishing functional

derivatives reduces to a set of coupled nonlinear equations.

Most studies on density functional theory are concerned with developing Helmholtz energy

functionals for DFT [5] [6] [7] [8] [9] [10] and a simple damped direct substitution method

(Picard iteration) is used to solve the resulting system of equations. The development
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and comparison of numerical methods has received less attention. Notable exceptions

are the studies of Frink and coworkers [11] [12] [13] [14] [15] presenting matrix-based

as well as matrix-free Newton methods for atomic and polymeric DFT approaches in

confined media of up to three dimensions, also exploring the potential of parallelization

and preconditioning. Further studies include the work of Knepley et al. on charged

hard sphere particles and the comparison of a Picard iteration with a line search method

to Newton iterations [16], the works of Oettel et al. [17] and Härtel et al. [18] on hard

spheres in three-dimensional geometries using the direct inversion in the iterative subspace

method [19], the review of Roth [20] on hard-sphere models where a simple line search

algorithm is presented as well as the work of Edelmann and Roth [21] on hard spheres with

attractive interactions in three dimensions applying a limited memory Broyden method.

Thus, most of these previous studies on numerical aspects of DFT focus on algorithms to

track interfacial phenomena of model fluids in confined media in more than one dimension

where restrictions due to memory limitations play an important role. The goal of this

work is to compare different algorithms to obtain the interfacial properties of the one-

dimensional vapor-liquid interface of real fluids.

The motivation for this study is the integration of DFT in the MoDeNa [Modelling of

morphology Development of micro- and Nano Structures] interface [22] for multiscale

modeling as a tool to calculate surface tensions. To use DFT for this purpose is appealing

because unlike alternative methods such as density gradient theory it does not require

any additional parameters beyond those of the equation of state to calculate interfacial

properties. To study real fluids, a Helmholtz energy functional suitable for non-spherical

molecules and polar or associating interactions needs to be applied. The functional needs

to correlate or predict phase equilibrium properties, such as the densities of the corre-

sponding vapor and liquid phases and the equilibrium chemical potential sufficiently well,

because these properties enter the DFT calculations. PC-SAFT [23] [24] is an equation

of state successfully applied to a wide range of systems. A Helmholtz energy functional

consistent with PC-SAFT has been developed by Gross [5] and Gross and Klink [6].

This DFT approach is used here with some modifications: the dispersive contribution is

included in a weighted-density approximation presented in [25] and associative interac-

tions are treated in a non-local description using the approaches of Yu and Wu [26] and

Bymaster and Chapman [27].

To carry out this work, we use of the Portable, Extensible Toolkit for Scientific Computing

(PETSc) [28], as a framework that allows to use different algorithms without the need to

change the interface between the solver and the application code as well as an efficient

and convenient handling of parallel data structures.

In this work, we apply five different algorithms to solve the system of coupled, nonlinear

equations arising from DFT for one-dimensional vapor-liquid interfaces: Picard iteration,
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Anderson mixing, a restarted quasi Newton method and two matrix-free inexact Newton

methods, using analytical and numerical derivatives. We compare the convergence behav-

ior with emphasis on computation time. Furthermore, we compare the Helmholtz energy

functionals of Yu and Wu [26] and Bymaster and Chapman [27] to account for associative

interactions. The computational speed-up of using a line search method, parallelization

and a convergence criterion based on the value of surface tension is discussed.

3.1 Classical density functional theory

This section summarizes the basic equations of classical density functional theory. For a

more detailed description of the underlying molecular model of PC-SAFT and the DFT

approach used in this work, we refer to the work of Gross [5] and Klink and Gross [6]. For a

system of N components in thermodynamic equilibrium at fixed values of temperature T ,

chemical potentials µi (i = 1, ..., N) and volume V , the grand potential Ω is at a minimum

with respect to the systems’ internal degrees of freedom. This applies to homogeneous

systems as well as to inhomogeneous system where the densities ρi(r̃) may vary in space

either due to an external potential V (r̃) or due to a phase interface. We consider fluid-

liquid interfaces in absence of an external field so that the grand potential can be expressed

as

Ω[{ρk}] = A[{ρk}]−
N∑
i

∫
µiρi(r̃)dr̃ (3.1)

where A[{ρk}] is the intrinsic Helmholtz energy of the system which is a functional of

the density profiles ρi(r̃). For a compact notation, we don’t explicitly show that A and

Ω are functions of T and µi. The curly brackets denote the dependency on all species-

densities. According to the PC-SAFT model, the Helmholtz energy functional A[{ρk}]
can be decomposed into a sum of several contributions

A[{ρk}] = Aig[{ρk}] + Ahs[{ρk}] + Achain[{ρk}] + Adisp[{ρk}] + Aassoc[{ρk}] (3.2)

where the individual contributions to the Helmholtz energy are for the ideal gas, hard

sphere interactions, chain formation, dispersion and association (i.e. hydrogen bonding).

The ideal gas contribution is given by

Aig[{ρk}]/kT =

∫ N∑
i=1

ρi(r̃)
(
ln[ρi(r̃)Λ3

i ]− 1
)

dr̃ (3.3)

The spatial variable r̃ is a vector defining the position r as well as the configuration and

orientation of a given molecule. The density ρi(r̃) is a single-particle probability density of

finding molecules at a certain r̃. One has to be careful about the normalization of ρi(r̃).
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As described in the work of Klink and Gross [6], the configurational and orientational

degrees of freedom can to good approximation be absorbed in the de Broglie wavelength

Λi(T ). The de Broglie wavelength appears in two contributions in eq. (3.1) with opposite

sign and cancels out. Our goal is thus simply to calculate the density profiles ρi(r),

i.e. single-molecule (or single molecular segment) number density for the center of mass

position r. The remaining ideal gas contribution then reads

Ãig[{ρk}]/kT =

∫ N∑
i=1

ρi(r) (ln[ρi(r)]− 1) dr (3.4)

For the hard sphere contribution we apply the Fundamental Measure Theory of Rosenfeld

[29] in the modified form of Roth et al. [30] and Yu and Wu [31]

Ahs[{ρk}]/kT =

∫
Φhs ({nα(r)}) dr (3.5)

where the reduced Helmholtz energy density Φhs is a function of a set of weighted densities

nα(r) which are themselves functionals of density. For more details on Fundamental

Measure Theory we refer to the original publications [29, 30, 31]. Expressions for the

one-dimensional form of eq. (3.5) as well as for the functional derivative can be found in

[5].

A Helmholtz energy functional for the contribution of chain formation Achain[{ρk}] for

mixtures consistent with PC-SAFT was developed by Tripathi and Chapman [8] and

adapted in ref. [5, 6], as

Achain[{ρk}]/kT =
N∑
i

(mi − 1)

∫
ρi(r) {ln (ρi(r))− 1} dr

−
N∑
i

(mi − 1)

∫
ρi(r)

{
ln
[
yddii ({ρ̄k(r)})λi(r)

]
− 1
}

dr

(3.6)

where yddii denotes the value of the cavity correlation function of a homogeneous fluid at

contact distance evaluated at a weighted density ρ̄(r) in order to approximate the value

of the inhomogeneous fluid [8] [32] and λi(r) is the average density at contact-distance.

Detailed expressions for these quantities as well as the functional derivative of eq. (3.6)

for the one-dimensional case are presented in [6].

Dispersive interactions are treated in a weighted-density approximation [25].

Adisp[{ρk}]/kT =

∫
ρ̄disp(r)apcsaft(ρ̄disp(r))dr (3.7)
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where apcsaft(ρ̄disp(r)) is the reduced Helmholtz energy density according to the dispersive

term of PC-SAFT evaluated at a weighted density ρ̄disp(r) given in [25].

We consider two different approaches for the associative contribution of the Helmholtz

energy functional which are both modifications of the work of Segura et al. [33]. The first

approach is due to Bymaster and Chapman [27], the second due to Yu and Wu [26]. In

the approach of Bymaster and Chapman, the contribution of association to the Helmholtz

energy functional is

Aassoc[{ρk}]/kT =

∫ N∑
i=1

ρi(r)
∑
A∈Γi

(
lnχiA(r)− χiA(r)

2
+

1

2

)
dr (3.8)

where χiA is the monomer fraction, i.e. the fraction of association sites A on molecule i

un-bonded to other association sites. The second sum runs over all association sites on

molecule i. The expression for χiA based on Bymaster and Chapman [27] but modified to

be consistent with PC-SAFT is given by

χiA(z) =

1 +
1

2

N∑
j=1

κijσ
2
ij

z+σij∫
z−σij

ρj(z
′)
∑
B∈Γj

χjB(z′)
{
yddij (z, z′) [exp(βεAiBj)− 1]

}
dz′


−1

(3.9)

Here, σij, κij and εAiBj denote the segment diameter parameter, association volume and

association energy parameter of the mixture, respectively, whose definitions can be found

in [23] and [24]. Furthermore, yddij (z, z′) =
√
yddij ({ρ̄k(z)}) · yddij ({ρ̄k(z′)}) where yddij denotes

the value of the cavity correlation function of the homogeneous fluid at contact distance

evaluated at a weighted density ρ̄(z). The detailed form of yddij can be found in [8]. Details

on the functional derivative of Aassoc[{ρk}] and the determination of χiA(z) are presented

in the supporting information of [27].

Yu and Wu [26] proposed a weighted-density approximation for the associative contribu-

tion employing the weighted densities of the Fundamental Measure Theory nα(r) [29] [30]

[31]

Aassoc[{ρk}]/kT =

∫
Φassoc ({nα(r)}) dr (3.10)

where the reduced Helmholtz energy density in a form consistent with PC-SAFT is given

by [25]
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Φassoc ({nα(r)}) =
N∑
i

n0,i(r)

mi

ζi(r)
∑
A∈Γi

(
lnχiA(r)− χiA(r)

2
+

1

2

)
(3.11)

In eq. (3.11), n0,i(r) is a component specific weighted density, mi is the segment number

of component i and ζ(r) is a function of a subset of the weighted densities [26]. The

fraction of un-bonded A site χiA(r) is obtained by solving the set of nonlinear equations

χiA(r) =

(
1 +

N∑
j

n0,j(r)ζj(r)κijσ
3
ij

∑
B∈Γj

χjB(r)
{
gddij [exp (βεAiBj)− 1]

})−1

(3.12)

with the contact value of a modified hard-sphere pair correlation function gddij ({nα(r)})
[26].

In both approaches, the values of χiA are determined by solving the corresponding equa-

tions, eq. (3.9) or eq. (3.12), by a simple damped successive substitution iteration. We

solved for χiA values in an inner iteration and didn’t investigate a simultaneous proce-

dure, together with solving for a density profile. The important difference between both

association terms is, for the approach of Yu and Wu non-local information is only needed

for calculating the FMT-weighted-densities nα(r) whereas the subsequent iterative deter-

mination of χiA(z) requires only the values of variables at position z, i.e. it is a purely

local operation. For the approach of Bymaster and Chapman, on the other hand, values

of χiA(z) are coupled to the values at neighbouring grid points z′. Therefore, eq. (3.12) is

much easier to solve than eq. (3.9) and a longer solution time can be expected with the

approach of Bymaster and Chapman.

In equilibrium the grand potential of the system is minimal and the functional derivatives

of Ω with respect to the species-density profiles vanish

δΩ[{ρk}]
δρi(r)

=
δA[{ρk}]
δρi(r)

− µi = 0 ∀i (3.13)

Eq. (3.13) can be rewritten to yield an expression which can be solved by a fixed-point

method

ρi(r) = ρl,bulk
i exp

(
µl,res
i /kT − δAres[{ρk}]/kT

δρi(r)

)
∀i (3.14)

or alternatively for a root finding algorithm

0 = ρl,bulk
i exp

(
µl,res
i /kT − δAres[{ρk}]/kT

δρi(r)

)
− ρi(r) ∀i (3.15)

where Ares is the residual part of the Helmholtz energy functional Ares = A−Aig and ρl,bulk
i

and µl,res
i denote the bulk density of component i in the liquid phase and the residual part
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of the equilibrium chemical potential of component i in the liquid phase, respectively.

For a planar interface where the inhomogeneity is only one-dimensional, eq. (3.15) can be

discretized on a one-dimensional grid and solved by a suitable method. The dimension of

the resulting system of coupled nonlinear equations is ngrid ·N where ngrid is the number

of grid points used in the discretization.

3.2 Algorithms

In this section, we briefly summarize the algorithms applied in this work. These are the

inexact Newton method, a quasi Newton method, Anderson mixing and Picard iteration.

The value of the residual given by the right hand side of eq. (3.15) is, for the kth iteration,

denoted F (ρk). Further, F ′(ρk) = ∂F (ρk)
∂ρk

is the corresponding Jacobian. To simplify

notation, ρk denotes an array of all species-density profiles at iteration k, i.e. ρk has

N · ngrid entries where N is the number of components and ngrid is the number of grid

points.

3.2.1 Line search method

For all algorithms except Anderson mixing the solution at iteration k is updated as

ρk+1 = ρk + λkuk (3.16)

where the determination of the update uk is algorithm specific and the damping factor

λk has to be determined suitably. That is necessary because taking the whole step λk =

1 may not lead to a decrease of the residual. Furthermore, in applications like DFT

where the solution ρk is bound by physical arguments to positive values not exceeding

a maximum packing fraction, using λk = 1 may lead to unphysical values during the

iterative procedure. A line search method searches along the update direction uk in order

to find a suitable value of λk. Several line search methods are available in PETSc, some

of which can only be used with certain algorithms. For the test cases considered in this

work, the different line search methods give very similar results. Therefore, a method is

chosen that can be used in combination with all studied algorithms.

This line search method determines values of λk by minimizing the square of the norm

of the residual f =
(
||F (ρk + λkuk)||2

)2
. The minimization is conducted with a Newton

scheme. We restrict the solution procedure to one Newton iteration step. Given an initial

value λk,0, λk is determined as

λk = λk,0 ±
(
∂f

∂λ

∣∣∣∣
λk,0

)(
∂2f

∂λ2

∣∣∣∣
λk,0

)−1

(3.17)
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where the second derivative is approximated as

∂2f

∂λ2

∣∣∣∣
λk,0
≈
(
∂f

∂λ

∣∣∣∣
λk,0
− ∂f

∂λ

∣∣∣∣
λ=0

)/
λk,0 (3.18)

and both first derivates are approximated by a second-order upwind scheme using values

of f at λ = 0, 1
2
λk,0 and λk,0. The sign in eq. (3.17) is the opposite of the sign of

∂2f
∂λ2
|λk,0 to ensure a step in the descent direction of f . In case of a concave function f ,

where the positive sign in eq. (3.17) applies instead of the negative sign of the regular

Newton update, this procedure exhibits the risk of failure, because although the change

of sign guarantees a step in the descent direction of f at λk,0, the step length is effectively

arbitrary. In practical application, however, eq. (3.17) proved robust and no failures were

detected for our application.

The advantage of this line search method is that steps λk > 1 are chosen if that accelerates

convergence. The values of λk,0 are presented in the results section.

3.2.2 Inexact Newton method

Inexact Newton methods [34] solve a system of nonlinear equations by computing a se-

quence of steps uk and approximate solutions ρk given by

||F (ρk) + F ′(ρk)uk||2 ≤ ηk||F (ρk)||2 (3.19)

ρk+1 = ρk + λkuk (3.20)

where || · ||2 denotes the Euclidean norm and λk is a damping parameter which is deter-

mined according to the line search method described in section 3.2.1. The forcing term

ηk ∈ [0, 1) determines to which accuracy the linear system eq. (3.19) is solved at every

Newton iteration k and by setting ηk = 0 the classical Newton method is recovered. The

frequently used method of Eisenstat and Walker [35] where ηk is set depending on the

agreement of F (ρk) and its linear approximation does not perform better for the systems

studied in this work than setting a fixed number of iterations (15 in this work) to solve

eq. (3.19). GMRES [generalized minimal residual method] [36] is used as the linear solver.

This solver offers the advantage that the resulting method can be used in a matrix-free

way [37], i.e. the Jacobian F ′(ρk) never needs to be formed explicitly nor stored, because

Krylov-subspace methods such as GMRES only require the action of the Jacobian on a

vector F ′(ρk)v. This matrix-vector product can be calculated using directional deriva-

tives which can be obtained analytically using automatic differentiation or approximated

numerically as

F ′(ρk)v ≈ F (ρk + εv)− F (ρk)

ε
(3.21)
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In this work, two matrix-free approaches are used. The first approach uses automatic

differentiation [38] for evaluating F ′(ρk)v and will be denoted Newton AD. The second

approach (Newton FD) uses the numerical approximation given in eq. (3.21) where the

value of ε is set according to

ε =εrel · ρTk v
1

||v||22
|ρTk v| > ρmin||v||1 (3.22)

ε =εrel · ρmin · sign(ρTk v)
||v||1
||v||2

otherwise (3.23)

and the PETSc default values εrel = 10−8 and ρmin = 10−6Å
−3

are used.

3.2.3 Quasi Newton method

The limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) [39] is a

quasi Newton method where the system of nonlinear equations F (ρ) is solved using suc-

cessive updates of the approximation of the inverse of Jacobian Bk ≈ F ′(ρk)−1. Given

initial values B0 and ρ0 the solution ρk and the matrix Bk are updated as

uk = −BkF (ρk) (3.24)

ρk+1 = ρk + λkuk (3.25)

sk = λkuk (3.26)

yk = F (ρk+1)− F (ρk) (3.27)

Bk+1 =

(
I− sky

T
k

yTk sk

)
Bk

(
I− yks

T
k

yTk sk

)
+
sks

T
k

yTk sk
(3.28)

In the limited memory version of the algorithm, only the values of B from the last mk =

min(m, k) iterations are used to construct Bk. In all calculations we set m = 10 and

B0 = I where I is the identity matrix. For the remaining options PETSc default settings

are used, i.e. Shanno scaling [40] is applied and restarts are invoked according to Powell’s

restart conditions [41]

|F (ρk−1)TF (ρk)| > φ||F (ρk−1)||22 (3.29)

with φ = 1. The damping parameter λk is again calculated using the line search method

of section 3.2.1.
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3.2.4 Picard iteration

Picard iteration is a simple fixed-point method where the solution is updated according

to

ρk+1 = ρk + λkF (ρk) (3.30)

and λk is calculated by a line search method, see section 3.2.1.

3.2.5 Anderson mixing

Anderson mixing [42] is an accelerated fixed-point iteration that computes the new solu-

tion ρk+1 as a linear combination of the residuals and solutions of the last mk iterations.

A mixing parameter β determines the weight of the previous solutions and the previous

residuals in the calculation of ρk+1

ρk+1 = (1− β)
mk∑
i=0

αki ρ
k−mk+i + β

mk∑
i=0

αkiG(ρk−m
k+i) (3.31)

where mk = min(m, k) and G(ρk) = F (ρk) + ρk. The coefficients αki are determined by

minimizing the residuals of the last mk steps

min
α=(α0,...,αmk )T

mk∑
i=0

||αki F (ρk−m
k+i)||2 s.t.

mk∑
i=0

αki = 1 (3.32)

For all calculations we use m = 50. Values between β = 0.05 and β = 0.1 gave the best

results for our test cases. The actual values are given in the results section. The algorithm

is here applied without restarting option (according to the PETSc default settings).

3.3 Numerical settings

All calculations are performed on a regular workstation with an Intel Core i5-3570 proces-

sor with four CPU cores at 3.4 GHz and the gfortran 4.7.2 compiler. The one-dimensional

domain of length 50 ·σmin, where σmin is the minimal segment diameter of all components,

is discretized in z-direction using ngrid = 1000 equidistant grid points. We don’t explore

reducing the number of grid points, either by taking a larger grid distance or by reducing

the interfacial domain. It is further noteworthy that the numerical routines for calculat-

ing the Helmholtz energy and its derivatives are not optimized for computational speed.
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Therefore, there is still potential to farther decrease the computation time given in the

results section.

All numerical integrations are carried out using cubic spline interpolations and PETSc is

configured in non-debug mode. An empirical relation similar to the one presented in [5]

is used as the initial density profile ρ0
i (z) in all calculations

ρ0
i (z) =

1

2

(
ρl,bulk
i − ρv,bulk

i

)
tanh

(
z

σi

(
2.4728− 2.3625

T

T calc
c

))
+

1

2

(
ρl,bulk
i + ρv,bulk

i

)
(3.33)

where the origin of the z-coordinate is located in the middle of the computational domain

and T calc
c is the critical temperature of the mixture.

3.4 Results and discussion

In this section we compare the performance, especially the calculation time, of the different

algorithms for 3 representative test cases. These test systems exhibit different levels of

complexity either due to their molecular interactions or number of components. We

consider pure n-butane as the first and simplest test system. The second case is the

binary mixture ethanol-hexane. This case is studied as an example of a system with

asymmetric interactions. Ethanol shows strong associative interactions which are not

present for hexane. The association approaches by Bymaster and Chapman [27] and

Yu and Wu [26] are compared for this mixture. The last test case is a twenty-component

mixture containing all n-alkanes from methane to eicosane. The complexity of this system

results from the dimension of the system of equations to be solved. Further aspects such

as the performance increase due to the line search method or parallelization are shown

exemplarily for some algorithms and test systems only.

We found that all algorithms converge to the same solution for every test system, but at

different computational costs. The pure component PC-SAFT parameters used in this

study are listed in the appendix.

3.4.1 Test system n-butane

Figure 3.1a shows the results for the surface tension of n-butane. The very good agreement

of the DFT predictions to experimental data confirms the DFT formalism is suited for

rather simple, non-spherical fluids up to temperatures rather close to the critical point.

The convergence rates of the different algorithms are compared in figure 3.1b. All algo-

rithms show a steady decrease of the norm of the residual and reduce it to the same value.

Computation time varies from well below one second for the Anderson mixing method to
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five second for the Picard iteration. Both inexact Newton methods converge in three to

four iterations.

Newton FD converges almost as fast as Anderson mixing while the convergence rate of

Newton AD is similar to the one of the L-BFGS method. Thus, for this test system, the

analytic calculation of the Jacobian-vector product F ′
(
ρk
)
v using automatic differentia-

tion is not advantageous regarding computation time or accuracy of the solution.

We emphasize that the good performance of Newton FD is due to the matrix-free calcula-

tion of the approximate value of F ′
(
ρk
)
v which requires only a single function evaluation

(see eq. 3.21). This has to be compared to the approach of approximating the Jacobian

using finite-differences which requires up to N ·ngrid function evaluations (without taking

advantage of any structure of the Jacobian) and, therefore, would result in a much longer

computation time.

For all calculations with n-butane, an initial value of the damping parameter λk,0 = 1 is

used and β = 0.1 for Anderson mixing.
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Figure 3.1: Experimental [43] (symbols) and calculated (lines) results for surface tension
of n-butane as a function of temperature (a). Convergence rate of different algorithms for
n-butane at T = 300 K (p = 2.59 bar) (b).
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3.4.2 Test system ethanol-hexane
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Figure 3.2: Experimental [44] (symbols) and calculated (lines) results for surface tension
for the mixture ethanol-hexane at T = 298.15 K as a function of the molar composition in
the liquid phase using the approaches of Bymaster and Chapman [27] and Yu and Wu [26]
for the associative contribution to the Helmholtz energy functional. A binary interaction
parameter of kij = 0.02854 was adjusted to experimental VLE data of Zhang et al. [45].

For the mixture ethanol-hexane, the associative contribution to the Helmholtz energy

functional Aassoc[{ρk}] needs to be taken into account because strong hydrogen bonding

occurs between the ethanol molecules. The approaches of Yu and Wu [26] and Bymaster

and Chapman [27] are applied to calculate Aassoc[{ρk}]. A comparison of predicted results

to experimental data is shown in figure 3.2. Results of both association models are

practically identical at low ethanol concentrations and agree very well with experiments.

With increasing ethanol concentration, results obtained with the approach of Yu and

Wu start to overpredict surface tension values slightly while results of the approach of

Bymaster and Chapman follow the experiments closely up to xEthanol ≈ 0.7. At higher

ethanol mole fraction xEthanol, both approaches overpredict surface tension significantly.

Results obtained with the approach of Bymaster and Chapman are in better agreement to

the experimental data. We suspect that the deviations emerge because the nonisotropic

orientational degree of freedom is not captured by the functional.

Figure 3.3 shows the density profiles obtained with both approaches at two values of

ethanol concentration. At xethanol = 0.057, where results for surface tension are practically

identical for both approaches (fig. 3.2), the density profiles are also very similar. The only

difference is the prediction of a slight accumulation of ethanol on the liquid side of the

77



-40 -30 -20 -10 0 10 20 30 40

z / Å

0

1e-3

2e-3

3e-3

4e-3

5e-3
ρ

1
 /

 1
/Å

³

0

1e-4

2e-4

3e-4

4e-4

5e-4

ρ
2
 /

 1
/Å

³

(a)

-40 -30 -20 -10 0 10 20 30 40

z / Å

0

1e-3

2e-3

3e-3

4e-3

5e-3

6e-3

ρ
1
 /

 1
/Å

³

0

1e-3

2e-3

3e-3

4e-3

5e-3

6e-3

ρ
2
 /

 1
/Å

³

(b)

Figure 3.3: Density profiles for hexane (1, solid lines) and ethanol (2, dashed lines)
obtained with the approaches of Bymaster and Chapman [27] (black) and Yu and Wu
[26] (blue) for the associative contribution to the Helmholtz energy functional at T =
298.15 K. The calculations are performed at (a) xethanol = 0.057 (p = 0.25 bar) and (b)
xethanol = 0.708 (p = 0.245 bar).

interface by the approach of Bymaster and Chapman which is not present in the density

profile obtained with the approach of Yu and Wu. The density profiles for hexane are non-

distinguishable for both approaches. At xethanol = 0.708, the density profiles differ more

clearly which explains the different results for surface tension (fig. 3.2). Both approaches

predict a pronounced enrichment of hexane in the interface. However, the approach of

Bymaster and Chapman also shows a weak accumulation of ethanol and a depletion of

hexane on the liquid side of the interface which are not present in the density profiles

obtained with the approach of Yu and Wu.
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Figure 3.4: Convergence rate of all algorithms for the system ethanol-hexane at T =
298.15 K and xEthanol = 0.27 (p = 0.256 bar) for (a) the association approach of Yu
and Wu [26] and for (b) the association Helmholtz energy functional of Bymaster and
Chapman [27].

