
Institute of Architecture of Application Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Master Thesis

Modeling and Simulation of
Situations in Mobile

Cyber-Physical Systems

Fahmida Israt

Course of Study: Computer Science

Examiner: Prof. Dr. Dr. h. c. Frank Leymann

Supervisor: M.Sc. Kálmán Képes

Commenced: Aug 15, 2018

Completed: Feb 15, 2019

Abstract

People aim to build completely smart environments in the near future. Building a smart
environment is possible through integrating the physical and computing systems which
is known as Cyber-Physical System. In the era of mobile devices, Mobile Cyber-Physical
System is more required and feasible for daily life. Mobile Cyber-Physical Systems can
become automatic systems by enabling Situation-Aware execution in management pro-
cesses. Context/Situation-Awareness in Mobile Cyber-Physical System is practicable if the
individual situation of a system can be modeled and simulated at development time. For
this, abstract models or architectures that show how situations can be modeled and simu-
lated in Mobile Cyber-Physical Systems are necessary. As Mobile Cyber-Physical Systems
depend on multiple disciplines and is a complex combination of sensors, application sys-
tems, embedded systems, and users, it is complicated to model situations for these systems.
Not only are these systems complex in integration, but they can also be huge in size too.
Therefore, while modeling situations, it is essential to consider all objects of the system very
carefully. This challenge starts by knowing and monitoring all the sensors to obtain sensor
data. Then situations need to be modeled and later detected through simulation based
on the sensor data. In this thesis, we propose an abstract system and build a simulation
process that helps to model and simulate situations to ease the development and testing
of such applications in Mobile Cyber-Physical System. Firstly, we propose a Simulation
Framework for Situation-Aware Applications which consists out of two components named
Simulation System and Situation Recognition System. Then we have implemented our
approach within the scenario of the application of Software Update in vehicular systems.

3

Contents

1 Introduction 17
1.1 Problem Domain and Motivation . 18
1.2 Scope of Work . 19
1.3 Thesis Outline . 19

2 Fundamentals 21
2.1 Cyber-Physical System (CPS) . 21
2.2 Internet of Things (IoT) . 24
2.3 Context and Situation . 26
2.4 Situation Aware System and Workflow . 27
2.5 Modeling and Simulations . 28

3 Related Work 31
3.1 Situation Recognition . 31
3.2 Related Modeling of CPSs . 37
3.3 CPS for Vehicles . 39

4 Concept and Modeling 43
4.1 System Overview . 43
4.2 Basic Elements of Modeling and Simulation 45
4.3 Relationship Analysis of the System . 47
4.4 Modeling Scenarios for Mobile CPS (MCPS) 50
4.5 Modeling Situation Recognition for Mobile CPS (MCPS) 51

5 Simulator Selection 57
5.1 Simulator Selection Criteria . 57
5.2 Comparison of Different Vehicle Simulators 58
5.3 Simulation of Urban Mobility (SUMO) - A Brief Description 60
5.4 Projects in SUMO . 61

6 Simulator Environment and Prototypical Implementation 63
6.1 Simulator Environment and Situation Modeling 63
6.2 Situation Recognition . 73

7 Conclusion and Future Work 79

Bibliography 81

5

List of Figures

1.1 Mobile-Cyber Physical System (MCPS) Integration with many Aspects 17
1.2 Objects (e.g., time step, speed, location) to Consider while Building a Smart

Software Update System for Vehicles . 18

2.1 CPS Conceptual Model [Cyb16] . 21
2.2 Relation between CPS and MCPS [GHH+17] 22
2.3 Generic Architecture of CPS and MCPS . 23
2.4 Internet of Things (IoT) paradigm according to Atzori et. al [AIM10] 24
2.5 Different phases of context and situation . 26
2.6 Several layers of a situation aware system 27
2.7 Situation recognition method using detected situations [MHWM17] 28
2.8 The modeling and simulation process . 29

3.1 Level model of situation recognition [HZL10] 32
3.2 Method of situation recognition according to [HWS+16] 32
3.3 Example of a Situation Template Modeled by Hirmer et. al [HWS+16] . . . 33
3.4 SitOPT architectural overview [HWS+16] 34
3.5 Overview of the SitME-method [BHK+15] 35
3.6 Situation event with name and object [BHK+15] 36
3.7 Proposed Cyber-Physical System (CPS) architecture by Wang. et al[WCG08] 37
3.8 Garage management system of WebMed[HPK12] 40
3.9 Veins architecture detail [JLW+16] . 40

4.1 Overview of the complete system with Simulation System and Situation
Recognition System including Processes and Structures of Modeling, Simu-
lating and Recognizing Situations . 43

4.2 Abstract Basic Elements of the MCPS and Simulator Required for Defining the
Scenarios and Executing the Simulation of the Simulation System Component 45

4.3 Relationship Analysis of the System including Simulation System and Situa-
tion Recognition System [MHWM17] . 47

4.4 Attributes of different Objects in the System of Modeling, Simulating and
Recognizing of Situations . 48

4.5 Possible flowchart to model scenarios in Simulation System (Component 1)
for Vehicular Scenarios . 50

4.6 Elements of the Simulation System (Component 1) for Vehicular Scenarios . 51

5.1 Simulation process with Simulation of Urban MObility (SUMO) [MSAN11] . 60

7

6.1 The inputs, simulations and outputs in SUMO 63
6.2 The map in SUMO-GUI, in the standard format 64
6.3 The whole situation modeling, simulation and detection 73

8

List of Tables

5.1 Comparison among different available traffic simulators [SEE16] [SMC04] . 59

6.1 Table with the lanes attribute name, type and description 66
6.2 Table with the junctions attribute name, type and description 66
6.3 Table with the connections attribute name, type and description 67
6.4 Table with the name, type and description of the vehicles route and trip

attributes . 69

9

Listings

6.1 Snippet of the command to convert OSM normal files to new modified OSM
files . 64

6.2 Snippet of command to convert OSM file to network file 65
6.3 Snippet of edge with lane attributes . 65
6.4 Snippet of junction with attributes . 66
6.5 Snippet of connections with attributes . 67
6.6 Snippet of the command to import polygons from OSM data 67
6.7 Snippet of vehicle types with attributes (ecar.add.xml file) 68
6.8 Snippet of the command which produces routes and trips for vehicles in the

simulator SUMO . 68
6.9 Snippet of route file of vehicles . 68
6.10 Snippet of trips file of vehicles . 69
6.11 Snippet of passengers file . 69
6.12 Snippet of the command that is used to generate the routes and trips for the

persons in SUMO . 70
6.13 Snippet of routes of pedestrians and passengers 70
6.14 Snippet of trips of persons . 70
6.15 Snippet of configuration file for outputs . 71
6.16 Snippet of the output file with RSU, home, drivers mood and all other

available details from SUMO output . 72
6.17 Test if the vehicle can take available brake software update in a particular

time period . 73
6.18 Implemented Python code snippet to recognize if a vehicle is moving or not

moving . 74
6.19 Implemented Python code snippet to recognize if a vehicle is crossing the

speed limit or not . 74
6.20 Implemented Python code snippet to recognize if a vehicle has connection

with home RSU or not and if there is connection what the level of connection
strength is . 75

6.21 Implemented Python code snippet to recognize if person rides a vehicle or not 76
6.22 Implemented Python code snippet to recognize if a vehicle has enough

battery charge or not . 77
6.23 Implemented Python code snippet to recognize person’s mood 78

11

List of Algorithms

4.1 Pseudocode to check if a vehicle is moving or not 52
4.2 Pseudocode to check if a vehicle has connection with home, Road-Side Unit

(RSU) or not and if there is connection which strength 53
4.3 Pseudocode to check if a vehicle is crossing speed limit to take update or not 54
4.4 Pseudocode to check if person rides a vehicle or not 54
4.5 Pseudocode to check if a vehicle is autonomous or person driven 55
4.6 Pseudocode to check person’s mood . 55
4.7 Pseudocode to check if a vehicle has enough battery charge or not 56

13

List of Abbreviations

CPS Cyber-Physical System. 7

IoT Internet of Things. 7

MCPS Mobile Cyber-Physical System. 17

OSM OpenStreetMap. 63

RSU Road-Side Unit. 13

SitAC A System for Situation-aware Access Control. 36

SitME Situation-Aware Workflow Modeling Extension. 35

SUMO Simulation of Urban MObility. 7

XML Extensible Markup Language. 33

15

1 Introduction

Computing and communication capabilities are getting embedded in the physical environ-
ment day by day [RLSS10]. In near future, all objects and structure of physical environment
will have the computing capabilities. This is how the term Cyber-Physical System (CPS),
Mobile Cyber-Physical System (MCPS), and Internet of Things (IoT) originated. Figure 1.1
shows that with the help of IoT, MCPS integrates the physical things and computing power
of them together to provide an interconnected system. With the aid of the computing
power in physical things it can get easier to monitor, control, and interpret the physical
activities of a system [SH15].

Inter-Connectivity Control and Monitor

Overall Smart System

Computing Power

Mobile
System

Figure 1.1: Mobile-Cyber Physical System (MCPS) Integration with many Aspects

There are already many software approaches available (e.g. Smart Greenhouse Remote
Monitoring Systems, Retail In-Store Analytics, Smart Waste Management Systems, etc.)1

that aim to make connected ecosystems for different communities. To make smart compa-
nies, there are CPS available for interconnected production processes, furthermore, people
now are aiming to build smart cities with autonomous vehicles and smart roads system.
To make smart environment, future systems must cope up with a plethora of different
hardware and software systems for applications from modern fields like MCPS. The ap-
plications of these systems are highly dynamic. They are dynamic in nature because of
the continuous changing network and environment. Due to this reason, the management
of these MCPSs are challenging and is prone to failure. However, these systems must still
be able to cope with any kind of application under any kind of situation. Therefore, a

1https://www.postscapes.com/categories/

17

1 Introduction

Context- and Situation-Aware Application Management is needed that is able to execute
management logic in the right situation. For example, the management of software update,
connection management between peers for vehicles.

1.1 Problem Domain and Motivation

Running a Situation-Aware CPS is not easy because modeling and recognizing situations
of such a system is not trivial. The size of the MCPSs make the development of such
Situation-Aware Applications a challenge, as different hardware and software platforms
are used in a highly dynamic and large environment. The modeling, execution, and hence,
the recognition of situations in such environments is a complex challenge and must be
developed with care. But to progress with building smart environments, it is important
that the system can recognize situations and act according to it. The situation recognition
for dynamic systems is a very complex and difficult process [HWS+16]. It first starts with
modeling as many scenarios as possible. Based on these scenarios, the first level of the work
is to acquire sensor data from all devices of the system. Sensors raw data can be turned
into context information by adding metadata to them. Sensor data later is combined and
interpreted to derive properly understandable situations based on this context information.
This is how sensor data lead to knowledge about a smart environment [VF13]. Once the
situations are derived, the system can be a self-organizing system based on the modeled
and recognized situations.

User Type of Software

Time Step

Speed

RSU Location

Network Connectivity

Objects Interaction

Vehicle Energy Consumption

S
m

a
rt

 S
o
ft

w
a
re

U
p
d
a
te

 S
ys

te
m

 f
o
r

V
e
h
ic

le
s

Figure 1.2: Objects (e.g., time step, speed, location) to Consider while Building a Smart
Software Update System for Vehicles

Let us consider that a Situation-Aware workflow for smart vehicular environment can be
modeled. Think of a smart workflow system for vehicle’s software update. The situation
modeling and simulation for such system is definitely sensitive as human safety is related
to this. A lot of factors need to be taken care of while taking the decision (See Figure 1.2).

18

1.2 Scope of Work

Additionally, not only the vehicles and users are related to this system, other things like
Road-Side Unit (RSU) also need to be considered. Modeling situations for this smart
software update system for vehicles needs to reconsider objects like, which software needs
to be updated, time step, vehicle’s speed, location, network connectivity, user interaction,
energy consumption data, remaining energy, and so on.
Therefore this thesis proposes a Simulation Framework for Situation-Aware Applications
to enable the development of such applications in MCPS. We need a simulator for the
development of such systems, as it is complex, error-prone and basically not achievable at
run-time in the real world.

1.2 Scope of Work

The goal of this thesis is to do modeling and simulation of situations in MCPS. Therefore, it
is necessary to look at the related topics like CPS, IoT, modeling and simulation methods,
context, situation and workflow of Situation-Aware Systems. There are established research
work on situation recognition, modeling CPS and Situation-Aware MCPSs that help to
build the concept and implementation of this work. The main contribution of this thesis
is presenting a framework of modeling situations for MCPS including the requirements,
relationships among the objects of the model. Based on the framework, a vehicular
simulator is selected as we choose vehicular environment as the Mobile CPS.
The feasibility of this concept is also shown with the help of prototypical implementation
developed in the selected simulator. Additionally, the modeled abstract situations are
recognized through prototypical python implementation.

1.3 Thesis Outline

This thesis structured as follows:

Chapter 1 – Introduction: The motivation of this thesis including basic introduction and
fundamentals of CPS and situation modeling are explained in this chapter.

Chapter 2 – Fundamentals: Some related important technologies, terms and theories
are explained for further better understanding.

Chapter 3 – Related Work: Some related research work to modeling and simulation of
situations in MCPS are presented.

Chapter 4 – Concept and Modeling: The high-level concepts behind the thesis are ex-
plained. The overview of the thesis’s model, requirements, analysis of the model and
situations modeling for MCPS are discussed.

Chapter 5 – Simulator Selection: Based on the concept, the simulator selection criteria
and a brief description on the selected simulator SUMO is presented.

19

1 Introduction

Chapter 6 – Simulator Environment and Prototypical Implementation: The prototyp-
ical implementation of this thesis is discussed in this Chapter including the preparation
for simulator environment and recognition of the modeled situations.

Chapter 7 – Conclusion and Future Work: A summary of the this thesis and scope for
further research work are discussed.

20

2 Fundamentals

In this chapter, we discuss different technologies, terms and theories in details that are
necessary for a better understanding of this thesis. The first Section deals with the definition
of Cyber-Physical System (CPS), MCPS, their features, generic architecture and example
of vehicular MCPS. In Section 2.2, we take a look at Internet of Things (IoT) paradigm
and how IoT and CPS are interconnected. Then in Section 2.3, we discuss what context
and situation are. Followed by that, there is a brief overview of Situation-aware Systems
and Workflow Technology in Section 2.4. Finally, in Section 2.5, we explain what generally
simulation and modeling are.

2.1 Cyber-Physical System (CPS)

Decision

In
fo

A
c
tio

n

Physical State

System-of-system

System

Device

Human
Cyber Cyber

Physical

Figure 2.1: CPS Conceptual Model [Cyb16]

CPS is getting increasing attention on the market and in research. CPS is simply the
integration of physical processes and computation which is the cyber part in this context
[HPK12]. The goal of CPS is to combine the dynamics of physical processes with software

21

2 Fundamentals

and communication which can be monitored, controlled and coordinated (See Figure 2.1)
[SWYS11] [RLSS10]. This technology requires new abstraction, modeling, analysis and
design as it relies on computers, complex embedded systems, networking and communica-
tion among sensors and actuators [SWYS11]. CPS is already used in many fields such as
aerospace, transportation, health care, factory automation and defense system [AKK13].

Mobile Cyber–Physical Systems (MCPS)s use mobile sensors and computing devices using
augmented human interactive communication networks with the physical world [CHHK18].
CPS uses stationary and big sensors or machines to communicate to the physical world but
as MCPS uses mobile sensors, it is all about mobility. Due to this characteristic of it, MCPS
is available easily in day to day life and deployed into the broad range [GHH+17]. Figure
2.2 shows how CPS and MCPS are similar or different.

aaaa

Mobile CPS CPS

Stationary and big sensors

Geographical constraint

Mostly usable for big

machines and systems

Mobile sensors

Geographical mobility

Easily available in daily life

Real-time system

System stability

Heterogeneous device

capacity

Figure 2.2: Relation between CPS and MCPS [GHH+17]

2.1.1 Features and Characters of CPS and MCPS

Some common features of CPS and MCPS as follows:

• Physical system is the most important field of CPS with a requirement of a high degree
of automation and network characteristics [LPW+17] and all physical components
have to have cyber capabilities [SM12].

• As CPSs are the integration of physical and computational process, everything must
be closely integrated [SWYS11]. Moreover, the integration of the whole architecture
must be consistent to capture all necessary physical information [RLSS10].

• Operational and managerial independence of the components in the overall system is
very necessary. At the same time, there should also be distributed control [OTV17].

• In a CPS or an MCPS system, different categories of devices need to appear and for
them wired or wireless networking should be available at multiple and maximum
levels [SWYS11].

• To generate a new CPS, a Model-based development is necessary to put together
physical, computing and communication dynamics. Also, to test the control logic of
the whole system software testing is necessary [RLSS10].

