
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Execution of data flow models in
distributed IoT environments

Daniel Del Gaudio

Course of Study: Informatik

Examiner: Prof. Dr.-Ing. habil. Bernhard Mitschang

Supervisor: Dr. rer. nat. Pascal Hirmer

Commenced: May 7, 2018

Completed: November 7, 2018

Abstract

The Internet of Things is an emerging technology, driven by combining the physical
world with the cyberspace. The IoT enables new approaches such as, smart homes,
smart factories and smart cities. An ability of such IoT environments is to immediately
react to changing conditions, i.e., situations. Situation recognition can be implemented,
for example, by defining and executing data flow models. The state of the art for
the execution of data flow models is to utilize an execution engine, typically running
in the cloud. Data is transmitted from devices to the engine to be processed. This
solution has many disadvantages, like, for example, communication overhead, a single
point of failure and long distances for data transfer. Since IoT devices are equipped
with processing power themselves, data does not necessarily have to be sent to the
cloud, but can be processed on the devices themselves. It can be transmitted directly
between devices and does not have to travel the long detour to the cloud and back to
the IoT environment. Consequently, a better solution is to execute the data flow model
directly on the IoT devices, without using a centralized execution engine. To execute
data flow models in distributed IoT environments, in this Master thesis, I propose a
lifecycle method with five steps: (i) the modeling of the data flow, (ii) the creation or
modification of the network topology, (iii) the execution of the data flow model, (iv) the
device redistribution and (v) the retirement of the data flow. As a proof-of-concept and
for evaluation purposes, a prototype has been implemented.

3

Contents

1 Introduction 11
1.1 State of the art approach for the execution of data flow models 11
1.2 Solution and goals of this thesis . 12

2 Fundamentals 15
2.1 Data flows . 15

2.1.1 Data flow modeling . 15
2.1.2 Data flow patterns . 16
2.1.3 Complex event processing . 16

2.2 Internet of Things . 17
2.2.1 Cyber-physical systems . 18
2.2.2 Constrained Application Protocol 18

2.3 Peer-to-peer Systems . 18
2.4 Publish-subscribe . 19

3 Related Work 21

4 Execution of data flow models in distributed IoT environments 25
4.1 Lifecycle method overview . 27
4.2 Lifecycle method step 1: Data flow modeling 28
4.3 Lifecycle method step 2: Network topology creation or modification . . . 30
4.4 Lifecycle method step 3: Data flow execution 33

4.4.1 Message format for data exchange 33
4.4.2 Architecture overview . 34
4.4.3 Communication protocol for message exchange 37
4.4.4 Message flow . 38

4.5 Lifecycle method step 4: Device redistribution 43
4.6 Lifecycle method step 5: Data flow retirement 44
4.7 Optimizations . 45

4.7.1 Robustness optimizations . 45
4.7.2 Performance optimizations . 47

5

5 Implementation 49
5.1 Infrastructure layer . 49

5.1.1 Incoming message repository . 49
5.1.2 Outgoing message repository . 50
5.1.3 Other repositories . 51
5.1.4 Application wrapper . 51
5.1.5 Resource monitor . 52

5.2 Domain Layer . 52
5.2.1 Message and message forwarding manager 52
5.2.2 Services . 52

5.3 Interface layer . 53
5.3.1 REST interface . 53
5.3.2 Hello forwarder . 54
5.3.3 MBP adapter . 56
5.3.4 Message producer . 56

5.4 Special cases . 56

6 Evaluation 59

7 Summary and Future Work 63

Bibliography 67

6

List of Figures

1.1 Execution of a data flow model with a central execution engine 12
1.2 Execution of a data flow model in a distributed IoT environment 13

2.1 Pipes-and-filters example . 16
2.2 Publish-subscribe scheme [EFGK03] . 19

4.1 Conceptual overview . 25
4.2 Life cycle method for the execution of data flow models in distributed IoT

environments . 27
4.3 UML representation of the data flow meta model 28
4.4 Example of a data flow model . 29
4.5 UML diagram of the network topology 30
4.6 Example of a fully connected network topology 31
4.7 Example of a star network topology . 32
4.8 Message format for data exchange . 33
4.9 Architecture of the messaging engine . 35
4.10 Sequential data flow pattern . 38
4.11 Parallel split data flow pattern . 39
4.12 Exclusive split data flow pattern . 40
4.13 Merge with a foregoing split operation 40
4.14 Merge without a foregoing split operation 41
4.15 Merge operation with a gateway node 42
4.16 Subsequent splits . 42
4.17 Merge and split in a single node . 43
4.18 MBP fallback . 46

5.1 Overview of the implementation . 50
5.2 Data structure of the node repository . 51
5.3 MBP data model . 56

7

List of Listings

2.1 RAPIDE-EPL example [BD15] . 17

5.1 Example of a hello resource in JSON representation 54
5.2 Example of a node resource in JSON representation 54
5.3 Example of a message resource in JSON representation 54
5.4 Example of a data flow resource in JSON representation 55
5.5 Example of an operation resource in JSON representation 55
5.6 Example of a health resource in JSON representation 55

9

1 Introduction

The Internet of Things (IoT) [MSDC12; VF13] is an emerging technology, enabled by
equipping everyday objects with computational power and networking capabilities.
Multiple of interconnected smart devices [AAS13] compose smart environments or IoT
environments [HBS+16]. Examples of those are smart homes, smart factories and smart
cities [Coc14; Har06; LCW08]. Physical devices transform into cyber-physical systems,
bridging the gap between the cyberspace and the physical world [BG11; LBK15]. This
leads to the emergence of huge amounts of data from smart devices, like sensors, and,
thus, to many opportunities, summarized by the term Big Data [MBD+12; MCB+11].
The sensor data can be used to make IoT environments adaptive to changing conditions,
called situations [HWS+16]. These adaptations usually occur automatically, e.g., when
the temperature sensors of a machine sense a temperature over a predefined threshold,
the machine is automatically shut down. Data flow models can be used to define how
the data, extracted from data sources, has to be processed to evaluate if the desired
situation applies. Data flows are modeled by domain experts according to a specific
business logic via graphical modeling tools, such as FlexMash as introduced by Hirmer
and Behringer [HB16].

In the following, the state of the art approach for the execution of data flow models is
described and its corresponding problems are demonstrated. Furthermore, a solution
for these problems and the goals of this thesis are given.

1.1 State of the art approach for the execution of data flow
models

The state of the art for the execution of data flow models is to use a central execution
engine, e.g., a complex event processing (CEP) engine [CM12]. The data flow model
is sent to the execution engine, which is typically running in a cloud, to handle huge
data loads [MG+11]. The execution engine executes the data flow model by retrieving
the data from each device and processing it in the order of the model. Every chunk of
data moves through the execution engine. When the execution of the data flow model
is finished, the execution engine returns the result, which is then transmitted back to

11

1 Introduction

Cloud

Data flow model Result

Execution Engine
(e.g., CEP)

IoT Environment

Figure 1.1: Execution of a data flow model with a central execution engine

the IoT environment, e.g., to react to the situation. Figure 1.1 shows the state of the art
approach for the execution of data flow models in IoT environments. Since every chunk
of data moves through the execution engine, it is a bottleneck in terms of performance
and a single point of failure in terms of robustness. Data always needs to take the detour
through the execution engine instead of directly traveling to the next device. Since the
execution engine is usually running in a distant cloud environment, data has to travel
long distances. Also, if the execution engine breaks, the whole execution of the data
flow will stop.

Furthermore, this approach is not the intention of the Internet of Things, since every
device is equipped with computational power which is not appropriately used when
data is processed in a central execution engine. Data does not necessarily have to be
moved from the IoT environment to a cloud, since it can also be processed on the devices
themselves.

1.2 Solution and goals of this thesis

A better solution to execute a data flow models in distributed IoT environments is to send
data directly from one IoT device to another, instead of of sending it through a distant
execution engine. The solution is depicted in Figure 1.2. The communication component
distributes the data flow model over the IoT devices an starts the execution. The data

12

1.2 Solution and goals of this thesis

Data flow model Result

Communication
Component

IoT Environment

Figure 1.2: Execution of a data flow model in a distributed IoT environment

is processed on each device and sent directly to the next device in the data flow. Data
does not have to be sent back to the communication component or an execution engine
in the cloud to be processed and then back to the next device in the IoT environment.
The result is returned to the communication component. This solution makes use of the
computing resources of the devices in the environment and omits the communication
overhead between devices and the execution engine. Mechanism for fault handling must
be implemented into the devices to ensure robustness.

The execution of data flow models in distributed IoT environments without a central
execution engine in a robust and efficient manner is the goal of this thesis.

13

1 Introduction

Structure

The thesis is structured as follows:

Chapter 2 - Fundamentals Necessary fundamentals are described in this Chapter.
Those include data flows, the Internet of Things, peer-to-peer systems and publish-
subscribe.

Chapter 3 - Related Work This chapter gives an overview of related scientific work.
This includes, among others, several publications of the University of Stuttgart.

Chapter 4 - Execution of data flow models in distributed IoT environments
Chapter 4 is the main part of this thesis. It describes a concept for the execution
of data flow models in distributed IoT environments. Furthermore, it describes
possible optimizations to increase robustness and efficiency.

Chapter 5 - Implementation As a proof-of-concept, a prototype has been implemented
which is described in this chapter. It is implemented in Python and makes use of
the CoAPthon library and the integrated database ZODB.

Chapter 6 - Evaluation An evaluation of the concept of Chapter 4 is given in this
chapter. Except from the prototypical implementation, whether the concept is
sufficient for real-life systems is regarded.

Chapter 7 - Summary and Future Work Chapter 7 gives a summary of this thesis and
potential future work.

14

2 Fundamentals

In this chapter, fundamentals to comprehend the concepts of this thesis are provided.
Section 2.1 describes Information Flow Processing, particularly, the modeling of data
flows and the complex event processing. In Section 2.2, the fundamentals of the Internet
of Things are described, especially the Constrained Application Protocol. Basic concepts
of peer-to-peer systems are described in Section 2.3. The publish-subscribe pattern is
explained in Section 2.4.

2.1 Data flows

In their article “Processing flows of information: From data stream to complex event
processing,” Cugola and Margara [CM12] define Information Flow Processing (IFP),
which they distinct in active database systems, data stream management systems, and
complex event processing systems. Except from storing data, active database systems
also execute rules following the event-condition-action pattern [CM12]. When a specific
event occurs and a condition is met, a given action is executed. An event is typically an
insertion or an update of a data set. Data stream management systems are also built
around persistent storages, like active database systems, except that they process streams
of data instead of static data sets. Modeling of data flows is described in Section 2.1.1.
Complex event processing systems are explained in Section 2.1.3.

2.1.1 Data flow modeling

Data flows can be modeled using to the pipes-and-filters pattern, introduced by Meunier
[Meu95]. Figure 2.1 shows an example of a pipes-and-filters based data processing
model. A filter in the pipes-and-filters pattern is a software component, a pipe is a
connection between two filters, determining that data gets transfered from the one
filter to the other. A filter can be implemented as a service in the sense of Perrey and
Lycett [PL03] with a unified interface, for example, Representational State Transfer
(REST) [FT00]. Data sources and data sinks are special kinds of filters. Data sources are
filters that have only outgoing pipes, data sinks have only incoming pipes. Since all the

15

2 Fundamentals

Data
source

Data
source

Data
sink

Filter: Pipe:

Figure 2.1: Pipes-and-filters example

filters in a data flow model have a unified interface, they can get randomly connected
via pipes.

