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Abstract 

The Multi-Adaptive Optics Imaging CAmera for Deep Observations (MICADO), 
one of the first light instruments for the 39 m Extremely Large Telescope (ELT), is 
being designed and optimized to work with the Multi-conjugate Adaptive Optics 
RelaY (MAORY). The MICADO-MAORY configuration will provide diffraction 
limited imaging over a large field of view, which defines the precision requirements 
of the instrument’s derotator. Meeting these requirements with an adequate design is 
the central task of this thesis. The MICADO consortium started the preliminary 
design phase on October 7, 2015.  

The current concept of the MICADO instrument consists of a cryostat carrying the 
main optics and the cold detector array. The cryostat is mounted via its central 
annular flange directly onto the image derotator. The whole assembly is suspended 
several meters above the ELT’s Nasmyth platform by an octopod-type support 
structure. The instrument electronics cabinets, the cable-wrap and the cooling system 
are placed on a separated co-rotating platform below the cryostat. 

This thesis engages in the design of the MICADO image derotator, a key mechanism 
that allows rotating the cryostat assembly around its optical axis with an angular 
positioning accuracy better than 2 arcsec (rms), in order to compensating for the 
optical field rotation due to the alt-azimuth mount of the ELT. This device consists 
of a high precision bearing, gears, motors, encoders and stiff mechanical interfaces 
towards the cryostat and the instrument support structure. A trade-off analysis 
considering different bearing technologies was performed to select the most suitable 
one for this application. As a result, the MICADO derotator is being developed using 
a custom-made four-point contact ball bearing. Special attention is given to estimate 
and simulate the performance of the derotator during the design phase and both static 
and dynamic behaviors are being considered in parallel. The static flexure analysis is 
performed using a detailed finite element model while the dynamic simulation is 
performed with the mathematical model of the MICADO instrument mechanical 
system. Finally, both aspects are combined through a realistic end-to-end model of 
the instrument, verifying that the concept matches the requirements.  

The design and construction of a representative prototype, the so-called derotator test 
stand, has been included into the frame work of the thesis. The main goal of the 
experiment is to obtain performance data in the early stage of the project and to 
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minimize the risk of design flaws in the current concept of the derotator. The test 
stand will also contribute to the parameter identification of the end-to-end simulation 
and optimization of the control architecture. 

The main challenges to be handled in this thesis are: (i) the design of the mechanical 
interfaces to minimize mass and deformation of the bearing, (ii) the development of a 
reliable bearing FEM, (iii) the analysis of the friction in the bearing at low tracking 
velocities and, (iv) the set up and verification of the derotator end-to-end model. 
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Zusammenfassung 

Die Multi-Adaptive Optics Imaging CAmera für Deep Observations (MICADO), 
eines der „First Light“ Instrumente für das 39m European Extremely Large 
Telescope (ELT), wird derzeit entwickelt und optimiert, um mit dem Multi-
conjugate Adaptive Optics RelaY (MAORY) zu arbeiten. Die MICADO-MAORY-
Konfiguration bietet eine beugungsbegrenzte Bildgebung über ein großes 
Gesichtsfeld, was die Genauigkeitsanforderungen des MICADO-Derotators definiert. 
Diesen Anforderungen gerecht zu werden, ist die zentrale Aufgabe der vorliegenden 
Arbeit. Das MICADO-Konsortium begann mit der Vorentwurfsphase am 7. Oktober 
2015. 

Das derzeitige Konzept des MICADO-Instruments besteht aus einem Kryostaten, der 
die Hauptoptik und das kalte Detektor-Array trägt. Der Kryostat wird über seinen 
zentralen Ringflansch direkt auf den MICADO-Derotator montiert. Die gesamte 
Baugruppe ist mehrere Meter über der ELT Nasmyth-Platform mittels einer 
Stützstruktur vom Oktopod-Typ aufgehängt.  Die Elektronik-Schränke, die 
Kabelkette und das Kühlsystem sind auf einer separaten, sich drehenden Plattform 
unter dem Kryostaten angeordnet. 

Diese Arbeit beschäftigt sich mit dem konstruktiven Entwurf des MICADO-
Derotators, einem Schlüsselmechanismus,  der es erlauben soll, die 
Kryostatanordnung um ihre optische Achse mit einer 
Winkelpositionierungsgenauigkeit von weniger als 2 Bogensekunden (rms) zu 
drehen, um die optische Feldrotation zu kompensieren, welche durch die Alt-
Azimut-Aufhängung des ELT bedingt ist. Dieses Gerät besteht aus einem 
hochpräzisen Lager, Getrieben, Motoren, Encodern und steifen mechanischen 
Schnittstellen zum Kryostaten und der Instrumententrägerstruktur. Eine 
Abwägungsanalyse unter Berücksichtigung verschiedener Lagertechnologien wurde 
durchgeführt, um die für diese Anwendung am besten geeignete auszuwählen. 
Infolgedessen wird der MICADO-Derotator mit einem maßgeschneiderten 
Vierpunkt-Kugellager entwickelt. Besonderes Augenmerk wird darauf gelegt, die 
Leistungsfähigkeit des Derotators während der Entwurfsphase abzuschätzen und zu 
simulieren, um sowohl das statische als auch das dynamische Verhalten parallel zu 
betrachten. Die statische Deformationsanalyse wird unter Verwendung eines 
detaillierten Finite-Elemente-Modells durchgeführt, während die Dynamiksimulation 
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mit dem mathematischen Modell eines Mehrkörpersystem des MICADO-
Instruments durchgeführt wird. Schließlich werden beide Aspekte durch ein 
realistisches End-to-End-Modell des Instruments kombiniert, um sicherzustellen, 
dass das Konzept den Anforderungen entspricht. 

Der Entwurf und der Bau eines repräsentativen Prototyps,  des sogenannten 
Derotator-Teststandes, wurde in diese Arbeit ebenfalls aufgenommen. Das Hauptziel 
des Experiments besteht darin, Leistungsdaten in der frühen Phase des Projekts zu 
erhalten und das Risiko von Konstruktionsfehlern im gegenwärtigen Konzept des 
Derotators zu minimieren. Der Prüfstand konnte massgeblich zur 
Parameteridentifikation der End-to-End-Simulation und zur Optimierung der Regler-
Architektur beitragen. 

Die wichtigsten Herausforderungen, die in dieser Arbeit behandelt wurden, sind: (i) 
der Entwurf der mechanischen Schnittstellen, um Masse und Deformation  im Lager 
zu minimieren, (ii) die Entwicklung eines zuverlässigen Lager FEM, (iii) die 
Analyse der Reibung im Lager bei niedrigen Nachführungsgeschwindigkeiten und 
(iv) die Generierung und Überprüfung des MICADO-Derotators End-to-End 
Modells. 
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1 Introduction 

In order to tackle new scientific challenges and questions related to Exoplanets, 

Fundamental Physics, Black Holes, Stars, Galaxies and the Dark Ages (ESO, 2011), 

astronomers around the world are pushing the limits of technology even further. 

Those questions cannot be handled with the current generation of large telescopes, 

like the Very Large Telescope (comprising four telescopes with a monolithic 8.2 m 

primary mirror), the Large Binocular Telescope (carrying two monolithic 8.4 m 

primaries on the same mount) and the Gran Telescopio Canarias (using a segmented 

10.4 m primary mirror). As a result, projects like the Giant Magellan Telescope 

(GMT) employing a 25 m primary mirror by means of circular segments (Johnsa et 

al., 2014), the Thirty Meter Telescope (TMT) with a 30 m segmented primary mirror 

(Nelson & Sanders, 2008) and the 39 m ELT (Tamai, Cirasuolo, González, Koehler, 

& Tuti, 2016); are being developed and should see first light within the next 10 

years.  

Having larger telescopes with better sensitivity and resolution has been the dream of 

scientists since the beginning of the astronomy as a science. The evolution in the size 

of the optical telescopes since its invention in the 17th century by Hans Lippershey1 

is the best proof of it (Racine, 2004). Even more than financial limitations, 

technological and technical constrains have slowed down the increase in the 

dimensions of optical telescopes in the last decades. This was due to the inability to 

cast monolithic mirrors with diameters larger than 8 m, until the technology to build 

and control segmented ones was available. This technology was first successfully 

                                                 
1 Gallileo’s refractor telescope had a diameter of 1.5 cm. 
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implemented in the Keck telescopes, each of which has a 10 m primary mirror 

(Nelson, Mast, & Faber, 1985).  

Despite the progress with the segmented mirrors, the line of an 11-m-diameter 

primary mirror has not been crossed until now. The optical design on the ELT 

considers the implementation of ~800 segments to form its primary mirror. 

Nowadays a similar phenomenon is occurring with the next generation of extremely 

large telescopes (ELTs), as the required technology to manufacture and control big 

deformable mirrors2 to be used in the adaptive optics systems of those telescopes is 

just under development. A clear example is the deformable mirror of the ELT 

(Crepy, et al., 2010; Vernet, et al., 2013). 

Nevertheless, having an extremely large telescope is not enough to perform new 

cutting edge science. The next generation state-of-the-art astronomical instruments 

are required in parallel. The ELT will become “the world’s biggest eye on the sky”, 

and MICADO has been selected as one of its first light instruments together with 

METIS and HARMONI (Zeeuw, Tamai, & Liske, 2014). The development of such 

large telescopes, as well as its new suite of instruments is creating unprecedented 

challenges for the engineers around the world who are working with the astronomers 

to design, build and test those unique pieces of equipment. As the size of the 

telescopes increases, the requirements to realize the new astronomical instruments 

become even more demanding, since the increasingly large optomechanical 

components require higher levels of precision and accuracy. This thesis focuses on 

one of the many challenges in the design of the MICADO instrument, i.e. the 

derotator required to compensate for the field rotation of the ELT. 

1.1 The European Extremely Large Telescope 

The international effort to build an extremely large telescope dates back to 1999, 

when different ideas and possible concepts were collected in the Bäckaskog 

                                                 
2 Deformable mirrors require a large quantity of high precision actuators, the proposed design for the ELT M4 
has more than 5200 actuators and 6 segments. 
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Workshop on Extremely Large Telescopes. Ambitious projects like the 50 m 

Swedish extremely large telescope (Anderse, et al., 1999), the 35 m extremely large 

telescope (Sebring, Moretto, Bash, Ray, & Ramsey, 1999), the 50 m extremely large 

multiple mirror telescope (Beckers, 1999) and the 100 m Overwhelmingly Large  

Telescope (OWL) (Dierickx & Gilmozzi, 1999)3 were presented in that conference. 

Being the European approach, the concept for the OWL Telescope quickly evolved 

and the progress of the project was published a year later (Dierickx & Gilmozzi, 

2000). As financial and technological constrains became more clear, the diameter of 

OWL was reduced to the half by 2003, with the introduction of The Euro50 

Extremely Large Telescope (Andersen, et al., 2003). Later the so called Euro50 

telescope was renamed ELT (Ardeberg, et al., 2006) with an even smaller, 42 m 

primary mirror. 

Afterwards the European Southern Observatory (ESO) in collaboration with 

industry, started to develop a more detailed design proposal of that big 

optical/infrared telescope, with a final design using a primary mirror with a diameter 

of 39 m (ESO, 2011). Since then, important milestones have been achieved as the 

project approaches the beginning of the construction of the telescope, at Cerro 

Armazones, Chile, after ESO started the final discussion with the winner of the 

tender process in February 2016. This important step was possible after the ESO 

council gave green light for the construction of the ELT phase 1 on December 2014 

(Zeeuw, Tamai, & Liske, 2014). The phase 1 of the ELT construction will deliver a 

fully working telescope with a bigger central obscuration, an adaptive optics system 

(MAORY) and the three first light instruments already mentioned. ESO finally 

signed the “Largest Ever Ground-based Astronomy Contract for ELT Dome and 

Telescope Structure” at a ceremony in Garching, Germany on 26 May 2016 (ESO, 

2016). Preparation works on the mountain are already complete, and the construction 

of the ELT at Cerro Armazones started in 2017. The ELT first light is planned for the 

end of 2024. Currently, there is no plan to build an optical telescope bigger than the 

ELT. 

                                                 
3 The OWL presented by ESO in 1999 would eventually become what we know as ELT. 
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The primary mirror (M1) is a segmented 39 m active mirror using 798 hexagonal 

segments (corner to corner dimension 1.4 m) with a focal ratio of f/0.93 and a central 

obstruction of 11.1 m. The monolithic 4.2 m secondary mirror (M2) is a thin 

meniscus which shape can be actively controlled by a set of axial actuators 

supporting it. The complete M2 cell is supported by a hexapod like structure 

providing the required degrees of freedom for the alignment capability of the mirror. 

The whole assembly of approximately 12 tons is suspended on top of the primary by 

the telescope main structure, directing the light through a hole in the quaternary 

mirror (M4) to the 3.8-m active tertiary mirror (M3) located at the vertex of M1. At 

this point the beam is sent to the adaptive optics system, composed of the flat 

deformable 2.4 m adaptive mirror (M4) providing shape correction with thousands of 

actuators at very high frequencies and the flat tip-tilt elliptical (2.6 x 2.1 m) fifth 

mirror (M5) as the field stabilization unit for low frequencies (Cayrel, 2012). As a 

result of this particular design, the telescope’s field of view is limited to 10 arcmin 

(in diameter) by the hole in M4. 

1.1.3 Mechanical Design 

Since the beginning of the project, the structural design of the ELT has significantly 

evolved. The conceptual design of the 42 m ELT in 2007 is presented in Figure 3, 

while the current base line for the 39 m telescope is shown in Figure 4. One of the 

most important changes that helped to shape the current aspect of the telescope main 

structure came after the application of an optimization process, performed from the 

viewpoint of structural mechanics as learned from the principle of bridge building 

(Kärcher H. J., 2008). At the same time, a novel pyramidal load transmission 

principle known as the ”Rocking-Chair Concept” conceived almost 30 years ago was 

implemented into the ELT structural design (Kärcher, Kühn, & Nicklas, 1988). 
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Name Instrument Type 
Wavelength 
Range (μm) 

Field of View 

CODEX 
High Resolution, High 
Stability Visual Spectrograph 

0.37 – 0.71 0.82'' 

EAGLE 
AO-assisted Multi-integral 
Field NIR Spectrometer 

0.8 – 2.45 
IFU: 1.65''   x   
1.65'' 

EPICS 
Planet Imager, Spectrograph 
and Imaging Polarimeter with 
Extreme Adaptive Optics 

0.6 – 1.65 IFU: 0.8''   x   0.8'' 

HARMONI 
Single Field Integral-field 
Spectrograph 

0.47 – 2.45 
10'' x 5'' coarsest 
pixel scale 

METIS 
Mid-infrared Imager and 
Spectrograph with AO 

2.9 – 14 
17.6'' x 17.6'' 
(imager) 

MICADO Imager and Slit Spectrograph 0.8 – 2.5 up to 53'' 

OPTIMOS-
DIORAMAS

Wide-Field Imager & Low-
Medium Resolution Slit 
Spectrograph 

0.37 – 1.6 6.78'   x   6.78' 

OPTIMOS-
EVE 

Optical-NIR Fibre-based MOS 0.37 – 1.7 
Large field IFU:     
7.8''  x  13.5'' 

SIMPLE 
Cross-dispersed Echelle 
Spectrograph, Long-slit 
Option 

0.8 – 2.5 
up to ~4'' patrol 
field for slit 
viewer 

ATLAS 
Laser Tomography AO 
Module 

0.35 – 13.5 60'' 

MAORY Multi Conjugate AO Module 0.8 – 2.4 2' 

Table 1: ELT instruments and adaptive optics modules (marked in blue) as proposed during 
the initial phase A conceptual study (Source: taken from www.eso.org on December 2016). 
The bold letters show the first light hardware approved for construction within the phase 1 of 
the ELT program.  
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The M6 mirror used to send the light to the lateral ports of the PFS is not required to 

operate MICADO. However, in order to keep the instrument in a gravity invariant 

arrangement a dedicated additional mirror (M7 or M11 for SCAO and MCAO 

respectively) is implemented in the optical design to send the light vertically down 

into the cryostat. MCAO corrects the atmospheric turbulence in three dimensions 

with more than one deformable mirror, while SCAO uses only one deformable 

mirror. 

The design of MICADO has evolved considerably from the concept presented as 

result of the phase A study (Davies, et al., 2010), but it has kept one of its main 

advantages, a simple and robust design. As mentioned, the instrument can initially be 

operated with its own more simple adaptive optics system (SCAO) using a single 

natural guide star for on-axis diffraction limited performance. With this arrangement, 

high quality images for demonstration of the scientific capabilities of the ELT can be 

achieved more easily at first light. 

The MICADO consortium is formed by more than eighty people from nine 

institutions in five European countries. More specifically, the Max Planck Institute 

for extraterrestrial Physics (MPE) as principal investigator (PI) institute, Max Planck 

Institute for Astronomy (MPIA), University Observatory of Munich and Institute for 

Astrophysics of the Georg-August-Universität Göttingen (IAG) in Germany; 

Netherlands Research School for Astronomy (represented by University of 

Groningen, the University of Leiden, and the NOVA optical/infrared instrumentation 

group based at ASTRON in Dwingeloo) in the Netherlands; National Institute for 

Astrophysics at the Observatory of Padova in Italy; Centre National de la Recherche 

Scientifique/Institut National des Sciences de l’Univers (represented  by LESIA, 

GEPI and IPAG) in France and an Austrian partnership represented in MICADO by 

the University of Vienna, the University of Innsbruck, the University of Linz, and 

RICAM Linz (Austrian Academy of Sciences). ESO is also a fundamental member 

of the consortium, taking care of the high level project management and the detector 

array work package. The MICADO consortium achieved an important milestone in 

the project, where all partners agreed the transition into the preliminary design phase 

(phase B) with the kick-off meeting held in Vienna, October 2015 (MPE, 2015). As 
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part of the MICADO consortium MPIA is responsible for two sub-system of the 

instrument: the calibration unit and the derotator. This thesis is directly related to the 

derotator work package. 