As figure 3.4 shows, the increased accuracy of the approach of Bymaster and Chapman
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comes at the price of much slower convergence rates. All algorithms require much longer

computation time for the approach of Bymaster and Chapman as compared to the ap-

proach of Yu and Wu. For the two fastest algorithms, Anderson mixing and Newton FD,

the calculation time of both association approaches differs roughly by a factor of ten. As

mentioned in section 3.1, the main difference between the two approaches is the calcula-

tion of the fraction of free association sites on molecule i χiA(r). In the approach of Yu and

Wu, this is a local operation. Eq. (3.12) couples the value for a specific association site

χiA(r) only to the values of χ(r) of all other association sites at the same position r. For

the approach of Bymaster and Chapman, the integral in eq. (3.9) couples the values of

χiA(r) also to all values of χ(r’) at neighbouring points of r. Thus, the system of equations

given by eq. (3.9) is more complex and time consuming to solve than eq. (3.12) which

explains the longer computation time for the approach of Bymaster and Chapman.

For both approaches, Newton FD and Anderson mixing are again the preferred algorithms

and converge at a similar rate. L-BFGS converges more rapidly than the Picard iteration.

Newton AD converges considerably faster than the L-BFGS algorithm and Picard itera-

tions with the approach of Yu and Wu. When the approach of Bymaster and Chapman

is applied, however, Newton AD converges even slower than the Picard iteration. This

loss in performance of Newton AD can be attributed to the analytic calculation of the

Jacobian-vector product F ′(ρk)v using automatic differentiation. In this case, the itera-

tive solution of a system of nonlinear equations for all χiA(r) as well as for the derivatives

of all χiA(r) with respect to all species-densities at every evaluation of F ′(ρk)v is required.

The requirement applies to both association models, however, for the approach of Yu

and Wu the resulting system of equations for determining χiA(r) and its species-density

derivatives only contains the local unknowns at r while in the approach of Bymaster and

Chapman also unknowns at neighbouring points r’ have to be considered. The loss in

performance of Newton AD for the model of Bymaster and Chapman stems from the

different convergence behaviour of χiA(r) and its species-density derivatives. While both

properties show a similar convergence rate when the approach of Yu and Wu is applied,

the species-density derivatives of χiA(r) converge much slower than χiA(r) with the ap-

proach of Bymaster and Chapman. The significant increase in computational time can

thus be attributed to the additional iterations necessary converging the density derivatives

of χiA(r) at every evaluation of F ′(ρk)v. Figure 3.4 also shows that Anderson mixing can

reduce the final value of the norm of residual ||F (ρk)||2 further than the other algorithms.

We verified, however, this does not result in different values of surface tension or notable

differences in the final density profiles.

In the calculations for the system ethanol-hexane, the following settings are used: β = 0.05

for Anderson mixing, the initial damping parameter λk,0 is set to 1 for both inexact Newton
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methods and to 0.4 for the Picard iteration. These values are used for both association

approaches. For L-BFGS the initial damping parameter is set to 0.5 for the approach of

Yu and Wu and to 0.3 for the approach of Bymaster and Chapman.

3.4.3 Test system twenty-component alkane mixture
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Figure 3.5: Experimental [46] (symbols) and calculated (lines) results for surface tension
for the twenty-component mixture as a function of pressure (a). Convergence rate of the
different algorithms for the twenty-component mixture at T = 366.45 K and p = 330 bar
(b).

The experimental surface tension results of this twenty-component mixture which is com-

posed of all n-alkanes from methane to eicosane was determined by Danesh et al. [46]. Fig-

ure 3.5b shows the convergence rate of the different algorithms for the twenty-component

mixture. Anderson mixing is the fastest algorithm and it reduces the norm of the residuals

||F (ρk)||2 further than the remaining algorithms. Both inexact Newton methods perform

similarly and converge in four iterations. L-BFGS and Picard iteration both converge

to levels of ||F (ρk)||2 significantly higher than the level reached by Anderson mixing and

the inexact Newton methods. We verified, however, these differences in the final value

of ||F (ρk)||2 have only a negligible effect on the value of surface tension and the final

density profiles so that the results depicted in figure 3.5a are in graphical terms identical

for all algorithms: predicted results for surface tension are somewhat lower than experi-

mental data. We still consider the overall agreement to the experimental data, however,

as satisfying.

In all calculations, no binary interaction parameters are used in the combining rules of

the equation of state and the numerical settings are β = 0.05 for Anderson mixing and

λk,0 = 1 for the remaining algorithms. The molar overall composition of the mixture is

specified in the appendix.

Anderson mixing requires only about ≤ 10% of the computation time required for the
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Picard iteration for all considered test systems.

3.4.4 Influence of the line search method

The influence of the line search method is illustrated examplarily for the test system n-

butane and the Picard iteration. The Picard iteration is chosen because it is frequently

used in DFT applications and often no line search method is applied. Instead, a fixed

value λ is used throughout the calculation to scale the update according to eq. (3.16).

A constant λ has to be chosen individually for every calculation and it has to be small

enough to avoid divergence. On the other hand, if λ is chosen too small, computation time

is increased unnecessarily. Figure 3.6 shows this situation for n-butane at two different

temperatures. At T = 300 K, values of λ > 0.1 lead to divergence within the first few

iterations. For λ = 0.1, the calculation diverges after an initial decrease of the norm of

the residuals. A fixed value of λ = 0.05 in this case leads to a convergence rate even

higher than when the line search method of section 3.2.1 is applied. Reducing the value

further to λ = 0.01 ensures convergence, however, the computation time increases by

a factor of four compared to the results with line search. At T = 160 K the situation

is different. The choice λ = 0.05 now leads to divergence at the very beginning of the

calculation and smaller damping factors such as λ = 0.01 or λ = 0.005 are necessary to

enforce convergence. That comes at the price of longer computation time compared to

the flexible determination of λk by a line search method. We came to much appreciate

the line search method, because a proper choice of a constant damping factor λ is a

priori unknown for any system. Suitable values strongly depend on the considered case

(substances and state conditions) and need to be determined by trial and error. The line

search method largely alleviates this problem. The appeal of the line search method is

that it uses large update steps when possible and smaller updates when necessary and

therefore makes a trial and error approach to find the optimal fixed value of λ obsolete.

3.4.5 A convergence criterion based on the value of surface ten-

sion

In previous sections, the decrease of the norm of the residual ||F (ρk)||2 is used as the

criterion to compare the convergence rate of the different algorithms. In most cases where

DFT is applied to the one-dimensional vapor-liquid interface, the calculation of the value

of surface tension γ is the main objective. As figure 3.7 shows for the system n-butane

and for the mixture ethanol-hexane with the approach of Bymaster and Chapman for the

associative contribution to the Helmholtz energy functional, the value of γ converges to a

constant value long before ||F (ρk)||2 reaches its final level. For the systems and algorithms

depicted in figure 3.7, using the value of γ instead of ||F (ρk)||2 as convergence criterion
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Figure 3.6: Convergence rate of the Picard iteration for different values of a constant
damping parameter λk compared to a flexible determination of λk by a line search method.
Results are shown (a) for the temperatures T = 300 K (p = 2.59 bar) and (b) for
T = 160 K (p = 3.33 · 10−4 bar) of the system n-butane.

can save more than 50% computation time and similar findings apply to the remaining

test systems and algorithms.
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Figure 3.7: Convergence rate of the norm of the residual ||F (ρk)||2 (black symbols, left
y-axis) and the value of surface tension γ (blue symbols, right y-axis) as a function of
computation time. Diagram (a) for the system n-butane at T = 300 K (p = 2.59 bar)
using Picard iterations. Diagram (b) for ethanol-hexane at T = 298.15 K and xethanol =
0.27 (p = 0.256 bar) using the approach of Bymaster and Chapman [27] for the associative
contribution to the Helmholtz energy functional and Newton MF (b).

Figure 3.8 compares the final density profiles obtained from calculations where both con-

vergence criteria are applied to the systems shown in fig. 3.7. For n-butane (fig. 3.8a),

the effort spent on reducing ||F (ρk)||2 to its final level while the value of γ is already

constant has only a minimal effect on the density profile. For the binary mixture ethanol-

hexane (fig. 3.8b), the differences in the density profiles are more notable: the profile

obtained from a convergence criterion for γ shows a slight enrichment of hexane in the
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interface which has vanished once ||F (ρk)||2 reached its lowest value. Calculations target-

ing details of the interfacial density distribution should be conducted using ||F (ρk)||2 as

a convergence criterion.
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Figure 3.8: Diagram (a): density profile of n-butane at T = 300 K (p = 2.59 bar).
Calculations are stopped based on the convergence of ||F (ρk)||2 (black) after 75 Picard
iterations (computation time 5.4 s) and based on the convergence of γ (blue) after 22
Picard iterations (computation time 1.5 s). Diagram (b): density profiles of hexane (solid
lines) and ethanol (dashed lines) at T = 298.15 K and xethanol = 0.27 (p = 0.256 bar)
using the approach of Bymaster and Chapman [27] for the associative contribution to
the Helmholtz energy functional. Calculations are stopped based on the convergence of
||F (ρk)||2 (black) after 12 Newton FD iterations (computation time 90 s) and based on
the convergence of γ (blue) after 4 Newton FD iterations (computation time 37 s).

3.4.6 Parallelization

In this section, the reduction of computation time realized by executing the DFT calcu-

lation in parallel is presented for the twenty-component alkane mixture as well as for the

mixture ethanol-hexane with the approach of Yu and Wu for the associative contribution.

The calculations are performed using the same settings as in the previous sections and the

same workstation as described in section 3.3. In the parallel case, each processor works

only on a subset of the ngrid grid points. Due to the spatially coupled nature of the equa-

tions, data exchange between the processors is necessary. This parallel data management

and inter-processor communication is handled automatically by PETSc.

Figure 3.9 shows the speed-up of computation time t(1)
t(np)

, where t(np) is the time required

to reach a converged solution based on the value of ||F (ρk)||2 using np processors. For

the twenty-component mixture, figure 3.9a, all algorithms show almost exactly the same

behaviour: using two processors results in a reduction of computation time of almost 50%.

With four processors the time to reach a converged solution can be reduced by almost
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Figure 3.9: Speed-up of computation time t(1)
t(np)

for varying numbers of processors, np,

used in the calculation. Diagram (a): twenty-component mixture at T = 366.45 K and
p = 330 bar. Diagram (b): mixture ethanol-hexane at T = 298.15 K and xEthanol = 0.27
(p = 0.256 bar) using the association model of Yu and Wu [26]. Results are averages of
ten calculation runs. The dashed line denotes perfectly linear scaling.

70%. For the mixture ethanol-hexane, figure 3.9b, the results are similar. In this case,

the computation time can be reduced by around 60% using four processors. For Anderson

mixing the decrease is slightly smaller than for the other algorithms. Considering that

parallelization comes at practically no additional effort when a toolkit such as PETSc is

used, it poses a good opportunity to speed up DFT calculations.

3.5 Conclusion

Five algorithms are applied to solve the equations of classical DFT for one-dimensional

vapor-liquid interfaces and their performance is compared on three test systems. All al-

gorithms converged to the same values for surface tension in all considered cases. Ander-

son mixing and the matrix-free inexact Newton method with numerically approximated

derivatives outperform the remaining algorithms in all calculations. Using analytic deriva-

tives with the matrix-free inexact Newton method does not result in any improvement

regarding accuracy or computation time over numerically approximated derivatives. For

systems with molecular association (i.e. hydrogen bonding) described by Wertheim’s

theory, all algorithms require significantly more iterations to converge. For the studied

mixture ethanol-hexane, using the functional of Bymaster and Chapman [27] for the asso-

ciative contribution to the Helmholtz energy functional yields results in better agreement

to experimental data than the functional of Yu and Wu [26], however, computation time

is up to ten times longer. In cases where the calculation of surface tension γ is the main

objective, using a convergence criterion based on γ instead of the norm of the residual

||F (ρk)||2 can reduce computation time by up to 50%. Parallelization offers a further
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potential to significantly speed up the calculations.

Appendix

Molar overall composition of the twenty-component alkane mix-

ture

Table 3.1: Molar overall composition (%) of the twenty-component alkane mixture [46].

Component % Component % Component % Component %
Methane 80.11 Heptane 0.96 Tridecane 0.44 Nonadecane 0.36
Ethane 8.23 Octane 0.55 Tetradecane 0.41 Eicosane 0.35
Propane 2.11 Nonane 0.49 Pentadecane 0.41
Butane 1.07 Decane 0.48 Hexadecane 0.39
Pentane 0.80 Undecane 0.45 Heptadecane 0.38
Hexane 1.20 Dodecane 0.44 Octadecane 0.37
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Equation of state parameters

The following tables show the parameters for the PC-SAFT equation of state of all com-

ponents of this study.

Table 3.2: Values of PC-SAFT parameters for non-associating components.

Component m σ/Å ε/k/K Ref
Methane 1.0000 3.7039 150.03 [23]
Ethane 1.6069 3.5206 191.42 [23]
Propane 2.0020 3.6184 208.11 [23]
Butane 2.3316 3.7086 222.88 [23]
Pentane 2.6896 3.7729 231.20 [23]
Hexane 3.0576 3.7983 236.77 [23]
Heptane 3.4831 3.8049 238.40 [23]
Octane 3.8176 3.8373 242.78 [23]
Nonane 4.2079 3.8448 244.51 [23]
Decane 4.6627 3.8384 243.87 [23]
Undecane 4.9082 3.8893 248.82 [23]
Dodecane 5.3060 3.8959 249.21 [23]
Tridecane 5.6877 3.9143 249.78 [23]
Tetradecane 5.9002 3.9396 254.21 [23]
Pentadecane 6.2855 3.9531 254.14 [23]
Hexadecane 6.6485 3.9552 254.70 [23]
Heptadecane 6.9809 3.9675 255.65 [23]
Octadecane 7.3271 3.9668 256.20 [23]
Nonadecane 7.7175 3.9721 256.00 [23]
Eicosane 7.9849 3.9869 257.75 [23]

Table 3.3: Values of PC-SAFT parameters for the associating component.

Component m σ/Å ε/k/K εAiBi
/k/K κii Ref

Ethanol 2.3827 3.1771 198.24 2653.4 0.032384 [24]
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Chapter 4

Modeling properties of the

one-dimensional vapor-liquid

interface: application of classical

density functional and density

gradient theory

The content of this chapter is a literal quote of the publication

Mairhofer, Gross, Fluid Phase Equilibria, 458, 2018, 243-252.

In comparison to the published work, the abstract is here omitted. Additions or deletions

compared to the published work are marked with angular brackets.

Properties of vapor-liquid interfaces play an important role in many industrial appli-

cations. Density functional theory (DFT) and density gradient theory (DGT) are two

approaches commonly applied to calculate these interfacial properties.

The framework of density functional theory was first developed to study the inhomoge-

neous electron gas by Hohenberg and Kohn [1] and Mermin [2] and was later applied to

classical systems by Ebner et al. [3] [4]. The fundamentals of density gradient theory

date back to the work of Van der Waals [5]. Later, Cahn and Hilliard [6] provided a

rigoros derivation and extension of the DGT. For a detailed description of the historical

development of both theories we refer to the book of Henderson [7].

Applied to a classical, inhomogeneous system of N components at given values of tem-

perature T , volume V and chemical potentials µi (i = 1, ..., N), both approaches aim

to find the equilibrium species density profiles ρi(r) that minimze the grand potential

Ω = A−
∫ ∑N

i µiρidr of the system. The fundamental difference between DFT and DGT
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as they are applied in this work is the approximate expression for the Helmholtz energy

A[ρ(r)] of an inhomogeneous system. In DGT, an approximation of A[ρ(r)] =
∫
a[ρ(r)]dr

is obtained by an expansion of the local Helmholtz energy density a[ρ(r)] about the local

density approximation a0(r) = a(ρ(r)) truncated after the square density gradient term.

The prefactor of this gradient term is the so called influence parameter cii, which is a

component specific property. Theoretical approaches [8] [9] [10] and several correlations

[11] [12] [13] [14] [15] exist to determine cii. In most cases however, the value of cii is

adjusted to experimental surface tension data. The appeal of DGT is its ease of imple-

mentation: besides the value of cii only an equation of state to evaluate a0 is required.

For an extensive list of previous studies using various equations of state to evaluate a0,

we refer to a previous study [16] [Chapter 2].

DFT, on the other hand, does not require any additional parameters beyond those of

the equation of state to calculate interfacial properties. A is treated as a functional of

the spatially varying density profile. Common approximations are derived from pertur-

bation theory for the Helmholtz energy by decomposing the intermolecular potential into

a predominantly repulsive part (defining the reference fluid) and an attractive part of

the intermolecular potential. Furthermore, the unknown correlation function of the in-

homogeneous fluid is approximated by its value for the homogeneous fluid evaluated at

averaged densities. As shown by Evans [10], DFT can be seen as a generalization of the

DGT approach of Van der Waals. For an overview of current applications of DFT, we

refer to the following review articles [17] [18] [19] [20].

The chemical potentials as well as the densities of the coexisting vapor and liquid phases

enter the DFT and DGT calculations. Therefore, the first step when DFT or DGT are

applied to the one-dimensional vapor-liquid interface, is the calculation of these phase

equilibrium properties. This has to be done using the same model that is applied to

calculate a0 in DGT and the model has to be consistent with the Helmholtz energy

functional employed in the DFT approach.

In this work, we compare results for the surface tension of pure components and of mix-

tures obtained from DFT and DGT for non-polar and non-associating compounds, polar

molecules and associating components. The PCP-SAFT equation of state [21] [22] [23]

[24] is applied to determine the bulk properties at phase equilibrium and to evaluate

the local Helmholtz energy density a0 in DGT. PCP-SAFT has proven to yield accurate

results of thermodynamic properties for a wide range of systems. A Helmholtz energy

functional consistent with PCP-SAFT has been developed by Gross [25], Klink and Gross

[26] and Sauer and Gross [27]. This DFT approach is used here with the modification that

associative interactions are treated in a non-local description using the Helmholtz energy

functional of Bymaster and Chapman [28], which is a modification of the work of Segura

et al. [29]. For mixtures, two algorithms to solve the DGT equations are applied: the path
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function approach of Liang et al. [30] which requires the geometrical combining rule for

the influence parameter (cij =
√
ciicjj) and the stabilized algorithm of Qiao and Sun [31]

that allows to use a binary correction parameter βij (cij =
√
ciicjj(1− βij)). Limitations

of the practical utility of βij are discussed. Like in most DGT-studies, we treat the pure

component influence parameters cii as temperature-independent and follow the study of

Amézquita et al. [32] in applying the constant cii values unchanged to components which

are supercritical at mixture conditions. Both, the DFT or DGT approach, give the same

bulk phase properties, which allows us to attribute differences in the interfacial properties

to the DFT or DGT approach, respectively.

4.1 Theoretical background of DGT and DFT

In this section, we summarize the basic equations of DFT and DGT for a one-dimensional

system with a vapor-liquid interface. For further details on the underlying molecular

model of PCP-SAFT, we refer to the original literature [21] [22] [23] [24]. Detailed de-

scriptions of DGT can be found in [6] [33] [34] and more information on the DFT approach

applied in this work is available in previous studies [25] [26] [27] [35] [Chapter 3].

The goal of both approaches is to determine the equilibrium density profiles ρi(r) across

the interface which minimize the value of the grand potential Ω of a system of N compo-

nents at given values of temperature T , chemical potentials µi and volume V .

In the absence of an external field, Ω is given by

Ω[{ρk}] = A[{ρk}]−
N∑
i

∫
µiρi(r)dr (4.1)

where the dependencies of A and Ω on T , µi and V are dropped for brevity and the curly

brackets denote the dependency on all species-densities.

Eq. 4.1 is the starting point for both DGT and DFT. The main difference between the two

approaches is the route to describe the intrinsic Helmholtz energy of the system A[{ρk}],
which is a functional of all species-densities ρi(r) (as denoted by the square brackets).

In our DFT approach, A[{ρk}] is modeled as a sum of contributions according to the

PCP-SAFT model

A[{ρk}] = Aig[{ρk}] + Ahs[{ρk}] + Achain[{ρk}] + Adisp[{ρk}] + Aassoc[{ρk}] + Apolar[{ρk}]
(4.2)

where the individual contributions to the Helmholtz energy are for the ideal gas, hard

sphere interactions, chain formation, dispersion, association (i.e. hydrogen bonding) and

polar (dipolar or quadrupolar) interactions. In this work, we use the functionals developed
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by Rosenfeld [36] in the modified form of Roth et al. [37] and Yu and Wu [38] for

Ahs[{ρk}], Tripathi and Chapman [39] with the adaptations of ref. [25] and [26] for

Achain[{ρk}]. Furthermore, for Adisp[{ρk}] and for Apolar[{ρk}] we adopt functionals of

Sauer and Gross [27], respectively and for Aassoc[{ρk}] we use functionals proposed by

Bymaster and Chapman [28]. The final form of these functionals is presented in [27] and

[35] [Chapter 3].

In equilibrium, where Ω[{ρk}] reaches its minimum value with respect to density profiles

ρi(r), the functional derivatives with respect to all species-density profiles ρi(r) vanish

δΩ[{ρk}]
δρi(r)

=
δA[{ρk}]
δρi(r)

− µi = 0 ∀i (4.3)

Eqs. 4.3 can be discretized on a one-dimenional grid. As described in a previous study

[35] [Chapter 3], a matrix-free inexact Newton method is applied to solve the resulting

system of nonlinear equations.

In the DGT approach, A[{ρk}] is not decomposed into a sum of functionals as for DFT.

Instead, the Helmholtz energy density of the inhomogeneous fluid is expanded about the

local density approximation a0({ρk}) truncated after the square density gradient term

A[{ρk}] =

∫
a0({ρk}) +

1

2

N∑
i

N∑
j

cij∇ρi∇ρjdr (4.4)

with the local density gradient ∇ρi and the influence parameter cij. In this work, we

evaluate interfacial properties for the case, where the influence parameter is determined

from a geometric combining rule, as cij =
√
ciicij, but also for the case, where cij is an

adjustable parameter. It is convenient therefore to cast the influence parameter in the

form

cij =
√
ciicij (1− βij) (4.5)

where parameter βij is zero for the geometric combining rule and non-zero for an adjusted

value of cij. The local Helmholtz energy density evaluated at the local density value is

then split according to the PCP-SAFT model

a0({ρk}) = aig0 ({ρk}) + ahs0 ({ρk}) + achain0 ({ρk}) + adisp0 ({ρk}) + aassoc0 ({ρk}) + apolar0 ({ρk})
(4.6)

Thus, DGT requires a model for the local Helmholtz energy density a0({ρk}) and values

of the influence parameters cij, which are adjusted to reproduce interfacial properties.

Whereas for DFT, a description of the Helmholtz energy contributions as functionals of
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the density profiles is necessary (compare equations 4.2 and 4.6) without interface-specific

adjustable parameters. For a one-dimensional system, inserting eq. 4.4 in eq. 4.1 leads

to the following set of Euler-Lagrange equations for the equilibrium density profiles

µi,0({ρk})− µi =
N∑
j

cij
∂2ρj
∂z2

∀i (4.7)

with µi as the constant chemical potential imposed to the system and µi,0({ρk}) = ∂a0({ρk})
∂ρi

as the local value varying across the interface. Far from the flat interface in equilibrium,

the two sides of the equation approach zero. For pure components, the resulting equations

for the density profile and surface tension γ read

z2 − z1 =

∫ ρ(z2)

ρ(z1)

√
c11

2∆ω0

dρ (4.8)

γ =

∫ ρl

ρv

√
2c11∆ω0dρ (4.9)

where ∆ω0 denotes the difference of the grand potential energy density of the local homo-

geneous fluid to its bulk value, ∆ω0 = a0({ρk})−
∑N

i ρiµi + p with equilibrium pressure

p, and the vapor and liquid bulk densities, ρv and ρl, respectively.

To solve eq. 4.7 for mixtures, we apply two different approaches: the path function ap-

proach of Liang et al. [30] that requires βij = 0 in the combining rule, eq. 4.5, of the

influence parameter and the stabilized DGT algorithm first presented by Qiao and Sun

[31] using the Peng-Robinson equation of state and applied by Mu et al. [40] using PC-

SAFT which allows to set βij 6= 0 and thus offers additional adjustable parameters for any

pair of substances in a mixture. Compared to the frequently used reference component

algorithm, both approaches do not require the a priori choice of a reference component

which has to exhibit a monotonic density profile across the interface.

In the path function approach of Liang et al. [30], a variable s =
∑

i

√
ciρi is introduced

in eq. 4.7, leading to the following set of N + 1 equations [30]

µi,0({ρk})− (µi + α
√
ci) = 0 ∀i (4.10)

s−
N∑
j

√
cjρj = 0 (4.11)

that need to be satisfied everywhere in the interface with N+1 unknowns (ρi (i = 1, ..., N)

and α). The density profile and the value of surface tension γ follow from [30]
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z2 − z1 =

∫ s(z2)

s(z1)

1√
2(sα + ∆ω0)

ds (4.12)

and

γ =

∫ sl

sv

√
2(sα + ∆ω0)ds (4.13)

where sv and sl correspond to the values of s evaluated at the vapor and liquid bulk

densities, respectively.