2.1.2 Data flow patterns

Reimann and Schwarz [RS+13] define a set of data flow patterns. They categorize the
basic data flow pattern into the data transfer and transformation pattern and the data
iteration pattern, which is, furthermore, divided into the parallel data iteration pattern
and the sequential data iteration pattern. The parallel data iteration pattern consists
of a segmentation phase, operation phase and a merging phase. For the segmentation
phase, they define the data splitting pattern to split the data flow into multiple ones.
For the merging phase, they define the data merge pattern to integrate the data flows
back into a single one. A data iteration is an iteration over a specific dataset. For this
thesis, I adopt the sequential data iteration pattern, the data merge pattern and the data
splitting pattern. Furthermore, I divide the latter into the parallel data split pattern and
the exclusive data split pattern.

2.1.3 Complex event processing

Complex event processing (CEP) is an approach to recognize patterns in distributed
message-based systems [LF98]. Cugola and Margara [CM12] describe complex event
processing systems as follows. Events in the external world are observed by event
observers, also called sources. Event consumers or sinks are notified about events.
Between the observers and consumers lies the complex event processing engine. The CEP
engine filters and combines events from the observers to create higher-level events, also
called composite events or situations, which are then notified to the event consumers.

16

2.2 Internet of Things

Listing 2.1 RAPIDE-EPL example [BD15]
when (A and B and C) then action_X

They see CEP systems as extensions to traditional publish-subscribe systems, because
publish-subscribe systems handle only single events at a time [ASS+99], while CEP
systems handle composite events. The occurrence of composite events depends on the
occurrence of other events, so they can combine the values of multiple sensors via so
called event patterns. Event patterns are described with event patterns languages which
exist in a variety of complexity and difficulty of implementation [Luc02]. Luckham
[Luc02] describes four categories of event pattern languages: string pattern matching,
single-event, content based matching, multiple-event matching with context and CEP
matching. Languages of the latter category often consist of a full set of relational
operators, context guards and pattern macros [Luc02]. An example of a CEP matching
language is RAPIDE-EPL [Luc02]. Listing 2.1 shows an example expression in RAPIDE-
EPL syntax, defining a composite event that occurs if the events A, B and C have occurred
[BD15]. The CEP engine is often implemented in a distributed manner, consisting of
multiple event processing agents (EPA) [ENL11]. An event processing agent (EPA) is
defined as a software module that processes events [Luc11]. Multiple EPAs that are
interconnected via channels are called an event processing network (EPN), which is itself
an EPA again [Luc11].

2.2 Internet of Things

Xia et al. [XYWV12] define the Internet of Things (IoT) as the networked interconnec-
tion of everyday objects, which are equipped with ubiquitous intelligence. Miorandi
et al. [MSDC12] refer to these objects as smart objects with the following properties: a
physical embodiment, a minimal set of communication functionalities, a unique identi-
fier, one name or one address, basic computing capabilities and sometimes the ability
to sense physical phenomena. Those properties give smart objects the ability to be
identifiable, to communicate and to interact. They define eight key system-level features
that the Internet of Things needs to support: device heterogeneity, scalability, ubiquitous
data exchange through proximity wireless technologies, energy-optimized solutions,
localization and tracking capabilities, self-organization capabilities, semantic interop-
erability and data management and embedded security and privacy-preserving mecha-
nisms [MSDC12]. Miorandi et al. [MSDC12] summarize the three main system-level
characteristics of the Internet of Things as follows: anything communicates, anything
is identified and anything interacts. These features and characteristics of the IoT leads
to many new business opportunities in the fields of smart homes, smart cities, environ-

17

2 Fundamentals

mental monitoring, health-care, smart business and security and surveillance [MSDC12;
VF13].

2.2.1 Cyber-physical systems

Another term for a smart object is cyber-physical system [BG11]. Baheti and Gill [BG11]
define a cyber-physical system as a system in which physical and computational capa-
bilities are integrated. It is also able to interact with humans through many interfaces.
Lee, Bagheri, and Kao [LBK15] propose a five level architecture for cyber-physical
systems with two main functional components: connectivity to the physical world and
information feedback from the cyber space and intelligent computational capability that
constructs the cyber space. So cyber-physical systems connect the cyber space with the
physical world.

2.2.2 Constrained Application Protocol

The Constrained Application Protocol [BCS12] (CoAP), defined in [SHB14] by the
IETF1 Constrained RESTful Environments (CoRE) working group, is a communication
protocol for environments with constrained resources, like IoT environments. CoAP
uses UDP [Pos80] and a simple message layer to retransmit lost messages, instead of
TCP [Pos81]. The total header size of the message layer in a typical message is about 10
to 20 bytes [BCS12], making it much more lightweight than HTTP [FGM+99], where
messages have a typical header size between 200 to 2000 bytes2. On top of the message
layer, CoAP has four methods, known by HTTP: GET, PUT, POST, and DELETE. The
response codes of CoAP are also similar to the ones of HTTP, but encoded in a single
byte.

2.3 Peer-to-peer Systems

If participants of a distributed network architecture share parts of their own hardware
resources, like processing power, storage capacity and network link capacities, the
network architecture may be called a peer-to-peer (P2P) system [Sch01]. Peer-to-
peer can be categorized in structured and unstructured peer-to-peer systems [WS05].
Unstructured per-to-peer systems either rely on a central server that stores the locations

1https://www.ietf.org
2http://dev.chromium.org/spdy/spdy-whitepaper

18

2.4 Publish-subscribe

Event manager
Publisher Subscriber

Publisher

Publisher

Publish

Publish

Publish

Subscribe

Unsubscribe

Notify

Subscriber

Subscriber

Storage and
management of
subscriptions

Figure 2.2: Publish-subscribe scheme [EFGK03]

of all resources to serve lookups to clients, or lookups need to be sent to all peers
participating in the network. Algorithms to distribute lookups over an unstructured peer-
to-peer network are breadth-first search, depth-first search and random walk. Structured
peer-to-peer systems use distributed indexing structures, like distributed hash tables,
e.g., Koorde [KK03], to retrieve data items from the network. Lookups with Koorde take
O(logn) hops in a network with at least two neighbors per peer.

2.4 Publish-subscribe

Publish-subscribe is an event-based interaction scheme to exchange information in a
loosely coupled and asynchronous manner [EFGK03]. Figure 2.2 depicts the publish-
subscribe scheme with its components and interaction elements. Subscribers express
their interest in an event or pattern of events, called a subscription. When a publisher
generates an event, every subscriber gets a notification about the event. The message
bus that handles subscriptions and notifications ins called the event manager.

19

3 Related Work

In this section, to the concept of this thesis related scientific work is introduced.

With SitRS XT, Franco da Silva et al. [SHWM16] propose a concept for near real-time
situation recognition in IoT environments by the use of situation templates and complex
event processing [Luc02], based on the work of Hirmer et al. [HWS+15]. The situation
template contains the monitored sensors and the conditions that have to apply to
recognize the situation. Situation templates are directed, cohesive graphs as introduced
by Zweigle et al. [ZHKL09], also called situation aggregation trees. The concept for the
execution of data flow models in distributed IoT environments can be used to execute
such situation aggregation trees in an efficient and robust manner.

With FlexMash 2.0, Hirmer and Behringer [HB16] describe an approach for realizing
data flow modeling based on the pipes-and-filters pattern [Meu95]. The data flow model
in FlexMash 2.0, called a mashup plan, gets transformed into an executable format,
such as a workflow model. Each filter in the mashup plan is implemented by a service
offering a REST interface. Hirmer and Behringer describe a method for the execution
of data flow models containing six steps: data flow modeling, requirement definition,
runtime environment selection, mashup plan transformation, data flow execution and
finally result processing. A main concept of Hirmer and Behringer is the execution
of the mashup plan in a specific runtime environment, which is automatically chosen,
based on the requirement definition of the user [Hir18]. The aim of this thesis is to
provide a method to execute data models, such as the mashup plans in FlexMash 2.0, in
a distributed IoT environment, without a central runtime environment.

Franco da Silva et al. [SHKM18] describe a concept for CEP query shipping in distributed
IoT environments. Their query shipping model is based on the pipes-and-filters pattern
and consists of three different types of nodes: data sources, data sinks and query nodes.
They also introduce the Multi-purpose Binding and Provisioning Platform (MBP) which
enables automated binding of IoT devices to access their sensors and actuators and
provisioning software on those. They define a life cycle method consisting of five steps,
whose initial input is the query shipping model: registration of data sources and data
sinks, choice of execution hardware, installation of software components, CEP query
shipping, and finally retiring of data processing. Franco da Silva et al. describe a method
to keep track of available devices and deploy software on those. They do not introduce

21

3 Related Work

a method to execute a data flow model on those devices, which will be the issue of this
thesis. The MBP will be used in this thesis as a platform to register new IoT devices and
deploy software on them.

IoT-Lite [BEBT16] is an instantiation of the semantic sensor network described by Taylor,
Ayyagari, and De Roure [TAD11]. It is a lightweight but extendable semantic model to
achieve interoperability and discovery of sensor data in an IoT environment. IoT-Lite
is an ontology language to describe sensors with their respective values, meta data
and options. IoT-Lite could be extended to act as a modeling language to describe the
IoT environment used for the execution of data flow models. This comes with a huge
overhead, because the network topology described in Section 4.3 can be modeled much
simpler and is not the core of this thesis.

A distributed IoT environment can be classified as a peer-to-peer network [Sch01].
Consequently, many concepts from peer-to-peer networks can be applied to the execution
of data flow models in distributed IoT environments, for example, search algorithms,
such as breadth-first search, depth-first search or random walk. These search algorithms
are based on forwarding messages until the ultimate receiver has been reached. This
is much slower in comparison to if the sender already knows the ultimate receiver of
a message and sends it directly to him, which is applied in the concept of this thesis.
Another concept of peer-to-peer systems are distributed routing tables. Those could
be used to route messages to a specific device, but won’t be applied in the concept of
this thesis, because I assume that every device in the IoT environment is aware of every
other device in it. Distributed routing tables could be used as an enhancement for IoT
networks that are not fully connected, in contrast to the ones assumed for this thesis.

The Message Queuing Telemetry Transport Protocol1 (MQTT), standardized by an
OASIS committee2, is a lightweight machine-to-machine communication protocol with a
publish-subscribe model. The publish-subscribe pattern is not suitable for the execution
of data flow models in distributed IoT environments, because with publish-subscribe,
one published message can be consumed by multiple subscribers. This would lead to
a duplication of messages and, thus, to a loss of integrity of the execution of the data
flow model. Also, the publish-subscribe pattern is based on a central component, the
broker, which is contradictory with the concept in this thesis, which is the execution of
data flow models without a central component.

Apache Kafka3 is a distributed streaming platform with a publish-subscribe [EFGK03]
approach. Kafka is capable of processing real-time streams of data which are organized

1http://mqtt.org
2http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
3https://kafka.apache.org

22

in so called topics. Kafka can be used as a messaging system and its design is focused on
horizontal scalability. Using Kafka for the concept of this thesis requires installing Kafka
either on a subset of the devices, which would be contrary with a distributed execution
of the data flow model, or on each device, which is a huge overhead and contrary to the
intention of the design of Apache Kafka. A concept of Kafka that could be used for this
thesis is how Kafka stores its messages. Kafka stores every messages immediately in the
filesystem in a efficient way.

The IETF CoRE Working Group proposes a concept to register and lookup device’s
resource descriptions in an IoT environment [She12], the “CoRE resource directory”
[SBK13]. However, the document has still the status of a draft and mainly contains
definitions of interfaces and guidance for the design of a resource directory. Thus, the
concepts of the CoRE resource directory have not been in contemplation for this thesis.

Liu et al. [LLH+13] propose a distributed resource directory architecture for machine-to-
machine communication to process resource registration and lookup. The architecture
consists of multiple directory peers and light directory peers. A directory peer handle
resource description registration and lookup for one or more constrained devices and
takes part in a peer-to-peer overlay network that is used to exchange information about
resources between different directory and light directory peers. Light directory peers
only participate in the overlay network, store and lookup resources, to integrate mobile
devices into the overlay network. The concepts of Liu et al. [LLH+13] could be used
in the execution of data flow models in distributed environments as an addition to
distribute information about devices in the IoT environment. Since a resource lookup
costs much more time, in the concept of this thesis, information about resources gets
distributed over all devices in the environment before the execution of the data flow
model starts.