1.2.1 Key Capabilities of the Instrument 

MICADO will offer key capabilities taking advantage of the distinctive 

characteristics of the ELT: great sensitivity and resolution, precision astrometry and 

spectroscopy. The main observing mode of the instrument is imaging focused on 

astrometry. Therefore one of the crucial components of the camera is the array of 

3 x 3 infrared detectors (each of 4096 x 4096 pixels) to be used to cover the large 

focal plane of MICADO. In order to achieve the required stability to provide spatial 

resolution in the order of 10 milli-arcsec and astrometric precision lower than 50 

micro-arcsec, the optical design is composed entirely of fixed mirrors, a novel 

atmospheric dispersion corrector is used and the instrument has its own astrometric 

calibration strategy. Coronagraphy, in order to provide a high contrast imaging 

capability, will be implemented using a different focal plane and/or pupil plane 

masks, is also considered in the design as one of the observing modes to be offered 

together with a slit spectroscopic mode. Finally, time resolved imaging is also 

contemplated in the current concept of MICADO. 

The science cases that have motivated the design of this big camera are described by 

Davis et al. (2016) as follows: (i) galaxy evolution at high redshift, (ii) black holes in 

galaxy centres, including the Galactic Center, (iii) resolved stellar populations, 

including photometry in galactic nuclei, the initial mass function in young star 

clusters, and intermediate mass black holes in globular clusters, (iv) characterization 

of exoplanets and circumnuclear disks at small angular scales, (v) the solar system, 

and (vi) time resolved phenomena around neutron stars and stellar mass black holes. 

1.2.2 The MICADO Concept 

The MICADO instrument concept consists of a structural cryostat of about 2.1 m in 

diameter and a height of 2 m. The mass of the cryostat is around 5500 kg. All optical 

components are installed inside the so called “cold structure” that will work under 
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Nasmyth platform (Figure 7 and Figure 8). Finally, some of the instrument 

electronics cabinets, the cable-wrap and the cooling system are placed on a separated 

coarse-precision co-rotating platform below the cryostat between the eight struts of 

the support structure. Other electronic cabinets, i.e. for the derotator and the 

calibration unit, are fixed on the telescope Nasmyth platform. 

The instrument support structure has considerably evolved since the beginning of 

phase B and a previous concept is described elsewhere (Nicklas, Anwand-Heerwart, 

Schubert, & Rhode, 2016). The current proposal considers the installation of the 

cryostat from above, as baseline for the assembly, integration and verification (AIV) 

phase. Since the focal plane of the ELT straight-through port is located at 6 m above 

the Nasmyth platform and just 1m away of the PFS and, in order to provide the 

gravity invariant orientation for the camera, the focal plane must be reimaged using 

relay optics for any of the operational modes of MICADO (MCAO or SCAO). The 

current concept of the instrument support structure allows that a single design can be 

used in both configurations. 

The MCAO configuration MICADO-MAORY is shown in Figure 7. In that case, all 

optical components related to the AO system (including two deformable mirrors) and 

the relay optics are placed on a big optical bench (Diolaiti, et al., 2016), while the 

MICADO cryostat is shifted to the side supported by its own structure. The last 

optical component on the MAORY module (M11) sends the light vertically down 

into the cryostat. The baseline design of the MAORY relay optics consists of two 

optical exit ports, which means that in addition to MICADO this MCAO module 

could be used with a second instrument as well (Lombini, et al., 2016). The 

MICADO-MAORY calibration unit is also located on the MCAO optical bench 

close to the focal plane of the telescope. 
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the most critical requirement, while other key performance requirements like the 

radial/axial runout and wobble can be fulfilled more easily with the chosen bearing 

technology.  

The current derotator concept consists of: 

 A custom designed slewing bearing as the main component. 

 The bearing support structure. 

 The thermal compensation rings. 

 Several drive units for backlash suppression. 

 The angular positioning measurement system using a tape encoder with 
several scanning heads. 

 The control system to operate the derotator in closed loop.  

The overall concept of the derotator has remained essentially the same since the 

beginning of phase B, but the mechanical interfaces have changed considerably. A 

previous concept considering the installation of the cryostat from below is described 

elsewhere (Barboza, et al., 2016). The main risk of the current design proposal is the 

effect of the bearing friction over the required angular positioning accuracy while 

rotating at low velocities. Therefore, the derotator test stand will play a crucial role in 

verifying if this requirement can be achieved with the suggested bearing technology. 

Understanding the friction phenomena is the key to optimizing the control system 

working in closed loop. The goal is to apply methods for friction compensation if 

required. 

1.4 Motivation and Thesis Objectives 

A derotator is a mechanism with one degree of freedom that must compensate for the 

field rotation of telescopes with alt-azimuth mounts. As an assembly of several 

components, i.e. a precision bearing, gears, motors, encoders, mechanical interfaces, 

controllers and software; the challenge is to develop a system in which all those 

components are able to work together in order to fulfil the high precision 

requirements demanded by the last generation of state-of-the-art astronomical 

instruments like MICADO. This thesis is mainly focused on the overall design of the 
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system and the selection of the required hardware. Thus, the design of the control 

system and software are not the central topic of this work. 

This PhD project concentrates on a key mechanical component of the MICADO 

instrument and the task to design a feasible solution of such a device. The thesis runs 

parallel to the phase B (preliminary design phase) of MICADO. After that, if 

positively qualified and released during the final design review (FDR), the derotator 

will be manufactured based on the design proposal presented in this dissertation. 

Thus, the result of this work will represent a significant contribution to the 

preliminary design review of the instrument within the MICADO consortium 

planned for late 2018. 

More specifically the objectives of the dissertation are defined as follows: 

 Investigation and trading-off of available technologies and existing solutions. 

 Selection of an appropriate bearing technology based on the available space, 
precision, expected performance and cost. 

 Develop a preliminary design of the MICADO derotator based on the 
common mechanical interfaces. 

 Perform finite element analysis to estimate the static performance of the 
proposed design. 

 Setup an end-to-end simulation to estimate the dynamic performance of the 
derotator proposal. 

 Development of adequate test procedure / facilities to verify the requirements 
of the derotator (derotator test stand). 

- Test the encoder-pinion solution. 

- Learn about the implementation and performance of the band encoder. 

- Proof the alignment procedure between the interface flange and the 
bearing. 

- Test backlash suppression system. 

- Understand the effects of the friction over the positioning accuracy. 

- Calibrate the parameters of the end-to-end model. 

- Compare the results of the end-to-end model with the performance of 
the real prototype. 

- Validate the Finite Element Model (FEM) of the bearing. 
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1.5 Thesis Outline 

The research performed for this PhD thesis is structured and presented in the 

following: 

The origin of the field rotation in telescopes with Alt-Azimuth mounts, the issue that 

this research work intends to solve for the MICADO instrument, is addressed in 

chapter 2. The mathematical background to derive the parallactic angle using the 

celestial sphere is given as introduction, to then focus in the specific field rotation 

trajectories that the MICADO derotator should follow at the ELT Nasmyth platform 

A. To conclude this chapter, some variables affecting the ideal field rotation 

trajectories are discussed as well. 

Chapter 3 is dedicated to describing some possibilities to provide field rotation 

compensation in astronomical instruments and why this particular option (rotating 

the whole camera) was selected for the MICADO instrument. The most relevant 

requirements driving the design of the MICADO derotator are summarized in this 

chapter and a bearing technology trade-off is provided as well. An overview of 

existing technical solutions providing field rotation compensation for astronomical 

instruments is presented to conclude this section. 

The proposal to provide field rotation compensation for the MICADO instrument is 

described in detail through chapter 4. Initially, the custom design slewing bearing is 

described. Afterwards the mechanical interfaces and the optimization process of the 

structural components are presented, to finish with the overall concept of the 

derotator. The static structural analysis and the verification of the bearing FEM are 

also presented in this chapter. 

Chapter 5 is dedicated to providing the tools for developing the end-to-end 

simulation of the MICADO instrument, to be used for estimating its dynamic 

performance. The required basics of structural dynamics to develop the mathematical 

model of the MICADO mechanical system are provided as introduction, to continue 

with the implementation of the mechanical model in Matlab/Simulink. The approach 

used for modeling the bearing friction is also discussed in this chapter. 
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The experiment used as a technology demonstrator is finally described in chapter 6, 

including the AIV phase and the most relevant performance results of the test 

campaign carried out with the derotator test stand. 

The conclusions about this research work are finally given in chapter 7, while some 

complementary calculations and experimental data are presented in the appendices. 
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2 Alt-Azimuth Telescopes Field Rotation 

When pointing a telescope at a star, stability is very important, therefore the choice 

of a proper mount is crucial in telescope design. Until the 1980’s, the preferred type 

was the equatorial mount, due to its mechanical simplicity and accuracy. This is 

because the telescope only needs to move one axis at constant velocity to track a star. 

This also means this type of support structure does not suffer from field rotation, as 

only the equatorial axis (parallel to the polar axis of the earth) must be rotated. 

Equatorial telescopes use the equatorial coordinate system (Figure 9), which is 

defined with respect to the center of the Earth. Here the Celestial Equator is used as 

the reference plane and the Vernal Equinox (ϒ) as the reference direction. The 

equatorial coordinate system is not related to the position of the observer. The 

declination (δ) is used as the latitude coordinate and the right ascension (α) as the 

longitude coordinate, together these can be directly used to locate the celestial 

objects. To determine the position of the star at the moment of observation, the hour 

angel (h) must be calculated using the sidereal time (ω0). 
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஼௔ሶܨ ൌ െ݌ሶ , ሺ6ሻ	

஼௔ሷܨ ൌ െ݌ሷ . ሺ7ሻ	

The tracking rate or how the field rotation evolves with respect to the time is defined 

by the rotation of the earth, represented with the sidereal rate (߱଴). The sidereal rate 

is then 1 revolution/day, 360°/24 hours or 15°/hour. The field rotation velocity can 

be found by differentiating equation (6) with respect to the hour angle and then 

multiplying the results by the sidereal rate as described in equation (8) (Shepherd, 

2001)  

ሶ݌ ൌ
݌݀
ݐ݀

ൌ
݌݀
݄݀

݄݀
ݐ݀

ൌ
݌݀
݄݀

߱଴. ሺ8ሻ	

After mathematical arrangement and simplification, the final equations for the field 

rotation velocity and acceleration can be written as follows using equations (11) and 

(12) which are described below 

ሶ݌
߱଴

ൌ
ݏ݋ܿ ߮ ݏ݋ܿ ܣ

ݏ݋ܿ ܽ
ሺ9ሻ	

ሷ݌
߱଴

ଶ ൌ െ
݊݅ݏ ܣ ݊݅ݏ 2߮
2 ݏ݋ܿ ܽ

െ
݊݅ݏ ܽ ݊݅ݏ ܣ2 ଶݏ݋ܿ ߮

ଶݏ݋ܿ ܽ
. ሺ10ሻ	

This is a normalized form using the sidereal rate (ω0) and its square, as has been 

reported by ESO in the calculation of the field rotation for the VLT unit telescopes 

(Avila & Wirenstrand, 1991).  

In this case the values used for the normalization are given by 

߱଴ ൌ ݏ/ܿ݁ݏܿݎܽ	15 	

߱଴
ଶ ൌ 10ିଷݔ1.091 ଶݏ/ܿ݁ݏܿݎܽ 	

where ߱଴
ଶ is obtained multiplying ߱଴ in rad/s by ߱଴ in arcsec/s (Avila & 

Wirenstrand, 1991). 

The complementary expressions to calculate the altitude (a) and the azimuth (A) are 

finally described by equations (11) and (12) 
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where the sign + or – depends on which Nasmyth port is been used. The additional 

expressions required to obtain the altitude angle velocity and acceleration are 

described by equations (16), (17) and (18). 

௔ሶ

ఠబ
ൌ െ݊݅ݏ ܣ ݏ݋ܿ ߮, ሺ16ሻ	

௔ሷ

ఠబ
మ ൌ െ ஺ሶ

ఠబ
ݏ݋ܿ ܣ ݏ݋ܿ ߮, ሺ17ሻ	

஺ሶ

ఠబ
ൌ ݊݅ݏ ߮ ൅ ݊ܽݐ ܽ ݏ݋ܿ ܣ ݏ݋ܿ ߮. ሺ18ሻ	

2.3.1 Field rotation at ELT Nasmyth platform A 

The MICADO instrument will be located at the ELT Nasmyth platform A (Frank, 

2015). If the telescope is pointing close to the horizon and the observer is behind the 

primary mirror, the platform A is to the left side and the platform B to the right side. 

Thus, the sign minus (–) is used in the equations (13), (14) and (15), and the angle of 

rotation is defined as positive in the counterclockwise direction. The field rotation 

trajectories, velocities and accelerations corresponding to this port are presented in 

Figure 14. The plots are generated using the latitude at Cerro Armazones, several 

typical values of declination δ around the Zenith and during a period of twelve hours 

for the hour angle h. As the VLT and the ELT share the same global coordinate 

system shown in Figure 15, the same assumption can be used for the sign of the 

equation describing the field rotation.  
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At the Nasmyth platform the pupil rotates following the altitude angle (Avila & 

Wirenstrand, 1991). Thus the following expressions can be defined, where the 

negative sign (–) correspond to the Nasmyth platform A. 

ேܲ ൌ േܽ ሺ19ሻ	

ேܲሶ ൌ േ ሶܽ ሺ20ሻ	

ேܲሷ ൌ േ ሷܽ ሺ21ሻ	

2.5 Variables Affecting the Field Rotation Trajectory 

The field rotation trajectories presented in Figure 14 are theoretically calculated ideal 

curves. However, in a real application several variables will introduce errors 

affecting those ideal trajectories. Hence it is necessary to create the real field rotation 

curves which the derotator should follow to provide the image stabilization. Some of 

the variables affecting the ideal field rotation trajectories are: the atmospheric 

refraction, the telescope miss-pointing and the time delay in addition to errors due to 

the misalignment of the instrument itself. The derotator will follow trajectories 

previously determined by the software of the instrument. If such external errors are 

not considered in the trajectory calculation, the device will not be able to provide the 

image stabilization even if the derotator follows the given trajectories with a very 

high accuracy. Atmospheric refraction deflects the light of any astronomical objects 

due to the variable air density in the different layers of the atmosphere. Introducing a 

bending of the incoming light as it passes through the atmosphere, leading to an 

apparent star which is higher in the sky than the true star. As the telescope tries to 

follow the apparent star, the error in the pointing direction will affect the field 

rotation trajectories. This problem can be interpreted as a pointing error, not coming 

from the telescope pointing control system. The effect created by the atmospheric 

refraction is strongly influenced by the altitude a and the meteorological conditions 

during the observation (Bely, 2003). The plots presented in Figure 17 shows the 

repercussion of the pointing error over the field rotation trajectories. 
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The errors introduced by the telescope pointing can be explained as the difference 

between two field rotation trajectories for a given declination (δ). The first trajectory 

calculated using the ideal declination of the star to be observed and the second one 

calculated using the same declination value plus the telescope pointing error (Egner 

& Bertram, 2009). As a result, the following expression can be stablished 

ሻߜ∆ேሺܨ∆ ൌ ሻߜேሺܨ െ ߜேሺܨ ൅ ሻ, (22)ߜ∆

where ∆ܨேሺ∆ߜሻ is the residual field rotation due to the miss-pointing of the telescope 

 Equation (22)  is plotted in Figure 17 (middle plot) for six different values of .ߜ∆

zenith limit and for a telescope pointing error of ∆ߜ ൌ 1	arcsec. This calculation 

describes a linear behavior for different values of ∆ߜ and therefore the effect of the 

telescope pointing can be easily escalated. It can be observed that the error increases 

considerably while the telescope is pointing close to the zenith. 

The effect generated by the time delay while starting the field rotation compensation 

can be represented in a similar way. In this case, the required two field rotation 

trajectories are calculated with exactly the same arbitrary value of declination but 

with different values of hour angle (h). The reference trajectory is then calculated 

with the ideal value of h, while the second one is calculated considering the time 

delay. Equation (23) describes the created error 

ሻݐ∆ேሺܨ∆ ൌ ேሺ݄ሻܨ െ ேሺ݄ܨ ൅ ሻ, (23)ݐ∆

where ∆ܨேሺ∆ݐሻ is the residual field rotation due to the time delay ∆t. This effect is 

show in Figure 17 (bottom plot) for the same values of zenith limit and a time delay 

of ∆t ൌ  The error described by equation (23) is also directly proportional to the .ݏ1

∆t and the maximum values are obtained if the telescope is close to the zenith as 

well. The results obtained in this section are used to derive some of the requirements 

for the MICADO derotator, like the timing accuracy of the field rotation tracking and 

how the pointing/tracking accuracy of the ELT could affect the derotator 

performance. Section 3.1 is dedicated to this matter. 
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3 Field De-Rotation for MICADO  

After having introduced in the previous chapter the origin of the field rotation 

phenomenon, starting with a general approach on the matter in telescopes with      

alt-azimuth mounts and then focusing on the expected trajectories at the Nasmyth 

platform A of the ELT, it is necessary to define the requirements for the field de-

rotation stabilization demanded by the MICADO instrument. This includes 

considering at the same time possible technical solutions matching the limitations 

imposed by this particular application. Potential restrictions are the location of the 

derotator, available space, and weight of the device. The problem to be solved finally 

reduces to designing, building and testing a derotator capable of following those field 

de-rotation trajectories with the required angular positioning accuracy. 

The top level science goals (Liske, 2015) have shaped the overall concept of the 

MICADO instrument, while specific science cases and observation modes like 

standard imaging, astrometric imaging, coronagraphic imaging, time resolved 

imaging, slit spectroscopy and pupil imaging (Davies, Pott, & Tolstoy, 2017) are 

driving the design of the instrument subsystems on a more detailed level. The 

requirements for the MICADO derotator are mainly derived from those observation 

modes. 

