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Abstract

The goal of this thesis is to provide a generator for SKilL that targets Rust. Since Rusts
type system enforces strict rules to offer guaranteed thread safety the generated binding has
to accommodate these rules, which makes it difficult to create a graph with cycles. A lot of
the effort goes into the research and creation of solutions for the missing inheritance between
structs and the resulting missing casting functionality in the language. In conjunction
an option has to be found that allows Rusts rules to be enforced at runtime that works
with the enhanced inheritance support. Peculiarly, the resulting implementation is not able
to benefit from Rusts rules in regard to safe parallelism, as the runtime enforcement of
these rules inhibits parallelism. To validate that the implementation works as expected
pre-existing functional tests are used. Additionally performance tests are executed to see
how Rust bindings fare against a reference implementation in C++.

2



Kurzfassung

Das Ziel dieser Arbeit ist es einen Generator für SKilL zu erstellen, welcher Rust Code
erzeugt. Da Rust strenge Regeln anwendet, um Threadsicherheit garantieren zu können,
muss der generierte Code diesen folgen, was Probleme bei der Darstellung von Graphen
mit Zyklen bereitet. Viel Zeit wird für die Findung von Alternativen und Implimentierun-
gen für Vererbung zwischen structs und deren fehlenden Konvertierungen aufgewendet.
Dazu passend muss auch eine Möglichkeit gefunden werden, die Rusts Regeln zur Laufzeit
anwendet und die erweiterte Vererbungsfunktionalität unterstützt. Auffallend ist, dass die
Implementierung die Threadsicherheitsgarantien von Rusts Regeln nicht nutzen kann, weil
die Einhaltung dieser, zur Laufzeit, die Parallelisierbarkeit einschränkten. Um zu validieren,
dass die Implimentierung wie erwartet funktioniert, werden bereits existierende funktionale
Tests verwendet. Außerdem wird die Durchsatzrate, des generierten Rust Codes, mit der
des generiertem C++ Codes verglichen.
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1 Introduction

This thesis is about the design and implementation of a Serialization Killer Language
(SKilL) generator that targets Rust. SKilL is a collection of specifications and tools that
enables users to write their applications in their preferred language while offering the ability
to serialize the applications state platform and language independently [17]. Language
independence is achieved by offering multiple language targets for bindings that are gen-
erated from a user provided specification. Rust was chosen as it aims to be a new, safer,
systems programming language that features a type system that offers thread safety guar-
antees [6]. These should allow for safe parallelism in the generated bindings. As reference
implementation C++ was used, but C, Java and Scala were available too. This section
will present the scope of this thesis and then introduce SKilL and Rust. In the following
section the design and implementation will be presented, as well as issues and solutions to
these. Finally the results will be evaluated through functional and performance tests.

1.1 Scope

The goal is to provide a generator that supports the core language of SKilL[17]. Further
has this generator to support the documented, escaped and interfaces features, a description
can be seen in Table 1.1. It has to be researched how the Rust type system can be used
to safely parallelize the reading and writing of SKilL binary files. Finally interoperability
between existing tools has to be shown through tests. In addition to these mandatory
requirements the features auto and custom are optionally implemented.

Documented Documentation that the user provides in the specification will be present
at appropriate places in the generated code.[17]

Escaped The user may choose to use illegal characters or names for identifiers for
the target language, these have to be escaped.[17]

Interfaces The specification language allows for interfaces, these can be realized in
some languages.[17]

Auto Auto fields are fields that are generated by the generator but are not to
be serialized.[17]

Custom Custom fields are fields that the user provides the type information for
and can be thought of as extension of auto.[17]

Table 1.1: Feature descriptions that the generator implements
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1 Introduction

1.2 SKilL

SKilL encompasses a specification, binary format and tooling for them, that are used to
generate code which enables users to serialise data of their software. For this thesis the
term serialization is used for both reading data from files and writing data to files. The
next sections will give a brief overview of features, tooling and the intended use of SKilL.
For more detailed information and rational about design decisions it is advised to refer to
The SKilL Language V1.0 [17] and ‘Änderungstolerante Serialisierung großer Datensätze
für mehrsprachige Programmanalysen’[14].

1.2.1 Motivation

SKilL was created with the goal to provide small serialised file sizes, fully reflective type
encoding, type-safe storage of references, a rich type system, tools that work with partial
specifications, coding that is platform and language independent, upwards and downwards
compatibility and lazy reading of unused data. The specification language was kept simple
by providing fundamental types that are building blocks of most, commonly used, languages
as well as single inheritance. These properties allow users to describe the data structures
for a software system in a natural way. This specification is then used to generate a binding
in a language chosen by the users e.g. C, C++, Java. With the generated binding users
are able to write their implementation in a language that they are most comfortable with,
by using the offered API. [17]

1.2.2 Architecture

Figure 1.1 illustrates the fundamental architecture of a SKilL binding. The SkillFile is
the API root that the user accesses to create and open SKilL files. Through SkillFile
instances the user can access a management object, from here on called StringPool, that
is responsible for creating and managing Strings in such a way that they can be serialised.
Likewise there are management objects that are responsible for instances of a user defined
type, from here on called UserTypePools. These management objects are necessary as the
runtime system has to know which objects have to be serialized. For this reason deletion
of instances is also handled through these management objects. [14, pp. 107–112]

SkillFile

FileReader

FileWriter

UserTypePool

FieldDeclarationUserType

StringPool

String

create

has

Figure 1.1: Abstract SKilL Binding Architecture
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1.2 SKilL

UserTypePools contain FieldDeclarations that describe fields of UserTypes. They can’t be
encoded in the UserTypePools at generation time, as there can be fields at runtime that have
not been known at generation time. Further, fields have to be validated against those in
the specification. For serialization FieldDeclarations have to know the UserTypePools as
UserType fields can have UserTypes as fields. Similarly, they have to know the StringPool
in case a field is of type String. [14, pp. 144–148]

The FileReader is responsible for the creation of the StringPool, UserTypePools and
FieldDeclarations. While the creation of UserType instances is handled by UserTypePools,
before the field data is read, FieldDeclarations are responsible for reading field data. This
split is done as only FieldDeclarations can know how to read the data and if the reading
can be deferred until the first access or writing of the instance. Furthermore, this two step
process potentially allows for parallelization as all UserType instances are guaranteed to
exist when FieldDeclarations require them. [14, 148f.]

1.2.3 Serialization

Skill File

Block𝑖

String Block

Lengths

Strings

Type Block

Type Meta Data

Field Meta Data

Field Data

Figure 1.2: SKilL File Layout

As seen in Figure 1.2 a SKilL binary file can consist
of multiple blocks. Each of these blocks consists of a
string section and a type section. String sections first
list the amount of strings, followed by the lengths
of the strings, followed by the strings themselves.
This layout allows for easy reading and writing of
the strings with mmap1 and potentially for paralleliz-
ation. Type sections start with the amount of types
followed by the type definitions. These definitions
are about the types only and do not contain informa-
tion about the fields of the types. In that section the
type name, number of instances, restrictions, number
of fields and super type are listed. The next section
contains the field definitions for the types. Similar
to inheritance in most other languages, super field
definitions are not redefined for the sub types. The
definition consists of the field name, type of the field,
as well as the restrictions. A field definition ends with an offset into the next section where
the data of the fields resides. [17]

All data touched so far is small and fast to read as its size is not influenced by the amount
of instances. It is mostly relevant to the SKilL runtime system as this information allows it
to serialise data. The last section contains field data of serialised type instances where data
of one field is written contiguously for all instances that have that field. The known offsets
from the previous sections field declarations and the specific layout of the field data can
then be used to skip data with mmap to allow for parallelized serialization. This is possible
as there is no overlapping write and read access on the instances memory as all instances
are created before serialization starts. [17]

1 mmap allows to map files and file sections to a memory location that can be accessed like an array.
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1 Introduction

The reading and writing operations themselves are not too different from the other im-
plementations. It will not be explained in detail. Reading of multi-block files is more
sophisticated than this section may make them out to be, but it is not crucial for the rest
of the thesis. The involved data structures and data flow however will be discussed as well
as their consequences.

1.2.4 Generators

The generators are written in Scala and rely on mixins to be easily extensible, and string
interpolation for readability. Mixin classes are a kind of inheritance that allows linearisation
of subclasses with different super types instead of an inheritance tree [19, 117f.]. Each
generator has a Main class that has various traits mixed in. These traits are then
responsible for creating a certain set of files.

Generators work with an Intermediate Representation (IR) that provides all types that have
been defined by the user as well as types for the built-in types. These type representations
are given to the generator in form of a type context which can be queried for different
types, e.g. user types or interfaces. Once the needed lists of types are obtained a generator
can create the files with the translated type definitions. Generators have to pay special
attention to the escaping of reserved keywords in their target language. For that a escaping
function can be used that is applied to non literal strings.

