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Abstract

Spoken Dialog Systems allow users to interact with a Dialog Man-

ager (DM) using natural language, thereby following a goal to fulfill

their task. State-of-the-art solutions cast the problem as Markov De-

cision Process, leveraging Reinforcement Learning (RL) algorithms to

find an optimal dialog strategy for the DM. For this purpose, several

thousand dialogs need to be seen by the RL agent. A user simulator

comes in handy to generate responses on demand, however the current

state-of-the-art agenda-based user simulators lack the ability to model

real human subjects. In this thesis, this problem is addressed by im-

plementing a user simulator using a Recurrent Neural Network which

approximates the agenda-based model in a first step. Going onwards,

it is shown to learn noise and variance treated as varying user behav-

ior. This is used to train the simulator on real data thus modeling real

users.

Zusammenfassung

Spoken Dialog Systems ermöglichen es Nutzern mittels Sprache

oder Text, Aufgaben zu erledigen oder einfachen Zugang zu einer Da-

tenbank zu erhalten. State-of-the-art Ansätze modellieren dieses Pro-

blem als Markov Decision Process. Dies ermöglicht den Einsatz von

Reinforcement Learning (RL) Algorithmen, um eine optimale Stra-

tegie für den Dialog Manager zu finden. Dafür muss der RL Agent

allerdings etliche Dialoge sichten. Ein Nutzersimulator generiert zu

diesem Zweck die benötigten Antworten. Der state-of-the-art, Agenda

basierte Nutzersimulator kann Nutzer jedoch nicht realitätsnah nach-

bilden. Diese Masterarbeit versucht das Problem zu lösen, indem ein

Nutzersimulator mittels eines Recurrent Neural Networks implemen-

tiert wird. Es wird zuerst gezeigt, dass dieser den vorhandenen, händi-

schen Nutzersimulator nachbildet. Weiterhin wird gezeigt, dass dieses

Modell Rauschen (dargestellt als individuelles Nutzerverhalten) lernen

und damit auch auf echten Daten trainiert werden kann, um Nutzer

menschlich modellieren zu können.
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1 Introduction

To give an overview about the problem setting and what this thesis aims for,

this section will introduce Spoken Dialog Systems (SDSs) on a high level.

1.1 Dialog Systems

Due to recent advances in machine learning, SDSs have emerged in a vari-

ety of domains. SDSs allow users to interact with a computer using text or

speech input in order to get access to a database. The dialog system should

recognize the user’s intention and answer appropriately. Although in cur-

rent commercial (proprietary) applications the system tries to answer a user

demand, e.g. telling a joke or giving predefined answers similar to FAQs,

they usually do not cover whole conversations. In research, on the other

hand, they often appear as task-oriented systems where full dialogs form a

conversation. In task-oriented SDSs, the user follows a goal (e.g. finding the

address of a french restaurant in the south of town) which the system should

fulfill. For this purpose, the user tells the system about so-called constraints

(e.g. food=french, area=south) and requests (e.g. address). The system,

on the other hand, is concerned with determining the information the user

wants in order to provide it to the user (Bunt, 1981b). Those constraints

and requests are reflected in the ontology of a dialog system.

The ontology specifies a domain and makes all relevant information con-

cerning this domain available to the dialog system. It therefore holds a

database with possible entities within the domain and their properties. The

ontology for the PyDial1 framework used in this thesis as well as the frame-

work itself is shown in more detail in section 4.1.

Within the course of the dialog, the system recognizes these inform actions

and requests more information from the user if needed to find an appropriate

answer to the users goal (which the system doesn’t know). However, the

1http://www.camdial.org/pydial/
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Figure 1: Process within a Spoken Dialog System (SDS): A user’s utterance

is converted through ASR and NLU to a dialog act, which is the input for

the Dialog Manager (DM). Last updates its belief based on this input and

decides on the next action (policy), which traverses the NLG and TTS until

the user gets the answer spoken. (adapted from Williams et al. (2016))

actions within a dialog are not limited to inform and request but also include

discourse actions such as hello or repeat.

An SDS usually consists of several modules, namely Automatic Speech

Recognition (ASR), Natural Language Understanding (NLU), Dialog Man-

ager (DM) (belief tracker & policy), Natural Language Generation (NLG)

and Text-To-Speech (TTS). In case of speech input to the SDS, the ASR

processes the input. Once there is a textual representation of the input, the

NLU tries to extract a semantic representation for the DM. The semantic

representation covers only the raw facts. The DM in turn holds and updates

a belief state, modeling also uncertainty induced in the prior modules by

noise. Using the state, an action according to a policy is selected and issued

to the user while converted into text (NLG) and speech (TTS component) if

applicable. The whole interaction is depicted in fig. 1.
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1.2 Motivation

This thesis aims to provide contributions to methods which model the prob-

lem as a Markov Decision Process (MDP). This enables the DM to find an

optimal policy (w.r.t. a specific criterion) using strategies deployed in MDP.

Most important to mention are Reinforcement Learning (RL) algorithms,

some of them which make use of deep learning. The idea of RL is to find

such an optimal policy using an iterative trial and error process. For this pur-

pose, the agent chooses an action according to a policy (sometimes randomly

to explore the state and action space), which is used by the environment (a

user (simulator) in case of dialog systems) to bring the agent in a new state

while giving feedback (reward) on the taken action. The reward tells the

agent about the quality of this action. The higher the reward, the better the

action in the corresponding state. This is visualized in fig. 2.

As this training is an iterative process, the agent needs a lot of training

data. In an SDS, this means to get an appropriate answer from the user

whenever the system makes a trial in the form of issuing an action. Since

there is typically the need for thousands of dialogs to be seen by the RL

agent, it is intractable to let human subjects decide on the answer and give

the necessary input to the agent. The idea of a user simulator is to generate

those dialogs on demand.

1.3 Contribution

The principal contribution of this thesis is to provide a neural-based user

simulator trained using supervised learning. The idea of neural-based user

simulators is to use a small amount of data available to train a Neural Net-

work (NN). Later on, the user simulator can yet be used with different dialogs

the simulator has never seen. This is made possible due to the ability of NNs

to generalize beyond seen data. Additionally, a trainable user simulator is

important in SDSs to train the whole system end-to-end instead of each

3



Figure 2: The Reinforcement Learning (RL) approach: an agent is currently

in a state, samples an action and gets feedback from the environment in the

form of a new state and a reward. The reward is a measure of quality for the

taken action. (adapted from Sutton and Barto (1998))

module individually. This incorporates to jointly train a user simulator with

the dialog manager as shown in Liu and Lane (2017a). To allow benchmarks

with other (often handcrafted) simulators and to be able to evaluate a learned

policy trained with this neural-based user simulator, it is integrated into the

PyDial framework (Ultes et al., 2017). The user simulator is trained from

generated, synthetic data as well as from data collected using real human

subjects and shown to learn a reasonable distribution over the user actions.

This is very handy when it comes down to deploying the SDS in a real en-

vironment, where individual behavior is inherently hidden in the training

data from real users which should be used to model human subjects more

accurately. Experiments are conducted to evaluate its performance and com-

pare it with the handcrafted user simulator, from which the data has been

generated.

Additionally, another environment to the PyDial framework is proposed

to boost the performance of policies trained on this environment as it gives

4



more control about the noise. It can be easily shown that a policy with high

success rate and reward trained with a handcrafted user simulator (where no

real data was used) fails in the real world.

This behavior occurs due to the fact that it’s easy to evaluate a trained

policy in terms of a dialog’s success, but it has to be in mind that those

metrics depend on the user. However, it is difficult to say whether a real user

will behave similar to the simulated user and whether both conform in terms

of the metrics since the state space needed for real users is probably much

larger.

To complete the work of this thesis, a user simulator trained on real data

is provided too. This will prove useful for the aforementioned problem.

The thesis is structured as follows:

Related work concerning user simulators and the theory about deep learn-

ing is covered in sections 2 and 3. Section 4 introduces the resources used in

this work, whereas section 5 describes the neural-based model employed for

user simulation. Section 6 demonstrates the user simulator and highlights

the findings. A conclusion in section 7 and an outlook in section 8 complete

this thesis.