23

4 Execution of data flow models in
distributed IoT environments

In this chapter, the main contribution of this thesis is described: the execution of data
flow models in IoT environments. To execute data flow models in distributed IoT envi-
ronments without a central execution engine, devices need to be able to communicate
and transmit data with each other autonomously. This data, for example, originating
from sensors, can be delivered from one device to another via messaging. To make
this possible, devices need to be equipped with a messaging engine. Figure 4.1 shows
an overview of the conceptual approach for the execution of data flow models in IoT
environments. Every IoT device consists of a physical part, the sensors and actuators,
and a software part, the runtime environment. The underlying layer of the runtime
environment is the application. It is specific for the device and able to interact with the
physical part of the IoT device, e.g., by extracting sensor data or by invoking actuators.
The application receives data from the messaging engine, executes an operation on
the received data (e.g., filtering, aggregation, analysis), and returns the result of the
operation. The messaging engine consumes messages from other devices and sends
messages to them.

IoT Device

Runtime environment

Messaging Engine

Application

Figure 4.1: Conceptual overview

25

4 Execution of data flow models in distributed IoT environments

I define the following requirements for the approach aimed for in this thesis:

Requirement R1: Loose Coupling
The solution must be autonomous in terms of platform technology, location and
data format [Kay03]. Devices should be able to communicate in a uniform message
format, independently from the platform technology, location or format of the
data they want to interchange. Time autonomy, as described by [Kay03], cannot
be fulfilled, since messages are sent directly among devices without the use of
channels [HW04].

Requirement R2: Persistence and Guaranteed Delivery
Data must not be lost because this can lead to an incorrect execution of the data
flow model. A message must always be persistently stored on at least one device.
A device may only delete a message when it has successfully been transmitted to
the next device.

Requirement R3: Horizontal Scalability
Adding more devices to the IoT environment must lead to an increase in perfor-
mance. It must not be relevant which device processes a message, as long as the
device is able to process the message, which is described in Section 4.2. This way,
messages can be distributed among available devices.

Requirement R4: Vertical Scalability
Increasing computational power of devices must lead to increased performance in
terms of the execution of the data flow model. The only bottleneck for processing
a message is the execution of the application.

Requirement R5: Monitoring It must be possible to monitor the whole system and get
an overview of the general status of the execution of the data flow, to be able to
manually react to specific situations.

Requirement R6: Robustness
If devices break down, the execution of the data flow model must still proceed.
After a breakdown of the whole environment, it must be able to resume the
execution at the point of the breakdown without the loss of data.

Section 4.1 describes a life cycle method for the execution of data flow models in
distributed IoT environments. The five steps of the life cycle method are described in
the following sections. Furthermore, Section 4.7 discusses possibilities to optimize the
messaging engine in terms of robustness and performance.

26

4.1 Lifecycle method overview

Data flow modeling Network topology
creation or modification Data flow execution Device redistribution

Data flow retirement

1 2 3 4

5

Lifecycle step:

Data flow model Network topology

Lifecycle artefact:

Figure 4.2: Life cycle method for the execution of data flow models in distributed IoT
environments

4.1 Lifecycle method overview

I introduce a life cycle method for the execution of data flow models in distributed IoT
environments, which is depicted in Figure 4.2. The life cycle begins with modeling
the data flow (step 1, Figure 4.2). This can be done by a domain expert using a
modeling tool, such as the one described by Hirmer and Behringer [HB16]. The second
step is the definition of the network topology, containing all the available devices in
the environment and all the operations they are able to perform. The data flow, or
parts of it as described in Section 4.4.2, and the network topology then need to be
distributed throughout the devices in the environment. To achieve this, a communication
component is introduced, which is aware of the devices in the environment and is able
to communicate with them via a REST interface, as described in Section 4.4.2. The third
step is the execution of the data flow model in the IoT environment. The execution
is either triggered automatically by one of the devices or manually. Step four is the
redistribution of devices. Devices can be added and removed dynamically or some
devices might fail and not be responsive anymore. If this happens, the network topology
needs to be redefined and the execution of the data flow model can be resumed. In the
fifth step, the data flow is retired once it reaches the end of its lifetime. This means that
no more data related to the retired data flow will be processed. The individual steps of
the lifecycle method are described more detailed in the following sections.

27

4 Execution of data flow models in distributed IoT environments

Operation

+ OIID : String

+ name : String

+ next_OIIDs : Operation[0..*]

+ merge_list : Operation[0..*]

next_OIIDs

1

0..n

join_list

1

0..n

Figure 4.3: UML representation of the data flow meta model

4.2 Lifecycle method step 1: Data flow modeling

The lifecycle of a data flow model execution begins with the modeling of the data
flow itself. The data flow model is a directed graph, which is based on the pipes and
filters pattern [Meu95], in which nodes in the graph are called filters and edges are
called pipes. Each filter in the model represents an operation that can, for example, be
performed by an IoT device. Note that different operations in the data flow model do
not necessarily have to be performed by different devices. More precisely, one device can
process an arbitrary amount of operators as long as its resource capabilities are sufficient.
Furthermore, the same operator can be run on different devices simultaneously to
achieve distributed, parallel data processing. Each pipe in the model represents the
transfer of data between two operations, i.e., the data flow. In my approach, every node
in the data flow model must be annotated with the following information:

• Operation Instance Identifier (OIID)

• Operation Identifier (Operation ID)

• Next Operation Instance Identifiers

• Merge list (optional)

The OIID is a unique identifier for an operation in the data flow model. This is necessary,
since every type of operation can have multiple instances in one data flow. Operation
ID is an identifier for the operation the device must perform at a specific point in the
data flow model. The device maps the Operation ID to a specific application on the
device’s filesystem. The next operation instance identifiers of an operation determine
which operations must be performed next. The merge list is a optional list of foreign
OIIDs to indicate that the operation merges multiple messages. The merge list is needed
so that the device knows the amount of paths that should be merged, i.e., for how many
messages it needs to wait before it can process the messages. Figure 4.3 shows an UML
representation of the data flow meta model. Pipes are implicitly defined by the attribute
list next_OIIDs.

28

4.2 Lifecycle method step 1: Data flow modeling

O1

OIID = 1

Operation ID = Oeration_A

Next OIIDs = 2, 3

O2

O3

O4

OIID = 2

Operation ID = Operation_B

Next OIIDs = 4

OIID = 3

Operation ID = Oeration_C

Next OIIDs = 4

OIID = 4

Operation ID = Oeration_D

Next OIIDs = None

Merge List = 2, 3

Figure 4.4: Example of a data flow model

Figure 4.4 shows an exemplary data flow model with the necessary information attached
to each node. The node O4 is the only one with a merge list, which denotes that O4
merges messages from the operations with the OIIDs 2 and 3, i.e., O2 and O3. The
attribute Operation ID of each operation denotes which actual operation needs to be
performed at that point in the data flow model, e.g., Operation_C for O3. A device
performs operation Operation_A and sends the results to two other devices to perform
the operations Operation_B and Operation_C. Both of them send their results to the next
device O4 which performs the merging operation Operation_D.

The described data flow model can be formalized as a directed graph:

DF = (O, E) (4.1)

with operations

O = o0, . . . , on (4.2)

and edges

E ⊆ O × O (4.3)

where every node represents an operation and every edge (oi, oj) denotes that after
finishing the operation oi, the resulting data is used as an input for operation oj. Each
operation that has only outgoing edges is called a data source, each operation that has

29

4 Execution of data flow models in distributed IoT environments

Node

+ name

+ address

Channel

+ cost

Operation

+ name
1 0..n

12

0..n 1

Figure 4.5: UML diagram of the network topology

only incoming edges is called a data sink. I also define the successor function suc as
follows:

suc : O → O (4.4)

suc(a) = {b ∈ O|(o, b) ∈ E} (4.5)

The function maps an operation to all its succeeding operations in the data flow model,
i.e., it is the formalization of the Next Operation Identifiers list.

4.3 Lifecycle method step 2: Network topology creation or
modification

The network topology is a description of all connected devices in the IoT environment
containing the names, addresses and operations they are able to perform. Since all
devices that participate in the data flow must be connected to the network, IoT envi-
ronments can be viewed as fully connected networks. That means, every device in the
network is potentially able to communicate with every other device in the network di-
rectly. In the context of the network topology, throughout this document, a device is also
referred to as a node. Figure 4.5 shows the UML representation of the network topology.
A fully connected network topology can be modeled as an undirected, connected and
weighted graph, which is formalized as follows:

NT = (N, C, c, ops) (4.6)

with a set of nodes, i.e., devices

N = {n0, . . . , nm} (4.7)

a set of undirected edges or channels

C ⊆ {{ni, nj} | ni, nj ∈ N} (4.8)

and the weight or cost function

c : C → R≥0 (4.9)

30

4.3 Lifecycle method step 2: Network topology creation or modification

Figure 4.6: Example of a fully connected network topology

which indicates the cost of delivering data over a channel {ni, nj} from node ni to
node nj or vice versa. The cost of a given channel depends on multiple factors, e.g.,
the time the data requires to be delivered over that channel or the bandwidth of the
communication medium.

I also define the function ops:

ops : N → P(O) (4.10)

That a network topology can be modeled as a complete graph means that for every two
nodes exists a path from one node to the other. A path is defined as:

P = (n0, n1, . . . , nm) (4.11)

with

∀0 ≤ i ≤ m − 1: {vi, vi+1} ∈ C (4.12)

Consequently, for every two nodes ni and nj in N , there is a path from ni to nj. And
since the graph is undirected, there is also a path from nj to ni. Each node represents
a device and every channel between two nodes indicates that both devices are able to,
without an intermediate device, send messages directly to each other. The function ops

maps every node to a subset of the set of operations O, to indicate that a given node n is
able to perform the operations ops(n). Figure 4.6 shows an example of a fully connected
network topology. Figure 4.7 shows a star network topology example, which is also
connected. For a data flow DF = (O, E) to be executable on a given network topology

31

4 Execution of data flow models in distributed IoT environments

Figure 4.7: Example of a star network topology

NT = (N, C, c, ops), the following rule must be fulfilled:

∀o ∈ O∃n ∈ N : o ∈ ops(n) (4.13)

This means that for every operation in the data flow, there must be at least one node in
the network topology that is able to perform it.

Also, for each operation o that a device can perform, it must at least know the address of
one or more devices that can perform each operation in suc(o), for each data flow model
in whose execution the device can participate. The function neigh states all neighbor
nodes of a node, i.e., all nodes that the node can exchange messages with. It is defined
as

neigh : N → P(N) (4.14)

neigh(n) = {m ∈ N |{n, m} ∈ C} (4.15)

Consequently, another condition that is required for a data flow DF = (O, E) to be
executable on a given network topology NT = (N, C, c, ops) is:

∀n ∈ N, ∀o ∈ ops(n), ∀p ∈ suc(n)∃m ∈ N : m ∈ neigh(n) ∨ p ∈ ops(m) (4.16)

For example, in Figure 4.4, the device that performs Operation_A with OIID 1 must
know at least one device that is able to perform the operation Operation_B and one that
is able to perform the operation Operation_C.

