Bachelorarbeit

Interpolation von Volumendaten mit Neuronalen Netzen

Hanna Bader

Studiengang: Informatik

Prüfer/in: Prof. Dr. Thomas Ertl

Betreuer/in: Dr. rer. nat. Steffen Frey, Gleb Tkachev M.Sc.

Beginn am: 14. Juni 2018

Beendet am: 14. Dezember 2018
Inhaltsverzeichnis

1 Einleitung 7

2 Grundlagen 9
 2.1 Grundbegriffe 9
 2.2 Neuronale Netze 9
 2.3 Interpolation 13
 2.4 Fehleranalyse 15

3 Methodik 17
 3.1 Datensätze 17
 3.2 Subsampling 19
 3.3 Netzwerk 20
 3.4 Training 21

4 Ergebnisse 23
 4.1 Training auf einem Datensatz 23
 4.2 Training auf mehreren Datensätzen 34
 4.3 Übersicht über alle Ergebnisse 51

5 Zusammenfassung und Ausblick 55

Literaturverzeichnis 57
Abbildungsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Aufbau eines Perzeptrons</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Aktivierungsfunktion ReLU</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Aufbau eines Neuronalen Netzwerks</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Beispiel einer Faltung</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Trilineare Interpolation [Wik]</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>Beispielvolumina aus dem Datensatz drop</td>
<td>17</td>
</tr>
<tr>
<td>3.2</td>
<td>Beispielvolumina aus dem Datensatz hotroom</td>
<td>18</td>
</tr>
<tr>
<td>3.3</td>
<td>Beispielvolumina Datensatz 5jets</td>
<td>19</td>
</tr>
<tr>
<td>3.4</td>
<td>Netzwerkarchitektur</td>
<td>20</td>
</tr>
<tr>
<td>4.1</td>
<td>Auswertung der Testdaten des Datensatz hotroom</td>
<td>24</td>
</tr>
<tr>
<td>4.2</td>
<td>Ergebnisvolumina aus Testdatensatz hotroom</td>
<td>24</td>
</tr>
<tr>
<td>4.3</td>
<td>Auswertung der Testdaten des Datensatzes 5jets</td>
<td>26</td>
</tr>
<tr>
<td>4.4</td>
<td>Ergebnisvolumina aus Testdatensatz 5jets</td>
<td>27</td>
</tr>
<tr>
<td>4.5</td>
<td>Auswertung des Netzes mit (f_1 = 5, f_2 = 1, f_3 = 3) und (s_F = 2) auf dem Datensatz drop</td>
<td>28</td>
</tr>
<tr>
<td>4.6</td>
<td>Ergebnisvolumina aus Testdatensatz drop</td>
<td>29</td>
</tr>
<tr>
<td>4.7</td>
<td>Fehler-Histogramm des Netzes mit (f_1 = 5, f_2 = 1, f_3 = 3) und (s_F = 2) über dem Testdatensatz drop</td>
<td>30</td>
</tr>
<tr>
<td>4.8</td>
<td>Durchschnittlicher MSE über Testdaten des Datensatzes drop</td>
<td>31</td>
</tr>
<tr>
<td>4.9</td>
<td>Histogramm des Trainings auf Datensatz drop mit (s_F = 4) und (s_F = 8)</td>
<td>32</td>
</tr>
<tr>
<td>4.10</td>
<td>Ergebnisvolumina aus Testdatensatz drop mit (s_F = 4)</td>
<td>32</td>
</tr>
<tr>
<td>4.11</td>
<td>Ergebnisvolumina aus Testdatensatz drop mit (s_F = 8)</td>
<td>33</td>
</tr>
<tr>
<td>4.12</td>
<td>Durchschnittlicher MSE über Testdaten aller Datensätze</td>
<td>36</td>
</tr>
<tr>
<td>4.13</td>
<td>Ergebnisvolumina aus Testdatensatz drop mit Training auf allen Datensätzen</td>
<td>37</td>
</tr>
<tr>
<td>4.14</td>
<td>Ergebnisvolumina aus Testdatensatz hotroom mit Training auf allen Datensätzen</td>
<td>38</td>
</tr>
<tr>
<td>4.15</td>
<td>Ergebnisvolumina aus Testdatensatz 5jets mit Training auf allen Datensätzen</td>
<td>39</td>
</tr>
<tr>
<td>4.16</td>
<td>Fehler-Histogramme des Netzes mit Faltungsgrößen (f_1 = 5, f_2 = 1, f_3 = 3) und (s_F = 2). Das Netz wurde auf der Vereinigung aller drei Datensätze trainiert und anschließend auf jedem Testdatensatz getrennt ausgewertet.</td>
<td>40</td>
</tr>
<tr>
<td>Abbildungsverzeichnis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.17 Durchschnittlicher MSE über Testdaten aller Datensätze mit $s_F = 4$ und $s_F = 8$. Die Netze wurden auf der Vereinigung aller drei Datensätze trainiert und anschließend auf jedem Testdatensatz getrennt ausgewertet.</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>4.18 Fehler-Histogramme Training auf allen Datensätzen mit $s_F = 4$ und $s_F = 8$.</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>4.19 Ergebnisvolumina auf Testdatensatz drop beim Training auf allen Datensätzen mit $s_F = 4$.</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>4.20 Ergebnisvolumina auf Testdatensatz drop beim Training auf allen Datensätzen mit $s_F = 8$.</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>4.21 Ergebnisvolumina auf Testdatensatz hotroom beim Training auf allen Datensätzen mit $s_F = 4$.</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>4.22 Ergebnisvolumina auf Testdatensatz hotroom beim Training auf allen Datensätzen mit $s_F = 8$.</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>4.23 Ergebnisvolumina auf Testdatensatz 5jets beim Training auf allen Datensätzen mit $s_F = 4$.</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>4.24 Ergebnisvolumina auf Testdatensatz 5jets beim Training auf allen Datensätzen mit $s_F = 8$.</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
1 Einleitung

Auf hochauflösenden Volumen sind dabei kleine Details gut zu erkennen. Wenn allerdings die Volumen nicht in einer hohen Auflösung zu Verfügung stehen, sind Details trotz verschiedener Upsampling-Methoden wie trilinear und trikubisch oft nur unzureichend erkennbar.

In dieser Arbeit wird untersucht wie gut sich dieses Problem mit Neuronalen Netzen lösen lässt. Diese sind inspiriert durch das Nervensystem des Menschen. Sie sollen wie der Mensch durch Beispiele lernen um Lösungen zu entwickeln.

Methoden die auf das Upsampling von Volumendaten spezialisiert wurden, gibt es viele. Einen Vergleich von verschiedenen dreidimensionalen Interpolationsmethoden führten Gerevera und Udopa in \cite{GU98} durch. Giachetti, Guitián und Gobbetti \cite{GGG10} verbesserten das Upsampling von Medizindaten. Upsampling von Volumendaten mit Hilfe von Convolutional Neuronalen Netzen wird von Zhou et al. in \cite{ZHW17} beschrieben.

In dieser Arbeit werden verschiedene Netzwerkarchitekturen und Subsampling-Faktoren an drei verschiedenen Datensätzen getestet. Das Netz besteht nach dem Vorbild von \cite{ZHW17} aus drei Schichten. Es erhält als Eingabe subgesampelte Volumen zum Trainieren und wird mittels dem Mean Squared Error (MSE) optimiert. Auf Volumen, die das Netz zuvor noch nie gesehen hat, wird der Mean Squared Error, der Peak signal-to-ratio und der Structural Similarity Fehler berechnet.

2 Grundlagen

2.1 Grundbegriffe

Als Volumendaten werden Daten bezeichnet, die keine Oberfläche aufweisen [Frü91]. Sie sind über einem dreidimensionalen Gitter definiert, dass an jedem Gitterpunkt einen Wert hat. Rauch oder Wolken sind Beispiele für solch eine Struktur, ebenso Daten die bei einer Computertomographie entstehen.

Ein Voxel repräsentiert einen Gitterpunkt im dreidimensionalen Gitter [Com91]. Ein Voxel entspricht im zweidimensionalen einem Pixel.

Ein Grauwertbild besteht aus Pixeln, ein Grauwertvolumen aus Voxeln, die einen Wert zwischen 0 und 255 annehmen. Man kann einem Grauwertvolumen auch Farben über eine Farbtabelle zuweisen [CWSM04]. In dieser Arbeit werden nur Grauwertvolumen verwendet.