One possibility to compensate for the field rotation is using an optical derotator. 

Such a device can provide the required image stabilization by rotating a set of flat 

mirrors around the axis of the light beam entering the instrument. In this optical 

setup, the reflection surfaces must be arranged in a very specific way, like the Abbe 

type rotator (Swift, 1972). That kind of optical arrangement is also known as K-

mirror (see Figure 18) and has been implemented in other astronomical instruments, 
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3.1 Derotator Requirements 

As a subsystem of the MICADO instrument, the derotator has to fulfill requirements 

internally outlined by the MICADO consortium defining the required image 

stabilization at the focal plane, but it must also satisfy general requirements defined 

by ESO for all instruments to be installed on the ELT. The complete list including 

general, functional, operational, physical, performance, interface and environmental 

requirements is quite big and therefore described in detail elsewhere (Mueller, 2017). 

This section summarizes the requirement which most critically drive the design of 

the derotator, as developed during this dissertation project; see Table 2. 

Parameter Value (PtV) Value (RMS) 

Axial runout < 0.1 mm  < 0.035 mm  

Radial runout < 0.3 mm  < 0.1 mm  

Wobble < 30 arcsec < 10 arcsec  

Relative angular position accuracy4 ≤ 6 arcsec  ≤ 2 arcsec  

Moving mass ≤ 7000 kg 

Inner diameter > 2500 mm 

Operating temperature 0°C to 15°C 

Max. angular velocity ≤ 3 deg/s 

Derotator mass < 1800 kg (TBC) 

Table 2: Derotator performance and physical requirements. 

According to the science requirements previously mentioned, the position stability of 

the image at the focal plane of the instrument can be derived. During a typical 

observation, the worst case for the derotator is defined by taking an image with an 

exposure time of 120 s, at a 1.5° zenith distance and a wavelength of 1 µm. The 

motion of the center of the Point Spread Function 5 (PSF) induced by the hardware 

should be better than 1/16 of the PSF (Pott & Barboza, 2017). The axial runout, 

radial runout, wobble and the relative angular position accuracy are derived from that 

requirement. The relative angular position accuracy is defined as follow. 

                                                 
4 With respect to the preset de-rotation trajectory.  
5 The PSF represents the response of an optical system to a light point source like a star on the sky. 
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The diffraction limited resolution of the ELT is calculated using the Rayleigh 

criterion. It corresponds to 6.4 miliarcsec for an observing wavelength of 1 µm, 

which represent a worst case for the most demanding astrometric observations. The 

image position stability under the requirement mentioned above (1/16 of the PSF) 

translates to 0.4 miliarcsec, which should be guarantee over the whole field of view, 

as shown in Figure 20.  

 

Figure 20: MICADO field of view showing the required image position stability at the 

corner of the focal plane. 

The angular position accuracy corresponds to the arctangent of the angle (γ) show in 

Figure 20, where a safety buffer factor of 1.5 is used for the diameter of the 

MICADO field of view. The calculation is given as follow 

݊ܽݐܿݎܽ ߛ ൌ
0.4݁ െ 3
26.5ݔ1.5

≙ 2.1 (24) .ܿ݁ݏܿݎܽ

At this point, it becomes clear that the key component of the MICADO derotator is a 

large high-precision bearing. Such a bearing must have the adequate technology to 

guarantee the required running accuracy (axial runout, radial runout, wobble). On the 

other hand, the relative angular position accuracy is a performance parameter 

delivered by the whole derotator as a system. For that reason, it cannot be guaranteed 

Field of view 
Ø53 arcsec 

Focal plane 

Position stability 
(0.4 miiliarcsec) 

γ 
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by the bearing itself. The relative angular position accuracy is being understood as 

the difference between the preset input field rotation trajectory (input of the system) 

and the real measured trajectory of the cryostat (output of the system), during the 

exposure time while an image is being taken tracking a scientific object. In an ideal 

perfect system with no disturbance and errors, this difference should be zero. 

3.2 Bearing Technology Trade-off  

As the main component of the whole derotator, the selection of the bearing requires 

special attention. At this time, there are several commercial bearing technologies that 

could meet the high precision running accuracy requirements of the MICADO 

derotator presented in Table 2. Some of those technologies used in high precision 

applications are: Slewing bearings (with balls, rollers or a combination of them), 

hydrostatic bearings that use oil or air as the fluid to operate them, and magnetic 

bearings. In this sense, it is very important to understand the working principle, 

advantages and disadvantages of these different kinds of bearing technologies. This 

is the first step before the selection of the bearing to be used in the MICADO 

derotator. 

The main drivers for the selection of the bearing are the accuracy, the 

maintainability, the simplicity, the weight and the costs; these represent one of the 

major restrictions in state-of-the-art projects like the MICADO instrument. The 

trade-off analysis based on wide background information will help to make the right 

decision about the selection of the bearing, in order to achieve the expected 

performance with the most effective solution. For simplicity, the trade-off analysis is 

based on a qualitative comparative study. 

3.2.1 Slewing Bearings 

Slewing bearings like that in Figure 21 basically consists of an inner ring (a) and an 

outer ring (b) joined together by rolling elements (balls (c) or cylindrical rollers), that 

are separated by spacers or a cage (d). The rings, one of which usually incorporates a 

gear (e), are provided with holes (f) to accommodate attachment bolts. Generally, 
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directions. The main advantage here is the very low friction values due to the lack of 

contact between the surfaces. On the other hand, the fact that high precision 

machining is required in the large contact surfaces of the girth ring and the pads, the 

risk of oil pollution, and the required auxiliary equipment including an active control 

system to provide the oil flow are the main disadvantage of this kind of bearing. 

 

 Figure 22: Hydrostatic oil bearing. 

3.2.3 Hydrostatic Air Bearings 

Hydrostatic air bearings work with the same hydrostatic principle explained in the 

previous section, but in this case a gas is used to operate the bearing. Thus, 

pressurized air is injected through the sliding pads to create the gap between the 

contact surfaces and suspend the girth ring on a thin air film, providing also a non-

contact nearly friction-less running system. The last generation of sliding pads for air 

bearings utilizes porous materials in the contact surface, which offers a uniform 

distribution of the air flow through the complete area of the sliding pad. Axial and 

radial pads are also usually implemented in the same way as for oil bearings.  

This kind of bearing is generally used for high speed applications due to its nearly 

friction-less operating principle. The advantage and disadvantage are similar to the 

hydrostatic oil bearings, with the additional remark that the risk of oil pollution is 

removed, but the required clean pressurized air could create local turbulence. In 

astronomical instrumentation this is an effect not desired close to the camera optics 

and WFS. Air bearing are also susceptible to dirty operational environments. An 

illustration of this kind of bearing is presented in Figure 23. 
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3.2.5 Bearing Technology Trade-off Comparative Summary 

Hydrostatic oil bearings were finally banned by ESO due to the high risk of oil 

pollution close to the telescope optics. Therefore, ESO will not provide the required 

infrastructure for its operations. After checking with possible providers for the 

remaining alternatives, it can be confirmed that all of them are able to achieve the 

required running accuracy for the MICADO derotator, which is the main decision 

criteria for the selection of the bearing. Therefore, those variables (axial/radial runout 

and wobble) are not considered in the summary presented in Table 3. 

Hydrostatic air bearings can achieve an axial/radial runout in the order of 0.010 mm 

(New Way Air Bearings, 2011) and slewing bearing are able to achieve up to 0.015 

mm (Krüsemann, 2015). 

Bearing type Advantage Disadvantage 

Slewing bearings 
- Low maintenance 
- No oil pollution 
- Integrated gearwheel 

- Friction 
- Limited rigidity 
- Limited positioning accuracy 

Hydrostatic  
oil bearings 

- Low Friction 
- Higher positioning accuracy 
- High load capacity 

- Oil Pollution 
- Require auxiliary equipment 
- Maintenance 

Hydrostatic  
air bearings 

- Very low Friction 
- Higher positioning accuracy 
- No oil pollution 

- High precision manufacture 
- Require auxiliary equipment 
- Maintenance and local seeing 

Magnetic bearings 
- Very low Friction 
- Higher positioning accuracy 
- No oil or air pollution 

- Power consumption 
- Complex active control 
- Magnetic pollution 

Table 3: Bearing technology trade-off summary. 

According to the results of the trade-off, due to the lower cost, less complexity and 

simpler maintenance, the slewing bearings are taken as the initial choice offering the 

lightest and more compact solution. However, the relative angular positioning 

accuracy of the MICADO derotator must be carefully analyzed, to ensure that the 

required value of 2 arcsec can be achieved with this kind of bearing technology. This 

is a parameter that depends on the performance delivered by the complete unit as an 

assembly of all components of the mechanisms; including the motors, the positioning 
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measurement device and the control system. It has to be said that the friction of 

slewing bearings is a particular concern, due to the very low rotation velocities and 

the related stick-slip effects (the friction phenomenon is discussed in detail in chapter 

5), which will require also a more sophisticated controller architecture (cascaded 

position-velocity control, with feed-forward elements, see section 4.3.5). 

3.3 Existing Technical Solutions 

As the rotation of the field of view is an issue present in all telescopes with alt-

azimuth mounts, there are existing technical solutions that can be taken as reference 

for the design of the MICADO derotator. Some of the most recent developments in 

astronomical instrumentation are considered here in order to understand how the 

field stabilization problem has been solved in other telescopes and instruments. This 

compilation focuses on collecting the main characteristics and performance figures 

achieved (or expected) by different mechanisms providing rotational motion, which 

have of course diverse physical requirements in terms of running accuracy, 

dimensions and moving mass but a common goal of high angular positioning 

accuracy. All technical solutions described below use the same (or similar) bearing 

technology selected for the MICADO derotator, i.e. a slewing bearing with rollers or 

balls. As the running accuracy must be guaranteed by the bearing manufacturer, 

these parameters are not considered here. 

3.3.1 LINC-NIRVANA Ground-Layer Wavefront Sensor 

The derotator of the LINC-NIRVANA ground layer wavefront sensor (GWS) has a 

diameter of 0.9 m (bearing outer diameter). It uses a single row crossed cylindrical 

roller bearing disposed in a vertical configuration (see Figure 25), carrying about 300 

kg corresponding to the GWS optics and mechanics (not shown in the figure). The 

drive system consists of a spur gear (integrated to the bearing) with two pinions for 

backlash suppression, while the pinions are driven by stepper motors through a 

Harmonic Drive gear transmission. The GWS derotator operates in open-loop and is 

able to achieve an angular positioning accuracy lower than 20 arcsec rms (Bertram, 

2015). 
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4 The MICADO Derotator 

The problem to be solved as the main goal of this research work has been explained 

in detail and is clearly defined by a complete set of performance and physical 

requirements in chapters 2 and 3. A tentative bearing technology has been selected as 

result of the trade-off analysis: slewing bearings, which can use balls or cylindrical 

rollers as the elements to provide the rotational movement. Furthermore, several 

existing technical solutions to provide field rotation compensation using that bearing 

technology (or similar, like the Linear motion curved guides) were briefly discussed 

as reference. 

The proposal to provide field rotation stabilization for the MICADO instrument is 

developed around a custom designed slewing bearing, which is the result of several 

design iterations through the partnership with the bearing provider during the course 

of the project. Other structural components, i.e. the bearing support structure and the 

thermal compensation rings are adapted to the bearing size and the mechanical 

interfaces toward the cryostat and the instrument support structure. The definition of 

these mechanical interfaces was a significant part of this thesis and is based on an 

intensive discussion with other members of the MICADO consortium at MPE and 

IAG, responsible for the cryostat and the instrument support structure respectively. 

The designs for other components like the drive units and the position measurement 

system, as internal subsystem of the derotator, were developed internally at MPIA as 

part of the PhD work. The control concept is been designed in collaboration with the 

Institute for System Dynamics (ISYS) at the University of Stuttgart.  

Accordingly, this chapter is dedicated to describing the design process and the 

current technical proposal of the MICADO derotator, including the calculations and 
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single-row four-point contact ball bearing. As both types of slewing bearings are able 

to achieve the required high precision running accuracy, extensive discussions have 

been carried out to identify which one will offer a better performance in term of 

friction values and the related stick-slip effects. The friction is the main disadvantage 

of this bearing technology and a critical aspect for the required angular position 

accuracy of the MICADO derotator.  

The bearing friction is a non-linear effect difficult to estimate, because it can be 

influenced by many different parameters, such as the rolling friction coefficient, the 

seals, the load distribution, the out-of-flatness of the bearing support structure, the 

lubrication used and the variation in the bearing’s clearance resulting from 

installation, only to mention some of them (Krüsemann, 2015). During the design 

process of the bearing, the starting friction torque ܯ௥ can be roughly estimated 

assuming a constant value for the friction coefficient with the following expression 

(in the case of ball bearings) 

௥ܯ ൌ
ߤ
2
ሺ4.4ܯ௄ ൅ ௅ܦ௔ܨ ൅ ௅ሻܦ௥ܨ3.81 , ሺ25ሻ

where ܯ௄ is the resulting tilting moment, ܨ௔ the axial load and ܨ௥ the radial load 

acting on the bearing, ߤ is the friction coefficient and ܦ௅ is the bearing raceway 

diameter (Thyssenkrupp Rothe Erde, 2017). A fluctuation range of ±20% must be 

considered when equation (25) is used to estimate the friction torque. A more precise 

value can only be determined through measurements on the bearing. The proposal of 

ThyssenKrupp Rothe Erde using a single-row four-point contact ball bearing has 

been taken as base line for the design of the MICADO derotator. This is the most 

robust (less sensitive against warping moments) and least expensive of the three 

types of bearing shown in Figure 31, but has a starting friction torque usually slightly 

higher. The offered bearing can achieve an axial runout < 0.05 mm, a radial runout < 

0.1 mm and a wobble < 10 arcsec. The estimated starting friction torque for the 

current moving mass of < 7000 kg is 1700 Nm (±20%). The design of the bearing 

already includes the high precision mechanical interfaces for the installation of the 

band encoder (this positioning measuring system is explained in detail on section 

4.3) and its tensioning cleat. The slot for the metallic tape must be machined to 
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Parameter Value 

Weight 882 kg 
Outer diameter 2826 mm 
Inner diameter 2528 mm 
Raceway diameter 2667 mm 
Overall height 110 mm 
Number of external bolt holes 44 
External bolt size M16 
External bolt circle diameter 2747 mm 
Number of internal bolt holes 44 
Internal bolt size M16 
Internal bolt circle diameter 2583 mm 
Gear module 6 
Number of teeth 471  

Table 4: Main dimensions and parameters of the custom designed single-row four-point 
contact ball bearing for the MICADO derotator. 

4.1.1 Bearing Mechanical Interfaces  

Due to their small cross sectional height and width compared to its diameter, slewing 

bearings have limited stiffness. For that reason, the bearing support structures (upper 

and lower) should be designed for maximum axial, radial and warping stiffness. The 

performance of the bearing depends on these stiff and distortion-resistant support 

rings, which to a large extent will prevent deformations on the bearing under the 

maximum operating loads. Additionally, the contact surfaces of the support rings 

must always be as flat as possible, in order to prevent the bearing from becoming 

deformed when it is bolted down. Thus, careful machining process of the contact 

surfaces is absolutely essential. Surface grinding is normally used in these large 

pieces to achieve the required flatness tolerances. The remaining out-of-flatness can 

be corrected using liquid shimming (Brickwood, 2016), where a special liquid epoxy 

resins is used to fill the gap between two surfaces in contact. The geometry of the 

bearing support rings should include a vertical structural reinforcement close to the 

track diameter in order to allow the load distribution via the raceway system of the 

bearing, thus minimizing the deformations of the contact surfaces. In addition, using 

that configuration the warping moment (German term “Krempelmoment”) generated 

by the translation of the axial load to the raceway diameter, is not directly 
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 The bearing support structure shall provide enough stiffness to guarantee a 
flat contact surface once the bearing is installed without bolt pre-load. This 
will guarantee for a most reliable derotator system performance. 

 A complex FEM of the bearing including frictional contact and bolt pre-
preload is required to follow the most realistic approach. 

 An over designed bearing support structure can be easily re-designed to 
achieved a thinner, lighter and less rigid part if required. 

Using the three contact points equally distributed over a constant previously agreed 

diameter representing the instrument support structure, 18 different concepts of the 

derotator support structure were developed. These models are presented in Figure 36, 

and the results of FEA corresponding to the total deformation are showed in Figure 

37. The load case for Figure 37 is described below. 
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Concept 
Mass 
(Kg) 

Max. Axial Def.
(μm) 

Min. Axial Def.
(μm) 

Difference 
(μm) 

IA 

Option 1 1174.5 300.46 269.72 30.74 36.10 
Option 2 1324.7 175.97 135.13 40.84 54.10 
Option 3 1527.7 71.09 44.54 26.55 40.56 
Option 4 1933.9 42.71 21.91 20.80 40.23 
Option 5 2363.9 46.55 16.31 30.24 71.48 
Option 6 2393.8 46.24 20.68 25.56 61.19 
Option 7 2333.1 46.08 21.10 24.98 58.28 
Option 8 2517.0 48.34 22.37 25.97 65.37 
Option 9 2855.3 35.57 18.09 17.48 49.91 
Option 10 2841 65.19 30.78 34.41 97.77 
Option 11 2447 48.35 23.63 24.72 60.50 
Option 12 2198 45.79 27.96 17.83 39.18 
Option 13 1636 53.34 30.17 23.17 37.90 
Option 14 1591 55.35 33.80 21.55 34.29 
Option 15 1794 51.45 31.62 19.83 35.57 
Option 16 1894 45.76 29.32 16.44 31.13 
Option 17 2057 35.24 22.92 12.32 25.34 
Option 18 2013 31.55 18.32 13.23 26.63 

6 Point 
interface9 

1976 11.5 5.1 6.40 12.65 

Table 6: Numerical results of the optimization function IA. 

 

Figure 40: Performance of the proposed concepts according to IA. 