5



6



2 User Simulation for Spoken Dialog Systems

Within this section, SDSs are formally defined and an overview to existing

user simulation methods is given.

2.1 Dialog Systems

In current research, the policy of an SDS is trained using data-driven meth-

ods, primarily RL. For this purpose, the dialog setting is cast as an MDP (Levin

et al., 1997; Daubigney et al., 2012).

An MDP is a tuple (S,A, T, R, γ), where S is the set of all possible states,

A the set of all possible actions, T the stochastic transition function yielding

the probability for the next state s′ defined as T (s, a, s′) = P (s′ | s, a) ∈ [0, 1],

R the real-valued reward given by R(s, a, s′) and a discount factor γ ∈ [0, 1).

The latter is used to formally bound the number of steps an agent can take

within one episode. It could also be seen as preferring immediate rewards

over rewards in the future course of the sequence or modeling the agents life-

time (Kaelbling et al., 1996). An episode is a sequence of states s0, s1, . . . , sT

where st+1 is given by T (st, a, st+1) satisfying the Markov property

(1) P (st+1 | st, st−1, . . . , s0) = P (st+1 | st).

This implies that any state only depends on the last state since the history

isn’t needed.

Levin et al. (1997) describe the state space S as all possible values for

the given slots of a domain. A contains actions such as opening and ending

a dialog, asking the user for values or outputting the information requested

by the user. The model T is not known in advance and not needed for

RL as it belongs to the model-free methods. R(s, a) is chosen such that

the dialog policy acts in an efficient manner. The purpose of the discount

factor is always the same through all MDPs thus there is no special definition

needed. (Levin et al., 1997)
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Since there is uncertainty in the input (e.g. through the ASR), the agent’s

state is seen as a belief state.

However, to learn a good policy, the RL agent needs thousands of dialogs

to be seen because the state space is huge (Pietquin et al., 2011; Gašić et al.,

2012). It is obvious that this problem is intractable if one wants to train and

evaluate an agent with human subjects.

The need for user simulators is therefore inevitable and has several ad-

vantages. Besides the automatic training and evaluation on any number of

dialogs, the user simulator enables to compare the evaluation of different dia-

log managers. Since there is less manual work involved in training the agent,

the dialogs are also more consistent and less prone to errors. Furthermore, a

user simulator’s behavior can be guided to model the characteristics of dif-

ferent groups. (Eckert et al., 1997) This could prove reasonable if the dialog

system will only target a specific audience.

2.2 Intention-level vs. text-level

Searle (1969) analyzed very early the acts of speech as modelling user inten-

tions and Bunt (1981a) as modeling a dialog as a sequence of dialog acts. In

general, it has to be differentiated between actions on the intention-level and

on the text-level. In an example, a user issuing an action on the text-level

would tell the system ”I want to eat french food.” This is the level on which

human conversations usually operate (besides speech, but in an SDS speech

is transformed into text). In contrast, the intention-level action carries only

the actual information relevant to the system (Eckert et al., 1997). Following

the example, an intention-level speech act2 would be ”inform(food=french)”.

Eckert et al. (1997) motivate in their work the implementation of user

simulators on the intention level. It represents the actual, solely important

information. The speech and utterance level can thus be considered as dif-

ferent transport mechanisms. (Eckert et al., 1997)

2action and act are used interchangeably in this thesis
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Additionally, it is always possible to add an NLG module on top to convert

an intention-level action to a text-level action. This would also cover the

variance inherent to human utterances. For example, Liu and Lane (2017b)

use a template based NLG and Li et al. (2017) even generate those templates

from data using a Long Short-Term Memory (LSTM). The template is then

filled with the appropriate slots and values. This is often referred to as

lexicalization. Wen et al. (2015) ameliorate this lexicalization task using an

extended version of the LSTM to combine sentence planning (which outputs

a template) and surface realisation (lexicalisation to generate real, natural

text).

2.3 Different approaches to user simulation

There are several approaches regarding user simulation for SDSs. Before

these are described, the requirements of user simulators as needed for this

purpose are mentioned in this section.

2.3.1 Requirements

Pietquin and Hastie (2013) summarize the properties a user simulator should

exhibit as follows: A user simulator should not only work well on available

data, but also generalize beyond the seen data. This is important since the

user simulator is seen as a bootstrapping method to generate more dialogs

for training the dialog manager, as there is only a limited amount of training

data available. Of course, there should be also some consistency on the

sequence of actions or turns within a dialog as well as statistical consistency

of the behavior of the simulated user with the data. That means it should

produce an action (depending on e.g. the history of the dialog) with the same

probability as it occurs in the training data. Less obvious is the property

that the dialog system should perform overall well on a high level using

the actions generated by the user simulator. Senseless repetitions or similar
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actions could still end up successful, but won’t produce an efficient policy on

DM side. (Pietquin and Hastie, 2013)

2.3.2 N-grams

Different kind of models exist to implement a user simulator. N-grams are

the most basic approach which model dialogs as a sequence of actions. The

probability of taking an action is conditioned on the last n − 1 actions (or

information states) in a dialog. (Schatzmann et al., 2006) The parameters

have to be derived from data, or manually forged. Although they could

model the full history of a dialog, this would imply n to be large. However

for large n not all possibilities will occur in the training data. In this case, one

has to reduce n. (Georgila et al., 2006) This would end in a non-consistent

behavior of the simulated user and there isn’t any chance at all to follow a

goal. For example, the rather common bi-gram model using only the last

system action to condition the simulator’s action may even produce dialog

acts violating logical constraints (Schatzmann et al., 2006):

system: What kind of food would you like?

user: French of course!

system: Sorry, I didn’t understand. What did you say?

user: Cheap please.

The context information is totally lost and the user cannot correctly answer

the system’s repeat act.

2.3.3 Graph-based models

Graph-based models, on the other hand, map all possible dialogs as paths to

a network. They contain probabilistic choice nodes which model the stochas-

ticity of an action. Those have to be set manually. (Schatzmann et al., 2006)
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One of the first graph-based models is proposed by Scheffler and Young (2002)

where they model the probability of taking a user action depending on an in-

ternal state. The representation of the internal state depends on a given user

goal, thus leading to consistent dialogs. Their internal state representation

looks as follows:

• The current constraints as given by the goal,

• the state of the requests in the goal (i.e. fulfilled or not fulfilled),

• how the user perceives the system’s understanding of the user’s goal

and

• the last system prompt.

This gives a (manually crafted) feature vector depending on the current goal

of the user. The probabilistic actions (i.e. the choice nodes) are then condi-

tioned on this state. For this purpose, the probabilities as well as the choice

nodes have to be set manually, resulting in excessive effort. Additionally, it

is intractable to output any possible amount of actions, because this implies

a huge amount of existing data. (Schatzmann et al., 2006) However, their

approach is a first step to model consistent dialogs by explicitly modeling

the user goal.

Schatzmann et al. (2007a) and Schatzmann and Young (2009) go one step

further and build an agenda-based model. The idea is to initially build an

agenda A depending on the user goal G, which covers all inform and request

actions needed to fulfill this goal. For this purpose, the agenda is modelled

as a stack where actions are pushed to and popped from the top. As the

dialog evolves, the agenda may be augmented with more actions as the user

interacts further with the system. When it is the user’s turn to output an

action, given probability P (n | A,G) they pop n actions off the agenda A

(which expresses goal G in terms of actions). The updates for A and G are

modelled similarly. (Schatzmann et al., 2007a) The manual efforts required

11



for this approach do not only include maintaining the agenda (e.g. remove

senseless actions or react on the last system prompt) but do also take into

account the parameters, which have to be handcrafted. Additionally it lacks

dynamic output for the user simulator because once an n is drawn from the

probability distribution P (n | A,G), n (fixed) actions are popped from the

agenda regardless of the actions themselves. Obviously, the model supports

multiple actions in the output, but those have no statistical consistency at

all due to the aforementioned determination of actions and since n is often

independent of A for tractability reasons. The authors also state that any

probability distribution with its mode in the lower integer range (2-4) is suf-

ficient for P (n | A,G). In their extension in Schatzmann et al. (2007b) they

learn the parameters for the stochastic model from data, instead of crafting

them carefully by hand. Keizer et al. (2010) show in a similar approach how

decision points - similar to other graph-based models - can be introduced,

for which the probabilities can be learnt from data.