In the stabilized DGT algorithm, a pseudo time dependence is introduced in eq. 4.7

∂ρi
∂t

+ µi,0({ρk})− µi =
N∑
j

cij
∂2ρj
∂z2

(4.14)

with the pseudo time variable t. Eq. 4.14 is solved together with the boundary conditions

ρi(t, 0) = ρli and ρi(t,D) = ρvi where ρli and ρvi denote the liquid and vapor bulk densities,

respectively, and D is the size of the domain that needs to be set a priori. Discretization

in time and space as presented in [40] (using nz grid points) leads to a system of nonlinear

equations of dimension N · nz that have to be solved at every time step and integration

in time has to be performed until the steady-state solution (with vanishing pseudo-time

derivative) of eq. 4.14 is found. Details of the numerical implementation as well as a com-

parison of computation time for the different approaches are presented in the Supporting

Information.

Once the equilibrium density profiles are obtained, the value of surface tension can be

calculated as

γ =

∫ D

0

N∑
i

N∑
j

cij
dρi
dz

dρj
dz

dz (4.15)

In summary, the solution procedures of both DGT approaches can be compared as follows:

in the stabilized DGT algorithm, the size of the computation domain D is set a priori

and the variables that are discretized are the spacial coordinate z and the pseudo time

t. This leads to a system of nonlinear equations of dimension N · nz solved at every

time step. The calculation is stopped, once certain convergence criteria are met (see

Supporting Information). In the path function approach of Liang et al. [30], the variable

s is discretized between its bulk values, sl and sv, using ns points. For every discrete

value of s, the system of N + 1 equations given by eq. 4.10 and 4.11 has to be solved.

Thus, instead of one large system of equations at every time step as in the stabilized

DGT algorithm, ns small systems of dimension N + 1 have to be solved. Once eq. 4.10
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and 4.11 are solved for the unknown densities and α at every discrete value s, the density

profile can be generated using eq. 4.12. The size of the computation domain is a result of

the calculation (in contrast to the stabilized DGT algorithm). For DFT calculations and

for the stabilized DGT algorithm, we use a computation domain of size D = 100 Å. As

shown in the Supporting Information, the value of D can be chosen over a wide range with

neglectable impact on surface tension results. Furthermore, a constant value of 1000 for

ns and nz is used in all DFT and DGT calculations. We note that for DGT, algorithms

have been developed by Larsen et al. [41] and Liang and Michelsen [42] which are more

efficient than using a constant number of discretization points.

4.2 Results and discussions

In this section, predictions of DFT and correlated results of DGT for surface tension γ

of pure components are compared to experimental data or to results of accurate multi-

parameter correlations. Results of non-polar, non-associating species are presented first,

results for polar compounds or components that exhibit hydrogen bonds such as alcohols

and water follow thereafter. Values of the constant influence parameters cii as well as the

PCP-SAFT parameters are given in the Supporting Information.

For mixtures, results of DFT are compared to results obtained with the path function DGT

approach and experimental data. Furthermore, the possibility of improving DGT results

by applying the stabilized DGT algorithm and adjusting the value of βij to experimental

data is discussed exemplary for several mixtures.

4.2.1 Pure components

Figure 4.1 shows surface tension results for n-alkanes (fig. 4.1a) and further non-polar,

non-associating components (fig. 4.1b). For all components, reference data is available

over a wide temperature range. The agreement of DFT and DGT results to the reference

data is excellent: the maximal absolute deviation of the DGT correlations takes on a value

of 1.52 mN/m for cyclopentene at the lowest evaluated temperature which corresponds

to an error of 3.5%. The largest deviation of the values predicted by DFT amounts to

2.85 mN/m (7.9%) for propane at the lowest temperature.

Results for polar compounds are presented in fig. 4.2. DGT correlates the reference

data very accurately with a maximum absolute deviation of 1.25 mN/m (3.6%) for

dimethylether at the lowest evaluated temperature. For most compounds shown in fig. 4.2,

surface tension predictions of DFT are practically indistinguishable from the DGT correla-

tions and agree excellently with the reference data. Only for some components, DFT over-
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Figure 4.1: Calculated results of surface tension γ (DFT: solid lines, DGT: dashed lines)
and reference data [43] [44] [45] (symbols) for n-alkanes (a) and further non-polar, non-
associating components (b).

predicts the value of γ moderately at low temperatures. In the case of methylmethanoate,

dimethylether and R23, deviations for state points in the low temperature range rise to

around 10%. These deviations cannot be attributed to the magnitude of the polarity

of the molecules: the dipole moment densities (squared dipole moment per molecular

volume) of R22 and R125 where DFT results of γ agree very well with the reference

data are all higher than that of e.g. dimethylether for which notable deviations occur.

However, with a deviation averaged over all results shown in fig. 4.2 of only 0.55 mN/m

(DGT: 0.19 mN/m), DFT predictions for surface tension of polar molecules can still be

considered very accurate.
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Figure 4.2: Calculated results of surface tension γ (DFT: solid lines, DGT: dashed lines)
and reference data (symbols) for several polar compounds. The references to the reference
data are presented in tables 5 and 6 of the Supporting Information.

The ability of DFT and DGT to treat associating components can be studied best using

a family of molecules with varying degree of association strength and sufficient reference
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data, such as 1-alcohols. Additionaly, results for water will be presented. Surface tension

predictions of DFT for 1-alcohols show an interesting trend (fig. 4.3): deviations for

methanol are small in the complete temperature range while for 1-propanol the surface

tension is strongly overpredicted. For 1-decanol deviations are lower again, although the

DFT results do not show the correct curvature of γ with temperature. DGT correlates

the reference data closely for methanol and 1-propanol. For 1-decanol, DGT results

show a similar behavior as DFT results with better agreement to reference data at low

temperatures and larger deviations than DFT at intermediate temperature values.

In the Supporting Information, DFT and DGT results for γ for all 1-alcohols from

methanol to 1-decanol are presented and compared to reference data. Furthermore, in the

Supporting Information, we compare DFT results obtained with pure component PCP-

SAFT parameters taken from Gross and Sadowski [22] to results obtained using pure

component parameters of Kontogeorgis et al. [46] where experimental data of monomer

fractions were included in the parameter regression. Larger differences occur only for

methanol where agreement to reference data is much better using the parameters of ref.

[22] and the following discussion is based on results obtained with these pure component

parameters.

Figure 4.4 shows the variation of the averaged absolute deviation of γ for 1-alcohols as a

function of chain length for both models. For the correlated results of DGT, moderately

increasing deviations with chain length can be observed. For the DFT predictions, devia-

tions start at a low level, close to the value of DGT, for methanol but reach a pronounced

maximum for 1-propanol. For longer 1-alcohols, deviations show a steady decrease and for

1-decanol they reach a similar level as DGT. These results are unexpected: for the family

of 1-alcohols, association strength decreases with increasing chain length (using monomer

fraction as the measure of association strength) [46] [47]. Therefore, if the treatment of

association per se was the weak-point of the model, highest deviations would be expected

for the shortest molecule, i.e. methanol, with decreasing deviations for longer molecules.

This is in contrast to the very good agreement of results of DFT and DGT for methanol,

the stark increase of deviations from methanol to 1-propanol for DFT and the general

trend of increasing deviations from methanol to 1-decanol for DGT. One possible expla-

nation for the DFT results could be an insufficient description of the orientation of the

molecules at the interface. As shown by sum-frequency generation [48] [49] and in molec-

ular dynamics simulations [50], the non-isotropic orientational distribution is caused by

the hydrogen bonding hydroxyl groups that, at the vapor-liquid interface, are preferen-

tially directed towards the liquid phase due to the higher number of potential hydrogen

bonding partners. This orientation is expected to be strongest for the shortest molecules

while with increasing chain length the orientation of a molecule at the interface becomes

increasingly difficult due to steric hinderance. In this light, the comparably good results
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for methanol and ethanol are surprising. The steady decrease of deviations for longer

alcohol molecules, on the other hand, are in line with this explanation. Furthermore, a

comparison of DFT surface tension results for 1-alcohols to results for the corresponding

isomers, which do not have the same capability to align themselves at the interface, also

supports this view: AAD values for isomers are between 15 (1-pentanol vs. 2-pentanol)

and 30% (1-propanol vs. 2-propanol) lower than for 1-alcohols.

A factor that can be ruled out to cause these deviations is the error in the prediction

of the critical temperature Tc. An accurate prediction of Tc is important to recover the

correct course of γ as a function of temperature because surface tension vanishes at Tc. It

can be expected that errors in γ increase for components where PCP-SAFT predictions

of Tc show larger deviations. However, the errors in the calculated value of Tc are small

and do not follow any trend which could explain the course of the deviations of DFT or

DGT for surface tension.
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Figure 4.3: Calculated results of surface tension γ (DFT: solid lines, DGT: dashed lines)
and reference data [43] [44] (symbols) for methanol (a), 1-propanol (b) and 1-decanol (c).
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For water, the pure component parameters of PCP-SAFT are close to degenerate. Like for

other SAFT models, a multitude of different PCP-SAFT parameter gives reasonable vapor

pressures and liquid density data. As a consequence several pure component parameters

for water were proposed in the literature. In their study, Liang et al. [51] compare nine

parameter sets. The comparison shows that the parameter sets were almost exclusively

adjusted to reproduce a certain set of bulk properties, first and foremost vapor pressures

and liquid densities. The only exception being the set of [52] (labelled 3B C ) which was

adjusted to reproduce the critical point. We performed DFT and DGT calculations using

all nine parameter sets evaluated in [51] as well a set of Kontogeorgis et al. [46] (labelled

4C 3 ) where experimental data of monomer fraction (besides liquid density and vapor

pressure) was used to adjust the parameters. Figure 4.5 shows surface tension results of

DFT and DGT for six of the parameter sets (results of the remaining four sets lie between

the depicted results but not closer to the reference data) and values from NIST [43] as a

reference.

Fig. 4.5a shows that the DFT results for the various parameter sets vary greatly. Param-

eter set 4C 2 from ref. [53] showed the smallest overall error for the properties studied in

ref. [51] but underestimates surface tension significantly over a wide temperature range.

Set 3B 1 [52] overestimates surface tension by an even larger amount and results of set

2B 1 [22] run almost in parallel to the reference data in the complete temperature range,

overpredicting surface tensions by roughly 10 mN/m. Parameter set 3B C [52] that shares

the association parameters with 3B 1 but whose remaining parameters were adjusted to

reproduce the critical point predicts surface tension well at low temperatures while at

higher temperatures surface tension values are moderately too low. The adjustment to

the critical point, however, comes at the prize of unacceptable errors in liquid density (the

averaged deviation takes on values above 60 % compared to below 7% for the remaining

parameter sets [51]). The results of set 4C 3 show that an accurate prediction of Tc does

not guarantee surface tension results anywhere close to the reference data. Set 4C 1 of

Liang et al.[51] is the only parameter set which gives acceptable errors in surface tension

while showing good agreement to other bulk properties. This parameter set was adjusted

to vapor pressure, liquid density as well as LLE data of water-hydrocarbon systems.

For DGT, the error in the prediction of Tc seems to be the predominant influence on

surface tension results for water (fig. 4.5b). Results of the two data sets that accurately

predict Tc (3B C and 4C 3 ) show a similar behavior: at low temperatures γ values of

both sets are too high while in the high temperature range γ is underpredicted moder-

ately. In general, results obtained with parameter set 4C 3 are in better agreement to the

reference data. Results of the remaining sets correlate surface tension accurately in the

low temperature range. However, due to the significant overprediction of Tc, agreement

to the reference data deteriorates at high temperatures.
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Figure 4.5: Surface tension γ of water. Calculated results of (lines) obtained from different
PCP-SAFT parameter sets and reference data [43] (symbols). The parameter sets are
taken from: 2B 1 [22], 3B 1 [52], 3B C [52], 4C 1 [51], 4C 2 [53] and 4C 3 [46]. Diagram
(a): DFT predictions (solid lines). Diagram (b): DGT correlation results (dashed lines).

Summarizing the results for pure components, predictions of DFT and correlations of

DGT can both be considered very accurate for non-associating compounds. The aver-

aged absolute deviation of DFT (DGT) for non-polar, non-associating compounds takes

on a value of 0.43 mN/m (0.28 mN/m). For polar molecules this value increases only

slightely for DFT to 0.55 mN/m (0.19 mN/m). Once associative molecular interactions

have to be taken into account, deviations of both models increase (DFT: 3.34 mN/m,

DGT: 0.94 mN/m, excluding water). DFT results for water vary greatly depending on

the parameter set. Average deviations range from just below 3 mN/m (sets 4C 1 and

3B C ) to around 20 mN/m (sets 4C 3 and 3B 1 ). For DGT, average deviations take on

values between 0.8 mN/m (4C 2 ) and 2.8 mN/m (3B C ). As shown in the previous sec-

tions, deviations of DFT do not correlate with the polarity or association strength of the

molecules. In the Supporting Information, it is shown that deviations of DFT and DGT

also do not correlate with errors in vapor pressure, liquid density or critical temperature

(determination coefficients below 0.3). Furthermore, with a determination coefficient of

R2 = 0.44, deviations of DFT predictions do not correlate significantly with deviations of

DGT correlations.

4.2.2 Mixtures

In this section, results for mixtures are presented. We follow the same structure as in

the pure component paragraph: results of mixtures containing non-polar, non-associating

components are shown first and systems including polar and associating species are pre-

sented thereafter. For every mixture, predictions of DFT are compared to results of DGT
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using the path function approach (which requires βij = 0 for eq. 4.5). Furthermore, the

possibility to improve DGT results by adjusting a cross-wise influence parameter βij to

experimental mixture surface tension data is discussed for several mixtures. We then

apply the stabilized DGT algorithm. A restriction for this procedure is the requirement

of a positive definite matrix of influence parameters C [34]. It will be shown that for

binary mixtures, violations of this restriction lead to unreliable results or a breakdown of

the algorithm. However, for several multicomponent mixtures studied in this work, C is

not positive definite even for βij = 0 and still both DGT algorithms converge, the density

profiles look reasonable and surface tension results agree very well with experimental data.

Alkane mixtures

Fig. 4.6 shows results of DFT and DGT for surface tensions of binary n-alkane mixtures

where the molecules differ significantly in size. DFT and DGT results for mixtures con-

taining methane and a longer n-alkane (fig. 4.6a) are very similar and except at the lowest

pressure values agreement to experimental data is excellent.

Results of the mixture n-heptane–eicosane for two isotherms are presented in fig. 4.6b.

Surface tensions obtained with DFT and DGT agree very closely and underpredict exper-

imental values moderately at both temperatures. In an attempt to improve the results,

the stabilized DGT algorithm with values βij 6= 0 is applied, however to no avail: it is ap-

parent from fig. 4.6b that positive βij values increase the deviations at T = 343.15 K (the

same applies to results at T = 313.15 K, see Supporting Information). Negative values

on the other hand result in a matrix C that is not positive definite. Ignoring the restric-

tion of positive definiteness of C and performing calculations with negative values of βij

leads to several plateaus of surface tension as a function of ’pseudo time’ (see Supporting

Information) or to failure of the calculation due to rank deficient Jacobian matrices.

Results of DFT and DGT for a seven-component and a twenty-component alkane mixture

are presented in fig. 4.8. The molar overall compositions of these mixtures are given

in table 2 of the Supporting Information. For both mixtures, the matrix of influence

parameters C is not positive definite even for βij = 0. It is therefore somewhat surprising

that both DGT algorithms converge without numerical issues. Comparing the results

of both DGT algorithms to ensure that the stabilized DGT algorithm has reached the

steady-state solution reveals that results of both algorithms only agree for the seven-

component mixture and in the low pressure region for the twenty-component mixture. At

higher pressures, results of the stabilized DGT algorithm are not in agreement to results

of the DGT path function approach as seen in fig. 4.7 and in the Supporting Information.

This highly disturbing observation is neither resolved with longer computation time nor

with tighter convergence criteria. A possible explanation could be that the non-positive
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Figure 4.6: Diagram (a): Surface tension γ of binary mixtures of methane with three
n-alkanes at T = 310.93 K. Calculated results (DFT: solid lines, DGT: dashed lines)
and experimental data [54]. kij values of 0.024, 0.016 and 0.021 are used for methane –
pentane, methane – heptane, and methane – decane, respectively. Diagram (b): Surface
tension γ of binary mixture of n-heptane – eicosane. Calculated results (DFT: solid
lines, DGT: dashed lines) and experimental data [55]. At T = 343.15 K, additional
results obtained using the stabilized DGT algorithm and βij = 0.1 (dash-dotted line) and
βij = 0.5 (double-dash-dotted line) are presented. All kij values are set to zero.

definite matrix C causes these differences between the two algorithms. However, using

the same matrix at lower pressures leads to identical results for both algorithms.

As fig. 4.8a shows, surface tensions obtained from DFT and the DGT path function

approach for the seven-component mixture are in very good agreement to the experiments.

The same applies for DGT results for the twenty-component mixture while in this case

DFT results are moderately too low, see fig. 4.8b.
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Figure 4.8: Diagram (a): Seven-component alkane mixture. Calculated results of surface
tension γ (DFT: solid lines, DGT path function approach: dashed lines) and experimental
data [56] (symbols). No binary interaction parameters were used in the calculations.
Diagram (b): Twenty-component alkane mixture at T = 366.45 K. Calculated results
of surface tension γ (DFT: solid lines, DGT path function approach: dashed lines) and
experimental data [57] (symbols). No binary interaction parameters were used in the
calculations.
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Mixtures including polar compounds

DFT predictions and DGT correlations are both very accurate for the pure polar sub-

stances presented in the section on pure component systems. As figures 4.9 and 4.10 show,

the same applies to mixtures including one or more polar components. With average devi-

ations of only 0.25 mN/m and 0.43 mN/m, DGT and DFT results, respectively, are very

accurate for the mixture CO2-decane (fig. 4.9a) over a wide temperature and pressure

range. For the binary mixture nitrogen-heptane, DFT and DGT results behave similarly

and give surface tension results that are moderately too low compared to experimental

data with better agreement for DFT results. However, for this mixture, DGT results can

be improved by adjusting a binary correction parameter for the influence parameters βij

(fig. 4.9b) and applying the stabilized DGT algorithm. It has to be kept in mind that

these DGT results are obtained using two component specific and one mixture specific

parameter adjusted to interfacial data while DFT offers no such adjustable parameters.

In that light and in view of the very comparable results, we propose using DFT for such

systems
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Figure 4.9: Diagram (a): Surface tension of the binary mixture CO2 – decane. Calculated
results (DFT: solid lines, DGT: dashed lines) using a binary interaction coefficient of
kij = 0.0681 and experimental data [58] (symbols). Diagram (b): Surface tension of the
binary mixture N2 – heptane. Calculated results (DFT: solid lines, DGT with βij = 0:
dashed lines, DGT with βij = 0.869: double-dotted dashed line) using a binary interaction
coefficient of kij = 0.0930 and experimental data [32] (symbols). The non-zero DGT-
parameter of βij was adjusted simultaneously to experimental data points on all four
isotherms.

Results for refrigerant mixtures of up to four polar compounds are exemplified in fig. 4.10.

In general, surface tension values of DFT and DGT agree very well at higher temperatures

while in the low temperature range DFT predictions are larger than DGT values. Overall

agreement to experimental data is excellent for DGT and only slightly worse for DFT.
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Figure 4.10: Surface tension γ of several mixtures of polar compounds. Calculated results
(DFT: solid lines, DGT: dashed lines) and experimental data [59] [60] [61]. The following
kij values are used: R32-R134a: 0.0104, R32-R125: -0.0102, R125-R134a: -0.00386, R125-
butane: 0.0914, R134a-butane: 0.0934, R32-R143a: 0.018, R125-R143a: -0.0107, R143a-
R143a: -0.003.

Mixtures including associating compounds

In this section, results of DFT and DGT for mixtures of an associating component with

non-associating components are compared to experiments. Figure 4.11a shows results for

surface tensions of the binary mixtures n-hexane – ethanol and n-hexane – 1-octanol at

T = 298.15 K as a function of hexane mole fraction in the liquid phase xhexane. DFT

results for γ agree very well with experimental values at high and intermediate values of

xhexane while for low composition of hexane γ is overpredicted significantly. Considering

DFT results for pure associating components, the deviations toward pure alcohol is antic-

ipated. Deviations of DGT for pure associating components, on the other hand, showed

much smaller deviations than DFT results. However, DGT results with βij = 0 for both

mixtures in fig. 4.11a are too low and with much larger errors than DFT over a wide com-

position range. Furthermore, as fig. 4.11b shows exemplarily for hexane – ethanol, density

profiles obtained from DGT with βij = 0 (using the path function approach) are unrea-

sonable: the species-density profile of hexane shows an almost infinitely steep gradient in

the interface and the gradient of ethanol is also much steeper than the gradient in the

profile obtained by DFT. The DFT profiles can serve as a reference in this case because

the comparison is made at a value of xhexane where DFT results for the surface tension

are in excellent agreement with experimental data. Density profiles for the remaining bi-

nary hexane – alcohol mixtures are presented in the Supporting Information and confirm

that DGT leads to sharper interfaces with steeper density gradients. A detailed study

of this behavior can be found in the work of Liang et al. [30]. Adjusting βij (using the

stabilized DGT algorithm) yields only a very limited improvement for the correlation of

γ (fig. 4.11a): with increasing values of βij first leads to a shift of γ results towards the
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experimental values but beyond a certain value of βij, the effect is reversed and deviations

to the experiments increase (see Supporting Information). Minimizing the sum of squared

errors yields optimal values of βij = 0.07646 and βij = 0.08553 for the mixtures hexane –

ethanol and hexane – 1-octanol, respectively. Despite the small influence on γ, the opti-

mized value of βij causes pronounced changes in the density profiles, see fig. 4.11b. The

steep gradient in the density profile of hexane vanishes and the enrichment of hexane in

the interface is reduced notably. Furthermore, the enrichment of ethanol in the interface

present in the profile of the DGT path function approach vanishes almost completely. In

general, the profiles resemble the profiles obtained from DFT more closely.
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Figure 4.11: Diagram (a): calculated results of surface tension γ (DFT: solid lines, DGT
path function approach: dashed lines, stabilized DGT algorithm: double-dotted dashed
lines) and experimental results [62] for the mixtures hexane - ethanol (kij = 0.02854)
and hexane - 1-octanol (kij = 0.006435) at 298.15K. The optimized values of βij used in
the calculations with the stabilized DGT algorithm are 0.07646 and 0.08553 for hexane
- ethanol and hexane - 1-octanol, respectively. Diagram (b): density profiles for the
mixture hexane (dashed lines)-ethanol (solid lines) at T = 298.15 K and xhexane = 0.22
(p = 0.236 bar) obtained from DFT (black), path function DGT approach (blue) and
stabilized DGT algorithm using βij = 0.07646 (red).

Table 4.1 lists averaged absolute deviations for surface tension as obtained from DFT

predictions and from DGT correlations (with βij = 0) for several binary mixtures of

hexane with alcohols. Depending on the mixture, deviations can be smaller for either

method. The corresponding graphical representation of these results are presented in the

Supporting Information. In analyzing all mixtures we find that DFT predictions agree

very well with experimental results over a wide concentration range but overpredict the

surface tension for pure associating components leading to deviations at high alcohol

composition. For DGT correlations with βij = 0 at intermediate compositions, surface

tension is underpredicted and the density profiles show unreasonably steep gradients.

It is therefore possible that larger deviations occur for mixtures even though the pure

components surface tension is enforced at the correct value by adjusting cii and cjj for a
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mixture of species i and j, respectively. The additional adjustment of βij results in very

limited improvements of surface tension results.

Table 4.1: Average deviations of DFT predictions and DGT correlations (βij = 0) for
binary mixtures of hexane with different alcohols at T = 298.15 K. Experimental results

are taken from Jiménez et al. [62]
(
AAD = 1

Nexp

∑Nexp

1 |γexp − γcalc|
)

.

hexane + ... AAD / (mN/m) DFT prediction AAD / (mN/m) DGT correlation
ethanol 0.57 0.98

1-propanol 1.28 1.79
1-butanol 1.38 1.22
1-pentanol 1.45 1.72
1-hexanol 1.42 1.29
1-heptanol 1.69 1.23
1-octanol 1.32 1.08

4.3 Conclusion

Interfacial properties are studied by classical density functional theory and density gradi-

ent theory. Surface tension predictions of DFT for pure components are found in excellent

agreement with experimental data for non-associating non-polar and polar molecules. The

DGT with an adjustable parameter per species correlates the surface tension also in very

good agreement to the experiments for these pure substances. For hydrogen-bonding

substances, where association has to be taken into account, DFT overpredicts surface

tensions in the low temperature range while deviations for DGT increase only slightly. A

possible explanation for the deviations of DFT could be the insufficient description of the

orientation of the molecules at the interface. For water, a large variation of DFT results

for surface tensions can be observed for different PCP-SAFT pure component parameter

sets.

DFT results for mixtures agree very well to experimental data for systems where surface

tension for the constituent components are predicted accurately. This includes multicom-

ponent mixtures of up to twenty components and mixtures of several polar compounds.

Mixture results of DGT are excellent for most systems of this study. However, larger

deviations may occur even though surface tension of the single components are correlated

accurately, e.g. for alkane-alcohol mixtures. In this case, non-physically steep density

gradients occur and for some systems deviations of DGT are larger than for DFT despite

the much larger errors of DFT for pure alcohols. Adjusting a cross-wise influence param-

eter to experimental mixture surface tension data has only limited practical use for the

studied systems. The requirement of a positive definite matrix of influence parameters C

poses a restriction on the value of βij for binary systems, however, for several multicom-
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ponent mixtures C is not positive definite even for βij = 0 with no consequences for the

solution procedure or validity of the results. However, for one mixture with non-positive

definite C, we observed that both applied DGT algorithms converge to different solutions

(independent of the convergence criteria), which is a worrying finding.