                                                 
9 This concept is not shown in Figure 33, but it consists of the same geometry used for the option 18 with three 
more supporting pads. 
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Figure 42: Performance of the proposed concepts according to IR. 

4.2.3 Discussion of the Optimization Process Results  

According to the results of the optimization process defined by the functions IA and 

IR, only the options 17 and 18 were able to achieve the required 15 μm of maximal 

axial deformation, but these concepts are not able to meet the requirement of the 

maximal radial deformation. The best performance in the radial direction is achieved 

by option 18, but with radial deformation close to 20 μm. As bonded contact is used 

for the FEA, those deformation values are expected to increase once frictional 

contact is implemented. The option 18 consists of a ring with rectangular cross 

section and internal ribs for structural reinforcement. 

The analysis shows that a 3-points mechanical interface between the derotator and 

the instrument support structure is not the proper solution from the structural point of 

view. Increasing the numbers of supporting points has a huge impact in the structural 

performance of the bearing support structure. This fact can be clearly seen in the 

results of both optimization functions with the option to use a 6-point mechanical 

interface.  

The original 6-point mechanical interface is able to achieve a better performance 

within the requirements for both axial and radial directions. Based on these results, 

MPIA requested to have an interface towards the instrument support structure with a 

minimum of 6 supporting points. However, the recommendation was not 

0

20

40

60

80

100

120

140

160

I R
(K

g
.μ

m
)



implemen

eigenfrequ

4.3 De

The prelim

custom de

thermal co

same type

structure. 

positionin

scanning h

loop is als

Figure 43:

The derot

cryostat, t

section 1.

between th

bolted con

Scanning h
mount 

Therm
compensat

nted by the 

uency. This 

erotator

minary desi

esigned sing

ompensation

e of steel u

Additionall

ng measurem

heads. The 

so a fundam

 CAD mode

tator has m

the instrume

2.2). The in

he cryostat 

nnection wh

Drive unit 

ead

mal 
tion rings 

MICADO 

issue is dis

r design

ign of the d

gle-row four

ns rings (up

used in the 

ly, it has th

ment system

control and

mental part o

l of the MIC

mechanical i

ent support 

nterface tow

central flan

here the alig

Bearing 

consortium

scussed in d

n propo

derotator is 

r-point cont

pper and lo

bearing, se

he drive sys

m compose

d electronic 

of the curren

CADO derota

interfaces w

structure a

wards the c

nge and the

gnment syst

m due to th

detail in sect

sal  

presented i

tact ball bea

wer, which

ee section 4

stem with a

ed of a ban

system to o

nt proposal.

ator prelimin

with three M

and the rela

cryostat is d

e upper ther

tem betwee

4 The M

he reduction

tion 4.6. 

in Figure 43

aring previo

 are going t

4.3.2) and t

t least two 

nd encoder

operate the 

ary design. 

MICADO s

y optics sup

defined by 

rmal compe

en the cryos

MICADO D

n in the ins

3. It consist

ously descri

to be built 

the bearing 

drive units

r with at le

derotator in

subsystems,

pport struct

the contact

ensation ring

stat optical 

Bearing su
structu

Derotator 

69 

strument 

ts of the 

ibed, the 

with the 

support 

 and the 

east two 

n closed-

 

, i.e. the 

ture (see 

t surface 

g. It is a 

axis and 

upport 
ure 



4.3 Dero

70 

the der

describe

changed

like inst

but not 

the rela

on top o

well, wh

derotato

Figure 4

4.3.1 B

Followi

develop

Due to 

clear th

structur

reinforc

             
10 The alig
is provided

Instr
structure

otator desig

rotator axis

ed in 6.1.2

d and the cu

trument sup

the optimal

ay optics sup

of the instr

here the int

or mechanic

44: Derotator

Bearing 

ing the resu

ped followin

the restricti

at using ste

re would be

ced plastic 

                  

gnment system 
d in this interfa

rument suppo
e interface (4

gn proposal 

 of rotatio

). The inte

urrent base 

pport structu

l solution fr

pport struct

rument supp

terface pads

cal interface

r mechanical

Suppor

ults of the o

ng the geom

ion of the d

eel for such 

e already he

(CFRP) is 

                  

considers only 
ace. 

ort 
4 pads) 

Rela
structure

 

on will be 

erface with

line is defin

ure, which i

rom the stru

ture conside

port structu

s are bolted

es are shown

l interfaces.

rt Structu

optimization

metry of con

derotator m

a large par

avier than t

considered 

adjustment for

ay optic supp
e interface (4

Cryost

implement

the instrum

ned by 4 su

is better tha

uctural poin

ers also 4 s

ure interface

d down to th

n in Figure 

ure 

n process, th

ncept 18 wh

mass require

rt was not a

the mass lim

as first ch

r the lateral shif

port 
4 pads)

tat interface

ted10 (the a

ment suppo

upporting po

an the previ

nt of view. L

supporting p

e pads. Bot

he bearing s

44. 

he bearing 

ich offered

ement (1800

an option. A

mit. For tha

hoice to man

fting between th

alignment c

ort structure

oints with an

ous 3-point

Lastly, the in

points locat

h are bolted

support stru

support stru

the best per

0 kg TBC), 

As the bearin

at reason, ca

nufacture th

he axes. No tip-

concept is 

e has been 

n octopod-

ts interface 

interface to 

ted exactly 

d joints as 

ucture. The 

 

ucture was 

rformance. 

 it became 

ng support 

arbon fiber 

he bearing 

-tilt correction 



4 The MICADO Derotator 

71 

support structure. This material has been successfully implemented to build large 

structures for applications related to astronomical instrumentation. Several 

alternatives can be implemented to build such CFRP components, i.e. (i) laminating 

CFRP plates with other materials like aluminum in the form of honeycomb structure 

plates or, (ii) using pure CFRP to build the whole structure. For instance the LINC-

NIRVANA optical bench was built following the first approach (Rohloff, et al., 

2006), while the support structure for the slewing bearing of the LINC-NIRVANA 

GWS was built using the second alternative (Ingenieurbüro SCHLOSSMACHER, 

2006). Another example where pure CFRP was used is the PFS SUMIRE Bench 

(CarbonVision, 2014). As the second option offers a better specific stiffness, that 

method will be implemented to build the bearing support structure of the MICADO 

derotator. 

The manufacturing proposal of building the bearing support structure is presented in 

Figure 45 (CarbonVision, 2017). Preliminary dimensions have been defined 

according to the bearing size with an outer diameter of 3300 mm, an inner diameter 

of 2647 mm and a tentative height of 500 mm. The height of the structure, the 

thickness of the plates and the type of fibers are the parameter that can be adjusted to 

increase or decrease the stiffness of this part. It consist of two plates (upper and 

lower) build as single pieces with a thickness of 20.64 mm, the outer and inner 

cylindrical shells using 60 10.32-mm-thick plates and 60 ribs with a thickness of 

10.32 mm conforming the internal structure. All parts are joined using a self-

assembly system11 and then glued together with a special resin.  Through the 

manufacturing process, metallic inserts can be installed to bolt down all other 

components and to join the derotator with the instrument support structure interface 

pads (see Figure 46). These details will be included during the final design phase of 

the project. 

 

                                                 
11 The small plates forming the cylindrical shell and the ribs are manufactured with inserts that are introduced 
into slots in the upper and lower large plates.  
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Force A corresponds to the mass of all components to be installed on top of the 

bearing support structure (about 7850 kg TBC) and is applied on a ring defined by 

the contact surfaces of the lower thermal compensation ring. Force B represents the 

mass of the relay optic support structure (about 2000 kg TBC) and acts on the 

corresponding four upper interface pads. Finally, the connection with the instrument 

support structure is simulated with spherical joins, where the displacements of the 

interface pads are fixed but the rotations are kept free. The results of the first detailed 

FEA are presented in Table 8. Different types of fibers were considered in this 

structural calculation, High Tenacity and Strength (HTS) and a combination of HST 

with High Modulus fibers (HM). The estimated mass of the bearing support structure 

made of CFRP is about 500 kg (CarbonVision, 2017). 

Parameter HTS Fibers HTS+HM Fibers 

Max. axial deformation (Y axis) -0.051 mm -0.018 mm 

Min. axial deformation (Y axis) 0.011 mm 0.004 mm 

Max. radial deformation (X axis) 0.020 mm 0.009 mm 

Min. radial deformation (X axis) -0.022 mm -0.010 mm 

Table 8: Results of the bearing support structure FEA using the detailed FEM considering 
the lamination sequence and the strength of different types of fibers. The deformation in the 
X and Z axes are very similar. Therefore, only the values for X and Y axis are shown. 

In order to define the properties of the equivalent quasi-isotropic material, a 

validation FEA must be performed to guarantee that the structural behavior matches 

the detailed FEM. The results of this FEA using exactly the same boundary 

conditions previously explained are presented in Table 9 (see also Table 10). Both 

the calculation provided by the company CarbonVison and the values obtained as 

parts of this research work are given. The FEA performed by CarbonVision was 

executed using shell elements, while the calculation carried on at MPIA was 

performed using solid elements. However, a very small discrepancy between both 

FEA was achieved. The plots corresponding to the axial and radial deformations 

(MPIA FEA) are presented in Figure 48 and Figure 49 respectively. 
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Parameter Central Flange Bearing 

Diameter 2803 mm 

Material Stainless Steel 1.4301 Steel 46Cr4V 

CTE 16,0 x 10-6 mm/mm C° 11,7 x 10-6 mm/mm C° 

Operational ΔT 15 C° 

Difference in diameter (ΔØ) 0.673 mm 0.492 mm 

ΔØflange – ΔØbearing 0.18 mm 

Table 11: Differential thermal deformation at the interface with the cryostat. 

Parameter Support structure Bearing 

Diameter 2528 mm 

Material CFRP Steel 46Cr4V 

CTE 2 x 10-6 mm/mm C° 11,7 x 10-6 mm/mm C° 

Operational ΔT 15 C° 

Difference in diameter (ΔØ) 0.076 mm 0.444 mm 

ΔØbearing – ΔØsupport structure 0.37 mm 

Table 12: Differential thermal deformation at the interface with the bearing support 
structure. 

In order to define the adequate geometry for the support ring, an optimization 

process has also been carried out, but in this case focused only in the axial stiffness. 

The same optimization function IA as well as the same design criteria like in section 

4.2 are used here. As the general geometry of this part is already defined by the 

bearing size, the optimization is based on the parameters described in Figure 51. The 

different options considered are presented in Table 13 and the results of the 

optimization process are given graphically in Figure 52. The optimization process is 

performed with an arbitrary axial load and the 4-points interface on the bearing 

support structure. 
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arcsec (RMS in 360°) and could be reduced up to 0.3 arcsec when using six 

equidistant scanning heads if necessary (Sändig, 2016). As HEIDENHAIN offers an 

off-the-shelf solution to combine the signal of two scanning heads into one single 

output signal, this option has been implemented as base line in the derotator 

preliminary design. Other sources of errors affecting the encoder performance are 

described in detail by Häberle (2017). 

The metallic band goes into the slot machined in the bearing and is secured only 

using its tensioning cleat, for that reason the manufacturing tolerances of the 

mechanical interfaces on the bearing are extremely tight. The scanning head is 

supported by a self-aligning five degree of freedom mount (HEIDENHAIN, 2011), 

where the correct alignment is achieved using a dummy scanning head which has an 

insert that fixes into the band slot machined on the bearing. 

4.3.5 Controller Architecture 

Applying the adequate control strategy will have a huge impact on the performance 

of the derotator. This is a key aspect that must be considered with the goal of 

achieving the required differential angular positioning accuracy at the level of 2 

arcsec (RMS). The control system proposed for the preliminary design of the 

MICADO derotator has been successfully used in other applications related to 

astronomical instrumentation, where high precision positioning accuracy was 

required as well (Dreyer et al., 2014). The control system is based on a cascaded 

architecture, with the inner current/torque loop and the middle velocity loop, 

embedded into the outer position loop. Additionally, a velocity feedforward and a 

torque feedforward are also implemented in the controller. A friction compensation 

feature could also be applied if necessary. In this case, the friction torque must be 

estimated using a dedicated mathematical model. Then, a signal that compensates the 

predicted friction torque can be added to the controller in the inner current/torque 

loop (Olsson, Aström, Caudas de Wit, Gäfvert, & Lischinsky, 1998).  

Due to the positioning accuracy required for the MICADO derotator, this option is 

being considered for the design of the controller. The scheme of the proposed control 

system as part of the preliminary design is presented in Figure 57.  
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Item Mass (kg) 

Bearing support structure 500 

Thermal compensation ring (2x) 600 

Bearing 890 

Drive units (4x) 100 

Encoder unit 20 

Bolts and washers 50 

Total 2160 

Table 14: Derotator mass budget 

4.4 Derotator Static Structural Analysis 

Nowadays, numerical analysis methods like the FEA are becoming especially 

relevant during the design phase of complex systems. Therefore efficient and reliable 

numerical simulations are crucial for the development of high precision instruments 

like MICADO. The derotator is a central structural part of the MICADO instrument, 

connecting the cryostat with the instrument support structure, where the single-row 

four-point contact ball bearing has a key role as its main component. For that reason, 

developing an adequate FEM of the bearing will allow not only an accurate static 

FEA of the derotator itself, but also the calculations of the whole MICADO 

instrument for other aspects like the modal and the earthquake analyses. 

4.4.1 Modeling a Four-Point Contact Ball Bearing 

Most industrial applications where large slewing bearings are used, like cranes or 

civil engineering machines, must deal with heavy load and therefore high stress 

values. In those cases relative large deflections are tolerable and the change in the 

bearing friction is overcome by applying a higher torque to the mechanism. On the 

other hand, in applications like astronomical instrumentation the loads involved are 

relatively small. As a result, the stress values are not the driver of the design. In these 

circumstances, where high precision and accuracy are essential, the main goal is to 

minimize deformations in order to keep the instrument as stable as possible while the 

bearing is rotating. 
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The first approach that could be used to model a large four-point contact ball 

bearing, and maybe the easiest to implement, is simply using 3D solid elements in all 

of its components, i.e. the inner ring, the outer ring, and the balls inside the bearing. 

However, due to the size of these kinds of bearings (typically up to 8 m 

manufactured as one piece) this method is not the most efficient in terms of 

computation time and the required computing power. In order to obtain faster results 

with less computing power, several other alternatives have been proposed to simplify 

the FEM of large slewing bearings. For instance, using springs elements (Gao, 

Huang, Wang, & Chen, 2010), beams elements (Daidié, Chaib, & Ghosn, 2008) or a 

combination of them to replace the rolling elements in the slewing bearing (Krynke, 

Selejdak, & Borkowski, 2013).  

This section is dedicated to comparing these different ball bearing modeling 

techniques with the intention of analyzing their advantage and disadvantages. In this 

context, two additional alternatives were selected to perform the study. The first 

replaces the 3D modelling of the balls inside the bearing with spring elements and a 

second method uses beam elements instead. In all three cases the rings of the bearing 

are modeled using 3D solid elements (Barboza, et al., 2017). A schematic drawing of 

the bearing cross section used in the derotator prototype, which is taken as reference 

for this calculation is presented in Figure 58, while the main dimensions are 

presented in Table 15. The CAD model of the bearing was generated following those 

dimensions, where the diameter of the balls is 20.5 mm. For simplicity, the seals of 

the bearing are not considered in the FEA. The same image (Figure 58) is also used 

to show the load transmission (red arrows) through the bearing for the case of an 

axial load under compression. 
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௄ܨ ൌ
஺ܨ
௄ܰ
. ሺ30ሻ

Equation (28) represents the deformation behavior of a ball at its contact areas with 

the raceways, denoted by ߜ௄, where ܨ௄ is the ball force and ܥ௄ே is the stiffness 

constant at the contact areas of the ball with the raceways, described by equation 

(29). The ball diameter is represented by ݀௄ and ܭ is the osculation factor in the 

bearing (the standard value of ܭ ൌ 0.04 is used in this calculation). The ball force ܨ௄ 

can be obtained with equation (30), where ܨ஺ is the axial force acting on the bearing 

and ௄ܰ is the number of balls. The stiffness constant ܥ௄ே describes non-linear 

behavior, but for the implementation of the FEM a linear force-deformation relation 

is generally desired. The idealized linear stiffness constant for a ball is represented 

by equation (31) and denoted by ܥ௄௅ (ThyssenKrupp Rothe Erde, 2015), 

௄௅ܥ ൌ
௄ܨ
௄ߜ
. ሺ31ሻ

Depending on the size, the number of balls inside a four-point contact ball bearing 

can be large. Therefore, it is useful to reduce the number of required spring pairs by 

defining an equivalent stiffness ܥ௦, which can be obtained with equation (32). 

௦ܥ ൌ ௄௅ܥ
௄ܰ

்ܰ
, ሺ32ሻ

where ்ܰ is the number of spring pairs to be implemented into the FEM of the 

bearing. The value of ܥ௦ used in this FEA corresponds to 87.1 kN/mm with 60 spring 

pairs (for the whole bearing), which is the minimum number of spring pairs 

recommended by ThyssenKrupp Rothe Erde. The assembly of the springs into the 

FEM is shown in Figure 62. 
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are calculated with respect to the values 62.4 µm and 8 min, respectively. As 

previously commented, the stress values are relatively low and therefore not relevant 

for this particular application, where the deformations are the drivers of the overall 

design. For that reason, the discrepancy is not calculated for the stress variable. 

Based on the result obtained, the bearing FEM using spring elements (with coarse 

mesh) is chosen to be implemented for the derotator FEA. This FEM was also 

successfully used for the validation of the bearing FEA. The option using beam 

elements is faster in the calculation time but requires three times as much memory to 

perform the same analysis. 

4.4.3 Validation of the Bearing FEA 

The initial idea was to validate the FEA using the derotator test stand itself (see 

chapter 6). However, after some discussions it was concluded that such a validation 

was not possible using the whole test stand assembly. There are several factors that 

could influence the measurements of the deformations, like the flatness of the floor 

and the additional bolted connections, making it very difficult to identify the stiffness 

of single components separately, i.e. the bearing, the support structure, and the struts. 