1.3 Rust

The official Rust language website describes the language as: ‘Rust is a systems program-
ming language that runs blazingly fast, prevents segfaults, and guarantees thread safety.’[6]
It presents itself as a safe language that should be considered as a substitute for C, C++
and other systems programming languages. The project especially criticizes the following
issues in other languages and intends to solve them [4]:

1. There is too little attention paid to safety.

2. They have poor concurrency support.

3. There is a lack of practical affordances.

4. They offer limited control over resources.

But the project doesn’t aim to create a completely safe language and instead intends to
make compromises in favor of other goals. [4]

The following sections will provide a short introduction to the Rust programming lan-
guage. The focus is on the elements and features that are important to this thesis. For
a more in-depth and up to date introduction it is strongly advised to refer to the official
documentation [6, 7, 11, 9].
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1.3 Rust

1.3.1 Borrows and Lifetimes

At the core of the memory and concurrency goal stands the borrowing mechanism. Bor-
rowing can be thought of as taking a reference in C++. Like all variables borrows are by
default immutable or in C++ words const. Contrary to C++ mutable access has to be
explicitly requested with the mut keyword. Where borrows differ from references is that
they behave like a reader-writer lock regarding the mutability state of the referenced value.
That means that a mutable variable may be referenced as immutable more than once at a
time or exclusively mutable. This is referred to as borrow rules. Additionally Rust attaches
a lifetime to the borrow that is the lifetime of the referenced memory allocation. A borrow
may not outlive its lifetime, meaning that there can’t be a reference to freed memory.� �
1 fn main() {
2 let mut s = String::from("Hello");
3 let rs = &s;
4 println!("{}", rs.capacity());
5 println!("{}", s.capacity());
6 rs.reserve(10); // cannot borrow immutable borrowed content *̀rs` as
7 // mutable
8 s.reserve(10); // cannot borrow s̀` as mutable because it is also
9 } // borrowed as immutable� �

Listing 1.1: Rust Borrow Mechanics

Listing 1.1 depicts a simple example demonstrating these rules. In line 2 a new owned
string is created – "Hello" is a string literal and can’t be modified. Since the string shall
be modified an explicit conversion function has to be called. An immutable borrow is taken
from s in line 3 with the & operator. The lifetime can be omitted here as the compiler is
able to infer it. It is fine to use both s and rs to call methods that require an immutable
borrow of the object. But, using a method that requires a mutable borrow on rs will lead
to a compile-time error. It might be surprising, but line 8 also leads to a compile-time
error. Since s is borrowed immutable until the end of the scope it doesn’t matter that it is
a mutable variable.

� �
1 struct Foo {
2 s: &String, // missing lifetime
3 } // specifier
4 fn main() {
5 let foo = {
6 let s = String::from("Maria");
7 Foo { s: &s } // No semicolon
8 }; // returns
9 }� �

(a) Explicit Lifetime Required

� �
1 struct Foo<'a> {
2 rs: &'a String,
3 }
4 fn main() {
5 let foo = {
6 let s = String::from("Wolle");
7 Foo { rs: &s } // s̀` does not
8 }; // live long enough
9 }� �

(b) Lifetime Mechanism Benefits

Listing 1.2: Rust Lifetime Mechanics

In Listing 1.2a a struct Foo is created that has an attribute. s is of type &String, or in

11



1 Introduction

words: s is a reference to an immutable String. For s an explicit lifetime is needed because
the compiler is not able to infer where the lifetime will come from. In Listing 1.2b this
error is fixed by explicitly giving the borrow a lifetime with 'a. The lifetime is given to the
attribute through the type signature of Foo. On construction of Foo, line 7, the lifetime
of s is used as the lifetime for the reference. Because s is freed at the end of the scope in
line 9 and the Foo instance is not, a compilation error is raised. Since the memory of s
was freed an access through foo.s could lead to runtime failures. It has to be noted that
lifetimes can only be applied to borrows and are taken implicitly. In other words they can’t
be used to chain two instances to each other without using borrows [11, PhantomData].

1.3.2 Structs, Traits and Generics

The fundamental pieces of Rusts OOP model are structs, traits and impl blocks. structs
are equivalent to C structs as they are a collection of fields. traits can be thought of as
Javas interfaces. They define a set of functions that have to be implemented by a type
that provides a certain trait. Besides traits, impl blocks can be used to add methods to
structs.

While Rust can be thought of as an OOP language it differs in a few features these languages
normally offer. Inheritance is one of the features that differ. It is not possible to inherit
from a struct, traits however can inherit from each other. traits can also be implemented
for a set of types through type parameters. The set of types that a trait is generically
implemented for can be restricted through a collection of required traits and lifetimes.
These requirements are also called bounds and can be seen in line 16 of Listing 1.3b. As
a result of the missing inheritance code-reuse can be more difficult if a bound can’t be
expressed. Such a situation can appear as a bound has to hold for all types, whether all
types actually invoke the function doesn’t matter. This is in contrast to C++ where only
the function invocation triggers the instantiation for it [33, §17.8.1 10] which allows more
code to be valid. As a solution either composition or code duplication can be used, where
the latter can be done through macros for convenience. [7, 10. Generic Types, Traits, and
Lifetimes, 17. Object Oriented Programming Features of Rust]

Listing 1.3a declares a trait and two structs that then implement the trait respectively.
The functions who take a parameter &self which de-sugars to self: &Pinky and self:
&Becci. In line 1 of Listing 1.3b the function fun_gen uses a type parameter T with a
bound of Who. Code duplication also happens here – this time at invocation of the generic
function2. T will be substituted by the struct that implements the bound – in this case
Pinky and Becci.

In case a function is not implemented for a set of types, or it is not possible to do so, the
alternative is a trait object [7, 17. Object Oriented Programming Features of Rust]. This
can be seen in line 19 of Listing 1.3b where the function expects a trait object of type
Who. Trait objects can be compared to virtual abstract classes in C++. This means that
method calls can be dynamically dispatched – in other words a virtual function call can be
executed for obj.who(). Rusts approach to virtual function calls is based on fat pointers

2 No official documentation validates this, but the assembly code does. With optimisations both functions
are in-lined.
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1.3 Rust

� �
1 struct Pinky;
2 struct Becci;
3 trait Who { fn who(&self); }
4

5 impl Who for Pinky {
6 fn who(&self) {
7 println!("Pinky")
8 }
9 }

10 impl Who for Becci {
11 fn who(&self) {
12 println!("Becci")
13 }
14 }� �

(a) Type Structure

� �
16 fn fun_gen<T: Who>(obj: &T) {
17 obj.who()
18 }
19 fn fun_obj(obj: &Who) {
20 obj.who()
21 }
22

23 fn main() {
24 let p = Pinky;
25 let b = Becci;
26

27 fun_gen(&p);
28 fun_obj(&b);
29 }� �

(b) Generics and Trait Usages

Listing 1.3: Rust Generics and Trait Objects

[data_ptr, vtable_ptr][8, Trait Objects, 11, std::raw::TraitObject]. This can introduce
additional slowdown as more cache is needed per object, access is non atomic [20, 8.2.3.1
ff.] and moves are more expensive.

1.3.3 Errors, Null and Matching

Rust provides two ways to express an error, both can be seen in Listing 1.4a. The first way
uses the Result<T, E> wrapper as a return type of functions. This type contains either
the success return value of type T or an error value of type E. In case the value is 0 the
success value will be returned. In case the value is greater than 7 an error value will be
returned instead. This value can be a struct and contain detailed information or none at
all. Lastly, there is panic!3 which will terminate the program. A panic in Rust can be
compared to an exception, as a panic can be caught [11, std::panic::catch_unwind]. This
macro is used throughout the standard library e.g. for an access over the limits of an array.
But panics are mostly used for ‘unrecoverable’ or unexpected problems, whereas Result
is used in case an error can be expected, e.g. File::open() returns Result<File, Error>.
Another wrapper type that is used throughout the standard library is Option<T>, seen in
the gun function. The main difference to Result is, that Option can only hold a valid value
or none at all. Because of that it is also used as a replacement for NULL.

Listing 1.4b shows three ways how these wrapped values can be unwrapped through match-
ing. In hun() it is the ? operator, which unwraps the Result. If it is the success value
it will be returned to the scope. But if it is the error value the value will be returned
from the function. The ? operator is a tool to direct the data flow of possible error results
conveniently. What the ? operator does can be roughly seen in the nun() function. In
pun() the third way can be seen, where the Option<T> value is moved and if it is Some it
will be matched and accessible through didi. Matching can be found in many aspects of

3The ! indicates that panic! is a macro.
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� �
1 fn fun(x: i32) -> Result<DiDi, E> {
2 if x == 0 {
3 Ok(DiDi)
4 } else if x > 7 {
5 Err(E)
6 } else {
7 panic!()
8 }
9 }

10 fn gun(x: i32) -> Option<DiDi> {
11 if x == 42 {
12 Some(DiDi)
13 } else {
14 None
15 }
16 }� �

(a) Rust Error Types

� �
17 fn hun() -> Result<(), E> {
18 let x = fun(13)?;
19 // ...
20 Ok(())
21 }
22 fn nun() {
23 match fun(2) {
24 Ok(didi) => didi
25 Err(e) => return e
26 }
27 }
28 fn pun() {
29 if let Some(didi) = gun(42) {
30 // ...
31 }
32 }� �

(b) Ways to Deal with Errors

Listing 1.4: Rust Error and Matching Mechanics

the language and is mostly a convenience feature as functions can be used to unwrap the
values as well. [11, Enums and Pattern Matching]

1.3.4 Cells and Interior Mutability

UnsafeCell<T> is a wrapper type from Rusts standard library. This wrapper allows to
change contained data without having to be mutable. In cases where an object contains
UnsafeCell<T> there are two mutabilities, interior and exterior. In other words: an object
that is immutable doesn’t deny the modification of a value contained in a UnsafeCell<T>.
The result is, that code that uses UnsafeCell<T> is vulnerable to most issues that Rust
wants to prevent. It is in the responsibility of the developer to ensure that the borrowing
rules are heeded and that thread safety is guaranteed. [11, std::cell]� �
1 use std::cell::Cell;
2

3 struct Foo { x: Cell<i8>, y: i8 }
4

5 fn main() {
6 let f = Foo { x: Cell::new(42), y: 7 };
7 f.x.set(13);
8 f.y = 13; // cannot mutably borrow field of immutable binding
9 }� �

Listing 1.5: Example to Interior Mutability

In Listing 1.5 an example to interior mutability can be seen. The struct Foo contains
a Cell<T>, which uses an UnsafeCell<T> internally. The provided interface of Cell<T> is

14
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safe to use and doesn’t need unsafe, like UnsafeCell<T> does, because there is no way for
the user to borrow the contained value. In line 7 it is possible to modify the value of x.
However, the value of y in line 8 results in the compiler raising an error. The mutability of
x would lead to data races and therefore Cell<T> and RefCell<T> are not marked as thread
safe [11, std::cell, 9, Send and Sync].