2.2 Neuronale Netze

2 Grundlagen

Abbildung 2.1: Aufbau eines Perzeptrons [CS2]

2.2.1 Aufbau eines Neuronalen Netzes

Das Perzeptron ist die einfachste Form eines Neuronalen Netzes. Es ist beispielhaft in Abbildung 2.1 zu sehen [CS2]. Es zeigt ein blaues Neuron, dass verschiedene Gewichte w_0, w_1 und w_2 sowie verschiedene Eingaben x_0, x_1 und x_2 erhält. Im Neuron wird die Eingabe verarbeitet. Es wird die Formel

$$\sum_i w_i x_i + b$$

berechnet. Der Bias b sorgt für die Nicht-Lineärheit. Abschließend wird auf das Zwischenergebnis noch die Aktivierungsfunktion angewendet. Diese ist bei allen in dieser Arbeit beschriebenen Experimenten die Rectified Linear Unit Funktion (kurz: ReLU). Die ReLU schneidet den negativen Bereich ab, dass heißt

$$\text{ReLU}(x) = \max(0, x).$$

Der Verlauf der ReLU Funktion ist in Abbildung 2.2 zu sehen. Das Netz kann Gewichte und Bias lernen.

Ein Neuronales Netz besteht aus verschiedenen Layern [CS2]. In Abbildung 2.3 ist beispielhaft ein Neuronales Netz abgebildet. Es besteht aus einem Eingabe-, zwei Hidden- und einem Ausgabelayer. Jeder Kreis in einem Layer symbolisiert ein Neuron. In jedem Layer sind die Neuronen voneinander...
2.2 Neuronale Netze

Abbildung 2.2: Aktivierungsfunktion ReLU [CS2]

Abbildung 2.3: Aufbau eines Neuronalen Netzwerk [CS2]

Das Training des Netzes funktioniert über Backpropagation. Das Ergebnis des Netzes y hängt von den Gewichten W und den Eingaben X ab, dass heißt

$$y = f(W, x).$$

Der Fehler L des Netzes berechnet sich beispielsweise durch den Mean Squared Error

$$L = \frac{1}{n} \sum_{y} (y - \hat{y})^2,$$

dabei ist \hat{y} das richtige Ergebnis. Um das Netz optimal zu trainieren muss

$$L(f(X, W), \hat{y})$$
minimal werden. Die Gewichte und der Bias werden nach jedem Trainingsschritt korrigiert. Die neuen Gewichte W_{neu} können aus den alten Gewichten W_{alt} durch Gradientenabstieg berechnet werden. Für weitere Details siehe [Bec; Nie15; Roj96].

2.2.2 Architekturen

In den zwei folgenden Abschnitten werden die Architekturen Fully-Connected und Convolutional genauer erläutert und Vor- und Nachteile der jeweiligen Architektur erörtert.

Fully-Connected Layer

In einem Fully-Connected Layer ist ein Neuron aus dem Layer mit allen Neuronen aus dem vorherigen Layer verbunden. Das Layer hat dadurch viele Gewichte in Relation zu Convolutional Layern [CS2]. Ein zweidimensionales Bild der Größe 50×100 hat zum Beispiel $50 \cdot 100 = 5000$ Gewichte pro Neuron im vorangegangenen Layer.

Die Volumen, die für das dreidimensionale Training zur Verfügung stehen, haben die Dimension $128 \times 128 \times 128$. Wenn man die Gewichte für jedes Neuron im vorangegangenen Layer ausrechnet, erhält man $128 \cdot 128 \cdot 128 = 2097152 \sim 2 \cdot 10^6$ Gewichte!

Convolutional Layer

2.3 Interpolation

Abbildung 2.4: Faltung der Größe 3×3 auf einem Bild [Tap]

Um mehr unterschiedliche Features zu lernen werden Kanäle verwendet. Pro Kanal existiert ein neuer Faltungskern. Das Ergebnis einer Faltung mit Kanälen ist:

$$\text{output}[i, j, k] = \sum_{di, dj, q} \text{input}[i + di, j + dj, q] \ast \text{filter}[di, dj, q, k]$$

Dabei ist i, j die Position eines Pixels im Ausgabebild sowie k ein Kanal im Ausgabebild. In der Summe wird der Filter durch di, dj in x-y-Richtung und durch q über die Kanäle durchlaufen.

2.3 Interpolation

In den folgenden zwei Kapitel wird die trilineare und die trikubische Interpolation erklärt. Beide Methoden werden jeweils als Referenz für die Bewertung der Qualität der von Neuronalen Netzen erzeugten Resultate herangezogen.

2.3.1 Trilineare Interpolation

Die trilineare Interpolation errechnet einen Wert für einen gesuchten Punkt auf einem dreidimensionalen Gitter. Dafür werden acht Nachbarpunkte des gesuchten Punkts benötigt. In Abbildung 2.5a ist ein Würfel zu sehen. Dieser hat acht Eckpunkte C_{000} bis C_{111}, diese sind blau markiert. Der rote Punkt C in der Mitte ist der zu interpolierende Punkt.
2 Grundlagen

In Abbildung 2.5b ist der genauere Vorgang der Interpolation zu sehen. Zuerst wird

\[
x_d = \frac{x - x_0}{x_1 - x_0}, \quad y_d = \frac{y - y_0}{y_1 - y_0}, \quad z_d = \frac{z - z_0}{z_1 - z_0}
\]

berechnet. Dabei beschreiben \(x_0, x_1, y_0, y_1, z_0\) und \(z_1\) die Koordinaten der Eckpunkte sowie \(x, y\) und \(z\) die Koordinaten des zu interpolierenden Punktes. Es wird zuerst in \(x\)-Richtung interpoliert. Dafür wird

\[
c_{00} = c_{000} \cdot (1 - x_d) + c_{100} \cdot x_d
\]

\[
c_{01} = c_{001} \cdot (1 - x_d) + c_{101} \cdot x_d
\]

\[
c_{10} = c_{010} \cdot (1 - x_d) + c_{110} \cdot x_d
\]

\[
c_{11} = c_{011} \cdot (1 - x_d) + c_{111} \cdot x_d
\]

berechnet. Es entstehen die blau beschrifteten Punkte. Anschließend wird in \(y\)-Richtung interpoliert. Dafür wird

\[
c_0 = c_{00} \cdot (1 - y_d) + c_{10} \cdot y_d
\]

\[
c_1 = c_{01} \cdot (1 - y_d) + c_{11} \cdot y_d
\]

berechnet. Dies ergibt die grünen Punkte. Zuletzt wird in \(z\)-Richtung interpoliert. Dafür wird

\[
C = c_0 \cdot (1 - z_d) + c_1 \cdot z_d
\]

berechnet. Der Wert für den roten Punkt \(C\) ist ermittelt [Wik].

2.3.2 Trikubische Interpolation

Die trikubische Interpolation errechnet wie die trilineare Interpolation einen Wert für einen gesuchten Punkt auf einem dreidimensionalen Gitter. Dafür werden anstelle einer Geraden, wie bei der trilinearen Interpolation, ein Polynom dritten Grades durch die Punkte gelegt. Da ein Polynom dritten

Abbildung 2.5: Trilineare Interpolation [Wik]
2.4 Fehleranalyse

Grades durch vier Punkte eindeutig festgelegt ist, werden daher $4^3 = 64$ Punkte für die Interpolation eines Punktes benötigt. Dadurch ist die trikubische Interpolation deutlich rechenintensiver als die trilineare Interpolation, verbessert aber teilweise die Qualität der subgesampelten Volumendaten beachtlich. Für weitere Informationen und Details siehe [Bre; LM05].

2.4 Fehleranalyse

Um die Abweichung der vom Netz erstellten Volumen und der interpolierten Volumen zu den Originalbildern quantifizieren zu können, wurden drei verschiedene Fehlermessungen ausgewählt. Dies sind der Mean Squared Error, der Peak signal-to-noise ratio und der Structural Similarity Fehler. Diese werden in den nächsten drei Unterkapiteln genauer beschrieben.

2.4.1 Mean Squared Error

Der Mean Squared Error (MSE) [WMS14] beschreibt den mittleren quadratischen Fehler pro Pixel. Je kleiner der Wert, desto besser ist das Ergebnis.

Angenommen X sei das Originalvolumen und Y das Volumen des Netzes. Dann ist

$$\text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (X_i - Y_i)^2,$$

wobei X_i und Y_i jeden Voxel des Volumen durchlaufen.