For that reason, it was decided to request a dedicated stiffness test on the bearing. 

Such a test can be performed at the bearing supplier factory under controlled 

conditions. Three different load cases were considered for the stiffness test: axial 

force (FA) of 45 kN (including the mass of the upper plate on top of the bearing), 

radial force (FR) of 45 kN and tilting moment (M) of 18 kNm.  

The CAD model of the setup used to identify the stiffness of the bearing, as well as 

the location of the dial gauges to measure the deformations are shown in Figure 68. 

The bearing is bolted down on a 86-mm-thick steel ground plate with a diameter of 

1395 mm, while an additional 68-mm-thick steel upper plate with 1195 mm in 

diameter is mounted on top of it. A spacer with a thickness of 10 mm is placed 

between the upper plate and the bearing. The bolts were fastened with a nominal 

tightening torque of 117 Nm.  

For the axial deformation measurement, three dial gauges were placed equally 

spaced (3x120°) on top of the upper plate, for the radial deformation a dial gauge 
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In the FEA the deformation generated by the load corresponds only to the difference 

between step 2 (simulating the application of the load) vs step 1 (representing only 

the application of the bolt pretension). Therefore both sets of values are required for 

the comparison with the experimental data. In the axial force load case, the 

deformation was experimentally measured for only one bearing position and the 

values registered by the three dial gauges are considerably different. For that reason, 

it may not be appropriate to directly compare the average measured deformation of 

14.4 µm with the 8.3 µm obtained in the FEA. Indeed, the discrepancy is noticeably 

high, about 58%. However, both experimental and simulated deformations have the 

same order of magnitude, which can be considered an acceptable match, taking into 

account the size of the test setup and the small deformations registered by the dial 

gauges. For the radial force load case, the deformation of the bearing was measured 

for three different positions, which should provide better experimental data. In that 

case, the discrepancy between the average measured deformation and the FEA 

results is considerably smaller, less than 10%. Similarly as for the axial force load 

case, only one measurement was taken for the tilting moment load case. Therefore 

the same argument can be used to explain the difference between the experimental 

and simulated results. 

4.5 Results of the Derotator FEA 

Now, the alternative selected as result of the comparative analysis, using spring 

elements to replace the balls inside the slewing bearing, is applied on the nominal 

bearing for the MICADO derotator described in section 4.1. The stiffness of the 

spring elements is calculated according to the equations (28) to (32), where 60 

equivalent spring pairs are implemented in the FEM as well. Using an osculation 

factor ܭ ൌ 0.08 (which was defined by Rothe Erde for this special bearing), the 

equivalent stiffness of the springs used for the FEA of the MICADO derotator 

corresponds to 161 kN/mm. The boundary conditions applied to this calculation are 

similar to the ones used for the FEA of the CFRP bearing support structure. These 

boundary conditions are presented in Figure 74.  
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cryostat center of gravity. Additionally, the “displacement support” feature is also 

used in this calculation to restrict the rotation of the bearing outer ring with respect to 

the inner ring. In reality this degree of freedom is limited by the friction torque of the 

bearing. The connection between the bearing support ring and the instrument support 

structure is simulated in the same way using spherical joints, where only the 

displacements are fixed but the rotations are kept free. 

 All bolt connections in the derotator are simulated using bolt pretension and 

frictional contact, with values of 62.5 kN for the bolt pretension (which corresponds 

to a bolt pretension torque of 200 Nm for bolts strength class 8.8) and 0.2 for the 

friction coefficient respectively. In order to better mimic the reality, a multi steps 

analysis is also performed in this case. First the bolt pretension is applied, generating 

stresses and deformations in the model (first step) and then, once the bolt pretension 

has been “locked”, the additional loads are applied in the second step. As the mass of 

the drive units and the scanning heads mounts is negligible compared to the rotating 

mass and the weight of the relay optic support structure, they are not considered in 

the FEA.  

In order to compare the results of the FEA with the requirements of the allowed axial 

and radial deformations into the bearing, the deformation plots corresponding to the 

axes of the global coordinate system can be directly used. However, to check the 

torsional deformation several control nodes are needed. Those control nodes are 

located at the bearing interfaces where the maximum (location 1) and minimum 

deformations (location 2) occur. The location of these control nodes are given in 

Figure 75. Location 1 corresponds to the area of the derotator which is not supported, 

between two supporting pads and, the location 2 corresponds to the area where the 

supporting pads are located (see Figure 77). 
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isotropic equivalent material is used, the estimated deformations are about twice as 

large in absolute terms, when compared to those obtained with the detailed CFRP 

FEM. 

4.6 MICADO Instrument Eigenfrequency 

The eigenfrequency of the whole MICADO instrument is a design aspect that must 

be carefully monitored. A requirement of 14 Hz (which already includes a safety 

factor of 2 over the minimum allowed value of 7 Hz) has been defined as the 

minimum for the first natural frequency of vibration (Schmid, 2015). Through the 

design process of the instrument support structure, it has been identified that the 

configuration of the mechanical interfaces towards the derotator has a considerable 

impact on the eigenfrequency of the instrument. For that reason, a dedicated modal 

analysis has been performed to estimate the impact of an interface with 8 supporting 

points instead of 4, which is the current baseline for the overall design of MICADO. 

The 8-points interface towards the bearing support structure can be obtained by 

splitting the supporting pads in the upper part of the octopod instrument support 

structure. This option provides a better load distribution for the derotator, which also 

has a significant impact with respect to the deformations coming into the bearing. 

Despite the results obtained with the derotator structural analysis, which in principle 

shows that the 4-points interface could work, the option with 8 supporting pads is 

seen as a better solution from the structural point of view. 

The corresponding FEA is performed using a dummy single-piece cryostat to 

simulate the whole mass that the derotator must carry. The total mass of the 

derotator-cryostat assembly used for this simulation is about 12 tons. In addition, the 

structural effect of the relay optics group is also simulated here. In this case, a 2 ton 

dummy mass suspended above the cryostat by the supplementary octopod support 

structure of the relay optics table is used. The results of the modal analysis 

corresponding to the first eigenfrequency mode for both options are presented in 

Figure 85 and Figure 86, while the values for the next five Eigenfrequency modes 

are given numerically in Table 20. 
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Mode 
Frequency     

4-points (Hz) 
Mode shape 

Frequency     

8-points (Hz) 
Mode shape 

1 26.7 Lateral movement 22.5 Lateral movement 
2 26.7 Lateral movement 22.5 Lateral movement 
3 45.8 Lateral movement 26.4 Lateral movement 
4 45.8 Lateral movement 26.4 Lateral movement 
5 48.2 Piston movement 30.5 Rotation 
6 53.7 Rotation 49 Lateral movement 

Table 20: Results of the modal analysis for the first six eigenfrequency modes.  

In accordance with the results of the modal analysis for the whole MICADO 

instrument, the reduction of the first eigenfrequency as a consequence of the 

implementation of the 8-points interface corresponds only to 16%. Based on these 

results, it was recommended to the MICADO consortium to implement the 8-points 

interface, which delivers a better load distribution for the derotator-cryostat 

assembly. The interface option with 8 supporting points will contribute to the risk 

mitigation related to the overall performance of the MICADO instrument as well, 

providing a more stable mechanical setup while the cryostat is rotating on top of the 

derotator. The modal analysis has also demonstrated that the weakest part of the 

instrument, with respect to the Eigenfrequency, is the auxiliary octopod for the relay 

optics table. 

4.7 Optimization of the Warping Moment Effect 

The warping moment (W) acting on the bearing support structure should be 

completely removed or at least reduced to its minimum. Nevertheless, this task must 

be carried out within the constraints imposed by the common mechanical interfaces 

of the derotator towards both (upper and lower) octopod support structures. A large 

warping moment over the derotator will introduce warping deformations on the 

bearing, which are not desired for the performance of the mechanism and could 

affect its angular positioning accuracy. The goal of the optimization of the warping 

moment is to achieve the static equilibrium of the bearing support structure cross 

section, where the sum of the moments (at the cross section centroid or center of 

gravity) should be minimized. An example with general rotationally symmetric load, 
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Parameter 
Current 

interfaces 

Proposed 

interfaces 
Units 

W1

Mass Cryostat 8.800 8.800 kg 
Mass CTE Ring 300 300 kg 
Mass Bearing/2 440 440 kg 

Total mass 9.540 9.540 kg 
For the calculation total mass/4 2.385 2.385 kg 

Fcz 23 23 kN 
A1 0.155 0.155 m 

W1 = Fc A1 3.63 3.63 kNm 
W2

Mass Relay Structure 2100 2100 kg 
For the calculation total mass/4 525 525 kg 

Fsz 5.15 5.15 kN 
A2 0.040 0.172 m 

W2 = Fsz A2 0.2 0.9 kNm 
W3 

Mass Cryostat 8.800 8.800 kg 
Mass Derotator 2.140 2.140 kg 

Mass Relay Structure 2.100 2.100 kg 
Total mass 13.040 13.040 kg 

For the calculation total mass/4 3.260 3.260 kg 
FRZ 32.0 32.0 kN 
β 8.4 9.5 ° 

FR = FRZ/cosα 32.33 32.43 kN 
A3 0.031 0.85 m 

W3 = FRZ A2 1.0 2.76 kNm 
W= W1 -W2- W3 2.42 -0.02 kNm 

Table 21: Results of the warping moment optimization. 

Ideally in order to reduce W, the interface pads of the instrument support structure 

should be moved radially inwards towards the derotator axis of rotation. The 

interfaces pads of the relay optics support structure should be moved radially 

outwards away from the derotator axis of rotation. Nevertheless this task is clearly 

limited by the available space to locate both sets of interface pads. This, however, is 

only valid in the case of ideal rotational symmetry with constant support, which is 

not given for the envisaged octopod. Here, the intermediate sections between the 

struts experience different kind of deformations and the effects of the warping 

moment optimization need to be verified via FEA. In order to preserve the 
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advantages of a lower warping moment for the bearing, the always favored 8-point-

mounting (of the same octopod) is strongly recommended. This not only reduces the 

deformations along the circumference of the bearing (axial direction), but also 

additional perpendicular deformations in the radial direction. This is for the cost of 

only ~21.5% (15.8% with relay optics table) of eigenfrequency reduction and with 

>23Hz well above the 14Hz requirement (14Hz already including a safety factor of 

2). 
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5 The end-to-end simulation 

An end-to-end simulation allows considering all essential elements and effects 

between the input and the output of a dynamic system. So far, mainly the static 

performance of the MICADO derotator preliminary design has been discussed and 

analyzed in detail in chapter 4. The static FEA considered here focuses on the linear 

relation that exists between the displacements, the stiffness of a body or mechanical 

system (in this case the derotator) and the external forces applied to it. This relation 

can be described for a mechanical system in generalized coordinates by an algebraic 

equation or by a linear system of equations in matrix form (in the case of several 

degrees of freedom) with the following expression 

ݍܭ ൌ ,෨ܨ ሺ33ሻ

where ܭ is the stiffness matrix of the mechanical system, ݍ is a vector representing 

the displacements of the degrees of freedom in generalized coordinates and ܨ෨ is the 

load or external excitation applied to the system. Equation (33) is mostly used to 

solve elastostatic problems, but it can be also used for other stationary phenomena 

(Bathe, 2014). For problems involving structural dynamics, however, other effects 

like the structural damping or viscous friction and the effects of inertia of the system 

must be considered in the analysis (see section 5.1). 

This chapter provides the basic tools to develop the end-to-end simulation of the 

MICADO derotator, where its dynamical structural performance can be combined 

with the controller architecture, in order to estimate the performance of the derotator 

as a complete system. The contribution of this research work for the full end-to-end 

simulation of the derotator is focused only on the mathematical modelling of the 

mechanical system and the friction phenomenon of the bearing. The modelling of the 
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control system was developed in parallel, implemented in the test stand (chapter 6) 

and will be described in Glück (2019). 

5.1 Basics of structural dynamics 

Real technical systems can be simulated by idealized equivalent systems defined 

through mathematical expressions. In this case, the key task of the engineers is to 

identify the influential aspects (parameters) of the real technical problem and 

appropriately reproduce them in the idealized equivalent mathematical model. In 

order to represent a multibody mechanical system lumped mass models are typically 

used, which consist of single masses (or bodies with a defined moment of inertia in 

the case of rotational movement) joined together e.g. with dampers and springs. This 

ideal equivalent model will not provide an exact representation of the real physical 

system, but it will deliver an approximation which in most of the cases is good 

enough for the task under analysis (Wagner & Mlejnek, 2012). For the given 

particular application, it is estimating the dynamic performance of the MICADO 

derotator. 

Representing the dynamic behavior of a mechanical system by means of a 

mathematical model can often be accomplished by extending equation (33), which 

was used to represent the static performance of a mechanical system (in that case, 

velocities and accelerations are zero, therefore the damping effect and inertial 

effects, respectively, are not considered in the equation). So, the dynamic behavior of 

a mechanical system with multiple degrees of freedom can be represented as follow 

ሷݍܯ ൅ ሶݍܦ ൅ ݍܭ ൌ ,෨ܨ ሺ34ሻ	

where ݍሷ , ሷݍ ,  are the vectors of acceleration, velocity and displacements in ݍ

generalized coordinates and, ܭ,ܦ,ܯ are the mass, damping and stiffness matrices. 

Equation (34) is a second order differential equation that can be analytically solved 

and has exact basic solutions for especial cases depending on the damping ratio 

value.  
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Equation (34) can be written for the special case of a linear system with one degree 

of freedom following the same general form  

ሷݍ݉ ൅ ሶݍ݀ ൅ ݍ݇ ൌ ,෨ܨ ሺ35ሻ

where ݉ is the mass or moment of inertia in case of rotational displacements, ݀ 

damping coefficient (translational or rotational), ݇ is the stiffness (translational or 

rotational), ݍ is the degree of freedom (displacement or rotation) and ܨ෨ is the load, 

that could be represented by a force or a moment depending on the case. 

If the general mathematical expression describing a mechanical system with one 

degree of freedom (35) is divided by ݉, the following standard form can be obtained 

ሷݍ ൅ ሶݍ଴߱ܦ2 ൅ ߱଴
ଶݍ ൌ

߱଴
ଶ

݇
,෨ܨ ሺ36ሻ

where ܦ is the dimensionless damping ratio and ߱଴ is the undamped natural 

frequency expressed in Hz. These two system parameters are defined as follow: 

߱଴ ൌ ඨ
݇
݉
, ሺ37ሻ

ܦ ൌ
݀

2√݉݇
. ሺ38ሻ

As a first step to use equation (36) for the analysis of mechanical systems, the 

solution of a simplified case where ܨ෨ሺݐሻ ൌ 0 (system under free oscillations) is 

initially discussed. This is known as the homogeneous solution and is also used to 

describe the different possible solutions according to the damping ratio ܦ. The 

special case of an undamped system is not of interest for this application and 

therefore is not discussed here. Afterwards, the so called particular solution with 

ሻݐ෨ሺܨ ് 0 (system under forced oscillations) is briefly introduced, to finally obtain 

the general overall solution. More elaborated information about the analysis of 

equation (36) and the corresponding solutions is provided by Wagner & Mlejnek 

(2012). 
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5.1.1 Body under Free Oscillations with Damping 

Equation (36) is describing the standard form of the equation of motion, with 

ሻݐ෨ሺܨ ൌ 0 it can be written as 

ሷݍ ൅ ሶݍ଴߱ܦ2 ൅ ߱଴
ଶݍ ൌ 0. ሺ39ሻ	

For the case of a system with damping (ܦ ൐ 0) three different cases can be defined, 

i.e. underdamped (ܦ ൏ 1), critically damped (ܦ ൌ 1) and overdamped (ܦ ൐ 1).  As 

the underdamped case is the relevant one for metal structures analysis, this is the 

only case discussed here. A typical value for the damping ratio in this kind of 

structures is ܦ ൌ 0.05 (Wagner & Mlejnek, 2012). The solution ݍሺݐሻ for equation 

(39) with ܦ ൏ 1 is defined by equation (40) 

ሻݐሺݍ ൌ ݁ି஽ఠబ௧ሺݍො௖ ݏ݋ܿ ݐ߱ ൅ ො௦ݍ ݊݅ݏ ,ሻݐ߱ ሺ40ሻ	

where the parameters ݍො௖ and ݍො௦ are constants that can be determined with the initial 

conditions applied to the system: 

଴ݐሺݍ ൌ 0ሻ ൌ 	and	଴ݍ ሶݍ ሺݐ଴ ൌ 0ሻ ൌ ሶ଴ݍ . ሺ41ሻ	

Using the subsequent equations (42) and (43) 

ොݍ ൌ ටݍො௖
ଶ ൅ ො௦ݍ

ଶ ሺ42ሻ	

݊ܽݐ ߮ ൌ
ො௦ݍ
ො௖ݍ

ሺ43ሻ	

the homogeneous solution can be reformulated in the from 

ሻݐሺݍ ൌ ݁ି஽ఠబ௧ݍො ݐሺ߱ݏ݋ܿ െ ߮ሻ, ሺ44ሻ	

where the parameter ݍො represents the amplitude and ߮ the phase shift. The damped 

natural frequency ߱ is then defined as follow 

߱ ൌ ߱଴√1 െ .ଶܦ ሺ45ሻ	
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5.1.2 Body under Forced Oscillations with Damping 

The situation of bodies under the effects of external forces is the most relevant for 

the analysis of real applications. Following the same approach as in the previous 

section, only the solution for the underdamped (ܦ ൏ 1) case is discussed here. Using 

the superposition principle, the general overall solution of equation (36) can be 

obtained by adding the particular solution (ݍ௣), to the previously described 

homogeneous solution presented in equation (40). This results in the following 

expression 

ሻݐሺݍ ൌ ݁ି஽ఠబ௧ሺݍො௖ ݏ݋ܿ ݐ߱ ൅ ො௦ݍ ݊݅ݏ ሻݐ߱ ൅ .ሻݐ௣ሺݍ ሺ46ሻ

The general case of a harmonic excitation is used as input for the equation of motion 

defined by equation (36), in which ܨ෨ is represented by a force of the form 

ሻݐ෨ሺܨ ൌ ෨෠ܨ ݏ݋ܿ ,ݐߗ ሺ47ሻ

where ܨ෨෠ is the excitation amplitude in N or Nm and Ω is the excitation frequency in 

Hz. The particular solution ݍ௣ሺݐሻ corresponding to the harmonic excitation ܨ෨ሺݐሻ is 

(Wagner & Mlejnek, 2012): 

ሻݐ௣ሺݍ ൌ
෨෠ܨ

݇
ܸሺߟሻ ݐߗሺݏ݋ܿ െ ߮଴ሺߟሻሻ ሺ48ሻ

with 

ߟ ൌ
ߗ
߱଴

ሺ49ሻ

ܸሺߟሻ ൌ
1

ඥሺ1 െ ଶሻଶߟ ൅ ଶߟଶܦ4
ሺ50ሻ

߮଴ሺߟሻ ൌ ݊ܽݐܿݎܽ
ߟܦ2
1 െ ଶߟ

ሺ51ሻ

In practice, the differential equation or system of differential equations for arbitrary 

functions of ܨ෨ሺݐሻ defining the equations of motions of a mechanical system are 

solved with software of numerical analysis like MATLAB and Simulink. For this 
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purpose, the general equation of motion in matrix form (a second order differential 

equation) described by equation (34), is normally rearranged multiplying the whole 

equation by the term Mିଵ as follows 

ሷݍ ൌ െିܯଵݍܦሶ െ ݍܭଵିܯ ൅ିܯଵܨ෨. ሺ52ሻ	

The second order differential equation as described in Equation (52) can be directly 

solved in Simulink (Herman, 2017), either as a single equation for a mechanical 

system with one degree of freedom or in matrix form for a system with multiple 

degrees of freedom. Simulink is also the tool used to simulate the dynamic 

performance of the derotator mechanical system in this thesis. As systems become 

more complex, in some cases the state-space representation of a dynamic system is 

more convenient. Another alternative of representing a dynamic system is by its 

transfer function. These approaches are discussed in the next sections. 