1.3.5 Visibility and Grouping

Visibility in Rust is specified with the pub keyword. For example, to specify that a field
is public to the crate it is prefixed as pub(crate) foo: String. Apart from types, fields
and functions pub is also used for modules. Modules can be compared to Javas packages
or C++ namespaces. Files themselves are a module and further modules can be declared
in files with the mod keyword. This can be used to create a more fine grained grouping and
visibility resolution. To flatten the module hierarchy, in case that the file module is not
wanted, or to create a more convenient user API the use keyword can be used to pull types
in another module. [12, Visibility and Privacy, Use declarations]

1.4 Rust Oddities

This section will focus on oddities and questionable design choices that have been en-
countered while working with Rust. While these are not strictly necessary for the under-
standing of this thesis, they do provide a deeper understanding of Rust which is helpful to
understand decisions made throughout the thesis.

1.4.1 Immutable File Manipulations

A few strange things happen in Listing 1.6. The first thing is, that line 8 and 10 do
not produce the same output. file is immutable, so why and how can an iterator, cre-
ated by bytes(self), change the position in the file? The how can be explained with
interior mutability which was introduced in the previous section. The why however is left
unanswered.

Also, how can bytes(self) be called by &file? &file creates a reference to an immutable
file but bytes(self) requires an object. The deception lies therein, that trait Read is not
implemented for File but for &'a File. Which means that self is not an object but a
reference to one.

But the real question is the following: How can it be that line 12 fails? With the results,
that prompt the first question, this should be allowed. In this case there really is no
modification going on.
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� �
1 use std::io::{Read, Seek, SeekFrom};
2

3 fn main() {
4 let args = std::env::args().nth(0).unwrap();
5 let file = std::fs::File::open(args).unwrap();
6

7 let x = (&file).bytes().next();
8 println!("{:?}", x); // Some(Ok(127))
9 let x = (&file).bytes().next();

10 println!("{:?}", x); // Some(Ok(69))
11 // Tell position
12 file.seek(SeekFrom::Current(0)); // cannot borrow mutably
13 }� �

Listing 1.6: File is not Subject to Borrow Rules

1.4.2 Coercion of traits

Rust uses coercion as the name for implicit casts. Listing 1.7 shows a strange mechanism
that is related to coercion. Here, A is inherited by B and B and A are implemented for Foo.
Then x is borrowed as &B and through rb the function fun() of A is called successfully.4 But
in line 12 the compiler raises an error, informing us that rb is not of type A. Furthermore,
it is not possible to cast rb to A& with the as keyword, as can be seen in line 13.

� �
1 struct Foo {}
2 trait A { fn fun(&self); }
3 trait B: A {}
4

5 impl B for Foo {}
6 impl A for Foo { fn fun(&self) {} }
7

8 fn main() {
9 let x = Foo {};

10 let rb: &B = &x;
11 rb.fun();
12 let ra1: &A = rb; // expected trait À̀ , found trait B̀`
13 let ra2: &A = rb as &A; // an às` expression can only be used to convert
14 // between primitive types.
15 let ra3: &A = &b;
16 }� �

Listing 1.7: Coercion of Traits

4 rb and ra have to be borrows as their size is not known at compile time. [11, E0277 referes to 19.4
Advanced Types]
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1.4.3 Immutability Resolution

Rusts immutability is an on/off switch, there is no mechanism to define an attribute as
immutable. If an object is passed as immutable nothing can be changed that is not wrapped
by an UnsafeCell<T>. But on the other hand everything can be changed if the object is
mutable. Coming from a C++ background the lack of the const feature reduces the
expressiveness. To a certain degree it also influences the safety of the program by providing
another level of type safety [32, 30ff.]. A workaround is an extra type that wraps the value
and only provides immutable accessors.

1.4.4 Static Functions for Traits

Implementing a static function for a trait should not be difficult, but it is. In Listing 1.8
two options are shown how to do it.

The first option involves functions that are implemented for Foo as well as the two traits
without a self parameter. For the traits a bound is required that specifies that the self
type (Self) has to be Sized, meaning that the size of Self is known at compile time.
Because of that bound they can’t be called on the trait itself, as can be seen in line 28.
Valid calls for this approach can be seen in lines 31 to 33.

The other option uses an extra trait that is implemented for Foo and the two traits that
should have the static function available. In this example the trait is named IDs and the
expected call syntax works as demonstrated in lines 35 to 37. An alternative for static
functions of traits are top-level functions that are grouped by name or module. This
however is just an option in a context that doesn’t use the trait in type parameters.

1.4.5 Lifetimes

Lifetimes are needed for the Rust compiler to verify the compliance with the borrow rules,
in particular for memory safety. The example from Listing 1.9 is about the lifetimes of
borrows. The function fun() accepts a Foo reference and if opt has a value it should be
printed and another function should be called. This leads to a compile time error in the
current version of Rust. [10, 2094-nll]

1.4.6 Borrowing from RefCell<T> Mutable in an Argumentlists

In Listing 1.10 an unfortunate side effect can be seen from using RefCell<T> to enforce
the borrow rules at runtime. F is a struct that is wrapped by RefCell<T> and has the
function fun() that needs a mutable Self. In line 15 the program will terminate with a
panic because the borrow rules were violated. The issue is not solved by introducing a
scope around the first borrow and use of f, like in hun(). Only the introduction of a scope
local variable solves the issue, as seen in nun().
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� �
1 trait Bar {
2 fn num() -> usize
3 where Self: Sized,
4 { 1 }
5 }
6 trait Baz {
7 fn num() -> usize
8 where Self: Sized,
9 { 2 }

10 }
11 struct Foo;
12 impl Foo { fn num() -> usize { 3 } }� �

� �
14 trait IDs { fn id() -> usize; }
15 impl IDs for Bar {
16 fn id() -> usize { 4 }
17 }
18 impl IDs for Baz {
19 fn id() -> usize { 5 }
20 }
21 impl IDs for Foo {
22 fn id() -> usize { 6 }
23 }
24 impl Bar for Foo {}
25 impl Baz for Foo {}� �� �

27 fn main() {
28 // println!("{}", Bar::num()); // type annotations required:
29 // cannot resolve _̀: Bar`
30

31 println!("{}", <Foo as Bar>::num());
32 println!("{}", <Foo as Baz>::num());
33 println!("{}", Foo::num());
34

35 println!("{}", Bar::id());
36 println!("{}", Baz::id());
37 println!("{}", Foo::id());
38 }� �

Listing 1.8: Static Functions for Traits

� �
1 struct Foo { opt: Option<String>, }
2 impl Foo {
3 fn fun(&mut self) {
4 if let Some(ref val) = &self.opt { // immutable borrow occurs here
5 println!("{}", val);
6 self.gun(); // mutable borrow occurs here
7 } // immutable borrow ends here
8 }
9 fn gun(&mut self) { println!("Norbert"); }

10 }
11

12 fn main() {
13 let mut foo = Foo { opt: Some(String::from("Norbi")), };
14 foo.fun();
15 }� �

Listing 1.9: Self in Matches
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� �
1 use std::cell::RefCell;
2 use std::collections::HashMap;
3

4 struct F {}
5 impl F {
6 fn fun(&mut self) -> i8 { 42 }
7 }
8

9 fn gun(f: &RefCell<F>)
10 -> HashMap<i8, i8>
11 {
12 let mut map = HashMap::new();
13 map.insert(
14 f.borrow_mut().fun(),
15 f.borrow_mut().fun() // BOOM
16 );
17 map
18 }
19

20 fn main() {
21 let f = RefCell::new(F {});
22 fun(&f);
23 }� �

� �
24 fn hun(f: &RefCell<F>)
25 -> HashMap<i8, i8>
26 {
27 let mut map = HashMap::new();
28 map.insert(
29 { f.borrow_mut().fun() },
30 f.borrow_mut().fun() // BOOM
31 );
32 map
33 }
34 fn nun(f: &RefCell<F>)
35 -> HashMap<i8, i8>
36 {
37 let mut map = HashMap::new();
38 map.insert(
39 {
40 let mut f = f.borrow_mut();
41 f.fun()
42 },
43 f.borrow_mut().fun()
44 );
45 map
46 }� �

Listing 1.10: Borrowing from RefCell<T> in argumentlists can lead to panics
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2 Design and Implementation

In chapter 1 the basics of SKilL and Rust were explained. This section will feature the
design and implementation of the common and generated Rust code. The first sections will
present problems that arise from Rusts type system. Afterwards the solution for them will
be presented. These sections are the most elaborate ones as the decisions have far reaching
consequences and differ the most from the other implementations. Lastly the generated
code and the resulting architecture will be covered. The covered parts mostly follow the
reference implementations.

2.1 Cyclic Graphs in Rust

SKilL allows the creation of graphs with its references [14, p. 9] as most languages do. This
is generally not a problem and sometimes needed to express the required data structure.
Rust however prevents the creation of cycles with references, which will be demonstrated
in the following sections. In this section different approaches are explored that produce
cyclic graphs in Rust. It will roughly follow the recommendation of Rust - Frequently Asked
Questions[4] and will show the problems that arise in combination with SKilL.

2.1.1 Native Cycles

In Listing 2.1a a naïve implementation of a Node containing another Node is shown. This
looks simple but it is what a cyclic graph boils down to. There has to be an object that
doesn’t exclusively own memory but references it. Without that detail it would only be
possible to create a tree. This example fails as there is no Node object before the root
Node x.

Listing 2.1b uses the Option wrapper introduced in subsection 1.3.3. This allows the
creation of the initial Node object x. It is further possible to assign the root object x to the
child object y. But from that point on problems appear. First of all, y does not live long
enough – this is the direct result of the lifetime specifier. Secondly, y has to be assigned to
x.next and with that x needs to be mutable. This should sound familiar to the problems
shown in subsection 1.3.1. Since x is already borrowed by y.next, x can’t be borrowed
mutable again to assign y to it.

2.1.2 Pointers in Rust

Coming from a C++ background the next thing that comes to mind would be (raw) pointers.
Pointers were not introduced in section 1.3 and the reason for that is, that they are not a
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2 Design and Implementation

� �
1 struct Node<'a> {
2 pub next: &'a Node<'a>,
3 }
4

5 fn main() {
6 let x = Node {};
7 // missing field ǹext`
8 // in initializer of
9 // Ǹode<'_>`

10 }� �
(a) Naïve Implementation

� �
1 struct Node<'a> {
2 pub next: Option<&'a Node<'a>>,
3 }
4 fn main() {
5 let mut x = Node { next: None };
6 let mut y = Node { next: Some(&x) };
7 x.next = Some(&y);
8 // ỳ` does not live long enough
9 // cannot assign to x̀.next` because

10 // it is borrowed
11 }� �

(b) Defered Next

Listing 2.1: Rust, no Cycles Allowed

type commonly used in Rust [8, Raw Pointers]. In Listing 2.2 it can be seen why this is
the case.