2.4.2 Peak signal-to-noise ratio

Angenommen X sei das Originalvolumen und Y das Volumen des Netzes. Dann berechnet sich der Peak signal-to-noise ratio (PSNR) berechnet sich wie folgt [HZ10]:

$$\text{PSNR} = 10 \cdot \log_{10} \left(\frac{\text{MAX}_X^2}{\text{MSE}} \right)$$

Dabei sei X wieder das Originalbild und MAX_X^2 das Maximalwert eines Voxels aus Volumen X. In den Experimenten ist $\text{MAX} = 255$.

15
2 Grundlagen

2.4.3 Structural similarity

Der Structural similarity (SSIM) beurteilt die Ähnlichkeit zweier Volumen [HZ10; WBSS04]. Sei X das Originalbild und Y das Volumen des Netzes. Sei μ_X der Mittelwert von X, μ_Y der Mittelwert von Y, σ_X^2 die Varianz von X, σ_Y^2 die Varianz von Y, σ_{XY} der Kovarianz von X und Y, $k_1 = 0.01$, $k_2 = 0.03$, $L = 2^{\#\text{bits per Pixel}} - 1$, $c_1 = (k_1 \cdot L)^2$ und $c_2 = (k_2 \cdot L)^2$. Dann ist

$$SSIM(X, Y) = \frac{(2 \cdot \mu_X \cdot \mu_Y + c_1) \cdot (2 \cdot \sigma_{XY} + c_2)}{(\mu_X^2 + \mu_Y^2 + c_1) \cdot (\sigma_X^2 + \sigma_Y^2 + c_2)}.$$

In den verwendeten Datensätzen ist $\#\text{bits per Pixel} = 8$, folglich ist $L = 255$.
3 Methodik

In diesem Kapitel werden zuerst die verwendeten Datensätze und deren Aufteilung in Trainings- und Testdaten beschrieben. Anschließend wird das verwendete Subsampling erklärt und die verschiedenen Netzwerkstrukturen erläutert. Zuletzt wird die Durchführung der Experimente beschrieben.

3.1 Datensätze

Die Experimente werden jeweils mit drei verschiedenen Datensätzen durchgeführt. Diese haben verschiedene Dimensionen und jeweils eine unterschiedliche Anzahl an Volumina.

1. Datensatz drop: Es wird das Zusammenstoßen zweier Wassertropfen dargestellt. Auf den ersten Volumina sind zwei Wassertropfen gezeigt. Im Laufe der Sequenz berühren sich diese und zerfallen in Folge des Aufpralls in viele kleine Wassertropfen.

Der Datensatz beinhaltet 1000 Volumina. Er wird aufgeteilt in 100 Test- und 900 Trainingsvolumina. Dabei wird jedes zehnte Volumen der Sequenz ein Testvolumen. Jedes Volumen hat eine Dimension von 256 x 256 x 256. Beispielvolumina des Datensatz drop sind in In

(a) kurz nach dem Aufprall
(b) Zerfall der Tropfen

Abbildung 3.1: Beispielvolumina aus dem Datensatz drop
3 Methodik

(a) Warme und kalte Luft breitet sich aus

(b) Verwirbelungen mit warmer und kalter Luft

Abbildung 3.2: Beispielvolumina aus dem Datensatz hotroom

Abbildung 3.1 zu sehen. Das Volumen in Abbildung 3.1a zeigt zwei Tropfen die gerade zusammenstoßen. In Abbildung 3.1b sind die Tropfen bereits zusammengestoßen. Es haben sich kleine Teiltropfen gebildet, die in alle Richtungen weggeschleudert werden.

2. Datensatz hotroom: Es wird der Verlauf eines Raumes gezeigt, der an einer Seite warm und an der anderen Seite kalt ist. Im Laufe der Sequenz zeigen sich dabei Luftverwirbelungen mit warmer und kalter Luft.

3.2 Subsampling

Zur Dimensionsreduktion wurde in dieser Arbeit Subsampling verwendet. Im Folgenden wird das Prinzip von Subsampling beschrieben. Sei V das Originalvolumen und F der Subsampling-Faktor. Dann gilt

$$V_{sub} = V[n \cdot i, n \cdot j, n \cdot k],$$

wobei i, j und k das Volumen durchlaufen. Anschaulich bedeutet dies für den Subsampling-Faktor zwei verbleibt nur jede zweite Zeile in x-, y- und z-Richtung. Ein Ziel der Arbeit ist herauszufinden, wie hoch der Subsampling-Faktor maximal gewählt werden kann, um noch gute Ergebnisvolumina zu erhalten. Dafür wird in dieser Arbeit ein Subsampling mit Faktor 2, 4 und 8 durchgeführt. In den Ergebnissen (Kapitel 4) zeigt sich, dass für ein Subsampling mit Faktor 8 bereits keine guten Ergebnisse erzielt werden.

3.3 Netzwerk

Das Grundnetzwerk besteht aus drei Hidden-Layern, die dabei drei verschiedene Faltungen ausführen. Die Größe der Faltung im ersten Layer beträgt $f_1 \times f_1 \times f_1$, im zweiten Layer $f_2 \times f_2 \times f_2$ Faltung und im dritten Layer $f_3 \times f_3 \times f_3$. Dabei wurde angelehnt an den Artikel von Zhou et al. [ZHW+17] 32 Kanäle für Schicht eins und 64 Kanäle für Schicht zwei gewählt. Für die letzte Faltung sind s_3^F = (Subsampling-Faktor)3 Ausgangs-Kanäle nötig. Um am Schluss des Netzerwerks wieder auf die ursprüngliche Auflösung zu kommen muss jeder Voxel mit s_3^F Kanälen in einen Würfel der Größe $s_F \times s_F \times s_F$ transformiert werden. Wichtig ist, dass diese Umwandlung lokal geschieht. In Abbildung 3.4 ist der Ablauf des Netzwerks nochmals grafisch verdeutlicht.

Zum Training der Netzwerke wurde die Learning Rate 10^{-4} gewählt. Hiermit ergab sich eine schnelle aber dennoch gute Konvergenz.

Bei der Konstruktion des Netzes war das Ziel ein kleines Receptive Field zu verwenden. Das Receptive Field ist der Teil der Eingabe der potentiell zu einem Ausgabe-Voxel beiträgt. Um das Receptive Field klein zu halten, wurde die Tiefe auf drei Faltungen beschränkt. Für jeden Datensatz werden die Filtergrößen $f_1 = 5$, $f_2 = 1$ und $f_3 = 3$ getestet. Zusätzlich wird bei den Experimenten für den Datensatz drop und den Experimenten auf allen drei Datensätzen die Filtergröße f_1 variiert. Genauer wird der Datensatz neben $f_1 = 5$ noch mit $f_1 = 3$ und $f_1 = 7$ trainiert.
3.4 Training

Subsampling mit Faktoren 4 und 8

Subsampling-Faktor 4 und 8 wurden nur mit Filtergrößen $f_1 = 5$, $f_2 = 1$ und $f_3 = 3$ getestet. Da die Interpolationsaufgabe mit größeren Subsampling-Faktoren deutlich komplexer ist wurde die Anzahl der Kanäle erhöht. Dadurch kann das Netz mehr unterschiedliche Filter lernen. Für den Subsampling-Faktor 4 werden anstatt 32 und 64 Kanälen für die ersten beiden Faltungen nun 256 und 512 Kanäle verwendet. Für den Subsampling-Faktor 8 werden 512 und 1024 Kanäle für die ersten beiden Faltungen verwendet.

Vergleich der Ergebnisse

3.4 Training

4 Ergebnisse

In den folgenden Abschnitten sind die Ergebnisse der Experimente dargestellt. Das Netz wurde in Kapitel 3.3 bereits beschrieben. Auf den verschiedenen Datensätzen werden für die Experimente Faltungsgrößen und Subsampling-Faktoren variiert. Zuerst werden die Ergebnisse des Trainings auf einem Datensatz vorgestellt. Im Anschluss werden die Ergebnisse des Trainings auf allen drei Datensätzen präsentiert.

4.1 Training auf einem Datensatz

Es werden nacheinander die Ergebnisse der Datensätze hotroom, 5jets und drop vorgestellt. Für eine Einführung in die Datensätze siehe Kapitel 3.1. Die Interpolation der Datensätze hotroom und 5jets wurde mit einem Netz und Subsampling-Faktor zwei trainiert. Für den Datensatz drop wurden verschiedene Netze und verschiedene Subsampling-Faktoren trainiert.