5.1.3 State-Space Representation 

The state-space representation of a mechanical system is normally used to simplify 

its mathematical model. It results from transforming the second order differential 

equation representing its dynamic performance (52), into a single first order matrix 

differential equation. This can be done with the introduction of the so called state 

variables ݔ, ሶݔ , that will fully describe the system and its response to external 

excitations. The state variables are defined as follows 

ݔ ൌ ቂ
ݍ
ሶݍ ቃ ሺ53ሻ	

ሶݔ ൌ ൤
ሶݍ
ሷݍ ൨. ሺ54ሻ	

The general state-space representation of a dynamic system is then given by the 

following equations 

ሶݔ ൌ ݔܣ ൅ ݑܤ ሺ55ሻ	

ݕ ൌ ݔܥ ൅ ,ݑܦ ሺ56ሻ	
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where ܣ is called the state or system matrix, ܤ is the input matrix, ܥ output matrix 

and	ܦ is the feedforward matrix. All four matrices are constant and represent the 

characteristics of the system. The parameter ݑ represents the input vector of the 

system and ݕ describes the output vector (Åström & Murray, 2009). 

Taking the general equation of motion (52), the dynamic system in state-space 

representation is defined as 

ሶݔ ൌ ቂ 0 1
െିܯଵܭ െିܯଵܦ

ቃ ݔ ൅ ቂ 0
෨ܨଵିܯ

ቃ ݑ ሺ57ሻ

ݕ ൌ ሾ1 0ሿݔ . ሺ58ሻ

As most mechanical system models do not have a direct feedforward, the ܦ matrix is 

often zero. Typically, the feedforward is part of the control system, it does not 

belong to the mechanical system itself. 

5.1.4 Structural Transfer Function 

The transfer function is also a commonly used method to describe a dynamic system. 

Generally speaking, it describes the input-output relation of the system, in other 

words, how the system reacts to any given input like an external force. If the 

dynamic system is represented by a differential equation, as in the case of the 

mechanical system with one degree of freedom defined by equation (35), the transfer 

function can be obtained taking the Laplace Transform of the differential equation 

with zero initial conditions. Recalling equation (35) 

ሷݍ݉ ൅ ሶݍ݀ ൅ ݍ݇ ൌ ,෨ܨ ሺ35ሻ

the Laplace Transform of this differential equation can be written as 

ሺ݉ݏଶ ൅ ݏ݀ ൅ ݇ሻݍሺݏሻ ൌ .ሻݏ෨ሺܨ ሺ59ሻ

The transfer function of the system is the ratio between the output and the input, 

normally denoted by ܩሺݏሻ or ܪሺݏሻ 

ሻݏሺܪ ൌ
ሻݏሺݍ

ሻݏ෨ሺܨ
ൌ

1
ሺ݉ݏଶ ൅ ݏ݀ ൅ ݇ሻ

, ሺ60ሻ
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where ܨ෨ሺݏሻ represents the input and qሺݏሻ the output of the system. 

The transfer function is frequently used for characterizing existing dynamic systems 

and for the parameter identification or verification of dynamic system models in the 

frequency domain. This method is also called the frequency response or harmonic 

response of the system. In this case, the output describing the behavior of the system 

(calculated through its transfer function) is registered by its response to a harmonic 

sine or cosine steady state input signal. The results of the frequency response of a 

dynamic system are normally presented in the so called Bode plot, where the 

amplitude and the phase shift are plotted as a function of the input signal frequency. 

In some applications, deriving the mathematical model of a dynamic system can be 

difficult. The frequency response can be here a powerful tool to experimentally 

obtain the transfer function of a dynamic system. This technique is called sine sweep 

method, where the frequency response is obtained over the desired frequency range. 

The analytical transfer function is then obtained by curve fitting the experimental 

data (Åström & Murray, 2009). 

5.2 Specific challenges of modelling the derotator  

As the derotator is a subsystem of the whole MICADO instrument, which connects 

the cryostat with the instrument support structure, the dynamic performance of the 

derotator cannot be analyzed as an independent subsystem. The effects of the 

instrument support structure, the relay optics support structure and the cryostat, must 

be considered in the mechanical model. This means, that the mathematical model of 

the whole MICADO instrument mechanical system is required to estimate the 

dynamic performance of the derotator. For the end-to-end simulation a lumped mass 

model equivalent to the MICADO instrument is presented in Figure 91 (as the relay 

optic table is still not determined, this element has not yet been included in the 

model), where the relevant rotational degree of freedom is defined by the parameter 

 .ߠ

 The mechanical model includes the servo motor (yellow box), the Harmonic Drive 

gear (green box), the bearing (which is divided into two parts, i.e. the outer and inner 
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(including the upper thermal compensation ring) is joined to the first body by means 

of a damper (݀ீ஼) as substitute of the bearing friction. The bearing friction is not a 

constant variable and is actually a nonlinear phenomenon which is not trivial to 

model (see section 5.3), therefore this parameter is represented as a function of the 

bearing angular velocity ݀ீ஼ ൌ ݂ሺߠሶீ஼ሻ. The third body (with moment of inertia ݆ூ) 

representing the cryostat internal cold structure is joined to the second body by a 

spring (݇ூ) and a damper (݀ூ)  as the isolating structure. Finally, the drive unit is 

modeled with the following configuration: the body representing the servomotor 

(with moment of inertia ݆ெ) is joined to the ground by a damper (݀ெ), the body 

representing the Harmonic Drive gear (with moment of inertia ݆ு஽) is joined to the 

element representing the motor by an ideal stiff connection and consequently no 

spring is implemented here, the last body representing the pinion (with moment of 

inertia ݆௉) is joined to the element describing the Harmonic Drive gear by a spring 

(݇ு஽). The Harmonic drive is a complex element itself and the simplest possible 

representation has been selected for the MICADO mechanical model, which consist 

of modeling it as a pinion and a gear wheel pair. The equivalent system using this 

approach is presented in Figure 92. More detailed models are given by Tuttle (1992) 

and Taghirad (1995). 
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Through the free body diagrams of each of the element considered in the reduced 

MICADO mechanical model, the following equations of motion can be established: 

െ݆ாଵߠሷாଵ െ ݀ாଵߠሶாଵ െ ݇ு஽ߠாଵ ൅ ݇ு஽ ଶܰீߠ஼ ൌ െ ாܶଵ ሺ65ሻ

െ݆௉ߠሷ௉ െ ݇ு஽ߠ௉ ൅ ݇ு஽ߠாଵ ൅ ௖ܴ௉ܨ ൌ 0 ሺ66ሻ

݆ீ஼ߠሷீ஼ ൅ ሺ݀ீ஼ ൅ ݀ூሻߠሶீ஼ ൅ ݇ூீߠ஼ െ ݀ூߠሶூ െ ݀ீ஼ߠሶ஻ி െ ݇ூߠூ ൅ ௖ܴீܨ ൌ 0	 ሺ67ሻ

݆஻ிߠሷ஻ி ൅ ሺ݀ௌ ൅ ݀ீ஼ሻߠሶ஻ி െ ݀ீ஼ߠሶீ஼ ൅ ݇ௌߠ஻ி ൌ 0 ሺ68ሻ

݆ூߠሷூ ൅ ݀ூߠሶூ ൅ ݇ூߠூ െ ݀ூߠሶீ஼ െ ݇ூீߠ஼ ൌ 0 . ሺ69ሻ

By means of mathematical arrangement equations (66) and (67) can be combined in 

one single equation of the from 

݆ாଶߠሷீ஼ ൅ ሺ݀ீ஼ ൅ ݀ூሻߠሶீ஼ െ ݀ூߠሶூ െ ݀ீ஼ߠሶ஻ி ൅ ݇ாଶீߠ஼ െ ݇ூߠூ െ ଶܰ݇ு஽ߠாଵ ൌ 0 ሺ70ሻ

where ଶܰ is the gear ratio between the gear wheel and the pinion and 

݆ாଶ ൌ ݆ீ஼ ൅ ݆௉ሺ ଵܰሻଶ ሺ71ሻ

݇ாଶ ൌ ݇ூ ൅ ு஽ሺܭ ଵܰሻଶ. ሺ72ሻ

 This operation reduces the mathematical model to a system of four second order 

differential equations and that system of four equations can also be written in matrix 

form as follows  

൦

െ݆ாଵ 0 0 0
0 ݆ாଶ 0 0
0 0 ݆஻ி 0
0 0 0 ݆ூ

൪

ۏ
ێ
ێ
ێ
ߠۍ
ሷாଵ
ሷீ஼ߠ
ሷ஻ிߠ
ሷூߠ ے
ۑ
ۑ
ۑ
ې

൅ ൦

െ݀ாଵ 0 0 0
0 ݀ீ஼ ൅ ݀ூ െ݀ீ஼ െ݀ூ
0 െ݀ீ஼ ݀ௌ ൅ ݀ீ஼ 0
0 െ݀ூ 0 ݀ூ

൪

ۏ
ێ
ێ
ێ
ߠۍ
ሶாଵ
ሶீ஼ߠ
ሶ஻ிߠ
ሶூߠ ے
ۑ
ۑ
ۑ
ې

൅ ൦

െ݇ு஽ ݇ு஽ ଶܰ 0 0
െ݇ு஽ ଶܰ ݇ாଶ 0 െ݇ூ

0 0 ݇ௌ 0
0 െ݇ூ 0 ݇ூ

൪ ൦

ாଵߠ
஼ீߠ
஻ிߠ
ூߠ

൪ ൌ ൦

െ ாܶଵ
0
0
0

൪.	

ሺ73ሻ
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A simplified version of the mathematical model describing the MICADO mechanical 

system is implemented to simulate the dynamic behavior of the derotator prototype, 

which is described in chapter 6. With exception of the bearing friction (݀ீ஼), all 

parameters of the model are constants which can be either taken from catalogues 

(like the Harmonic Drive gear stiffness and the servomotor viscous friction) or 

estimated using equations (37) and (38) once the relevant eigenfrequeny has been 

calculated through a FEA.  

5.3 Modeling the bearing friction 

As previously mentioned (see section 4.1 and 4.3.5), the bearing friction is a highly 

nonlinear phenomenon that can be influenced by many factors and therefore is 

difficult to simulate through a mathematical model. Several friction models, static 

and dynamic ones, have been proposed to estimate and predict the friction related 

stick-slip effects, which degrades the performance of mechanical systems influenced 

by high friction values. Some of these models are discussed in detail by Armstrong-

Hélouvry, Dupont, & Canudas de Wit (1994), Dupont, Armstrong, & Hayward 

(2000), Olsson, Aström, Caudas de Wit, Gäfvert, & Lischinsky (1998). Friction 

compensation on the other hand is a powerful control tool to improve the 

performance of mechanical systems highly influenced by the friction related stick-

slip effects, where high positioning accuracy is required. 

The LuGre representation (Canudas de Wit, Olsson, Aström, & Lischinsky, 1995), as 

dynamic friction model has been previously used in applications related to 

astronomical instrumentation (Dreyer, et al., 2014). This model has also been chosen 

to simulate the friction phenomenon of the slewing bearing for the MICADO 

derotator end-to-end simulation and the eventual friction compensation through the 

control system. The notation used by Olsson (1996) is used here for the description 

of the friction model. 

The LuGre model is based on the bristle interpretation of the friction, assuming that 

on microscopy level surfaces are irregular and therefore the contact between two 

surfaces occur through asperities, supposed to elastic bristles.  The friction force (ܨ) 
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6 The experiment: Derotator test stand 

The derotator is a key subsystem of the MICADO instrument. For that reason, in 

order to reduce the risk of possible design flaws and due to the demanding 

positioning accuracy requirement, a prototype as technology demonstrator is 

essential in the early stage of the project. The main goal of the derotator test stand is 

to probe the proposed concept of providing field rotation compensation for the 

MICADO instrument with the chosen bearing technology, i.e. slewing bearings, 

specifically a four-point contact ball bearing. However, the experiment has been 

designed in such a way that all components (with exception of the bearing and the 

band encoder with a smaller diameter but exactly the same type to be used later in 

the nominal size) could be eventually used in the nominal MICADO derotator. These 

are: the servomotor, the Harmonic Drive gear, the encoder scanning heads, and all 

the electronics hardware used to power and control the derotator test stand. 

This representative design approach will allow not only testing of the general 

concept, but also verifying, with nominal hardware, features like the backlash 

suppression system and the whole controller architecture optimization. Furthermore, 

understanding the impact of the bearing friction over the angular positioning 

accuracy of the system and how to compensate the related stick-slip effects is a 

crucial task to be carried out with the derotator test stand. Last but not least, the 

derotator test stand will allow the identification and verification of the mechanical 

system model described in chapter 5. In a final stage of the test campaign, the 

experimental results obtained with the prototype will allow to upscale the results 

given by the end-to-end simulation. Other technical aspects like the Assembly, 

Integration and Verification (AIV) procedure and the implementation of the liquid 
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shimming (see section 4.1.1) can be also put in practice with the derotator prototype. 

Chapter 6 collects the most relevant aspects and results obtained so far with the 

experiment. 

6.1 Design of the experiment 

The derotator test stand was designed based on a standard four-point contact ball 

bearing offered by Rothe Erde. The selection of the bearing was driven by its size 

and therefore, the selected one was the biggest off-the-shelf bearing available. The 

intention was to minimize the delivery time of the bearing in order to accelerate the 

manufacturing process of the whole experiment.  

The main differences between the standard bearing used in the test stand and the high 

precision one considered for the MICADO derotator are presented in Table 22. The 

friction torque values for the test bearing were calculated for an axial load of 30 kN, 

which was the expected mass of the cryostat assembly at the time when the 

experiment was designed and built. The friction torque values of the nominal bearing 

are calculated for an axial load of 70 kN, which is the current estimation for the mass 

that the derotator should carry on top of it. Due to the difference in the friction torque 

between the test bearing and the nominal bearing (mainly due to the diameter), a 

friction simulator has been included in the design of the prototype. 

Parameter Test Bearing Nominal Bearing 
Raceway diameter 1094 mm 2667 mm 

Axial runout ≤ 50 µm ≤ 30 µm 
Radial runout ≤ 60 µm ≤ 30 µm 
Gear module 8 mm 6 mm 

Number of teeth 148 471 
Starting friction torque (0 rpm) 1000 Nm 1700 Nm 
Running friction torque (1 rpm) 900 Nm 1500 Nm 

Raceway configuration Spacers Cage 
Class quality 0 (worst) 5 (best) 

Table 22: Difference between the standard test bearing and the high precision nominal 
bearing.  