Listing 2.2a shows the basic usage of pointers, also named ‘raw pointers’. Raw pointers differ
from references and smart pointers in the following points [7, Unsafe Rust]: Pointers . . .

• are allowed to ignore the borrowing rules by having both immutable and mutable
pointers or multiple mutable pointers to the same location

• aren’t guaranteed to point to valid memory

• are allowed to be null

• don’t implement any automatic cleanup

A pointer to the String s is assigned to ps in line 3. In line 6 s is accessed through ps. To
do this unsafe code is involved. Unsafe code allows the following [7, Unsafe Rust]:

• Dereference a raw pointer

• Call an unsafe function or method

• Access or modify a mutable static variable

• Implement an unsafe trait

� �
1 fn main() {
2 let s = String::from("Matze");
3 let ps = &s as *const String;
4 println!(
5 "{}",
6 unsafe { &*ps }.len()
7 );
8 }� �

(a) Pointers in Rust

� �
1 fn main() {
2 let mut s = String::from("Denny");
3 let ps = &mut s as *mut String;
4 let rms1 = unsafe { &mut *ps };
5 let rms2 = unsafe { &mut *ps };
6 rms1.reserve(42);
7 rms2.reserve(42);
8 }� �

(b) Problems with Pointers in Rust

Listing 2.2: Rust Pointers and Unsafe Code

22



2.1 Cyclic Graphs in Rust

Why pointers are not the solution for our graph problem and why they are uncommon in
Rust code, becomes apparent in Listing 2.2b. A pointer ps is created that points to the
mutable String s. Line 4 and 5 indicate that there might be an issue – it is possible to
create two mutable references to the same value. Line 6 and 7 prove that the safety rules of
Rust have been broken, as it is possible to use both rsm1 and rsm2 in methods that mutate
s. With these rules broken also thread safety comes undone and with that most of the
incentive to use Rust is lost.

2.1.3 Memory Arenas and Cells

The subsection 1.3.4 introduced UnsafeCell<T> and companion types. This section will
explore an option to use these to create a cyclic graph. In line 8 of Listing 2.3 a mutable
Vec is created with two instances of Node. In line 12 a new string literal is assigned to the
first instance. In line 13 and 14 a reference cycle is created between the two Foo instances.
This is in contrast to Listing 2.1b, which failed. Apart from UnsafeCell<T>, which solves
the borrowing error, here a vector is used to store the Node instances. This small detail
fixes the lifetime issue. In line 15 a compiler error is raised as the second Node instance
is already borrowed immutable in line 13. That means that fields from the objects can’t
be modified if they are not also wrapped by a UnsafeCell<T>. But that would defeat the
purpose of the borrow rules.� �
1 use std::cell::UnsafeCell;
2

3 struct Node<'a> {
4 pub s: &'static str,
5 pub next: UnsafeCell<Vec<&'a Node<'a>>>,
6 }
7 fn main() {
8 let mut arena: Vec<Node> = vec![
9 Node { s: "Nadine", next: UnsafeCell::default() },

10 Node { s: "Andy", next: UnsafeCell::default() },
11 ];
12 arena[0].s = "Hubi";
13 unsafe { &mut *{ &arena[0] }.next.get() }.push(&arena[1]);
14 unsafe { &mut *{ &arena[1] }.next.get() }.push(&arena[0]);
15 arena[1].s = "Quack"; // cannot borrow àrena` as mutable because it is
16 // also borrowed as immutable
17 }� �

Listing 2.3: Breaking Mutability Rules

2.1.4 Smart Pointer

The term smart pointer might be familiar from C++. In Rust there is Rc<T> which is a
reference counting wrapper that acts as pointer and it is comparable to std::shared_ptr<T>
from C++. This smart pointer uses two integers to count how many weak and strong
references there are to the owned data. If the strong counter reaches zero the destructor
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of the contained value is called by Rc<T>s destructor. The memory is released once the
weak counter reaches zero too. This means there is only one memory allocation which
leads to better cache locality and this increases speed. But it also means that the memory
can only be freed once the last weak pointer is destructed, which might be unwanted. [11,
std::rc::Rc]

The semantics of Rc<T> are the following. It is possible to have any number of Rc<T>s and
Weak<T>s to the same T. If there is more than one Rc<T> or a Weak<T> to the same T it is
only possible to access T in an immutable way. Further can Rc<T> instances be downgraded
to Weak<T> and if the strong count has not yet reached zero it is possible to upgrade Weak<T>
instances to Rc<T>. This means that this approach suffers from the same issue that was
encountered in subsection 2.1.3. [11, std::rc::Rc]

The solution to this issue is to use an additional wrapper Rc<RefCell<T>>. RefCell<T> uses
internally UnsafeCell<T> and provides the means to enforce the borrowing rules at runtime
by using an integer counter. When calling borrow() or borrow_mut() on RefCell<T> it will
not return a &T or &mut T, instead Ref<T> and RefMut<T> are returned. These wrappers will
increment the appropriate counters on construction and decrement them on release. If the
borrow rules would be violated, by returning a Ref<T> or RefMut<T>, the afore mentioned
functions cause a panic. Alternatively there are try_* versions of the functions that return
Result<T, E>. [11, std::cell::RefCell]� �
1 use std::cell::RefCell;
2 use std::rc::{Rc, Weak};
3

4 struct Node {
5 pub s: &'static str,
6 pub next: Vec<Weak<RefCell<Node>>>,
7 }
8 fn main() {
9 let x = Rc::new(RefCell::new(Node { s: "Lore", next: Vec::default() }));

10 let y = Rc::new(RefCell::new(Node { s:"Steffi", next:Vec::default() }));
11 y.borrow_mut().next.push(Rc::downgrade(&x));
12 x.borrow_mut().next.push(Rc::downgrade(&y));
13 y.borrow_mut().s = "Beni";
14 }� �

Listing 2.4: Smart Pointer to Cell to Value

Listing 2.4 shows a working example that solves the encountered problems so far. Now
Node contains a Vec<T> that stores Weak<T>. It is very important that it is Weak<T> and not
Rc<T> as Rc<T> would result in a memory leak. This is the case as a and b would keep the
strong counter above zero for each other.

2.1.5 Indices as Pointers Replacement

Another solution for graphs is something that is similar to Entity Component Systems
(ECSs). In an ECS an ‘object’ is represented through an entity that is an identifier, e.g. an
integer. Components contain the data of entities and are stored usually in an indexable,
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continuous structure. Systems are responsible to use and modify components, based on
logic that uses other components and entities. [27, p. 209] The ECS pattern provides
composition over inheritance as the entity has no information about the systems using it
and the assigned components. ECSs are most commonly used by game engines as they
result in fast code and it is easier to write reusable code with them [27, p. 209, 18, 22].

In the rust community ECS like structures are in discussion as possible solutions to cycles
and graphs [21, 23, 25, 30]. An prominent example for an implementation of an ECS is the
specs[31] library that is used for a GUI[24] and small engines [2, 28].

In ‘Reduktion des Speicherverbrauchs generierter SKilL-Zustände’[29] a similar approach to
the components of an ECS is explored. Here each field is stored in a continuous container,
one container per field for read objects and one for new ones. Through testing of the
changed architecture it was found that reading and writing was fast but the access of fields
in objects were slower. The reason for that is that the fields are not necessarily close in
memory to the proxy objects, leading to cache misses. [29]

While an ECS or the optimisation in ‘Reduktion des Speicherverbrauchs generierter SKilL-
Zustände’[29] seems favorable to the previous solutions it was ruled out by supervisor Timm
Felden. His main argument is that an identifier like an index into a container is worse than
a pointer. If a container is resized, all indices have to be updated. That, however, is only
possible if all identifiers, that are using the indices, are known and accessible by the system,
which can not be guaranteed. In case that an proxy object would be used, as in ‘Reduktion
des Speicherverbrauchs generierter SKilL-Zustände’[29], it would prompt a similar problem
to the one discussed in this section. All proxy objects would need to be able to access
the container that store their field data. These containers would have to be modified in
case that an object is added and the data in the containers would also have to be modified
through the proxy objects. That results in a conflict with Rusts borrow rules.

2.2 Inheritance in Rust

� �
1 class A {
2 int stefi;
3 }
4 class B extends A {
5 boolean dani;
6 }� �

Listing 2.5: Inheritance in Java

Rusts inheritance differs from common OOP languages.
In Rust structs are just a collection of data and
can not inherit other structs or make use of code re-
use through inheritance. traits on the other hand
can inherit multiple traits, as can be seen in List-
ing 2.6. trait B requires that trait A is implemented
for whatever type B is implemented for. That makes
it also possible to call methods from A on instances of
type B. However it is not possible to assign a variable of type &B to a variable that expects
a type of &A. The need for a reference (&) comes from the fact that B is just a trait and
can’t be instantiated. A data pointer to a struct instance is required to create a trait
object of type B, seen in line 11.