In view of DFT predictions in very good agreement to experimental data and the diffi-

culties observed for some mixtures using DGT, while requiring adjustable parameters, we

see justification for selecting a DGT approach over a DFT approach only in rare cases.
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Chapter 5

A classical Density Functional

Theory for Vapor-Liquid Interfaces

consistent with the heterosegmented

group-contribution Perturbed-Chain

Polar Statistical Associating Fluid

Theory

The content of this chapter is a literal quote of the publication

Mairhofer, Xiao, Gross, Fluid Phase Equilibria, 472, 2018, 117-127.

In comparison to the published work, the abstract is here omitted. Additions or deletions

compared to the published work are marked with angular brackets.

In many technical applications, interfacial properties play a determining role. For the

calculation of surface tension, many simple methods have been developed [1, 2, 3, 4, 5, 6, 7].

Most of these simple methods are only applicable to certain classes of systems, lack

predictive capabilities, especially for mixtures, and require input values for densities or

critical properties of the components under study, which need to be known experimentally

or provided by auxiliary models. There is a clear need for self-contained, predictive models

with a more general range of applicability. Beyond prediction of interfacial tensions,

a detailed description of the interface is important for example in the development of

theories for interfacial mass transfer beyond the simple two-film model, taking into account

implications from the enrichment of certain species at the interface [8].

Density gradient theory (DGT) and classical density functional theory (DFT) are two
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methods that can be applied to describe interfacial properties. The fundamental differ-

ence between both methods is that DFT is entirely predictive for interfacial properties,

whereas DGT requires a component-specific adjustable parameter (referred to as influence

parameter), which is usually adjusted to experimental data of surface tensions. In this

study we apply DFT without adjustable parameters.

An approximate expression for the Helmholtz energy functional A[ρ(r)], where the square

brackets denote a functional dependence on the spatially varying density profile ρ(r), is

at the core of any DFT approach. The development of the Statistical Associating Fluid

Theory (SAFT) led to equations of state for non-spherical and hydrogen-bonding (i.e.

associating) interactions [9]. SAFT models are based on Wertheim’s Thermodynamic

Perturbation Theory (TPT) [10, 11, 12, 13] and were natively developed in a functional

form [14], as worked out by Chapman and coworkers [15, 16, 17] with contributions of

Kierlik and Rosinberg [18, 19]. Jain et al. [20] modified the interfacial SAFT (iSAFT)

form earlier proposed by Tripathi and Chapman [17] to account for the chain formation

of single segments. The theory can be used to build heteronuclear chain fluids with

individually tagged segments, which means that the density profile of all segments within

a chain can be individually calculated.

In several studies, Helmholtz energy functionals consistent with SAFT-type equations of

state have been applied successfully to study vapor-liquid interfaces and predict surface

tension or study fluids in confined media. This includes the studies of Jackson and co-

workers [21, 22, 23, 24, 24, 25, 26], Schindler et al. [27] and Malheiro et al. [28] who applied

Helmholtz energy functionals consistent with the Statistical Associating Fluid Theory for

potentials of variable range (SAFT-VR) or Kahl and Winkelmann [29] who applied a

functional consistent with Lennard-Jones-SAFT. A review of current DFT applications

can be found in the articles of Davis [30], Löwen [31], Wu [32], Emborsky et al. [33] or

Landers et al. [34].

A Helmholtz energy functional consistent with the Perturbed-Chain Polar Statistical As-

sociating Fluid Theory (PCP-SAFT) [35] [36] [37] [38] has been developed in our group

[39, 40, 41]. Surface tension predictions from DFT calculations using the most recent

Helmholtz energy functional are in excellent agreement with experiments [41] [42]. The

required input for these calculations are the pure-component PCP-SAFT parameters and

possibly binary interaction parameters. These parameters are commonly regressed to

pure component and mixture vapor liquid equilibria, respectively, without considering

interfacial properties.

In order to further increase the predictive capabilities of the DFT approach, a Helmholtz

energy functional consistent with an accurate group-contribution (GC) equation of state

is desirable. Group-contribution methods assume that the properties of a molecule can

be determined as a function of the distinct functional groups that make up the given
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molecule. Such an approach makes the need for component-specific equation of state

parameters obsolete. The range of applicability of DFT thus increases to compounds for

which no or not enough experimental data is available to retrieve model parameters.

In this study we develop a Helmholtz energy functional consistent with the heteroseg-

mented group-contribution PCP-SAFT equation of state [43] [44], i.e. when applied to

a homogeneous system, this functional reduces to the expressions of heterosegmented

GC-PCP-SAFT.

The Helmholtz energy functional is based on modified iSAFT to account for the chain

formation of single segments. Predictions of the surface tension as obtained from the DFT

approach for pure components as well as mixtures for non-polar and non-associating, polar

as well as associating compounds are compared to experimental data. Furthermore, it

is shown that the level of detail accessible by calculating density profiles for individual

segments offers the possibility to qualitatively reproduce the orientation of hydrogen-

bonding molecules at the interface. This is exemplified for 1-alcohols.

5.1 Heterosegmented group-contribution PCP-SAFT

In the heterosegmented group-contribution PCP-SAFT equation of state, the Helmholtz

energy A is calculated as the sum of several contributions [43] [44]

A

NkT
=

AIG

NkT
+
AHS

NkT
+
AHC

NkT
+
ADisp

NkT
+
AAssoc

NkT
+
ADipole

NkT
(5.1)

where the summands are the Helmholtz energy of an ideal gas, the contribution of the

hard-sphere fluid, of chain formation, of dispersive attraction, of association, and of dipole-

dipole interactions. In the following paragraph, we present modifications to the dispersive

contribution of eq. 5.1. For details on the remaining Helmholtz energy contributions, we

refer to the original work on the group-contribution PCP-SAFT equation of state by Sauer

et al. [43] and Gross et al. [44].

The defining advantage of group-contribution methods is their predictive capability: prop-

erties of compounds where no experimental data is available to adjust component-specific

parameters can be derived from the molecular structure of the compound and parame-

ters for the groups constituting the molecule. A drawback of GC methods, on the other

hand, is that methods using compound-specific parameters, where applicable, usually

fare better than group-contribution approaches. In an attempt to improve results of het-

erosegmented GC-PCP-SAFT for compounds with a large body of experimental data we

introduce a parameter φi to the dispersive contribution which is adjusted to experimental

vapor pressure data of component i. As a consequence, we improve the representation

of well-known substances, while preserving the ability to predict substances with no or
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limited experimental characterization, and mixtures thereof. The choice to use vapor

pressure data rather than liquid density to regress φi is based on the results presented

in [43] which show that values of heterosegmented GC-PCP-SAFT for liquid density are

already convincingly accurate whereas larger deviations occur for vapor pressure. Fur-

thermore, transferable group-group interaction parameters kαβ are introduced to improve

the description of mixtures. The parameters kαβ have values 6= 0 only for segments of

unlike types α and β which are located on different chain molecules. The dispersive con-

tribution to the Helmholtz energy for a mixture of N components at temperature T and

density ρ is then obtained as

ADisp

NkT
= a1 + a2 (5.2)

where

a1 = −2πρI1

N∑
i=1

N∑
j=1

xixj
∑
α

∑
β

niαnjβmαmβσ
3
αβεiα,jβ/kT (5.3)

a2 = −πm̄ρI2C1

N∑
i=1

N∑
j=1

xixj
∑
α

∑
β

niαnjβmαmβσ
3
αβ(εiα,jβ/kT )2 (5.4)

The sums with indices α and β run over all group types and niα denotes the number of

segments of type α on molecule i. Furthermore, mα and σα represent the segment number

and diameter parameter, respectively, of segments of type α, with the geometric condition

m̄ =
∑N

i xi
∑

α niαmα, the combining rule σαβ = 0.5(σα + σβ), and the combining rule

for the cross-wise energy parameter

εiα,jβ =
√
εαφi · εβφj(1− kαβ) (5.5)

where kαβ takes on the values presented in table 5.1 only if α 6= β and i 6= j, otherwise it

is defined as zero. Here εα is the dispersive energy parameter characterizing the attractive

van der Waals interaction between two groups of type α and I1, I2 and C1 are obtained

as presented for the original PC-SAFT equation of state [35]. The values of φi for the

compounds studied in this work are presented in the Supporting Information. For most

compounds, φi is very close to unity. Only for short molecules which cannot be represented

accurately by a group-contribution method as well as some multi-functional compounds,

the value of φi deviates notably from one and deviations of vapor pressure for these

compounds can be reduced significantly. This is shown exemplary for propyne and 2-

butenal in fig. 5.1.

The kαβ parameters are regressed to experimental VLE data of a large set of binary
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Figure 5.1: Vapor pressure curves for propyne (large graphic) and 2-butenal (small
graphic) with adjusted φi (solid lines) and with φi = 1 (dashed lines). Experimental
data (symbols) is taken from [45] and [46].

mixtures. Results are presented in table 5.1. Information on the binary mixtures included

in the adjustment of kαβ can be found in the Supporting Information.

Table 5.1: Binary interaction parameters kαβ for groups of type α and β located on unlike
chain molecules. The binary mixtures considered in the adjustment of kαβ are presented
in the Supporting Information.

α\β CH4 CH3 CH2 COO OH
CH4 0 -0.005 -0.00269 - -
CH3 -0.005 0 0.01151 0.0996 -0.0087
CH2 -0.00269 0.01151 0 -0.015235 0.0489
COO - 0.0996 -0.015235 0 -
OH - -0.0087 0.0489 - 0

Figures 5.2 and 5.3 exemplify for two binary systems how VLE results of n-alkane-ester

and n-alkane-1-alcohol mixtures can significantly be improved by applying the kαβ pa-

rameters. For methane-n-alkane or n-alkane-n-alkane mixtures, results with kαβ = 0

are usually already in good agreement with experiments and adjusting kαβ parameters

for these mixtures only leads to minor improvements. Further results, underlining the

transferability of the adjusted kαβ parameters are shown in the Supporting Information.

The heterosegmented GC-PCP-SAFT parameters for the single group types used in this

study are taken from [43] and are presented in the Supporting Information.
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Figure 5.2: Temperature-composition diagram for the binary mixture n-hexane-
ethylethanoate at p = 1.0132 bar obtained with the adjusted, transferable values of
kCH2,CH3 , kCH2,COO and kCH3,COO (solid lines) and without any group-group interaction
parameters (dashed line). Experimental results (symbols) are taken from [47].
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Figure 5.3: Pressure-composition diagram for the binary mixture 1-butanol-decane at
three different values of temperature obtained with the adjusted, transferable values of
kCH2,CH3 , kCH2,OH and kCH3,OH (solid lines) and without any group-group interaction
parameters (dashed line). Experimental results (symbols) are taken from [48].
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5.2 Classical density functional theory

In this section, we present the proposed group-contribution density functional theory (GC-

DFT) for a mixture of N components. Each component i is modeled as a chain molecule of

NSi segments and in total there are NS =
∑N

1 NSi segments in the mixture. For a system

at given values of temperature T , volume V and chemical potentials µis (is = 1, ..., NS),

the grand potential Ω is related to the intrinsic Helmholtz energy of the system A by

Ω[{ρks}] = A[{ρks}]−
NS∑
is=1

∫
ρis(r)µisdr (5.6)

where the square brackets denote a functional dependence on the spatially varying density

profiles ρis(r) and the curly brackets make the dependence on the density profiles of all

segments explicit. For brevity, we don’t explicitly show that A depends on T and V ,

nor that Ω is a potential to T , V and {µks}. The intrinsic Helmholtz energy A[{ρks}] is

approximated as the sum of the same contributions as presented in eq. 5.1. However, now

all contributions are functionals of the density profiles

A[{ρks}] = A[{ρks}]IG+A[{ρks}]HS+A[{ρks}]HC+A[{ρks}]Disp+A[{ρks}]Assoc+A[{ρk}]Dipole

(5.7)

Both, the association term A[{ρks}]Assoc that accounts for short-ranged attractive inter-

actions (hydrogen-bonds) and the chain contribution A[{ρks}]HC , where the association

is driven to a limit of connecting spherical interaction sites to chains, are based on the

Thermodynamic Perturbation Theory of Wertheim [10, 11, 12, 13]. For details about the

theory, we refer to a recent review [14].

At thermodynamic equilibrium, Ω is minimal with respect to the internal degrees of

freedom and thus the functional derivatives with respect to all segment-density profiles

ρis(r) vanish

δΩ[{ρks}]
δρis(r)

= 0, ∀ is = 1, ..., NS (5.8)

Eq. 5.8 can be rewritten to arrive at the working equations that are solved iteratively to

obtain the equilibrium density profiles ρis(r) [20]

ρis(r) = exp (βµi) exp (Dis(r)) I
(is)
1 (r)I

(is)
2 (r) (5.9)

where µi denotes the equilibrium chemical potential of chain molecule i to which segment

(is) is a member, and β = 1/kT is the inverse temperature. For every chain molecule i,

the integrals I
(is)
1 (r) and I

(is)
2 (r) (is = 1, ..., NSi) are calculated as [20]
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I
(1)
1 (r) = 1 (5.10)

I
(is)
1 (r) =

∫
I

(is−1)
1 (r’)exp (Dis−1(r’)) ∆is−1,is(r’, r)dr’ (5.11)

I
(NSi)
2 (r) = 1 (5.12)

I
(is)
2 (r) =

∫
I

(is+1)
2 (r’)exp (Dis+1(r’)) ∆is,is+1(r’, r)dr’ (5.13)

where [20]

Dis(r) =
1

2

NS∑
js=1

{js′}∑
js′

∫
ρjs(r’)

δlnycontactjs,js′ [{ρ̄is(r’)} , (r, r’)]
δρis(r)

dr’− δβAHS

δρis(r)
− δβADisp

δρis(r)

− δβAAssoc

δρis(r)
− δβADipole

δρis(r)
(5.14)

The second sum in eq. 5.14 runs over all neighbouring segments {js′} of segment js.

Only linear chain molecules are considered in this study. Thus, end segments have only

one neighbouring segment and middle segments have two. Necessary modifications for

branched chains or ring molecules are presented in [20] and [49]. The averaged density

ρ̄is(r) is defined as [20]

ρ̄is(r) =
3

4πd3
is

∫
ρis(r’)Θ (dis − |r− r’|) dr’ (5.15)

with the temperature dependent effective segment diameter

dis = σis (1− 0.12exp(−3εis/kT )) (5.16)

Here, σis and εis denote the constant segment diameter parameter and dispersive energy

parameter for the group type of segment (is). Analogously, in the following equations we

use index (is) for the segment number, mis, as well as to the parameters for association,

κis,js and εAis,Bjs of groups or pairs of groups.

The cavity correlation function of the inhomogeneous hard-sphere reference fluid at con-

tact distance ycontactis,is′ [{ρ̄ks(r’)} , (r, r’)] is approximated by the corresponding values of the

cavity correlation function of the homogeneous fluid at r and r’ evaluated at the averaged

densities ρ̄is calculated from eq. 5.15 [20], as

ycontactis,is′ [{ρ̄ks(r’)} , (r, r’)] =
(
ycontactis,is′ [{ρ̄ks(r)}] · ycontactis,is′ [{ρ̄ks(r’)}]

)0.5
(5.17)

where ycontactis,is′ [{ρ̄ks(r)}] is calculated [17], as
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ycontactis,is′ [{ρ̄ks(r)}] =
1

1− ξ̄3

+ 3
disdis′

dis + dis′

ξ̄2(
1− ξ̄3

)2 + 2

(
disdis′

dis + dis′

)2
ξ̄2

2(
1− ξ̄3

)3 (5.18)

The moments of density are given by

ξ̄n =
π

6

NS∑
js=1

mjsρ̄js(r)dnjs (5.19)

and furthermore

∆is,is′(r’, r) =
δ (|r’− r| − dis,is′)

4π(dis,is′)2
ycontactis,is′ [{ρ̄ks(r’)} , (r, r’)] (5.20)

where dis,is′ = 0.5(dis + dis′) and where δ denotes the Dirac delta function.

Minor modifications to the original equations presented in [20] are made in this work to

achieve consistency with GC-PCP-SAFT: the average densities ρ̄is(r) are scaled by the

segment number mis in the calculation of the density moments, eq. 5.19. Furthermore, the

temperature dependent segment diameter dis instead of the constant segment diameter

parameter σis is used in equations 5.15, 5.18, 5.19 and 5.20.

The contribution of hard-sphere interactions, AHS[{ρks}], is calculated using the Funda-

mental Measure Theory of Rosenfeld [50] in the modified form of Roth et al. [51] and Yu

and Wu [52]

βAHS[{ρks}] =

∫
Φ(nα(r))dr (5.21)

with the reduced Helmholtz energy density for a hard-sphere fluid given by

Φ(nα(r)) = −n0ln(1− n3) +
n1n2 − nv1nv2

1− n3

+
(
n3

2 − 3n2nv2nv2

) n3 + (1− n3)2ln(1− n3)

36πn2
3(1− n3)2

(5.22)

and nα denote the weighted densities obtained as

nα(r) =
NS∑
is=1

mis

∫
ρis(r-r’)ωα,is(r’)dr’ (5.23)

where ωα,is(r) are the weight functions of Fundamental Measure Theory and the mul-

tiplication by mis is introduced for consistency with GC-PCP-SAFT. The final form of

eq. 5.23 as well as the functional derivatives of AHS for a planar system where density

varies only in z-direction normal to the interface are presented in a previous work of our

group [41]. Whereby component-specific values, e.g. ρi and mi, need to be replaced by

the corresponding segment-specific values ρis and mis.
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Dispersive contributions and dipolar interactions are treated in a weighted-density ap-

proximation analogous to the functional presented by Sauer and Gross [41]

ADisp[{ρks}]/kT =

∫
ρ̂(r)

ADisp(ρ̂(r))

NkT
dr (5.24)

ADipole[{ρk}]/kT =

∫
ρ̂(r)

ADipole(ρ̂(r))

NkT
dr (5.25)

where ADisp(ρ̂(r))
NkT

and ADipole(ρ̂(r))
NkT

correspond to the dispersive and dipolar Helmholtz energy

contributions of GC-PCP-SAFT, respectively, evaluated at a weighted density [41]

ρ̂(r) =
NS∑
is=1

3

4πψ3d3
is

∫
ρis(r’)Θ (ψdis − |r− r’|) dr’ (5.26)

with the Heaviside step function Θ. The universal model parameter ψ is readjusted for

the GC-DFT approach to experimental pure-component surface tension data of n-alkanes

from methane to eicosane. The optimal value is ψ = 1.5357. The one-dimensional form

of eq. 5.26 as well as the functional derivatives δADisp[{ρks}]/kT
δρis(r)

are presented in ref. [41]

Alternative ways to include dispersive interactions in the DFT framework exist. Gloor

et al. [22, 23, 24] proposed an approach based on perturbation theory. This approach

was applied e.g. by Gross [39] and Klink and Gross [40] with a local correction term to

achieve consistency with PCP-SAFT to accurately predict surface tension for a variety of

pure components and mixtures. However, this approach requires the numerical integra-

tion of the dispersive perturbation potential and an approximation of the pair correlation

function for the inhomogeneous repulsive reference fluid up to a predefined cut-off radius.

Neglecting correlations in the fluid structure and assuming a pair correlation function

of unity simplifies the calculation but also leads to increased deviations of the predicted

surface tension results to experimental values [39]. As shown by Sauer and Gross [41],

accuracy of the here employed weighted density approach is comparable to the more rig-

orous approach applied in [39] and [40] at significantly lower complexity and computation

time.

The dipole term of the heterosegmented GC-PCP-SAFT equation of state [43] is different

to other Helmholtz energy contributions, because a homosegmented approach is used:

the dipolar contribution is averaged over the complete chain molecule instead of being

attributed only to that segment carrying the dipole moment. The implication for this

study is that functional derivatives of the dipolar contribution are first evaluated with

respect to the chain densities ρi and the values for the single segments are obtained by

applying the chain rule
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δADipole[{ρk}]/kT
δρis(r)

=
δADipole[{ρk}]/kT

δρi(r)

∂ρi(r)

∂ρis(r)
(5.27)

From ρi(r) = 1
NSi

∑NSi

is=1 ρis(r), it follows that ∂ρi(r)
∂ρis(r)

= 1
NSi

, i.e. the value of δADipole[{ρk}]/kT
δρis(r)

is the same for all segments (is) on a given chain molecule i, regardless whether segment

(is) carries a dipole moment or not. The functional derivatives δADipole[{ρk}]/kT
δρi(r)

are obtained

as shown in [41]. Smearing the dipole moment out across a molecule is undesired, because

the local character of polar headgroups of molecules, for example, can then not adequately

be resolved. It is an aspect that deserves further consideration in future work.

To account for associative interactions, we apply the functional of Bymaster and Chapman

[53] which is a modification of the work of Segura et al. [16]

βAAssoc[{ρks}] =

∫ NS∑
is=1

ρis(r)
∑
A∈Γis

(
ln(χisA(r))− χisA(r)/2 +

1

2

)
dr (5.28)

In eq. 5.28, Γis represents the set of all association sites on segment (is) and χisA denotes

the fraction of segments (is) not bonded at their association site A, as introduced in the

theory of Wertheim [10, 11, 12, 13, 14]. For a planar interface, χisA can be obtained by

iteratively solving

χisA(z) =

(
1 +

1

2

NS∑
js=1

κis,jsσ
2
is,js

∫ z+σis,js

z−σis,js
ρjs(z

′)
∑
B∈Γjs

χjsB (z′)
{
ycontactis,js (z, z′) [exp(βεAis,Bjs)− 1]

}
dz′

)−1

(5.29)

where σis,js = 0.5(σis+σjs), εAis,Bjs = 0.5(εAis,Ais+εBjs,Bjs), κis,js =
√
κis,isκjs,js

√
(σisσjs)3/σ3

is,js

and ycontactis,js (z, z′) given by eq. 5.17. We note a certain degree of skepticism about employ-

ing combining rules for associating interactions, because cross-wise hydrogen-bonds can

not generally be expected to scale with hydrogen-bonding interactions of pure substances.

In practice, however, combining rules often work surprisingly well [36, 54, 55].

Eq. 5.29 differs slightly from the published form in ref. [53] to account for the fact that the

association volume κ is an adjustable parameter in the GC-PCP-SAFT equation of state

while in ref. [53] it is treated as a geometric constant defined through the accessibility of

associating interaction. The functional derivatives of AAssoc with respect to the segment

densities ρis (r) for a planar interface can be found in the original publication of Bymaster

and Chapman [53].
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5.3 Numerical settings

In all calculations, the size of the planar, one-dimensional computation domain is set

to 160 Å and 1000 equidistant grid points. The system of coupled non-linear equations

given by eq. 5.9 is solved by a matrix-free Newton method with numerically approximated

directional derivatives, see ref. [56] [Chapter 3] for more details. The linear system for the

solution update at every Newton iteration is solved using the Generalized minimal residual

algorithm for solving non-symmetric linear systems (GMRES) [57] in the implementation

of Frayssé et al. [58]. To control the solution update, a standard three point parabola

line search method [59] is applied. However, for strongly associating systems as well as

for very long molecules (e.g. hexacontane) it was found advantageous to instead apply a

simple damping strategy for the solution update using a constant damping factor of 0.2

and reducing the number of GMRES iterations (the default number of GMRES iterations

for other systems is set to 15). All numerical integrations are carried out using cubic-spline

interpolations.

The initial density profiles for the single segments are set according to [39]

ρ0
is(z) =

1

2

(
ρl,bulki − ρv,bulki

)
tanh

(
z

σis

(
2.4728− 2.3625

T

T calcc

))
+

1

2

(
ρl,bulki + ρv,bulki

)
(5.30)

where i denotes the chain molecule that segment (is) is located on and T calcc is the calcu-

lated critical temperature of the system.

5.4 Results and discussion

As the main results, we compare predicted surface tensions γ obtained from the GC-

DFT approach to experimental data. Results for systems of non-polar, non-associating

compounds are presented first, results for polar molecules and hydrogen-bonding species

follow thereafter.

Before presenting results for predicted surface tensions using the proposed group-contribution

DFT approach, we first evaluate the influence of the parameter φi on vapor pressure and

density. In the following sections, if not stated differently, reported deviations for the sin-

gle compounds or mixtures are averages over deviations for all available experimental data

points, Nexp, and are either given as relative deviations in percent
(

1
Nexp

∑Nexp

i |θexp
i − θmodel

i |/θexp
i · 100

)
or as absolute values

(
1

Nexp

∑Nexp

i |θexp
i − θmodel

i |
)

where θ denotes the considered physical

property.
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5.4.1 Influence of φi on vapor pressure and density

A comparison of vapor pressure results before and after the adjustment of φi to experi-

mental vapor pressure data is shown in fig. 5.4. A significant improvement is achieved for

all chemical families by the adjusting φi-values. The improvement of individualizing the

group-contribution approach is particularly pronounced for polar or hydrogen-bonding

chemical families. For aldehydes, the very high initial deviation (φi = 1) is predomi-

nantly caused by one compound, 2-butenal, with high errors in vapor pressure as seen

fig. 5.1. The drastic improvement for esters has to be partly attributed to the fact that

for many ester compounds only one experimental data point was available to adjust φi

and deviations for these compounds thus reduced to 0%.

n-
A

lk
an

es

1-
A

lk
en

es

1-
A

lk
yn

es

1-
A

m
in

es

1-
A

lc
oh

ol
s

A
ld

eh
yd

es

Est
er

s

Eth
er

s

K
et

on
es

0

5

10

15

20

25

30

35

40

D
ev

ia
ti

o
n
 p

sa
t /%

 

φ
i
 = 1

φ
i
 = φ

i,opt

Figure 5.4: Deviations of calculated vapor pressures psat from quasi-experimental data
for several chemical families. Original GC-PCP-SAFT results, corresponding to φi = 1,
(black) and individualized GC-PCP-SAFT results, with φi adjusted to experimental vapor
pressure data (blue). The considered compounds and their φi values are presented in the
Supporting Information.