Training auf Datensatz hotroom

Für das Netz werden, wie in Kapitel 3.3 beschrieben, die Faltungen mit $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ gewählt. Die Volumen werden für das Training mit Faktor zwei subgesampelt. Wie in Abbildung 4.1a zu sehen, wird der Mean Squared Error über die Testdaten ab der 23. Epoche nur noch unwesentlich besser. Daher wurde das Training nach der 25. Epoche beendet.

4 Ergebnisse

(a) Durchschnittlicher MSE über Testdaten des Datensatzes hotroom
(b) Fehler-Histogramm des Netzwerks über dem Testdatensatz hotroom (logarithmische Skala)

Abbildung 4.1: Auswertung der Testdaten des Datensatz hotroom

(c) Rekonstruiertes Volumen des Netzwerks mit $f_1 = 5, f_2 = 1, f_3 = 3$ und $s_F = 2$
(d) Trilineare Interpolation mit $s_F = 2$

Abbildung 4.2: Ergebnisvolumina aus Testdatensatz hotroom
4.1 Training auf einem Datensatz

<table>
<thead>
<tr>
<th>Datensatz hotroom</th>
<th>MSE</th>
<th>PSNR</th>
<th>SSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netzwerk mit $f_1 = 5, f_2 = 1, f_3 = 3$ und $s_F = 2$</td>
<td>0.19</td>
<td>55.58</td>
<td>$1.83 \cdot 10^{-9}$</td>
</tr>
<tr>
<td>trilineare Interpolation</td>
<td>0.18</td>
<td>55.62</td>
<td>$1.91 \cdot 10^{-9}$</td>
</tr>
<tr>
<td>trikubische Interpolation</td>
<td>5.80</td>
<td>40.48</td>
<td>$2.57 \cdot 10^{-9}$</td>
</tr>
</tbody>
</table>

Tabelle 4.1: Vergleich der Ergebnisse auf dem Datensatz hotroom

In Abbildung 4.2a ist ein Originalvolumen aus dem Datensatz hotroom zu sehen. Das rekonstruierte Volumen des Neuronalen Netzes (Abbildung 4.2b) hat im Gegensatz zum Original rundere Kanten in der kalten Temperaturströmung. Im dunkelroten Bereich des rekonstruierten Volumens sind blaue Artefakte zu erkennen. Diese sind im Originalbild nicht vorhanden.
4 Ergebnisse

Training auf Datensatz 5jets

Für das Netz werden, wie in Kapitel 3.3 beschrieben, die Faltungen mit \(f_1 = 5, f_2 = 1, f_3 = 3 \) gewählt. Die Volumen werden für das Training mit Faktor zwei subgesampelt. Wie in Abbildung 4.3a gezeigt, wird der Mean Squared Error über die Testdaten ab der achten Epoche nur noch unwesentlich besser. Daher wurde das Training nach der zehnten Epoche beendet.

Die Tabelle 4.2 zeigt den MSE, PSNR und SSIM des Netzes, der trilinearen und der trikubischen Interpolation über den Testdaten. Das rekonstruierte Volumen des Netzes ist den Fehlern zuliebe schlechter als das der trilinearen und trikubischen Interpolation.

\[(a) \text{ Durchschnittlicher MSE über Testdaten des Datensatzes 5jets} \]
\[(b) \text{ Fehler-Histogramm des Netzwerks über dem Testdatensatz 5jets (logarithmische Skala)} \]

Abbildung 4.3: Auswertung der Testdaten des Datensatzes 5jets
4.1 Training auf einem Datensatz

<table>
<thead>
<tr>
<th>Datensatz 5jets</th>
<th>MSE</th>
<th>PSNR</th>
<th>SSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netzwerk mit (f_1 = 5), (f_2 = 1), (f_3 = 3) und (s_F = 2)</td>
<td>1.25</td>
<td>47.15</td>
<td>2.4 (\cdot) 10(^{-4})</td>
</tr>
<tr>
<td>trilineare Interpolation</td>
<td>0.65</td>
<td>49.98</td>
<td>1.14 (\cdot) 10(^{-4})</td>
</tr>
<tr>
<td>trikubische Interpolation</td>
<td>0.72</td>
<td>49.93</td>
<td>1.08 (\cdot) 10(^{-4})</td>
</tr>
</tbody>
</table>

Tabelle 4.2: Vergleich der Ergebnisse aus dem Datensatz 5jets

Abbildung 4.4: Ergebnisvolumina aus Testdatensatz 5jets

(a) Originalvolumen

(b) Rekonstruiertes Volumen des Netzes mit \(f_1 = 5 \), \(f_2 = 1 \), \(f_3 = 3 \) und \(s_F = 2 \)

(c) Trilineare Interpolation mit \(s_F = 2 \)

(d) Trikubische Interpolation mit \(s_F = 2 \)
4 Ergebnisse

Training auf Datensatz drop

In den folgenden zwei Abschnitten werden die Ergebnisse des Trainings auf dem Datensatz drop mit verschiedenen Faltungsgrößen und verschiedenen Subsampling-Faktoren vorgestellt.

verschiedene Faltungsgrößen

Zunächst wird Subsampling um den Faktor zwei untersucht. Um einen Eindruck über den Einfluss der Faltungsgrößen zu erhalten, wird die Größe f_1 der ersten Faltung variiert:

1. $f_1 = 5, f_2 = 1, f_3 = 3$
2. $f_1 = 7, f_2 = 1, f_3 = 3$
3. $f_1 = 3, f_2 = 1, f_3 = 3$

Dadurch wird das Receptive Field einmal größer und einmal kleiner als bei den vorherigen Experimenten.

Das Netz Nummer 1 mit den Faltungsgrößen $f_1 = 5, f_2 = 1, f_3 = 3$ zeigte die besten Ergebnisse (siehe Tabelle 4.3). Daher wird der Verlauf des Trainings nur für dieses Netz gezeigt (Abbildung 4.5). Der Verlauf des Trainings der anderen beiden Netze ist nahezu identisch. Da sich nach der siebten Epoche kaum noch Verbesserungen zeigten, wurde das Training nach der neunten Epoche beendet.

Die Abbildung 4.5b zeigt den Verlauf des Mean Squared Errors über den Trainingsdaten. Die dicke der Kurve weist auf einen stark schwankenden MSE unter den Trainingsdaten hin.

![Abbildung 4.5](image.jpg)

(a) Durchschnittlicher MSE über Testdaten des Datensatzes drop (b) MSE über Trainingsdaten des Datensatzes drop

Abbildung 4.5: Auswertung des Netzes mit $f_1 = 5, f_2 = 1, f_3 = 3$ und $s_F = 2$ auf dem Datensatz drop
4.1 Training auf einem Datensatz

(a) Originalvolumen

(b) Rekonstruiertes Volumen des Netzes mit \(f_1 = 5, f_2 = 1, f_3 = 3 \) und \(s_F = 2 \)

(c) Trilineare Interpolation mit \(s_F = 2 \)

(d) Trikubische Interpolation mit \(s_F = 2 \)

(e) Rekonstruiertes Volumen des Netzes mit \(f_1 = 7, f_2 = 1, f_3 = 3 \) und \(s_F = 2 \)

(f) Rekonstruiertes Volumen des Netzes mit \(f_1 = 3, f_2 = 1, f_3 = 3 \) und \(s_F = 2 \)

Abbildung 4.6: Ergebnisvolumina aus Testdatensatz drop
Die Ergebnisse der drei Netze, sowie die Ergebnisse der trilinearen und trikubischen Interpolation sind in Tabelle 4.3 zu sehen. Das Netz mit den Faltungen $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ liefert das beste Ergebnis. Deshalb werden der Mean Squared Error über den Trainings- und den Testdaten, sowie das Histogram nur von diesem Netz gezeigt.

Abb. 4.7 zeigt das Fehler-Histogramm des Netzes mit $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ und $s_F = 2$ über dem Testdatensatz drop.
4.1 Training auf einem Datensatz

Durchschnittlicher MSE über Testdaten des Datensatzes drop mit $s_F = 4$

Abbildung 4.8: Durchschnittlicher MSE über Testdaten des Datensatzes drop

verschiedene Subsampling-Faktoren

Das Netz mit den Faltungen der Größe $f_1 = 5, f_2 = 1, f_3 = 2$ liefert beim Subsampling um den Faktor zwei die vielversprechendste Interpolation. Deshalb soll dieses Netz nun mit weiteren Subsampling-Faktoren, genauer $s_F = 4$ und $s_F = 8$, untersucht werden. Größere Subsampling-Faktoren werden nicht getestet, da die rekonstruierten Volumen bereits mit Subsampling-Faktor 8 nicht mehr klar zu erkennen sind.