The test stand consists of the support structure, the dummy mass with interface 

flange (simulating the MICADO cryostat), the alignment system (see Figure 102 
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Figure 1

6.1.1 

The sup

supporte

assembl

to the b

placed o

flat con

the inte

welded 

mm and

flange 

correspo

(2017), 

bearing 

Beari
interface 

Bearin

ign of the e

100: Derotato

Support

pport struct

ed by thre

ly. A steel p

earing, the 

on key poin

ntact surface

erface pads 

together. T

d 925 mm 

(which sim

onding to t

where the

was also us

ing 
flange 

ng 

experiment  

or test stand 

t structu

ture consis

ee legs. Co

plate on top

drive units 

nts for addi

e, the upper

towards th

The dummy 

in diamete

mulates the 

the derotato

e FEM usin

sed for this 

CAD model

ure and d

ts of a hex

ommercial 

 of the hexa

and the enc

tional struc

r face of the

he legs, mu

mass consi

r, placed o

cryostat c

or test stand

ng springs 

calculation

l cross sectio

dummy m

xagonal str

structural 

agonal fram

coder scann

ctural reinfo

e interface p

ust be mac

ists of 20 st

on top of th

central flan

d is describ

elements t

n, see section

on. 

mass 

ructural fra

steel profi

me is used as

ning head m

orcement. In

plate as wel

chined after

teel plates w

he 50mm th

ge, see Fig

bed in deta

to simulate

n 4.4.1. 

me (see Fi

les are use

s mechanica

mount. Sever

n order to g

ll as the low

r the whole

with a thick

hick bearing

gure 101). 

ail by Barbo

the balls 

 

igure 101) 

ed in this 

al interface 

ral ribs are 

guarantee a 

wer face of 

e frame is 

kness of 25 

g interface 

The FEA 

oza, et al., 

inside the 

Drive unit 



Figure 101

6.1.2 A

The alignm

on the in

machined 

adjust the 

the pins ± 

go into a 

fix the re

necessary 

the central

bearing, s

fixed at th

Hexagon

1: Support st

lignmen

ment system

nterface flan

into the in

final positi

1 mm in al

hole and a 

elative posi

to absorb 

l flange of t

ee section 4

he final posi

nal Frame 

tructure and d

nt system

m consists o

nge to the 

nterface flan

ion during t

ll directions

slot, respec

ition betwe

expansion o

the MCIAD

4.3.2. After 

tion in the i

B
Inte

dummy mass

m 

of two pins

bearing (s

nge to allow

the alignme

s within a pl

ctively, prev

een both pa

or contracti

DO cryostat

the alignm

interface fla

 Surface 
afte

Bearing Int

Bearing 
erface Plate 

6 The ex

s for the dero

s placed opp

see Figure 

w the instal

ent, the inte

lane paralle

viously ma

arts. The i

ions of the 

, which is m

ment procedu

ange throug

to be machi
er welding 

terface Flang

xperiment: D

otator prototy

posite each 

102). Two

llation of th

erface flang

el to the bea

chined into

mplementat

interface f

made of diff

ure is finish

h several de

ned 

ge 

Derotator te

ype. 

other (180

o special h

he pins. In 

ge can move

aring. The p

o the test be

ation of the

flange (repr

fferent steel 

hed, the pin

edicated scr

Steel P

est stand 

139 

 

 degree) 

holes are 

order to 

e around 

ins must 

earing to 

e slot is 

resenting 

than the 

ns can be 

rews. 

Plates



6.1 Des

140 

Figure 1
derotator
MICAD

The alig

central 

the pos

screw is

that is 

other). T

angular 

the alig

surface 

on, the 

must be

particul

between

ign of the e

102: Alignm
r test stand
O instrumen

gnment pro

flange of th

itioning of 

s fixed to th

measuring 

The bearing

position of

gnment proc

of the MIC

cold structu

e aligned tak

ar case of th

n the tape en

experiment  

ment system 
d. A similar
nt. 

ocedure mus

he MICAD

this part. T

he bearing 

the differe

g must be r

f the interfa

cedure is th

CADO cryos

ure carrying

king as refe

he test stan

ncoder ring 

Pin into H

between the
r aligment c

st be perfor

O cryostat)

To set the 

interface p

ence betwee

rotated and 

ace flange. 

he outer surf

stat central 

g all optica

erence the s

d, the same

and the int

Hole 

e cryostat du
concept is p

rmed only w

) and witho

position of

plate, this is

en two refe

this differe

The referen

face of the 

flange coul

al componen

same surfac

e process mu

erface flang

ummy mass
proposed fo

with the in

out the dum

f the interfa

s placed opp

ference poin

ence must b

nce surface 

interface fl

d be used (s

nts inside th

ce used in th

ust be repea

ge.  

Pin into Slot

and the bea
or the derota

terface flan

mmy mass to

ace flange, 

posite to a 

nts (opposit

be minimiz

chosen to 

lange. Later

see Figure 1

he MICAD

his procedu

ated for the 

 

aring of the 
ator of the 

nge (empty 

o facilitate 

a pushing 

dial gauge 

ite to each 

zed for any 

implement 

r the outer 

103). Later 

DO cryostat 

ure. For the 

e alignment 



Figure 103

6.1.3 Te

The drive 

concept pr

two minor

compensa

directly fi

bigger mo

shown in 

implemen

Figure 104

Motor

Ser

Harmon

P

3: Proposal f

est Stand

system imp

roposed for

r difference

ation rings 

ixed to the 

odule used f

Figure 104

nted here. 

4: Test stand

Radial I

Refere

r Bracket 

rvo Motor 

nic Drive 

Pinion 

for the alignm

d Drive 

plemented i

r the derotat

es, the abse

are not inc

bearing int

for the gear

. Due to lac

Drive unit c

Indicator

ence Surface

ment mechan

System

in the derot

tor prelimin

ences of the

cluded in th

terface plat

wheel of th

ck of space

cross section

es 

6 The ex

nism with an

tator prototy

nary design 

e spacer du

he derotator

e) and a di

he test beari

, the counte

. 

Pu

xperiment: D

radial indica

ype corresp

(see section

ue to the fa

r test stand

ifferent pini

ing. The tes

er bearing f

ushing Screw

Derotator te

ator.  

ponds exact

n 4.3.3). It h

act that the 

d (the drive

ion as resu

st stand driv

for the pinio

 

w 

est stand 

141 

 

ly to the 

has only 

thermal 

e unit is 

lt of the 

ve unit is 

on is not 



6.1 Des

142 

6.1.4 T

The pos

to the c

unique 

this case

printed 

arcsec a

derotato

bearing 

Figure 1

6.1.5 T

Underst

one of t

represen

bearing 

(mainly

to be e

simulato

brake, c

interfac

Band e

ign of the e

Test Sta

sitioning me

oncept prop

fundamenta

e, has an in

on it. This 

and a posit

or test stand

interface fl

105: Test sta

Test Sta

tanding the 

the key goa

nt bad case

has less fri

y due to the 

externally g

or in the de

consisting o

e flange to 

encoder 

experiment  

and Posit

easurement 

posed for th

al differenc

nner diamete

is a standa

tion error p

d, the band 

lange, see F

and positionin

and Frict

effects of f

als of the p

e scenarios 

iction torqu

difference 

generated. T

sign of the 

f a band of 

the bearing

tioning m

system imp

he derotator

ce is the dia

er of 1145.7

ard encoder 

per signal 

encoder is 

Figure 105.

ng measurem

tion Sim

friction over

prototype. H

for the po

ue than the n

in diameter

This is ano

experiment

friction ma

g. The force

measure

plemented i

r preliminar

ameter of t

73 mm and 

with an ac

period of ±

installed o

ment system.

mulator 

r the positio

Having a fri

ositioning ac

nominal bea

r), the missi

other reason

. The frictio

aterial that ti

e to operate

ment sys

in the test s

ry design (s

the metallic

a total of 9

curacy of th

±0.1 arcsec

on a dedicat

oning accur

iction simu

ccuracy. In

aring for th

ing amount 

n for the in

on will be si

ightens con

e the brake 

stem 

tand also co

ee section 4

c scale tape

0000 refere

he graduati

c. In the ca

ted ring on 

 

acy of the d

lator will a

n addition, a

he MICADO

of friction t

nclusion of 

imulated us

ncentrically 

is applied b

Scan

Five 
freedo

orresponds 

4.3.4). The 

e, which in 

ence marks 

ion of ±1.9 

ase of the 

top of the 

derotator is 

allow us to 

as the test 

O derotator 

torque had 

f a friction 

sing a band 

around the 

by a linear 

nning head 

degree of 
om mount 



actuator c

calculation

Figure 106

6.2 As

The initia

results for

The dero

Heidelberg

The comp

(Barboza, 

AIV plan 

(or identic

Possible is

be correct

the follow

1. As

2. Ap

3. Int

4. As

5. Al

6. Int

7. Al

Spring

connected t

n of the req

6: Test stand

ssembly

al test camp

r the upcom

otator proto

g.  

plete AIV pl

2017). Her

will be imp

cal) way. T

ssues discov

ted and re-im

wing steps: 

ssembly of t

pplication o

tegration of

ssembly of t

ignment of 

tegration of

ignment of 

g 

o the brake

uired force 

friction simu

y, integr

paign with 

ming PDR o

otype has 

lan and proc

re, however

plemented o

herefore it 

vered durin

mplemented

the support 

f the liquid 

f the bearing

the drive un

the interfac

f the encode

the encoder

e band via

for the line

mulator. 

ration a

the derotat

of the MICA

been integ

cedure is de

r, only the 

on the nom

serves as tr

ng the AIV p

d for the no

structure an

shimming (

g interface p

nit (See Figu

ce plate. 

er ring (See 

r ring (See F

6 The ex

a spring, 

ear actuator 

and veri

tor test stan

ADO projec

grated in t

escribed in 

most releva

inal MICAD

raining for 

phase of th

minal derot

nd bearing (

(See section

plate (See F

ure 110). 

Figure 111)

Figure 112)

xperiment: D

as shown i

is given in a

ification

nd should p

ct scheduled

the MPIA 

detail in a d

ant steps ar

DO derotato

the final sta

e derotator 

tator. The A

(See Figure 

n 4.1.1 and 

igure 109). 

). 

). 

Derotator te

in Figure 1

appendix B

 

n (AIV)

provide pre

d for Octob

assembly 

dedicated do

re summariz

tor in a very

tages of the

test stand, 

AIV plan co

e 107). 

Figure 108)

B
f
m

Li
Ac

est stand 

143 

06. The 

B.   

) 

liminary 

er 2018. 

hall in 

ocument 

zed. The 

y similar 

 project. 

can then 

nsists of 

). 

Band of 
frictional 
material 

inear 
ctuator 



6.2 Asse

144 

8. I

9. V

10. I

11. A

Figure 1

Figure 1
shiming 

embly, inte

Integration 

Verification

Integration 

Assembly o

107: Support

108: Fluid ep
process. Tap

gration and

of the enco

n of the scan

of the dumm

of the frictio

t with the bea

poxy resin a
pe and plasti

d verification

oder tape and

nning heads

my mass (S

on simulator

aring installe

applied on to
c sheets are p

n (AIV)  

d scanning 

s signal qua

See Figure 1

r (See Figur

ed on top of 

op of the bea
placed to pro

heads (See 

ality (See Fi

115). 

re 115). 

it. 

aring outer ri
otect other ar

Figure 113)

gure 114). 

ing as part o
reas of the be

). 

 

  

of the liquid 
earing. 



Figure 109
shown in th

 

Figure 110

9: Bearing in
he lower corn

0: Drive unit

nterface plat
ners. 

t installed on 

te installed o

n top of the b

6 The ex

on top of the

earing  interf

xperiment: D

 derotator. T

face plate. 

Derotator te

The aligment

est stand 

145 

 

t pins are 

 



6.2 Asse

146 

Figure 1

 

Figure 
alignmen

-0,0

-0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

R
ad

ia
l 

ru
n

 o
u

t 
(m

m
)

embly, inte

111: Encoder

112: Measu
nt process de

02

01

00

01

02

03

04

05

06

0 50

gration and

r ring installe

urement of th
escribed in se

0 100

d verification

ed on top of 

he encoder 
ecction 6.1.2

150 20

Position (de

n (AIV)  

the bearing 

ring radial 
2. 

00 250

eg)

interface flan

runout after

300 35

nge. 

r the applica

50

C

C

C

 

 

ation of the 

Clockwise 1

Clockwise 2

Clockwise 3



Figure 113

 

 

Figure 114
represent th
signal qual
perfect sign

3: Band enco

4: Verificati
he maximun
lity within th
nal quality. 

oder and scan

on of the sc
n values for 
he yellow ra

nning head in

canning head
a full rotatio
ange is cons

6 The ex

nstalled in th

d’s signal qu
on of 360°. A
sidered good

xperiment: D

he derotator t

uality. The sm
According to
d. The green

Derotator te

test stand. 

 

mall referen
o Heidenhain
n area corres

est stand 

147 

 

 

nce marks 
n, having 
sponds to 



6.2 Asse

148 

Figure 1
cabinet (

embly, inte

115: Derotat
(bottom left c

gration and

or test stand 
corner) and f

d verification

completly in
friction simu

n (AIV)  

ntegrated in
ulaton (bottom

the MPIA as
m right corne

ssembly hall
er). 

 

l,  electronic 



Figure 116

6.3 Te

The full te

dedicated 

design of 

focused on

angular po

of the me

friction m

of this dis

tasks. Oth

and Windg

Other key

suppressio

outside th

control sy

6: Standard D

est camp

est campaig

PDR docum

the derotato

n the most 

ositioning a

echanical s

odel has be

ssertation. T

her tests rela

gassen (201

y tests to be

on system a

he frame wo

stem is desc

Drive unit (le

paign 

gn proposal

ment (Barbo

or must be 

relevant pe

accuracy. A

ystem, as 

en performe

This section

ated to the

17). 

e performed

and the veri

ork defined 

cribed by G

 

eft) and drive

l for the nom

oza, 2017).

verified eit

erformance 

Additionally

well as the

ed with the 

n is dedicate

derotator te

d with the 

ification of 

for this the

Glück (2019

6 The ex

e unit with th

minal derot

 In that cas

ther by tests

requiremen

y, the param

e paramete

derotator p

ed to summ

est stand are

derotator te

f safety feat

esis. Furthe

). 

xperiment: D

he torque sen

tator is desc

se, all requir

s or analysi

nts. One of t

meter identif

r identifica

rototype wi

marize the re

e described

est stand in

ures. These

rmore, the 

Derotator te

nsor on top. 

cribed in de

rements dri

is. The cam

them is the

fication/ver

ation of the

ithin the fra

esults of tho

d by Häberle

nclude the b

e will be co

optimizatio

est stand 

149 

 

etail in a 

iving the 

mpaign is 

e relative 

rification 

e LuGre 

amework 

ose three 

e (2017) 

backlash 

onducted 

on of the 



6.3 Test campaign  

150 

6.3.1 Parameter Identification of the Friction Model 

In order to identify the parameters ܨ௖, ,௦ܨ  ௩ (see section 5.3), the system must beܨ

operated at steady state motion, which mean with constant velocity. When steady 

state is achieved, the term representing the rate of change of the bristle deflection is 

zero (݀ݐ݀/ݖ ൌ 0	). Recalling equation (75) that defines the rate of change of the 

bristle deflection 

ݖ݀
ݐ݀

ൌ ݒ െ
|ݒ|

݃ሺݒሻ
,ݖ ሺ77ሻ	

the steady state bristle deflection ݖ௦௦ is defined through the following expression 

with ݀ݐ݀/ݖ ൌ 0 

௦௦ݖ ൌ
ݒ
|ݒ|

݃ሺݒሻ ൌ ݃ሺݒሻ .ሻݒሺ݊݃ݏ ሺ77ሻ	

Using equation (74) the steady state friction force ܨ௦௦ can then be written as follows 

௦௦ܨ ൌ ௦௦ݖ଴ߪ ൅ .ݒ௩ܨ ሺ78ሻ	

Inserting equations (77) and (76) defining ݃ሺݒሻ into equation (78), the steady state 

friction force can be finally written as 

௦௦ܨ ൌ ሻݒሺ݊݃ݏ	௖ܨ ൅ ሺܨ௦ െ ௖ሻ݁ିܨ
ሺ௩ ௩ೞ⁄ ሻഃೞ݊݃ݏሺݒሻ ൅ .ݒ௩ܨ ሺ79ሻ	

If the steady state friction force (or torque in the case of the derotator) can be 

experimentally measured for the relevant range of velocities where the derotator will 

be operated, the so called Stribeck curve can be derived (Olsson, 1996) plotting the 

average friction force for each corresponding velocity. Then by curve fitting 

techniques, the parameters ܨ௖, ,௦ܨ ,௩ܨ ,௦ݒ  ௦  of equation (79) can be determined. Inߜ

this particular case of the MICADO derotator, the Least Squares Method has been 

used as curve fitting technique. 

The results obtained with the derotator test stand are presented in Figure 117, while 

the identified parameters are given in Table 23. Despite Olsson (1996) provides 

some recommendations for the parameters ݒ௦ and ߜ௩, the values provided in Table 23 

give a better fit to the experimental data. Part of the experimental data corresponding 
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to the torque and velocity used for the identification of the Stribeck curve is 

presented in appendix C. The position of the bearing registered by the band encoder 

is provided as well. The Stribeck curve was measured for several angular positions of 

the bearing and a position dependency of the friction has been identified. This means 

that a single Stribeck curve cannot be used to characterize the whole 360° rotation 

range of the bearing. The parameter identification is described in more detail by 

Glück (2019). 

 

Figure 117: Identified Stribeck curve with the values refered to the bearing. 

 

Friction parameters Identified values 
 ௖ 0.023 x 104 Nmܨ
 ௦ 0.066 x 104 Nmܨ
 ௩ 7.7 x 104 Nm/(rad/s)ܨ
 ௦ 0.015ݒ
 ௦ 1ߜ

Table 23: Identified parameters of the Stribeck curve. 
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6.3.2 Parameters Identification of the Mechanical system 

Some of the parameters used to represent the MICADO mechanical system can be 

obtained from catalogs i.e. ݆ெ, ݀ெ, ݆ு஽, ݇ு஽. However, the rest of the parameters has 

to be estimated. The moment of inertia is calculated using the CAD software, while 

the stiffness and the damping coefficient are determined using equations (37) and 

(38).  The complete list of parameters with the corresponding values used to simulate 

the dynamic behavior of the derotator test stand (a reduced version of the MICADO 

mechanical model) is presented in Table 24. The verification of the derotator test 

stand mechanical model is done using its harmonic response, where the simulated 

dynamic behavior is compared with the experimentally measured frequency response 

(see section 5.1.4). These results are presented in Figure 118 using the corresponding 

Bode plot of the derotator test stand. 