22

2.1 Cyber-Physical System (CPS)

• Real-time performance is expected from CPSs. All the inputs and outputs communi-
cation among physical and computing environment should happen within the fixed
minimum response time.

• The real-time communication needs to be done in secured communication channels
always [SM12].

• When necessary, it should be possible to do dynamic reconfiguration or reorganization
of the whole system [OTV17].

2.1.2 Generic Architecture of CPS and MCPS

CPS architecture is the basis of development and further research to cope up with the
challenges. A generic and basic architecture of the CPS must contain end-user access layer,
information system layer and physical system layer (See Figure 2.3) [LPW+17].

End User Layer

P
h

y
s
ic

a
l

L
a
y
e
r

In
fo

rm
a
ti

o
n

S
y
s
te

m
 L

a
y
e
r

Admin

Control Center

Service Aware Module

Application Module

Internet

Data Management

Module

1. Computation Device

2. Storage Device

Sensor Smart Chip Embedded System Actuators

End User

Figure 2.3: Generic Architecture of CPS and MCPS

End-user access layer is mainly responsible for making the CPS available to end users.
Users can be system administrators or general end users. System admins control the system
by sending inquiry instructions to the control center and also can revise the defined control
strategies. All end users must be able to communicate with the system anytime, do data
query in real-time and receive feedback data [LPW+17].

23

2 Fundamentals

Information system layer does transmission and processing of data that is collected from
the physical layer. It consists Data Management Module (DMM) and Service-Aware Modules
(SAM). DMM has at least computational devices and storage media [AKK13]; so that DMM
can collect sensor data and forward them to SAM. SAM is mainly responsible for making
decisions, analyzing tasks and sending data to the available services [AKK13].

Physical system layer contains a variety number of embedded systems, sensors and
actuators, sensors networks, and smart chips. Sensors collect data from the physical world.
So that the responsible embedded systems or smart chips are able to achieve pre-processed
preliminary data and forward to the information system layer. Actuators take requests from
the application module; actually from the end users to execute the requests.

2.2 Internet of Things (IoT)

The Internet of Things (IoT) paradigm of a diverse technology is growing quickly as
the integration of the smart environment is improving. The IoT is a computing concept
which enables network connectivity to identify, connect, interact, and exchange data of
different devices (e.g., smartphone, vehicles, camera, and home appliances, etc.) in a smart
environment that contain electronics, sensors, software, and actuators [SS16].

Smartphone

Software Sensors Actuators

Internet Oriented
Vision

IP for Smart Objects

Internet 0 (I0)

Semantic Oriented

Vision

Semantic Technologies

Reasoning Over Data

Semantic Execution
Environment

IoT

Communication

&

Connectivity

Semantic

Middle Ware

Things Oriented Vision

Figure 2.4: IoT paradigm according to Atzori et. al [AIM10]

24

2.2 Internet of Things (IoT)

According to Atzori et al. [AIM10] IoT is a united form of 3 visions: things-oriented visions
(e.g., smart daily life items like smartphones, sensors, actuators, RFID1), internet-oriented
vision (e.g., internet protocols for smart objects, Internet 02) and semantic-oriented visions
(e.g. semantic technologies3, reasoning over data, semantic execution environments).
Here, things and semantic oriented visions are connected through the smart semantic
middleware. On the other hand, things and internet oriented visions are connected
through communication and connectivity of things with the internet. See Figure 2.4 as a
visualization of the description.

IoT and CPS are interconnected with each other. IoT can be seen as an enabling technology
for CPS [Cyb16] for its characteristics. Some of them are:

Interconnected - By using IoT facilities, people can be connected to devices and also
devices can be connected to devices [SS16].

Heterogeneity and Enormous Scale - Different hardware platforms and network can be
combined together in IoT. Therefore, it is heterogeneous. The number of devices that are
connected and communicated in IoT is huge. So, they also produce a big scale of data. IoT
can also safely handle data because of its semantic oriented vision [PP16].

Intelligent Sensing - The IoT connected devices have smart sensing abilities. They can
also have intelligence attached to them [SS16]. For example, an IoT connected bulb in a
bedroom will check with its senses if there is any person in the room. If there is a person, it
will be turned on. If not, then it will be automatically turned off. If the bulb has intelligence
attached to it, then when the person is in the room and reading in the table, it will give
brighter light. Whereas, when the person is sleeping in the bed, the bulb will behave like a
dim light.

Save Energy and Increases Productivity - IoT can make a CPS very cost and energy
efficient. In the previous point, we have an example of a smart sensing IoT connected
bulb which gets turned off automatically when there is no person in the room. This is a
small step in saving energy. As IoT can utilize resource and time optimally, it can increase
productivity [SS16].

1Radio frequency identification (RFID) uses electromagnetic fields to automatically identify and track tags
attached to objects.

2Internet 0 (I0) as a framework to bridge together heterogeneous devices via Internet Protocols-
therefore in a manner that is compatible with designing globally large computer networks (Source:
https://dspace.mit.edu/handle/1721.1/28866)

3Semantic Technology defines and links data on the Web (or within an enterprise) by developing lan-
guages to express rich, self-describing interrelations of data in a form that machines can process (Source:
https://www.ontotext.com/knowledgehub/fundamentals/semantic-web-technology/)

25

2 Fundamentals

Dynamic in the Real-Time - As the context of the devices and system changes frequently,
the state of the devices can change dynamically in real-time. Also, the number of connected
devices can change anytime based on the system’s demand [PP16].

Safety - Safety of data, physical well-being can be designed and included in IoT connected
CPS [PP16]. For example, in summer countries a lot of accidents happen because the tires
get exploded due to overheating. These sort of accidents can be prevented if the tires have
smart sensors to show the current temperature of them in the car dashboard [SS16].

Expressing - As IoT connected devices are connected with other connected devices of the
environment too, any device can express the current state of the whole environment or any
particular device. Therefore, it facilitates better understanding about the communication
flow and state of the system between human and machines [SS16].

2.3 Context and Situation

To model and simulate situations, we have to understand first what context and situation
are. For more than 20 years, researchers have defined context and situation or their
synonyms in their own work. Rodden et al. [RCDD98] referred context as environment or
situation. Pascoe [Pas98] defined context as the subset of physical and conceptual states
of a particular entity. Abowd et al. [AM00] identified the five W’s (Who, What, Where,
When and Why) as the minimum information that is necessary to understand context. The
definition from Abowd et al. [ADB+99] is the most accepted one and that is: “Context is
any information that can be used to characterize the situation of an entity. An entity is a
person, place, or object that is considered relevant to the interaction between a user and
an application, including the user and applications themselves.”

Raw Data

Context
Discovering
and
Acquisition

Context
Modeling

Situation
Abstraction

Situation
Dissemination

Figure 2.5: Different phases of context and situation

Few attributes are needed to define a context but the most important attributes are context
type and context value. Context type defines the category of the particular context. For
example, context type says if the context carries the information of speed, time, temperature
or distance, etc. Whereas, context value can be the sensor’s raw data, composite data or

26

2.4 Situation Aware System and Workflow

calculated values. Suppose, the value of the temperature sensor in a car engine will say
what the temperature of the engine at a particular time step is.

A context goes through different phases and they are shown in Figure 2.5. The phases
explain how and why the context is retrieved and needed. At first, the context needs to
be discovered and attained from all possible sources of a system [PZCG14]. In CPS, the
sources are physical and virtual sensors. The lowest level of sensors production contains
raw data. The difference between raw data and context is that raw data is directly retrieved
unprocessed data, e.g., a float value produced by the speed checking sensors of a car. The
raw data become context information through consistency checking and other processing,
e.g., the speed value is associated with the running car in a highway containing the sensor.
In the later phase, the context needs to go through modeling. The context modeling is
required to use the context in an organized way for further requirement. After that, the
situations can be abstracted from the modeled context information. Therefore, situation
level stays higher than the context processing level [BHK+15]. Situation describes the
states of relevant entities, e.g., the speed of a car is crossing the speed limit of the highway.
At last, all low-level context information, high-level context information and situations
are ready to be used by the end users or the CPS when needed. This availability and
distribution are important for Situation-Aware workflow for any system.

2.4 Situation Aware System and Workflow

Context-Aware software was first introduced by Schilit et al. [SAW94] in 1994 and
according to them this software can "adapts according to its location of use, the collection
of nearby people and objects, as well as changes to those objects over time".

 Application Layer

Management Layer

Situation Processing Layer

Situation Recognition Layer

Context Acquisition Layer

Data Retrieval Layer

Sensor Layer

Figure 2.6: Several layers of a situation aware system

27

2 Fundamentals

Situation-Aware Systems are a subset of Context-Aware System [HZL10]. A context- or
situation-aware system can present information and execute services automatically for users.
It is also possible to retrieve tagged context information later for situation modeling in
such system [Dey99]. The Situation-Aware System requires expert knowledge to presume
any kind of situation recognition technique and the recognition technique is reusable,
adjustable and extensible. Moreover, a Situation-Aware System normally needs more expert
or specific knowledge to run the system than a general Context-Aware System [HZL10]. The
whole situation-aware system can have several layers like a workflow: sensors layer, data
retrieval layer, context acquisition layer, situation recognition layer, situation processing
and management layer and application layer (Figure 2.6).

In situation-aware system, at first, the sensors get registered at the IoT platform [MHWM17].
From the registered sensors reference ID, the context information is acquired. After that, a
situation recognition algorithm or template can be modeled to do the situation recognition.
A situation recognition technique specifies the ways of detecting a situation [HZL10]. The
modeling of situations is created in such a way that they can be transformed into an
executable implementation of situation recognition for the system. So that the system can
get the situation notification and continue the pre-defined workflow. Workflows are nothing
but an established step by step processing concept for a system [WSBL15]. A situation
history can also be maintained by storing all the situations. Situation history later can help
to do optimization of the smart environments [MHWM17]. All the steps are explained and
depicted in Figure 2.7.

Optimization

of Smart

Environment

Store

Situation

History

Sensors
Registration in
IoT Platform

Model Situation
Template Using

Context
Information

Situation
Recognition

Situation
Notification

Adaptation

of Workflow

and/or

Application

Figure 2.7: Situation recognition method using detected situations [MHWM17]

2.5 Modeling and Simulations

As the goal of this thesis is to do modeling and simulation of situations, here we discuss
what actually modeling and simulation are. According to Maria [Mar97] "Modeling is the
process of producing a model; a model is a representation of the construction and working
of some system of interest." A modeling is close approximation to a real-time system. The
modeling of any system should not be very complex and easy to understand. So that it is
possible to do experiments with the modeling using different methods. The model can be
validated by simulating the model with different situations and inputs.

28

2.5 Modeling and Simulations

The operation of any model of a system is the simulation of that system [Mar97]. The
modeling actually gets tested through the simulation process. A simulation software can be
built according to the modeling to do the simulation. So simulation is done before making
a new system or altering parts of an existing system. Through simulation, the errors and
concerning matters of any modeled system can be known. Moreover, simulation of an
existing system can be used for further process improvement.

The modeling and simulation process are iterative processes. It first starts with identifying
and formulating the problem. Then to develop the modeling part, real-world system
data should be collected and processed. After the modeling part is done, the modeling
must be experimented through using a simulation software. Therefore an appropriate
experimental design and software need to be selected. When the simulation software is
ready to be used, the simulation run can be performed. The simulation results must be
analyzed, interpreted and documented to validate the model. Validation means comparing
the model’s performance with the performance of the established real system under known
conditions. The documentation with detailed objectives, assumptions, and input variables
is also useful for further uses and recommendation. In all stages of the modeling and
simulation, human decision making is required [Mar97]. Figure 2.8 depicts the whole
process of modeling and simulation.

Create, Alter or Improve System

Validate the Model

Simulation Result Analysis

Run the Experiment Using Simulator

Select Simulation Software

Simulation Modeling

Gather Data

Formulate the Problem

Study a System

Figure 2.8: The modeling and simulation process

29

3 Related Work

In this chapter, we will discuss related works that are relevant to the concept and imple-
mentation presented in this thesis. In Section 3.1, the established methods of situation- and
context-recognition are discussed. Several works on modeling and simulation of situation
and Situation-Aware Systems have also been introduced. The Sub-Sections handle exclu-
sively the SitOPT project where the purpose of the project is to provide Situation-Aware
Workflow Management System. Later, in Section 3.2, we take a look at previous CPS
modeling and simulation methods. The chapter finishes with the related work of CPS for
vehicles in Section 3.3.

3.1 Situation Recognition

Häussermann et al. [HZL10] have provided a level model of situation recognition (See
Figure 3.1). In this model, it is shown how data become information and information
become knowledge at last. Information can be divided into two types: rudimentary
information and high-level information. Knowledge is divided into three types: general
knowledge, specific knowledge and knowledge about certain needs. This transformation of
data becoming knowledge revolves the whole process of sensors data becoming a situation.
A sensor system gathers sensor data from the existing context which can be mapped to the
data level. The sensor data become observable context by adding metadata, e.g. quality,
into it. Observable context is mapped to rudimentary information. With analysis, the
observable context can be turned into the high-level context which is equal to the high-level
information. The high-level information is then used for the recognition of situations. From
the high-level context, the situation template is prepared by modeling the action of the
context. The situation template is actually a situation type which can also be taken as
general knowledge. Situation type can be modeled as situation token by adding event data
with the type. Therefore, general knowledge becomes specific knowledge as it also gives
the options to end users to know about what can happen from the situation template. This
is how the situation is modeled and recognized step by step. From the situation token
or recognized situation, the workflows of a Situation-Aware System can be triggered as
from the recognized situation the system can acquire the knowledge about certain needs.
Therefore, the workflow is selected and started based on the system’s need.

31

3 Related Work

Sensory Systems

Sensor Data

Adding of Metadata

Rudimental

Information

Higher‐level

Analysis Information

Knowing that

Model of Action General

knowledge

Event Data Specific Knowing what

knowledge Could Happen

Knowledge About

Certain Needs

Knowledge what

Ought to be

Adaptation: Context‐aware

Selection and Presentation of

Information, Triggering of

Actions/Workflows

Existing Context

Sensor Data

Observable Context

High‐Level Context

Situation Type

Situation Token

Data

Information

Knowledge

Figure 3.1: Level model of situation recognition [HZL10]

Hirmer et al. [HWS+16] present a situation recognition layer for a Situation-Aware System.
Situation recognition layer has situation recognition service which can be deployed on a
local machine or as a cloud service or in a hybrid way. The method for the situation recog-
nition is based on the following three steps: register sensors, modeling situation templates,
executing the executable situation templates to do the recognition of situations.

Sensors Situation Template Executable

Situation Template

Register Sensors
Model Situation

Template
Situation

Recognition

1 2 3

Figure 3.2: Method of situation recognition according to [HWS+16]

Figure 3.2 depicts all steps. In the first step, all the sensors get registered to a sensor registry
where they are stored with their unique ID and type. In the second step, to recognize the
situation later, situation templates need to be built. The situation templates (See Figure
3.3) are built here using Situation-Aggregation-Trees (SAT). The leaf nodes the situation
template represent sensors and called context nodes. To filter all the incoming sensor data,
some conditions are made to do the comparison.

32

3.1 Situation Recognition

Figure 3.3: Example of a Situation Template Modeled by Hirmer et. al [HWS+16]

These are specified as so-called condition nodes. So, the context nodes get connected to
the condition nodes. Then some operation nodes (e.g. logical operations like and, or, xor)
are used to sum up the output of the condition nodes. When one situation template is
executed, one situation is recognized by the system.
As an example, the authors [HWS+16] have provided a situation template which recog-
nizes the situation "Critical" of a web server. Figure 3.3 shows an example of a situation
template with Extensible Markup Language (XML) snippet. To recognize the situation here,
data of 3 sensors are taken; watchdog sensor, RAM sensor and CPU sensor. The condition
nodes that make the output true are (1) the CPU load percentage should be greater than
90 percent, (2) the available RAM should be lower than “1000MB”, and (3) the response
code of the machine should not equal the number “200”. The operation node is set to ’OR’.
So, if one or more than one of the condition nodes are true the web server situation can be
recognized as ’Critical’.
A situation aware system has more than one situation templates. So to keep the system run-
ning, the recognized situations from many situation templates get registered, transformed
to a flow for deployment, executed and later de-registered.

To model and simulate a situation aware system, the situations should be recognized
at first. The modeling and simulation can be followed by the recognition of situation.
When an individual situation is recognized, modeled and simulated, the whole situation-
aware system can be modeled and built. This whole process is very tedious and expensive
[BHK+15]. Therefore, the SitOPT Project was started to ease the modeling and execution
of Situation-Aware Applications based on Workflow Technology.

33

3 Related Work

3.1.1 SitOPT Project

SitOPT is a research project with the aim for optimizing and adapting situational appli-
cations based on workflow fragments1. The workflow fragments are dynamic in nature
as the situations are very dynamic. The SitOPT project’s main architecture is developed
based on three layers. In Figure 3.4 it is shown, the top layer of the architecture which
is the application level depends on the dynamic situations and workflow fragments. The
lowest level does efficient sensing by automatically connecting and centralizing all sensor
data. The situation recognition level autonomously recognizes the situations based on the
situation templates that are developed from the sensor data [HWS+16].