2.3.4 Machine-learning techniques

Last but by no means least, there are machine learning techniques which

use regression to approximate the probability of choosing an action. This

is an obvious remedy to the sparsity of available training data, often in

the form of NNs. Those are universal approximators with the ability to

generalize (Hornik et al., 1989; Kůrková, 1992).

Georgila et al. (2005) learn the weights for a linear function with a softmax

applied to a state vector covering the state and the history of the dialog.

More precisely, the state vector is a binary representation of 290 manually

chosen features, like the presence of an information (e.g. user told about the

food type they want) thus modeling the complete dialog history. (Schatzmann

et al., 2006) The learning results in a probability distribution over the actions

in each state. This model is similar to a one-layered NN with a softmax for

the output.

12



El Asri et al. (2016) take one step further and learn a more complex Re-

current Neural Network (RNN) model on a series of context vectors, covering

the history of the dialog. This deep learning approach has several advantages:

it learns a representation from the training data, thus removing the need to

carefully design the feature vector like Georgila et al. (2006). This implies

a more robust model since human modeling is always prone to errors. On

the other hand, their approach allows yet to follow a goal thus generating

consistent dialogs by incorporating all information concerning the progress

in terms of the goal into the feature vector, also known as context vector.

Additionally, since the user action au is conditioned on the full history of

the dialog, the probability distribution P (au | ct, . . . , c0) approximates the

distribution in the original data. This comes in handy when sampling an

action according to this distribution, resulting in higher variance in terms of

the user simulator output.

Although the RL approach is indispensable in today’s research concern-

ing the dialog manager, there is little focus on applying those methods to

user simulation. Chandramohan et al. (2011) proposed to use Inverse Rein-

forcement Learning (IRL) where the user action sequence is also cast as an

MDP but the reward function is unknown. Therefore the goal is to learn

some reward function from an expert (training data in this case) such that

the learned policy exhibits a close behavior to the expert. This isn’t an easy

task and shifts the problem to finding a good reward function. Some relax-

ations like reducing the amount of possible actions to keep the state space

small may help, but current research and accompanied experiments do not

yield as high performance as other machine learning based user simulators.

Therefore, the benefits of an IRL trained user simulator remain question-

able. (Chandramohan et al., 2011)
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3 Deep Learning

Since the proposed model relies on deep learning, mathematical fundamentals

in this area are introduced and the deployed architectures are described.

3.1 Feed-forward networks

This section introduces NNs as the quintessential deep learning models and

gives a short introduction into their functionality as well as an outline to

existing models especially used in this thesis. The following theory is mainly

based on a recent book by Goodfellow et al. (2016).

In classic machine learning based regression, the task is to learn a correla-

tion between the input and output as seen in the training data. During train-

ing, the parameters ω of a linear model yi = f(xi, ω) = xT
i ω ∀i ∈ {1, . . . , n}

with f : Rk ×Rk → R are sought using a first or second order gradient opti-

mization method, where xi are the measured, independent variables and yi

the dependent variables, also known as labels. Using the kernel trick, where

the input xi is transformed into some higher dimensional space, it is possible

to model non-linear correlations. For this purpose, a feature mapping φ has

to be manually chosen.

Deep learning extends the simple linear regression model by using NNs,

allowing to automatically find a suitable φ. More formally, they resemble a

function f(x) which approximates f ∗(x) where f ∗(x) is the true, unknown

function. In general, NNs can approximate any function. See Hornik et al.

(1989) and Kůrková (1992) for proofs on the approximation ability of NNs.

NNs consist of layers each with a possibly varying amount of neurons.

The first layer, the input layer, takes the input x and computes each neuron

hi ∀i ∈ {1, . . . , j} as

h1i = f(wT
1,ix + b1,i),

where w1,i are the weights and b1,i the constant bias. f is called activation

function and is a non-linear, differentiable function such as the sigmoid func-
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tion σ(x) = 1
1+e−x , the Rectified Linear Unit (ReLU)3 f(x) = max(0, x) or

the tangent hyperbolicus tanh(x).

A (deep) NN additionally contains one or more hidden layers, where each

layer takes as input the activation of the previous layer:

(2) hl = f(W T
l hl−1 + bl).

Here, Wl is the matrix for hidden layer l, covering all weights for each neuron:

W =


w11 · · · w1m

...
. . .

...

wn1 · · · wnm

 ,

where hl ∈ Rm and hl−1 ∈ Rn for one specific layer, since the amount of

neurons per layer can vary. For an example NN, see fig. 3.

The output of the NN, or more specifically of the last layer, is the pre-

diction y for the input sample data x. During training, y is directly used

in a loss function, which compares it to the ground truth, also known as

label, of the corresponding input, class ŷ. For classification, the categorical

cross-entropy loss

(3) LCE(y, ŷ) = −y[ŷ] + log

(
C∑
i=1

exp(y[i])

)
is often used, where C denotes the number of classes. To update the weight of

the NN, a gradient descent optimization algorithm is used. For example, the

stochastic gradient descent updates each weight w of the NN with a learning

rate η and batch size B as

(4) w = w − η · 1

B

B∑
j=1

∇wLCE(yj, ŷj),

where batching is applied to make the stochastic gradient descent more stable

and for faster computation.

3Although the ReLU is not differentiable at x = 0, the derivative is just set to be 0 or

1 for the scope of NNs, i.e. f ′(0) = 0 or f ′(0) = 1 respectively.
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Figure 3: A Neural Network consisting of two inputs, the input layer and one

hidden layer each with three neurons and two outputs in the output layer.

For this purpose, the derivatives of the loss function with respect to each

weight w has to be computed using the chain rule:

(5) ∇wLCE(y, ŷ) =
∂

∂w
LCE(y, ŷ)

The whole process is often referred to as backpropagation since the error

from the loss function is propagated back to each neuron (Rumelhart et al.,

1986).

It’s worth mentioning that a trained NN should not reproduce the labels

exactly because it would overfit, preventing the NN to generalize well on

unseen data. Moreover, labels may contain noise and the true distribution

is unknown anyway. For this purpose, some kind of regularization is added,

while there are different methods to do so. The most basic regularization

originates from linear regression, where a regularization term is applied to

the model (Girosi et al., 1995). In NNs this can be implemented by adding

an L1 or L2 norm of each weight multiplied by the regularization factor λ to
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the loss before computing the gradients of all weights. Other regularization

techniques include dropout, where neurons are randomly turned off during

training (Srivastava et al., 2014; Wan et al., 2013). There is also focus in

research on regularization in RNNs (Zaremba et al., 2014), an architecture

which will be introduced in the next part.

3.2 Architectures

Besides the basic feed forward network, where the input is propagated for-

ward only, several other architectures exist. One of them is the so-called

Recurrent Neural Network (RNN). The idea is to have additional backward

edges in the NN, such that computations in the current timestep are used in

the next timestep. The input to the RNN is therefore a sequence, which is

often time-dependent, and results in a sequence in the output. This enables

its use in different scenarios, for example when the input is a full voice sam-

ple, actions from a dialog or even full sentences as in machine translation.

Through this model, information is propagated to the next training sample,

which allows to model correlations over a sequence or over time. The process

is visualized in fig. 4

Figure 4: An RNN processes whole sequences and learns time dependent

correlations. (adapted from Goodfellow et al. (2016))
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A rather complex RNN has been presented by Hochreiter and Schmidhu-

ber (1997), which aims to solve the problem of vanishing gradients for the

weights in a standard RNN over long time. The LSTM computes the output

vector ht at timestep t as follows:

ft = σg(Wfxt + Ufht−1 + bf )(6)

it = σg(Wixt + Uiht−1 + bi)(7)

ot = σg(Woxt + Uoht−1 + bo)(8)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc)(9)

ht = ot ◦ σh(ct),(10)

where ◦ denotes the element wise Hadamard product. The idea of LSTMs

is to store information to be propagated over time in a memory cell ct, for

which the input gate it controls the input to the cell (i.e. what parts of the

input should be stored), the forget gate ft determines which part of the cell

from the previous timestep remains in the cell and the output gate ot governs

which part of the cell is used to compute the final result.