The implications of φi on liquid saturated densities is only mild. Even for substances

like methanol and methylamine, where φi deviates notably from unity and deviations of

vapor pressure reduce significantly (from 30% to 8% and from 26% to 4%, respectively),

the improvement in the description of saturated liquid densities is below 3%.

The following section discusses the influence of parameter φi and also the impact of

the binary interaction parameter kαβ on predicted values of surface tensions for several

mixtures. A detailed comparison of all results for surface tensions obtained with and

without these additional parameters is presented in the Supporting Information.
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5.4.2 Non-polar, non-associating substances: pure components

and mixtures

Results for pure n-alkanes, 1-alkenes and 1-alkynes are presented in figs. 5.5 and 5.6. The

general agreement of the GC-DFT predictions with experiments is very good. Deviations

of predicted surface tensions from experimental values tend to increase for long molecules

such as eicosane, hexacontane or 1-eicosene. In the case of hexacontane, no experimental

vapor pressure data is available to regress pure-component equation of state parameters.

One has to apply group-contribution methods or rely on correlations for these parameters.

For PCP-SAFT, such correlations are available e.g. for n-alkanes and polyethylene [35].

Furthermore, correlations for the influence parameter of n-alkanes as a function of carbon

atoms [60] or molecular mass [61] [Chapter 2] exist for DGT using PCP-SAFT as the local

model. Surface tension results for hexacontane can then be used to compare GC-DFT

predictions to results of an alternative approach applicable to polymeric molecules with

scarce experimental data: DGT with pure-component PCP-SAFT parameters calculated

from the correlations given in ref. [35] and influence parameters extrapolated using the

correlations presented in refs. [60] and [61] [Chapter 2]. This comparison shows a clear

superiority of GC-DFT: deviations take on values of 1.92 mN/m for the presented GC-

DFT approach but 3.73 mN/m and 3.56 mN/m for DGT with the correlations for the

influence parameter of [60] and [61] [Chapter 2], respectively.
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Figure 5.5: Surface tension of n-alkanes (a) and 1-alkenes (b). Comparison of predicted
values (lines) to (quasi)-experimental data [62] [63] [64] [65] [66] (symbols).

Figures 5.7 and 5.8 exemplify that very good results can also be obtained for mixtures of

simple molecules. Values for different binary methane-n-alkane mixtures are in very good

agreement with experiments over a wide pressure range. Surface tension deviations for two

ternary n-alkane mixtures depicted in fig. 5.8 confirm the accurate results for medium-sized

molecules and the trend of growing errors for increasing numbers of segments: deviations

for a mixture of hexane, octane and tetradecane are on the order of 2%. This value
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Figure 5.6: Surface tension of 1-alkynes. Comparison of predicted values (lines) to exper-
imental data [65] [67] [68] [69] [70] (symbols).

increases to up to 7% for a mixture including longer alkane molecules (decane, eicosane

and tetracosane). Furthermore, for both mixtures, a moderate increase of deviations with

increasing temperature can be observed. As expected from the marginal implications on

VLE results (see Supporting Information), the influence of the group-group interaction

parameters kCH4,CH3 , kCH4,CH2 and kCH3,CH2 on surface tension results is neglectable for

the mixtures shown in figs. 5.7 and 5.8.
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Figure 5.7: Surface tension of the binary mixtures methane + pentane (T = 310.928 K),
methane + heptane (T = 323.0 K) and methane + decane (T = 310.928 K). Comparison
of predicted of surface tensions (lines) to experimental data [71] (symbols).

5.4.3 Polar substances: pure components and mixtures

In this section, results for esters, ethers, aldehydes and ketones are presented. Deviations

of predicted surface tensions from experimental data for ester molecules are shown in table

5.2. The overall agreement is remarkable with average deviations across all considered

substances of 3.7% and a maximum error of any of the listed compounds at any given

state point of 11%. For the methyl and ethyl esters of 2-butenoic acid as well as for

3-butenoic methyl ester, the adjustment of φi to experimental vapor pressure data leads
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Figure 5.8: Deviations of predicted surface tensions from experimental data [72, 73] for
various temperatures of two ternary n-alkane mixtures. Deviations are averages of results
for different liquid phase compositions at a given temperature.

to a significant improvement of surface tension results, see Supporting Information. For

the remaining ester molecules, for which experimental data is available to adjust φi, the

influence on surface tension is marginal. Furthermore, surface tension values for many

compounds, for which no adjustment of φi is possible, are already in very good agreement

with experiments for φi = 1, e.g. the propyl, butyl and pentyl esters of 3-butenoic

acid or 4-pentynoic acid ethyl ester. Table 5.2 allows a comparison between results for

butanoic acid and butenoic acid and also between pentanoic acid and pentynoic acid. It

can thereby be observed that deviations increase with an increasing number of different

functional groups on a molecule. That is not surprising because, first, multi-functional

molecules were not considered in the adjustment of the group parameters of the equation

of state, and second, the specifics of intramolecular interactions between functional groups

are not explicitly accounted for in the group-contribution method.

Table 5.2: Deviations of predicted surface tensions for ester compounds from experimental
data [74, 75, 76, 77, 78].

Compound dev./% Compound dev./%
butanoic acid methyl ester 1.82 2-butenoic acid pentyl ester 6.98
butanoic acid ethyl ester 2.43 3-butenoic acid methyl ester 1.03

butanoic acid propyl ester 1.74 3-butenoic acid ethyl ester 3.48
butanoic acid butyl ester 1.01 3-butenoic acid propyl ester 3.63

pentanoic acid methyl ester 2.84 3-butenoic acid butyl ester 3.26
2-butenoic acid methyl ester 2.89 3-butenoic acid pentyl ester 3.05
2-butenoic acid ethyl ester 3.37 4-pentynoic acid methyl ester 8.70

2-butenoic acid propyl ester 8.37 4-pentynoic acid ethyl ester 1.59
2-butenoic acid butyl ester 7.25

In addition to the ester compounds shown in table 5.2, results for several fatty acid methyl

esters are presented in table 5.3, using the common notation of {number of carbon atoms} :
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{number of double-bonds}. These molecules are important constituents of biodiesel fuels

and knowledge of their surface tension is essential for modelling the atomization and

subsequent combustion process in the diesel engine. Due to lack of experimental data

for vapor pressures for many of these compounds, a value of φi = 1 is used in all cases.

Predicted values for surface tension γ are in very good agreement with experiments, with

errors ranging from 1.7% for the shortest compound to 4.7% for the longest molecule.

Results for binary and ternary mixtures of fatty acid ethyl esters can also be predicted

with high accuracy: errors stay well below 2%, see table 5.4. The use of group-group

interaction parameters kαβ has a minor but decreasing influence on errors of surface

tension for these mixtures.

For fatty acid methyl and ethyl ester systems, the strength of the group-contribution DFT

approach becomes apparent: obtaining surface tension results for these systems using

alternative methods such as density gradient theory would only be possible with consid-

erable additional effort, including the establishment of a group-contribution prescription

to calculate the influence parameter, or, in case a non-group-contribution approach is

preferred, developing correlations for the pure-component equation of state parameters

and influence parameters for the different ester types.

Table 5.3: Surface tensions γ of pure organic acid methyl esters at T = 313.15 K. Pre-
dicted values γ and deviations from experimental data [79].

Compound γ/mN/m dev./%
8:0 ME 24.98 1.7
10:0 ME 25.78 2.0
12:0 ME 26.40 2.9
14:0 ME 26.90 3.6
16:0 ME 27.30 3.9
18:0 ME 27.64 4.7

Table 5.4: Surface tensions γ of four binary and ternary mixtures of fatty acid ethyl esters
at T = 298.15 K. Predicted values γ and deviations from experimental results [79]. The
mixture composition w is given in mass fractions. No value for pressure was reported
[79]. We assume the feed-composition to be the liquid composition, i.e. we assume the
experimentally observed amount of vapor as being small compared with the amount of
liquid.

w8:0 EE w10:0 EE w12:0 EE γ/mN/m dev./%
1 0.48 0.52 - 26.895 1.49
2 0.46 - 0.54 27.198 0.73
3 - 0.75 0.25 27.495 0.38
4 0.33 0.33 0.34 27.100 0.73

Results for ketones, aldehydes and ethers are presented in table 5.5. For most studied
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Table 5.5: Ketones, aldehydes and ethers: deviations of predicted surface tensions from
experimental data [80, 81, 75, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91].

Compound dev./% Compound dev./% Compound dev./%
Ketones Aldehydes dioctyl ether 4.28

2-butanone 4.86 2-butenal 13.63 methyl butyl ether 4.05
2-hexanone 2.13 butanal 12.32 methyl hexyl ether 5.68
2-octanone 1.75 pentanal 11.65 ethyl butyl ether 1.73

3-pentanone 1.52 hexanal 9.79 ethyl hexyl ether 3.29
3-heptanone 0.85 heptanal 6.40 ethyl hexadecal ether 5.96
3-nonanone 1.96 dodecanal 13.41
4-heptanone 1.20 Ethers
4-nonanone 0.69 diethyl ether 5.19

6-undecanone 0.60 dibutyl ether 1.98
3-heptene-2-on 6.73 dihexyl ether 1.12

ketones, predictions of the model are in excellent agreement with experimental data show-

ing deviations of less than 2%. Results of 3-heptanone and 3-heptene-2-on reconfirm the

observation of growing deviations with increasing number of group types per molecule.

Aldehydes exhibit larger deviations, in order of 10%, than the other polar families. Fi-

nally, surface tension for ether compounds can be predicted accurately with deviations

usually below 5%.

Figure 5.9 exemplifies results for two binary n-alkane-ester mixtures. The surface ten-

sion is predicted accurately for the mixture heptane and ethanoic acid pentyl ester over

the complete concentration range, considering that no parameters are adjusted, neither

component-specific pure component parameters nor binary parameters. For pentane and

ethanoic acid methyl ester, very small deviations are observed for the pentane rich side

but results are underpredicted moderately elsewhere.
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Figure 5.9: Surface tension of the binary mixtures heptane (1) + ethanoic acid pentyl
ester (2) and pentane (1) + ethanoic acid methyl ester (2) at T = 298.15 K. Comparison
of predicted values (lines) to experimental data [92] [93] (symbols).
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5.4.4 Associating substances: pure components and mixtures

1-Alcohols and 1-amines are considered as hydrogen-bonding compounds in this study.

As a general finding, surface tensions of short associating molecules are overestimated

significantly. With increasing chain length decreases the impact of the hydrogen-bonding

group on the components’ properties and predicted surface tensions become more accu-

rate. This is shown in figs. 5.10 and 5.11 where results of ethanol and 1-decanol as well

as ethylamine and 1-hexylamine are displayed.
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Figure 5.10: Surface tension of ethanol and 1-decanol. Comparison of predicted values
(lines) to (quasi)-experimental data [94] [64] (symbols).
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Figure 5.11: Surface tension of ethylamine and 1-hexylamine. Comparison of predicted
values (lines) to experimental data [65] [95] (symbols).

Deviations of predicted surface tensions from experimental data for pure 1-alcohols from

methanol to 1-decanol are depicted in fig. 5.12. Results obtained from a non-group-

contribution DFT consistent with PCP-SAFT and from density gradient theory correla-

tions using PCP-SAFT as the model for the local Helmholtz energy published in a pre-

vious study [42] [Chapter 4] are also included. It is apparent that the group-contribution

DFT approach leads to high deviations for methanol and ethanol. The properties of the

smallest molecules of a chemical family are usually represented insufficiently by group-
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contribution methods. From 1-propanol on, the proposed GC-DFT outperforms the non-

group-contribution DFT and for molecules longer than 1-hexanol, surface tension predic-

tions reach the same level of accuracy as DGT correlations (where for every substance, a

parameter is optimized to the here considered experimental data).
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Figure 5.12: Results for pure 1-alcohols from methanol to 1-decanol from a reduced tem-
perature of Tr = T/Tc ≈ 0.4 to the critical temperature Tc: deviations of surface tensions
γ as predicted from the proposed group-contribution DFT (black) from experimental data.
Results from a non-group-contribution DFT (blue) and correlation results from a density
gradient theory with adjustable parameters (red) are also included for comparison (both,
earlier reported in ref. [42] [Chapter 4]).
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Figure 5.13: Results for binary mixtures of hexane with different 1-alcohol compounds
at T = 298.15 K: deviations of surface tensions γ as predicted from the proposed group-
contribution DFT (black) from experimental data of Jiménez et al. [96]. Results from a
non-group-contribution DFT (blue) and correlation results from a density gradient theory
with adjustable parameters (red) are also included for comparison (both, earlier reported
in ref. [42] [Chapter 4]).

For binary 1-alcohol-n-alkane mixtures, where the 1-alcohols of medium size (1-propanol)

to rather long (1-octanol) are considered, the GC-DFT approach predicts the surface

tension in very good agreement to experimental data, as fig. 5.13 confirms. Deviations of

the GC-DFT model are notably smaller than for the non-group-contribution DFT or DGT
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approaches. In comparison to the non-group-contribution DFT model, that is understood

because the pure alcohols are well predicted by the GC-DFT model. To illustrate two

of these mixtures, fig. 5.14 shows the surface tension for the binary mixtures of hexane

and 1-propanol as well as of hexane and 1-octanol. The results are rather satisfying for

a predictive approach. We note, for all considered alkane-1-alcohol mixtures, the use of

group-group interaction parameters kCH3,CH2 , kCH3,OH and kCH2,OH reduces deviations of

surface tension to experiments as shown in the Supporting Information.
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Figure 5.14: Surface tension γ of binary mixtures hexane + 1-propanol and hexane +
1-octanol at T = 298.15 K. Comparison of predicted values (lines) to experimental data
[96] (symbols).

An interesting question is whether the group-contribution DFT approach is capable of

reproducing the orientation of hydrogen-bonding molecules at the vapor-liquid interface.

As shown by Stanners et al. [97] from spectroscopic measurements, 1-alcohols have a pre-

ferred orientation at the interface in order to maximize the number of hydrogen bonds:

the hydroxyl group is more likely to face towards the liquid phase while the non-polar

hydrocarbon tail preferentially faces towards the vapor phase. This orientation was re-

ported to be present to a similar extent for all studied 1-alcohols from methanol to octanol

[97]. In our DFT formalism orientational distribution functions are not considered. But

the GC-DFT approach does resolve density profiles on a segment level and it thus offers

enough detail to predict some aspects of the orientation, namely the density profile of the

hydroxyl group with a peak on the liquid side of the interface. Fig. 5.15 shows the density

profiles of the single segments of 1-pentanol at T = 345 K. A peak of the hydroxyl group

density profile on the liquid side of the interface is clearly observed. Furthermore, the

CH2 segment bonded to the hydroxyl group also shows the expected accumulation while

segments located on the opposite side of the chain molecule are depleted.

A quantitative comparison to orientation angles reported in [97] is not possible because

these angles cannot be inferred from our DFT model. For a qualitative comparison, a

simple measure for the orientation at the interface is introduced. We define the integral
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Figure 5.15: Density profiles of the single segments of 1-pentanol at T = 345 K. Stoi-
chiometry for chain formation requires the number of the different segments present in
the system to be equal. This is ensured for the depicted density profiles by evaluating the

integrals
∫
ρis(z)dz which give the same result for all segments (0.426 Å

−2
).

of the difference between the local densities of the two end segments, ρOH(z) and ρCH3(z),

of the 1-alcohol molecules

δOH,CH3 =

∫
|ρOH(z)− ρCH3(z)|/ρ(z)dz (5.31)

with the local density of the chain molecule ρ(z). Eq. 5.31 is evaluated only on the

liquid side of the interface (defined as the region where ρ(z) > 0.95ρbulk,liquid) where the

accumulation of the hydroxyl group occurs. The integrand of eq. 5.31 takes on values 6= 0

only where there is a preferred orientation (accumulation) and thus the average densities

of the two end segments of the alcohol molecules differ. Fig. 5.16 shows the value of

δOH,CH3 as a function of reduced temperature for several 1-alcohols. Parameter δOH,CH3

shows the expected decay with increasing temperature and vanishes close to the critical

temperature. We further observe a similar degree of orientation for 1-alcohol compounds

of different chain lengths, in agreement to what has previously been reported by Stanners

et al. [97] from spectroscopic investigations.

The ability of the proposed method to calculate density profiles at the level of chemical

functional groups and the observation that the orientation of the molecules at the interface

is qualitatively captured by the model also encourages the study of surfactant molecules

and furthermore offers the perspective of optimizing the molecular structure of surfactants

by screening the influence of different functional groups on the structure at the interface

and the surface tension of the system.
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Figure 5.16: Degree of orientation at the interface for different alcohol compounds mea-
sured by the value of δOH,CH3 as a function of reduced temperature Tr = T/Tc.

5.5 Conclusion

In this study, a group-contribution density functional theory consistent with the heteroseg-

mented group-contribution PCP-SAFT equation of state is developed. A component-

specific parameter φi as well as transferable group-group interaction parameters kαβ are

introduced to the dispersive contribution of GC-PCP-SAFT in order to improve results

for vapor pressure especially for small and multi-functional compounds and VLE results

for alkane-ester and alkane-alcohol systems, respectively. The effect of φi and kαβ on

surface tension are small in general. Predictions of the surface tension for non-polar,

non-associating compounds as well as for polar, non-associating species are in very good

agreement with experiments, both, for pure component systems as well as for mixtures.

The advantages of the group-contribution DFT are demonstrated for very long alkane com-

pounds and biodiesel systems where alternative methods such as density gradient theory

have to rely on correlations (if available) for the pure-component equation of state param-

eters and the influence parameter. Small hydrogen-bonding compounds pose a challenge

to the proposed GC-DFT approach. However, except for methanol and ethanol, better

results for surface tension of 1-alcohols were obtained with the group-contribution DFT

than with a non-group-contribution DFT and with increasing chain length, deviations for

1-alcohols decrease to the same level as for DGT correlations (where component-specific

parameters were adjusted). Furthermore, deviations for binary hexane-alcohol mixtures

are significantly smaller than for the non-group-contribution DFT or DGT.

The presented method calculates density profiles on a segment level which allows a detailed

description of the interface and it is shown that the GC-DFT method can qualitatively

capture the orientation of hydrogen-bonding compounds at the vapor-liquid interface.

These features suggest a study of surfactant molecules or even the use of GC-DFT to

design surfactant molecules with desired properties.
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Chapter 6

Identifying pure component

parameters of an analytic equation

of state using experimental surface

tension or molecular simulations

with a transferable force field

The content of this chapter is a literal quote of the publication

Mairhofer, Gross, Industrial & Engineering Chemistry Research, 2018, submitted.

In comparison to the published work, the abstract is here omitted. Additions or deletions

compared to the published work are marked with angular brackets.

The parametrization of equations of state is an important step in modelling thermody-

namic properties. Different routes exist to retrieve these model parameters for a given

compound depending on the equation of state and the body of experimental data avail-

able for this compound. Information of the critical properties and the azentric factor for

the molecule under study is sufficient to parametrize an equation of state. It is common

for cubic equations of state such as the Peng-Robinson [1] or Soave-Redlich-Kwong [2]

equation to take these quantities as input for obtaining pure component parameters. The

pure-component parameters of SAFT-type (statistical associating fluid theory) equations

of state are more commonly regressed to experimental data for vapor pressures and liq-

uid densities in a range of temperatures. The most valuable thermodynamic properties

for regression are those which exhibit the largest sensitivity to the model parameters.

Some authors include supercritical densities or subcooled densities in the regression[3],

or further properties such as speed of sound [4, 5]. Only few studies exist where other
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properties, such as the fraction of unbonded hydrogen bonding sites are used during pa-

rameter regression[6].

An alternative for compounds with scarce experimental data is the use of group-contribution

(GC) methods. The concept of GC methods is that the properties of a molecule can be

estimated as a function of the (hypothetical) properties of the functional groups which

make up the molecule. Once the parameters of all functional groups of a target compound

have been determined e.g. by adjusting them for similar compounds with sufficient ex-

perimental data, the properties of the target compound can be approximated. For poly-

meric compounds, hardly any experimental data for properties describing the vapor-liquid

equilibrium of the pure component such as vapor pressure or enthalpy of evaporation is

available and alternative schemes to obtain pure-component parameters are required. For

homologous series of polymers an approach similar to the group-contribution method ex-

ists where parameters of lower-mass molecules are extrapolated to higher-mass compounds

[7, 3, 8]. The shortcomings of this route are discussed in ref. [9] where pure-component

parameters for polymers are instead adjusted to liquid density and binary phase equilib-

rium data.

In this work, we explore two different routes for retrieving meaningful pure-component

parameters of the PCP-SAFT model[3, 10, 11, 12, 13]. In the first scheme, we use ex-

perimental data for liquid density and for surface tension. This is achieved by applying a

density functional theory (DFT) consistent with PCP-SAFT recently developed by Gross

[14], Klink and Gross [15] and refined by Sauer and Gross [16]. Only the equation of

state parameters are required for DFT calculations. Interfacial properties such as surface

tension are obtained in a completely predictive manner and show excellent agreement

to experimental results [17] [Chapter 4]. It therefore seems promising to reverse the

procedure by using surface tension data as input for the parameter regression. In the

second scheme, we use results for liquid density and enthalpy from molecular dynamics

simulations using a transferable force field. We show that for polymeric compounds with

’vanishing’ vapor pressure, the need for experimental data is thereby removed, and is

replaced by the requirement of a suitable force fields for the considered component. We

apply the transferable anisotropic Mie force field (TAMie)[18, 19, 20], which is developed

with emphasis on phase equilibrium properties and thermodynamic properties. Results

for vapor pressure, saturated liquid density, enthalpy of evaporation as well as surface ten-

sion calculated with parameters obtained from both schemes are evaluated for compounds

of three chemical groups: n-alkanes, 1-alkenes and ethers.
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6.1 Fundamentals of classical density functional the-

ory

This section summarizes the basic equations of classical density functional theory. A more

detailed description of the DFT approach applied in this work can be found in previous

studies of our group [14, 15, 16]. In this work, DFT is applied to determine the value of

surface tension γ for pure component systems during parameter optimization.

The single steps to obtain the value of surface tension for a pure component in a DFT

calculation are the following: first, the vapor-liquid equilibrium is determined for the

specified temperature. That delivers the value of vapor pressure psat, the densities of

the coexisting vapor and liquid phases, ρv and ρl, as well as the equilibrium value of

the chemical potential µ at vapor liquid equilibrium. Second, the equilibrium interfacial

density profile ρ(r) is determined by a DFT calculation with ρv and ρl as the boundary

conditions for the density profile ρ(r) across the vapor-liquid interface.

The equilibrium density profile minimizes the grand potential Ω of the system, which in

the absence of an external field is defined as

Ω[ρ] = A[ρ]−
∫
µρ(r)dr (6.1)

where the square brackets make the functional dependency on the density profile ρ(r)

explicit and the dependencies of Ω and A on temperature, volume and chemical potential

are dropped for brevity.

In this work, a Helmholtz energy functional A[ρ] consistent with PCP-SAFT is applied.

A[ρ] is then obtained as the sum of several contributions according to the PCP-SAFT

model

A[ρ] = Aig[ρ] + Ahs[ρ] + Achain[ρ] + Adisp[ρ] + Adipolar[ρ] (6.2)

The hard-sphere contribution (Ahs[ρ]) is determined from Rosenfeld’s Fundamental Mea-

sure Theory [21] in the modified form of Roth at al. [22] and Yu and Wu [23]. Chain

formation (Achain[ρ]) is treated using the iSAFT functional of Tripathi and Chapman [24]

with the adaptations of Gross [14] and Klink and Gross [15]. The weighted-density ap-

proximation developed by Sauer and Gross [16] is applied for dispersive (Adisp[ρ]) as well

as dipolar (Adipolar[ρ]) contributions.

For the imposed variables {µ, T, V }, the density profile ρ(r) is the internal degree of

freedom of the considered system. The minimum of Ω is characterized by a vanishing

functional derivative with respect to the systems internal degree of freedom, i.e. the

density profile ρ(r)
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δΩ[ρ]

δρ(r)
=
δA[ρ]

δρ(r)
− µ = 0 (6.3)

For the flat vapor-liquid interface, eq. 6.3 can be discretized on a one-dimensional grid

which results in a coupled set of nonlinear equations. An efficient algorithm to solve

this set of equations is essential here because many DFT calculations are required during

parameter optimization. We use a matrix-free Newton method which proved to be a

suitable algorithm in a previous study [25] [Chapter 3].

The value of surface tension γ can be obtained once the equilibrium density profile across

the interface is determined as

γ =

∫
a[ρ(z)]− µρ(z) + psatdz (6.4)

where z denotes the coordinate normal to the interface and the Helmholtz energy density

a is defined as A[ρ] =
∫
a[ρ(z)]Sdz with surface area S.