S
it

u
a
ti

o
n

-

A
w

a
re

W
o

rk
fl

o
w Situation-Aware Workflow Management System

Physical Sensors

S
e
n

so
r

le
v
e
l

Situation Model Management

Situation Recognition

Collect Sensor Data

S
it

u
a
ti

o
n

R
e
c
o

g
n

it
io

n

Situation
Template

Repository

Workflow
Fragment
Repository

Figure 3.4: SitOPT architectural overview [HWS+16]

3.1.2 SitRS and SitRS XT

Hirmer et al. [HWS+15] present the concept of SitRS architecture with three layers, from
the bottom: context layer, situation recognition service layer and application layer. The two
layers in the bottom consist of the situation model, the situation recognition service, and
the sensors. The physical objects with sensors, e.g., machines, transports, registered their
sensors in the sensor registry. From the sensor registry, the situation templates get input
and these templates are stored in the situation template repository. There is a situation
registration service which is responsible for registering the occurred situation based on
the templates. The situation templates become executable situation template as they get

1https://www.ipvs.uni-stuttgart.de/abteilungen/as/forschung/projekte/SitOPT

34

3.1 Situation Recognition

mapped to executable representation. An execution engine does the execution of situation
templates and from the output of the engine, it can be confirmed which modeled situation
has occurred and when.
Franco da Silva et al. [FHWM16] represent a situation recognition service SitRS XT which
is an extension of SitRS. SitRS XT enables the situation recognition in real-time. SitRS XT
does the situation recognition based on Complex Event Processing (CEP). According to
David Luckham [Luc08] “Complex Event Processing (CEP) is a defined set of tools and
techniques for analyzing and controlling the complex series of interrelated events that drive
modern distributed information systems.”

3.1.3 Situation-Aware Workflow Modeling Extension (SitME)

Breitenbücher et al. [BHK+15] introduce an approach to model situation aware processes
without making the situation handling logic too complex or unmanageable. This is known
as Situation-Aware Workflow Modeling Extension (SitME) method and Figure 3.5 depicts
the overview of it.

SitME-

Workflow model

Standard-compliant

Workflow model
Standard-compliant

Workflow engine

Transform Deploy

Create SitME-
workflow model

Transformation into
standard-compliant

workflow model

Deployment of
standard-compliant

workflow model1 2 3

Figure 3.5: Overview of the SitME-method [BHK+15]

In SitME, the first step is to create a SitME workflow model. Then the model is transformed
into a standard-complaint workflow model so that it can be deployed in a standard-
complaint workflow engine. So the first step is very related to our work here which
is situation-aware modeling. To make situation-aware modeling, situation events are
introduced at the very first place. Situation events are actually activities. They hold two
information: i) a situation name and (ii) the unique identifier of the corresponding object
for which the situation has to be observed (See Figure 3.6).

35

3 Related Work

Situation Event

Situation: [SituationName]

Object: [ObjectIdentifier]

Figure 3.6: Situation event with name and object [BHK+15]

Then comes situation scope that means making a group of activities which will be executed
only if certain specified situations come over. The situation scope brings the situation-
triggered workflow fragments. These fragments handle the changing situations of a system
through these event-driven process chain.

3.1.4 A System for Situation-aware Access Control (SitAC)

Taking the SitOPT architecture as a basis, Hüffmeyer et al. [HHM+17] a propose Situation-
Aware Access Control System (SitAC) to protect various kinds of RESTful services. These
sort of systems have to have the capability to determine access decisions in a short time.
The system also needs to be flexible to create, change and remove services easily. The
architecture of A System for Situation-aware Access Control (SitAC) is built on top of
physical and environmental objects in the real world. The architecture has three layers:
service layer, security layer and client layer. The service layer covers the services that need
to be protected and the SitOPT system. From the top client layer, clients register sensors
at the situation administrator API which is available in the security layer. The situation
administrator API is connected with the RestACL2 of the same layer. The RestACL sends
the sensor registration request to the SitOPT system. A client can also register situation
templates to the situation administrator API. Like the sensors registration, the RestACL
forwards the situation templates to SitOPT system. At the same time. the RestACL also
registers itself for callbacks so that the SitOPT system will inform RestACL if any situation
occurs. This is how the situation recognition method of SitOPT helps here. Additionally,
when a situation occurs, the access control enforcement point gives access to clients who
have the permission to access the system.

2RestACL: An Access Control Language for RESTful Services (Source:
https://dl.acm.org/citation.cfm?id=2875494)

36

3.2 Related Modeling of CPSs

3.2 Related Modeling of CPSs

The CPS modeling represents the key to the system implementation. Tan et al. [TGP08]
represented prototypical modeling of CPS concept in their paper. Their modeling has some
of the following parts: Event/Information Driven - here events are the raw data collected by
the sensors units and actions that are made by the actuators or humans. The abstraction of
the physical world is represented by this information. Global Reference Time -is a part of
the Next Generation Internet initiative that will provide the Global Reference Time to all
CPS components. The Next Generation Internet [AKK13] enables the applications to have
the ability to select paths for data transfer between the source and destination. Quantified
Confidence - a standard method to calculate the confidence of the events/information at
any point in time. Publish/Subscribe Scheme - based on the system goals; every CPS control
unit takes care of an individualistic group of events or information to publish them when
necessary. Semantic Control Laws - the control laws control the system behavior as they
have the user-defined condition or action forms. Finally comes, New Networking Techniques
- provide the global reference time, new event routing or new information routing and data
management schemes.

Talcott et al. [Tal08] propose an event-based semantics for CPSs as it gives the detailed
information about the system and it is easier to integrate the interactions between compo-
nents in this way. Two compositional models are introduced here; one for the autonomous
agents and another one for the interactive agents. In both models, the interaction and
communications between the cyber and physical components are emphasized.

Wang et al. [WCG08] analyzed CPS for large-scale industrial processes where the system
needs to handle heterogeneous components together. They presented a unified control
and network concept to integrate all the heterogeneous components to keep running the
real-time operations.

Sensors Actuator

Stage Control

Network Unit

Computing Unit

Figure 3.7: Proposed CPS architecture by Wang. et al[WCG08]

37

3 Related Work

According to the paper [WCG08], a broader sense of cross-layer design needs to be
employed in CPS. From the cross-layer communication techniques, a modeling for cross-
layer integration and communication is designed where each device needs to be designed
based on the individual’s sensing, actuation, hardware, type, operating system (OS), and
middleware (See Figure 3.7).

Balaji et al. [BFD+15] presented a modeling that combines individual models for informa-
tion, energy, user, operation and maintenance of a CPS. To develop a CPS, understanding
the information model is the key point as other parts of the system depend on it. Information
can be static (e.g., traffic point location) or dynamic (e.g., vehicle’s speed, location). To
understand the energy flow and identify the opportunities to improve the energy level,
an energy model is necessary to build an efficient energy simulator for the CPS. As user
comfort, safety and productivity are the main reasons to build a CPS; user model must
concentrate more on giving application and control level access to users. As thousands
of sensors, actuators and embedded systems are installed in different levels of the whole
Cyber-Physical System, there should be a defined operation and maintenance model to
maintain, operate, and enhance the system later on.

West and Parmer [WP06] propose to develop a CPS based on a software architecture
composed of a collection of application-specific services. According to them, "A cyber-
physical system architecture would sensibly consist of a small executive capable of dynamic
service composition and component service isolation" [WP06]. Not all of the services of a
distributed embedded application might be physically local, so the small executives will
have the capability of locating, authenticating, retrieving and communicating with remote
services. Moreover, to satisfy the system constraints which is made with heterogeneous
hardwares, the modeling of the CPS must handle the automatic composition of services.

Bujorianu and Barringer [BB09] propose a modeling solution to overcome the challenges
of formal semantics of the CPSs paradigm. Semantics should have the capability to
combine continuous and discrete mathematics of the physical and computational aspects.
To complete that, the approach is to combine the denotational semantics with an algebraic
model for physical processes in order to evidence the holistic perspective of the CPSs
paradigm. So, the actual proposal of the authors is an integrated logic for the specification
of the observability and quantitative properties. The logic is inspired by the "Hilbertean
formal methods" and is developed and constructed by integrating different system features.

38

3.3 CPS for Vehicles

3.3 CPS for Vehicles

CPS for the vehicles is a sensitive area to model as any system for vehicles needs to meet
few standards for safety and efficiency. For example, a CPS for the traffic control system
will need to calculate a lot of complex traffic control algorithms. So that it can give the
best route from the current situation as output to the end user. Therefore, CPSs for the
automotive industry require high computing power [AKK13].

Ahmed et al.[AKK13] propose a vehicular CPS scenario where the vehicles are connected
to RSU. RSU is connected to the Next Generation Internet which provides different services
through a wired network. Next Generation Internet has two main modules: (1) Service
Aware Modules (2) Data Management Module.
Modern cars nowadays have different actuators like speed controlling, lights, brakes, etc.
Service aware module can communicate and control the different actuators in real-time
through the Application Module which is the bridge between them. This is how their
proposed vehicular CPS modeling can provide a single car the best application for different
types of services efficiently. For example, in the case of waiting people on a traffic point,
lights should be on automatically.

Chen et al. [CYH+17] studied the topology of the vehicles in traffic flow to propose CPS
enabled traffic flow modeling. They primarily calculated velocity and density of the vehicles
to understand the topology. To estimate the density and the velocity of the vehicles, the
mathematical model uses local CPS sensors of the autonomous vehicles. The local and cloud
layers of the CPS use visual, location and motion sensors data of the vehicles. The model
provides a differential equation by taking 5 scenarios in consideration: (1) Continuous
Traffic Flow; (2) Vehicle-following Traffic Flow; (3) Non-Ramp/Intersection Traffic Flow;
(4) Traffic Pressure and (5) Viscous Traffic Flow. From these scenarios, information like
the instant velocity, the speed limit, the distance between vehicles and the momentum are
collected to analyze the driving scene.

Wan et al. [WZZ+14]s multi-layered architecture for the vehicular system have different
layers for computation: vehicle computational Layer, location computational layer, cloud
computational layer. In the vehicle computational layer, sensors are installed in the vehicles,
so that they can provide all kind of environmental and their own body’s parameter data. In
the location computational layer, there are RSUs. RSUs are deployed at strategic locations
with necessary sensors and equipments. They are deployed on the roads in such a way that
they can exchange information with all the vehicles available on roads in a certain area.
Vehicle’s sensors and neighboring RSU’s sensors share context-aware traffic information
and entertainment resources. If some vehicles are not connected to the RSU, they may be
still connected to the rest of the vehicles which are connected to RSU. So with the help of
each other, the CPS can produce real-time traffic information. In the cloud computational
layer, traffic-related authorities and different companies can supply various services and
applications to the end users.

39

3 Related Work

Hoang et al. [HPK12] propose another CPS architecture named WebMed which can be
used for vehicles parking management. Figure 3.8 visualizes that in their architecture,
sensors are in the core level as they provide the data of the vehicles to the WebMed
nodes. WebMed nodes consist of the node API, data model, device control manager, and
data manager. These nodes provide the gathered information to the Web Service Enabler.
Later the Service Enabler transfer the data to the Web Service Repository where all the
service like reservation, currency, SMS, payment are integrated. Users can access those
services by using user application interfaces. So from the calculations from those services,
system administrators and end users get messages like confirmation of parking reservation,
overtime parking alert, non-pay alert through their own versions of applications.

Sensors

Smart Device

Web Service Reporting

Integration of Services:

Reservation Service, Currency

 Service, Message Service,

 Payment Service

User Application Interface

Service Enablers & Admins:

Confirmation of Parking

Reservation, Overtime

Parking Alert, Non-pay Alert

Figure 3.8: Garage management system of WebMed[HPK12]

When vehicles maintain a short distance to follow each other, it can be said that they form
a platoon-based driving pattern. Jia et al. [JLW+16] mentioned in their paper platoon-
based driving pattern of vehicles can actually improve road capacity and energy efficiency.
They propose that a platoon-based vehicular CPS can be modeled if traffic simulator and
networking simulator can be combined together with the help of communication interface.
The traffic simulator, in this case, broadcasts the real-time tracking information of the
vehicles to the network simulator. At the same time, the network simulator will inform the
vehicles any received alert-message and also will inform the traffic simulator the vehicle
identities. So that traffic simulator can change the traffic control plans accordingly.

Control the System by Sending Message

Real Time Traffic Info

Traffic Simulator

Mobility Management

ServerClient
Interface

Communication

OMNeT++ SUMO

VEINS

Figure 3.9: Veins architecture detail [JLW+16]

40

3.3 CPS for Vehicles

The implementation of this modeling is named ’Veins Architecture’. Some well known
vehicular simulators are integrated here. Veins is an open source framework for running
vehicular network simulations. Figure 3.9 shows the details of Veins architecture. It is
based on two well-established simulators: OMNeT++, an event-based network simulator,
and Simulation of Urban MObility (SUMO), a road traffic simulator3. The simulation steps
are enlisted below:

• In every simulation step, a vehicle in Veins will send related traffic information to the
SUMO simulator.

• Then every vehicle in SUMO uses the received information from Veins as the input of
the controller to have the expected velocity and acceleration.

• In the next step of the simulation, the movement of the vehicle is simulated by
implemented SUMO.

• Later, the movement information of the vehicle is sent back to Veins, so that Veins
can update the movement information of the vehicle in the networking graph.

3https://veins.car2x.org/

41

4 Concept and Modeling

This chapter gives an overview of the conceptual system of modeling, simulation and
recognition of situations in MCPS in the first Section 4.1. Section 4.2 explains the required
basic elements to establish the Simulation System. In Section 4.3, the relationship among
different objects in Simulation System and Situation Recognition System is analyzed.
Section 4.4 discusses modeling scenarios for MCPS providing an example system. Section
4.5 provides the algorithms details of the recognized situations of the Situation Recognition
System for MCPS.

4.1 System Overview

Model Scenarios Execute Simulation Filter Data Model Situations
Recognition Method

Recognize Situations

Step 1 Step 2 Step 3 Step 4 Step 5

Simulation System Situation Recognition System

Component 1 Component 2

Figure 4.1: Overview of the complete system with Simulation System and Situation Recog-
nition System including Processes and Structures of Modeling, Simulating and
Recognizing Situations

We present a conceptual overview of the Simulation Framework that enables the modeling
and simulation of Situation-Aware MCPS scenarios. The system structure consists of a
Simulation System which is considered as the Component 1 and Situation Recognition System
which is considered as Component 2 of the system. Figure 4.1 depicts the overview of the
Simulation Framework, the process of the system starts with depicting the basic structure
as components that implement the delineated process.
The first main component which is the Simulation System, has the task of generating
simulation data. The second main component of the system which is Situation Recognition
System, is used to detect situations on the generated simulation data.

43

4 Concept and Modeling

With the defined scenarios, a suitable simulator needs to be selected or built. The simulator
environment should be prepared in a way that most of the scenarios can be fit into it.
Simulator needs to give sensors and actuators detail data as output in a compatible format,
e.g., XML, JSON.

The first step of the Simulation System is modeling scenarios (Figure 4.1). To model
scenarios, some basic components of an MCPS are considered, e.g. sensors, devices, users,
and Section 4.2 explains about them. While modeling MCPS scenarios, all the objects
related to the system are needed to be considered. Section 4.4 defines some scenarios that
should be considered for an example MCPS which is vehicular software update.

To get the output, after defining the necessary scenarios in the selected simulator, the
simulation is executed. This is the second step available, in the Simulation System. As the
simulator needs to accumulate the defined scenarios of the MCPS, the simulator also should
have the components from Section 4.2 in it. The execution of the simulation provides
virtual sensor and actuator data for the defined MCPS scenarios. The generated simulation
output data contain all raw data. Here, the data defines the environment of the selected
MCPS (e.g., vehicle, smart factory, etc.) where the situations occurred.

The next step is filtering the output data of the simulator. Based on the modeled scenarios,
the system may need multiple simulators. The simulators may generate multiple outputs
of different objects. The formats of the outputs can be different. But it is easier to define,
recognize, and execute situations from one data format and stream. So it is important
to make one output file using one format by aggregating all output files from all used
simulators and get rid of the unnecessary context or sensor information.

In Step 4 which lies in the Situation Recognition System, the situations are defined. This
step comes in the system to define the method to recognize the situations. To recognize
situations, it is needed to define them first [HWS+16]. Situations are definable through
situation recognition algorithms. We have modeled situation recognition algorithms in
Section 4.5. Suppose, an electric car wants to take any software update while running on
the highway. So a high-level situation could be "Ready for Update". For this, it needs to
be checked if the car has enough charge in the battery, a strong network connection to
RSU, is not crossing the maximum speed limit of taking an update. If the car’s maximum
battery capacity is 35000wh, the battery charge should be more than 15000wh, the distance
between the car and any nearby RSU should be within 200m2 and the car must not cross
the speed limit of 60kph. When all of them are true which means combined with an AND
clause, only then the car can take a software update which, e.g., takes 40 seconds.