32

4.4 Lifecycle method step 3: Data flow execution

Message

Body

Header

Data Flow ID

Operation Instance ID

Correlation ID

Figure 4.8: Message format for data exchange

4.4 Lifecycle method step 3: Data flow execution

The third step, the execution of the data flow model, is the main part of this thesis, thus,
it is described in more depth than the other steps. Besides the description of the step
itself, an architecture is presented, which is able to process the data flow models. IoT
environments are still constrained environments in terms of computational resources,
robustness and failure safety. Thus, there are many additional requirements that need
to be fulfilled, compared to conventional messaging systems. Since there is no central
control instance, errors during the execution of the data flow are handled by the devices
themselves. Thus, robustness is one of the most important requirements for the messag-
ing engine. Another requirement for the messaging engine is flexibility, which enables
adding and removing nodes to the network topology. Messages need to be immediately
and persistently stored on the disc after receiving and before acknowledging them. The
sending node must only remove the message after receiving the acknowledgment. This
ensures guaranteed delivery of messages between devices. Since a message can trigger
an operation that should only be performed once per message, messages must not be
duplicated. Section 4.4.1 describes all the ingredients a message must have to be used
for the distributed execution of data flow models as described in this thesis. Section
4.4.2 gives a general overview of all the components of the architecture of the messaging
engine and their functionality. Section 4.4.3 contains a brief discussion of the minimal
requirements for the protocol two devices can use to deliver messages between each
other. Section 4.4.4 describes how messages are being handled by the messaging engine
and how different messaging scenarios, or data flow patterns, can be realized by the
messaging engine.

4.4.1 Message format for data exchange

To transfer data between devices, messaging is employed. Figure 4.8 shows the informa-
tion included in a message. The body of a message contains the data that the application

33

4 Execution of data flow models in distributed IoT environments

returns after its execution. The header of the message contains the fields data flow ID,
operation instance ID and the optional correlation ID, which is used to merge messages
as described in Section 4.4.4. The data flow id associates the message with a specific
data flow model, since a device can participate in multiple data flows. The operation
instance ID (OIID) notifies the receiving device which operation in the data flow model
it must perform on the message body, i.e., the data to be processed.

An alternative to the data flow repository described in Section 4.4.2 is to store the
whole data flow in the message. There are many more messages transfered in the
environment than data flow models instantiated, because for every data flow model
execution, multiple messages are transfered between devices. So transmitting the
data flow model in each message is a big communication overhead that will lead to a
performance loss for the execution of the data flow model. Regarding this, transmitting
the data flow model inside the messages will not be further discussed in this thesis.

Messages can be structured using typical markup languages like XML1 or JSON2, to make
them generally understandable, and transmitted via simple communication protocols
like TCP or UDP. Details about the protocol to exchange messages between devices are
discussed in Section 4.4.3.

4.4.2 Architecture overview

Figure 4.9 shows an overview of the different components of the messaging engine.
The architecture has been divided into the three layers interface layer, domain layer and
infrastructure layer. The interface layer contains components that communicate with
other devices or provide interfaces to retrieve internal information of the device. The
domain layer mainly processes messages and the infrastructure layer stores all the data
and provides the interface to the device itself and the applications. The layers and their
components are described more precisely in the following.

Interface layer

The message consumer represents the endpoint for other devices to transmit messages.
The REST interface component offers interfaces for deploying, retrieving, updating and
deleting data flow models, operations and nodes. It is also the endpoint for deploying
hello messages and triggering the hello mechanism of a device, as described in Section
4.5. Furthermore, the REST interface serves the current health status of the device.

1https://www.xml.com
2https://www.json.org

34

4.4 Lifecycle method step 3: Data flow execution

IoT Device

Message
Consumer

Message
Producer

Incoming
Message

Queue

Outgoing
Message

Queue

Application
Wrapper

Message Manager

Application

Data Flow
Repository

Operation
Repository

Node
Repository

Resource
Monitor

REST Interface MBP AdapterHello Forwarder

Message
Forwarding
Manager

Infrastructure

Domain

Interface

Software component:

Data store:

Messaging engine:

Layer division:

Information flow:

Message:

Figure 4.9: Architecture of the messaging engine

The hello forwarder adds the device name to every received hello message and forwards it
to all other devices it has stored in the node repository. The message producer component
sends messages it receives from the message forwarding manager to one or multiple
given devices. The MBP adapter is able to communicate with a given MBP instance,
described in Chapter 3. A possible technology to implement the REST interface and the
message consumer and producer is the Contrained Application Protocol (CoAP) [SHB14],
which will be further described in Section 4.4.3. The message producer communicates
with a given message consumer by its IP address and a standardized port.

The protocol, which the messaging engine uses to transport messages between each other,
must include responses like acknowledgment and error. Publish-subscribe [EFGK03]
protocols like MQTT3 are not suitable for the communication between devices, since
they are based on a reliable message broker, whose non-existence is the essence of the
concept of this thesis. The message producer and the message consumer can also be
implemented as CoAP client and server, which is described in Section 4.4.3.

3http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

35

4 Execution of data flow models in distributed IoT environments

Domain layer

The message manager receives messages from the incoming message repository, retrieves
necessary information from the data flow and operation repository, forwards all to
the application wrapper and puts the result of the wrapper into the outgoing message
repository in form of a new message. The message forwarding manager takes messages
out of the outgoing message repository, takes possible successor nodes from the node
repository and forwards everything to the message producer.

The message producer and the message forwarding manager should run in separate
threads to ensure that they do not block each other. Otherwise, messages cannot
be processed while other messages are being transfered and vice versa. The message
producer must also run in a separate thread than the message consumer, so that messages
can be consumed while others are being processed. Depending on the specific application
and the physical resources of a device, multiple instances of the message manager can
run in parallel to increase throughput.

On the domain layer part of the resource monitor, it measures the capacity of the
repositories and serves the resource and health information of the device to the interface
layer. How the message manager and the message forwarding manager process the
header of a message is described in Section 4.4.4.

Infrastructure layer

The incoming message queue acts like a first-in-first-out queue for messages that have
been received by the message consumer. If the operation, that must be performed on a
message, is a merge operation, the message is stored separately, until all messages have
been received that need to be merged. The outgoing message queue is mostly similar
to the incoming message queue. It stores messages that have been processed by the
message manager until they could be delivered by the message producer.

The data flow repository of each device is used to store the operation IDs of the succeeding
operations of the operation the device performs in a given data flow model. One solution
is to store the whole data flow model in the data flow repository of each device. This
leads to a huge storage overhead, but makes it more simple to distribute the information
over the devices, since ever device simply receives the whole data flow model. Another
solution is to only store the succeeding operations of a device’s operation in its data
flow repository. This makes it necessary for the communication component to traverse
the data flow model and send the respective nodes to each device separately. Since
every device can be a part of multiple data flows, each data flow needs to be associated
with the data flow ID. This makes it feasible to implement the data flow repository as a

36

4.4 Lifecycle method step 3: Data flow execution

key-value store [HHLD11] and use the whole data flow ID as the key to the data flow
model or just the list of succeeding operations. The data flow ID can also be used to
update a data flow model, while messages that are still stored on the devices should
be processed according to the former data flow. Otherwise, the new data flow, or data
flow segments, can simply be posted to every device with the same ID than the old data
flow.

The node repository stores a list with a subset of all operations that appear in the
data flows that the device has stored. It should have at least one device stored for
each operation that follows the one of the operations the device must performs in the
data flow, to assure that the data flow execution can continue. To associate operation
identifiers with a specific application on the file system of the device, the operation
repository maps operation IDs on URIs4.

The application wrapper wraps the functionality of the application by receiving a message
body and an application URI from the message manager and returns the resulting data.
The infrastructure layer part of the resource monitor measures the available resources
of the device in terms of memory, disc and CPU utilization.

4.4.3 Communication protocol for message exchange

The communication protocol to transmit messages between two devices should have at
least the following operations:

• PUT

• ACKNOWLEDGE

• REJECT

These three operations are necessary to assure that communicating devices can make
sure that messages do not get lost or duplicated. If a device receives a message via the
PUT operation and is able to store the message in its incoming message queue in terms
of free capacity, it responds with the ACKNOWLEDGE operation. The sending device can
then safely delete the message from its outgoing message queue. If the receiving device
is not able to consume the message, it responds with the REJECT operation, so the
sending device knows that it has to look for another device that can act as a successor in
the data flow model. Regarding the CoAP protocol, the PUT operation can be mapped
to CoAPs "Put" request. The ACKNOWLEDGE operation can be mapped to CoAPs "2.01

4https://tools.ietf.org/html/rfc8089

37

4 Execution of data flow models in distributed IoT environments

D1 D2

Figure 4.10: Sequential data flow pattern

Created" response, and the REJECT operation can be mapped to CoAPs "5.03 Service
Unavailable" response. Similar mappings could be done to the HTTP protocol.

4.4.4 Message flow

From the data flow pattern described in Section 2.1.2, introduced by Reimann and
Schwarz [RS+13], the four most common have been chosen to discuss how the messag-
ing engine handles them: sequential data flow, parallel split, exclusive split and merge.
The information flow inside the messaging engine is illustrated by the red arrows in
Figure 4.9.

Sequential

The most simple case of message processing is the sequential case. It is characterized
by one incoming and one outgoing message per operation. Messages can simply be
received, processed and passed to the next device. Figure 4.10 shows the sequential
data flow pattern.

Incoming messages are received by the message consumer. It stores the messages directly
into the incoming message queue, then sends an acknowledgment back to the sender.
When the device is ready to perform an operation, the message manager takes the next
message out of the incoming message queue and looks for the data flow in the data flow
repository with the data flow ID in the message header. In the encountered data flow
model, it looks for the node with the same OIID as the one in the message header. Thus,
the message manager can figure out which operation must be performed. It searches
in the operation repository for the specific application that performs the operation and
then triggers the application wrapper to execute it. After the execution, the result is
returned to the message manager via the application wrapper.

The message manager creates a new message based on the result and puts it into the
outgoing message queue. It sets the OIID of the new message to the one of the next
operation in the data flow model and the data flow ID to the one of the corresponding
incoming message. If the incoming message had a correlation ID, it sets the correlation
ID of the outgoing message to the same one.

38

4.4 Lifecycle method step 3: Data flow execution

D1

D2

D3

Figure 4.11: Parallel split data flow pattern

The message forwarding manager takes the next message out of the outgoing message
queue. Then it seeks in the node repository for one or multiple nodes that are able to
perform the operation that is associated with the OIID of the outgoing message in the
data flow model. It creates a list, containing the encountered nodes, and transmits the
message and the list to the message producer. The message producer then tries to send
the message to one of the nodes in the node list.

Parallel split

A device that performs a split operation in the data flow model consumes one message
and produces two or more messages. That means that the application in the runtime
environment of the device needs to return its result in a specific format, so that the
application wrapper is able to distinguish the different data sets and the message
manager can create one message for each data set. The application also needs to specify
which message belongs to which succeeding operation, for example, by aligning the
order of its output messages to the order of the next operations in the data flow model.
Another use case for the parallel split is that every parallel outgoing message should
go to the same operation but to an appropriate amount of different devices to achieve
performance and horizontal scalability [DG08]. To make this possible, the message
producer must make sure to choose as much devices for the same succeeding operation
as possible. Figure 4.11 shows an example of the parallel split pattern. Device D1 sends
two messages, which can have the same content, to each of the devices D2 and D3.

Exclusive split

Exclusive split means that the message content, the outcome of the application, or a
combination of both, decides which operation must be executed next. This makes it
necessary for parts of the messaging engine to understand parts of the semantics of the
message body. Figure 4.12 shows an example of the parallel split pattern. D1 decides,

39

4 Execution of data flow models in distributed IoT environments

D1

D2

D3

Figure 4.12: Exclusive split data flow pattern

D1

D2

D3

D4

D5

D6

Figure 4.13: Merge with a foregoing split operation

based on some predefined criteria, to send a message to D2 and not to D3. The exclusive
split pattern has not been described in Section 4.2, thus, it will not be further discussed
in this thesis.