RNNs are also the main component of encoder-decoder architectures. An

encoder RNN encodes all information from an input sequence into an internal

state representation which is then used to generate a sequence using another

RNN as decoder.

The main advantage of this architecture is to output a different length of

sequence than used for the input, and will be used for this purpose in this

thesis’ contribution.
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4 Resources

This section will provide an overview of the resources which were employed

within this work.

4.1 PyDial

As this work depends on an available dialog system, the PyDial framework

is used to provide the RL agent as well as an overall system to deliver and

evaluate data.

PyDial (Ultes et al., 2017) is a benchmarking framework to train and

evaluate RL agents within the context of an SDS. The authors defined six

environments which differ in the domain, the input error, the user model

and the system action masking. The domains covered in this thesis consist of

Cambridge Restaurants (CR), San Francisco Restaurants (SFR) and Laptops

(LAP). See table 1 for details on those domains.

Domain Code # constraint slots # requests # values

Cambridge Restaurants CR 3 9 268

San Francisco Restaurants SFR 6 11 636

Laptops LAP 11 21 257

Table 1: The domains from PyDial (Ultes et al., 2017; p.5) used in this thesis.

Although not explicitly mentioned, a user can also additionally inform about

a name (e.g. after an offer in a request) adding an extra constraint slot to

each domain.

The ontology for a domain not only specifies the requestable and in-

formable slots, but also takes care of available actions for the system as well

as for the user.

For simulation in PyDial, an agenda-based user simulator (cf. section 2.3.3)

is already implemented. A set of parameters models the simulator’s behavior

and thus its friendliness.
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Figure 5: An example of a belief state as used in PyDial: a probability

distribution for every slot yields the belief.

The input error, also referred to as semantic error rate, is simulated on

top of the user action produced by the user simulator, while the masks limit

the agent’s possible actions in the current belief state to improve learning.

The belief state is mainly a probability distribution over the possible values

for each slot (see fig. 5 for an example).

Env. 1 Env. 2 Env. 3 Env. 4 Env. 5 Env. 6

task T1.1 T1.2 T1.3 T2.1 T2.2 T2.3 T3.1 T3.2 T3.3 T4.1 T4.2 T4.3 T5.1 T5.2 T5.3 T6.1 T6.2 T6.3

Domain CR SFR LAP CR SFR LAP CR SFR LAP CR SFR LAP CR SFR LAP CR SFR LAP

SER 0% 0% 15% 15% 15% 30%

Masks On Off On Off On On

User Standard Standard Standard Standard Unfriendly Standard

Table 2: The six environments defined by PyDial (Ultes et al., 2017; p.5)

An overview of those environments is given in table 2. As a simulation

runs, an agent is trained on a specifiable amount of dialogs. Following an

evaluation, the average rewards per turn, the success rate and the average

turn length are reported.
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4.2 PyTorch

The user simulator is written in Python and uses PyTorch4 (Paszke et al.,

2017) for the supervised learning part.

PyTorch is a library for python, making the power of torch available in

this programming language. It integrates seemingly into the object orien-

tated paradigm. Most important, PyTorch provides several loss functions

and optimizers like Stochastic Gradient Descent (SGD) and Adam as well as

different layers to build the architecture of a NN, also giving the possibility

to add regularization.

It also takes care of the backpropagation, which results in the gradient of

the weights which are used by an optimizer.

4.3 DSTC2 Dataset

The dataset of the second dialog state tracking (DSTC2) challenge5 consists

of a corpus of dialog between a user and a dialog manager. For the DSTC2

training and development set a handcrafted policy is used, while the test set

only contains data from a dialog manager whose policy is learnt using RL.

The voice input from the real users is converted to text using two different

models. One of them artificially performs worse to have data with different

noise available.

The DSTC2 dataset was initially released to fuel research on the dialog

manager. Therefore, it focuses on training the dialog manager with its policy,

but the user responses can yet be used to train a user simulator based on the

system output. However, the transcriptions are defective and some dialogs

miss any logical thinking. At least, they carry the naturalness of human

subjects.

4https://pytorch.org/
5http://camdial.org/∼mh521/dstc/
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5 Neural-based User Simulation

This section will focus on the model’s architecture as well as how it is trained

and integrated into the PyDial framework.

5.1 Possible actions

As the output of the neural-based user simulator are actions on the intention-

level, this part will focus on which actions exist and what they stand for.

Table 3 shows the actions the model can produce and table 4 contains an

overview of the actions which are considered in the input.

Action Arguments Description

null – actually indicating that there is no action

inform slot-value pair user informs about the value of the given slot, e.g. inform(food=french)

bye – user takes one’s leave

request slot user requests the slot from the system, e.g. request(postcode)

ack – user takes note of the system’s action

thankyou – user thanks the system for giving information

negate – user says ”No.”

hello – user greets the system

confirm slot-value pair user asks the system for confirmation of constraint, e.g. confirm(food=french)

reqalts – user requests alternative suggestions

affirm – user affirms

deny slot-value pair
user denies the value for the given slot, e.g. (food=italian)

often appears together with informing about the wanted value for this slot

repeat – user asks the system for repetition of its last action

reqmore – user asks for more information in general

Table 3: The actions the user simulator can produce.

5.2 Features

To model the context around the explicit goal representation, the idea from

El Asri et al. (2016) is picked up and a feature vector ct for each timestep

t is manually crafted. This allows to implicitly keep track of the goal, and
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Action Arguments Description

welcomemsg – system greets the user

offer value system makes a proposition (i.e. offers value as a

venue), e.g. offer(name=la baguette)

inform slot-value pair system informs about the value of the given slot

(of the suggested venue)

request slot system requests the slot from the user, e.g. re-

quest(food)

reqmore – system asks if the user wants more, e.g. if there are

outstanding requests

canthelp slot-value pairs system tells that there are no venues for the

listed constraints, e.g. canthelp(food=french), can-

thelp(area=north)

canthelp.exception slot-value pair the only venue(s) which match(es) the constraints,

e.g. canthelp.exception(name=la baguette); only

together with canthelp action and usually after the

user requested alternative venues

Table 4: The possible system actions which are encoded in the context vector.

feed it into a NN. A goal is a list of constraints and requests, e.g. con-

straint(food=french), constraint(pricerange=expensive), request(name), re-

quest(addr). A constraint denotes a slot-value pair with inform action which

shows up in the goal while an inform slot is generally a slot the user can

inform about (during the course of the dialog). Since the feature vector

models the context of the dialog, it is also called a context vector. It takes

into consideration the state of the goal of the simulated user and the sys-

tem’s behavior. More precisely, ct is a concatenation of the following binary

vectors:

• Constraint status constt

• Request status reqt

• Inconsistencies on value level made by the system after an offer incont

• Missing slots in offer missingt
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• Last system act machinet

The vector constt keeps track about what the user informed so far. For

this purpose, it is a binary vector with length ni, where ni is the number of

informable slots (4 in our case: food, pricerange, area, name). It is initialized

at the beginning of a dialog with 0 for each constraint in the goal and 1

for all other constraints. Whenever the user informs about a constraint, e.g.

inform(food=french), the corresponding slot in constt is set to 1. A particular

slot is only reset when the goal is changed (e.g. there is no venue for a slot,

thus it has to be relaxed). Thus the idea is that this vector represents all

inform actions needed to elucidate about the constraints in the goal.

The next vector, reqt, is similarly constructed, but keeps track of the

requests in the goal instead of the constraints. Therefore it has length nr,

which is the number of request slots (9 in our case: signature, addr, phone,

description, postcode, food, pricerange, area, name). Since the system should

take care of informing about a request slot in the goal and a user’s request is

not guaranteed to be answered by the system, this vector is only set to 1 if

the system informs about a request slot in the goal. It is initialized similar

to constt, that means 0 for all requests in the goal and 1 for all others. As a

request depends on a venue (e.g. two restaurants usually do have a different

address), it is not only reset on goal updates but also if the system offers a

new venue.