Der Verlauf des Trainings ist in Abbildung 4.8 gezeigt. Da sich mit einem Subsampling um Faktor 4 (respektive 8) nach der achten Epoche (respektive neunten Epoche) keine Verbesserungen zeigten, wurde das Training nach der zehnten Epoche (respektive elften Epoche) beendet.

Abbildung 4.9 zeigt die Fehler-Histogramme des Netzes für ein Subsampling um Faktor 4 und 8. Wie sich zeigt, ist der maximale absolute Fehler des Netzes 255. Die Wahrscheinlichkeit für einen großen Fehler ist beim Subsampling um Faktor 8 etwa 100-mal so groß wie beim Subsampling um Faktor 4.
4 Ergebnisse

(a) Fehler-Histogramm des Netzes über dem Testdatensatz drop mit $s_F = 4$ (logarithmische Skala)

(b) Fehler-Histogramm des Netzes über dem Testdatensatz drop mit $s_F = 8$ (logarithmische Skala)

Abbildung 4.9: Histogramm des Trainings auf Datensatz drop mit $s_F = 4$ und $s_F = 8$

(a) Originalvolumen

(b) Rekonstruiertes Volumen des Netzes mit $f_1 = 5, f_2 = 1, f_3 = 3$ und $s_F = 4$

(c) Trilineare Interpolation mit $s_F = 4$

(d) Trikubische Interpolation mit $s_F = 4$

Abbildung 4.10: Ergebnisvolumina aus Testdatensatz drop mit $s_F = 4$
4.1 Training auf einem Datensatz

<table>
<thead>
<tr>
<th>Datensatz drop</th>
<th>MSE</th>
<th>PSNR</th>
<th>SSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netz mit $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ und $s_F = 4$</td>
<td>9.47</td>
<td>38.70</td>
<td>5.08 $\cdot 10^{-5}$</td>
</tr>
<tr>
<td>trilineare Interpolation mit $s_F = 4$</td>
<td>10.99</td>
<td>38.08</td>
<td>6.62 $\cdot 10^{-5}$</td>
</tr>
<tr>
<td>trikubische Interpolation mit $s_F = 4$</td>
<td>10.03</td>
<td>38.45</td>
<td>4.48 $\cdot 10^{-5}$</td>
</tr>
<tr>
<td>Netz mit $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ und $s_F = 8$</td>
<td>27.40</td>
<td>34.14</td>
<td>1.46 $\cdot 10^{-4}$</td>
</tr>
<tr>
<td>trilineare Interpolation mit $s_F = 8$</td>
<td>28.65</td>
<td>33.92</td>
<td>1.60 $\cdot 10^{-4}$</td>
</tr>
<tr>
<td>trikubische Interpolation mit $s_F = 8$</td>
<td>29.27</td>
<td>33.87</td>
<td>7.39 $\cdot 10^{-5}$</td>
</tr>
</tbody>
</table>

Tabelle 4.4: Vergleich der Ergebnisse auf dem Datensatz drop mit $s_F = 4$ und $s_F = 8$

![Originalvolumen](image1.png)

(a) Originalvolumen

![Rekonstruiertes Volumen des Netzes mit $s_F = 8$](image2.png)

(b) Rekonstruiertes Volumen des Netzes mit $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ und $s_F = 8$

![Trilineare Interpolation mit $s_F = 8$](image3.png)

(c) Trilineare Interpolation mit $s_F = 8$

![Trikubische Interpolation mit $s_F = 8$](image4.png)

(d) Trikubische Interpolation mit $s_F = 8$

Abbildung 4.11: Ergebnisvolumina aus Testdatensatz drop mit $s_F = 8$
4 Ergebnisse

Das rekonstruierte Volumen des Netzes ist in Abbildung 4.10b gezeigt. Es ist im Vergleich zum Originalvolumen (Abbildung 4.10a) deutlich größer. Auf den Volumen der trilinearen (Abbildung 4.10c) und trikubischen Interpolation (Abbildung 4.10d) ist die Oberflächenstruktur, genauso wie auf dem rekonstruierten Volumen des Netzes, nicht mehr zu erkennen.

Beim Subsampling um Faktor 8 ist weder auf dem rekonstruierten Volumen des Netzes (Abbildung 4.11b) noch auf den Volumen der trilinearen (Abbildung 4.11c) und der trikubischen Interpolation (Abbildung 4.11d) das Originalvolumen (Abbildung 4.11a) ansatzweise zu erkennen. Für die Volumen des Datensatzes drop ist mit Subsampling-Faktor 8 die Grenze des Machbaren für diese Netzwerkstruktur erreicht.

4.2 Training auf mehreren Datensätzen

In den folgenden Abschnitten sind die Ergebnisse der Experimente auf allen drei Datensätzen beschrieben. Anders als zuvor wird jedes Netz auf der Vereinigung aller drei Datensätze trainiert. Analog wie im vorherigen Unterkapitel werden zuerst die Experimente samt Ergebnissen mit verschiedenen Faltungsgrößen und Subsampling-Faktor 2 vorgestellt. Anschließend werden die Ergebnisse mit Subsampling-Faktor 4 und 8 präsentiert.

verschiedene Faltungsgrößen

Zunächst wird das Subsampling um Faktor 2 untersucht. Beim Training auf dem Datensatz drop in Kapitel 4.1, haben sich die drei Faltungen mit

1. $f_1 = 5, f_2 = 1, f_3 = 3$
2. $f_1 = 7, f_2 = 1, f_3 = 3$
3. $f_1 = 3, f_2 = 1, f_3 = 3$

Tabelle 4.5 zeigt die Fehler MSE, PSNR und SSIM der Netze mit Subsampling-Faktor 2. Die verschiedenen Netze wurden auf der Vereinigung aller drei Datensätze trainiert und anschließend auf jedem Testdatensatz getrennt ausgewertet. Zum Vergleich sind die Ergebnisse der trilinearen und trikubischen Interpolation ebenfalls aufgelistet. Das Netz mit den Faltungsgrößen $f_1 = 5, f_2 = 1, f_3 = 3$ zeigt die besten MSE und PSNR Werte für alle drei Datensätze. Es zeigt auch im
Tabelle 4.5: Vergleich der Ergebnisse des Trainings mit verschiedenen Faltungsgrößen und $s_F = 2$

Die Netze wurden auf der Vereinigung aller drei Datensätze trainiert und anschließend auf jedem Testdatensatz getrennt ausgewertet.

<table>
<thead>
<tr>
<th>Subsampling-Faktor $s_F = 2$</th>
<th>MSE</th>
<th>PSNR</th>
<th>SSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netz mit $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ auf Datensatz drop</td>
<td>2.47</td>
<td>44.45</td>
<td>3.71 · 10^{-5}</td>
</tr>
<tr>
<td>Netz mit $f_1 = 7$, $f_2 = 1$, $f_3 = 3$ auf Datensatz drop</td>
<td>2.58</td>
<td>44.33</td>
<td>3.68 · 10^{-5}</td>
</tr>
<tr>
<td>Netz mit $f_1 = 3$, $f_2 = 1$, $f_3 = 3$ auf Datensatz drop</td>
<td>2.72</td>
<td>44.11</td>
<td>3.45 · 10^{-5}</td>
</tr>
<tr>
<td>trilineare Interpolation drop</td>
<td>3.02</td>
<td>43.68</td>
<td>4.40 · 10^{-5}</td>
</tr>
<tr>
<td>trikubische Interpolation drop</td>
<td>2.56</td>
<td>44.37</td>
<td>3.89 · 10^{-5}</td>
</tr>
</tbody>
</table>

Netz mit $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ auf Datensatz hotroom	**0.17**	**55.69**	2.98 · 10^{-9}
Netz mit $f_1 = 7$, $f_2 = 1$, $f_3 = 3$ auf Datensatz hotroom	0.27	53.46	3.25 · 10^{-9}
Netz mit $f_1 = 3$, $f_2 = 1$, $f_3 = 3$ auf Datensatz hotroom	0.29	53.43	3.28 · 10^{-9}
trilineare Interpolation hotroom	0.18	55.62	**1.91 · 10^{-9}**
trikubische Interpolation hotroom	5.80	40.49	2.57 · 10^{-9}