6.2 Molecular dynamics simulations

Results for enthalpy from molecular simulations cannot be used directly for parameter

optimization of PCP-SAFT. That is because PCP-SAFT can only determine residual en-

thalpy hres(T, p) ≡ h(T, p) − hig(T ) where hig denotes the enthalpy of an ideal gas. To

calculate the total enthalpy h(T, p) from PCP-SAFT, the ideal gas isobaric heat capacity

of the compound is required as additional input to evaluate hig (and a standard state

enthalpy). Molecular simulations with classical force fields, of course, also don’t provide

the ideal gas contribution, but the enthalpies most easily obtained include intramolecular

energy contributions. It is easier, therefore, to derive other properties from the enthalpy

values of molecular simulations which only require the residual part hres. One such prop-

erty is enthalpy of evaporation

∆hlv(T ) = hvap(T, psat(T ))− hliq(T, psat(T )) (6.5)

= hvap,res(T, psat(T ))− hliq,res(T, psat(T )) (6.6)

To calculate ∆hlv according to eq. 6.6, simulations of the vapor and liquid phases coex-

isting at temperature T and vapor pressure psat(T ) have to be performed. A common

simplification at this point is to approximate the gas phase as an ideal gas [26, 27]

∆hlv(T ) ≈ hig(T )− hliq(T, psat(T )) = −hliq,res(T, psat(T )) (6.7)

In molecular simulations, the vapor enthalpy hig can be obtained by simulating a single
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molecule. However, the sampling of intramolecular configurations is greatly improved by

simulating a larger number of molecules and specifying a large simulation box in order to

marginalize intermolecular interactions between the molecules [26, 27].

An alternative property suited for the parameter optimization of the PCP-SAFT model

is the residual enthalpy of the liquid phase

hliq,res(T, p) ≡ hliq(T, p)− hig(T ) (6.8)

The value of hliq,res can be obtained from a simulation of the liquid phase at specified

values of temperature T , pressure p and particle number N to obtain hliq(T, p) as well

as a simulation of the vapor phase at specified temperature T , particle number N and a

volume V , which has to be chosen large enough to ensure the system is in the ideal gas

state, to determine hig.

Choosing hliq,res over ∆hlv offers several advantages: firstly, using ∆hlv one is bound

to thermodynamic states at vapor-liquid phase equilibrium, i.e. simulations have to be

performed for subcritical temperatures at the corresponding value of vapor pressure. En-

thalpy values hres,liq, on the other hand, can be obtained for arbitrary (stable) liquid

states. Secondly, as shown in Fig. 6.1a for n-butane, results for ∆hlv with the ideal gas

approximation for the vapor phase deteriorate with increasing temperature due to the

increasing value of vapor pressure psat. Only if the gas phase is simulated at the correct

value of psat, accurate results can be obtained for ∆hlv over a wider temperature range,

Fig. 6.1a.

The definition of hliq,res, eq. 6.8, is valid regardless of the system temperature or pressure

and simulation results for the identical state points as in Fig. 6.1a follow the reference

data closely also for higher temperatures, Fig. 6.1b.

Therefore, to adjust the PCP-SAFT parameters we use values for hliq,res and for liquid

densities as obtained from molecular simulations using the TAMie force field[18, 19, 20].

We will show that for polymeric compounds it is a valid approximation to assume zero

pressure in the molecular simulation of the liquid phase.

6.2.1 Simulation details

All molecular dynamics simulations are performed using the DL POLY 4 software package

[30] and the transferable anisotropic Mie force field (TAMie) [18, 19, 20] with analytical

long range corrections for energy and pressure. In the gas and liquid phase, for every com-

pound simulations are performed at eight subcritical isotherms for reduced temperatures

between 0.55 and 0.9.
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Figure 6.1: Diagram (a): enthalpy of evaporation ∆hlv for n-butane as a function of
temperature. Comparison of simulation results where the gas phase is approximated as
an ideal gas (blue symbols) to simulation results where the gas phase is simulated at
the correct value of vapor pressure (red symbols) as well as reference data (solid line)
[28]. Diagram (b): residual liquid enthalpy for n-butane as a function of temperature.
Results are calculated as hliq,res(T, psat(T )) − hliq,res,ref

(
T ref , psat(T ref )

)
. The reference

temperature is set to T ref = 235 K. Comparison of simulation results (symbols) to
reference data (solid line) [28, 29].

Simulation details liquid phase

For liquid phase simulations, 512 molecules are placed in a cubic box using packmol [31].

All simulations of a given compound are started from the same initial box, which has a

density close to the average of the expected densities at the lowest and highest simulated

temperatures. The system is equilibrated for 100,000 time steps in the microcanonical

ensemble and the velocities are scaled to the desired simulation temperature every 10

time steps. Subsequently, the simulations are continued in the isothermal-isobaric ensem-

ble for 5 million (10 million for the longest molecules of each chemical family) time steps

and samples are taken over the last 4 million (9 million for the longest molecules of each

chemical family) steps. The value of pressure is set to the experimental vapor pressure

corresponding to the specified temperature. For polymeric compounds, additional sim-

ulations are performed at zero pressure to validate the approach of obtaining equation

of state parameters from a scheme which does not require experimental data as input.

Pressure and temperature are controlled by a Martyna-Tuckerman-Klein barostat [32, 33].

The relaxation constants of the thermostat and barostat, τT and τp, respectively, are set

to τT = 0.1 ps and τp = 1 ps. In all simulations, the equations of motion are integrated

by a velocity-verlet integration scheme using a time step of 1 fs. The tolerance for the

SHAKE algorithm is set to 10−5 and a cut-off radius of 14Å is used for van der Waals

interactions.

The standard Ewald summation is applied to evaluate Coulombic interactions between

charged particles. The parameters of the Ewald summation are set automatically by

DL POLY by specifying a global tolerance. From a comparison of different values for this
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tolerance, a value of 10−6 was found to be a suitable choice. Tighter tolerances did not

lead to significant changes of simulation results, see Appendix.

Using results of molecular simulations with the TAMie force field as input for optimiz-

ing pure component parameters of the PCP-SAFT model is only sensible, if the TAMie

force field gives sufficiently accurate estimates of the considered properties. Table 6.1

lists deviations of liquid densities from the TAMie force field to reference data. Across

all studied compounds, deviations are usually around 1 to 2%. Furthermore, it can be

observed that assuming zero vapor pressure for polymeric molecules still leads to accurate

density results.

Table 6.1: Deviations of liquid saturated density evaluated at eight reduced temperatures
Tr = T/Tc between 0.55 and 0.9. Experimental data from NIST [28] and the Korean
Thermophysical Properties Data Bank [34].

compound Dev.% compound Dev. % compound Dev. %
butane 0.84 1-butene 1.62 methylbutylether 1.14
heptane 1.22 1-heptene 2.24 dimethylether 1.22
decane 1.39 1-decene 1.60 dipropylether 1.88
heptadecane 2.32 1-hexadecene 1.98 dipentylether 1.77
heptadecane (p=0) 2.22 1-hexadecene (p=0) 1.84 dipentylether (p=0) 1.63

Simulation details vapor phase

The vapor phase simulations are performed with the same number of molecules as the

liquid phase simulations. In order to obtain simulation conditions which resemble the

ideal gas state, i.e. negligible intermolecular interactions, for every compound the final

simulation box of the liquid phase simulation at highest temperature is expanded by

a factor of ten in every direction. The molecules are then placed inside this box with a

minimal initial distance between any two molecules of 40Å using packmol [31]. The system

is equilibrated in the microcanonical ensemble for 500000 steps scaling the velocities every

10 time steps to the desired temperature, followed by a simulation run at constant particle

number N , temperature T and volume V using the Langevin thermostat with a friction

constant of τ = 2ps−1 and a time step of 1 fs. The equations of motion are integrated

by the velocity-verlet scheme. These simulations are continued for 8 million steps and

samples are taken from the last 7 million. The same tolerances for the SHAKE algorithm

and Ewald summation are applied as in the liquid phase simulations. However, the long-

range contribution to the Coulomb interactions is never evaluated.
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6.3 Results and discussion

In this section, the PCP-SAFT parameter sets adjusted to experimental results for sat-

urated liquid density and surface tension (labelled set Surface Tension) and to satu-

rated liquid density and residual liquid enthalpy from molecular simulations (labelled

set TAMie) are evaluated. Results obtained with both parameters sets are compared

to quasi-experimental data. We thereby assess four thermodynamic properties: liquid

saturated density, vapor pressure, enthalpy of evaporation, and surface tension. Special

attention is given to results for those properties which were not included in the parameter

optimization and thus represent predictions. The evaluation is carried out for compounds

of three different chemical families: n-alkanes, 1-akenes and ethers. For the largest studied

molecules of each chemical family, the approach of performing molecular simulations of

the liquid phase at zero pressure and using the results of these simulations for parameter

adjustment is discussed. For comparison, results obtained from parameter sets adjusted

in the conventional manner, to liquid density and to vapor pressure are also regarded for

comparison (labelled reference set). All parameter sets are listed in the Appendix.

Deviations presented in this section are averaged values calculated according to 1
Nexp

∑Nexp

i=1
|φexpi −φcalci |

φexpi

with the number of evaluated data points N exp and the with the calculated result φcalc

and the quasi-experimental value φexp of the studied property φ. In all cases, eight data

points at reduced temperatures between 0.55 and 0.9 are considered.
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6.3.1 Results for n-alkanes

Results obtained from the different parameter sets for butane, heptane, decane and hep-

tadecane are shown in Figs. 6.2 and 6.3. The reference parameter sets are taken from the

original PC-SAFT publication of Gross and Sadowski [3].

Set Surface Tension correlates liquid density equally well as the reference set. Deviations

range from 0.2% for butane to 1.5% for heptadecane which is only slightly worse than

the reference set (0.3% for butane and 0.5% for heptadecane). From results of liquid

density for heptadecane (Figs. 6.2 (B)), it is apparent that the critical temperature Tc is

obtained more accurately from parameter set Surface Tension than from the reference set.

A possible explanation is that surface tension (included for parameter optimization for

set Surface Tension) contains more information on the value of Tc (where surface tension

vanishes) than vapor pressure (which has gone into reference set) that does not in itself

imply any peculiar value of Tc.

Surface tension results are correlated very accurately by set Surface Tension for all stud-

ied n-alkanes. Notable deviations to quasi-experimental data only occur at the lowest

temperatures. Results predicted by the reference set are also in excellent agreement to

quasi-experimental results. Vapor pressures and enthalpies of evaporation are not in-

cluded in the parameter optimization of set Surface Tension. Predictions of psat from

set Surface Tension are in very good agreement to quasi-experimental data and only for

heptadecane, where vapor pressure is overpredicted at high temperatures, notable dif-

ferences to correlations of the reference set become apparent. Predictions of set Surface

Tension for enthalpy of evaporation tend to overpredict the experimental data at low

temperatures with increasing molecular mass. At elevated temperatures, predictions of

set Surface Tension and the reference set agree closely. Only for heptadecane the more

accurate value of Tc leads to better agreement of predictions from set Surface Tension

to quasi-experimental results. In general, only small deviations below 6% occur for ∆hlv

with set Surface Tension.

Results obtained with set TAMie for n-butane agree very well with quasi-experimental

data for all studied thermodynamic properties. Deviations range from below 1% for liquid

density to 8% for surface tension. For longer n-alkane molecules, a growing overestima-

tion of the critical temperature is observed. This causes increased deterioration of the

results for all properties depicted in Figs. 6.2 and 6.3 at elevated temperatures. For hep-

tadecane, the longest studied n-alkane, deviations increase to 1.5% for liquid density, 4%

for enthalpy of evaporation, 10% for vapor pressure and 17% for surface tension. In the

low temperature range, on the other hand, results for surface tension and liquid den-

sity obtained with set TAMie agree very well with results from the reference set and

quasi-experimental data.

Table 6.2 presents results for heptadecane. The table lists deviations of calculated proper-
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ties from experimental values achieved with all parameter sets. With averaged deviations

across all four properties of 2.9% and 3%, the reference set and set Surface Tension show

similar accuracy. As expected, both parameter sets show larger deviations for predicted

properties, surface tension for the reference set and vapor pressure for set Surface Ten-

sion, while correlated results are very accurate. Enthalpy of evaporation, a property not

included in the parameter optimization of any of the two parameter sets, is predicted with

almost identical deviation by both sets.

Parameter set TAMie leads to average deviations of 8.5% across all properties of heptade-

cane listed in Table 6.2. Additionally, deviations for a modified set TAMie are presented

in Table 6.2 which is adjusted to results of molecular simulations where in the liquid phase

simulations the vapor pressure is assumed to be zero. Deviations for the single proper-

ties do not deviate substantially from values of the regular set TAMie and the overall

deviation across all properties takes on a value of 8.1%. That is a rather satisfactory

result considering that no experimental information about the compound is necessary to

perform the required molecular simulations. The result, of course, critically relies on a

suitable transferable force field.

Table 6.2: Deviations for vapor pressure, liquid density, enthalpy of evaporation as well
as surface tension for the different parameter sets for n-heptadecane.

Dev. psat % Dev. ρl % Dev. ∆hlv % Dev. γ %
reference set 1.65 0.49 2.45 7.12

set Surface Tension 7.80 1.49 2.43 0.30
set TAMie 10.46 1.54 4.49 17.35

mod. set TAMie 9.87 1.51 4.41 16.63
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Figure 6.2: Results for vapor pressure (a) and saturated liquid density (b) for butane,
heptane, decane and heptadecane (from left to right) obtained from the different PCP-
SAFT parameter sets as well as quasi-experimental results [28, 35].
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Figure 6.3: Results for enthalpy of evaporation (a) and surface tension (b) for butane,
heptane, decane and heptadecane (from left to right) obtained from the different PCP-
SAFT parameter sets as well as quasi-experimental results [28, 35].

6.3.2 Results for 1-alkenes

Results for 1-butene, 1-heptene, 1-decene as well as 1-hexadecene are exemplified in

Figs. 6.4 and 6.5. Reference parameter sets are taken from Gross and Sodowski [3] and

Kontogeorgis and Folas [36].

Correlations for liquid density of set Surface Tension agree very well with quasi-experimental

data (and with results of the reference set). Correlations of surface tension obtained from

set Surface Tension as well as predictions from the reference set agree very well with

quasi-experimental results. Except for 1-hexadecene, where deviations increase for both

parameter sets, errors stay below 1% for set Surface Tension and below 4% for the ref-

erence set. Results of set Surface Tension for both predicted properties show a similar

trend: deviations for vapor pressure as well as enthalpy of evaporation are in the order of

2% for 1-butene which is practically identical to the reference set (where vapor pressure is

correlated) and increase to 15% for psat and 7% for ∆hlv for 1-hexadecene. For 1-decene

and 1-hexadecene, predictions for ∆hlv of set Surface Tension show larger deviations than

the other parameter sets at low and intermediate temperatures while in the vicinity of

the critical point, results are more accurate due to the more accurate prediction of Tc.

Results obtained from set TAMie for 1-alkenes show similar trends as the corresponding

results for 1-alkanes: with growing molecular weight, the growing overprediction of Tc

leads to increasing deviations for all studied properties at elevated temperatures. On the

other hand, accurate results (comparable to the results of the reference set) are obtained

for the correlated as well as the predicted properties at low temperatures.

Table 6.3 summarizes the deviations of all parameter sets for all properties of 1-hexadecene.

With a deviation across all four properties of 3.3%, results of the reference set are the

most accurate. Unlike in the case of heptadecane (Table 6.2), deviations of set TAMie

are smaller (7.1%) than of set Surface Tension (8.4%). This is mainly caused by lower

deviations of set TAMie for enthalpy of evaporation and surface tension. The latter is
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very surprising as results for γ from set Surface Tension are correlated values while for

set TAMie they represent predictions. Presented deviations for the modified set TAMie,

where molecular simulations of the liquid phase are performed at zero vapor pressure, are

again very close to the figures of set TAMie and confirm the validity of this approach to

obtain equation of state parameters for polymeric molecules.

Table 6.3: Deviations for vapor pressure, liquid density, enthalpy of evaporation as well
as surface tension for the different parameter sets for 1-hexadecene.

Dev. psat % Dev. ρl % Dev. ∆hlv % Dev. γ %
reference set 2.63 1.07 2.49 6.85

set Surface Tension 14.76 0.44 7.34 10.99
set TAMie 13.24 1.93 4.38 7.06

mod. set TAMie 12.51 1.88 4.29 6.71
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Figure 6.4: Results for vapor pressure (a) and saturated liquid density (b) for 1-butene,
1-heptene, 1-decene and 1-hexadecene (from left to right) obtained from the different
PCP-SAFT parameter sets as well as quasi-experimental results [35].
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Figure 6.5: Results for enthalpy of evaporation (a) and surface tension (b) for 1-butene,
1-heptene, 1-decene and 1-hexadecene (from left to right) obtained from the different
PCP-SAFT parameter sets as well as quasi-experimental results [35].
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6.3.3 Results for ethers

Results obtained from the different parameter sets for dimethylether, methylbutylether

as well as dipentylether are presented in Figs. 6.6 and 6.7. Furthermore, results for

dipropylether (not shown in Figs. 6.6 and 6.7) will be discussed. Reference parameters for

dimethylether are taken from Gross and Vrabec [11]. For the remaining ether compounds,

they are adjusted in this work and presented in the Appendix.

For ethers we recognize a similar pattern as observed for alkanes, namely very good agree-

ment of correlated liquid densities and surface tensions obtained from set Surface Tension

to quasi-experimental data and to results of the reference set. Significant differences be-

tween both parameter sets only occur for dimethylether, where a clear improvement of

set Surface Tension surface tension correlations (deviation: 1.3%) over predictions of the

reference set (deviation: 7%) can be observed as well as for dipentylether. For this com-

pound, the critical temperature is obtained more accurately by set Surface Tension than

by the reference set and liquid density results are correlated more accurately at elevated

temperatures by set Surface Tension. Vapor pressure predictions for ethers obtained with

set Surface Tension agree very well with quasi-experimental data and to the correlated

values of the reference set (Fig. 6.6a). For dimethylether, dipropylether and dipentylether,

higher deviations occur at very low temperatures which cause the averaged deviation of

set Surface Tension predictions to rise to up to 21%. For higher temperatures, on the

other hand, vapor pressure predictions of set Surface Tension for dipentylether agree more

closely with quasi-experimental data than correlations of the reference set. Enthalpy of

evaporation is predicted very accurately for methylbutylether by set Surface Tension (de-

viation: 2%). For the remaining ether molecules, deviations take on values between 5%

for dipropylether and 8% for dipentylether.

Vapor pressure predictions of set TAMie show increasing errors with molecular size: de-

viations start at 11% for dimethylether and increase to 16 and 18% for methylbutylether

and dipentylether, respectively. Results for liquid density are convincingly accurate on

the other hand, with deviations below 2% for all four ether compounds. Only at elevated

temperatures, results deteriorate due to the overshoot of critical temperature. This also

causes increased deviations of set TAMie for enthalpy of evaporation and surface tension

in the high temperature range. At low temperatures however, predictions of set TAMie

for ∆hlv and γ agree well with results of the reference set and with quasi-experimental

data.

In Table 6.4, deviations for dipentylether obtained with the different parameter sets are

presented. Deviations across all four thermodynamic properties are lowest for the refer-

ence set (2.8%). Set Surface Tension and set TAMie show similar overall deviations of

7.7 and 8.2%. In the temperature range for which deviations are calculated, enthalpy

of evaporation results of set TAMie are remarkably accurate compared to results of the
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Figure 6.6: Results for vapor pressure (a) and saturated liquid density (b) for
dimethylether, methylbutylether and dipentylether (from left to right) obtained from the
different PCP-SAFT parameter sets as well as quasi-experimental results [35].
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Figure 6.7: Results for enthalpy of evaporation (a) and surface tension (b) for
dimethylether, methylbutylether and dipentylether (from left to right) obtained from the
different PCP-SAFT parameter sets as well as quasi-experimental results [35].

other sets. Figures for the modified set TAMie are again convincingly accurate (over-

all deviations: 7.9%) to reconfirm this route of obtaining meaningful equations of state

parameters for polymeric compounds.

Table 6.4: Deviations for vapor pressure, liquid density, enthalpy of evaporation as well
as surface tension for the different parameter sets for dipentylether.

Dev. psat % Dev. ρl % Dev. ∆hlv % Dev. γ %
reference set 3.53 0.75 2.29 4.43

set Surface Tension 21.33 0.34 8.30 0.74
set TAMie 17.66 1.68 0.76 12.80

mod. set TAMie 16.98 1.66 0.77 11.97
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6.4 Conclusion

In this study we mimic the situation, where experimental data for vapor pressure of

a considered substance is absent. Two schemes to adjust PCP-SAFT pure-component

parameters for such a case are presented. The first scheme makes use of classical density

functional theory that allows to include experimental surface tension data besides liquid

density data for parameter optimization. The second scheme uses results for saturated

liquid density as well as residual liquid enthalpy from molecular dynamics simulations

using a suitable transferable force field. We apply the TAMie force field in this study.

Results from both routes are evaluated for four thermodynamic properties (saturated

liquid density, vapor pressure, enthalpy of evaporation and surface tension) for several

n-alkanes, 1-alkenes as well as ethers. Very satisfactory results are observed for both

schemes. Results obtained with the first scheme exhibit larger deviations only at low

temperatures. At elevated temperatures agreement to experimental data is excellent. The

reverse holds true for the second scheme: accurate results are obtained at low temperatures

while deviations increase with increasing temperature due to overprediction of the critical

temperature. The second scheme allows to obtain pure-component equation of state

parameters of polymeric compounds with ’vanishing’ vapor pressure without experimental

data.

Appendix

Choosing the global tolerance for the Ewald summation

Fig. 6.8 shows the results of a parameter study to identify a suitable value for the global

Ewald summation tolerance as discussed in the main text.
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Figure 6.8: Deviations of liquid density (a) and liquid enthalpy (b) for simulations of
dimethylether at different temperatures using different values for the global tolerance of
the Ewald summation. Results obtained with a tolerance of 10−9 are used as the reference.
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Parameter sets

Table 6.5: PCP-SAFT parameters of the different parameter sets used in this work for
n-alkanes and 1-alkenes. Reference parameter sets are taken from Gross and Sadowski [3]
and Kontogeorgis and Folas [36].

set label m σ/Å ε/k/K set label m σ/Å ε/k/K
butane 1-butene

reference set 2.332 3.709 222.88 reference set 2.286 3.643 222.00
set Surface Tension 2.530 3.595 213.37 set Surface Tension 2.273 3.632 222.47
set TAMie 2.133 3.841 236.10 set TAMie 1.958 3.851 244.71

heptane 1-heptene
reference set 3.483 3.805 238.40 reference set 3.364 3.790 240.62
set Surface Tension 3.740 3.686 230.77 set Surface Tension 3.638 3.640 230.09
set TAMie 3.041 4.007 258.04 set TAMie 2.939 3.987 261.11

decane 1-decene
reference set 4.663 3.838 243.87 reference set 4.370 3.891 250.35
set Surface Tension 5.092 3.712 235.90 set Surface Tension 5.180 3.651 234.05
set TAMie 3.960 4.092 266.55 set TAMie 3.817 4.096 271.40

heptadecane 1-hexadecene
reference set 6.981 3.968 255.65 reference set 6.500 3.975 256.70
set Surface Tension 8.086 3.724 240.29 set Surface Tension 7.830 3.688 238.63
set TAMie 6.140 4.177 272.82 set TAMie 5.717 4.165 275.04
mod. set TAMie 6.173 4.170 271.96 mod. set TAMie 5.750 4.157 274.10
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Table 6.6: PCP-SAFT parameters of the different parameter sets used in this work for
ethers. The reference parameter set of dimethylether is taken from [11]. The reference
sets of the remaining compounds are adjusted to saturated liquid densities and densities
of the subcooled liquid as well as vapor pressure data [35, 37, 38]. Dipole moments µ are
taken from the DIPPR database [35].

set label m σ/Å ε/k/K µ/D
methylbutylether

reference set 3.196 3.616 234.10 1.25
set Surface Tension 3.308 3.566 229.95 1.25
set TAMie 2.789 3.822 256.22 1.25

dimethylether
reference set 2.263 3.272 210.29 1.3
set Surface Tension 1.794 3.571 233.68 1.3
set TAMie 2.062 3.390 224.55 1.3

dipropylether
reference set 3.470 3.704 234.71 1.2
set Surface Tension 3.988 3.527 221.36 1.2
set TAMie 3.083 3.904 253.30 1.2

dipentylether
reference set 4.712 3.876 248.77 1.2
set Surface Tension 6.206 3.506 222.77 1.2
set TAMie 4.368 4.017 262.25 1.2
mod. set TAMie 4.400 4.008 261.07 1.2
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Chapter 7

Conclusion

In this thesis, interfacial properties of the vapor-liquid interface for a variety of systems

are studied using classical density functional theory (DFT) and density gradient the-

ory (DGT). PCP-SAFT is used as the local model for density gradient theory and the

Helmholtz energy functional applied in classical density functional theory is also consistent

with PCP-SAFT.

Strengths and weaknesses of both models are identified: pure component surface ten-

sion is correlated accurately by DGT using constant influence parameters adjusted to

experimental surface tension data. Excellent results for mixtures are obtained with the

geometric combining rule for the cross-influence parameters as long as the attractive

interactions (such as van der Waals attraction, polar interactions, or hydrogen bonds)

among the considered substances are sufficiently symmetric. This is demonstrated for

several systems including multicomponent model reservoir fluids and mixtures of polar

refrigerants. Problems arise for mixtures of components with strongly differing attractive

interactions. This is the case e.g. for alkane-alcohol mixtures where alkane molecules only

exhibit attractive interactions of the van der Waals type while alcohol compounds also

form hydrogen bonds. Depending on the algorithm applied to solve the Euler-Lagrange

equations of density gradient theory, no or inaccurate surface tension results are obtained

over a wide concentration range and unphysically steep gradients can occur in the inter-

facial density profiles. It is shown that the introduction of a binary correction parameter

in the combining rule for the cross influence parameters, which is adjusted to mixture

surface tension data, only has a marginal positive impact on surface tension results for

the studied systems and does not solve the problems arising for alkane-alcohol mixtures.