 

Friction parameters Identified values 
݆ெ 2.05 x 10-4 kg m2

݀ெ 2.86 x 10-5 Nm/(rad/s) 
݆ு஽ 4.13 x 10-5 kg m2 
݇ு஽ 5.7 c Nm/rad 
݆௉ 4.05 x 10-3 kg m2 
݆ீ஼ 325 kg m2 

݀ீ஼ ൎ  ௩ 7.7 x 103 Nm/(rad/s)ܨ
݆஻ி 81.75 kg m2 
݀௦ 3.86 x 103 Nm/(rad/s) 
݇௦ 1.6 x 107 Nm/rad 
ܼெ 1 
ܼு஽ 160 
ܼ௉ 12 
ܼீ  148 

Table 24: Parameters of the test stand mechanical model used for the end-to-end simulation. 
For the implementation of the end-to-end simulation at this fisrt stage, linear friction is 
assumed (݀ீ஼ ൎ  .(௩ܨ
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Figure 118: Frequency response of the derotator test stand. 

The transfer function of the derotator test stand has been measured with the sine 

sweep method (green curve in Figure 118). A simplified mechanical model was 

fitted to the experimental data, which confirm a highly damped mechanical system 

due to the bearing friction. The highly damped system can be modeled as a single 

damper with an equivalent rotatory inertia, see Glück (2019) 

ሻݏሺܪ ൌ
஼ீߠ
ܶ

ൌ
1

ሺ݆ாݏଶ ൅ ݀ாݏሻ
, ሺ80ሻ

where ݆ா, ݀ா are the parameters fitted to the experimental data. In order to get a good 

match between the simulation and the frequency response measured experimentally, 

the parameter ܨ௩ (estimated for the identification of the Stribeck curve) had to be 

adjusted to the value given in Table 24. A possible reason for this discrepancy are the 

error bars in the friction torque measurements presented in Figure 117. 

It has to be added that the harmonic response of the derotator test stand shows its 

rotational eigenfrequencies. The first (around 9 Hz) correspond to the rotation of the 

test stand support structure, the second one (around 30 Hz) corresponds to the degree 
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of freedom representing the Harmonic Drive gear. The eigenfrequencies 

corresponding to the lateral movement of the support structure are not registered.  

Due to restrictions in the electronic hardware it was not possible to perform the 

measurements at higher frequencies. The mathematical model of the test stand 

mechanical system only considers the rotational degree of freedom. 

6.3.3 Relative Angular Positioning Accuracy 

In order to test the relative angular positioning accuracy of the derotator test stand, a 

sine velocity profile covering the whole range of velocities expected for the field 

rotation trajectory at the ELT has been used. This is the same range of velocities 

previously presented in Figure 14. The test sine velocity profiles with its 

corresponding position trajectory are shown in Figure 119 and Figure 120. The 

angular positioning accuracy test has been performed with the controller architecture 

shown in Figure 57 and with the 3 tons of mass on top of the bearing. 

 

Figure 119: Sine velocity profile used for the relative angular positioning accuracy test. 
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Figure 120: Position trajectory used for the relative angular positioning accuracy test. 

The relative angular positioning accuracy is then calculated as the difference 

between the input trajectory (Figure 120) and the output trajectory registered by the 

band encoder installed on the test stand. The result of this test is presented in Figure 

121. The peak error of about 20 arcsec while the trajectory is starting corresponds to 

the backlash between the gear wheel and the pinion. The rest of the curve shows a 

position error in the order of 1.4 arcsec (rms) being lower than the required 

positioning accuracy of 2 arcsec (rms). This is a very promising result for the overall 

derotator concept as the backlash suppression system is not yet installed. 

 

Figure 121: Position error of the test stand while following the test trajectory. 
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6.3.3.1 Relative Angular Positioning Accuracy with Simulated 
Friction Torque 

The positioning accuracy test described in the previous section was repeated using 

the friction simulator installed on the derotator test stand. This test is used to 

simulate changes on the bearing friction torque. These changes could be generated 

by deformations coming into the bearing, for example, due to the movement of the 

attachments points on the ELT Nasmyth platform. The test demonstrates the 

robustness of the controller (Glück, 2019), especially as the backlash suppression 

system is still not installed, see Figure 122. The controller is able to react to the 

change of the friction torque (up to 4 times higher) keeping the position error. 

 

 

Figure 122: Position error of the test stand (bottom) with simulated friction torque 
changes(top). 
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6.4 Experimental results vs End-to-End Simulation 

The correlation between the end-to-end simulation (only the mechanical model so 

far) and the behavior of the derotator test stand was already demonstrated in section 

6.3.2 through the frequency response of the mechanical system, represented in the 

Bode plot. This section focuses on a more specific aspect, i.e., the verification of the 

friction model.  

In order to probe the correct implementation of the LuGre friction model, the 

measured velocity (same data used for the identification of the Stribeck curve) is 

used as input for the Simulink model presented in Figure 98. Then the output of the 

model, the friction torque in this case, is plotted against the measured torque applied 

by the servomotor while the system is driven at constant velocity. The simulation is 

performed with the parameters given in Table 23 (ܨ௩ from Table 24) and ߪ௢ ൌ

ଵߪ 10଻ andݔ2 ൌ 2ඥߪ଴݆ீ஼7.5 as a rough estimation. Some of the results are 

presented in Figure 123 and Figure 124. 

 

Figure 123: Simulated vs measured friction torque for a motor velocity of 0.05 rpm. 
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Figure 124: Simulated vs measured friction torque for a motor velocity of 0.1 rpm. 

In both cases, the LuGre friction model is able to simulate the stick-slip effects 

starting around 450 s (this is in fact a coincidence, but the stick-slip effects are 

completely random and can appear any time as shown in appendix C).  However, due 

to the friction position dependency previously commented, for the velocity of 0.1 

rpm (Figure 124) the value of the average friction torque provided by the Stribeck 

curve does not corresponds to the measured torque. This confirms that the bearing 

friction cannot be characterized by one single Stribeck curve or only in a certain 

range of rotation. This position dependency friction behavior is expected to improve 

with the better quality nominal bearing in which additionally a cage instead of 

spacers is used to separate the balls inside the bearing. A good characterization of the 

bearing friction using several Stribeck curves will play a key role once the friction 
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been implemented yet). The correct modelling of the friction related stick-slip effects 

will contribute to improve the performance of the mechanical system to further 
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Most of the key features of the design and simulation of the MICADO derotator 

could be experimentally verified, i.e. the bearing FEA, the dynamic behavior of the 

mechanical model implemented into the end-to-end simulation, the friction model, 

the relative angular positioning accuracy and the AIV process. However, some 

aspects like the performance of the mechanical model while following a trajectory 

(which means including the controller into the end-to-end simulation), the 

implementation of the friction compensation and the backlash suppression system 

will need an extended experimental approach. 

The backlash suppression system could not be included into the frame work of the 

thesis due to the overall schedule of the MICADO project at MPIA. This feature is 

currently under development. On the other hand, the backlash suppression system 

has to be included into the simulation of the controller. For that reason the 

integration of the controller architecture into the end-to-end simulation can be 

performed only after wards. 
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7 Summary and Conclusions 

This thesis has described the development of the image derotator for the MICADO 

instrument, one of the first light instruments for the ELT. The derotator is required to 

provide field rotation compensation with an angular positioning accuracy lower than 

2 arcsec (rms). Three main aspects have been discussed in this dissertation. 

The design: The task to be solved has been well understood and clearly defined by a 

set of requirements. As result, the design of the MICADO derotator is driven by 

those requirements; specifically the runout, the angular position accuracy of the 

derotator as a complete system and the mass limitation. The required runout at the 

level of 0.03 mm has been addressed with the selected bearing technology, i.e. 

slewing bearings. The custom designed four-point contact ball bearing proposed for 

the MICADO derotator was developed in collaboration with the bearing provider, 

where the integration of the band encoder into the bearing design is a key aspect 

contributing to simplify the mechanical interfaces of the derotator components. The 

static FEA of the derotator has been performed with a detailed FEM including 

frictional contact and bolt pretension between its main structural components. The 

bearing FEM implemented in this calculation, using spring element to model the ball 

inside the bearing, has been validated with dedicated test performed on the bearing 

used for the derotator test stand. According to the results of the static FEA of the 

derotator, the axial deformation of 0.021 mm coming into the bearing, is slightly 

higher than the maximal allowed deformation defined a requirement 0.015 mm. 

However, the bearing support ring can still be optimized to achieve the required 

stiffness with a 4- points interface with the instrument support structure, which is the 

current base line for the overall design of the MICADO instrument. The optimization 
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of this CFRP structure is part of the detailed design. However, given the proven 

robustness of the controller, it is expect that the slight friction changes due to this 

deformation can be handled without performance losses. 

The end-to-end simulation: The basic tools to analyze the dynamic performance of 

the derotator design proposal through an end-to-end simulation have been provided 

here. Using the principle of structural dynamics and a lumped mass model (where 

rigid bodies are connected together with springs and dampers), the mathematical 

model representing the MICADO instrument mechanical system has been developed, 

implemented and verified with experimental data. In a first step, a general model 

with four degrees of freedom was established for the whole MICADO instrument, 

where the most relevant components that could affect the dynamic performance are 

represented, i.e. the instrument support structure, the derotator, the cryostat vessel, 

the internal cold structure and the drive unit. This model was then simplified to 

match the derotator test stand, where the degree of freedom corresponding to the 

internal cold structure of the cryostat was removed. The end-to-end simulation was 

been implemented in a step wise approach using Matlab/Simulink. As the bearing 

friction is one of the most important effects to be considered for the dynamic 

performance of the derotator, it has been simulated using the LuGre friction model, 

where the corresponding parameters of the Stribeck curve were experimentally 

identified. 

The experiment: The derotator test stand has been designed and built to represent as 

closely as possible the proposed concept to provide field rotation compensation for 

the MICADO instrument. It has been used as technology demonstrator for the 

selected bearing technology and for the verification of key elements of the end-to-

end simulation, i.e. the mathematical model of the mechanical system and the LuGre 

friction model. A strong position dependency of the bearing friction has been 

identified on the test bearing with the experimental data. As result, it can be 

concluded that the whole range of rotation (360ᵒ) cannot be characterized by a single 

Stribeck curve, or a single Stribeck curve can only be used for a small section of the 

bearing. The control system has been optimized (Glück, 2019) with promising 

preliminary results, where the test stand loaded with 3 tons of mass is able to achieve 
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an angular positioning accuracy at the level of 1.4 arcsec while following a defined 

trajectory in which the velocity profile corresponds to the expected field rotation 

velocities at the ELT Nasmyth platform A. This results is already lower than the 

required 2 arcsec. To further improve these results and reach the accuracy limits of 

the bearing, a friction compensator based on the presented models will be 

investigated in Glück (2019). 

Future work 

The tasks from now on of this contribution to the MICADO project will be focused 

mainly in two aspects: (i) upgrade the FEM to include other structural components as 

the cryostat and the instrument support structure in order to achieve a more realistic 

FEA and, (ii) the implementation of the friction compensation feature in the control 

system to investigate a further improvement of the current angular position accuracy. 

With the work presented in this thesis, it could be demonstrated that the proposed 

bearing technology is the adequate choice for solving the image derotation problem 

in MICADO. The detailed structural modeling of the bearing developed in this thesis 

is essential input in the overall structural design optimization process. Furthermore, 

It could be demonstrated with a self-designed fully functional laboratory testbed that 

the stringent rotation precision requirements are achievable with the proposed 

bearing technology while operating in close-loop with optimized controller 

architecture. The design proposal of the derotator described in this thesis will be used 

as baseline for the upcoming PDR of the MICADO project.  

This research work has shown how mathematical tools as the FEA (static aspects of 

the analysis) and the modeling of mechanical systems (dynamic aspects of the 

analysis), can be used to optimize and improve the design and, the consequently 

analysis process of precision mechanisms. Once the problem to be solved is clearly 

defined with a set of requirements, these are powerful and versatile techniques that 

can be implemented to develop precision mechanisms for a wide range of 

applications. Even better results can be achieved when the design approaches here 

described are combined with advanced control techniques. 
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Appendix A  

Drive Unit Calculations 

A.1 Motor Torque Estimation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

்ܶெ - Required motor torque 
 - Safety factor	ௌܭ
ெܶ - Motor torque 
ுܶ஽	௜௡௣௨௧ - Harmonic Drive input torque 
 ு஽ - Harmonic Drive efficiencyߟ
ுܶ஽	௢௨௧௣௨௧ - Harmonic Drive output torque 

ிܶ - Frictional torque  
ிܶீ - Frictional torque bearing 
ܫீ  - Gear ratio 
 ு஽ - Harmonic Drive gear ratioܫ
௔ܶ	- Acceleration torque 
 Total inertia of the system - ்ܬ
 Angular acceleration - 	ߙ
߱ு஽ – Harmonic Drive velocity 
 Time for velocity change - 	ݐ
  - Cryostat inertia	஼ܬ
ܬீ 	- Gear inertia  
  - Pinion inertia	௉ܬ
 - Motor inertia	ெܬ
 - Cryostat diameter	஼ܦ
݉஼ - Cryostat mass 
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்ܶெ ൌ ௦ܭ ெܶ ൌ ૛	࢓ࡺ 

ௌܭ ൌ 2.5 

ெܶ ൌ ுܶ஽	௜௡௣௨௧

ு஽ߟ	
ൌ 	0.8	ܰ݉ 

ு஽ߟ ൌ 57	% 

 

ுܶ஽	௢௨௧௣௨௧ ൌ ிܶ ൅ ௔ܶ ൌ 0.45	ܰ݉	 

ிܶ ൌ
ிܶீ

ܫீ 	ு஽ܫ
ൌ 0.38	ܰ݉ 

ிܶீ ൌ 1700	ܰ݉	ሺfor	the	nominal	bearing	by	REሻ  

ܫீ ൌ
ܼ௉
ܼீ

ൌ 27.71 

ܼ௉ ൌ 17 

ܼீ ൌ 471 

ு஽ܫ ൌ 160 

 

௔ܶ ൌ ߙ	்ܬ ൌ 0.06	ܰ݉ 

ߙ	 ൌ ቀ
߱ு஽ െ ߱଴

ݐ
ቁ ൌ  ଶݏ/݀ܽݎ	92.84

߱ு஽ ൌ ߱௉	ீܫ ு஽ܫ ൌ  rpmሻ	ሺ4433	ݏ/݀ܽݎ	464.22

߱ீ ൌ  rpmሻ	ሺ1	ݏ/݀ܽݎ	0.1047

߱଴ ൌ ݐ ,0 ൌ  ݏ	5

 

்ܬ ൌ ஼ܬ ൅ ܬீ ൅ ௉ܬ	3 ൌ  ݉ଶ	10ିସ݇݃	ݔ	7	

஼ܬ ൌ
1
8
݉஼ܦ஼

ଶ ൬
1

ܫீ ு஽ܫ
൰
ଶ

ൌ  ݉ଶ	݇݃	10ିସ	ݔ	2.5

ܬீ ൌ
1
8
݉ீሺீܦଵ

ଶ ൅ ଶீܦ
ଶ ሻ ൬

1
ܫீ ு஽ܫ

൰
ଶ

ൌ  ݉ଶ	݇݃	10ିହ	ݔ	3.8

௉ܬ ൌ
1
8
݉௉ܦ௉

ଶሺ
1
ு஽ܫ

ሻ ൌ  ݉ଶ	݇݃	10ି଻	ݔ	1.6
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݊௢௨௧ ஺௏ ൌ
|݊ଵ|ݐଵ ൅ |݊ଶ|ݐଶ ൅ |݊ଷ|ݐଷ

ଵݐ ൅ ଶݐ ൅ ଷݐ
. ሺ83ሻ	

For the correct selection of the Harmonic drive gear, ஺ܶ௏ must be lower than the 

permissible average torque ( ஺ܶ) and the estimated average input speed must be lower 

than the permissible average input speed ݊௜௡	஺௏. The input speed can be obtained 

according to equation (81). For the model HFUC-25-160-2UH used in the MICADO 

derotator drive unit the following values are valid 

஺ܶ௏ ൌ 73	ܰ݉ ൏	 ஺ܶ௏ ൌ 108 ܰ݉

݊௢௨௧ ஺௏ܫு஽ ൌ 1241 ݉݌ݎ ൏	݊௜௡ ஺௏ ൌ 3500 ݉݌ݎ
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The equations used for the linear actuator axial force estimation are presented as 

follows (Mathworks, 2018): 

 
 

ܶ ൌ ஺൫݁ఓఏܨ െ 1൯ݎ஽ ൌ ૡ૙૞	࢓ࡺ 

 

஺ܨ ൌ 212	ܰ 

஽ݎ ൌ 0.578	݉ 

ߤ ൌ 0.4	ሺ݀݁݀݅ݒ݋ݎ݌	ݕܾ	ܤܰ	ݏݐݎܽܲሻ 

ߠ ൌ  	ሻ݁݁ݎ݃݁݀	ሺ290	݀ܽݎ	5.1

Based on this calculation the linear actuator MA-35 DC-B-013 from the company PI 

was selected. The friction material used in the band brake was provided by the 

company NB parts.  

 

ܶ - Braking torque 

 - Applied force	஺ܨ

 ஽ – Drum radiusݎ

 Friction coefficient - ߤ

  Wrap angle - ߠ
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Appendix C  

Steady State Friction Torque 

Measurement 

The stick-slip effects are clearly seen in the steady state friction torque measurements 

presented as follow. 

 

Figure 127: Steady state friction torque measurement for a motor velocity of 0.2 rpm. 
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Figure 128: Steady state friction torque measurement for a motor velocity of 0.3 rpm. 

 

Figure 129: Steady state friction torque measurement for a motor velocity of 0.4 rpm. 
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Figure 130: Steady state friction torque measurement for a motor velocity of 0.5 rpm. 

 

Figure 131: Steady state friction torque measurement for a motor velocity of 0.6 rpm. 
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Figure 132: Steady state friction torque measurement for a motor velocity of 0.7 rpm. 

 

Figure 133: Steady state friction torque measurement for a motor velocity of 0.9 rpm. 
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