Netz mit $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ auf Datensatz 5jets	0.68	49.96	1.07 · 10^{-4}
Netz mit $f_1 = 7$, $f_2 = 1$, $f_3 = 3$ auf Datensatz 5jets	0.74	49.84	1.06 · 10^{-4}
Netz mit $f_1 = 3$, $f_2 = 1$, $f_3 = 3$ auf Datensatz 5jets	0.80	49.47	**1.02 · 10^{-4}**
trilineare Interpolation 5jets	**0.65**	**49.98**	1.14 · 10^{-4}
trikubische Interpolation 5jets	0.72	49.93	1.08 · 10^{-4}
4 Ergebnisse

(a) Durchschnittlicher MSE über alle Testdaten mit $f_1 = 5$, $f_2 = 1$, $f_3 = 3$

(b) Durchschnittlicher MSE über alle Testdaten mit $f_1 = 7$, $f_2 = 1$, $f_3 = 3$

(c) Durchschnittlicher MSE über alle Testdaten mit $f_1 = 3$, $f_2 = 1$, $f_3 = 3$

Abbildung 4.12: Durchschnittlicher MSE über Testdaten aller Datensätze

Vergleich zur trilinearen und trikubischen Interpolation die besten Ergebnisse für die beiden Datensätze hotroom und drop. Für den Datensatz 5jets ist die trilineare Interpolation minimal besser. Gleichzeitig zeigt sich am Datensatz 5jets, dass das Training auf der Vereinigung aller drei Datensätze sehr Vorteilhaft ist. Wie in Kapitel 4.1 (Abschnitt 5jets) beschrieben, liefert ein Training nur auf dem Datensatz 5jets einen MSE Wert von 1.25 auf den Testdaten 5jets. Das Training auf der Vereinigung aller Datensätze verbesserte den MSE Wert auf 0.68.

Abbildung 4.16 zeigt die Fehler-Histogramme über die verschiedenen Testdatensätze des Netzes mit den Faltungsgrößen $f_1 = 5$, $f_2 = 1$, $f_3 = 3$. Alle drei Histogramme ähneln den Histogramme, die auf dem Training auf nur einem Datensatz entstanden sind.

In Abbildung 4.13 sind rekonstruierte Volumina aus dem Testdatensatz drop zu sehen. Es wird nur das rekonstruierte Volumen des Netzes mit den Faltungen $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ gezeigt. Für den besseren Vergleich wird das rekonstruierte Volumen desselben Netzes, welches nur auf
4.2 Training auf mehreren Datensätzen

(a) Originalvolumen

(b) Rekonstruiertes Volumen des Netzes mit $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ auf allen Datensätzen trainiert

(c) Rekonstruiertes Volumen Netzes mit $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ auf Datensatz drop trainiert

(d) Trilineare Interpolation mit $s_F = 2$

(e) Trikubische Interpolation $s_F = 2$

Abbildung 4.13: Ergebnisvolumina aus Testdatensatz drop mit Training auf allen Datensätzen
4 Ergebnisse

(a) Originalvolumen

(b) Rekonstruiertes Volumen des Netzes mit $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ auf allen Datensätzen trainiert

(c) Rekonstruiertes Volumen des Netzes mit $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ auf Datensatz hotroom trainiert

(d) Trilineare Interpolation mit $s_F = 2$

(e) Trikubische Interpolation mit $s_F = 2$

Abbildung 4.14: Ergebnisvolumina aus Testdatensatz hotroom mit Training auf allen Datensätzen
4.2 Training auf mehreren Datensätzen

(a) Originalvolumen

(b) Rekonstruiertes Volumen des Netzes mit $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ mit allen Datensätzen trainiert

(c) Rekonstruiertes Volumen des Netzes mit $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ nur auf Datensatz 5jets trainiert

(d) Trilineare Interpolation mit $s_F = 2$

(e) Trikubische Interpolation mit $s_F = 2$

Abbildung 4.15: Ergebnisvolumina aus Testdatensatz 5jets mit Training auf allen Datensätzen
4 Ergebnisse

(a) Fehler-Histogramm des Netzes über dem Datensatz drop (logarithmische Skala)

(b) Fehler-Histogramm des Netzes über dem Datensatz hotroom (logarithmische Skala)

(c) Fehler-Histogramm des Netzes über dem Datensatz 5jets (logarithmische Skala)

Abbildung 4.16: Fehler-Histogramme des Netzes mit Faltungsgrößen $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ und $s_F = 2$. Das Netz wurde auf der Vereinigung aller drei Datensätze trainiert und anschließend auf jedem Testdatensatz getrennt ausgewertet.

Dem Datensatz drop trainiert wurde gezeigt (siehe Kapitel 4.1 Abschnitt drop). Die Form des rekonstruierten Volumens wird besser durch das Netz, welches auf der Vereinigung aller drei Datensätze trainiert wurde, getroffen.

Dieselben Vergleichsbilder sind in Abbildung 4.14 für den Datensatz hotroom und in Abbildung 4.15 für den Datensatz 5jets gezeigt. Beim Datensatz hotroom sind im rekonstruierten Volumen durch das Training auf der Vereinigung aller drei Datensätze die Artefakte verschwunden (siehe Kapitel 4.1 Abschnitt hotroom). Die Verbesserung beim Datensatz 5jets lässt sich ebenfalls gut erkennen. Die feinen Täler, welche im Originalvolumen zu sehen sind, sind nun gut zu erkennen.
4.2 Training auf mehreren Datensätzen

Abbildung 4.17: Durchschnittlicher MSE über Testdaten aller Datensätze mit $s_F = 4$ und $s_F = 8$. Die Netze wurden auf der Vereinigung aller drei Datensätze trainiert und anschließend auf jedem Testdatensatz getrennt ausgewertet.

verschiedene Subsampling-Faktoren

Das Netz mit den Faltungsgrößen $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ liefert beim Subsampling um Faktor 2 für alle drei Datensätze das beste Ergebnis (siehe vorheriger Abschnitt). Deshalb soll dieses Netz nun mit weiteren Subsampling-Faktoren, genauer $s_F = 4$ und $s_F = 8$ untersucht werden. Es werden, wie beim Training auf dem Datensatz drop (Kapitel 4.1 Abschnitt drop), keine weiteren Subsampling-Faktoren getestet, da die rekonstruierten Volumen bereits mit $s_F = 8$ nur noch undeutlich zu erkennen sind.

Ergebnisse

<table>
<thead>
<tr>
<th>alle Datensätze mit $s_F = 4$</th>
<th>MSE</th>
<th>PSNR</th>
<th>SSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netz mit $f_1 = 5, f_2 = 1, f_3 = 3$ auf Datensatz drop</td>
<td>10.22</td>
<td>38.37</td>
<td>$4.62 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>Trilineare Interpolation drop</td>
<td>10.99</td>
<td>38.08</td>
<td>$6.62 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>Trikubische Interpolation drop</td>
<td>10.03</td>
<td>38.45</td>
<td>$4.84 \cdot 10^{-5}$</td>
</tr>
</tbody>
</table>

Netz mit $f_1 = 5, f_2 = 1, f_3 = 3$ auf Datensatz hotroom	0.87	48.75	$3.43 \cdot 10^{-9}$
Trilineare Interpolation hotroom	**0.76**	**49.39**	$2.82 \cdot 10^{-9}$
Trikubische Interpolation hotroom	20.96	34.91	$1.62 \cdot 10^{-9}$

Netz mit $f_1 = 5, f_2 = 1, f_3 = 3$ auf Datensatz 5jets	1.16	47.75	$1.03 \cdot 10^{-4}$
Trilineare Interpolation 5jets	**0.93**	**48.76**	$1.23 \cdot 10^{-4}$
Trikubische Interpolation 5jets	1.18	47.75	$1.08 \cdot 10^{-4}$

Tabelle 4.6: Vergleich der Ergebnisse des Training auf allen Datensätzen mit $s_F = 4$. Das Netz wurde auf der Vereinigung aller drei Datensätze trainiert und anschließend auf jedem Testdatensatz getrennt ausgewertet.