The last step of the system is executing the situation recognition algorithms or pseudocodes
by using any available programming language to recognize the situations from the ag-
gregated filtered output data. The aim later is to aggregate multiple situation detection
algorithms to come to a decision at any time step. For example, to change the temperature
inside a car at a particular time step, it is necessary to check different attributes of different
situation recognition algorithms.

44

4.2 Basic Elements of Modeling and Simulation

After the situations are detected by situation detection methods, the simulation data is
enhanced with the situation data. These situation data later can be used to take decisions
on the application level.

4.2 Basic Elements of Modeling and Simulation

Based on the overview of the system, the basic required elements of the Simulation System
component can be derived. It is very essential to distinguish and define every component of
the MCPS to define and execute simulation (Figure 4.2). It is more convenient to manage
the system when all the functional components are combined and utilized together. This
is an abstract view of the elements required in an MCPS [GBF+16]. Moreover, as they
are required to define scenarios of an MCPS (Step 1 of Component 1 which is Simulation
System of Figure 4.1), they are also required in the simulator to execute the simulation
(Step 2 of Figure 4.1). The required components are defined as follows:

Application Component

IoT Integration

Connection Module

Sensors / Actuators

Devices

F
u
rth

er C
o
n
sid

eratio
n
 &

 D
ata

S
o
u
rcesU

se
r

E
lem

en
ts o

f C
o
m

p
o
n
en

t 1
 o

r S
im

u
latio

n

S
ystem

 fro
m

 th
e o

verall F
ram

ew
o
rk:

 (i)T
o
 D

efin
e S

cen
ario

s

(ii) T
o
 execu

te S
im

u
latio

n
 Apapter

Figure 4.2: Abstract Basic Elements of the MCPS and Simulator Required for Defining the
Scenarios and Executing the Simulation of the Simulation System Component

Sensors and Actuators
Sensors are lower level hardware components. They can be virtual too when the devices
are virtual, e.g., the devices and the sensors of a simulator software. They gather all data
of the physical space of any system. Sensors can measure any sense like the presence of a
physical object in an area, temperature, humidity of a particular area, pressure on a certain
space. They gather data to send them to all the connected devices of the system. To do this,

45

4 Concept and Modeling

sensors do not need many logics. They convert real-life changes of a physical environment
into electric signals, so that devices can read the changes and act according to it [ADS02].
Actuators are also nothing but hardware components and can be virtual too like the sensors.
Where sensors can only read and gather information, actuators can perform a command.
Suppose, the optimal temperature of a room is set to 25 degree Celsius. If the temperature
rises to 30 degree Celsius, the actuator will turn on the Air conditioner to lower down the
temperature. Whereas sensors send the gathered data to the connected devices, actuators
perform commands from their connected devices based on the sensor information. They
act on the converted electric signals and translate the signals to a physical action [ADS02].
After they have performed the command, they can also respond back to command sender
devices. Based on the provided data of sensors and capability to act of the actuators,
situations can be modeled in an MCPS. They are the backbone of the systems.

Devices and Users of MCPS
Devices are hardware components where the sensors/actuators are integrated. There
can be many devices in an MCPS. In situation modeling of an MCPS, the presence of the
users are often mandatory, depending on the scenario. Suppose, in MCPS for vehicular
communication platform, devices like cars, smartphones, RSU, and users like car owners,
RSU admins or people on the roads are the inevitable parts. Devices and users can
communicate with the whole platform using transport protocols.

Connection Module
Connection modules are responsible for enabling communication among the devices to
devices, devices to users and devices to the application module. Gateway in the connection
module lets the devices be connected by supporting different communication technologies
and transport protocols. For example, RSUs of a particular area can disseminate any
available software update for vehicles which are eligible to take it. If the vehicle is an
autonomous vehicle, it needs to decide whether it takes the update or not based on the
current situations. Taking the update itself is a modeled situation that can only happen when
RSU and vehicles are connected to each other through any communication protocol. Again,
the connection among them can differ based on the distance between them. Moreover,
these sort of situations also needs to be modeled based on the context information of the
connection module.

IoT Integration
To model and simulate situations in MCPS every object of the system needs to be integrated
together (See Figure 4.2). The smartest way to do this integration is IoT integration as it
enables the connectivity of different devices in a smart environment so easily [AIM10]. In
a MCPS, one single component or object can take parts into multiple roles. For example, in
the MCPS of a vehicular communication platform, the car can be a source of sensor data,
actuator, communication medium. So when the car is a part of IoT integration, any role or
attribute of the car is available to others.

46

4.3 Relationship Analysis of the System

Further Consideration and Data Sources
In the overview of the whole system (See Figure 4.1), we have shown that data filtering
is one of the main steps (Step 3). With the data filtering step, it can also be necessary
to add external information including attributes with the data generated by the sensors.
Also, when a system’s components are connected by IoT, it is very possible to get data
from other connected sources. For example, we define the scenarios in the very first step
of the framework. These scenarios are simulated in the simulator to get virtual device’s
sensors data. Now, it is much likely that the generated data from the simulator output is
not enough to model and simulate the situations. Therefore, enabling to add additional
data from external resources is achieved within this step of the system process.

Application Component
The application component of an MCPS represents more applications connected to the
IoT integration through a common application interface (API). Additionally, using the
application interface users can execute, control or stop a situation recognition (Figure 4.2).
Situation recognition techniques, e.g. algorithms or templates, can avail the workflow of
the system in many different ways.

4.3 Relationship Analysis of the System

User Sensors Actuator

IoT Integration

Object

{abstract}
Output

Situation Recognition

Technique

(e.g: Pseudo Code /

Situation Template)

Recognized SituationConnection Module

Define State of Device / User

Application Module

Thing 1 (Devices e.g: Car)

Thing 2 (Devices e.g: RSU)

Connection Module

 Connection Data FlowInheritance

Simulation System

{Component 1}

Situation Recognition System

{Component 2}

Figure 4.3: Relationship Analysis of the System including Simulation System and Situation
Recognition System [MHWM17]

47

4 Concept and Modeling

The analysis of the system shows how different objects are related to each other for
modeling, simulation, and recognition of situations. Figure 4.3 shows the relationship
among the objects of the steps of Simulation System and Situation Recognition System.
To combine every object together let’s take an abstract class ’Object’ [MHWM17]. All
other objects in the system of modeling and simulating situations are related and inherit
properties from the abstract class. In the situation recognition step of the relationship
analysis, a Situation Recognition Technique defines a particular situation through algorithm
or pseudocode. Therefore, Recognized Situations define the states of things or users.
In the modeling and simulation steps, a thing contains many sensors and actuators. Sensors
and actuators respectively observe and perform actions for a thing in situation aware MCPS.
There are also users in an MCPS who maintain and manipulate things, either directly
or through using the application module. All the objects of the situation modeling and
simulation steps are connected to each other through the Connection Module, e.g., things
to things, things to users.

Algorithm: Situation Template (XML):

 if speed of vehicle is 0 <SituationTemplate id="movement"

 vehicle is not moving name="vehicle movement">

 else </SituationTemplate>

 vehicle is moving

Output

Timestep (string)

Context (string)

Occurred (boolean)

UserID (string)

UserType (string)

UserAct (string)

UserLocation (string)

Inheritance

Data Flow

Connection

Application Module

Applicationname (string)

ApplicationID (string)

Monitored (boolean)

AdditionalAttributes (string)

Actuators (string)

Sensors (string)

Users (string)

ConnectionAdapter (string)

States (string)

ThingsType (string)

ThingsName (string)

ThingsID (string)

ThingsUsers

Sensors

SensorValue (string)

SensorType (string)

SensorName (string)

SensorID (string)

ActuatorValue (string)

ActuatorType (string)

ActuatorName (string)

ActuatorID (string)

Actuators

Location (string)

OtherDesc (string)

Object

{abstract}

ObjectID (string)

ObjectType (string)

ObjectName (string)

Recognized Situation

Occurred (boolean)

Context (string)

User (string)

Thing (string)

Situation Recognition

Technique

Thing (string)

Sensors (string)

User (string)

Actuators (string)

e.g. Algorithms & Situation Templates

Figure 4.4: Attributes of different Objects in the System of Modeling, Simulating and
Recognizing of Situations

48

4.3 Relationship Analysis of the System

Every object in this relationship has attributes and they are depicted in the Figure 4.4.
The abstract class ’Object’ has attributes like ObjectID, ObjectType, TimeStamp, ObjectName,
Location, OtherDescription [MHWM17]. Other objects can inherit some attributes from
the abstract class if needed. A situation recognition technique (e.g., pseudocodes, sit-
uation templates) which is algorithms or pseudocodes in our model, take inputs from
the simulation output. The output is generated after the simulation process occurred in
the simulator where Things and Users were modeled. The simulation output file can be
described in a format like XML. The Situation Recognition Technique, e.g., pseudocodes or
templates, define the necessary context information and condition that is needed to define
and recognize a particular situation.

The conditions of the Situation Recognition step helps to model and simulate the situations
through algorithms. Situation Recognition Technique must acquire all attributes from the
Simulation step’s output because different attributes are needed for different Situation
Recognition process. Therefore, Situation Recognition Technique takes attributes from
the Simulation System’s output, e.g., Thing, Sensors, Actuators, User, Context, Occurred,
and Recognized Situations contain the attributes like Thing, User, Context, Occurred. Here,
context is the information that is used to characterize the situation of an object [ADB+99]
where objects are the things, persons, sensors and so on. Things have to have attributes
like ThingID, ThingName, ThingType, States, ConnectionAdapter, Users, Sensors, Monitored,
Actuators, AdditionalAttributes. Connection adapter defines the connection details among
objects. Things also can inherit the attributes from the abstract class ’Object’. Sensors,
Actuators and Users are directly connected to Things. Sensors need to have attributes
like SensorID, SensorName, SensorType, SensorValue. Actuators have attributes named
ActuatorID, ActuatorName, ActuatorType, ActuatorAction. Sensors and Actuators need to
be registered and integrated at the IoT platform to be connected continuously in order to
transfer gathered data. As Users maintain the Things, they need to have UserID, UserType,
Act, Location attributes to maintain the relationship with Things. Finally, the Application
Module is defined with the attributes like ApplicationID, ApplicationName.

49

4 Concept and Modeling

4.4 Modeling Scenarios for Mobile CPS (MCPS)

Start to check if update in car is possible

Does the car has
connection with

RSU/ Home network

Update not
possible

Is the car
moving

Is the car crossing
speed limit for
taking update

No

Yes

Does the have
enough energy

Is the car
autonomous or
person-driven

Person-driven

Check if there is any
passenger

Is the driver
sleepy, tired or
no attentive

No

Yes

Yes

No

No

Yes

Check driver’s Mood

Autonomous
Yes

No

Update
possible

Update
possible

Update
possible

Update not
possible

Update not
possible

Update not
possible

Figure 4.5: Possible flowchart to model scenarios in Simulation System (Component 1) for
Vehicular Scenarios

As a simulation scenario, we take the problem of applying Software Updates in MCPS,
where issues like connectivity, state of the cps (such as energy level, GPS coordinate,
interaction with users) make it hard to schedule these updates. In Figure 4.5, we have
modeled possible scenarios for MCPS, e.g., vehicular software update, in a flowchart.
Before any vehicle starts to take software update, it will check several situations. At first, it

50

4.5 Modeling Situation Recognition for Mobile CPS (MCPS)

is needed to be checked whether the car has a connection with RSU or home network. If
the car has no connection, it can be decided that the car is not capable of taking update at
that moment. When the connection situation is positive, then it is needed to be checked
whether the car is moving at that time or not. When at a particular time, the car has a
connection with either RSU or home network and is not moving; the car can take the
update as there is no major risk. Otherwise, when the car is moving in a particular time, it
must be checked if the car is crossing the speed limit for taking any update. In case the car
is crossing the maximum speed limit, the car is not allowed to take the update. If the car
is not crossing the speed limit, the next step is checking the energy level of it. If the car
has enough remained energy, it is now time to check whether the car is an autonomous
car or a person-driven car. In case the car is a person-driven car, it is a must to check the
driver’s mood during that time. If the driver is tired, sleepy or not attentive at that time, it
is advisable not to take the update. However, whereas the car is an autonomous car, the
next input can be checking about the number of passengers in the car, and it can take the
available update.

4.5 Modeling Situation Recognition for Mobile CPS (MCPS)

 IoT Integration
Speed Direction

Cyrrent Position

(Dynamic GPS

Coordinate)

Static GPS

Coordinate

Result of Sensors

& Actuators

Movement Connectivity

User Home Devices and Users

Time Step

Connection

Module

Energy Level

Vehicle

Act Type

RSU

Figure 4.6: Elements of the Simulation System (Component 1) for Vehicular Scenarios

As we have modeled scenarios in MCPS for vehicular software update system, Figure 4.6
shows the elements that are explained in Section 4.2 for the Vehicular Simulation System.
So in the simulator’s simulation environment, the Devices or Things are vehicles, RSU,
home in this case. Passengers, drivers of the vehicles and pedestrians on the streets are the
Users. The sensors and actuators of the objects provide data of movement of vehicles, GPS
coordinate of vehicles, RSU or Home to measure the connectivity strength among them,
energy information details of vehicles, act type and movement of Users. The movement
information includes the current position, direction of movement and speed of the objects.
All the information is available for any time step of the simulation (Figure 4.6). All these
attributes information are needed as output to recognize the situations. To finalize the

51

4 Concept and Modeling

Simulation System of the modeling and simulation of situations system, the vehicular system
is designed in this way.

Now, comes to the situation recognition algorithms or pseudocodes modeling as it is
designed in the Situation Recognition System. For a vehicle to take software update, the
following situations need to be recognized. The algorithms are implemented to recognize
situations in Section 6.2 with more explanatory details.

If the vehicle is moving or not (Algorithm 4.1). This algorithm needs vehicles and the
movement sensor data of them. The logic here is if the vehicle’s speed is 0 (See Line 6 to
9), the vehicle is not moving. Otherwise, it is moving at a certain speed. The algorithm
checks it for every time step.

Algorithm 4.1 Pseudocode to check if a vehicle is moving or not

1: for each timestep in simulation
2: get iteration of timestep
3: for each entity in timestep
4: if entity is equal to vehicle
5: get all vehicles speed, id
6: if speed of a vehicle is more than 0.00
7: at timestep vehicle is moving
8: else
9: at timestep vehicle is not moving

52

4.5 Modeling Situation Recognition for Mobile CPS (MCPS)

If the vehicle has connectivity to the internet through RSU or home WiFi or not. The
logic here to check the distance (variables: A, B, C or D, here the value of the variables
goes up alphabetically) among the vehicles, RSU or home. If there is connectivity, there
must be a check for the strength of that using the same distance variables (Algorithm 4.2).
This algorithm needs vehicles, RSU, home, the movement sensor data of vehicles, the GPS
coordinates of the RSUs and home. The algorithm checks the network connectivity for
every time step.

Algorithm 4.2 Pseudocode to check if a vehicle has connection with home, RSU or not and
if there is connection which strength

1: for each timestep in simulation
2: get iteration of timestep
3: for each entity in timestep
4: if entity is equal to RSU
5: get all RSU id and axis point
6: if entity is equal to Home
7: get all Home id and axis point
8: if entity is equal to vehicle
9: get all vehicle id and axis point

10: if vehicles axis point is within Am2 from Home
11: at timestep vehicle is at Home
12: if vehicle axis point is within Bm2 from any RSU
13: at timestep vehicle has strong connection with RSU id
14: if vehicle axis point is within Cm2 from any RSU
15: at timestep vehicle has medium connection with RSU id
16: if vehicle axis point is within Dm2 from any RSU
17: at timestep vehicle has weak connection with RSU id
18: else
19: at timestep vehicle has no connection

53

4 Concept and Modeling

Algorithm 4.3 explains a pseudocode to check if the vehicle is crossing a certain speed limit
(Variable: X) or not to take the software update. As the variable here is X, if the speed limit
is equal to or more than X unit, the vehicle is crossing the speed limit (See Line 6 and 7).
Otherwise, the vehicle is not crossing the speed limit to take the update (See Line 8 and 9).
This algorithm also needs vehicles and the movement sensor data of them. The algorithm
checks the speed limit for every time step.