Merge

A merge operation merges multiple incoming messages. There is a distinction between a
merge with a preceding split operation, and a merge without one. The merge with a
preceding split can be achieved by adding a correlation ID to each message after the
splitting operation. Figure 4.13 shows a data flow model with a merge and a foregoing
split. D1 equips both messages, resulting from a single splitting operation, with the
same correlation ID. Every device between D1 and D6, that is not supposed to perform a
merging operation, simply passes the correlation ID. When D6 receives a message with a
correlation ID, it stores the message separately, until the other message with the same
correlation ID arrived. Then it puts both messages together in the incoming message
queue, so the merge operation can be performed.

The merge without a foregoing split is much more difficult to handle and cannot be
definitely solved. It can occur if the data flow has more than one starting points. Figure
4.14 shows a data flow model with a merge without a foregoing split. D1 and D2 are
both data sources and produce messages. There is no implicit correlation between the

40

4.4 Lifecycle method step 3: Data flow execution

D1

D2

D3

D4

D5

Figure 4.14: Merge without a foregoing split operation

messages produced by D1 and D2 as if the messages were produced by a single split
operation. Also the times when D1 and D2 produce messages must not always be the
same. One option to perform such a merge, is to match each message with the next
messages that are sent through other channels. For example, if D5 in Figure 4.14 receives
one message from D3 and then three messages from D4, it merges all the three messages
from D4 with the one from D3, resulting in three new outgoing messages. Another
approach is to define a time window and merge all messages that arrive within the given
time window. A third option is to merge messages syntactically, for example, averaging
all values in the payload of the messages. This approach is rather inappropriate for the
solution proposed in this thesis, since the messaging engine should be generic in terms
of message content.

Since every operation in a data flow model can be performed by multiple devices, it
could happen that two messages with the same correlation ID are being delivered to
different devices that perform the merge operation. This leads to both messages never
being merged, since both devices will always wait for the message that is buffered on
the mutual other device.

One way to tackle this problem is to give only one device the ability to perform a specific
merge operation. Since this solution leads to a single point of failure and a bottleneck
in terms of execution performance, it is not an ideal solution. It also takes away the
possibility to horizontally scale the execution of the data flow by adding new nodes.

Another approach is to add more than one device to the network topology that can
perform the merge operation and let each device periodically ask the others for the
correlation IDs of the messages in their incoming message queue. This makes the
execution horizontally scalable, but also leads to a huge communication overhead
between nodes that perform the same merging operation.

A third solution is to add a single additional gateway node to the topology that receives
all the messages for the specific merge operation. The gateway node then distributes

41

4 Execution of data flow models in distributed IoT environments

D1

DN

DG

D2

DJ1

DJ2

Figure 4.15: Merge operation with a gateway node

D1

D2

D3

D4

D5

D6

D4

D5

D6

Figure 4.16: Subsequent splits

the messages over all devices that can perform the merge operation. Figure 4.15 shows
the conceptual approach of a merging operation with multiple merging nodes and a
preceding gateway node. The gateway node DG stores messages until it has received
every message that is necessary for one merging operation. It then forwards the messages
with the same correlation ID to one of the merging devices DJ1 or DJ2. Since this is not
an expensive operation in comparison to a merging operation itself, the gateway node is
unlikely to be a bottleneck for the performance of the data flow execution.

To handle multiple splitting nodes that follow each other, like, in the data flow example
in Figure 4.16, multiple correlation IDs must be added to a message. A list of correlation
IDs is added to the messages header, which is treated as a first-in-first-out queue. This
way, in the data flow in Figure 4.16, first D1 adds a correlation ID and then D4. D9 pops
the newest message from the correlation ID queue in the messages it receives, which is
the correlation ID that has been added by D4. So the messages will be merged correctly
by D9 and also all succeeding merging nodes.

42

4.5 Lifecycle method step 4: Device redistribution

D3

D4

D5

D1

D2

Figure 4.17: Merge and split in a single node

Combinations

A combination of a merge and a split operation in one node, like in the example data
flow in Figure 4.17, can also be realized by the messaging engine, without further
extensions. An operation in the data flow model can be attached with multiple outgoing
nodes and also a merge list. The operation that device D3 in Figure 4.17 implements
could have the following configuration:

• OIID = 3

• Operation ID = Operation_3

• Merge list = 1, 2

• Next OIIDs = 4, 5

4.5 Lifecycle method step 4: Device redistribution

When a new device, which does not necessarily have to be a physical device but can also
be, e.g., a virtual machine, is added to or removed from the network topology, the other
devices need to be notified about it. To propagate the information about newly added
nodes, two approaches can be applied:

1. Publishing the new node via the REST interface on every device by the communi-
cation component.

2. Publishing one node via the REST interface of the newly added node and triggering
its hello mechanism.

3. Sending a multicast message from the newly added device to all other devices.

43

4 Execution of data flow models in distributed IoT environments

For the second approach, each device needs an interface for hello messages, which can
be integrated into the REST interface. To avoid cyclic message forwarding of hello
messages, each hello message needs to carry a list of past recipients of the message.
Then, every device can forward the hello message to every device in its node repository,
except for the ones in the recipient list of the hello message. The third solution only
requires adding the new device to the network, which makes it the most appropriate
solution. The second and the third solution can also be combined to prevent failures if a
device is not reached by the multicast. Multicasting is natively supported by CoAP5.

When a device is removed from the network topology, other devices will not be able to
transmit messages to it anymore, which will not stop the data flow execution as long as
there is another device that is able to perform the operations that the removed device
could perform. Nevertheless, this slows down the performance of the execution, since
devices always try to deliver messages to the removed node. If the device is removed
from the network topology on purpose, all three approaches to propagate information
about an added node can also be applied to propagate information about a removed
node. If the node is removed from the network topology because the device failed, it
will not always be able to distribute the information about its own failure. This could be
done by the communication component or other devices, when they recognize that the
device has failed, by being consistently unable to deliver messages to it, or periodically
checking the device’s health status.

4.6 Lifecycle method step 5: Data flow retirement

A data flow can be retired by immediately stopping each device from processing messages
of the specific data flow, or by only stopping each data source from producing messages
of the data flow. In the second approach, one must wait until no more messages,
belonging to the stopped data flow, are being processed in the IoT environment. To
notice if there are still messages in the environment that belong to a specific data flow,
each data source could add a unique message identifier (message ID). So every outgoing
message from each data source can be compared with each received message on each
data sink. If each message, by means of the message ID, that has been produced by a
data source, has been received by a data sink, no more messages are being processed in
the environment. Splitting operations need to be considered specifically. Then, the data
flow model can be deleted from each device via the REST interface, to prevent that any
device no more processes any message of the retired data flow. Stopping each device
immediately from processing any message that belongs to a specific data flow, like an

5https://tools.ietf.org/html/rfc7390

44

4.7 Optimizations

emergency halt, could also be done via a specific endpoint in the REST interface of each
messaging engine.

4.7 Optimizations

Since the execution of data flow models can be very time and failure critical, approaches
to improve robustness and performance are covered in this section. Section 4.7.1
discusses robustness optimizations regarding guaranteed delivery, persistence, failure
handling and logging. Section 4.7.2 describes performance optimizations in terms of
successor node selection and memory management.

4.7.1 Robustness optimizations

The three main topics in terms of robustness optimizations that are discussed are
guaranteed delivery, persistence and failure handling.

Guaranteed delivery and persistence

Loosing a message can lead to non performing operations that might be necessary for
the successful execution of the data flow model. A message can get lost in the process
of transmitting it from one device to another, or during buffering and processing a
message on a device. Since IoT environments tend to be more vulnerable for failures
and breakdowns, and there is no central instance that keeps the messages, persistence of
messages inside the devices is very important. After a breakdown, the IoT environment
should be able to continue the execution of the data flow at the point where the
breakdown happened, without loosing a single message. This can be achieved by
equipping every device with a persistent memory and storing each message persistently
before sending the acknowledgment back to the sender after receiving a message. The
sender of the message must not delete the message from its memory until it received
the acknowledgment. Another mechanism to increase robustness in terms of message
persistence is to periodically backup messages, that are stored on each device, on a
central component. If then the whole environment breaks down, the messages can be
redeployed to each device and the data flow execution can continue from the last backup
point.

45

4 Execution of data flow models in distributed IoT environments

MBP

D1 D2

1 2

3

Operation provisioningOperation request

Message transmission

Figure 4.18: MBP fallback

Failure Handling

During the execution of data flow models in distributed IoT environments, multiple
failures can occur. Devices, that are necessary for the execution of a data flow model,
might not be available. This means that if a device tries to deliver a message to another
device listed in its node repository, none of them are responding. This leads to a stop
of the whole data flow execution. The first approach to increase robustness in terms of
failure handling is by adding multiple nodes to the network that are able to perform
a single operation. This makes it possible for the devices to choose between multiple
successors if not all of them are available, as described in Section 4.4. The second
approach can be applied by a device if no device is available that comes into question
as a recipient for an outgoing message. Then, the only solution is to ask the MBP, as
described by Franco da Silva et al. [SHKM18], to provision the operation on a new
device and add it to the network topology. The approach is depicted in Figure 4.18.
Device D1 cannot find an available device to transmit a message to. It consequently
invokes the MBP to provision the desired operation on another device D2. After the
operation has been provisioned, the execution of the data flow model continues.

46

4.7 Optimizations

Logging

Since there is no central controlling component, there is no central point in the envi-
ronment that keeps track of the events occurring in all devices. To enable a central
monitoring of the whole environment, devices must ship their logs to a central point.
The logs could also be served via the REST interface of the messaging engine. Shipping
the logs to a central point can be done only once in, e.g., every 24 hours to reduce
traffic.

4.7.2 Performance optimizations

Two critical issues in terms of performance are the selection of a successor node and the
memory management.

Successor node selection

After performing the operation that is associated with a message, the messaging engine
must send the result to another device that is able to perform the next operation in the
data flow model. Ideally, for every operation that follows one of the operations a device
can perform, the device has a list of multiple other devices, that are able to perform
these following operations. This forces the device to decide to which device it sends its
results. The outcome of this decision has impact on the performance of the execution of
the whole data flow. There are basically two different methods to choose a recipient for
a message:

First fit The message producer tries to send the message to the first device in the list.
If the devices returns an error, it goes on with the next device in the list. This is
repeated until a device returns an acknowledge.

Best fit The message producer retrieves the health information, containing the free
resources, via the REST API of every device in the list. Then it sends the message
to the device with the most free resources.

The first fit method needs lesser communication iterations than the best fit method. On
the other hand, it could lead to sending all messages to the same device, which is an
unbalanced use of resources. The best fit method makes the devices distribute load
evenly over devices that can perform the same operations. This makes the execution of
the data flow horizontally scalable. Performance can be increased by adding multiple
devices that are able to perform the same operations. Another parameter that must be
regarded for the best fit method is the cost of the channel to each node. This can be

47

4 Execution of data flow models in distributed IoT environments

calculated by measuring the round-trip time of each health request, which will not be
sufficient as discussed in Section 4.3. Since devices do not store the network topology as
the graph described in Section 4.3, but only store the address and operations of each
other device, it is difficult to also store the cost of each channel. This exceeds the scope
of this thesis and, thus, will not be further discussed.

Memory management

Since guaranteed delivery and persistence of messages are necessary requirements of the
messaging engine, memory management is a big issue for performance enhancement.
Messages should not get lost when a device fails, so they cannot simply be held in volatile
memory. Storing each message on the disc before and after performing its corresponding
operation is expensive and, thus, should be the aim of performance optimizations.

A possible optimization is to write messages directly to the filesystem instead of using a
database management system. One way to do this is the one Apache Kafka utilizes, as
introduced in Chapter 3. It divides its storage into partitions which are further split into
segments. On the filesystem, a partition is a directory and each segment is a file inside a
partition directory. Messages get written incrementally to the newest segment in each
partition parallel until a size limit is reached. Then it creates a new segment. To find
the next message in a first-in-first-out manner, an offset is stored for each segment. This
method can be adopted to implement the incoming and outgoing message queue of the
messaging engine.