One of the main parts to check whether the system understands the user’s

goal correctly or if it made errors (e.g. due to noise) is the vector modeling

inconsistencies on the value level. This vector, incont, with length ni is

therefore initialized with zeros and set to 1 if the system mentions a slot-

value pair which is in the goal but with a different value. Those actions from

the system include offer, confirm, inform, impl-conf and expl-conf. Similar

to the request vector, incont is reset on a new offer from the system, but not

on the first as all slot-value pairs the system informs about are considered to

belong to the first offer before even proposing one. Additionally, whenever a
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slot is set to 1, it is set to 0 in the constraint vector constt. This reflects the

matter of fact that the user has to inform about this slot again in order to

rectify the system’s belief.

Another vector also takes on inconsistencies made by the system, but

those which are less harmful. For this purpose, missingt is a turn-wise vector

with length ni which is initially 0 and set to 1 for each constraint mentioned

by the system in this turn’s offer. It gives further information to the NN as

some users want to confirm a missing but not wrongly understood (by the

system) slot in the offer such that the offer does not violate the goal.

The last, and obviously also important information, is the last system

action. It is encoded as a vector of size nma, where nma is the number of

possible system actions, here 7. Table 4 lists those. Each of the actions in

the last system’s turn is set to 1 in machinet after initializing the vector with

0 each turn.

5.3 Model

The sequence of context vectors for each turn c0, . . . , ct is used as input for

the NN at timestep t. Since the input is a sequence and it should be possible

to output multiple actions, the encoder-decoder architecture is used for the

neural-based user simulator with a one-layered, unidirectional LSTM in both

cases. From eq. (6) it follows for a complete sequence

(11) st = LSTM(c0, . . . , ct),

where st is the hidden state for turn t. The output and the cell state are

neglected here since they won’t be used in the further computation. The

hidden state of the encoder RNN is then forwarded through a fully connected

linear layer to produce the initial hidden state for the decoder RNN

(12) ht = W T
e st + be.
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Figure 6: The user simulator model: The context history is encoded into a

sequence of vector representations (c0, . . . , ct). After passing the encoder, it

is used as input for the decoder which in turn outputs the actions (a0t , . . . , a
n
t )

until the stop signal null is generated.
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On top of the decoder, a fully connected linear layer maps to the action space

whereafter the softmax is computed to produce a probability distribution,

from which the actual output action is drawn (according to this distribution):

on
t = W T

d · LSTM(an−1
t ,ht) + bd(13)

an
t =

exp(on
t )∑

i exp(on
t )i

(14)

Here, a−1t is the one-hot encoded null action.

This sampling adds variance in the output and also captures the differ-

ent actions with the same condition as seen in the training data. For each

timestep t, the decoder takes a start token, the null action, and produces ac-

tion a0t as first action. From there on, the last decoded action is used one-hot

encoded as input in order to get the next action and so on. The decoder is

run until a stop token is produced, which is the null action again. Figure 6

visualizes the whole process.

Mathematically speaking, each action ant is a probability distribution con-

ditioned on the initial decoder hidden state ht and all actions a−1t , . . . , an−1t :

(15) P (ant | an−1t , . . . , a−1t ,ht)

The probability of the whole sequence ant , a
n−1
t , . . . , a0t is then

(16) P (ant , a
n−1
t , . . . , a0t | h) =

n∏
i=0

P (ait | ai−1t , . . . , a−1t ,h).

As already written, for both the encoder and the decoder a one-layered,

unidirectional LSTM was used. The model was trained with the categorical

cross-entropy loss function from eq. (3) presented in section 3.1 in conjuction

with SGD and a learning rate of 0.01. L2-regularization was used with λ

set to 0.001. For batching, 128 randomly, independent dialog turns were

sampled, each of them containing the full context history.

During training, no teacher forcing (i.e. using the label as input for the

decoder) was used as the computation time was still affordable. Since the
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decoding step in the decoder RNN can possibly run forever (i.e. if no stop

token is produced), the maximum decoding length was set to 5. This equals

the maximum number of actions in all data used in this thesis.

5.4 Integration into PyDial

Since the user simulator should be used to train RL policies as described in

the introduction (section 1.2), it has been integrated into the PyDial frame-

work presented in section 4.1.

Figure 7: The user simulator integrated into PyDial: An optional Ontology

Handler extracts the ontology from the training data, which fuels the ontol-

ogy for the simulator. Otherwise PyDial’s handler is used. The ontology is

used to generate goals, and is used together with the goal and the last system

turn to extract the features which are used as input for the RNN. The action

is then issued to the dialog manager, which feeds the system answer back.

Figure 7 shows the full overview on a high level: The user simulator holds

an ontology from the domain. This ontology is either provided by PyDial
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directly, or optionally collected from the training data. Using the knowledge

from the ontology, the goal generator randomly draws a goal at run time

(i.e. when used in PyDial) at the beginning of a dialog. As described in

section 5.2, the features are built using the goal, the last system action and

the ontology for fixed mappings of actions and slots. After forwarding the

feature vector through the rnn, the predicted user actions are handed to the

DM. This module in turn uses the action as input, and produces the next

system action (by running through the update of the belief state and the

policy as already described). The system action is then used in the next turn

in the user simulator again.

When training the user simulator, none of the parts provided by PyDial

are used. Instead, all actions and goals for each dialog are collected from the

data. While training, only the mappings from the ontology are used (which

are mapped to actions on the intention-level when running with the DM).
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6 Experiments & Results

Within this section, the previously introduced model is used in its field of

application with the SDS. Therefore, this part differentiates between using

synthetic and real data for training.

6.1 Synthetic Data

In a first approach, this section will consider to model the handcrafted simu-

lator. Therefore, the neural-based user simulator will be trained on different

synthetic data as well as compared to the handcrafted simulator, from which

the data has been generated.

6.1.1 Separate environments

Following the idea of reproducing PyDial’s handcrafted simulator first, this

agenda-based simulator (results shown in table 5) is directly compared to

the neural-based simulator (results shown in table 6) within PyDial. For this

purpose, several dialogs from Pydial using the handcrafted user simulator and

the handcrafted policy were generated. The environments 1, 3, 5 & 6 were

used since 2 & 4 have the masks turned off which do only influence the policy

in general (but not the handcrafted one). This implies that the generated

data differs in noise and the user model (Standard vs. Unfriendly). The

noise in this work only models action type misunderstanding as the action

type is the only output from the model as presented in section 5.3. However

the noise is not seen as ASR noise for the DM, but rather to model different

users resulting in a varying behavior (so all actions will be reflected in the

user’s state).

For each of the 4 environments, 6000 training dialogs and 2000 testing

dialogs have been collected. Using this corpus of labelled data, the same

configurations (i.e. same policies and domains) for both simulators were used
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to obtain the results in table 6 and table 5 respectively. Hyperparameters

were taken from Casanueva et al. (2017). However those were optimized for

the handcrafted simulator.

To generate the results, for each environment the corresponding data was

used. Thus, environment 1 with the neural-based user simulator is repre-

sented by using the generated data (with the handcrafted simulator) from

environment 1, i.e. without noise and using the standard user model. In con-

trast, environment 2 was gained by using the same data as for environment

1, but disabling any masks simplifying the policy w.r.t. action sampling.

It should be noted that the semantic error noise has been set to 0 when-

ever using the RNN simulator within PyDial as the noise is inherent to the

generated data (this was the core of the first idea of reproducing the hand-

crafted user simulator). Therefore the only change in the environments for

the neural-based simulator is in the masks.

Another important fact is that, because of the deterministic ASR, some

actions were never used by the handcrafted policy, namely select and confirm.

As the RNN simulator was trained using this data, it has never seen those

actions as input. To not increase the difficulty for the simulator due to the

generalization to unseen actions (those weights could become 0 after training,

or any other value), both actions were not used for any policy for the results

gained with synthetic data.

For the CR domain, the RNN simulator gives comparable results to the

handcrafted simulator for all environments when looking at the handcrafted

policy. The average over all environments shows a reward of 12.1 and a suc-

cess rate of 93.7% for the RNN simulator in comparison to the handcrafted

one (12.5 and 96.4%). This indicates that the simulator models the behav-

ior of the handcrafted simulated user for this domain. The other domains,

however, degrade even faster with the neural-based user simulator. Those

domains have a much larger state and action space, and the handcrafted

policy has been probably tuned to achieve high results with the handcrafted

simulator. However, due to its stochasticity this deep learning based user
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GP-Sarsa DQN A2C eNAC Handcrafted

Task Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew.