SKilL uses single inheritance [17] as present in the Java example seen in Listing 2.5. In this
section techniques are explored that can be used to mimic single inheritance in Rust.
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� �
1 trait A { fn fun(&self); }
2 trait B: A { fn gun(&self); }
3

4 struct Foo;
5

6 impl B for Foo { fn gun(&self) {} }
7 impl A for Foo { fn fun(&self) {} }� �

� �
9 fn main() {

10 let x = Foo;
11 let rb: &B = &x;
12 rb.fun();
13 let ra: &A = rb; // expected
14 // trait À` found trait B̀`
15 }� �

Listing 2.6: Trait Inheritance

2.2.1 Inheritance through Composition

� �
1 struct A {
2 stefi: String,
3 }
4 struct B {
5 sup: A,
6 dani: u32,
7 }� �

Listing 2.7: Inheritance emulated
with Composition

Instead of inheritance Rust advocates composition.
From that perspective the code from Listing 2.7 would
represent the type hierarchy present in Listing 2.5.
This has a few nice properties. The user would be
working with types and not trait objects and thus
the code would not use virtual functions. Further can
up casts be performed by returning a borrow to the
contained super type, but on the other hand, down
casting becomes impossible as the super component
has no knowledge about the child component. Since
the memory layout of structs is undefined no assump-
tion about a pointer offset can be made [10, 0079-
undefined-struct-layout]. As alternative an option from section 2.1 could be used e.g.
Option<Rc<RefCell<T>>> to create inheritance cycles. That would however degrade the
usability and require linear time or memory to perform the casts.

2.2.2 Inheritance through Traits

If a type hierarchy like Listing 2.5 has to be realized in Rust another option is to use traits,
which would result in something akin to Listing 2.8. The ‘real’ types have the suffix Proper
and the access traits have the original type name. This naming scheme improves the
usability for the user of the code as the user will most of the time have to use trait objects.
While inheritance can be expressed this way it has a few quirks that have to be improved
upon.

• Down casting is impossible as there is no cast function or keyword in the language
to go from a trait to a struct, or to a trait.

• Up casting only works for the ‘proper’ type and not the access trait that emulates
inheritance – review Listing 1.7.

To solve these two issues a cast() function has to be created that is able to create a trait
object from another. In subsection 1.3.2 trait objects were introduced as fat pointer and
this property can be abused to implement the cast() function. The first field of a trait
object is the data pointer to the struct and copying the pointer is no issue. However
the second field is more difficult to fill as the correct vtable pointer has to be created.
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� �
1 struct AProper {
2 stefi: String,
3 }
4 struct BProper {
5 stefi: String,
6 dani: u32,
7 }� �

� �
9 trait A {

10 fn get_stefi(&self) -> &String;
11 fn get_stefi_mut(&mut self) -> &mut String;
12 fn set_stefi(&mut self, stefi: String);
13 }
14 trait B: A {
15 fn get_dani(&self) -> u32;
16 fn set_stefi(&mut self, stefi: u32);
17 }� �

Listing 2.8: Emulated Inheritance with Traits

Fortunately, Rust allows the creation of a trait object from a null pointer which can be
seen in Listing 2.9 [9, 2.2. Exotically Sized Types]. [1]� �
1 struct Proper;
2 trait Object {}
3 impl Object for Proper {}
4

5 #[repr(C)]
6 struct TraitObject {
7 pub data: *const (),
8 pub vtable: *const (),
9 }

10 fn main() {
11 let vtable = unsafe {
12 std::mem::transmute::<_, TraitObject>(
13 std::ptr::null::<Proper>() as *const Object
14 ).vtable
15 };
16 }� �

Listing 2.9: Obtaining a VTable from null

Listing 2.9 shows how to obtain the vtable pointer. There is a Proper struct and a
trait Object that is implemented for Proper. Apart from Rusts memory layout, where
the compiler may reorder and add padding to fields, Rust also supports C-style memory
layout with the #[repr(C)] annotation. This is needed for the TraitObject struct which
allows casting trait objects to it and thereby accessing the two pointers. () is the unit
type comparable to void[9, repr(C), 7, Defining and Instantiating Structs]. In line 13 a
null pointer is created with the type of Proper and then casted to a trait object of type
Object. This trait object is then transmuted to a TraitObject instance. _ is replaced by
the compiler with the type of the parameter. Through the interface of TraitObject the
vtable pointer can be accessed easily.

Once the vtable pointer has been obtained the two pointers can be used to create a
TraitObject object. This object can be transmuted to a normal trait object as if it was
created by the struct through an implicit cast. The last detail for the cast() function
would be a way to determine which type to get the vtable from. This can be done by either
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a lookup table realized through an array or a function with conditional branches. Both can
be generated through the code generator.

The outstanding issue with this approach is that it has to be applied to the values themself.
Any normal wrapper would inhibit the ability to perform these casts.

2.2.3 C-Style Memory Layout

Similarly to the previous section is the C-memory layout used to allow for casts not otherwise
possible, like it is shown in Listing 2.10. The field definitions have to appear in the same
order, to create the same memory layout, for all types in a type hierarchy [9, repr(C)].
This approach has the issue that functions still wouldn’t be inherited and would have to be
implemented by the user, repeatedly, for all valid structs. Similarly to the traits there is
an issue with casting if the memory of the struct is managed by a wrapper type. A nice
property about this approach is that it fits better in normal Rust code and implicit casts
to traits can still happen as the proper type is used.� �
1 trait T { fn fun(&self) -> usize; }
2

3 #[repr(C)]
4 struct Foo { pub x: usize, }
5 #[repr(C)]
6 struct Bar { pub x: usize, pub y: usize, }
7

8 impl T for Foo { fn fun(&self) -> usize { self.x } }
9 impl T for Bar { fn fun(&self) -> usize { self.y } }

10

11 fn main() {
12 let mut bar = Bar { x: 42, y: 7 };
13 let foo = unsafe { std::mem::transmute::<_, *mut Foo>(&bar) };
14 assert_eq!(unsafe { &*foo }.x, 42);
15 assert_eq!(unsafe { &*foo }.fun(), 42);
16 unsafe { &mut *foo }.x = 13;
17 assert_eq!(bar.x, 13);
18 assert_eq!(bar.fun(), 7);
19 }� �

Listing 2.10: Inheritance with C-Memory layout and Structs

2.3 Support Cyclic Graphs and Struct Inheritance

This section will focus on the implementation of the discussed solutions of section 2.1 and
section 2.2. The wrapper is named Ptr<T> since it provides the functionality of working
with the type T almost as if it was being pointed to by a pointer without restrictions. More
concrete means this that this wrapper enables T to be passed around with reference counting
and runtime borrow rules checking while being able to be cast to different types and trait
objects.
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2.3.1 Memory Layout

The majority of the Ptr<T> type consists of Rc<T> and RefCell<T>, combined into one
cohesive wrapper. That means the original source code was copied and combined. This was
needed as this type is supposed to be able to be castable, meaning that the contained value
should be able to represent a struct or trait object. Without this manual combination the
reference counting and mutability state enforcement would inhibit proper casting.

� �
1 struct MetaData {
2 cast_id: usize,
3 strong: Cell<usize>,
4 weak: Cell<usize>,
5 borrow: Cell<BorrowFlag>,
6 }
7

8 struct Ptr<T: ?Sized> {
9 meta: NonNull<MetaData>,

10 value: NonNull<T>,
11 }� �

(a) Memory Layout from Ptr<T>

� �
1 struct RcBox<T: ?Sized> {
2 strong: Cell<usize>,
3 weak: Cell<usize>,
4 value: T,
5 }
6 struct Rc<T: ?Sized> {
7 ptr: NonNull<RcBox<T>>,
8 phantom: PhantomData<T>,
9 }

10 struct RefCell<T: ?Sized> {
11 borrow: Cell<BorrowFlag>,
12 value: UnsafeCell<T>,
13 }� �
(b) Memory Layout from Rc<T> and RefCell<T>

Listing 2.11: Memory Layout Comparison

Merging of the to types results in the memory layout seen in Listing 2.11a. Compared to
Listing 2.11b this uses one additional pointer. Rc<T> only needs one pointer for the RcBox<T>
that contains the meta data as well as the value. The PhantomData<T> is there to provide
the compiler with information which ‘is used when computing certain safety properties.’[11,
std::marker::PhantomData]. RefCell<T> doesn’t need any pointers whatsoever. Since there
can be many Ptr<T>s that point to the same data but have a different views1 the value can
not be shared between the Ptr<T> instances. The type parameter T is bound by ?Sized,
which means that T can be a type of known size, like a struct and T can also be of unknown
size, like a dynamic array [usize] where usize is the unsigned integer as element type [11,
std::marker::Sized].

2.3.2 Casting with Ptr<T>

The implementation of casting for Ptr<T> uses the trait object casting as well as the C-style
memory layout casting that was introduced in section 2.2. That means that for every
struct of type T there is an accessor trait that inherits all super accessor traits. This
combination provides the user with high flexibility of trait objects while keeping the non
virtual function calls in most cases. This is the case as the user can work with structs
instead of trait objects in most places. It also means that the user can use the accessor
traits as bound to implement the logic for all types without manual code duplication.

1 The data pointer is not so much the problem, but the vtable pointers from trait objects are.
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Listing 2.12 shows the commented code to cast any Ptr<T> to Ptr<U>, where T and U
can each be a struct type or a trait type. The CastAble trait bound is needed to call
cast_id() on U. With both ids the lookup table can be accessed and depending on the
value of Option<T> (Some<T> or None) the cast will be performed or not. The lookup table
is implemented as a 𝑁 × 𝑀 matrix, where the elements are an Option<VTable>, which
means that the struct and accessor trait are handled equally. What is interesting about
this function and Rusts generics is, that the code does the same thing for every T and every
U. That means that even if a struct is cast to another struct a trait object is created and
the vtable will be inserted into it as if U was the accessor trait. Fortunately the vtable is at
index 1 and data at index 0 because transmute will cut the additional pointer off in case U
is a struct type.

2.3.3 Consequences of Ptr<T>

Ptr<T> is slower than a raw pointer. This slowdown can be attributed to the enforcement
of the borrow rules and the memory fragmentation that is created through the small
allocations.

Using Ptr<T> means also that the code using Ptr<T> and its companion types can’t be
parallelized. The issue is that Ptr<T> is reference counting to enforce borrow rules as well
as the lifetime of the managed memory. That means that both, borrowing and cloning
has to happen in a synchronized way to achieve object parallelism. But, the parallelism
benefits can only be gained if the fields of the objects can be serialized in parallel. The
binary format is designed in such a way that the field data can be read in parallel. With
a little extra work parallel writing is also possible. To support that kind of parallelism
at a field level, all fields in the objects would have to be enclosed in something like an
UnsafeCell<T> for interior mutability.