Algorithm 4.3 Pseudocode to check if a vehicle is crossing speed limit to take update or
not

1: for each timestep in simulation
2: get iteration of timestep
3: for each entity in timestep
4: if entity is equal to vehicle
5: get all vehicles speed, id
6: if speed of a vehicle is equal or more than X unit
7: at timestep vehicle is crossing speed limit for taking update
8: else
9: at timestep vehicle is not crossing speed limit for taking update

From the simulation output, Algorithm 4.4 explains a pseudocode to check if any person
rides any vehicle or just walks on the sidewalk street. For this algorithm, vehicles, persons,
their location data, their speed data are needed as input. If any person and any vehicle
have the same speed and location value in a particular time step, the person is riding the
vehicle (See Line 8 to 10). If their speed and location data do not match for a particular
time step, then the person is not riding any vehicle and just a person who is walking on the
side street on that time step (See Line 12 and 13).

Algorithm 4.4 Pseudocode to check if person rides a vehicle or not

1: for each timestep in simulation
2: for each entity1 in timestep
3: if entity1 is person
4: flag equal to flase
5: for each entity2 in timestep
6: if entity2 is vehicle
7: get all timestep, vehicles id, speed, axis and persons id, speed, axis
8: if entity1 axis is equal to entity2 axis and entity1 speed is equal to entity2
9: speed

10: at timestep person id is in vehicle id
11: flag is true
12: if flag is false
13: at timestep person id is not in any vehicle

54

4.5 Modeling Situation Recognition for Mobile CPS (MCPS)

Algorithm 4.5 explains how to check if a vehicle is autonomous or a person-driven vehicle
through a pseudocode. For this algorithm, vehicles, persons, their location data, their speed
data are needed as input. The autonomous vehicles do not have any person as a driver
(See Line 8 to 13).

Algorithm 4.5 Pseudocode to check if a vehicle is autonomous or person driven

1: for each timestep in simulation
2: for each entity1 in timestep
3: if entity1 is vehicle
4: flag equal to false
5: for each entity2 in timestep
6: if entity2 is person
7: get all timestep, vehicles id, speed, axis and persons id, speed, axis
8: if entity1 axis is equal to entity2 axis and entity1 speed is equal to entity2
9: speed

10: at timestep vehicle is not an autonomous vehicle and driven by person
11: flag is true
12: if flag is false
13: at timestep vehicle is an autonomous vehicle

It is also needed to check the driver’s mood while driving the vehicle because it is not safe
for a tired or sleepy driver to take an important update (Algorithm 4.6). For this algorithm,
persons, their mood during driving is needed as inputs. The pseudocode also checks the
person’s mood (variable: acttype) for each time step to decide if the vehicle which is driven
by this particular person, can take a software update or not.

Algorithm 4.6 Pseudocode to check person’s mood

1: for each timestep in simulation
2: get iteration of timestep
3: for each entity in timestep
4: if entity is equal to person
5: get all persons id and acttype
6: at timestep person is having this acttype

55

4 Concept and Modeling

If the vehicle has enough charge in the battery (variables: X, Y) or not, a pseudocode
explains how to check this situation in Algorithm 4.7. Here, in the pseudocode there are
2 types of car and variables for them are A (e.g. Volkswagen) and B (e.g. BMW). They
have different maximum battery capacities. This is why the variables are different for the
remaining charge of the battery. So the logic here, if the car A has actual battery capacity
equal or more than X unit, the car has enough battery to take the update (See Line 6 to 8).
For the car B, if it has actual battery capacity equal or more than Y unit, the car has enough
battery to take the update (See Line 9 to 11). The algorithm also checks this situation for
each time step. The inputs need here are vehicles, their type, their actual battery capacity
for each time step.

Algorithm 4.7 Pseudocode to check if a vehicle has enough battery charge or not

1: for each timestep in simulation
2: get iteration of timestep
3: for each entity in timestep
4: if entity is equal to vehicle
5: get all vehicles id, type, actual battery capacity
6: if vehicle type is equal to A and actual battery capacity is more than
7: or equal to X unit
8: at timestep vehicle has enough charge for update
9: if vehicle type is equal to B and actual battery capacity is more than or

10: equal to Y unit
11: at timestep vehicle has enough charge for update
12: else
13: at timestep vehicle does not have enough charge to update

56

5 Simulator Selection

This chapter explains, in the beginning the simulator selection criteria, and there is a
comparison among different vehicular simulators in Section 5.2. In Section 5.3, there is
a brief description of SUMO; the simulator that is selected. Finally, some implemented
projects in SUMO are highlighted in Section 5.4.

5.1 Simulator Selection Criteria

To enable the simulation of situations in MCPS scenarios, a basic simulation system for that
MCPS is required. As we have taken vehicles as the MCPS to model and simulate situations
and later also detect them, we need to select a simulator that can help to formulate and
develop our concept into prototypical implementation. To select the simulator properly, it
is very essential to know first what the selection criteria are.

As the motivation of this thesis is to detect situations of a vehicle, e.g., so that it can be said
whether the vehicle can take any software update (e.g. break software update) now or not.
So to model the situation we need to feed a map, moving vehicles, passengers, pedestrians
to a simulator. So the simulator needs to be a multi-agent planning supported simulator.
The simulator needs to be user friendly. So easy to use elements, straightforward tools or
extensive documentation is required. To get a clear and detailed view of the simulation
scenario, it is very important that the simulator gives high levels of details. Also after the
simulation, the simulation result can be extracted in a known workable format (e.g. XML,
YAML). In the output of the simulation result, we need the following data for our modeling
and simulation part.

Vehicle Multiple vehicles with their IDs and types (e.g. hybrid vehicle, electric vehicle) are
the first information to be available in the output.

State State refers to the current position (x-position and y-position of the node, angle,
lane), speed and acceleration of the vehicle.

Time Only the state of the vehicles are not enough, we need them with a specific time step
from the simulation duration.

57

5 Simulator Selection

Person The simulator also should have the ability to take different sorts of persons, e.g.,
pedestrians, passengers as input and later provide the person state (x-position and y-
position of the node, angle, lane), speed, act type in the output.

Energy The maximum and actual battery capacity of each vehicle, consumed energy for
each time step are also very necessary to be available in the extraction.

5.2 Comparison of Different Vehicle Simulators

There are many vehicular simulators available now. They are actually traffic simulator
software such as SUMO, VISSIM, MITSIMlab, MATSim, Carla, CORSIM, Paramics, AIMSUN,
SimTraffic, TRANSIMS etc. We already know what the selection criteria to choose the right
simulator are. There are 3 different models in simulators: microscopic, mesoscopic and
macroscopic. Vehicle behavior and interaction are modeled individually with the reflection
of reality in microscopic simulation, whereas the macroscopic approaches focus on the
complete road flow by integrating more microscopic models and mesoscopic simulation
is based on a greatly simplified model1. The simulators can also be discrete which means
variables change at regular intervals of time and continuous which means variables change
continuously [SEE16]. There are open-source and commercial simulators with the visu-
alization of 2D and 3D. In the following table 5.1, there is a detailed comparison among
available popular vehicular simulators.

According to the simulation criteria from [SEE16], we have decided to use SUMO as the
situation simulation system, because this meets most of our selection criteria. It can provide
the option of using multiple and different sorts of vehicles. It has the option to add persons
as passengers and pedestrians. It also provides the option to export the energy situation of
a vehicle. After the simulation, from SUMO it is possible to extract the simulation output
as XML document with time steps, vehicles state, persons state, energy level and all other
details. SUMO is an open-source, microscopic, easy to use and well-documented traffic
simulator too.

1http://vision-traffic.ptvgroup.com/en-us/products/ptv-vissim/use-cases/mesoscopic-and-hybrid-
simulation/

58

5.2 Comparison of Different Vehicle Simulators

Microscopic

Mesoscopic

Macroscopic

Open-source

Commercial

Discrete

Continuous

Two-dimensional

Three-

dimensional

Easy

Medium

Difficult

Flexible

Limited

Very Limited

Type

Dimension

Priority

Pedestrian

Other vehicles

City

Region

Country

Yes

No

Yes

Partially

No

Yes

No

A
IM

SU
N

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

A
R

C
H

ISIM
x

x
x

x
x

x
x

x
x

x

C
O

R
SIM

x
x

x
x

x
x

x
x

x
x

x
x

x

M
A

T
Sim

x
x

x
x

x
x

x
x

x
x

M
IT

SIM
Lab

x
x

x
x

x
x

x
x

Param
ics

x
x

x
x

x
x

x
x

x
x

x
x

Sim
T

raffic
x

x
x

x
x

x
x

x
x

x
x

SU
M

O
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

T
R

A
N

SIM
S

x
x

x
x

x
x

x
x

x
x

T
ransM

odeler
x

x
x

x
x

x
x

x
x

x
x

x

V
ISSIM

x
x

x
x

x
x

x
x

x
x

x
x

x
x

Sim
ulators

Infrastructure

D
ifficulty

Flexiblility

Scope

A
rea

Energy

C
onsum

ption

Im
port

M
aps

O
utput

M
odel

C
ategory

System
V

isualization
V

ehicles and

Pedestrians

Table 5.1: Comparison among different available traffic simulators [SEE16] [SMC04]

59

5 Simulator Selection

5.3 Simulation of Urban Mobility (SUMO) - A Brief Description

SUMO is a free and open-sourced traffic simulator. It is available since 2001 to simulate a
traffic road network of the size of a city2. It is developed by the Institute of Transportation
Systems of The German Aerospace Center (DLR). Vehicles including public transports,
human being need to have a described route and departure time. As the traffic flow in this
simulator is microscopic, every vehicle in this simulator needs to be modeled individually.
Figure 5.1 explains the simplest simulation process of SUMO.

SUMO Tool

NETCONVERT

TOOL

XML_edges file
XML_nodes file
XML_connections file
XML_types file
XML_altitudes file
XML_junction file

XML_network file

XML_vehicle
files: attributes,

routes, trips

XML_person
files: attributes,

routes, trips

XML_energy
consumption file

XML_simulation
output

Figure 5.1: Simulation process with SUMO [MSAN11]

With the increasing time step which can be 1 second, the state of these objects change.
SUMO is being used by the vehicle-to-everything (V2X) community, so that they can get
realistic vehicle traces and evaluate other applications. The SUMO package contains the
following applications that are also needed for our work2:
SUMO: command line simulation;
GUISIM: simulation with a graphical user interface;
NETCONVERT: network importer;
NETGEN: abstract networks generator;
DUAROUTER: routes generator based on a dynamic user assignment;

2https://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/

60

5.4 Projects in SUMO

NETEDIT: NETEDIT is visual editor for street networks, traffic lights, detectors, and further
network elements.

We have used the latest version available in August 2018 (version 0.32.0). The version
contains the following features3:

• Supports different vehicles types

• Vehicles can change the lanes as it supports multi-lane streets

• Simulator can take inputs from XML file, e.g., input the XML-data containing nodes,
edges and edge types to create a simple map

• Collision free vehicle movement

• A XML-raw-output which contains information about the state of the simulation details
for every time step (Network-wide, edge-based, vehicle and detector-based outputs)

• Space-continuous and time-discrete vehicle movement

• A fast openGL graphical user interface

• Different Dynamic User Assignment algorithms

• Only standard C++ and portable libraries are used

• Fast execution speed (up to 100.000 vehicle updates/s on a 1GHz machine)

• Manages networks with several 10.000 edges (streets)

• Supports person-based inter-modal trips

5.4 Projects in SUMO

These projects show that SUMO is capable of doing situational based simulation for vehicles.
Semrau et. al [SERF17] enable a situation adaptive driver behavior for lane changing
merging processes in SUMO. At first, to model this in SUMO, driving behavior is designed
by taking the influential critical traffic situations. Lane changing behavior also depends
on the level of driving experience. Therefore, to implement it in SUMO, the emotional
memory is also taken into consideration to be integrated. Some situational conditions are
created for implementation. For example, a model for lateral distance keeping of vehicles
was added. This means that the vehicles have to maintain a minimum gap between them
to continue driving in the current lane. The result of the model is validated by using the
real world data.

3http://sumo.dlr.de/userdoc/Sumo_at_a_Glance.html#Features

61

5 Simulator Selection

Cottignies et al. [CDNP17] aim to create a complete real-time simulation of the urban
environment. The initial integration is done by using SUMO and rFpro4. The real-time
simulation takes inputs from driver or vehicle’s sensors, variables like sound, touch, motion,
sight. Then based on the decision making situational algorithms driver or the autonomous
vehicles take decisions. The algorithms help the drivers or the autonomous vehicles to
control the vehicles by using the vehicular actuators. The result from the action is fed back
to the simulators so that the vehicles can cope up for the next situation in real-time.

4http://www.rfpro.com

62

6 Simulator Environment and Prototypical
Implementation

The following chapter outlines the prototypical implementation of this thesis. In section
6.1, we present the simulator environment and simulation scenarios. The next section
describes the implementation for situation recognition.

6.1 Simulator Environment and Situation Modeling

INPUT SIMULATION OUTPUT

Map Data Map to Network Conversion Each Timestep +

Vehicle Details / Data Vehicle Routes and Trips Person Ride Details with Axis, Mood

Passenger Details / Data Passengers Routes and Trips Pedestrian Routes Detail

Pedestrians Routes and Trips Network Details

Vehicle Energy Simulation Vehicle Simulaton Result with

Energy Details, Axis & Angles

Figure 6.1: The inputs, simulations and outputs in SUMO

This section reflects the prototypical implementation of the Simulation System from Sec-
tion 4.1. It is explained here, how we have built the simulation scenarios in the SUMO
simulator step by step. In Figure 6.1 the inputs, simulation processes and outputs for SUMO
are briefly mentioned. The installation process of SUMO based on the operating system is
available in1.
The First Step of this prototypical implementation is to create a SUMO network file. The
network file contains traffic related part of a map (e.g. traffic light logics referenced by
junctions, junctions with their right way of regulation)2. The streets are a collection of
lanes (edges) and junctions are the connection between the lanes (nodes). OpenStreetMap
(OSM)3 can be useful to select, download, and prepare a map where vehicles and per-
sons can drive or walk in. The OSM file is simple to use as the map for our simulation
with SUMO. OSM file should have some necessary qualities available for the simulation,

1http://sumo.dlr.de/wiki/Installing
2http://sumo.dlr.de/wiki/Networks/SUMO_Road_Networks
3https://www.openstreetmap.org/

63

6 Simulator Environment and Prototypical Implementation

such as, the type of a street, junctions, speed limit, connections, the right way of rule,
marked one-way street, traffic light logic information, and the correct number of lanes
to avoid unrealistic traffic congestions in the simulation4. We have selected the map
from Stuttgart Stadmitte and Hauptbahnhof area. So the map of the are is downloaded
from OSM. Then the OSM normal files are converted to the new modified OSM files (with
elevation) (using osmosis5 tool) with additional srtm plugin. The command is in Listing 6.1.

1 osmosis --read-xml map.osm --write-srtm tagName=ele --write-xml Stad.osm

Listing 6.1: Snippet of the command to convert OSM normal files to new modified
OSM files

Figure 6.2: The map in SUMO-GUI, in the standard format

Here, Stad.osm is the downloaded OSM file. Now to create and import this OSM data into
SUMO NETCONVERT application is used. NETCONVERT6 extracts the simulation related
information from OSM file to do the conversion and import it into the SUMO network file.

4http://sumo.dlr.de/wiki/Tutorials/Import_from_OpenStreetMap
5Osmosis is a command line Java application for processing Open Street Map data (Source and installation

method: https://github.com/openstreetmap/osmosis).
6http://sumo.dlr.de/wiki/NETCONVERT

64

6.1 Simulator Environment and Situation Modeling

This network file is a simple human readable XML file. The visualization of the network
area is visible in Figure 6.2.

The following command (See Listing 6.2) generates the network file (Stad.net.xml) us-
ing the netconvert file. Here, the input is the OSM file named ’Stad.osm’. Network file
contains information about the edges, lanes, junctions, and connections of the selected area.

1 netconvert --osm-files Stad.osm -o Stad.net.xml --junctions.join --roundabouts.guess

--osm.elevation --tls.guess

Listing 6.2: Snippet of command to convert OSM file to network file

All the command need to execute "cmd.exe"7. The network file is using Cartesian, metric
coordinates. Therefore, x=0 is at the leftmost node in the network and y=0 is at the
bottom node. Now we will describe lanes, junctions, and connections available in the
network file we created for simulation purpose.

Edges Edges contain the definitions of lanes they consist of8 (See Listing 6.3). An edge
can be an internal edge. Internal edges are available in an intersection, so they connect
incoming and outgoing normal edges. In case an edge is an internal edge, there will be an
attribute named function next to edge id. The minimum edge length is 0.1m. Lanes can
have an attribute like allow. Suppose, a sidewalk is a lane which allows only the SUMO
’vclass’ pedestrians. In the following, it is shown how a 2D or 3D edge with lanes look like.