E
n
v
.

1 CR 99.6% 13.7 94.7% 12.9 97.4% 13.5 94.3% 12.1 100.0% 14.1

SFR 97.7% 11.9 72.4% 7.8 76.1% 8.5 95.2% 12.0 98.6% 12.9

LAP 88.4% 9.1 57.9% 5.0 76.2% 8.3 91.3% 10.4 97.6% 12.0

E
n
v
.

2 CR 98.6% 13.4 81.5% 8.7 23.8% 1.9 62.2% 5.0 99.9% 14.0

SFR 95.5% 12.0 81.9% 8.8 5.0% −1.2 75.8% 8.6 98.9% 13.0

LAP 87.5% 9.7 50.2% 4.5 2.6% −1.7 81.1% 9.0 97.3% 11.9

E
n
v
.

3 CR 97.3% 12.3 95.0% 12.4 88.3% 11.0 91.3% 11.2 96.8% 12.7

SFR 88.9% 8.9 68.4% 6.2 62.8% 5.3 82.5% 8.6 88.7% 9.9

LAP 73.9% 4.9 57.9% 3.9 54.9% 3.7 76.0% 6.8 83.3% 8.1

E
n
v
.

4 CR 94.2% 11.9 79.7% 8.8 5.7% −1.1 38.6% 3.1 97.0% 12.7

SFR 86.4% 9.7 75.5% 7.6 1.8% −1.9 59.2% 4.6 89.2% 10.0

LAP 52.9% 4.6 69.8% 6.0 2.4% −1.5 78.5% 8.2 83.4% 8.1

E
n
v
.

5 CR 96.3% 11.1 92.7% 10.9 88.4% 10.0 93.6% 10.7 95.8% 11.5

SFR 85.5% 6.7 61.1% 3.2 40.3% 0.1 78.2% 6.5 85.1% 7.5

LAP 56.1% −0.2 31.8% −1.4 27.6% −2.3 65.9% 2.6 77.1% 4.8

E
n
v
.

6 CR 89.8% 9.8 88.4% 10.1 76.8% 7.8 86.0% 9.3 89.1% 10.2

SFR 76.2% 5.4 56.6% 2.9 48.3% 1.7 67.1% 4.9 74.4% 6.1

LAP 51.4% 0.4 45.9% 0.9 34.2% −0.8 58.6% 2.7 66.5% 4.0

M
ea

n

CR 96.0% 12.0 88.7% 10.6 63.4% 7.2 77.7% 8.6 96.4% 12.5

SFR 88.4% 9.1 69.3% 6.1 39.1% 2.1 76.3% 7.5 89.1% 9.9

LAP 68.4% 4.7 52.3% 3.2 33.0% 1.0 75.2% 6.6 84.2% 8.1

ALL 84.2% 8.6 70.1% 6.6 45.1% 3.4 76.4% 7.6 89.9% 10.2

Table 5: Success rates and rewards after training 4000 dialogs with the hand-

crafted simulator (averaged over 10 seeds).

simulator is able to generate new dialogs which will never occur with the

handcrafted user simulator.

It is still remarkable that the GP-Sarsa policy performs better with the

neural-based simulator in two domains (CR: reward of 12.7 vs. 12.0; SFR:

reward of 9.6 vs. 9.1) when compared with the handcrafted simulator. Obvi-

ously, the GP-Sarsa algorithm can generalize better, even in larger state and

action spaces as the average reward over all domains and environments is
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GP-Sarsa DQN A2C eNAC Handcrafted

Task Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew.

E
n
v
.

1 CR 99.9% 13.9 48.8% 3.0 98.8% 13.7 67.4% 6.2 97.7% 13.5

SFR 98.1% 11.8 20.3% −3.1 34.3% −0.7 87.6% 9.8 69.4% 6.9

LAP 81.6% 5.8 12.9% −4.2 41.7% 0.5 55.4% 2.3 57.6% 3.6

E
n
v
.

2 CR 98.0% 13.5 77.5% 8.8 25.6% 2.5 3.8% −6.1 98.4% 13.6

SFR 95.7% 11.7 60.0% 4.6 10.6% −0.8 9.9% −3.5 72.0% 7.4

LAP 72.9% 6.6 20.6% 0.2 4.1% −2.7 7.3% −5.9 56.7% 3.3

E
n
v
.

3 CR 98.9% 12.5 49.3% 2.8 95.4% 12.2 78.3% 8.4 93.3% 12.0

SFR 94.9% 9.0 18.2% −3.8 33.0% −1.6 77.4% 6.3 64.3% 5.2

LAP 78.5% 3.8 9.9% −4.9 30.0% −2.1 44.9% −0.3 43.8% 0.5

E
n
v
.

4 CR 98.1% 12.7 73.3% 6.8 7.3% −0.3 6.3% −4.3 92.3% 11.8

SFR 89.9% 9.3 48.4% 3.5 1.6% −1.5 17.1% −4.7 65.7% 5.3

LAP 23.2% 1.0 27.6% −0.0 1.2% −1.8 17.7% −3.9 43.2% 0.4

E
n
v
.

5 CR 98.3% 12.1 26.5% −1.7 88.8% 10.6 83.6% 9.0 95.0% 12.0

SFR 95.7% 8.8 9.4% −5.4 25.1% −3.4 75.8% 5.3 63.9% 4.5

LAP 72.3% 2.7 8.6% −5.3 16.8% −4.6 50.3% −0.5 33.9% −2.2

E
n
v
.

6 CR 96.1% 11.2 23.9% −2.5 84.9% 9.3 84.4% 9.0 85.7% 9.9

SFR 87.3% 7.0 5.5% −6.0 15.6% −5.0 71.7% 4.7 54.7% 2.7

LAP 56.9% -0.6 5.8% −5.7 11.9% −4.9 41.6% −1.8 29.1% −2.9

M
ea

n

CR 98.2% 12.7 49.9% 2.9 66.8% 8.0 54.0% 3.7 93.7% 12.1

SFR 93.6% 9.6 27.0% −1.7 20.0% −2.2 56.6% 3.0 65.0% 5.3

LAP 64.2% 3.2 14.2% −3.3 17.6% −2.6 36.2% −1.7 44.1% 0.5

ALL 85.4% 8.5 30.4% −0.7 34.8% 1.1 48.9% 1.7 67.6% 6.0

Table 6: Success rates and rewards after training 4000 dialogs with the RNN

simulator trained on synthetic data (averaged over 10 seeds).

the largest with 8.5 (for the RNN simulator) and second largest with 8.6 (for

the handcrafted simulator). GP-Sarsa is a highly sophisticated, Gaussian-

Processes based algorithm extending the basic on-policy Sarsa algorithm. It

is not parametric and thus does not suffer from instability in contrast to Deep

Q Network (DQN), Advantage Actor Critic (A2C) and episodic Natural Ac-

tor Critic (eNAC). The latter policies show already an instable behavior with

the handcrafted simulator (cf. performance from environment 1 and 2, where
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all 3 policies perform worse, with the A2C policy gliding totally off except

the DQN, which suddenly performs better in the second, more difficult en-

vironment for domain SFR). Therefore no conclusion can be drawn for the

RNN user simulator w.r.t. those policies.

However it shall be in mind that the success rates and rewards do not

reflect directly the user simulator’s performance as it measures the quality

of the policy, but the user simulator should help the policy achieving its

goal. Without its support the policy can just make a guess. As stated

above, the handcrafted policy gives a good hint that the RNN user simulator

indeed approximates the handcrafted one as it is trained with data generated

from this policy. At least one algorithm, GP-Sarsa, proves successful in those

new environments suggesting the neural-based user simulator models a user’s

behavior semantically correct.

Figure 8: The probability distribution over user actions hello and inform

after the system starts the dialog with a welcomemsg action. The other

actions have a very small probability and are omitted for clarity.