Classical density functional theory is a purely predictive approach to determine interfa-

cial properties which requires no adjustable parameter such as the influence parameter of

density gradient theory. For most studied systems, surface tension results predicted by

DFT are remarkably accurate and deviations to experimental data are similar to values

of density gradient theory. This is true for pure components as well as multicomponent
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mixtures of non-associating compounds. Pure associating compounds such as alcohols,

amines or water are the only type of molecules for which significant differences occur be-

tween DFT predictions and DGT correlations of surface tension. Surface tension obtained

from classical density functional theory shows a systematic overprediction of experimental

results. On the other hand, DFT does not suffer from the same shortcomings as density

gradient theory for mixtures including associating and non-associating compounds such

as alkane-alcohol systems. Despite the larger deviations for the pure alcohol, average de-

viations for many binary alcohol-alkane mixtures are lower for classical density functional

theory than for density gradient theory. The proposed explanation for the increasing de-

viations for DFT surface tension predictions for associating compounds, the insufficient

description of the orientation of hydrogen bonds forming molecules at the vapor-liquid

interface, has to be further investigated e.g. by explicitly treating the orientation of a

molecule as a further degree of freedom.

The group-contribution classical density functional theory developed in this work allows

predicting surface tension also for compounds for which not enough experimental data

for bulk properties is available to adjust component-specific equation of state parame-

ters. Very accurate surface tension predictions are obtained from this group-contribution

DFT. The practical use of this approach is demonstrated e.g. for biodiesel systems where

no component-specific equation of state parameters can be regressed for most molecules

due to missing experimental data. Furthermore, a detailed picture of the interface can

be obtained from the group-contribution DFT because density profiles are determined

for the individual functional groups that make up the molecules. This allows to study

the orientation of molecules made up of distinct functional groups at the interface. For

1-alcohols, the model predicts a pronounced orientation of the hydroxyl group towards

the liquid phase which is in line with experimental and molecular dynamics studies. The

additional degree of freedom that allows distinguishing between density profiles of in-

dividual functional groups of a given molecule across the interface also has a positive

impact on the accuracy of surface tension predictions for hydrogen-bonding compounds:

for 1-alcohols and mixtures thereof, deviations are notably reduced compared to the non-

group-contribution DFT.

A drawback of classical density functional theory compared to density gradient theory

is the increased computational demand which limits its applicability in process simula-

tions. Efficient algorithms are identified in this work which significantly speed up the

calculations compared to the simple and frequently applied Picard iteration. However,

especially for systems including associating compounds, DFT still requires considerably

longer computation time than DGT. A possible remedy in this special case may be to

simultaneously solve for the fraction of non-bonded association sites and the density pro-

file instead of solving for the fraction of non-bonded association sites in an inner loop for
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every intermediate iterate of the density profile. The extensive use of fast Fourier trans-

formation to calculate the convolution integrals appearing in the equations of classical

density functional theory offers further potential to increase computational performance

which was not exploited in this work.
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Appendix A

Supporting Information to Chapter 4

A.1 Numerical aspects to calculate the equilibrium

density profile using the stabilized DGT algo-

rithm

In the stabilized DGT algorithm, the following equation has to be integrated in time until

the steady-state solution is reached

∂ρi
∂t

+ µi,0({ρk})− µi =
N∑
j

cij
∂2ρj
∂z2

(A.1)

To speed up simulations, we follow [1] and [2] and decompose µi,0 ({ρk}) in a convex part

(including the ideal gas and all repulsive contributions) that is integrated in time using

an implicit Euler method and a concave part (including all attractive contributions) for

which an explicit Euler method is applied. In contrast to [2], we do not start from a linear

density profile but use the same initial profiles as for the DFT calculations as presented in

[3] [Chapter 3] which usually is an excellent starting point for the calculation. Discretizing

eq. A.1 in time and space as presented in [2] yields

fi,k = ρn+1
i,k −∆t

N∑
j

cij
ρn+1
j,k−1 − 2ρn+1

j,k + ρn+1
j,k+1

∆z2
+ ∆tµconvexi,0 (ρn+1

1,k , ..., ρ
n+1
N,k )

+ ∆tµconcavei,0 (ρn1,k, ..., ρ
n
N,k)−∆tµi − ρni,k = 0 (A.2)

where i = 1, ..., N denotes the component index and k = 1, ..., nz denotes a certain grid

point in the interface. Eq. A.2 has to be solved at every time step n to obtain the density

profile at the next time step n+ 1. We use Newton’s method to this end and exploit the

structure of the Jacobi matrix J : the residual fi,k depends on the unknown new densities
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ρn+1
i of all components at grid points k − 1, k, k + 1. J thus has a banded structure with

2N − 1 lower and upper diagonals. To increase performance, only the entries of J on

these lower and upper diagonals are computed and stored. The single entries of J are

approximated using finite-differences. To solve the system of linear equations at every

Newton iteration, we apply the LAPACK [4] routine DGBSV that is specifically designed

for matrices with a banded structure. Undamped Newton updates performed best in our

calculations. Therefore, no line search or trust region algorithm is used to control the

solution update and always the whole Newton step is accepted. A simple strategy is

adopted to adjust the step length ∆t during calculation: at every time step n, we allow

10 Newton iterations to reach a specified tolerance of ||f ||2 = 10−8. If this tolerance is

reached in 8 successive time steps, ∆t is increased by a factor of 1.4. If the tolerance is not

met at a given time step, ∆t is reduced to half its size and the calculation for this time

step is repeated. The initial value of ∆t is set to 10−4 and during calculation it levels off

at values between 10−2 to 10−1. These parameter values did not undergo any optimization

but proved suitable in all calculations. A calculation is considered converged, once two

successive density profiles differ (measured by the Euclidean norm) by less than 10−14 or

a maximal number of time steps is reached (set to 2000 in this work). To ensure that the

steady-state solution is found with these settings, results with βij = 0 are compared to

corresponding results obtained with the DGT path function approach.

Table A.1 shows the required computation time of DFT and both DGT algorithms for

three different mixtures. The binary mixture ethanol and hexane requires the evaluation

of associative contributions, which increases computation time, especially for DFT (see

[3] [Chapter 3] for an explanation). Polar contributions on the other hand do not increase

computation time significantly as the results of the four-component mixture reveal. The

long computation time of the stabilized DGT approach for the seven-component mixture

can be attributed to the fact that the tolerance for two successive density profiles to stop

the calculation cannot be satisfied anymore and the calculation runs for the complete

2000 time steps. Alternative convergence criteria that take the number of components

into account or use the change of surface tension between successive time steps may be

more appropriate in this case.

A.2 Impact of the size of the computation domain on

surface tension results

In DFT calculations as well as for the stabilized DGT algorithm, the size of the compu-

tation domain D has to be set a priori. As fig. A.1 shows, surface tension results are not

sensitive to the value of D over a wide range of values.
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Table A.1: Computation time in seconds for three different mixtures: the binary mixture
ethanol and hexane at T = 298.15 K and a liquid composition of xhexane = 0.4, the quater-
nary mixture consisting of R32, R125, R134a and R143a at T = 248.15 K and a specified
liquid composition (xR134a = 0.2, xR125 = 0.14112, xR32 = 0.37673, xR143a = 0.28215) as
well as a seven-component mixture (methane, ethane, propane, butane, heptane, toluene
and methylcycylohexane) at T = 283.15 K and p = 40 bar. In the DFT and stabilized
DGT calculations, the computation domain is discretized using nz = 1000 grid points. In
the calculations with the path function DGT approach, the variable s is discretized using
ns = 1000 points. The calculation time is averaged over ten calculations.

N DFT DGT path fcn. Stab. DGT
2 94.90 0.09 62.01
4 15.42 0.38 34.37
7 26.79 0.49 262.63
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Figure A.1: Surface tension results from DFT (solid lines) as well as from the stabilized
DGT algorithm (dashed lines) as a function of the size of the computation domain D
for three different systems: the binary mixture n-hexane - ethanol at T = 298.15 K and
p = 0.236 bar, (xhexane = 0.222) with kij = 0.02854 (black), a seven-component alkane
mixture with overall composition as presented in table A.2 at T = 255.37 K and p = 20 bar
(all kij = 0) (blue) and the binary mixture n-heptane - nitrogen at T = 393.15 K and
p = 200 bar using kij = 0.0930. All βij are set to 0 in calculations with the stabilized DGT
algorithm. In all calculations, the number of discretization points is fixed to nz = 1000.
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A.3 Results for 1-alcohols

The following figures show surface tension results of DFT (solid lines) and DGT (dashed

lines) for 1-alcohols from methanol to 1-decanol. The pure component PCP-SAFT pa-

rameters are taken from Gross and Sadowski [5] (black lines) and Kontogeorgis et al. [6]

(blue lines, only DFT results).
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Figure A.2: Calculated surface tension results (DFT: solid lines, DGT: dashed lines)
and reference data for methanol (a) and ethanol (b). Reference data is taken from [7]
(methanol) and [8] (ethanol). The blue lines represent DFT results obtained with PCP-
SAFT parameters of [6], the remaining results are obtained using PCP-SAFT parameters
of [5].
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Figure A.3: Calculated surface tension results (DFT: solid lines, DGT: dashed lines) and
reference data [9] for 1-propanol (a) and 1-butanol (b). The blue lines represent DFT
results obtained with PCP-SAFT parameters of [6], the remaining results are obtained
using PCP-SAFT parameters of [5].
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Figure A.4: Calculated surface tension results (DFT: solid lines, DGT: dashed lines) and
reference data [9] for 1-pentanol (a) and 1-hexanol (b).
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Figure A.5: Calculated surface tension results (DFT: solid lines, DGT: dashed lines) and
reference data [9] for 1-heptanol (a) and 1-octanol (b). The blue lines represent DFT
results obtained with PCP-SAFT parameters of [6], the remaining results are obtained
using PCP-SAFT parameters of [5].
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Figure A.6: Calculated surface tension results (DFT: solid lines, DGT: dashed lines) and
reference data [9] for 1-nonanol (a) and 1-decanol (b).
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A.4 Correlations of deviations for calculated surface

tension with further properties

Figures A.7 and A.8 show the deviations of calculated surface tension values as function

of the average errors for vapor pressure ps, liquid density ρl and critical temperature Tc

for the compounds studied in this work.

For DFT (DGT) results, the coefficients of determination take on values ofR2 = 0.09 (0.28)

for the correlation of errors in surface tension γ and errors in ps, R2 = 0.04 (0.02) for

errors in γ and ρl and R2 = 0.31 (0.18) for errors in γ and Tc. Furthermore, fig. A.9 vi-

sualizes the correlation of deviations of DFT and DGT. The coefficient of determination

for this correlation is R2 = 0.44.
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Figure A.7: Correlations of the average absolute deviation (AAD) for surface tension
calculated by DFT with the average error of vapor pressure ps, liquid density ρl and critical
temperature Tc for all compounds of this study except water (black crosses: non-polar,
non-associating compounds, blue stars: polar compounds, red plus-signs: associating
compounds). The average errors of ps and ρl are taken from the original studies where
the PCP-SAFT parameters were published.
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Figure A.8: Correlations of the average absolute deviation (AAD) for surface tension
calculated by DGT with the average error of vapor pressure ps, liquid density ρl and critical
temperature Tc for all compounds of this study except water (black crosses: non-polar,
non-associating compounds, blue stars: polar compounds, red plus-signs: associating
compounds). The average errors of ps and ρl are taken from the original studies where
the PCP-SAFT parameters were published.
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Figure A.9: Correlation of the average absolute deviation (AAD) calculated with DFT
and DGT for all compounds of this study except water (black crosses: non-polar, non-
associating compounds, blue stars: polar compounds, red plus-signs: associating com-
pounds).

182



A.5 Alkane mixtures

Figure A.10 shows surface tension results obtained with the stabilized DGT algorithm and

different values of βij for the mixture n-heptane-eicosane at T = 313.15 K as a function

of the mole fraction of n-heptane in the liquid phase.
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Figure A.10: Surface tension results of the mixture n-heptane-eicosane at T = 313.15 K
as a function of the mole fraction of n-heptane in the liquid phase obtained with the
stabilized DGT algorithm (dashed lines) for different values of βij: 0 (black), 0.05 (blue),
0.1 (red) and 0.5 (orange). Experimental data (symbols) from [10].

Figure A.11 shows the progression of the value of surface tension for the mixture n-

heptane-eicosane at T = 343.15 K and p = 0.1 bar obtained with the stabilized DGT

algorithm for βij = 0 and βij = −0.0001. For βij = 0, the matrix of the influence

parameters C is positive definite (eigen values: 5.403 · 10−35 and 4.253 · 10−18) while for

βij = −0.0001 C is not positive definite (eigen values: −8.718 ·10−23 and 4.253 ·10−18). As

fig. A.11 shows, the calculation using βij = 0 reaches the steady-state solution, indicated

by a value of γ that is constant over time, fast. Using βij = −0.0001, the calculation

shows an almost identical behaviour at the beginning. However, after the value of γ

has plateaued for some time at a similar value as obtained with βij = 0, surface tension

takes another course and converges to a much higher value of γ. Considering that a

value of βij = +0.0001 leads to a value of γ = 22.5439 mN/m which is almost identical

to the value of βij = 0 (γ = 22.544 mN/m), the result obtained with βij = −0.0001

(γ = 24.051 mN/m) is unexpectedly high. This shows, that in the case of n-heptane-

eicosane, ignoring the restriction of positive definiteness of C leads to undesirable results.

Fig. A.12 shows surface tension results for the seven-component mixture obtained with

the DGT path function approach as well as the stabilized DGT algorithm. Results of

both DGT algorithms are practically identical for βij = 0 (fig. A.12a). This confirms that

calculations with the stabilized DGT algorithm were indeed carried out long enough to

arrive at the steady-state solution. Figure A.12b shows the progression of the value of
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Figure A.11: Progression of surface tension γ during calculation for the mixture n-heptane-
eicosane at T = 343.15 K and p = 0.1 bar obtained with the stabilized DGT algorithm
for βij = 0 (black) and βij = −0.0001 (blue).

Table A.2: Molar overall compositions (%) of the twenty-component mixture studied by
Danesh et al. [11] and the seven-component mixture studied by Ng et al. [12].

Component N = 20 N = 7
Methane 80.11 67.670
Ethane 8.23 19.171
Propane 2.11 7.683
Butane 1.07 3.880
Pentane 0.80 -
Hexane 1.20 -
Heptane 0.96 0.532
Octane 0.55 -
Nonane 0.49 -
Decane 0.48 -

Undecane 0.45 -
Dodecane 0.44 -
Tridecane 0.44 -

Tetradecane 0.41 -
Pentadecane 0.41 -
Hexadecane 0.39 -
Heptadecane 0.38 -
Octadecane 0.37 -
Nonadecane 0.36 -

Eicosane 0.35 -
Methylcyclohexane - 0.531

Toluene - 0.533

γ during calculation with the stabilized DGT algorithm. Eventhough C is not positive

definite even for βij = 0, no numerical problems occur. Fig. A.13 shows the corresponding

results for the twenty-component mixture. Despite the fact that C is not positive definite

for βij = 0 (half of the eigen values are negative), no numerical problems arise in the
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calculation of the stabilized DGT algorithm, see fig. A.13b. However, at high pressure

values, the two DGT algorithms do not yield the same surface tension results anymore

(fig. A.13a). Increasing computation time or setting stricter convergence criteria does not

resolve the issue.
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Figure A.12: Diagram (a): results of surface tension γ for the seven-component mixture at
T = 283.15 K as a function of pressure obtained with the path function approach (black
line) and the stabilized DGT algorithm (blue symbols) using βij = 0. Diagram (b):
progression of γ during calculation for the seven-component mixture at T = 283.15 K
and p = 50 bar obtained with the stabilized DGT algorithm for βij = 0 (blue). As a
reference, the value of γ obtained with the path function approach (black) is shown.
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Figure A.13: Diagram (a): results of surface tension γ for the twenty-component mixture
at T = 366.45 K as a function of pressure obtained with the path function approach
(black line) and the stabilized DGT algorithm (blue symbols) using βij = 0. Diagram (b):
progression of γ during calculation for the twenty-component mixture at T = 366.45 K
and p = 320 bar obtained with the stabilized DGT algorithm for βij = 0 (blue). As a
reference, the value of γ obtained with the path function approach (black) is shown.
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A.6 Mixtures with one associating component

Figure A.14 shows the variation of surface tension obtained with the stabilized DGT

algorithm with the value of βij for the mixture hexane-ethanol. Initially, values βij > 0

lead to decreasing deviations. However, once a certain value is passed, errors start to grow.

The value of βij which minimizes the sum of squared errors is found to be βij = 0.07646.
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Figure A.14: Surface tension as a function of hexane mole fraction in the liquid phase for
the mixture hexane-ethanol at T = 343.15 K using the stabilized DGT algorithm (lines).
Experimental data (symbols) from [13].

Figure A.15 exemplifies the course of surface tension γ during calculation with the stabi-

lized DGT algorithm for different values of βij for the mixture hexane-ethanol. For βij = 0

and βij = 0.05 the matrix of influence parameters C is positive definite and γ smoothly

approaches its steady-state value. For βij = −0.001, on the other hand, C is not positive

definite and the progression of γ resembles the one of the mixture n-heptane-eicosane

with βij = −0.0001 shown in fig. A.11. However, in this case, no constant value of γ is

attained. Thus, the violation of the requirement of a positive definite C leads to a failed

calculation.

Figures A.16 to A.21 show surface tension results as a function of mole fraction of n-hexane

in the liquid phase xhexane and density profiles obtained with DFT and the path function

approach for DGT for binary mixtures of n-hexane with 1-alcohols at T = 298.15 K.
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Figure A.15: Development of surface tension γ during calculation for the mixture ethanol-
hexane at T = 298.15 K and xhexane = 0.507 (p = 0.254 bar) obtained with the stabilized
DGT algorithm. Diagram (a): using βij = 0 (black) and βij = 0.05 (blue). Diagram (b):
using βij = −0.001.
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Figure A.16: Diagram (a): calculated results of surface tension (DFT: solid lines, DGT
path function approach: dashed lines) and experimental data [13] (symbols) for the binary
mixtures n-hexane - 1-propanol (kij = 0.0162233). Diagram (b): density profiles for the
mixtures hexane (dashed lines) and 1-propanol (solid lines) at xhexane = 0.348 (p =
0.19 bar) obtained from DFT (black) and DGT (blue).
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Figure A.17: Diagram (a): calculated results of surface tension (DFT: solid lines, DGT
path function approach: dashed lines) and experimental data [13] (symbols) for the binary
mixtures n-hexane - 1-butanol (kij = 0.010689). Diagram (b): density profiles for the mix-
tures hexane (dashed lines) and 1-butanol (solid lines) at xhexane = 0.402 (p = 0.175 bar)
obtained from DFT (black) and DGT (blue).
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Figure A.18: Diagram (a): calculated results of surface tension (DFT: solid lines, DGT
path function approach: dashed lines) and experimental data [13] (symbols) for the binary
mixtures n-hexane - 1-pentanol (kij = 0.010754). Diagram (b): density profiles for the
mixtures hexane (dashed lines) and 1-pentanol (solid lines) at xhexane = 0.375 (p =
0.16 bar) obtained from DFT (black) and DGT (blue).
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Figure A.19: Diagram (a): calculated results of surface tension (DFT: solid lines, DGT
path function approach: dashed lines) and experimental data [13] (symbols) for the bi-
nary mixtures n-hexane - 1-hexanol (kij = 0.0051568). Diagram (b): density profiles
for the mixtures hexane (dashed lines) and 1-hexanol (solid lines) at xhexane = 0.445
(p = 0.16 bar) obtained from DFT (black) and DGT (blue).
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Figure A.20: Diagram (a): calculated results of surface tension (DFT: solid lines, DGT
path function approach: dashed lines) and experimental data [13] (symbols) for the binary
mixtures n-hexane - 1-heptanol (kij = 0). Diagram (b): density profiles for the mixtures
hexane (dashed lines) and 1-heptanol (solid lines) at xhexane = 0.465 (p = 0.15 bar)
obtained from DFT (black) and DGT (blue).
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Figure A.21: Diagram (a): calculated results of surface tension (DFT: solid lines, DGT
path function approach: dashed lines) and experimental data [13] (symbols) for the binary
mixtures n-hexane - 1-octanol (kij = 0.006435). Diagram (b): density profiles for the
mixtures hexane (dashed lines) and 1-octanol (solid lines) at xhexane = 0.419 (p = 0.15 bar)
obtained from DFT (black) and DGT (blue).
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A.7 PCP-SAFT parameters and influence parame-

ters

Table A.3: Values of PCP-SAFT parameters and influence parameters for n-alkanes. All
PCP-SAFT parameters are taken from [14].

Compound m σ/Å ε/k/K cii/10−19/Jm5/mol2 T/K Ref.
methane 1.0000 3.7039 150.03 0.1917554 105 - 180 [7]
ethane 1.6069 3.5206 191.42 0.4972791 105 - 285 [7]
propane 2.0020 3.6184 208.11 1.0300755 100 - 340 [7]
butane 2.3316 3.7086 222.88 1.7228683 150 - 390 [7]
pentane 2.6896 3.7729 231.20 2.5651212 160 - 460 [7]
hexane 3.0576 3.7983 236.77 3.6444985 195 - 495 [7]
heptane 3.4831 3.8049 238.40 4.9391699 200 - 500 [7]
octane 3.8176 3.8373 242.78 6.0933095 230 - 560 [7]
nonane 4.2079 3.8448 244.51 7.5417139 235 - 580 [7]
decane 4.6627 3.8384 243.87 9.3629705 260 - 590 [7]
undecane 4.9082 3.8893 248.82 11.508127 273 - 373 [15] [16]
dodecane 5.3060 3.8959 249.21 13.769134 273 - 473 [15] [17]
tridecane 5.6877 3.9143 249.78 16.4519049 273 - 443 [15] [18]
tetradecane 5.9002 3.9396 254.21 18.2103532 273 - 353 [15]
pentadecane 6.2855 3.9531 254.14 21.5025322 273 - 359 [15] [19]
hexadecane 6.6485 3.9552 254.70 24.1825590 273 - 353 [15]
heptadecane 6.9809 3.9675 255.65 27.5240777 273 - 473 [15] [17]
octadecane 7.3271 3.9668 256.20 30.0556228 273 - 443 [15] [18]
nonadecane 7.7175 3.9721 256.00 33.7122254 293 - 353 [20]
eicosane 7.9849 3.9869 257.75 37.5930577 293 - 353 [21] [20]

Table A.4: Values of PCP-SAFT parameters and influence parameters for non-polar,
non-associating compounds.

Compound m σ/Å ε/k/K Ref. cii/10−19/Jm5/mol2 T/K Ref.
xenon 0.9147 4.0747 237.68 [22] 0.4010264 160 - 289 [9]
isobutane 2.2616 3.7574 216.53 [14] 1.6542057 100 - 400 [9]
1-butene 2.2864 3.6431 222.00 [14] 1.5842637 140 - 420 [9]
cyclopentene 2.2934 3.6668 267.76 [14] 1.8539574 140 - 500 [9]
toluene 2.8149 3.7169 285.69 [14] 3.1517615 220 - 570 [7]
methylcyclohexane 2.6637 3.9993 282.33 [14] 4.1604730 180 - 555 [23]
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Table A.5: Values of PCP-SAFT parameters and influence parameters for polar com-
pounds: dipolar molecules.

Compound m σ/Å ε/k/K µ/D Ref. cii/10−19/Jm5/mol2 T/K Ref.
dimethylether 2.2634 3.2723 210.29 1.30 [24] 0.6887794 130 - 390 [9]
diethylether 2.9726 3.5127 219.53 1.15 [24] 2.0321485 160 - 460 [9]
methylmethanoate 2.6225 3.1095 239.05 1.77 [24] 0.8275164 293 - 483 [25]
3-pentanone 3.2786 3.5159 248.69 2.82 [24] 2.7213002 294 - 323 [26] [27]
R22 2.4270 3.1535 186.29 1.458 [28] 0.7036013 213 - 353 [29] [30]
R23 2.5795 2.8514 140.64 1.649 [28] 0.3217159 120 - 295 [31]
R32 2.4719 2.7971 161.66 1.978 [28] 0.3062920 222 - 343 [32] [33]
R123 2.9853 3.4812 213.81 1.356 [28] 1.9408674 253 - 423 [32] [34]
R125 3.1105 3.1200 153.70 1.563 [28] 0.9248322 223 - 333 [33]
R134a 3.1470 3.0455 165.34 2.058 [28] 0.8435321 223 - 368 [33] [35]
R143a 2.4819 3.2817 162.10 2.3 [36] [37] 0.8036647 223 - 333 [33]

Table A.6: Values of PCP-SAFT parameters and influence parameters for polar com-
pounds: quadrupolar molecules.

Compound m σ/Å ε/k/K |Q|/DÅ Ref. cii/10−20/Jm5/mol2 T/K Ref.
nitrogen 1.1879 3.3353 90.99 1.1151 [38] 1.0525907 65 - 120 [39] [40]
carbon dioxide 1.6298 3.0867 163.34 3.9546 [38] 2.7699291 230 - 290 [7]
ethylene 1.5477 3.4475 179.19 1.9155 [38] 4.2424354 110 - 280 [9]
benzene 2.2463 3.7852 296.24 5.5907 [38] 24.4932827 270 - 560 [8]

Table A.7: Values of PCP-SAFT parameters and influence parameters for associating
compounds. All PCP-SAFT parameters are taken from [5] (except decanol [36]) and use
the 2B association scheme.