Die Fehler-Histogramme der Netze sind in Abbildung 4.18 gezeigt. Für die Datensätze hotroom und 5jets gilt: Je höher der Subsampling-Faktor, desto höher die Wahrscheinlichkeit für große absolute Fehler pro Voxel.
4.2 Training auf mehreren Datensätzen

(a) Fehler-Histogramm des Netzes mit $s_F = 4$
über dem Testdatensatz drop (logarithmische Skala)

(b) Fehler-Histogramm des Netzes mit $s_F = 8$
über dem Testdatensatz drop (logarithmische Skala)

(c) Fehler-Histogramm des Netzes mit $s_F = 4$
über dem Testdatensatz hotroom (logarithmische Skala)

(d) Fehler-Histogramm des Netzes mit $s_F = 8$
über dem Testdatensatz hotroom (logarithmische Skala)

(e) Fehler-Histogramm des Netzes mit $s_F = 4$
über dem Testdatensatz 5jets (logarithmische Skala)

(f) Fehler-Histogramm des Netzes mit $s_F = 8$
über dem Testdatensatz 5jets (logarithmische Skala)

Abbildung 4.18: Fehler-Histogramme Training auf allen Datensätzen mit $s_F = 4$ und $s_F = 8$
4 Ergebnisse

<table>
<thead>
<tr>
<th>alle Datensätze mit $s_F = 8$</th>
<th>MSE</th>
<th>PSNR</th>
<th>SSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netz mit $f_1 = 5, f_2 = 1, f_3 = 3$ auf Datensatz drop</td>
<td>28.26</td>
<td>33.98</td>
<td>1.27 · 10^{-4}</td>
</tr>
<tr>
<td>Trilineare Interpolation drop</td>
<td>28.65</td>
<td>33.92</td>
<td>1.60 · 10^{-4}</td>
</tr>
<tr>
<td>Trikubische Interpolation drop</td>
<td>29.27</td>
<td>33.87</td>
<td>7.39 · 10^{-5}</td>
</tr>
<tr>
<td>Netz mit $f_1 = 5, f_2 = 1, f_3 = 3$ auf Datensatz hotroom</td>
<td>3.90</td>
<td>42.24</td>
<td>3.21 · 10^{-9}</td>
</tr>
<tr>
<td>Trilineare Interpolation hotroom</td>
<td>5.20</td>
<td>41.09</td>
<td>2.35 · 10^{-9}</td>
</tr>
<tr>
<td>Trikubische Interpolation hotroom</td>
<td>50.10</td>
<td>31.13</td>
<td>8.32 · 10^{-8}</td>
</tr>
<tr>
<td>Netz mit $f_1 = 5, f_2 = 1, f_3 = 3$ auf Datensatz 5jets</td>
<td>2.01</td>
<td>45.18</td>
<td>1.10 · 10^{-4}</td>
</tr>
<tr>
<td>Trilineare Interpolation 5jets</td>
<td>1.41</td>
<td>46.81</td>
<td>1.35 · 10^{-4}</td>
</tr>
<tr>
<td>Trikubische Interpolation 5jets</td>
<td>1.95</td>
<td>46.67</td>
<td>1.11 · 10^{-4}</td>
</tr>
</tbody>
</table>

Tabelle 4.7: Vergleich der Ergebnisse des Training auf allen Datensätzen mit $s_F = 8$. Das Netz wurde auf der Vereinigung aller drei Datensätze trainiert und anschließend auf jedem Testdatensatz getrennt ausgewertet.
4.2 Training auf mehreren Datensätzen

(a) Originalvolumen

(b) Rekonstruiertes Volumen des Netzes mit $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ und $s_F = 4$

(c) Trilineare Interpolation mit $s_F = 4$

(d) Trikubische Interpolation mit $s_F = 4$

Abbildung 4.19: Ergebnisvolumina auf Testdatensatz drop beim Training auf allen Datensätzen mit $s_F = 4$
4 Ergebnisse

(a) Rekonstruiertes Volumen des Netzes mit \(f_1 = 5, f_2 = 1, f_3 = 3 \) und \(s_F = 8 \)

(b) Trilineare Interpolation mit \(s_F = 8 \)

(c) Trikubische Interpolation mit \(s_F = 8 \)

Abbildung 4.20: Ergebnisvolumina auf Testdatensatz drop beim Training auf allen Datensätzen mit \(s_F = 8 \)
4.2 Training auf mehreren Datensätzen

(a) Originalvolumen

(b) Rekonstruiertes Volumen des Netzes mit $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ und $s_F = 4$

(c) Trilineare Interpolation mit $s_F = 4$

(d) Trikubische Interpolation mit $s_F = 4$

Abbildung 4.21: Ergebnisvolumina auf Testdatensatz hotroom beim Training auf allen Datensätzen mit $s_F = 4$
4 Ergebnisse

(a) Rekonstruiertes Volumen des Netzes mit $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ und $s_F = 8$

(b) trilineare Interpolation $s_F = 8$

(c) trikubische Interpolation $s_F = 8$

Abbildung 4.22: Ergebnisvolumina auf Testdatensatz beim Training auf allen Datensätzen mit $s_F = 8$
4.2 Training auf mehreren Datensätzen

(a) Originalvolumen

(b) Rekonstruiertes Volumen des Netzes mit $f_1=5, f_2=1, f_3=3$ und $s_F=4$

(c) Trilineare Interpolation mit $s_F=4$

(d) Trikubische Interpolation mit $s_F=4$

Abbildung 4.23: Ergebnisvolumina auf Testdatensatz 5jets beim Training auf allen Datensätzen mit $s_F=4$
(a) rekonstruiertes Volumen des Netzes mit \(f_1 = 5, f_2 = 1, f_3 = 3 \) und \(s_F = 8 \)

(b) Trilineare Interpolation mit \(s_F = 8 \)

(c) Trikubische Interpolation mit \(s_F = 8 \)

Abbildung 4.24: Ergebnisvolumina auf Testdatensatz 5jets beim Training auf allen Datensätzen mit \(s_F = 8 \)
4.3 Übersicht über alle Ergebnisse

<table>
<thead>
<tr>
<th>Datensatz 5jets</th>
<th>MSE</th>
<th>PSNR</th>
<th>SSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training auf Datensatz 5jets: Netz mit (f_1 = 5, f_2 = 1, f_3 = 3) und (s_F = 2)</td>
<td>1.25</td>
<td>47.15</td>
<td>(2.40 \cdot 10^{-4})</td>
</tr>
<tr>
<td>Training auf allen Datensätzen: Netz mit (f_1 = 5, f_2 = 1, f_3 = 3) und (s_F = 2)</td>
<td>0.68</td>
<td>49.96</td>
<td>(1.07 \cdot 10^{-4})</td>
</tr>
<tr>
<td>Training auf allen Datensätzen: Netz mit (f_1 = 7, f_2 = 1, f_3 = 3) und (s_F = 2)</td>
<td>0.74</td>
<td>49.84</td>
<td>(1.06 \cdot 10^{-4})</td>
</tr>
<tr>
<td>Training auf allen Datensätzen: Netz mit (f_1 = 3, f_2 = 1, f_3 = 3) und (s_F = 2)</td>
<td>0.80</td>
<td>49.47</td>
<td>(1.02 \cdot 10^{-4})</td>
</tr>
<tr>
<td>Trilineare Interpolation (s_F = 2)</td>
<td>\textbf{0.65}</td>
<td>\textbf{49.98}</td>
<td>(1.14 \cdot 10^{-4})</td>
</tr>
<tr>
<td>Trikubische Interpolation (s_F = 2)</td>
<td>0.72</td>
<td>49.93</td>
<td>(1.08 \cdot 10^{-4})</td>
</tr>
<tr>
<td>Training auf allen Datensätzen: Netz mit (f_1 = 5, f_2 = 1, f_3 = 3) und (s_F = 4)</td>
<td>1.16</td>
<td>47.75</td>
<td>(1.03 \cdot 10^{-4})</td>
</tr>
<tr>
<td>Trilineare Interpolation (s_F = 4)</td>
<td>\textbf{0.93}</td>
<td>\textbf{48.76}</td>
<td>(1.23 \cdot 10^{-4})</td>
</tr>
<tr>
<td>Trikubische Interpolation (s_F = 4)</td>
<td>1.18</td>
<td>47.75</td>
<td>(1.08 \cdot 10^{-4})</td>
</tr>
<tr>
<td>Training auf allen Datensätzen: Netz mit (f_1 = 5, f_2 = 1, f_3 = 3) und (s_F = 8)</td>
<td>2.01</td>
<td>45.18</td>
<td>(1.10 \cdot 10^{-4})</td>
</tr>
<tr>
<td>Trilineare Interpolation (s_F = 8)</td>
<td>\textbf{1.41}</td>
<td>\textbf{46.81}</td>
<td>(1.35 \cdot 10^{-4})</td>
</tr>
<tr>
<td>Trikubische Interpolation (s_F = 8)</td>
<td>1.95</td>
<td>45.67</td>
<td>(1.11 \cdot 10^{-4})</td>
</tr>
</tbody>
</table>