Figure 8 shows the probability for the two most probable user actions

from the RNN simulator after the system issued the welcomemsg action. For

two datasets (env 1 & 6) the simulator exhibits the same probability as seen
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Environment Env. 1 Env. 3 Env. 5 Env. 6

Probability 76.98% 76.15% 84.25% 76.71%

Table 7: Probability for the user action hello at the start of a dialog as seen

in the synthetic data from the CR domain and the listed environments.

in the training data (cf. table 7). The other environments are slightly under

estimated.

The problem, that the RNN simulator trained on data from the hand-

crafted simulator doesn’t perform well in a real environment, remains, as the

following dialog shows by way of example (GP-Sarsa trained for 4000 dialogs

with environment 1, see first row of table 6):

system: Welcome to the Cambridge restaurant dialogue system. How

may I help you?

user: Could you tell me the name of a chinese restaurant?

system: What part of town do you have in mind?

user: centre

system: Would you like something in the cheap, moderate, or expen-

sive price range?

user: that doesn’t matter

system: shanghai family restaurant is a nice place, it serves chinese

food , it is in the moderate price range and it is in the centre of

town .

user: Thanks, and what is the phone number?

system: Can I help you with anything else?

user: Yes, the phone number would be really awesome

system: Can I help you with anything else?

user: give me the phone number. Now.
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system: Can I help you with anything else?

user: are you kidding?

system: shanghai family restaurant is a nice place Their phone num-

ber is 01223 301761 .

user: Thank you! And bye

system: Thank you, goodbye.

However, the user finally reached their goal and the simulator is better

than the pure handcrafted simulator as it can produce new dialogs and help

the policy to explore other states. The following shows an example dialog

using the same configuration (i.e. the first environment trained with the GP-

Sarsa policy using 4000 iterations and the handcrafted simulator (first row

of table 5):

system: Welcome to the Cambridge restaurant dialogue system. How

may I help you?

user: Could you tell me the name of a chinese restaurant?

system: What part of town do you have in mind?

user: centre

system: What kind of food would you like?

user: chinese

system: What kind of food would you like?

user: I still want chinese food!

system: Would you like something in the cheap, moderate, or expen-

sive price range?

user: that doesn’t matter

system: You are looking for a chinese venue right?
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user: that’s correct

system: Let me confirm, You are looking for a venue and you dont

care about the price range right?

user: yes, you’re all right

system: Let me confirm, You are looking for a venue and you dont

care about the price range right?

user: affirm

system: Let me confirm, You are looking for a venue and you dont

care about the price range right?

user: okay I will break here if you don’t offer a venue

system: I am sorry but there is no place other than venue .

user: are you sure? it must be!

system: I am sorry but there is no place other than venue .

user: Bye

system: Thank you, goodbye.

6.1.2 Mixed environments

As it is crucial to the working of a dialog system to have one trained policy

available for use in a real scenario, another approach in this thesis was to

propose a new environment. This environment aggregates several other envi-

ronments from PyDial, removing the need to choose a specific environment.

In detail, all synthetic data from the previous part were used, giving a total

of 24000 train dialogs and 8000 test dialogs. Their semantic error rate is in

average 15%. However, the main purpose of this dataset is that it offers some

dialogs without any noise. This improves the user simulator and eventually

the trained policy, while it still allows to incorporate different user behavior
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induced by noise, possibly boosting the performance of trained RL policies

in real environments.

Having trained the neural-based user simulator on this new dataset yield-

ing the new environment 7, the results from PyDial are shown in table 8. For

a better comparison, table 9 shows only the results of the environments with

data used for environment 7. The mean in the latter corresponds to environ-

ment 1 (first 3 rows) of table 8, while environment 2 (rows 4 to 6) uses the

same data, but applies masking for the policy action sampling.

GP-Sarsa DQN A2C eNAC Handcrafted

Task Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew.

E
n
v
.

1 CR 99.3% 13.1 57.3% 4.1 98.0% 13.2 73.8% 7.2 96.6% 12.7

SFR 94.4% 9.2 12.3% −4.9 32.8% −1.8 76.3% 6.1 63.7% 4.8

LAP 64.4% 2.1 11.5% −4.7 18.8% −3.8 34.9% −2.7 38.9% −0.8

E
n
v
.

2 CR 98.4% 13.1 82.4% 9.2 22.0% 1.5 2.5% −6.5 96.2% 12.7

SFR 89.2% 9.4 49.0% 3.1 9.6% −0.6 6.0% −5.0 65.1% 5.1

LAP 10.3% 0.2 44.1% 3.4 4.4% −2.1 7.6% −5.0 40.7% −0.3

Table 8: Success rates and rewards after training 4000 dialogs with RNN

simulator and environment 7 (averaged over 10 seeds).

For the CR domain it turns out that environment 7 actually helps in the

majority of all tested policies. The average reward increase for the trainable

policies is 1.175. For the other domains the average reward decreases by

0.2 (SFR) and 0.675 (LAP). As the CR domain is much smaller than the

others, it learns a good policy much faster. The circumstance that the poli-

cies’ hyperparameters were not tuned probably absorbs any benefit in those

domains.

6.2 Real Data

To train the policies such that they may help real users, a user simulator needs

to be trained on real data. The DSTC2 described in section 4.3 provides such

dialogs. However there are goal changes within those dialogs, because the
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GP-Sarsa DQN A2C eNAC Handcrafted

Task Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew.

E
n
v
.

1 CR 99.7% 13.7 48.8% 3.0 98.5% 13.6 77.0% 8.6 98.3% 13.6

SFR 98.1% 11.8 20.3% −3.1 51.9% 2.5 87.6% 9.8 73.7% 7.7

LAP 81.6% 5.8 17.1% −3.4 41.7% 0.5 55.4% 2.3 57.6% 3.6

E
n
v
.

3 CR 98.9% 12.5 49.3% 2.8 95.4% 12.2 78.3% 8.4 93.3% 12.0

SFR 94.9% 9.0 18.2% −3.8 33.0% −1.6 77.4% 6.3 64.3% 5.2

LAP 78.5% 3.8 9.9% −4.9 30.0% −2.1 44.9% −0.3 43.8% 0.5

E
n
v
.

5 CR 98.3% 12.1 26.5% −1.7 88.8% 10.6 83.6% 9.0 95.0% 12.0

SFR 95.7% 8.8 9.4% −5.4 25.1% −3.4 75.8% 5.3 63.9% 4.5

LAP 72.3% 2.7 8.6% −5.3 16.8% −4.6 50.3% −0.5 33.9% −2.2

E
n
v
.

6 CR 96.1% 11.2 23.9% −2.5 84.9% 9.3 84.4% 9.0 85.7% 9.9

SFR 87.3% 7.0 5.5% −6.0 15.6% −5.0 71.7% 4.7 54.7% 2.7

LAP 56.9% -0.6 5.8% −5.7 11.9% −4.9 41.6% −1.8 29.1% −2.9

M
ea

n

CR 98.3% 12.4 37.1% 0.4 91.9% 11.4 80.8% 8.7 93.1% 11.9

SFR 94.0% 9.2 13.4% −4.6 31.4% −1.9 78.1% 6.5 64.2% 5.0

LAP 72.3% 2.9 10.3% −4.8 25.1% −2.8 48.1% −0.1 41.1% −0.3

ALL 88.2% 8.2 20.3% −3.0 49.5% 2.3 69.0% 5.1 66.1% 5.6

Table 9: Success rates and rewards after training 4000 dialogs with RNN

simulator trained on synthetic data (averaged over 10 seeds).

users were asked to test a specific constraint first, and alter this constraint

if there is no venue with the current goal (i.e. choose a different value).

When training on this data, those goal changes will be reflected such that

the actions are drawn consistently with the new goal. For this purpose, the

eventual goal of the user - as represented in the data - is used as initial goal.

Whenever the user informs about a different value for a constraint, this value

is considered to be part of the new goal.

After training for 200 epochs on this data, the user simulator reached an

F-score of 54,21% (cf. table 10), which is much higher than for the bi-gram

(9%) and agenda-based model (18%) (El Asri et al., 2016). Since the RNN

simulator only outputs action types, it cannot be directly compared to the

performance of the others.
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Dataset Bi-gram Agenda-based RNN

DSTC2 Test 0.09+ 0.18+ 0.5421*

Table 10: F-score for different user models.