1 <edge id="<ID>" from="<FROM_NODE_ID>" to="<TO_NODE_ID>" priority="<PRIORITY>">

2 <lane id="<ID>_0" index="0" speed="<SPEED>" length="<LENGTH>" shape="1246.24,357.64

1251.43,354.70"/>

3 </edge>

Listing 6.3: Snippet of edge with lane attributes

Now in Table 6.1, we describe the different attributes of an edge in SUMO. Edges usually
have attributes like id, from, to and priority. As edges are made of lanes, they also contain
information about lanes. Lanes usually have attributes like id, index, speed, length and
shape. Table 6.1 explains attributes meaning and their data type of lanes8.

7for example, on Windows, to start "cmd.exe" follow Start->Execute->cmd.exe. Suppose, The files of SUMO
release locate at C: > sumo-0.32.0, then every time before any command it is necessary to write the full
path

8http://sumo.dlr.de/wiki/Networks/SUMO_Road_Networks

65

6 Simulator Environment and Prototypical Implementation

Name Type Description
id string The id of the lane
index running number (unsigned

int)
A running number, starting with zero at
the right-most lane

speed float The maximum speed allowed on this lane
[m/s]

length float The length of this lane [m]
shape position vector The geometry of the lane, given by a poly-

line that describes the lane’s center line
function "internal" Always "internal" for an internal edge

Table 6.1: Table with the lanes attribute name, type and description

Junctions Different streams cross in a junction of a map9. Junctions have attributes like id,
type, position details; an example is in Listing 6.4. In the listing, the "request"s describe
with the which (index) streams have a higher priority and are in conflict. "Response"
expresses the higher priority stream and "foes" the conflicted one.

1 <junction id="<ID>" type="<JUNCTION_TYPE>" x="<X-POSITION>" y="<Y POSITION>"

incLanes="<INCOMING_LANES>" intLanes="<INTERNAL_LANES>" shape="<SHAPE>">

2 <request index="0" response="0000" foes="0100" cont="0"/>

3 <request index="1" response="0000" foes="1100" cont="0"/>

4 </junction>

Listing 6.4: Snippet of junction with attributes

Table 6.2 describes what the attributes (id, x, y, incLanes, intLanes, shape) in junctions
mean (column "Description") and what data type they are (column "Type")9.

Name Type Description
id string The id of the junction
x x-position (real) The x-coordinate of the intersection
y y-position (real) The y-coordinate of the intersection
incLanes id list The ids of the lanes that end at the inter-

section
intLanes id list The IDs of the lanes within the intersection
shape position list A polygon describing the road boundaries

of the intersection

Table 6.2: Table with the junctions attribute name, type and description

9http://sumo.dlr.de/wiki/Networks/SUMO_Road_Networks

66

6.1 Simulator Environment and Situation Modeling

Connections Then come the connections. Connections provide the information of which
outgoing lanes can be reached from an incoming lane10. Example of connections file is
available in Listing 6.5.

1 <connection from="<FROM_EDGE_ID>" to="<TO_EDGE_ID>" fromLane="<FROM_LANE_INDEX>"

toLane="<TO_LANE_INDEX>" dir="r" state="o"/>

Listing 6.5: Snippet of connections with attributes

The attributes of the connections (from, to, fromLane, toLane, intLanes, dir, state) are listed
in Table 6.3. The types of the attributes and their meanings are enlisted with their names
in the table10.

Name Type Description
from edge id (string) The ID of the incoming edge at

which the connection begins
to edge id (string) The ID of the outgoing edge at

which the connection ends
fromLane index (unsigned int) The lane of the incoming edge at

which the connection begins
toLane index (unsigned int) The lane of the outgoing edge at

which the connection ends
intLanes id list The IDs of the lanes within the

intersection
dir enum ("s" = straight, "t" = turn, "l" =

left, "r" = right, "L" = partially left, R =
partially right, "invalid" = no direction)

The direction of the connection

state enum ("-" = dead end, "=" = equal, "m"
= minor link, "M" = major link)

The state of the connection

Table 6.3: Table with the connections attribute name, type and description

The Second Step is to import polygons from OSM data and produce OSM polygon file.
POLYCONVERT11 is able to do the import of geometrical shapes like polygons and convert
them to a representation for visualization in SUMO-GUI. To do the conversion, the used
command is listed in Listing 6.6.

1 polyconvert --net-file Stad.net.xml --osm-files Stad.osm --type-file typemap.xml -o

Stad.poly.xml

Listing 6.6: Snippet of the command to import polygons from OSM data

10http://sumo.dlr.de/wiki/Networks/SUMO_Road_Networks
11http://sumo.dlr.de/wiki/POLYCONVERT

67

6 Simulator Environment and Prototypical Implementation

The Third Step of creating the simulation environment in SUMO is to generate the vehic-
ular traffic demand. A vehicle in SUMO needs a vehicle type that describes the vehicle’s
physical properties12. Then it is necessary to create a route for the individual vehicle.
Listing 6.7 describes the vehicle with attributes.

1 <additional>

2 <vType id="Vehicle_Type_id" lenght="Length_Value" maxSpeed="Max_Speed_Value"

sigma="float" minGap="float" color="color" probability="float">

3 <param key="maximumBatteryCapacity"value="float"/>

4 <param key="maximumPower" value="float"/>

5 <param key="actualBatteryCapacity"

6 value="float"/>

7

8 </vType>

9 </additional>

Listing 6.7: Snippet of vehicle types with attributes (ecar.add.xml file)

Here sigma is driver imperfection (between 0 and 1), and the probability is the chance of
emitting a vehicle each second. Vehicles can have more attributes as an internal moment
of inertia, vehicle mass, etc. When SUMO installation file is downloaded, there is a file
available named ’randomTrips.py’ in the folder ’tools’. This code helps to generate routes for
different objects (e.g., vehicles, persons) within the simulator network. The command to
generate routes and trips for vehicles using the ’randomTrips.py’ file is listed in Listing 6.8 12.

1 python randomTrips.py --n Stad.net.xml -r ecar.rou.xml -t "type=\"ElectricalVehicle\"

departSpeed=\"max\" departLane=\"best\"" -c passenger --additional-files

ecar.add.xml -p 1.4 -e 1000 -l

Listing 6.8: Snippet of the command which produces routes and trips for vehicles in
the simulator SUMO

This gives the routes file ’ecar.rou.xml’ and trips file ’trips.trips’ as output. The example of
a routes file for the vehicles12 is presented in Listing 6.9. The routes file contains all the
vehicles information, e.g., id, type, depart, departLane, departSpeed and route edges, etc.

1 <routes>

2 <vehicle id="0" type="ElectricalSedan" depart="0.00" departLane="best"

departSpeed="max">

3 <route edges="25793413#0 -25793413#0 24041046#0"/>

4 </vehicle>

5 <vehicle id="1" type="ElectricalBus" depart="1.40" departLane="best" departSpeed="max">

6 <route edges="24807643 25802534#0 25802534#1 408711843"/>

7 </vehicle>

8

9 </routes>

Listing 6.9: Snippet of route file of vehicles

12http://sumo.dlr.de/wiki/Definition_of_Vehicles,_Vehicle_Types,_and_Routes

68

6.1 Simulator Environment and Situation Modeling

Example of the trips13 are available in the trips.trips.xml file and the following Listing 6.10
presents the general format of the file. Trips have their id, depart, from, to, type, depart-
Speed and departLanes attributes.

1 <routes>

2 <trip id="0" depart="0.00" from="25793413#0" to="9666308" type="ElectricalSedan"

departSpeed="max" departLane="best"/>

3 <trip id="1" depart="1.40" from="24807643" to="-145313671#2" type="ElectricalBus"

departSpeed="max" departLane="best"/>

4 </routes>

Listing 6.10: Snippet of trips file of vehicles

The meanings and types of the attributes from the vehicles routes and trips file are combined
together in a table. They are listed in the following Table 6.413.

Name Type Description
vehicle id id (string) The name of the vehicle
type id The id of the vehicle type to use for this

vehicle.
depart float The time step at which the vehicle shall

enter the network
departLane int or string (>=0, "random",

"free", "allowed", "best", "first")
The lane on which the vehicle shall be in-
serted

departSpeed float(m/s) or string (>=0,
"random", "max")

The speed with which the vehicle shall en-
ter the network

trip id id (string) The name of the trip
edges id list The edges the vehicle shall drive along,

given as their ids, separated using spaces

Table 6.4: Table with the name, type and description of the vehicles route and trip attributes

The Fourth Step is to generate the pedestrians and passengers flow. Pedestrians are
persons that walk14. They walk in the edges ’sidewalk’ which are the rightmost lanes in
simulator network. Whereas a passenger rides or drives a vehicle. To add the passenger in
the simulator it is necessary first to create a file like the following Listing 6.11.

1 <additional>

2 <vType id="Vehicle_Type_id" vClass="passenger"/>

3 </additional>

Listing 6.11: Snippet of passengers file

13http://sumo.dlr.de/wiki/Definition_of_Vehicles,_Vehicle_Types,_and_Routes
14http://sumo.dlr.de/wiki/Simulation/Pedestrians

69

6 Simulator Environment and Prototypical Implementation

Then to create the routes and trips for persons in the generated map, the following com-
mand in Listing 6.12 is used15:

1 python randomTrips.py --n stad.net.xml -r passengers.rou.xml -o passenger.trips.xml

--trip-attributes "modes=\"car\"" -c persontrip --persontrips -p 1.4 -e 1000 -l

Listing 6.12: Snippet of the command that is used to generate the routes and trips for
the persons in SUMO

The generated routes file contains the information about the person who rides a vehicle
and person who walks. The file also contains information about from where the ride begins
and where it ends. Listing 6.13 gives an example of the generated routes file15.

1 <routes>

2 <person id="0" depart="0.00">

3 <walk edges="23553288#1 23553288#0 370301707#1 "/>

4 </person>

5 <person id="1" depart="1.40">

6 <ride from="3996880" to="10075258#1" lines="1_0"/>

7 </person>

8 </routes>

Listing 6.13: Snippet of routes of pedestrians and passengers

The generated trips file provides the trip details of persons15, e.g., from which point to
which point the particular person is having the trip and the modes of the trips, see the
following Listing 6.14.

1 <routes>

2 <person id="0" depart="0.00">

3 <personTrip from="23553288#1" to="90724434#2" modes="vehicle"/>

4 </person>

5 <person id="1" depart="1.40">

6 <personTrip from="3996880" to="10075258#1" modes="vehicle"/>

7 </person>

8 </routes>

Listing 6.14: Snippet of trips of persons

the Fifth Step in this last step, generating the output file with battery information of
vehicles is needed as we have described in the Execute Simulation (Step 2) of Figure 4.1
in chapter 4. SUMO generates the output files in XML format by default16. We take the
Floating Car Data (fcd) output with battery usage. FCD output provides name, position,
angle, type for every vehicle and person. So, a configuration file named ’Stad.sumo.cfg’
is created to combine everything together and run the simulation. We run the simulation
in GUI. The configuration file example is presented in Listing 6.15. The file needs the
generated net file and all the routes files as input. Additional files value needs the files

15http://sumo.dlr.de/wiki/Simulation/Pedestrians
16http://sumo.dlr.de/wiki/Simulation/Output

70

6.1 Simulator Environment and Situation Modeling

like "ecar.add.xml" and "stad.poly.xml". The simulation time is defined within the "time"
attributes. The simulation will run for 1000 time-step as defines here and the interval
between the time-steps will be 0.1.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/sumoConfiguration.xsd">

3
4 <input>

5 <net-file value="stad.net.xml"/>

6 <route-files value="ecar.rou.xml,passengers.rou.xml"/>

7 </input>

8
9 <additional-files>

10 <additional-files value="ecar.add.xml,stad.poly.xml"/>

11 </additional-files>

12
13 <time>

14 <begin value="0.1"/>

15 <end value="1000"/>

16 <step-length value="0.1"/>

17 </time>

18
19 <output>

20 <fcd-output value="SUMO_output.output.xml"/>

21 <battery-output value="battery.xml"/>

22 <battery-output.precision value="4"/>

23 <device.battery.probability value="1"/>

24 </output>

25
26 </configuration>

Listing 6.15: Snippet of configuration file for outputs

’SUMO_output.output.xml’ file provides the FCD output and ’battery.xml’ contains the
energy consumption details. Later, they are mapped and merged together so that it is easy
to do the situation modeling and detection.

As this version of SUMO can not provide user moods (e.g., sleepy, attentive, not attentive,
tired) details, for our situation modeling purpose, we add them very randomly with persons
who drive a vehicle. Moreover, to keep it simple, we have added a few Road-Side Units
(RSU)s and home address (See Line 4-6) to calculate if the vehicle has enough connectivity
to the internet (See Listing 6.16). This follows the Filter Data step of the concept chapter
(See Figure 4.1).

71

6 Simulator Environment and Prototypical Implementation

1 <fcd-export xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://sumo.dlr.de/xsd/fcd_file.xsd">

2
3 <timestep time="0.00">

4 <RSU id="1" x="851.00" y="203.00" edge="24820388#0_3"/>

5 <RSU id="2" x="1012.00" y="1008.00" edge="3933624#4_0"/>

6 <Home id="1" x="699.31" y="1314.01"/>

7 </timestep>

8 <timestep time="1.40">

9 <vehicle id="1" x="1358.63" y="949.82" angle="29.42" type="ElectricalSedan"

speed="13.89" pos="5.10" lane="24807643_1" slope="0.00"

energyConsumed="0.0000" actualBatteryCapacity="1000.0000"

maximumBatteryCapacity="2000.0000" chargingStationId="NULL"

energyCharged="0.0000" energyChargedInTransit="0.0000"

energyChargedStopped="0.0000" acceleration="0.0000" timeStopped="0"/>

10 <vehicle id="1_0" x="1403.27" y="1115.85" angle="201.94" type="ElectricalCar"

speed="0.00" pos="5.10" lane="3996880_0" slope="0.00" energyConsumed="0.0000"

actualBatteryCapacity="17500.0000" maximumBatteryCapacity="35000.0000"

chargingStationId="NULL" energyCharged="0.0000"

energyChargedInTransit="0.0000" energyChargedStopped="0.0000"

acceleration="0.0000" timeStopped="0"/>

11 <person id="1" acttype="Attentive" x="1403.27" y="1115.85" angle="201.94"

speed="0.00" pos="5.10" edge="3996880" slope="0.00"/>

12 </timestep>

13 </fcd-export>

Listing 6.16: Snippet of the output file with RSU, home, drivers mood and all other
available details from SUMO output

72

6.2 Situation Recognition

6.2 Situation Recognition

This section of this chapter shows the prototypical implementation of the Section 4.4 from
the concept chapter. Moreover, it shows the situations simulation and recognition in the
python code snippets based on the algorithms of Section 4.5. The whole situation modeling,
simulation and detection processes are shown step by step in Figure 6.3.

Visualization Output Battery

Simulation

Cars

Simulation

Pedestrians

Simulation

Battery

Simulation

Passengers

SUMO

Output of Simulated Files

Marging the Output Files, Add Necessary Extra Data

(RSU & User Act)

Detect Different Situations

Figure 6.3: The whole situation modeling, simulation and detection

As we want to check if a vehicle is capable of taking the software update for brake at a
certain time step or not, we have to detect some situation, such as, if the vehicle is moving
or parked somewhere, if the vehicle is running within the certain speed limit, if the vehicle
is autonomous or a person driven vehicle, if the vehicle has network connectivity with RSU
or home network, even if the vehicle has internet connectivity what sort of signal strength
it has (strong, medium or weak), if any person rides the vehicle, if the vehicle has enough
battery power, etc. (See Listing 6.17).

1 In a particular time step:

2 Test if the vehicle is moving or not;

3 Test if the vehicle is crossing the speed limit or not;

4 Test if the vehicle has strong, medium or weak internet connection;\\

5 Test if the vehicle is autonomous or person driven;

6 Test if the vehicle has any riders or not;

7 Test if the vehicle’s driver is not sleepy or too tired;

8 Test if the vehicle has enough battery charge;

Listing 6.17: Test if the vehicle can take available brake software update in a particular
time period

73

6 Simulator Environment and Prototypical Implementation

So at first, we want to recognize from the simulation output if the vehicle is running,
stopped on the road or parked somewhere (e.g., at home, parking area) (See Listing 6.18).
To recognize this situation the logic is, if the speed of the vehicle is 0 then it is stopped
or parked somewhere, and if the vehicle has the speed limit more than 0, the vehicle is
running on a road on that particular time step (See Line 15-18). The inputs we need for
this detection are vehicle id, time step, vehicle’s speed.