48

5 Implementation

In this chapter, an implementation of the concepts introduced in Chapter 4 is described,
serving as proof-of-concept. Since the implemented messaging engine can run on
most constrained devices and there are many libraries for it, the chosen programming
language to implement the prototypical messaging engine is Python1 in the version 3.6.
The most constrained hardware that the prototype has been tested on was a Raspberry
Pi2. Figure 5.1 depicts the basic architecture of the implementation in the environment
it has been tested in. The implementation is called the Python IoT Messaging Engine
(PIME). The environment consists of Raspberry Pis and several virtual machines, each
running an instance of PIME. PIME is implemented in a three-layered architecture: the
infrastructure layer, based on the embedded database system ZODB3, the service layer
and the interface layer, based on CoAPthon Tanganelli, Vallati, and Mingozzi [TVM15].
The three layers of PIME are described in Section 5.1, Section 5.2 and Section 5.3. Parts
of the concept of this thesis that are not implemented in the prototype are outlined in
Section 5.4.

5.1 Infrastructure layer

To implement the repositories, the embedded database system ZODB has been used.
ZODB is a lightweight key-value store, which is capable of transaction processing. This
is important, since multiple concurrent threads inside the domain layer are reading and
writing data simultaneously, as described in Section 5.2.

5.1.1 Incoming message repository

The incoming message repository has four internal data structures to store messages: mes-
sages, a queue, for incoming messages that are waiting to be processed, messages_in_work

1https://www.python.org
2https://www.raspberrypi.org
3http://www.zodb.org/en/latest/index.html

49

5 Implementation

Interface layer (CoAPthon)

Infrastructure layer (ZODB)

Service layer (Python)

PIME

PIME

PIME

PIME

Cloud

Raspberry Pi

Raspberry Pi

VM

VM

PIME

Figure 5.1: Overview of the implementation

for messages that are being processed, correlation_messages for messages that need to
be joined with other messages that have not been received yet, and messages_failed for
messages that could no be processed, for example, because the operation is missing.
When the message manager takes a new message from the messages queue, a copy of
it gets stored in messages_in_work to make sure it doesn’t get lost by a failure during
its processing. A message is only removed from messages_in_work when it has suc-
cessfully stored in the outgoing message repository after its processing. When each
message for a merging operation has been received, the message gets deleted from
correlation_messages and enqueued in the message queue inside a single list. If a new
operation is posted via the REST interface, all messages in messages_failed are checked
for the new operation and processed if the respective operation has been posted.

5.1.2 Outgoing message repository

The outgoing message repository has similar storing points as the incoming repository,
namely: messages, messages_in_sending and messages_failed_sending. Messages inside

50

5.1 Infrastructure layer

Operation_B

Operation_A

Node 1
Address 1

Node 2
Address 2

Figure 5.2: Data structure of the node repository

the messages queue of the outgoing message repository are taken out from the message
forwarding manager to deliver them to a succeeding node. Messages that could not
be delivered to a succeeding node, for example, because there was none available, get
stored in messages_failed_sending. After a preconfigured period of time, all messages in
messages_failed_sending get rescheduled to the outgoing messages queue, to retry their
delivery. While a message is being delivered, a copy of it is stored to messages_in_sending
to make sure it doesn’t get lost during a breakdown.

5.1.3 Other repositories

The flow repository stores data flow models by their flow ID. The node repository stores,
for each operation, a list of nodes which can perform it, as depicted in Figure 5.2. The
operation repository stores the URI of the application for each operation the node can
perform.

5.1.4 Application wrapper

The application wrapper has only the one method start_operation, which receives one
message or a list of messages, an application path, and one or multiple OIIDs. If it
received a list of messages, it concatenates its payloads. If it received a single message,
it takes the message’s payload and starts the application with the single or concatenated
payload as a command line parameter. The application wrapper expects a JSON data
structure from the application via its standard output. If the application returns a
JSON array, it creates a new outgoing message for each JSON object in the array. If
the application returns a single JSON object, it creates one message with the object as
payload. The application wrapper then returns the JSON array or object back to the
message manager.

51

5 Implementation

5.1.5 Resource monitor

The resource monitor has only a single function which returns the health status as true
or a false, of the device by using a simple metric. It measures the remaining memory and
disc capacities with the psutil4 library and compares both with a given threshold, which
can be adjusted when starting the application. When the threshold is met, it replies with
false, otherwise with true.

5.2 Domain Layer

The main parts of the domain layer are the message manager and the message forwarding
manager. Both of them run in a separate thread and act like polling consumers [HW04].
The domain layer also consists of several service classes, providing the functionality of
the infrastructure layer.

5.2.1 Message and message forwarding manager

When the message manager has finished processing a message, it requests the next
message in the message queue of the incoming message repository. The message
forwarding manager acts in a similar way by waiting until there is a message in the
outgoing message queue. Each manager runs in a separate thread and constantly
requests the next message from the corresponding repository, until it receives one. The
domain layer also manages the periodical rescheduling of failed messages inside the
incoming and outgoing message repositories.

5.2.2 Services

The domain layer has also multiple classes that act as services for the repositories.
Those encompass the data_flow_service, the message_service, the node_service, the opera-
tion_service and the resource_service. All of these classes serve the basic functionality of
the respective repositories, except for the resource_service, it is the implementation of
the service layer part of the resource monitor. The message_service is the interface for
both, the incoming_message_repository and the outgoing_message_repository. It also
handles the separate storing of messages that need to be merged.

4https://pypi.org/project/psutil/

52

5.3 Interface layer

5.3 Interface layer

The REST interface and the message consumer has been implemented using CoAP
[SHB14], since CoAP is a suitable protocol for the IoT [BCS12]. The message consumer
has also been implemented as part of the REST interface.

The Python library used in the implementation is CoAPthon5 by Tanganelli, Vallati, and
Mingozzi [TVM15].

5.3.1 REST interface

The messaging engine has the following interfaces:

Data flow To post and delete data flow models to the device. Listing 5.4 shows an
example of a data flow in its JSON representation. Each subelement of "flow"
represents a node in the data flow model, The key of the subelement is the OIID of
the according node.

Health To retrieve the health status of the device, consisting of a general flag to state if
the device is able to consume messages and the amount of messages in its queues.
Listing 5.6 shows an example of a health resource in its JSON representation.

Hello To post a hello message to the device, as the example depicted in Listing 5.1.
The array recipients represents a list of each node that already received the hello
message, to make sure that each device receives each hello message only once.

Message The message resource is the implementation of the message consumer. List-
ing 5.3 shows an example of a message in JSON representation. Messages are
trasnsmitted via CoAPs POST operation.

Node The node resource can be used to post, get and delete nodes to or from the device.
Listing 5.2 shows an example of a node resource in JSON representation. The
array operations is a list of each operation the node is able to perform. The name
of the node must be unique in the IoT environment, as well as the address.

Operation The operation resource can be used to post, get and delete operations to or
from the device. Listing 5.5 shows an example of an operation resource in its JSON
implementation. The value of the field application is the path to the application
that the application wrapper must call to perform the operation.

5https://github.com/Tanganelli/CoAPthon

53

5 Implementation

Listing 5.1 Example of a hello resource in JSON representation
{

"recipients": [

"vm1",

"vm2"

],

"node": {

"name": "vm3",

"address": "127.0.0.1",

"operations": [

"sleep_1",

"sleep_5"

]

}

}

Listing 5.2 Example of a node resource in JSON representation
{

"address": "192.168.209.164",

"name": "vm3",

"operations": [

"operation_1",

"operation_2"

]

}

Trigger hello A CoAP POST request with an empty payload triggers the hello mechanism
of the device, which is executed by the hello forwarder which is described in
Section 5.3.2.

5.3.2 Hello forwarder

The hello forwarder creates a hello resource and sends it to each node in the node
repository when the hello mechanism is triggered. It also responds to the original
sender of a hello message with a post to the senders node interface with its own node

Listing 5.3 Example of a message resource in JSON representation
{

"flow_id": "parallel_flow_1",

"payload": "Hallo;Welt",

"oiid": "1"

}

54

5.3 Interface layer

Listing 5.4 Example of a data flow resource in JSON representation
{

"flow_id": "parallel_flow_1",

"flow": {

"1": {

"operation": "test_app_split",

"next_oiid_list": ["2", "3"]

},

"2": {

"operation": "test_app",

"next_oiid": "4"

},

"3": {

"operation": "test_app_vm3",

"next_oiid": "4"

},

"4": {

"operation": "test_app_join",

"next_oiid": "none",

"join_list": ["2", "3"]

}

}

}

Listing 5.5 Example of an operation resource in JSON representation
{

"operation_name": "operation_1",

"application": "/home/ubuntu/test_operation.py"

}

description. Thus, the sender of a hello message automatically knows each node the
message has passed. When a device receives a hello message, the hello forwarder adds
the name of its own node to the message’s recipient list and forwards the message to
each node in the node repository except for those which are already in the recipient
list.

Listing 5.6 Example of a health resource in JSON representation
{

"available": "yes",

"message_count": 12

}

55

5 Implementation

Device

+ name

+ macAddress

+ ipAddress

Sensor

+ name

+ type

+ device

Adapter Type

+ name

+ description

+ id

type
1

device
1

Figure 5.3: MBP data model

5.3.3 MBP adapter

Since the functionality to request an operation on a new device is not directly imple-
mented in the MBP, most of its logic has been implemented inside the MBP adapter.
Figure 5.3 shows the UML representation of the necessary part of the data model of
the MBP. The MBP adapter first retrieves a list of sensors, a list of devices and a list of
adapter types from the MBP. An adapter type in the MBP can be seen as a operation in
this thesis, since each adapter type in the MBP is associated with one or multiple files,
that can be applications which can perform operations in the sense of this thesis. The
MBP adapter then seeks for the minimum busy device in terms of number of sensors
running on a device. Then it looks for the ID of an adapter type with the same name as
the operation that should be deployed, so it can create a new sensor from the wanted
adapter type. After the sensor has been created, it can deploy it on the device that has
been picked.

5.3.4 Message producer

The message forwarder can either forward a single message to the node that is able to
execute the desired operation and has the most available resources, or send a list of
messages to as many different nodes as possible. The message producer has also been
implemented using CoAPthon. He retrieves the health resource via the REST interface of
each qualified node in the node repository and then posts the message via the message
resource of the REST interface of the node with the most free resources. A node is
qualified if he is able to perform the operation that is next in the data flow model.

5.4 Special cases

Not all data flow patterns that have been introduced in Section 4.4.4 have also been
implemented in the prototype. These comprise the exclusive split and the merge with

56

5.4 Special cases

a gateway node. The gateway node is an extension of the basic concept to increase
performance in a merging data flow. The exclusive split makes it necessary for PIME to
understand the semantics of the data, which is not described conceptually.

57

6 Evaluation

The prototypical implementation proves that the execution of data flow models in
distributed IoT environments without a central execution engine is possible by utilizing
the concept described in this thesis.

The following paragraph evaluates whether the concept described in Chapter 4 satisfies
the requirements defined in Chapter 4:

Requirement R1: Robustness
Section 4.7.1 describes how robustness in terms of persistence and guaranteed
delivery can be increased, and how messages can be restored after a breakdown.
In Section 4.7.1, a concept to handle failures that occur when no device is available
that is qualified for a successor in terms of the data flow is described. Both methods
described in Section 4.7.2 select a succeeding device regarding the health status of
a device. Thus, messages are only transmitted to devices that are able to consume
them. These concepts significantly increase robustness, but do not eliminate the
fact that data is solely handled by IoT devices and not by a central component,
e.g., running in the cloud.

Requirement R2: Loose Coupling
In Section 4.4.1, a generic message format to exchange data between devices
is described. The architecture includes a uniform REST interface and message
producers and consumer which abstract the message transmission from the un-
derlying platform technology. The application wrapper abstracts the messaging
engine from the underlying application. This makes the concept autonomous
in terms of platform technology and message format. Location autonomy is not
achieved because devices need to know the physical address of another device to
communicate with them. Consequently, Requirement R2 is not fully satisfied.