Ptr<T> would have to be made from a Arc<T> and RwLock<T>, instead of Rc<T> and
RefCell<T>, to allow for object parallelism. Which means that every object access would be
behind a mutex and multiple atomic operations [11, std::sync::Arc, std::sync::RwLock]. To
achieve field parallelism fields have to be wrapped in UnsafeCell<T> for interior mutability,
since threads are involved that means that either Mutex<T> or RwLock<T>2 have to be used.
Leading to possible two mutex locks per field access when serialisation of the value and
also for all accesses the users does. Apart from the objective to use Rusts type system for
the thread safety guarantees it is further highly unlikely that the mutex locks do not ruin
the performance.

Another consequence of Ptr<T> is, that the specification independent code can not be
contained in a standalone create which can be used as library. Ptr<T> depends on the
lookup table which has to be generated.

2 Mutex<T> and RwLock<T> are both using UnsafeCell<T> internally. [11, std::sync::Mutex,
std::sync::RwLock]
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2.3.4 Optimisations

Since Ptr<T> is used in many components some time was spent to see how it could be made
faster. The next sections will present optimisations that were thought of.

Lookup vs Conditionals

The initial version of Ptr<T> used conditionals to check whether the cast is valid to make
or not. It would then create the vtable pointer as introduced in subsection 2.2.2. The
conditional logic was contained in a trait that was implemented by a macro that only
needed the valid type names. That made Ptr<T> reusable in other projects not related to
SKilL.

In an attempt to improve the performance of cast() the final implementation uses a lookup
table. The lookup table contains the vtable pointers and absence of a pointer indicates an
invalid cast. A performance improvement could however not be measured. An explanation
for that is, that the trait objects are still created and that branch-prediction was in this
case roughly as efficient as an access into a 2D array.

Disabling Reference Counting and Borrow Checking

A more brutal optimisation was an additional type to Ptr<T>. It was named HazardPtr<T>
as there was nothing safe about that type. HazardPtr<T> is constructed from a Ptr<T>
and because it was declared in the same module as Ptr<T> it is able to access the private
fields of Ptr<T>. In the constructor HazardPtr<T> would then take the pointer to the value
of Ptr<T>. This allowed to skip the reference counting and the borrow rules checking.
Additionally were the bounds on HazardPtr<T> changed to include only structs. With that
it was possible to create a cast() function that only casts a pointer to another pointer –
no support for trait object casts is necessary in the internal code. Further were these casts
unchecked. HazardPtr<T> was then applied to internal code that used Ptr<T> to serialise
field data. In performance tests the use of HazardPtr<T> resulted in a speed up of ×1.2
compared to Ptr<T>.

HazardPtr<T> was not kept however, as its unsafe nature goes strongly against the values
that Rust represents. This experiment showed that the wrapper types used throughout the
code base (Rc<T>, RefCell<T>) do inflict a significant performance penalty. Ptr<T> instances
are used by pools that contain a shared vector of Ptr<T> instances (Rc<RefCell<Vec<Ptr<T
>>>>3) which means that another speedup could be gained if these wrappers were unneces-
sary.

3 Rc<RefCell<Vec<Ptr<T>>>> ≈ Rc<RefCell<Vec<Rc<RefCell<T>>>>>
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2.4 Binding Architecture

This section will discuss the created architecture of generated bindings and the changes
made to the one introduced in subsection 1.2.2. While the generated code is a central point
of this thesis, the generator itself is not so much. The reason for that is, that the generator
differs in a few points from the reference generators of other languages. This is the case as
the same infrastructure was used and no modifications had to be made to support Rust.

Figure 2.1 shows the actual architecture of the generated code. Additionally to the re-
lationships seen in the previous architecture this diagram features traits, usage, if they
were generated or not and what kind of type they are. This means that more types and
relationships are featured, making this diagram more complicated.

SkillFileBuilder

PoolMaker

FileReader

FileWriter

SkillFile

UserPartsMaker

PartsMaker

FieldDeclaration

ForeignData

UserTypePool

Pool

UserFieldDecl.

UserTypeObject

PoolProxy

UserType

SkillObject

StringPool

Deleteable

create has use is/trait Common Generated

Figure 2.1: Binding Architecture

Not depicted in the image are:

• ForeignPool, ForeignObject and ForeignFieldDeclaration as they have the same
relationships as the UserType equivalent.

• Convenience types like strongly typed integer or magic numbers.

• StringBlock as it is composed into StringPool and only FileReader and FileWriter
use it internally.

• Iterators that are used to iterate over instances of type hierarchies and pools.

• SkillString, SkillFail, Ptr<T> and Ptr<T> companion types like Weak<T>, as they
are used, had, and created by most components.
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2.4.1 Rust Integration

Cargo uses a manifest file named Cargo.toml. In this file the binary or library is described.
This includes dependencies, build settings, versions, tests configurations and benchmarks
configurations. The file is of utmost importance for the user of the generated code as this
will allow the easy inclusion in the target project. [5, The Manifest Format]

Accompanying there are mod.rs and lib.rs or main.rs files. These files regulate the
visibility of the different modules – where each file and folder is a module. mod.rs files are
used in directories to specify the visibility of the contained files as well as to flatten the
module hierarchy. lib.rs or main.rs files are at the root of the src directory and mark the
begin of a library or executable. These files allow additionally to specify external crates,
enable features and mute warnings. Further can additional modules be declared in the files
to allow for fine granular visibility. [7, 7. Modules]

The Cargo.toml and lib.rs files are quite easy to generate. For Cargo.toml only the
library name has to be substituted. And for the lib.rs file the flattening of the module
structure has to be performed. This is done to allow users to access Foos pool with
use user_project::FooPool instead of use user_project::foo::FooPool.

2.4.2 SKilL File

SkillFile is the root of the API for the user. SkillFile provides functions to create and
open SKilL files. An instance of SkillFile is also the place where the user is able to
interact with UserTypePools and StringPool. This type is straight forward to generate,
as it is mostly a composite type that provides access to its components. Components are
UserTypePools and StringPool. Only these components have to be inserted in otherwise
static code.

However, SkillFile is constructed by a SkillFileBuilder. This separation is necessary
since all attributes have to be initialized on construction. That is not possible without a
wrapper like Option<T>.

Additionally there is the PoolMaker trait. This trait is used by the FileReader and is
only needed for a better separation of specification independent, and generated code. This
separation is kept to allow for a common standalone crate of the specification independent
code if a casting method is found that allows that.

2.4.3 User Definitions

For the user defined types a few types have to be generated that work closely together to
provide the user with a convenient API. Since there is no benefit towards compile time,
by splitting code into multiple files4, each of these types reside in one file per user type
definition.

4 For example benefit C and C++ from forward declarations of types instead of including the header files.
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User Type

Type definitions are translated to structs and traits. The structs contain fields that
were specified for its super types as well as the fields that were specified for itself. The
accessor traits for the structs contain, for every field that is not a super field, an accessor
method and inherits its super accessor traits and interfaces. These methods are different
depending on the kind of accessed type. Types that are not trivial to copy (e.g. HashMap)
are passed by reference. Since a borrow occurs in that case there have to be three methods.
Two getters, one that returns a reference to an immutable value and another that returns
a reference to a mutable value. The third method is the setter that accepts a value that
replaces the original one. Copyable types are accessed through functions that use the plain
value. All super accessor traits and interfaces, as well as SkillObject, ForeignObject and
Deleteable are then implemented for the struct.

Listing 2.13 shows generated code of the UserType named Age. The fields in Age, that are
prefixed with z_, are internal fields. Fields that the user named with a leading z and non
alphabetic or numeric characters are escaped with an additional z. The skill_id is used
as id for the object at the serialization phase or for the user to access a particular object.
The type_id is the index into the vtable lookup table which is used to cast the objects.
foreign_data is a vector that stores data of fields that were not known at generation time.
As previously mentioned is this data inaccessible for the user. Finally is age the field that
the user specified in the specification.

age needs accessors to be accessible outside of this module which are declared in the
AgeObject trait. AgeObject also inherits SkillObject and therefore has to implement it
and also the Deleteable trait. The Deleteable trait provides an interface that allows the
objects to be marked for deletion. This interface should not be visible to the user but there
is no way to do that in Rust.

Additionally to the types present in the users specification Age also implements ForeignObject
that belongs to the Foreign struct. The Foreign type is exclusively used to create an
interface that allows the serialization of types and fields that were not known at generation
time.

Type Pools

The biggest change compared to Figure 1.1 appears around the UserTypePool. This type
had to be split up into five. The Pool type is needed for code reuse as Rust doesn’t
provide inheritance. Most of the code that is needed for UserTypePools is specification
independent and can be reused without issue. The problem with code reuse through
composition is that it is difficult to provide the general, contained type with the containing
struct’s data or special functions. In case that the containing struct calls the functions
of Pool data and special functions can be made available. But if the contained struct is
called by something else a dependency cycle occurs that has to be broken with options
from section 2.1, which can lead to violations of borrow rules. The Pool is used by other
objects than the UserTypePools that do not know of the UserTypePools. Because of that
UserPartsMaker exists which externalizes the special functions of UserTypePool so that
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they are callable by Pool. Since UserTypePools are not a Pool and because they have to be
able to be stored in a container the PoolProxy trait was created. PoolProxy is an interface
for UserTypePools that provides access to the Pool component in UserTypePools as well as
the ability to store UserTypePools of different UserTypes in containers.

Further are PoolProxy and PartsMaker responsible to create UserFieldDeclaration in-
stances. PartsMaker is used by Pool to create UserFieldDeclaration instances that are to
be read. PoolProxy on the other hand is needed to create UserFieldDeclaration instances
that are missing from the serialized data but were present in the specification.

Field Declarations

Lastly there are FieldDeclarations, which are responsible for the serialisation of fields
from UserTypes. For each field a FieldDeclaration is generated that implements how the
field data is read and written. They also handle the setup of the different chunks that are
involved if the file that is read has multiple blocks.