+taken from El Asri et al. (2016) *only action type

GP-Sarsa DQN A2C eNAC Handcrafted

Task Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew. Suc. Rew.

Env. 1 CR 97.6% 13.8 62.9% 6.4 96.7% 13.7 90.7% 12.1 88.0% 12.3

Env. 2 CR 95.1% 13.6 69.5% 8.5 43.4% 5.3 34.0% −0.5 88.1% 12.4

Mean CR 96.4% 13.7 66.2% 7.5 70.1% 9.5 62.4% 5.8 88.1% 12.3

Table 11: Success rates and rewards after training 4000 dialogs with RNN

simulator trained on DSTC2 (averaged over 10 seeds).

The performance of this user simulator (based on the DSTC2 dataset)

within PyDial is shown in table 11. Since the handcrafted policy does not

learn from data, it is only affected by the randomness of the random gen-

erator. In other words, different random generator seeds are the only part

making up a difference. Even the parametric algorithms could prove useful,

with rewards ranging between 6.4 and 13.7 for environment 1 and between

-0.5 and 8.5 for environment 2. GP-Sarsa achieves again the highest rewards,

indicating the user simulator helps in achieving the goal (at least in a way

the RL algorithm can exploit). The following sample dialog shows a notable

improvement to the handcrafted simulator and to the RNN model trained

on synthetic data from the handcrafted simulator:

43



system: Welcome to the Cambridge restaurant dialogue system. How

may I help you?

user: Could you tell me the name of a chinese restaurant?

system: Would you like something in the cheap, moderate, or expen-

sive price range?

user: moderate is just fine

system: What part of town do you have in mind?

user: centre

system: shanghai family restaurant is a nice place, it serves chinese

food , it is in the moderate price range and it is in the centre of

town .

user: What is their address and phone number?

system: shanghai family restaurant is a nice place, Their phone num-

ber is 01223 301761 and Their address is 39 burleigh street city

centre .

user: Thank you very much, good bye

system: Thank you, goodbye.

Although this is a rather simple domain, the policy asks the user in a

straightforward fashion for their constraints without wasting unnecessary

turns. Using this simulator, policies are assumed to perform much better in

a real environment.
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7 Conclusion

Nowadays, SDSs are widely used and the emergence of RL as well as research

in this topic drives intelligent, self-learning and adaptive SDSs in a variety of

domains. Their potential is obvious: A user gets easy access to a database

or may book a flight, wherever they may use their voice or text to interact

with a dialog system.

There is a lot focus in research on the policy, but the user simulator is

another crucial part of the whole system. It allows to train and evaluate

different policies without the need for human subjects, or at least much

less. This saves time, money and effort and fuels research on applying RL

algorithms in this field.

Previous user simulators were based on handcrafted rules, or extracted

parameters for stochastic models from data. NNs have gained attention in

different fields, as they exhibit universal function approximators and allow

to automatically correlate data. Furthermore, RNNs allow to process whole

sequences, and thus enable to parse a dialog turn by turn, thereby emitting

multiple (user) actions.

Within this work, a RNN based user simulator has been implemented and

evaluated in a benchmarking environment. PyDial provides several environ-

ments for this purpose, from which synthetic data have been generated. In

the first part, the neural-based simulator was shown to be successfully trained

on this data, therefore learning the handcrafted simulator’s behavior. It does

perform similar to the handcrafted simulator, but benefits from its ability to

explore new dialogs such that it can prove useful in a real environment.

Since several environments are not viable for the later use of a trained

policy in a real environment, a new environment was proposed to combine

some of PyDial’s environments. For this purpose, the simulated noise is seen

as a varying behavior from different users.

As a last work, and as a step to achieve more realistic policies, the RNN

45



simulator was trained on the DSTC2. It does not only give neat quantitative

results, but also suggests a notable improvement when the trained policy

is deployed in a real environment, where humans interact with the dialog

system.

However there are currently some limitations on the model: It only pre-

dicts the type of an action, which limits the ability to model the user as

seen in the data. Furthermore, it needs more manual effort when the action

type is mapped to an action on the intention-level. Also, the last system

actions have to be taken into account. For example, a user’s deny action

needs information on the mentioned slots in an appropriate action from the

system. The model’s dependency on a specific domain furthermore makes it

less versatile.

Finally, the evaluation currently still needs real subjects. This makes

it hard to evaluate multiple policies, trained with different data and with

different parameters in a variety of domains.
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8 Future Work

As already stated, an evaluation of a policy with real subjects would also

allow to draw implications about the performance of the used simulator. A

good and as realistic as possible user simulator is crucial for the success of

RL policies. Therefore a user study where the RNN simulator trained on

real data (DSTC2 in this case) is evaluated and compared to the agenda-

based simulator would finalize this project. This could be implemented in

a setting where the participants of the study directly interact with the user

simulator (i.e. play the role of the system) and try to figure out the simulated

user’s goal. Another option would be to train one or more policies on both

simulators, and let the users perform tasks, thereby also evaluating the policy.

The latter approach makes it harder to distinguish between the additional

benefits exposed by the user simulator and the policy. On the other hand, it

is probably easier for humans to rate a dialog system as it is more intuitive.

Another work could also focus on using other, more appropriate data

like the Wizard of Oz (WOZ) 2.0 dataset or gather data in a WOZ fashion.

This would yield dialogs in a more sophisticated language. Crowdsourcing

is to be taken into consideration when it turns to collecting data or actually

evaluating results. Jurč́ıček et al. (2011) show that such an approach gives

reliable results comparable to user studies with local subjects (at least for

evaluation). However it would also be interesting to make the model do-

main independent, thus removing the need to collect data for each domain

separately.

The limitation to output only action types could be attenuated by mod-

eling the actions on a more fine-grained level which also includes the slots

similar to El Asri et al. (2016). For example, instead of one inform action,

there would exist a few actions like inform food, inform area and so on. Fur-

ther research aiming at modeling actions on the finest level, where the values

are also captured, is also conceivable.

Since there is still a lot of manual effort involved in extracting the features,
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future work could also focus on using more advanced NN architectures. It

should allow to use the action on intention- or even on text-level as input

while still sticking to an explicit goal. In total, the input and the output part

of the user simulator can be improved.

Of course, the contribution of the user simulator depends also on the uti-

lized RL policy, and there are today more sophisticated algorithms. Those

should be examined too. In general, the presented neural-based user simu-

lator can be used as a basis for future research in user simulator supported

SDSs.
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Gašić. A Benchmarking Environment for Reinforcement Learning Based

Task Oriented Dialogue Management. 2017.

Senthilkumar Chandramohan, Matthieu Geist, Fabrice Lefevre, and Olivier

Pietquin. User Simulation in Dialogue Systems Using Inverse Reinforce-

ment Learning. page 4, 2011.

Lucie Daubigney, Matthieu Geist, Senthilkumar Chandramohan, and Olivier

Pietquin. A comprehensive reinforcement learning framework for dialogue

management optimization. 6(8):891–902, 2012. ISSN 19324553. doi: 10.

1109/JSTSP.2012.2229257.

Wieland Eckert, Esther Levin, and Roberto Pieraccini. User Modeling For

Spoken Dialogue System. page 8, 1997.

Layla El Asri, Jing He, and Kaheer Suleman. A sequence-to-sequence model

for user simulation in spoken dialogue systems. 08-12-Sept:1151–1155,

2016. ISSN 19909772. doi: 10.21437/Interspeech.2016-1175.
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Wen, Milica Gasic, and Steve Young. PyDial: A Multi-domain Statistical

Dialogue System Toolkit. pages 73–78, 2017. doi: 10.18653/v1/P17-4013.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Reg-

ularization of Neural Networks using DropConnect. In International Con-

ference on Machine Learning, pages 1058–1066, 2013.

52



Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei-Hao Su, David Vandyke,

and Steve Young. Semantically conditioned lstm-based natural language

generation for spoken dialogue systems. 2015.

Jason Williams, Antoine Raux, and Matthew Henderson. The dialog state

tracking challenge series: A review. 7(3):4–33, 2016.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent Neural

Network Regularization. 2014.

53





Erklärung (Statement of Authorship)
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nes anderen Prüfungsverfahrens. Ich habe diese Arbeit bisher weder teilweise
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