Requirement R3: Persistence and Guaranteed Delivery
Messages that are received via the message consumer are immediately stored on
persistent memory. The protocol defined in Section 4.4.3 makes sure that a device
stores an outgoing message at least until it receives an acknowledgment. This leads
to a guaranteed delivery of messages between devices. Furthermore, Section 4.7.1
describes how messages can be recovered after loosing persistent memory, which
fully satisfies requirement R3.

59

6 Evaluation

Requirement R4: Horizontal Scalability
Section 4.4.4 describes a concept for the parallel split pattern, where messages get
evenly distributed over available devices. Furthermore, Section 4.7.2 describes
how messages can be evenly distributed over all devices in the IoT environment
which can perform the same operation. Consequently, adding more devices to
the environment that can perform the same operation leads to a more efficient
execution of the data flow model.

Requirement R5: Vertical Scalability
Receiving, processing and forwarding of messages are decoupled from each other
by using separate threads and queues. Thus, increasing processing power of a
device makes receiving, storing and forwarding messages faster. Processing a
message depends on the specific application and possibly on the physical part of
the device and, thus, cannot generally be made more efficient by increasing the
processing power of the device.

Requirement R6: Monitoring Via the REST interface of the messaging engine de-
scribed in Section 4.4.2, current health information of devices can be retrieved. In
Section 4.7.1, a method the ship logging information of the devices to a central
component is described. This makes it possible to monitor the whole environment
from a central component, without loosing benefits of the execution without a
central execution engine.

The weak point of the concept introduced in this thesis is robustness. The approaches to
increase robustness for the execution that have been regarded in Section 4.7.1, such as a
periodical backup of messages, the MBP fallback, and the central logging point, increase
robustness fundamentally but may not be sufficient in a real-life production system.

However, whether the execution of a data flow model is more efficient by the means of
this thesis or in the conventional approach has not been proven yet. Also, whether the
robustness of the solution will suffice a real life application has not been tested. If each
node has enough successor nodes for each operation in its node repository the execution
of the data flow model without a central execution engine can be more efficient than the
execution with one, because at least the communication overhead of sending the data
via the execution engine can be omitted. Another issue that has not been considered
in this thesis is security and privacy, which is still a challenge in the domain of IoT
[SRGC15]. The lack of a central execution engine may make the environment more
vulnerable for attacks.

Not every data flow pattern described by Reimann and Schwarz [RS+13] has been ana-
lyzed in Section 4.4.4 in terms of its feasibility with the execution engine. Nevertheless,
the basic patterns can be handled by the execution engine and it could be extended for

60

the remaining ones. The only problem will be to make the messaging engine understand
the semantics of the data, which is necessary to realize patterns like the exclusive split.

The real benefits of the concepts of this thesis will emerge when IoT environments will
be much more self-organizing than now [AT13]. This would help with the problem of
finding the right successor and, thus, increase the robustness.

61

7 Summary and Future Work

In this thesis, a concept for the execution of data flow models in distributed IoT en-
vironments is introduced, which is based on messaging and refrains from a central
execution engine. To achieve this, a lifecycle method is proposed which consists of the
the five steps data flow modeling, network topology creation or modification, data flow
execution, device redistribution and data flow retirement.

The data flow is modeled as a directed graph in the pipes-and-filters style, where each
node, i.e. filter, stands for an operation. a network topology is an undirected, connected
and weighted graph with a node for every device in the environment and an edge
between to nodes if the respective devices are able to communicate with each other. The
data flow model and the network topology is distributed over the devices to ensure the
execution of the data flow model.

To realize the execution of the data flow model, an architecture for a messaging engine
is proposed. It is a three-layered architecture which most important parts are a message
consumer, a message producer, an incoming and an outgoing message queue and
an application wrapper. The application wrapper executes an application on the IoT
device that performs the operation according to the data flow model. The result of the
application is transformed into a new message and enqueued into the outgoing message
queue. The message producer sends the outgoing message to the message consumer
of another device that is able to perform the next operation of the data flow model.
The message consumer puts messages directly into the incoming message queue. Every
device in the IoT environment is equipped with the messaging engine, so the devices are
able to send message to each other. A message consists of a header and a body, whereby
the body is the data that is used for the execution of the data flow model. Several data
flow patterns are regarded in terms of their feasibility with the given messaging engine:
sequential data flow, parallel split, exclusive split and merge.

When new devices are added to the environment or devices are removed from it,
the device redistribution takes place. Other devices need to be informed about the
redistribution what can be achieved via the communication component or milticasting
mechanisms. When the data flow is no longer needed, it is retired.

Optimizations to increase robustness and performance are also regarded, those compass
guaranteed delivery and persistence, failure handling, logging, successor node selection

63

7 Summary and Future Work

and memory management. Guaranteed delivery of messages can be ensured if every
consumed message is persistently stored before replying with an acknowledging response.
Since there is no central execution engine that can be monitored, shipping logs from
the devices to a central component is useful to track events of the whole environment.
Two fundamental strategies to choose a target node for a message if multiple nodes are
available are evaluated: the first fit and the best fit method. Since message need to be
consistently stored to ensure guaranteed delivery, improvements in memory management
are useful to increase performance, like incrementally storing messages directly on the
filesystem.

An implementation to prove the functionality of the concept is also described. It is
implemented in Python and makes use of a CoAP library and the ZODB database, an
integrated key-value database. The implementation has been tested in a distributed
environment consisting of Raspberry Pis and virtual machines.

Future work

A possible future work is the implementation of the remaining data flow patterns
described by Reimann and Schwarz [RS+13], which have not been implemented in
the prototype. This makes the implementation more suitable for real-life production
systems.

Also, a testing environment can be arranged to measure whether the execution without
a central execution engine is strikingly more efficient than the execution with one.

The performance of the implementation described in this thesis can be compared to the
performance of common execution engines, for example BPEL [Sta07] engines like OW2
Orchestra1 or the IBM WebSphere Process Server2. The concept can be evaluated and
extended in terms of its real-time capabilities by regarding the “The 8 requirements of
real-time stream processing” by Stonebraker, Çetintemel, and Zdonik [SÇZ05].

Furthermore, ways to ensure privacy and security can be determined, which is still an
issue in the Internet of Things, since constrained devices in distributed environments
are more vulnerable [RZL13].

Finding a way to connect the messaging engine with the semantics of the message and
sensor data, for example by introducing a extension system or a meta model would be
useful to implement data flow patterns like the exclusive split.

1https://projects.ow2.org/view/orchestra/
2https://www-01.ibm.com/software/integration/wps/

64

Equipping IoT devices with a discovery process [ABB17] or self-organizing mechanisms
[AT13; HWBM16a; HWBM16b] would be useful to increase robustness and usability.

A concept to consider channel cost, also regarding distance, roundtrip time and commu-
nication technology can be elaborated to enhance the performance of the execution of
data flow models. Mechanisms to optimizing the execution in terms of performance by
using feedback from succeeding devices can also be implemented into the messaging
engine.

65

Bibliography

[AAS13] C. C. Aggarwal, N. Ashish, A. Sheth. “The internet of things: A survey
from the data-centric perspective.” In: Managing and mining sensor data.
Springer, 2013, pp. 383–428 (cit. on p. 11).

[ABB17] M. Aziez, S. Benharzallah, H. Bennoui. “Service discovery for the Internet
of Things: Comparison study of the approaches.” In: Control, Decision
and Information Technologies (CoDIT), 2017 4th International Conference
on. IEEE. 2017, pp. 0599–0604 (cit. on p. 65).

[ASS+99] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, T. D. Chandra.
“Matching events in a content-based subscription system.” In: Proceedings
of the eighteenth annual ACM symposium on Principles of distributed
computing. ACM. 1999, pp. 53–61 (cit. on p. 17).

[AT13] A. P. Athreya, P. Tague. “Network self-organization in the internet of
things.” In: Internet-of-Things Networking and Control (IoT-NC), 2013
IEEE International Workshop of. IEEE. 2013, pp. 25–33 (cit. on pp. 61,
65).

[BCS12] C. Bormann, A. P. Castellani, Z. Shelby. “Coap: An application protocol
for billions of tiny internet nodes.” In: IEEE Internet Computing 16.2
(2012), pp. 62–67 (cit. on pp. 18, 53).

[BD15] R. Bruns, J. Dunkel. Complex event processing: komplexe Analyse von
massiven Datenströmen mit CEP. Springer-Verlag, 2015 (cit. on p. 17).

[BEBT16] M. Bermudez-Edo, T. Elsaleh, P. M. Barnaghi, K. L. Taylor. “IoT-Lite: A
Lightweight Semantic Model for the Internet of Things.” In: UIC/ATC/S-
calCom/CBDCom/IoP/SmartWorld. 2016, pp. 90–97 (cit. on p. 22).

[BG11] R. Baheti, H. Gill. “Cyber-physical systems.” In: The impact of control
technology 12.1 (2011), pp. 161–166 (cit. on pp. 11, 18).

[CM12] G. Cugola, A. Margara. “Processing flows of information: From data
stream to complex event processing.” In: ACM Computing Surveys (CSUR)
44.3 (2012), p. 15 (cit. on pp. 11, 15, 16).

[Coc14] A. Cocchia. “Smart and digital city: A systematic literature review.” In:
Smart city. Springer, 2014, pp. 13–43 (cit. on p. 11).

67

Bibliography

[DG08] J. Dean, S. Ghemawat. “MapReduce: simplified data processing on large
clusters.” In: Communications of the ACM 51.1 (2008), pp. 107–113 (cit.
on p. 39).

[EFGK03] P. T. Eugster, P. A. Felber, R. Guerraoui, A.-M. Kermarrec. “The many
faces of publish/subscribe.” In: ACM computing surveys (CSUR) 35.2
(2003), pp. 114–131 (cit. on pp. 19, 22, 35).

[ENL11] O. Etzion, P. Niblett, D. C. Luckham. Event processing in action. Manning
Greenwich, 2011 (cit. on p. 17).

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
T. Berners-Lee. Hypertext transfer protocol–HTTP/1.1. Tech. rep. 1999
(cit. on p. 18).

[FT00] R. T. Fielding, R. N. Taylor. Architectural styles and the design of network-
based software architectures. Vol. 7. University of California, Irvine Doc-
toral dissertation, 2000 (cit. on p. 15).

[Har06] R. Harper. Inside the smart home. Springer Science & Business Media,
2006 (cit. on p. 11).

[HB16] P. Hirmer, M. Behringer. “FlexMash 2.0–Flexible Modeling and Execution
of Data Mashups.” In: International Rapid Mashup Challenge. Springer.
2016, pp. 10–29 (cit. on pp. 11, 21, 27).

[HBS+16] P. Hirmer, U. Breitenbücher, A. C. F. da Silva, K. Képes, B. Mitschang,
M. Wieland. “Automating the Provisioning and Configuration of Devices
in the Internet of Things.” Englisch. In: Complex Systems Informatics and
Modeling Quarterly 9 (Dezember 2016), pp. 28–43. ISSN: 2255 - 9922.
DOI: 10.7250/csimq.2016-9.02. URL: http://www2.informatik.uni-
stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2016-23&
engl=0 (cit. on p. 11).

[HHLD11] J. Han, E. Haihong, G. Le, J. Du. “Survey on NoSQL database.” In:
Pervasive computing and applications (ICPCA), 2011 6th international
conference on. IEEE. 2011, pp. 363–366 (cit. on p. 37).

[Hir18] P. Hirmer. “Anforderungsbasierte Modellierung und Ausführung von
Datenflussmodellen.” In: (2018) (cit. on p. 21).

[HW04] G. Hohpe, B. Woolf. Enterprise integration patterns: Designing, building,
and deploying messaging solutions. Addison-Wesley Professional, 2004
(cit. on pp. 26, 52).