2.4.4 VTable-Lookup-Table

The lookup table is implemented as a 𝑁 ×𝑀 matrix, where 𝑀 is the amount of types +1
to accommodate the foreign type. 𝑁 = 𝑀 + 1 to additionally accommodate the shared
trait SkillObject. The memory footprint could be reduced by using a sparse array at the
trade-off for lookup speed. The matrix uses Option<VTable> instances as elements – if the
value is None the cast is invalid, otherwise the correct vtable is obtained. The generator
produces the correct vtables with the technique introduced in subsection 2.2.2. For the
lookup to be efficient5 all user types as well as Foreign and SkillObject have to be assigned
an index into the matrix. This is done by the generator and the reason to why there is not
a common crate that contains specification independent code.

2.4.5 Specification Independent Code

Most of the architecture is separate from the specification and doesn’t have to be generated
by a generator. This includes the reading and writing of the build in types, the parsing
and writing of the files, the string pool and the traits that need to be implemented. As
the lookup table has to be generated which means that Ptr<T> is dependent on generated
code and in turn most of the specification independent code as well. This section focuses
on some of more interesting parts of these types.

5 HashMap was testes as replacement for an array but was found to be inefficient.
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Strings and their Pool

Strings have to be managed and known by the StringPool. That means that a String may
not be modified by the user directly. The reason for that is, that type and field names are
managed strings too. A direct modification from the user might inadvertently change the
representation of the type system.

To conform to these requirements and the need for an id for each string – that is obtainable
through the string – a wrapper is needed for String. Since inheritance is not an option
String was made a component of SkillString. SkillString has to provide a method to
obtain an immutable reference to the contained String to be somewhat compatible with
other libraries. Since the removal of a SkillString that represents a literal used by a type
would lead to problems there is no way for the user to delete a SkillString explicitly. The
explicit deletion is replaced with automatic pruning on writing. Since all SkillString have
to be wrapped in an Rc<T> the counters can be used to check whether the SkillString has
to be serialized or can be discarded.

Foreign Types and Fields

Special types are used if the field or type encountered upon deserialisation was not known
at the time the code was generated. The fields themself are represented through a Rust
enum which can be thought of as a tagged union. The foreign field definitions are special
in that they deserialise their data only if it has to be written. This is possible as the user
has no way to interact with the foreign types or fields in the Rust implementation6.

If a type has a known ancestor in a type hierarchy that type will be used instead to represent
the foreign one. That way the user’s code can work with the known fields without knowing
anything about the foreign type. In turn that means that every user type has to have an
array of ForeignFieldData. In case that there is no known ancestor type the Foreign type
is used to represent the type. This type is not accessible by the user and only contains
ForeignFieldData.

Error and Handling

Return codes are the predominant way in Rust to report issue, which was introduced in
subsection 1.3.3. The issue with return codes is that they are unsafe, as they can be
ignored, and that they do not provide a lot of context by themself for debugging purposes.
To improve the usability of these return codes the failure crate [3] has been chosen to
enhance the error codes. The crate provides macros that extend the codes with the option
to provide a backtrace. Additionally it allows for error messages that are created and
formatted at runtime and are able to provide more context than a string literal.

The error codes are implemented through 3 enums. SkillFail is the main enum that the
user interacts with. It can either contain a UserFail enum value or a InternalFail enum

6In The SKilL Language[16] the API to access foreign types and fields was a feature, in The SKilL
Language V1.0 [17] it was changed to be a core requirement. For this thesis supervisor Timm Felden
said to treat it as feature.
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value. This distinction was made to further enhance the context of the error while keeping
the amount of errors that the user has to react to at a minimum.
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� �
1 fn cast<U>(&self) -> Option<Ptr<U>>
2 where
3 // Bound of U;
4 // U can be Sized, or Unsized
5 // U may only have references that live as long as the whole program
6 // U has to implement CastAble which is needed to call cast_id()
7 U: ?Sized + 'static + CastAble,
8 {
9 // Obtain the lookup table index of Self

10 let own_id = unsafe { // Use of unsafe as a pointer is accessed
11 self.meta.as_ref() // Obtain a reference to the MetaData struct
12 }.cast_id; // Access the value through the reference
13 // Access the lookup table with the index of Self and U
14 let res = VALID_CASTS[own_id][U::cast_id()];
15 // If the cast is valid unwrap res
16 if let Some(vtable) = res { // vtable is the vtable of U's trait
17 unsafe { // Unsafe because of pointers and transmute
18 let mut t = TraitObject { // Construct a new TraitObject
19 // value is either a pointer to a Sized type e.g. Struct or of a
20 // trait object. In both cases points the pointer to data, a
21 // Sized type
22 data: self.value.as_ptr() as *const (),
23 vtable, // Set the vtable of U
24 };
25 // Create a new wrapped pointer
26 let value = NonNull::new_unchecked(
27 // Reinterpret the memory pointed to by ts reference;
28 // If U is Unsized, a Trait, then the type of the reference will
29 // be reinterpreted to a real trait object of type U
30 // If U is a Sized type, e.g. Struct the reference will be
31 // reinterpreted as reference to U
32 // The vtable pointer will be 'cut off' in this case
33 *::std::mem::transmute::<
34 _, // Type of the argument (&mut *mut T)
35 &mut *mut U // A reference to a mutable pointer that points to a
36 // mutable U
37 >(&mut t), // Take a reference to mutable t
38 );
39 let meta = self.meta.as_ref(); // Convenience variable
40 // Increase the strong counter for the reference counting
41 meta.strong.set(meta.strong.get() + 1); // Cell assessor methods
42 Some( // Return Ptr<U> wrapped in Some to indicate success
43 // Construct a new Ptr<U> with the newly casted value and shared
44 // meta data
45 Ptr { meta: self.meta, value }
46 )
47 }
48 } else {
49 None // Return None to indicate a invalid cast
50 }
51 }� �

Listing 2.12: Cast method of Ptr<T>
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� �
1 #[derive(Default, Debug)]
2 #[repr(C)]
3 pub struct Age {
4 z_skill_id: Cell<usize>,
5 z_skill_type_id: usize,
6 z_foreign_data: Vec<foreign::FieldData>,
7 age: i64,
8 }
9 pub trait AgeObject: SkillObject {

10 fn get_age(&self) -> i64;
11 fn set_age(&mut self, age: i64);
12 }
13 impl Age {
14 pub fn new(skill_id: usize, skill_type_id: usize) -> Age {
15 Age {
16 z_skill_id: Cell::new(skill_id),
17 z_skill_type_id: skill_type_id,
18 z_foreign_data: Vec::default(),
19 age: 0,
20 }
21 }
22 }
23 impl AgeObject for Age {
24 fn get_age(&self) -> i64 { self.age }
25 fn set_age(&mut self, value: i64) { self.age = value; }
26 }
27 impl foreign::ForeignObject for Age {
28 fn foreign_fields(&self) -> &Vec<foreign::FieldData> {
29 &self.z_foreign_data
30 }
31 fn foreign_fields_mut(&mut self) -> &mut Vec<foreign::FieldData> {
32 &mut self.z_foreign_data
33 }
34 }
35 impl SkillObject for Age {
36 fn skill_type_id(&self) -> usize { self.z_skill_type_id }
37 fn get_skill_id(&self) -> usize { self.z_skill_id.get() }
38 fn set_skill_id(&self, skill_id: usize) -> Result<(), SkillFail> {
39 if skill_id == skill_object::DELETE {
40 return Err(SkillFail::user(UserFail::ReservedID { id: skill_id }));
41 }
42 self.z_skill_id.set(skill_id);
43 Ok(())
44 }
45 }
46 impl Deletable for Age {
47 fn mark_for_deletion(&mut self) {
48 self.z_skill_id.set(skill_object::DELETE);
49 }
50 fn to_delete(&self) -> bool {self.z_skill_id.get()==skill_object::DELETE}
51 }� �

Listing 2.13: Generated User Type Age
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3 Evaluation

The following sections will focus on reasons for the missing parallelism, performance impacts
from the Rust type system and testing of implemented features for the SKilL binding. This
is predominantly done through the provided test suites as well as a custom benchmark.

3.1 Parallelism

A feature that wasn’t implemented was the parallelisation of the serialization. In subsec-
tion 2.3.3 the consequences of Ptr<T> towards parallelism were discussed and concluded
that the Rust type system can’t be used for graph like structures that should be used safely
in parallel.

Rusts guarantees for data race free programs stems from the borrowing rules. These are
pushed to the runtime since the type system is unable to accommodate graph like structures
while upholding the borrow rules. Wrapper types have to be used that enforce the rules
at runtime. That means that the research point, how the type system can be used to
implement the serialization in a safe parallel manner, is a negative result. While it is not
impossible to implement the serialisation in a ‘parallelized’ way the implications make it
quite clear that it would be unwise to do so. Since two mutex locks have to be made per
field access, there is only a slow down to be obtained, which would be forced on the users
code, too.

3.2 Tests

There are two test suites present in the SKilL repository [13] that use 28 specifications.
These test suites are used for the existing bindings generators and were used to develop in
a test driven manner.

The first test suite is used to test reading capabilities of bindings. To do that specifications
are used to generate Rust bindings. Then a test file is generated that features a test method
for every test data file. For example test data files test the built-in types or inheritance.
The generated binding as well as the test file are then compiled and tested by cargo
test. All 644 tests from this test suite, that do not require restrictions to fail, are passed
successfully.

The second test suite tests the API and with that requires more thorough adjustments for
each generator. This test suite does not use SKilL binary files as input. Instead it uses a
specification file and a JSON file that describes objects to create a graph with objects from
the specification. This means that similarly to the first test suite a binding is generated.
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But instead of requiring only the reading from a given input file, here the tests, in the test
file, have to use the API, of the binding, to create objects and use these to set and get
values. For Rusts test suite the tests are generated in a way that the API is used to create
a SkillFile, create graphs based on the test suites JSON input, write it to disc, read it
back from disc and compare the read data to the JSON input. Similarly to the first test
suite, all 189 tests pass successfully that do not require restrictions to fail.