\textbf{Tabelle 4.8:} Ergebnisse des Datensatzes 5jets
Ergebnisse

<table>
<thead>
<tr>
<th>Datensatz hotroom</th>
<th>MSE</th>
<th>PSNR</th>
<th>SSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training auf Datensatz hotroom: Netz mit $f_1 = 5$, $f_2 = 1$, $f_3 = 2$ und $s_F = 2$</td>
<td>0.19</td>
<td>55.58</td>
<td>$1.83 \cdot 10^{-9}$</td>
</tr>
<tr>
<td>Training auf allen Datensätzen: Netz mit $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ und $s_F = 2$</td>
<td>0.17</td>
<td>55.69</td>
<td>$2.98 \cdot 10^{-9}$</td>
</tr>
<tr>
<td>Training auf allen Datensätzen: Netz mit $f_1 = 7$, $f_2 = 1$, $f_3 = 3$ und $s_F = 2$</td>
<td>0.27</td>
<td>53.46</td>
<td>$3.25 \cdot 10^{-9}$</td>
</tr>
<tr>
<td>Training auf allen Datensätzen: Netz mit $f_1 = 3$, $f_2 = 1$, $f_3 = 3$ und $s_F = 2$</td>
<td>0.29</td>
<td>53.43</td>
<td>$3.28 \cdot 10^{-9}$</td>
</tr>
<tr>
<td>trilineare Interpolation $s_F = 2$</td>
<td>0.18</td>
<td>55.62</td>
<td>$1.91 \cdot 10^{-9}$</td>
</tr>
<tr>
<td>trikubische Interpolation $s_F = 2$</td>
<td>5.80</td>
<td>40.48</td>
<td>$2.57 \cdot 10^{-9}$</td>
</tr>
<tr>
<td>Training auf allen Datensätzen: Netz mit $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ und $s_F = 4$</td>
<td>0.87</td>
<td>48.75</td>
<td>$3.43 \cdot 10^{-9}$</td>
</tr>
<tr>
<td>trilineare Interpolation $s_F = 4$</td>
<td>0.77</td>
<td>49.39</td>
<td>$2.82 \cdot 10^{-9}$</td>
</tr>
<tr>
<td>trikubische Interpolation $s_F = 4$</td>
<td>20.96</td>
<td>34.91</td>
<td>$1.62 \cdot 10^{-9}$</td>
</tr>
<tr>
<td>Training auf allen Datensätzen: Netz mit $f_1 = 5$, $f_2 = 1$, $f_3 = 3$ und $s_F = 8$</td>
<td>3.90</td>
<td>42.24</td>
<td>$3.21 \cdot 10^{-9}$</td>
</tr>
<tr>
<td>trilineare Interpolation $s_F = 8$</td>
<td>5.20</td>
<td>41.09</td>
<td>$2.35 \cdot 10^{-9}$</td>
</tr>
<tr>
<td>trikubische Interpolation $s_F = 8$</td>
<td>50.10</td>
<td>31.31</td>
<td>$8.32 \cdot 10^{-8}$</td>
</tr>
</tbody>
</table>

Tabelle 4.9: Ergebnisse des Datensatzes hotroom
4.3 Übersicht über alle Ergebnisse

<table>
<thead>
<tr>
<th>Datensatz drop</th>
<th>MSE</th>
<th>PSNR</th>
<th>SSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training auf Datensatz drop: Netz mit $f_1 = 5, f_2 = 1, f_3 = 2$ und $s_F = 2$</td>
<td>2.42</td>
<td>44.59</td>
<td>$3.82 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>Training auf allen Datensätzen: Netz mit $f_1 = 5, f_2 = 1, f_3 = 3$ und $s_F = 2$</td>
<td>2.47</td>
<td>44.45</td>
<td>$3.71 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>Training auf Datensatz drop: Netz mit $f_1 = 7, f_2 = 1, f_3 = 2$ und $s_F = 2$</td>
<td>2.43</td>
<td>44.58</td>
<td>$3.79 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>Training auf allen Datensätzen: Netz mit $f_1 = 7, f_2 = 1, f_3 = 3$ und $s_F = 2$</td>
<td>2.58</td>
<td>44.33</td>
<td>$3.68 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>Training auf Datensatz drop: Netz mit $f_1 = 3, f_2 = 1, f_3 = 2$ und $s_F = 2$</td>
<td>2.44</td>
<td>44.58</td>
<td>$3.70 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>Training auf allen Datensätzen: Netz mit $f_1 = 3, f_2 = 1, f_3 = 3$ und $s_F = 2$</td>
<td>2.72</td>
<td>44.11</td>
<td>$3.45 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>trilineare Interpolation $s_F = 2$</td>
<td>3.02</td>
<td>43.68</td>
<td>$4.40 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>trikubische Interpolation $s_F = 2$</td>
<td>2.56</td>
<td>44.37</td>
<td>$3.89 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>Training auf Datensatz drop: Netz mit $f_1 = 5, f_2 = 1, f_3 = 3$ und $s_F = 4$</td>
<td>9.47</td>
<td>38.70</td>
<td>$5.08 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>Training auf allen Datensätzen: Netz mit $f_1 = 5, f_2 = 1, f_3 = 3$ und $s_F = 4$</td>
<td>10.22</td>
<td>38.37</td>
<td>$4.62 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>trilineare Interpolation $s_F = 4$</td>
<td>10.99</td>
<td>38.08</td>
<td>$6.62 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>trikubische Interpolation $s_F = 4$</td>
<td>10.03</td>
<td>38.45</td>
<td>$4.48 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>Training auf Datensatz drop: Netz mit $f_1 = 5, f_2 = 1, f_3 = 3$ und $s_F = 8$</td>
<td>27.40</td>
<td>34.14</td>
<td>$1.46 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>Training auf allen Datensätzen: Netz mit $f_1 = 5, f_2 = 1, f_3 = 3$ und $s_F = 8$</td>
<td>28.26</td>
<td>33.98</td>
<td>$1.27 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>trilineare Interpolation $s_F = 8$</td>
<td>28.65</td>
<td>33.92</td>
<td>$1.60 \cdot 10^{-4}$</td>
</tr>
<tr>
<td>trikubische Interpolation $s_F = 8$</td>
<td>29.27</td>
<td>33.87</td>
<td>$7.39 \cdot 10^{-5}$</td>
</tr>
</tbody>
</table>

Tabelle 4.10: Ergebnisse des Datensatzes drop
5 Zusammenfassung und Ausblick

Es hat sich gezeigt, dass einfache Netze für Subsampling bis Faktor 4 ausreichend sind. Für Faktor 8 müssen weitere Experimente erfolgen um noch bessere Methoden oder Netze zu finden. Die klassischen Verfahren wie trilineare und trikubische Interpolation liefern meistens auch gute Ergebnisse. Eine Übersicht über alle Ergebnisse wird in Kapitel 4.3 gegeben.

Alle betrachteten Datensätze bestehen aus einer zeitlich zusammenhängenden Sequenz. Für die Interpolation bietet sich also auch die Einbeziehung vorheriger und nachfolgender Volumina an. Das Netz würde somit lernen Informationen über die Zeit zu nutzen. Eine Untersuchung könnte interessante Ergebnisse liefern.

Das Training auf der Vereinigung aller Datensätze lieferte deutlich bessere Ergebnisse für den Subsampling-Faktor 2. Dies spricht dafür, in Zukunft auf noch größeren und diverseren Datensätzen zu trainieren.

Da die trilineare Interpolation bereits gute Ergebnisse liefert, wäre ein alternativer Ansatz das Upsampling erst mit trilinearer Interpolation durchzuführen. Anschließend könnte ein Neuronales Netz das trilinear upgesampelte Volumen verbessern.
Literaturverzeichnis

Alle URLs wurden zuletzt am 10.12.2018 geprüft.
Erklärung

Ort, Datum, Unterschrift