1 import xml.etree.ElementTree as ET

2 tree = ET.parse(’SUMO_output.output - All Finished.xml’)

3 root = tree.getroot()

4
5 for timestep in root.iter(’timestep’):

6 time = timestep.get(’time’)

7 for child in timestep:

8 if (child.tag == ’vehicle’):

9 speed = (float) (child.attrib.get(’speed’))

10
11 print ("time: ", time)

12 id = (str) (child.attrib.get (’id’))

13 print ("id: ", child.attrib.get(’id’))

14 print ("speed: ", child.attrib.get(’speed’))

15 if (speed > 0.00):

16 print (’At time ’, time, "vehicle ", id, "is moving")

17 else:

18 print (’At time ’, time, "vehicle ", id, " is not moving")

Listing 6.18: Implemented Python code snippet to recognize if a vehicle is moving or
not moving

To recognize from the simulation output if the vehicle is crossing the maximum speed limit
to take a brake software update. Suppose, the maximum speed limit for a car to take the
update is 13m/s. So if any vehicle is crossing this limit in a time step, it is not allowed to
take the update. The input we need for this simulation and detection are id, time step,
vehicle’s speed. The python code snippet from Listing 6.19 shows the logical part of the
speed limit recognition (See Line 8-11) in the following (as the output file importing part
is always same, we skip writing that part).

1 for timestep in root.iter(’timestep’):

2 time = timestep.get(’time’)

3 for child in timestep:

4 if (child.tag == ’vehicle’):

5 speed = (float) (child.attrib.get(’speed’))

6 id = (str) (child.attrib.get (’id’))

7
8 if (speed >= 13.00):

9 print (’At time ’, time, "vehicle ", id, "is crossing speed limit")

10 else:

11 print (’At time ’, time, "vehicle ", id, " is not crossing speed limit")

Listing 6.19: Implemented Python code snippet to recognize if a vehicle is crossing
the speed limit or not

74

6.2 Situation Recognition

If the vehicle does not have internet connectivity, then it is not possible for the vehicle to
download and install the updated software version (See Listing 6.20).

1 for timestep in root.iter(’timestep’):

2 time = timestep.get(’time’)

3 for child in timestep:

4
5 if (child.tag == ’RSU’):

6 rsu_id = (str) (child.attrib.get (’id’))

7
8 if (child.tag == ’Home’):

9 home_id = (str) (child.attrib.get (’id’))

10
11 if (child.tag == ’vehicle’):

12 vehicleypoint = (float) (child.attrib.get(’y’))

13 vehicle_id = (str) (child.attrib.get (’id’))

14
15 if (vehicleypoint > 53.00 and vehicleypoint <= 353.00):

16 print (’At time ’, time, "vehicle ", vehicle_id, "is connected to RSU1 and the

connection is strong (+++)")

17 elif (vehicleypoint >= 353.01 and vehicleypoint <= 503.00):

18 print (’At time ’, time, "vehicle ", vehicle_id, "is connected to RSU1 and the

connection is medium (++)")

19 elif (vehicleypoint >= 503.01 and vehicleypoint <= 650.00):

20 print (’At time ’, time, "vehicle ", vehicle_id, "is connected to RSU1 and the

connection is weak (+)")

21 elif (vehicleypoint >= 858.01 and vehicleypoint <= 1158.00):

22 print (’At time ’, time, "vehicle ", vehicle_id, "is connected to RSU2 and the

connection is strong (+++)")

23 elif (vehicleypoint >= 708.01 and vehicleypoint <= 858.00):

24 print (’At time ’, time, "vehicle ", vehicle_id, "is connected to RSU2 and the

connection is medium (++)")

25 elif (vehicleypoint >= 1158.01 and vehicleypoint <= 1310.00):

26 print (’At time ’, time, "vehicle ", vehicle_id, "is connected to RSU2 and the

connection is medium (++)")

27 elif (vehicleypoint >= 650.01 and vehicleypoint <= 708.00):

28 print (’At time ’, time, "vehicle ", vehicle_id, "is connected to RSU2 and the

connection is weak (+)")

29 elif (vehicleypoint >= 1320.01 and vehicleypoint <= 1460.00):

30 print (’At time ’, time, "vehicle ", vehicle_id, "is connected to RSU1 and the

connection is weak (+)")

31 elif (vehicleypoint >= 1310.01 and vehicleypoint <= 1320.00):

32 print (’At time ’, time, "vehicle ", vehicle_id, "is connected to Home1 WiFi")

33 else:

34 print (’At time ’, time, "vehicle ", vehicle_id, "is not connected")

Listing 6.20: Implemented Python code snippet to recognize if a vehicle has
connection with home RSU or not and if there is connection what
the level of connection strength is

A vehicle can be connected to RSU to take an update and then share it with other vehicles.
If the vehicle is parked at home or office then it is also easier for the vehicles to take
update as they get a strong WiFi signal from the home or office network. Suppose in the

75

6 Simulator Environment and Prototypical Implementation

prototypical implementation, to check if the vehicle is at home, it is checked whether the
coordinate distance difference of the home and vehicle is within 10m2. To check if the
vehicle has a connection with any RSU, the distance difference is measured. If the distance
difference is within approximately 150m2 then the vehicle is strongly (+++) connected
to that RSU, if within approximately 400m2 then the vehicle has a medium level (++) of
connection and if within approximately 800m2 then the vehicle has a weak (+) connection.
If this distance range does not match, the vehicle has no connection to any RSU or home
network. The RSU and home have a static position, therefore, static axis point (e.g., y-axis
of RSU_1 = 203.00, RSU_2 = 1008.00, Home = 1314.01 in our taken map). In Line 15 of
Listing 6.20, we set the connection between vehicles and RSU1 to strong because in this
condition, it is checked whether the distance between the vehicles and RSU1 is 150m2 (the
vehicles point are set to 53.00 and 353.00 as the axis point of RSU_1 is 203.00). In Line 21
of the code snippet, we set the connection between vehicles and RSU2 to strong because in
this condition, it is checked whether the distance between the vehicles and RSU2 is 150m2

(the vehicles point are set to 858.01. and 1158.00 as the axis point of RSU_2 is 1008.00).
For this situation modeling and recognition we need the axis information of vehicles and
homes, time step, id of the vehicles and homes (See Listing 6.20).

From the SUMO output, to recognize if any person rides a car or just walks on the sidewalk
street (See Listing 6.21), we need to check the vehicles and persons axis value and speed.
When the axis value and speed of the persons and vehicles are equal (See Line 10 and
11), the person is actually riding the car; otherwise the person is walking on the side walk
street. With the same logic, it can also be checked if the vehicle is an autonomous vehicle
or person driven.
To check the person’s interaction with the vehicle, all the persons need to be considered first
whereas to recognize if the vehicle is autonomous all the vehicles need to be considered first.

1 for timestep in root.iter(’timestep’):

2 for child1 in timestep:

3 if child1.tag in [’personride’, ’person’]: #considering all persons at one

timestep

4 flag = False

5 for child2 in timestep:

6 if child2.tag == ’vehicle’: #considering all vehicles in the same timestep

7 tm = timestep.get(’time’)

8 pr = child1.get(’id’)

9 vh = child2.get(’id’)

10 if child2.get(’x’) == child1.get(’x’) and child2.get(’speed’) ==

child1.get(’speed’):

11 print(’At time {}, person {} is in vehicle {}.’.format(tm, pr, vh))

12 flag = True

13 if flag is False:

14 print(’At time {}, person {} is not in any vehicle.’.format(tm, pr))

Listing 6.21: Implemented Python code snippet to recognize if person rides a vehicle
or not

76

6.2 Situation Recognition

To recognize if the vehicle has enough battery or not, we need the maximum battery
capacity, consumed energy of the vehicle. Suppose in our prototypical implementation, we
have 2 types of vehicles: electric sedan and electric car. The maximum battery capacity
of the electric sedan and electric car respectively are 2000Wh and 35000Wh. So if the
electric sedan has an actual remaining battery capacity of 500Wh or more than that in
any time step, it is capable of taking update (See Line 14 and 15). In case of an electric
car, it is equal or more than 15000Wh (See Line 16 and 17). To model and simulate this
situation we need the time step, vehicle id, vehicle type, actual battery capacity attributes
(See Listing 6.22).

1 for timestep in root.iter(’timestep’):

2 time = timestep.get(’time’)

3 for child in timestep:

4 if (child.tag == ’vehicle’):

5 vehicle_id = (str) (child.attrib.get (’id’))

6 vehicle_type = (str) (child.attrib.get (’type’))

7 vehicle_actualBatteryCapacity = (float) (child.attrib.get(’actualBatteryCapacity’))

8
9 print ("time: ", time)

10 print ("id: ", child.attrib.get(’id’))

11 print ("type: ", child.attrib.get(’type’))

12 print ("actualBatteryCapacity: ", child.attrib.get(’actualBatteryCapacity’))

13
14 if vehicle_type == "ElectricalSedan" and vehicle_actualBatteryCapacity >= 500:

15 print (’At time ’, time, "vehicle ", vehicle_id, "has",

vehicle_actualBatteryCapacity, ’W charge. So, it has enough charge for

update’)

16 elif vehicle_type == "ElectricalCar" and vehicle_actualBatteryCapacity >= 15000:

17 print (’At time ’, time, "vehicle ", vehicle_id, "has",

vehicle_actualBatteryCapacity, ’W charge. So, it has enough charge for

update’)

18 else:

19 print (’At time ’, time, "vehicle ", vehicle_id, "has",

vehicle_actualBatteryCapacity, ’W charge. So, it does not have enough

charge for update’)

Listing 6.22: Implemented Python code snippet to recognize if a vehicle has enough
battery charge or not

77

6 Simulator Environment and Prototypical Implementation

To check the person’s mood at any time step, it is enough to check the person’s ’acttype’
from the XML output file with their id (See Listing 6.23).

1 for timestep in root.iter(’timestep’):

2 time = timestep.get(’time’)

3 for child in timestep:

4 if (child.tag == ’person’):

5 acttype = (str) (child.attrib.get(’acttype’))

6 print ("time: ", time)

7 id = (str) (child.attrib.get (’id’))

8 print ("id: ", child.attrib.get(’id’))

9 print ("acttype: ", child.attrib.get(’acttype’))

Listing 6.23: Implemented Python code snippet to recognize person’s mood

78

7 Conclusion and Future Work

The following chapter summarizes the research, concept, and implementation of the system.
Furthermore, it discusses the conclusions with further scope for the future work.

Within this thesis, initially some fundamentals like CPS, MCPS, their generic architecture,
IoT, context, situation, Situation-Aware Systems, and Workflows, the method of modeling
and simulation are introduced. These fundamentals lead to the related work of them.
Afterwards, the situation recognition methods from different research projects are explained
and analyzed. Moreover, to describe the modeling in the CPSs, some important related work
are highlighted. As we choose the application of Software Update in vehicular systems as
our MCPS to model and simulate situations, CPS modeling of vehicles is also illustrated.

The primary contribution of this thesis is the development of the concepts for modeling
and simulation of situations in MCPS. It starts with a system overview which contains two
components; Simulation System and Situation Recognition System. The system has five steps
all together: defining the scenarios, executing the simulation is a selected simulator, filtering
the simulation output, defining the situations through pseudocodes and finally recognizing
the modeled situations by executing the algorithms using Python. Based on the overview
of the system, some basic elements that are required to model and simulate situations in
MCPS are derived. To model situations in pseudocode, a relationship analysis of the system
including the basic elements is made. This relationship analysis with necessary attributes
of the objects leads to the modeling situation recognition for the vehicular system which
includes vehicles, RSU, home, persons. So, the basic elements with the attributes from the
objects are mapped in the vehicular system and the situation recognition algorithms or
pseudocode are modeled. The goal of the vehicular system is to check if a particular vehicle
can take a software update at a specific time. Hence, some related situations (e.g., vehicle’s
speed, network connection, remaining energy) are modeled to make the decision.

The final contribution of this thesis is the prototypical implementation of the concept
with modeled and simulated situations. To accomplish that, an available vehicular traffic
simulator SUMO is selected after comparing the requirements with many available vehicular
system simulators. In SUMO, the scenarios are modeled first to execute them together.
The execution of the modeled scenarios provides the simulation output with necessary
data. The output data are filtered and merged together to avail a single data stream for
the situation recognition. Finally, from these output data, the modeled pseudocodes are
implemented using python. So, the concept is validated by the prototypical implementation
of the situations modeling in SUMO and recognized situations.

79

7 Conclusion and Future Work

Future work includes building error-free situations modeling and simulation in MCPS. The
prototypical implementation in this thesis does not consider the run-time recognition of
situations. The simulation environment is complicated and not complete. This comprises
the need of the derivation of modeling, simulation, and testing scenarios using real-time
data stream from MCPSs.

Moreover, the situation recognition must be done with optimization and efficiency as
real-time requirements fulfillment is very important. The quality of the data and context
which later defines the quality of the situations needs to be improved. As further research
may want to enable the prediction of situations.
Another possible future work would be to validate this system concept with other MCPS
scenarios and simulators.

80

Bibliography

[ADB+99] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, P. Steggles. “To-
wards a Better Understanding of Context and Context-Awareness.” In: Hand-
held and Ubiquitous Computing. Ed. by H.-W. Gellersen. Berlin, Heidelberg:
Springer Berlin Heidelberg, (1999), pp. 304–307. ISBN: 978-3-540-48157-7
(cit. on pp. 26, 49).

[ADS02] M. Anjanappa, K. Datta, T. Song. “Introduction to Sensors and Actuators.”
In: The Mechatronics Handbook, (2002), pp. 16–1 (cit. on p. 46).

[AIM10] L. Atzori, A. Iera, G. Morabito. “The Internet of Things: A survey.” In:
Computer Networks 54.15 (2010), pp. 2787–2805. ISSN: 13891286. DOI:
10.1016/j.comnet.2010.05.010. arXiv: arXiv:1011.1669v3 (cit. on pp. 24,
25, 46).

[AKK13] S. H. Ahmed, G. Kim, D. Kim. “Cyber Physical System: Architecture, Applica-
tions and Research Challenges.” In: IFIP Wireless Days (2013), pp. –4. ISSN:
2156972X. DOI: 10.1109/WD.2013.6686528 (cit. on pp. 22, 24, 37, 39).

[AM00] G. D. Abowd, E. D. Mynatt. “Charting Past, Present, and Future Research in
Ubiquitous Computing.” In: ACM Trans. Comput.-Hum. Interact. 7.1 (2000),
pp. 29–58. ISSN: 1073-0516. DOI: 10.1145/344949.344988. URL: http:
//doi.acm.org/10.1145/344949.344988 (cit. on p. 26).

[BB09] M. C. Bujorianu, H. Barringer. “An Integrated Specification Logic for Cyber-
Physical Systems.” In: Proceedings of the IEEE International Conference on
Engineering of Complex Computer Systems, ICECCS (2009), pp. 291–300. DOI:
10.1109/ICECCS.2009.36 (cit. on p. 38).

[BFD+15] B. Balaji, M. A. A. Faruque, N. Dutt, R. Gupta, Y. Agarwal. “Models, Abstrac-
tions, and Architectures: The Missing Links in Cyber-Physical Systems.” In:
52nd ACM/EDAC/IEEE Design Automation Conference (DAC). (2015), pp. 1–6.
DOI: 10.1145/2744769.2747936 (cit. on p. 38).

[BHK+15] U. Breitenbücher, P. Hirmer, K. Képes, O. Kopp, F. Leymann, M. Wieland.
“A Situation-Aware Workflow Modelling Extension.” In: Proceedings of the
17th International Conference on Information Integration and Web-based
Applications &Services - iiWAS ’15 (2015), pp. 1–7. DOI: 10.1145/2837185.
2837248. URL: http://dl.acm.org/citation.cfm?doid=2837185.2837248
(cit. on pp. 27, 33, 35, 36).

81

http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1109/WD.2013.6686528
http://dx.doi.org/10.1145/344949.344988
http://doi.acm.org/10.1145/344949.344988
http://doi.acm.org/10.1145/344949.344988
http://dx.doi.org/10.1109/ICECCS.2009.36
http://dx.doi.org/10.1145/2744769.2747936
http://dx.doi.org/10.1145/2837185.2837248
http://dx.doi.org/10.1145/2837185.2837248
http://dl.acm.org/citation.cfm?doid=2837185.2837248

Bibliography

[CDNP17] A. Cottignies, M. Daley, E. Newton, H. Parker. “rFpro & SUMO: The Road To
A Complete Real-Time Simulation Of Urban Environments for DIL, ADAS and
Autonomous Testing.” In: SUMO 2017 – Towards Simulation for Autonomous
Mobility 31 (2017). ISSN: 1866-721X (cit. on p. 62).

[CHHK18] C. C. Cheng, P. C. Hsiu, T. K. Hu, T. W. Kuo. “Oasis: A Mobile Cyber-Physical
System for Accessible Location Exploration.” In: Proceedings of the IEEE
106.9 (2018), pp. 1744–1759. ISSN: 00189219. DOI: 10.1109/JPROC.2018.
2817511 (cit. on p. 22).

[Cyb16] Cyber Physical Systems Public Working Group of U.S. Department of Com-
merce’s National Institute of Standards and Technology (NIST). Framework
for Cyber-Physical System. PICASSO Project Opportunity Report Version 1.0.
(2016), p. 266. DOI: https://doi.org/10.6028/NIST.SP.1500-201 (cit. on
pp. 21, 25).