Compound m σ/Å ε/k/K εAiBi/k/K κAiBi cii/10−20/Jm5/mol2 T/K Ref.
methanol 1.5255 3.2300 188.90 2899.5 0.035176 2.9493507 195-505 [7]
ethanol 2.3827 3.1771 198.24 2653.4 0.32384 5.2806722 200-505 [8]
1-propanol 2.9997 3.2522 233.40 2276.8 0.015268 7.3296870 150-530 [9]
1-butanol 2.7515 3.6139 259.59 2544.6 0.006692 13.0503410 190-560 [9]
1-pentanol 3.6260 3.4508 247.28 2252.1 0.010319 17.9404645 200-580 [9]
1-hexanol 3.5146 3.6735 262.32 2538.9 0.005747 28.1068925 240-610 [9]
1-heptanol 4.3985 3.5450 253.46 2878.5 0.001155 37.2780311 260-630 [9]
1-octanol 4.3555 3.7145 262.74 2754.8 0.002197 53.8963851 270-670 [9]
1-nonanol 4.6839 3.7292 263.64 2941.9 0.001427 67.5064875 280-685 [9]
1-decanol 5.0949 3.7526 263.36 2979.2 0.000994 91.1880353 280 - 685 [9]

Table A.8: Values of PCP-SAFT parameters and influence parameters for water. All
influence parameters are adjusted to pure component surface tension data from NIST [7]
in the temperature range 280 K - 640 K.

Set m σ/Å ε/k/K εAiBi/k/K κAiBi scheme Ref. cii/10−20/Jm5/mol2

2B 1 1.0656 3.0007 366.51 2500.70 0.034868 2B [5] 1.3279471
3B 1 1.7960 2.4697 327.62 1558.40 0.068277 3B [41] 0.9324370
3B C 2.3753 2.5609 275.81 1558.40 0.068277 3B [41] 3.7707134
4C 1 2.0 2.3449 171.67 1704.06 0.159593 4C [42] 1.2747846
4C 2 2.1945 2.2290 141.66 1804.17 0.2039 4C [43] 1.4411646
4C 3 0.8148 3.366 388.51 1552.34 0.009634 4C [44] 1.1389453
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Appendix B

Supporting Information to Chapter 5

B.1 Group parameters of heterosegmented GC-PCP-

SAFT

Table B.1 lists the group parameters of the heterosegmented GC-PCP-SAFT equation of

state used in this study.

Table B.1: The GC-PCP-SAFT group parameters used in this study are taken from [1].
For all associating groups the 2B scheme according to Huang and Radosz [2] is applied.

m σ/Å ε/k/K µ/D εAiBi/k/K κAiBi

CH4 1 3.7039 150.03 - - -
-CH3 0.77247 3.6937 181.49 - - -
-CH-2 0.79120 3.0207 157.23 - - -
=CH2 0.70581 3.1630 171.34 - - -
=CH- 0.90182 2.8864 158.90 - - -

-C ≡ CH 1.16145 3.3187 255.13 - - -
-COO- 1.28692 3.0643 273.90 3.343 - -
-CH=O 1.18893 3.2948 316.91 2.413 - -
-OCH2- 1.18167 3.0090 203.11 2.695 - -

-OH 1.02306 2.7702 334.29 - 0.009583 2575.88
-NH2 0.82284 3.1129 309.93 - 0.005769 1471.51
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B.2 Individualization parameters φi

The values of the individualization parameter φi for compounds used in this study are

listed in tables B.2 and B.3. Where no experimental vapor pressure data was available to

regress φi, the value is set to φi = 1.

Table B.2: Individualization parameters φi for n-alkanes, 1-alkenes, 1-alkines, 1-amines
and 1-alcohols.

compound φi compound φi compound φi
n-alkanes tetratetracontane 1 1-octyne 0.9988576024

methane 1.0001236 hexatetracontane 1 1-nonyne 0.9994595774
ethane 1.0021311962 hexacontane 1 1-decyne 0.9986231443
propane 0.999097438 1-alkenes 1-undecyne 1.0012472422
butane 0.9994940843 ethylene 1.0329715013 1-dodecyne 1.0022541343
pentane 0.9993240124 propylene 1.0005207425 1-tridecyne 1.0031051651
hexane 0.9983601914 1-butene 0.9985810621 1-amines
heptane 0.9985191669 1-pentene 1 methylamine 1.0377797572
octane 0.9988058205 1-hexene 1.0019685062 ethylamine 0.9940089521
nonane 0.9989212181 1-heptene 1.0025504004 1-propylamine 0.9985675956
decane 0.9991658666 1-octene 1.0021959807 1-butylamine 0.9880229093
undecane 1.0013619971 1-nonene 1.0029462293 1-pentylamine 0.998722886
dodecane 1.0012160226 1-decene 1 1-hexylamine 1.0010455757
tridecane 1.001772749 1-undecene 1.0028379017 1-heptylamine 1
tetradecane 1.0019491105 1-dodecene 1.0038114081 1-octylamine 0.9979793318
pentadecane 1.0022862814 1-tridecene 1.0046440538 1-alcohols
hexadecane 1.002105049 1-tetradecene 1.0049143653 methanol 1.042815562
heptadecane 1.0018584753 1-pentadecene 1.0052043746 ethanol 1.0001329848
octadecane 1.0016250416 1-hexadecene 1.0030302061 1-propanol 0.9963672697
nonadecane 1.0013521279 1-heptadecene 0.9940423948 1-butanol 0.9997325502
eicosane 1.001410999 1-octadecene 1.0035460911 1-pentanol 1.0014429915
docosane 1.0047566656 1-nonadecene 1 1-hexanol 1.0022971899
tricosane 0.9988614709 1-eicosene 1 1-heptanol 1.0030503819
tetracosane 1.0006749947 1-alkynes 1-octanol 1.0014193595
octacosane 0.9996067314 propyne 1.0161577153 1-nonanol 1.0038608453
dotriacontane 0.9479948794 1-butyne 1.0133132993 1-decanol 0.996049928
hexatriacontane 0.9856158298 1-pentyne 0.9955678641 1-undecanol 0.9983034523
octatriacontane 0.9866236655 1-hexyne 1.0004325219 1-dodecanol 1.0001855421
tetracontane 1 1-heptyne 1.004330569 1-tetradecanol 1.00009885
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Table B.3: Individualization parameters φi for esters, ethers, ketones and aldehydes.

compound φi compound φi
esters pentyl-3-butenoate 1

methylethanoate 0.9995647736 methyl-4-pentynotae 1
ethylethanoate 0.9991585869 ethyl-4-pentynoate 1
propylethanoate 1.0026850084 ethers
butylethanoate 1.0084313803 methylbutylether 1.021100927
pentylethanoate 1 methyl hexyl ether 1
methylpropanoate 1.0072901014 ethylbutylether 1.001426515
ethylpropanoate 1.0047332063 ethylhexylether 1
propylpropanoate 0.998499054 ethyl hexadecylether 1
butylpropanoate 1.0000079649 diethylether 1.0000000075
methylbutanoate 1.0076986212 dibutylether 1.0002843897
ethylbutanoate 0.9951791782 dihexylether 1.0074423792
propylbutanoate 0.9950215603 dioctylether 1
methylpentanoate 1.0142672099 ketones
methyldecanoate 1.0115580169 2-butanone 1.0022825047
methyldodecanoate 1.0110421288 2-hexanone 1.0082266601
methyltetradecanoate 1.0104443039 2-octanone 1.0092553739
ethyltetradecanoate 1.0010535718 3-pentanone 0.9983292939
methylhexadecanoate 1.0099481784 3-heptanone 1.0012357671
methyloctadecanoate 1.0087802266 3-nonanone 1
butyloctadecanoate 0.9708240271 4-heptanone 0.9924203109
methyldocosanoate 1 4-nonanone 1
methyl-2-butenoate 1.0628292395 6-undecanone 0.9979174243
ethyl-2-butenoate 1.0408320291 3-heptene-2-on 1
propyl-2-butenoate 1 aldehydes
butyl-2-butenoate 1 butanal 0.9987522272
pentyl-2-butenoate 1 pentanal 1.0019768018
methyl-3-butenoate 1.0342764984 hexanal 1.0056470704
ethyl-3-butenoate 0.9997336024 heptanal 1.0012258544
propyl-3-butenoate 1 dodecanal 0.9957997667
butyl-3-butenoate 1 2-butenal 1.0775392182
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B.3 Group-group interaction parameters kαβ

B.3.1 methane - n-alkanes

The values of the group-group interaction parameters kCH4,CH3 and kCH4,CH2 were adjusted

to 971 experimental vapor-liquid equilibria (VLE) data points for 14 binary mixtures.

These mixtures are listed in table B.4. The optimal values are kCH4,CH3 = −0.005 and

kCH4,CH2 = −0.00269.

As fig. B.1 exemplary shows for the mixtures methane and butane as well as methane and

decane, the implications of kCH4,CH3 and kCH4,CH2 on VLE results are marginal.

Table B.4: Experimental VLE data for binary mixtures of methane and the following
n-alkanes was used to adjust the values of kCH4,CH3 and kCH4,CH2 .

ethane pentane octane tridecane eicosane
propane hexane nonane tetradecane hexatriacontane
butane heptane decane hexadecane
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Figure B.1: Pressure-composition diagrams of the binary mixtures methane + n-butane
(a) and methane + n-decane (b) at different temperatures. Results obtained with the
adjusted values of kCH4,CH3 and kCH4,CH2 (solid lines) are compared to results with kαβ = 0
(dashed lines) and experimental data [3] [4] [5] [6] (symbols).
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B.3.2 n-alkanes - n-alkanes

The value of the group-group interaction parameter kCH3,CH2 was adjusted to 2513 ex-

perimental VLE data points for 60 binary n-alkane mixtures. These mixtures are listed

in table B.5. The optimal value is kCH3,CH2 = 0.01151. As figs. B.2 and B.3 exemplary

show for several binary mixtures, the implication of kCH3,CH2 on VLE result is marginal.

Table B.5: Experimental VLE data for the following binary n-alkane mixtures was used
to regress the value of kCH3,CH2 .

Ethane+... docosane octacosane octacosane nonane
propane tetracosane Butane+... Hexane+... dodecane
butane Propane+... pentane heptane nonadecane
pentane butane hexane octane tricosane
hexane pentane heptane decane Octane+...
heptane hexane octane undecane decane
octane heptane decane dodecane dodecane
decane octane tetradecane hexadecane hexadecane
dodecane nonane Pentane+... tetracosane Decane+...
tetradecane decane octane octacosane dodecane
hexadecane dodecane octadecane hexatriacontane
octadecane tetradecane tricosane Heptane+...
eicosane hexadecane tetracosane octane
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Figure B.2: Comparison of results obtained with the adjusted value of kCH3,CH2 (solid
lines) to results with kCH3,CH2 = 0 (dashed lines) and experimental data [7] [8] (symbols).
Diagram (a): pressure-composition diagram for the binary mixture n-pentane + n-octane.
Diagram (b): temperature-composition diagram for the binary mixture n-heptane + n-
nonane at p = 1.013 bar.
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Figure B.3: Comparison of results obtained with the adjusted value of kCH3,CH2 (solid
lines) to results with kCH3,CH2 = 0 (dashed lines) and experimental data [9] [10] (sym-
bols). Diagram (a): pressure-composition diagram for the binary mixture ethane + n-
eicosane. Diagram (b): pressure-composition diagram for the binary mixture n-hexane +
n-hexatriacontane.
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B.3.3 n-alkanes - esters

The values of the group-group interaction parameters kCH3,COO and kCH2,COO were ad-

justed to 1451 experimental VLE data points for 40 binary mixtures of n-alkane and ester

compounds. These mixtures are listed in table B.6. The optimal values are kCH3,COO =

0.0996 and kCH2,COO = −0.015235. Figure B.4 exemplifies for the binary mixtures hep-

tane and butylethanoate as well as hexane and ethylbutanoate the improvement of VLE

results due to the adjustment of kCH3,COO and kCH2,COO.

Table B.6: Experimental VLE data for binary mixtures of the following n-alkane and
ester compounds was used to adjust the values of kCH3,COO and kCH2,COO.

Ethane+... Butane+... Heptane+... methylpentanoate Decane+...
methylethanoate ethylethanoate methylethanoate Octane+... ethylethanoate
ethylethanoate Pentane+... ethylethanoate ethylethanoate Dodecane+...
methyldecanoate ethylethanoate propylethanoate Nonane+... methylethanoate
methyldodecanoate Hexane+... butylethanoate ethylethanoate ethylethanoate
methyltetradecanoate methylethanoate methylpropanoate propylethanoate
methylhexadecanoate ethylethanoate ethylpropanoate pentylethanoate
methyloctadecanoate butylethanoate propylpropanoate propylpropanoate
methyldocosanoate ethylbutanoate butylpropanoate methylbutanoate
Propane+... butyloctadecanoate methylbutanoate ethylbutanoate
methyltetradecanoate ethylbutanoate propylbutanoate
ethyltetradecanoate propylbutanoate
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Figure B.4: Comparison of results obtained with the adjusted values of kCH3,COO and
kCH2,COO (solid lines) to results with kαβ = 0 (dashed lines) and experimental data [11] [12]
(symbols). Diagram (a): pressure-composition diagram for the binary mixture heptane +
butylethanoate. Diagram (b): temperature-composition diagram for the binary mixture
hexane + ethylbutanoate at p = 1 bar.
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B.3.4 n-alkanes - 1-alcohols

The values of the group-group interaction parameters kCH3,OH and kCH2,OH were adjusted

to 2175 experimental VLE data points for 33 binary mixtures of n-alkane and 1-alcohol

compounds. These mixtures are listed in table B.7. The optimal values are kCH3,OH =

−0.0087 and kCH2,OH = 0.0489. Figure B.5 exemplifies for the binary mixtures 1-propanol

and heptane as well as 1-tetradecanol and undecane the improvement of VLE results due

to the adjustment of the parameters kCH3,OH and kCH2,OH .

Table B.7: Experimental VLE data for binary mixtures of the following n-alkane and
1-alcohol compounds was used to adjust the values of kCH3,OH and kCH2,OH .

Butane+. . . butanol butanol Nonane+. . . dodecanol
ethanol pentanol pentanol ethanol Undecane+. . .
Pentane+. . . hexanol octanol propanol propanol
ethanol octanol Octane+. . . butanol tetradecanol
butanol decanol ethanol Decane+. . . Tridecane+. . .
pentanol dodecanol propanol propanol dodecanol
Hexane+. . . Heptane+. . . butanol butanol Tetradecane+. . .
ethanol ethanol pentanol pentanol dodecanol
propanol propanol heptanol
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Figure B.5: Comparison of results obtained with the adjusted values of kCH3,OH and
kCH2,OH (solid lines) to results with kαβ = 0 (dashed lines) and experimental data [13]
[14] (symbols). Diagram (a): pressure-composition diagram for the binary mixture 1-
propanol + heptane at T = 333.15 K. Diagram (b): pressure-composition diagram for
the binary mixture 1-tetradecanol + undecane.
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B.4 Influence of φi on the value of surface tension for

pure components

In the following figures, results for surface tension obtained with the adjusted value of φi

are compared to results calculated with φi = 1 and to experimental data. The adjusted

values of φi are presented in tables B.2 and B.3.

B.4.1 Pure n-alkanes
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Figure B.6: Calculated values of surface tension (lines) and reference data [15] (symbols)
for methane (a) and ethane (b).
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Figure B.7: Calculated values of surface tension (lines) and reference data [15] (symbols)
for propane (a) and butane (b).
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Figure B.8: Calculated values of surface tension (lines) and reference data [15] (symbols)
for pentane (a) and hexane (b).
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Figure B.9: Calculated values of surface tension (lines) and reference data [15] (symbols)
for heptane (a) and octane (b).
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Figure B.10: Calculated values of surface tension (lines) and reference data [15] (symbols)
for nonane (a) and decane (b).
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Figure B.11: Calculated values of surface tension (lines) and reference data [16] (symbols)
for dodecane (a) and tetradecane (b).
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Figure B.12: Calculated values of surface tension (lines) and reference data [16] [17] [18]
(symbols) for hexadecane (a) and octadecane (b).
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Figure B.13: Calculated values of surface tension (lines) and reference data [19] [20]
(symbols) for eicosane.
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B.4.2 Pure 1-alkenes
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Figure B.14: Calculated values of surface tension (lines) and reference data [21] (symbols)
for ethylene (a) and propylene (b).
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Figure B.15: Calculated values of surface tension (lines) and reference data [16] [21]
(symbols) for 1-butene (a) and 1-hexene (b).
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Figure B.16: Calculated values of surface tension (lines) and reference data [16] (symbols)
for 1-heptene (a) and 1-octene (b).
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Figure B.17: Calculated values of surface tension (lines) and reference data [16] (symbols)
for 1-nonene (a) and 1-decene (b).
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Figure B.18: Calculated values of surface tension (lines) and reference data [16] (symbols)
for 1-undecene (a) and 1-dodecene (b).
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Figure B.19: Calculated values of surface tension (lines) and reference data [16] (symbols)
for 1-tridecene (a) and 1-tetradecene (b).
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Figure B.20: Calculated values of surface tension (lines) and reference data [16] (symbols)
for 1-pentadecene (a) and 1-hexadecene (b).
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Figure B.21: Calculated values of surface tension (lines) and reference data [16] (symbols)
for 1-heptadecene (a) and 1-octadecene (b).
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Figure B.22: Calculated values of surface tension (lines) and reference data [16] (symbols)
for 1-nonadecene (a) and 1-eicosene (b).
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B.4.3 Pure 1-alkynes

 0

 5

 10

 15

 20

 25

 30

 35

 150  200  250  300  350  400  450

γ/
m

N
/m

T/K

φ=φ
opt

φ=1

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 150  200  250  300  350  400  450  500

γ/
m

N
/m

T/K

φ=φ
opt

φ=1

(b)

Figure B.23: Calculated values of surface tension (lines) and reference data [22] (symbols)
for propyne (a) and 1-butyne (b).
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Figure B.24: Calculated values of surface tension (lines) and reference data [22] [23]
(symbols) for 1-pentyne (a) and 1-hexyne (b).
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Figure B.25: Calculated values of surface tension (lines) and reference data [24] [23]
(symbols) for 1-heptyne (a) and 1-octyne (b).
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Figure B.26: Calculated values of surface tension (lines) and reference data [23] (symbols)
for 1-nonyne (a) and 1-decyne (b).
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Figure B.27: Calculated values of surface tension (lines) and reference data [16] (symbols)
for 1-undecyne (a) and 1-dodecyne (b).
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Figure B.28: Calculated values of surface tension (lines) and reference data [16] (symbols)
for 1-tridecyne.
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B.4.4 Pure 1-amines
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Figure B.29: Calculated values of surface tension (lines) and reference data [16] (symbols)
for methylamine (a) and ethylamine (b).
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Figure B.30: Calculated values of surface tension (lines) and reference data [25] (symbols)
for 1-propylamine (a) and 1-butylamine (b).
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Figure B.31: Calculated values of surface tension (lines) and reference data [25] (symbols)
for 1-pentylamine (a) and 1-hexylamine (b).
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Figure B.32: Calculated values of surface tension (lines) and reference data [26] [27]
(symbols) for 1-heptylamine (a) and 1-octylamine (b).
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B.4.5 Pure 1-alcohols
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Figure B.33: Calculated values of surface tension (lines) and reference data [15] [28]
(symbols) for methanol (a) and ethanol (b).
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Figure B.34: Calculated values of surface tension (lines) and reference data [21] (symbols)
for 1-propanol (a) and 1-butanol (b).
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Figure B.35: Calculated values of surface tension (lines) and reference data [21] (symbols)
for 1-pentanol (a) and 1-hexanol (b).
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Figure B.36: Calculated values of surface tension (lines) and reference data [21] (symbols)
for 1-heptanol (a) and 1-octanol (b).
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Figure B.37: Calculated values of surface tension (lines) and reference data [21] (symbols)
for 1-nonanol (a) and 1-decanol (b).
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B.4.6 Pure esters
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Figure B.38: Calculated values of surface tension (lines) and reference data [29] [30]
(symbols) for butanoic acid methyl ester (a) and butanoic acid ethyl ester (b).
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Figure B.39: Calculated values of surface tension (lines) and reference data [31] (symbols)
for butanoic acid propyl ester (a) and butanoic acid butyl ester (b).
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Figure B.40: Calculated values of surface tension (lines) and reference data [31] (symbols)
for pentanoic acid methyl ester.
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Figure B.41: Calculated values of surface tension (lines) and reference data [32] (symbols)
for 2-butenoic acid methyl ester (a) and 2-butenoic acid ethyl ester (b).
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Figure B.42: Calculated values of surface tension (lines) and reference data [32] (symbols)
for 2-butenoic acid propyl ester (a) and 2-butenoic acid butyl ester (b).
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Figure B.43: Calculated values of surface tension (lines) and reference data [32] (symbols)
for 2-butenoic acid pentyl ester (a) and 3-butenoic acid methyl ester (b).
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Figure B.44: Calculated values of surface tension (lines) and reference data [32] (symbols)
for 3-butenoic acid ethyl ester (a) and 3-butenoic acid propyl ester (b).
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Figure B.45: Calculated values of surface tension (lines) and reference data [32] (symbols)
for 3-butenoic acid butyl ester (a) and 3-butenoic acid pentyl ester (b).
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Figure B.46: Calculated values of surface tension (lines) and reference data [33] (symbols)
for 4-pentynoic acid methyl ester (a) and 4-pentynoic acid ethyl ester (b).

220



B.4.7 Pure ethers
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Figure B.47: Calculated values of surface tension (lines) and reference data [34] (symbols)
for diethyl ether (a) and dibutyl ether (b).
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Figure B.48: Calculated values of surface tension (lines) and reference data [35] (symbols)
for dihexyl ether (a) and dioctyl ether (b).
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Figure B.49: Calculated values of surface tension (lines) and reference data [35] (symbols)
for methyl butyl ether (a) and methyl hexyl ether (b).
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Figure B.50: Calculated values of surface tension (lines) and reference data [35] (symbols)
for ethyl butyl ether (a) and ethyl hexyl ether (b).
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Figure B.51: Calculated values of surface tension (lines) and reference data [30] (symbols)
for ethyl hexadecyl ether.
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B.4.8 Pure ketones
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Figure B.52: Calculated values of surface tension (lines) and reference data [36] [37] [38]
[39] (symbols) for 2-butanone (a) and 2-hexanone (b).
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Figure B.53: Calculated values of surface tension (lines) and reference data [38] [40] [41]
(symbols) for 2-octanone (a) and 3-pentanone (b).
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Figure B.54: Calculated values of surface tension (lines) and reference data [42] (symbols)
for 3-heptanone (a) and 3-nonanone (b).
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Figure B.55: Calculated values of surface tension (lines) and reference data [38] [39]
(symbols) for 4-heptanone (a) and 4-nonanone (b).
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Figure B.56: Calculated values of surface tension (lines) and reference data [39] [43]
(symbols) for 6-undecanone (a) and 3-heptene-2-on (b).

224



B.4.9 Pure aldehydes
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Figure B.57: Calculated values of surface tension (lines) and reference data [23] (symbols)
for butanal (a) and pentanal (b).
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Figure B.58: Calculated values of surface tension (lines) and reference data [24] [23]
(symbols) for hexanal (a) and heptanal (b).
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Figure B.59: Calculated values of surface tension (lines) and reference data [40] (symbols)
for dodecanal (a) and 2-butenal (b).
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B.5 Influence of kαβ parameters on the value of sur-

face tension for mixtures

The influence of the group-group interaction parameters on surface tension results for

mixtures of methane and n-alkanes as well as n-alkane mixtures is neglectable and, ther-

fore, a graphical comparison is made only for mixtures of n-alkane and ester compounds

as well as for mixtures of n-alkane and 1-alcohol compounds.

B.5.1 n-alkanes - esters

For the studied mixtures of n-alkane and ester compounds, the use of group-group inter-

action parameters moderately increases surface tension deviations, see fig. B.60.
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Figure B.60: Calculated values of surface tension obtained with the adjusted values of
kCH3,COO and kCH2,COO (solid lines) and with kαβ = 0 (dashed lines) as well as experimen-
tal data [44] [45] (symbols) for the binary mixtures heptane (1) + ethanoic acid pentyl
ester (2) and pentane (1) + ethanoic acid methyl ester (2) at T = 298.15 K.
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B.5.2 n-alkanes - 1-alcohols

For all studied n-alkane - 1-alcohol mixtures, deviations of surface tension decrease when

the adjusted values of kCH3,OH and kCH2,OH are used, see figs. B.61, B.62 and B.63.
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Figure B.61: Calculated values of surface tension obtained with the adjusted values of
kCH3,OH and kCH2,OH (solid lines) and with kαβ = 0 (dashed lines) as well as experimental
data [46] (symbols) for the binary mixtures hexane + 1-propanol (a) and hexane + 1-
butanol (b) at T = 298.15 K.
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Figure B.62: Calculated values of surface tension obtained with the adjusted values of
kCH3,OH and kCH2,OH (solid lines) and with kαβ = 0 (dashed lines) as well as experimental
data [46] (symbols) for the binary mixtures hexane + 1-pentanol (a) and hexane + 1-
hexanol (b) at T = 298.15 K.
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Figure B.63: Calculated values of surface tension obtained with the adjusted values of
kCH3,OH and kCH2,OH (solid lines) and with kαβ = 0 (dashed lines) as well as experimental
data [46] (symbols) for the binary mixtures hexane + 1-heptanol (a) and hexane + 1-
octanol (b) at T = 298.15 K.
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