Furthermore 10 additional tests were created. Some of these tests use multiple specifications
to test the interoperability of Rust bindings and the Foreign types. Another is used to
test for memory leaks that can be created through the reference counting of Ptr<T>. Lastly
there is a test that tests the custom feature. These manually created tests are executed as
part of the second test suite as they depend on the generated bindings.

To validate that the created SKilL binary files are interoperable with other existing tools
and bindings skillView[15] was used throughout the development process. The tool allows
to explore SKilL binary files. Since the tool didn’t show any issues with the files and
because the first test suites input data comes from other generators, interoperability is
demonstrated.

3.3 Performance

In Figure 3.1 a performance comparison of Rust, C++ and Java is shown. Figure 3.1a
offers an more detailed view for files that are smaller than 20Mb while Figure 3.1b features
all data points. Figure 3.1c shows a logarithmic plot of the data and features a guide line
of 𝑦 = 10𝑥. It can be seen that Rust has a steeper inclination than the guide line albeit
much shallower than the other languages. Furthermore can be seen that Java matches the
other transfer rates better if the files are larger as the start from the program and JVM is
more noticeable in smaller files.

The displayed data was generated by a script that generated the bindings from the spe-
cification of ‘SKilLed LLVM’[26]. It would then generate a main function that would read,
write and again read a file given as an argument, 100 repetitions each. After compiling all
binaries with the default optimisation levels, the harness would time the execution of the
binaries while supplying a selection of data files from ‘SKilLed LLVM’[26] that is listed in
Table 3.2. Because of memory leaks in the C++ version this setup had to be chosen, instead
of a more library focused one, where the binary would serialize the file multiple times in the
same process. On the other hand, the C++ version has more features implemented than
the Rust version. Because of these facts this comparison should be taken with caution but
the large divergence of run times indicates that other more fundamental pieces differ. The
test system information is listed in Table 3.1. The system was not interacted with and all
user applications were closed while testing.

A perf analysis didn’t show any particular hot spot that could be optimized. The code
seems to be generally slow which should be expected if every Ptr<T> instance access requires
at least two integer additions for the borrow checking and at least four if it is obtained
from a UserTypePool. Since the memory locations, that are pointed to by Ptr<T>, are not
one contiguous piece but fragmented memory locations it is further possible that the bigger
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Component Information
CPU i7-4702HQ
Memory 16GB
Storage SSD SM841
Arch Linux 4.18.11
GCC 8.2.1
Clang 7.0.0
Java Oracle 11
Rust 1.30.0-nightly
Optimization 3
SKilL 59e9c1f9
cppCommon dd6021f

Table 3.1: Test System Information

File (release) Size Nodes
tty.sf 107K 5.371
make.sf 1.1M 49.649
screen.sf 3.2M 139.779
bash.sf 6.1M 256.383
gnuplot.sf 8.1M 345.310
git.sf 16M 601.669
vim.sf 19M 781.822
llvm-split.sf 52M 2.043.963
lli.sf 151M 5.357.733
clang.sf 256M 9.044.428
opt.sf 322M 10.856.418

Table 3.2: Selected Performance Input Test
Data from ‘SKilLed LLVM’[26]

spread of runtime per file is caused by memory fragmentation. It can also be assumed that
even with a ‘perfectly’ parallelized implementation the speedup of the parallel processing
would not be enough to catch up to C++. While the GCC C++ single thread version is
slower than the multi thread version (×1.4) the rust version is ×3.3 slower than the single
threaded GCC C++ version (×4.6 slower than the multi thread C++ version). LLVM is
not responsible for the longer run-times since the run-times of the C++ versions, compiled
with clang, almost match the ones of GCC.

3.4 SKilL Improvements

The one thing that could be improved in a new specification would be that annotation
fields do not have to use two byes to signal that the annotation is NULL. Currently the
pool id and object id is given and set to 0 but since there can’t be a pool with id 0 the
additional byte for the object id can be saved.

Another improvement was made to Rusts and C++ implementation of size calculation,
reading and writing for variable length integers, used by v64 and pointers. Listing 3.1 and
Listing 3.2 show reference implementations, found in The SKilL Language V1.0 [17]. The
C++ implementation already featured the unrolled loop and defered size calculation, but it
still used the same bit masks and shifts and needed two integers for decoding. Listing 3.3,
Listing 3.4 and Listing 3.5 show the improved versions of size calculation, encoding and
decoding. The previous decoding implementation needed one OR, one SHIFT, one COND, two
AND and two ASSIG operations per byte. The improved version needs one AND operation and
one ASSIG operation less per byte and made an integer obsolete. The size calculation can
be done with just one comparison per byte, removing a additional AND operation. Likewise
the additional AND operation was removed from the encoding function.
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3 Evaluation
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Figure 3.1: Performance comparison between Rust, C++ and Java
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3.4 SKilL Improvements

� �
1 uint8_t* encode(uint64_t value) {
2 // calculate effective size
3 int size = 0;
4 {
5 uint64_t buckets = value;
6 while (buckets) {
7 buckets >>= 7;
8 size++;
9 }

10 }
11 if (!size) {
12 uint8_t[] result = new uint8_t[1];
13 result[0] = 0;
14 return result;
15 } else if (10 == size)
16 size = 9;
17 // split
18 uint8_t[] result = new uint8_t[size];
19 int count = 0;
20 for (; count < 8 && count < size - 1; count++) {
21 result[count] = value >> (7 * count);
22 result[count] |= 0x80;
23 }
24 result[count] = value >> (7 * count);
25 return result;
26 }� �

Listing 3.1: Reference encode implementation for v64[17]

� �
1 uint64_t decode(uint8_t* v64) {
2 int count = 0;
3 uint64_t result = 0;
4 register uint64_t bucket;
5 for (; count < 8 && (*v64) & 0x80; count++, v64++) {
6 bucket = v64[0];
7 result |= (bucket & 0x7f) << (7 * count);
8 }
9 bucket = v64[0];

10 result |= (8 == count ? bucket : (bucket & 0x7f)) << (7 * count);
11 return result;
12 }� �

Listing 3.2: Reference decode implementation for v64[17]

45



3 Evaluation

� �
1 static uint64_t size(uint64_t v) {
2 return (v < 0x80U) ? 1 : ((v < 0x4000U) ? 2
3 : ((v < 0x200000U) ? 3 : ((v < 0x10000000U) ? 4
4 : ((v < 0x800000000U) ? 5 : ((v < 0x40000000000U) ? 6
5 : ((v < 0x2000000000000U) ? 7 : ((v < 0x100000000000000U) ? 8
6 : 9)))))));� �

Listing 3.3: Optimized size implementation for v64� �
1 inline void encode(uint64_t v) {
2 if (v < 0x80U) {
3 *(position++) = (uint8_t)(v);
4 } else {
5 *(position++) = (uint8_t)(0x80U | v);
6 if (v < 0x4000U) {
7 *(position++) = (uint8_t)(v >> 7U);
8 } else {
9 *(position++) = (uint8_t)(0x80U | v >> 7U);

10 // ...
11 if (v < 0x100000000000000U) {
12 *(position++) = (uint8_t)(v >> 49U);
13 } else {
14 *(position++) = (uint8_t)(0x80U | v >> 49U);
15 *(position++) = (uint8_t)(v >> 56U);
16 }
17 // ...
18 }
19 }
20 }� �

Listing 3.4: Optimized encode implementation for v64� �
1 inline int64_t decode() {
2 uint64_t v;
3

4 if ((v = *(position++) >= 0x80U)) {
5 v = (v & 0x80U - 1) | (*(position++) << 7U);
6 if (v >= 0x4000U) {
7 v = (v & 0x4000U - 1) | (*(position++) << 14U);
8 // ...
9 if (v >= 0x100000000000000U) {

10 v = (v & 0x100000000000000U - 1) | (*(position++)<<56U);
11 }
12 // ...
13 }
14 }
15 return v;
16 }� �

Listing 3.5: Optimized decode implementation for v64
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4 Summary and Future Work

This thesis features the implementation of a generator that produces Rust bindings for
SKilL. The binding was supposed to implement the code language of SKilL as well as
the documented, escaped and interfaces features. Further the binding has to show that it
is compatible with current bindings and tools. A central point was to research how the
Rust type system can be used to execute the serialisation process in a parallelized manner
safely.

The generator that has been implemented for Rust produces bindings that satisfy the core
language of SKilL, with the exception of the public reflection API and enforced restrictions.
Both deficits were acknowledged by supervisor Timm Felden. Furthermore, the auto and
custom features of SKilL were implemented.

The correctness of the generated bindings was tested through existing test suits, new tests
for the test suits as well as manual testing with existing tools. The later was done to further
prove that interoperability exists between Rust and other bindings.

Parallelism, supported by the type system, was not achieved however. The central issue
was that SKilL allows for graph like structures which conflict with Rusts borrow rules.
These rules are essential for thread safety as they act like a reader-writer lock on references
that exists as long as the reference. To create cycles wrappers are used that enforce the
borrow rules at runtime. Since these wrappers have a state the state has to be accessed in
a synchronized fashion if these wrappers are shared across threads. Also object parallelism
is not enough, field parallelism is required to benefit from parallelism. This means that
fields of the objects have to be wrapped by a synchronizing wrapper too. The resulting
architecture was deemed too inefficient in comparison to a sequential solution.

Apart from the issue with parallelism, inheritance and casting were interesting subjects.
Rust features inheritance for traits which are comparable to Javas interfaces but not for
structs which can be compared to C structs. Furthermore, only casts from a struct to a
trait are possible, not however from a trait to a struct or from a trait to a trait. To
allow all casts a method was created that requires the structs to have a C memory layout.
The method used a lookup table to check if a cast is valid or not. To execute casts to a
trait a vtable pointer is necessary, which is also contained in the lookup table.

The performance of Rust bindings is ×4.6 slower than the parallelized C++ version. This is
due to the missing parallelism and the enforcement of borrow rules at run time. Since most
time was spent searching for solutions for the previously mentioned issues and an initial
Rust implementation there are opportunities to optimise Rust bindings. For a parallelized
version the architecture and wrapper types would have to be changed drastically. One
option for such an architecture would be to use pointers throughout the internal code which
would mean that that code would suffer from the same issues as C and C++.
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