68

http://dx.doi.org/10.7250/csimq.2016-9.02
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2016-23&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2016-23&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2016-23&engl=0

Bibliography

[HWBM16a] P. Hirmer, M. Wieland, U. Breitenbücher, B. Mitschang. “Automated
Sensor Registration, Binding and Sensor Data Provisioning.” Englisch. In:
Proceedings of the CAiSE’16 Forum, at the 28th International Conference
on Advanced Information Systems Engineering (CAiSE 2016). Vol. 1612.
CEUR Workshop Proceedings. Ljubljana, Slovenia: CEUR-WS.org, June
2016, pp. 81–88. URL: http://www2.informatik.uni-stuttgart.de/cgi-
bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2016-22&engl=0 (cit. on
p. 65).

[HWBM16b] P. Hirmer, M. Wieland, U. Breitenbücher, B. Mitschang. “Dynamic
Ontology-based Sensor Binding.” Englisch. In: Advances in Databases
and Information Systems. 20th East European Conference, ADBIS 2016,
Prague, Czech Republic, August 28-31, 2016, Proceedings. Vol. 9809. Infor-
mation Systems and Applications, incl. Internet/Web, and HCI. Prague,
Czech Republic: Springer International Publishing, Aug. 2016, pp. 323–
337. ISBN: 978-3-319-44039-2. DOI: 10.1007/978-3-319-44039-2. URL:
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=INPROC-2016-25&engl=0 (cit. on p. 65).

[HWS+15] P. Hirmer, M. Wieland, H. Schwarz, B. Mitschang, U. Breitenbücher,
F. Leymann. “SitRS-a situation recognition service based on modeling
and executing situation templates.” In: Proceedings of the 9th symposium
and summer school on service-oriented computing. 2015, pp. 113–127
(cit. on p. 21).

[HWS+16] P. Hirmer, M. Wieland, H. Schwarz, B. Mitschang, U. Breitenbücher,
S. G. Sáez, F. Leymann. “Situation recognition and handling based on
executing situation templates and situation-aware workflows.” Englisch.
In: Computing (Oktober 2016), pp. 1–19. DOI: 10.1007/s00607-016-
0522-9. URL: http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/
NCSTRL_view.pl?id=ART-2016-12&engl=0 (cit. on p. 11).

[Kay03] D. Kaye. Loosely coupled: the missing pieces of Web services. RDS Strategies
LLC, 2003 (cit. on p. 26).

[KK03] M. F. Kaashoek, D. R. Karger. “Koorde: A simple degree-optimal dis-
tributed hash table.” In: International Workshop on Peer-to-Peer Systems.
Springer. 2003, pp. 98–107 (cit. on p. 19).

[LBK15] J. Lee, B. Bagheri, H.-A. Kao. “A cyber-physical systems architecture for
industry 4.0-based manufacturing systems.” In: Manufacturing Letters 3
(2015), pp. 18–23 (cit. on pp. 11, 18).

69

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2016-22&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2016-22&engl=0
http://dx.doi.org/10.1007/978-3-319-44039-2
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2016-25&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2016-25&engl=0
http://dx.doi.org/10.1007/s00607-016-0522-9
http://dx.doi.org/10.1007/s00607-016-0522-9
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2016-12&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2016-12&engl=0

Bibliography

[LCW08] D. Lucke, C. Constantinescu, E. Westkämper. “Smart factory-a step to-
wards the next generation of manufacturing.” In: Manufacturing systems
and technologies for the new frontier. Springer, 2008, pp. 115–118 (cit. on
p. 11).

[LF98] D. C. Luckham, B. Frasca. “Complex event processing in distributed sys-
tems.” In: Computer Systems Laboratory Technical Report CSL-TR-98-754.
Stanford University, Stanford 28 (1998) (cit. on p. 16).

[LLH+13] M. Liu, T. Leppanen, E. Harjula, Z. Ou, A. Ramalingam, M. Ylianttila,
T. Ojala. “Distributed resource directory architecture in Machine-to-
Machine communications.” In: Wireless and Mobile Computing, Network-
ing and Communications (WiMob), 2013 IEEE 9th International Conference
on. IEEE. 2013, pp. 319–324 (cit. on p. 23).

[Luc02] D. Luckham. The power of events. Vol. 204. Addison-Wesley Reading, 2002
(cit. on pp. 17, 21).

[Luc11] D. Luckham. “Event Processing Glossary-Version 2.0, Event Processing
Technical Society.” In: (2011) (cit. on p. 17).

[MBD+12] A. McAfee, E. Brynjolfsson, T. H. Davenport, D. Patil, D. Barton. “Big data:
the management revolution.” In: Harvard business review 90.10 (2012),
pp. 60–68 (cit. on p. 11).

[MCB+11] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh,
A. H. Byers. “Big data: The next frontier for innovation, competition,
and productivity.” In: (2011) (cit. on p. 11).

[Meu95] R. Meunier. “The pipes and filters architecture.” In: Pattern languages
of program design. ACM Press/Addison-Wesley Publishing Co. 1995,
pp. 427–440 (cit. on pp. 15, 21, 28).

[MG+11] P. Mell, T. Grance, et al. “The NIST definition of cloud computing.” In:
(2011) (cit. on p. 11).

[MSDC12] D. Miorandi, S. Sicari, F. De Pellegrini, I. Chlamtac. “Internet of things:
Vision, applications and research challenges.” In: Ad hoc networks 10.7
(2012), pp. 1497–1516 (cit. on pp. 11, 17, 18).

[PL03] R. Perrey, M. Lycett. “Service-oriented architecture.” In: Applications and
the Internet Workshops, 2003. Proceedings. 2003 Symposium on. IEEE.
2003, pp. 116–119 (cit. on p. 15).

[Pos80] J. Postel. User datagram protocol. Tech. rep. 1980 (cit. on p. 18).

[Pos81] J. Postel. “Transmission control protocol specification.” In: RFC 793
(1981) (cit. on p. 18).

70

Bibliography

[RS+13] P. Reimann, H. Schwarz, et al. “Datenmanagementpatterns in Simula-
tionsworkflows.” In: BTW. 2013, pp. 279–293 (cit. on pp. 16, 38, 60,
64).

[RZL13] R. Roman, J. Zhou, J. Lopez. “On the features and challenges of security
and privacy in distributed internet of things.” In: Computer Networks
57.10 (2013), pp. 2266–2279 (cit. on p. 64).

[SBK13] Z. Shelby, C. Bormann, S. Krco. “CoRE resource directory.” In: (2013)
(cit. on p. 23).

[Sch01] R. Schollmeier. “A definition of peer-to-peer networking for the classi-
fication of peer-to-peer architectures and applications.” In: Peer-to-Peer
Computing, 2001. Proceedings. First International Conference on. IEEE.
2001, pp. 101–102 (cit. on pp. 18, 22).

[SÇZ05] M. Stonebraker, U. Çetintemel, S. Zdonik. “The 8 requirements of real-
time stream processing.” In: ACM Sigmod Record 34.4 (2005), pp. 42–47
(cit. on p. 64).

[SHB14] Z. Shelby, K. Hartke, C. Bormann. The constrained application protocol
(CoAP). Tech. rep. 2014 (cit. on pp. 18, 35, 53).

[She12] Z. Shelby. Constrained RESTful environments (CoRE) link format. Tech.
rep. 2012 (cit. on p. 23).

[SHKM18] A. C. F. da Silva, P. Hirmer, R. Koch Peres, B. Mitschang. “An Approach
for CEP Query Shipping to Support Distributed IoT Environments.” In:
Proceedings of the 14th Workshop on Context and Activity Modeling and
Recognition at Percom. 2018 (cit. on pp. 21, 46).

[SHWM16] A. C. F. da Silva, P. Hirmer, M. Wieland, B. Mitschang. “SitRS XT-Towards
Near Real Time Situation Recognition.” In: Journal of Information and
Data Management 7.1 (2016), p. 4 (cit. on p. 21).

[SRGC15] S. Sicari, A. Rizzardi, L. A. Grieco, A. Coen-Porisini. “Security, privacy
and trust in Internet of Things: The road ahead.” In: Computer networks
76 (2015), pp. 146–164 (cit. on p. 60).

[Sta07] O. Standard. “Web services business process execution language version
2.0.” In: URL: http://docs. oasis-open. org/wsbpel/2.0/OS/wsbpel-v2. 0-OS.
html (2007) (cit. on p. 64).

[TAD11] K. Taylor, A. Ayyagari, D. De Roure. “SEMANTIC SENSOR NETWORKS.”
In: (2011) (cit. on p. 22).

71

[TVM15] G. Tanganelli, C. Vallati, E. Mingozzi. “CoAPthon: Easy development of
CoAP-based IoT applications with Python.” In: Internet of Things (WF-IoT),
2015 IEEE 2nd World Forum on. IEEE. 2015, pp. 63–68 (cit. on pp. 49,
53).

[VF13] O. Vermesan, P. Friess. Internet of things: converging technologies for smart
environments and integrated ecosystems. River Publishers, 2013 (cit. on
pp. 11, 18).

[WS05] K. Wehrle, R. Steinmetz. “Peer-to-Peer systems and applications.” In:
LNCS 3485 (2005) (cit. on p. 18).

[XYWV12] F. Xia, L. T. Yang, L. Wang, A. Vinel. “Internet of things.” In: International
Journal of Communication Systems 25.9 (2012), pp. 1101–1102 (cit. on
p. 17).

[ZHKL09] O. Zweigle, K. Häussermann, U.-P. Käppeler, P. Levi. “Supervised learning
algorithm for automatic adaption of situation templates using uncertain
data.” In: Proceedings of the 2nd International Conference on Interac-
tion Sciences: Information Technology, Culture and Human. ACM. 2009,
pp. 197–200 (cit. on p. 21).

All links were last followed on November 05, 2018.

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources
and references than the listed ones. I have marked all
direct or indirect statements from other sources con-
tained therein as quotations. Neither this work nor
significant parts of it were part of another examination
procedure. I have not published this work in whole or
in part before. The electronic copy is consistent with all
submitted copies.

place, date, signature

	1 Introduction
	1.1 State of the art approach for the execution of data flow models
	1.2 Solution and goals of this thesis

	2 Fundamentals
	2.1 Data flows
	2.1.1 Data flow modeling
	2.1.2 Data flow patterns
	2.1.3 Complex event processing

	2.2 Internet of Things
	2.2.1 Cyber-physical systems
	2.2.2 Constrained Application Protocol

	2.3 Peer-to-peer Systems
	2.4 Publish-subscribe

	3 Related Work
	4 Execution of data flow models in distributed IoT environments
	4.1 Lifecycle method overview
	4.2 Lifecycle method step 1: Data flow modeling
	4.3 Lifecycle method step 2: Network topology creation or modification
	4.4 Lifecycle method step 3: Data flow execution
	4.4.1 Message format for data exchange
	4.4.2 Architecture overview
	4.4.3 Communication protocol for message exchange
	4.4.4 Message flow

	4.5 Lifecycle method step 4: Device redistribution
	4.6 Lifecycle method step 5: Data flow retirement
	4.7 Optimizations
	4.7.1 Robustness optimizations
	4.7.2 Performance optimizations

	5 Implementation
	5.1 Infrastructure layer
	5.1.1 Incoming message repository
	5.1.2 Outgoing message repository
	5.1.3 Other repositories
	5.1.4 Application wrapper
	5.1.5 Resource monitor

	5.2 Domain Layer
	5.2.1 Message and message forwarding manager
	5.2.2 Services

	5.3 Interface layer
	5.3.1 REST interface
	5.3.2 Hello forwarder
	5.3.3 MBP adapter
	5.3.4 Message producer

	5.4 Special cases

	6 Evaluation
	7 Summary and Future Work
	Bibliography