[CYH+17] B. Chen, Z. Yang, S. Huang, X. Du, Z. Cui, J. Bhimani, X. Xie, N. Mi. “Cyber-
Physical System Enabled Nearby Traffic Flow Modelling for Autonomous
Vehicles.” In: IEEE 36th International Performance Computing and Commu-
nications Conference, IPCCC 2017 (2017), pp. 1–6. ISSN: 1097-2641. DOI:
10.1109/PCCC.2017.8280498 (cit. on p. 39).

[Dey99] A. K. Dey. “Understanding and Using Context.” In: Proceedings of the 1st
international symposium on Handheld and Ubiquitous Computing (1999),
pp. 304–307 (cit. on p. 28).

[FHWM16] A. C. Franco da Silva, P. Hirmer, M. Wieland, B. Mitschang. “SitRS XT –
Towards Near Real Time Situation Recognition.” In: Journal of Information
and Data Management 7.1 (2016), pp. 4–17 (cit. on p. 35).

[GBF+16] J. Guth, U. Breitenbücher, M. Falkenthal, F. Leymann, L. Reinfurt. “Com-
parison of IoT Platform Architectures: A Field Study based on a Reference
Architecture.” In: 2016 Cloudification of the Internet of Things (CIoT). IEEE,
(2016), pp. 1–6. DOI: 10.1109/CIOT.2016.7872918 (cit. on p. 45).

[GHH+17] Y. Guo, X. Hu, B. Hu, J. Cheng, M. Zhou, R. Y. Kwok. “Mobile Cyber Physical
Systems: Current Challenges and Future Networking Applications.” In: IEEE
Access 6 (2017), pp. 12360–12368. ISSN: 21693536. DOI: 10.1109/ACCESS.
2017.2782881 (cit. on p. 22).

[HHM+17] M. Hüffmeyer, P. Hirmer, B. Mitschang, U. Schreier, M. Wieland. “SitAC –
A System for Situation-aware Access Control - Controlling Access to Sensor
Data.” In: Proceedings of the 3rd International Conference on Information
Systems Security and Privacy Icissp (2017), pp. 113–125. DOI: 10.5220/
0006186501130125. URL: http://www.scitepress.org/DigitalLibrary/Link.
aspx?doi=10.5220/0006186501130125 (cit. on p. 36).

[HPK12] D. D. Hoang, H.-Y. Paik, C.-k. Kim. “Service-Oriented Middleware Archi-
tectures for Cyber-Physical Systems.” In: IJCSNS International Journal of
Computer Science and Network Security 12.1 (2012), p. 18 (cit. on pp. 21,
40).

82

http://dx.doi.org/10.1109/JPROC.2018.2817511
http://dx.doi.org/10.1109/JPROC.2018.2817511
http://dx.doi.org/https://doi.org/10.6028/NIST.SP.1500-201
http://dx.doi.org/10.1109/PCCC.2017.8280498
http://dx.doi.org/10.1109/CIOT.2016.7872918
http://dx.doi.org/10.1109/ACCESS.2017.2782881
http://dx.doi.org/10.1109/ACCESS.2017.2782881
http://dx.doi.org/10.5220/0006186501130125
http://dx.doi.org/10.5220/0006186501130125
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006186501130125
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006186501130125

Bibliography

[HWS+15] P. Hirmer, M. Wieland, H. Schwarz, B. Mitschang, U. Breitenbücher, F. Ley-
mann. “SitRS – A Situation Recognition Service based on Modeling and
Executing Situation Templates.” In: The 9th Advanced Summer School on
Service-Oriented Computing. (2015), pp. 113–127 (cit. on p. 34).

[HWS+16] P. Hirmer, M. Wieland, H. Schwarz, B. Mitschang, U. Breitenbücher,
S. Gómez Sáez, F. Leymann. “Situation recognition and handling based
on executing situation templates and situation-aware workflows.” In: Com-
puting 99 (2016). DOI: 10.1007/s00607-016-0522-9 (cit. on pp. 18, 32–34,
44).

[HZL10] K. Häussermann, O. Zweigle, P. Levi. “Understanding and Designing
Situation-Aware Mobile and Ubiquitous Computing Systems.” In: World
Academy of Science, Engineering and Technology. International Journal of
Computer, Electrical, Automation, Control and Information Engineering 4.3
(2010), pp. 329–338 (cit. on pp. 28, 31, 32).

[JLW+16] D. Jia, K. Lu, J. Wang, X. Zhang, X. Shen. “A Survey on Platoon-Based
Vehicular Cyber-Physical Systems.” In: IEEE Communications Surveys and
Tutorials 18.1 (2016), pp. 263–284. ISSN: 1553877X. DOI: 10.1109/COMST.
2015.2410831. arXiv: arXiv:1011.1669v3 (cit. on p. 40).

[LPW+17] Y. Liu, Y. Peng, B. Wang, S. Yao, Z. Liu. “Review on cyber-physical systems.”
In: IEEE/CAA Journal of Automatica Sinica 4.1 (2017), pp. 27–40. ISSN:
23299274. DOI: 10.1109/JAS.2017.7510349 (cit. on pp. 22, 23).

[Luc08] D. Luckham. “The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems.” In: Rule Representation, In-
terchange and Reasoning on the Web. Springer Berlin Heidelberg, (2008),
pp. 3–3. ISBN: 978-3-540-88808-6 (cit. on p. 35).

[Mar97] A. Maria. “Introduction to Modeling and Simulation.” In: Proceedings of the
1997 Winter Simulation Conference Parry , McAneny , and Dromerhauser
(1997), pp. 933–940 (cit. on pp. 28, 29).

[MHWM17] M. Mormul, P. Hirmer, M. Wieland, B. Mitschang. “Situation model as
interface between situation recognition and situation-aware applications.”
In: Computer Science - Research and Development 32.3-4 (2017), pp. 331–342.
ISSN: 18652042. DOI: 10.1007/s00450-016-0335-2 (cit. on pp. 28, 47–49).

[MSAN11] R. Maia, M. Silva, R. Ara, U. Nunes. “Electric Vehicle Simulator for Energy
Consumption Studies in Electric Mobility Systems.” In: 2011 IEEE Forum
on Integrated and Sustainable Transportation Systems June (2011). DOI:
10.1109/FISTS.2011.5973655 (cit. on p. 60).

[OTV17] E. Omerdic, D. Toal, Z. Vukic. “User interface for interaction with heteroge-
neous vehicles for cyber-physical systems.” In: 14th International Conference
on Control, Automation, Robotics and Vision 691980 (2017), pp. 13–15. ISSN:
0003-4967. DOI: 10.1109/ICARCV.2016.7838747 (cit. on pp. 22, 23).

83

http://dx.doi.org/10.1007/s00607-016-0522-9
http://dx.doi.org/10.1109/COMST.2015.2410831
http://dx.doi.org/10.1109/COMST.2015.2410831
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1109/JAS.2017.7510349
http://dx.doi.org/10.1007/s00450-016-0335-2
http://dx.doi.org/10.1109/FISTS.2011.5973655
http://dx.doi.org/10.1109/ICARCV.2016.7838747

Bibliography

[Pas98] J. Pascoe. “Adding Generic Contextual Capabilities to Wearable Computers.”
In: Proceedings of the Second IEEE International Symposium on Wearable
Computers (ISWC’1998) 44 (1998) (cit. on p. 26).

[PP16] K. Patel, S. Patel. “Internet of Things-IOT: Definition, Characteristics, Archi-
tecture, Enabling Technologies, Application & Future Challenges.” In: Inter-
national Journal of Engineering Science and Computing, IJESC 6.5 (2016),
pp. 6122–6131. ISSN: 00219517. DOI: 10.4010/2016.1482 (cit. on pp. 25,
26).

[PZCG14] C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos. “Context Aware
Computing for The Internet of Things: A Survey.” In: Communications Surveys
& Tutorials, IEEE 16.1 (2014), pp. 414–454 (cit. on p. 27).

[RCDD98] T. Rodden, K. Chervest, N. Davies, A. Dix. “Exploiting Context in HCI Design
for Mobile Systems.” In: in Workshop on Human Computer Interaction with
Mobile Devices. (1998) (cit. on p. 26).

[RLSS10] R. Rajkumar, I. Lee, L. Sha, J. Stankovic. “Cyber-Physical Systems: The Next
Computing Revolution.” In: Design Automation Conference. (2010), pp. 731–
736. DOI: 10.1145/1837274.1837461 (cit. on pp. 17, 22).

[SAW94] B. Schilit, N. Adams, R. Want. “Context-Aware Computing Applications.”
In: 1994 First Workshop on Mobile Computing Systems and Applications
(1994), pp. 85–90. ISSN: 15277755. DOI: 10.1109/WMCSA.1994.16. URL:
http://ieeexplore.ieee.org/document/4624429/ (cit. on p. 27).

[SEE16] M. Saidallah, A. El Fergougui, A. E. Elalaoui. “A Comparative Study of Urban
Road Traffic Simulators.” In: MATEC Web of Conferences 81 (2016). ISSN:
2261-236X. DOI: 10.1051/matecconf/20168105002. URL: http://www.
matec-conferences.org/10.1051/matecconf/20168105002 (cit. on pp. 58,
59).

[SERF17] M. Semrau, J. Erdmann, J. Rieken, B. Friedrich. “Modelling and calibrating
situation adaptive lane changing and merging behavior on Chinese elevated
roads.” In: SUMO 2017 – Towards Simulation for Autonomous Mobility 31
(2017). ISSN: 1866-721X (cit. on p. 61).

[SH15] F. Salim, U. Haque. “Urban computing in the wild: A survey on large scale
participation and citizen engagement with ubiquitous computing, cyber phys-
ical systems, and Internet of Things.” In: International Journal of Human-
Computer Studies 81 (2015). Transdisciplinary Approaches to Urban Com-
puting, pp. 31–48. ISSN: 1071-5819. DOI: https://doi.org/10.1016/j.ijhcs.
2015.03.003. URL: http://www.sciencedirect.com/science/article/pii/
S1071581915000488 (cit. on p. 17).

[SM12] T. Sanislav, L. Miclea. “Cyber-Physical Systems - Concept, Challenges and
Research Areas.” In: Control Engineering and Applied Informatics 14.2 (2012),
pp. 28–33. ISSN: 14548658 (cit. on pp. 22, 23).

84

http://dx.doi.org/10.4010/2016.1482
http://dx.doi.org/10.1145/1837274.1837461
http://dx.doi.org/10.1109/WMCSA.1994.16
http://ieeexplore.ieee.org/document/4624429/
http://dx.doi.org/10.1051/matecconf/20168105002
http://www.matec-conferences.org/10.1051/matecconf/20168105002
http://www.matec-conferences.org/10.1051/matecconf/20168105002
http://dx.doi.org/https://doi.org/10.1016/j.ijhcs.2015.03.003
http://dx.doi.org/https://doi.org/10.1016/j.ijhcs.2015.03.003
http://www.sciencedirect.com/science/article/pii/S1071581915000488
http://www.sciencedirect.com/science/article/pii/S1071581915000488

[SMC04] A. J. Sullivan, D. Malave, N. Cheekoti. “Traffic simulation software compari-
son study.” In: University Transportation Center for Alabama (2004) (cit. on
p. 59).

[SS16] S. Singh, N. Singh. “Internet of Things (IoT): Security challenges, Business
Opportunities & Reference Architecture for E-commerce.” In: Proceedings
of the 2015 International Conference on Green Computing and Internet of
Things, ICGCIoT 2015 (2016), pp. 1577–1581. DOI: 10.1109/ICGCIoT.2015.
7380718 (cit. on pp. 24–26).

[SWYS11] J. Shi, J. Wan, H. Yan, H. Suo. “A survey of Cyber-Physical Systems.” In: 2011
International Conference on Wireless Communications and Signal Processing,
WCSP 2011 (2011). ISSN: 00189286. DOI: 10.1109/WCSP.2011.6096958.
arXiv: 1306.2422 (cit. on p. 22).

[Tal08] C. Talcott. “Software-Intensive Systems and New Computing Paradigms.” In:
Springer-Verlag, (2008). Chap. Cyber-Physical Systems and Events, pp. 101–
115. ISBN: 978-3-540-89436-0. DOI: 10.1007/978-3-540-89437-7_6. URL:
http://dx.doi.org/10.1007/978-3-540-89437-7_6 (cit. on p. 37).

[TGP08] Y. Tan, S. Goddard, L. C. Pérez. “A Prototype Architecture for Cyber-physical
Systems.” In: SIGBED Rev. 5.1 (2008), 26:1–26:2. ISSN: 1551-3688. DOI:
10.1145/1366283.1366309. URL: http://doi.acm.org/10.1145/1366283.
1366309 (cit. on p. 37).

[VF13] O. Vermesan, P. Friess. “Internet of Things: Converging Technologies for
Smart Environments and Integrated Ecosystems.” In: River Publishers,
(2013) (cit. on p. 18).

[WCG08] Y. Wang, M. C. Vuran, S. Goddard. “Cyber-Physical Systems in Industrial
Process Control.” In: ACM Sigbed Review 5 (2008). DOI: 10.1145/1366283.
1366295 (cit. on pp. 37, 38).

[WP06] R. West, G. Parmer. “A Software Architecture for Next-Generation Cyber-
Physical Systems.” In: Position paper at the NSF Cyber-Physical Systems work-
shop (2006), pp. 1–3. ISSN: 17574676. DOI: 10.1002/emmm.201200244
(cit. on p. 38).

[WSBL15] M. Wieland, H. Schwarz, U. Breitenbücher, F. Leymann. “Towards situation-
aware adaptive workflows: SitOPT - A general purpose situation-aware
workflow management system.” In: 2015 IEEE International Conference on
Pervasive Computing and Communication Workshops, PerCom Workshops 2015
(2015), pp. 32–37. DOI: 10.1109/PERCOMW.2015.7133989 (cit. on p. 28).

[WZZ+14] J. Wan, D. Zhang, S. Zhao, L. Yang, J. Lloret. “Context-aware vehicular
cyber-physical systems with cloud support: Architecture, challenges, and
solutions.” In: IEEE Communications Magazine 52.8 (2014), pp. 106–113.
ISSN: 01636804. DOI: 10.1109/MCOM.2014.6871677. arXiv: arXiv:0910.
2486v1 (cit. on p. 39).

All links were last followed on February 15, 2019.

http://dx.doi.org/10.1109/ICGCIoT.2015.7380718
http://dx.doi.org/10.1109/ICGCIoT.2015.7380718
http://dx.doi.org/10.1109/WCSP.2011.6096958
http://arxiv.org/abs/1306.2422
http://dx.doi.org/10.1007/978-3-540-89437-7_6
http://dx.doi.org/10.1007/978-3-540-89437-7_6
http://dx.doi.org/10.1145/1366283.1366309
http://doi.acm.org/10.1145/1366283.1366309
http://doi.acm.org/10.1145/1366283.1366309
http://dx.doi.org/10.1145/1366283.1366295
http://dx.doi.org/10.1145/1366283.1366295
http://dx.doi.org/10.1002/emmm.201200244
http://dx.doi.org/10.1109/PERCOMW.2015.7133989
http://dx.doi.org/10.1109/MCOM.2014.6871677
http://arxiv.org/abs/arXiv:0910.2486v1
http://arxiv.org/abs/arXiv:0910.2486v1

Declaration

I hereby declare that the work presented in this thesis is
entirely my own and that I did not use any other sources and
references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as
quotations. Neither this work nor significant parts of it were
part of another examination procedure. I have not published
this work in whole or in part before. The electronic copy is
consistent with all submitted copies.

place, date, signature

	1 Introduction
	1.1 Problem Domain and Motivation
	1.2 Scope of Work
	1.3 Thesis Outline

	2 Fundamentals
	2.1 Cyber-Physical System (CPS)
	2.2 Internet of Things (IoT)
	2.3 Context and Situation
	2.4 Situation Aware System and Workflow
	2.5 Modeling and Simulations

	3 Related Work
	3.1 Situation Recognition
	3.2 Related Modeling of CPSs
	3.3 CPS for Vehicles

	4 Concept and Modeling
	4.1 System Overview
	4.2 Basic Elements of Modeling and Simulation
	4.3 Relationship Analysis of the System
	4.4 Modeling Scenarios for Mobile CPS (MCPS)
	4.5 Modeling Situation Recognition for Mobile CPS (MCPS)

	5 Simulator Selection
	5.1 Simulator Selection Criteria
	5.2 Comparison of Different Vehicle Simulators
	5.3 Simulation of Urban Mobility (SUMO) - A Brief Description
	5.4 Projects in SUMO

	6 Simulator Environment and Prototypical Implementation
	6.1 Simulator Environment and Situation Modeling
	6.2 Situation Recognition

	7 Conclusion and Future Work
	Bibliography

