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Abstract
In multi-physics simulation applications there is a need for some kind

of middleware between distinct simulations. The preCICE project ([4])
aims to provide such a software. One key component of this is to in-
terpolate data from one mesh to another. There are several possibilities
for doing this, however in this bachelor thesis I will primarily consider
radial basis functions. These have several advantages like for instance
being oblivious of topological information of the meshes, thus working on
arbitrary point clouds, but also some drawbacks such as bad numerical
stability. There is some parameter that can be tuned to trade interpola-
tion accuracy against stability, but recent results showed that there is a
way to get good numerical stability and good accuracy at the same time.
This thesis will focus on this method for improving numerical stability,
the RBF-QR method. An implementation is given in Python and C++
with the latter being able to be used in highly parallel applications.
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1 Multi-Physics Applications
With the advent of more and more powerful compute architectures there are
increasingly bigger simulations possible. For simulating these big systems there
are different kinds of PDEs to solve for different parts of the system. For instance
a solid structure will have a PDE that looks nothing like the PDE of a fluid
streaming along it. This kind of simulation is called Multi-Physics Application.
In multi-physics applications there are two ways of using solvers to simulate a
system. The first way is to simply include all the required equations within
one system and to solve it with a single solver. The other way is to specify
each simulation separately. This second approach is more complicated, as this
means having multiple solvers with each one having its own mesh and needing
to exchange data like heat, pressure, displacement, etc. However the advantage
of having specialized solvers for each part of the system might outweigh the
disadvantages. preCICE provides a library that a wide range of solvers can
directly use to exchange data at the boundary surfaces. Exchanging the data
requires data mapping, for which multiple methods can be used. A desirable
feature of a data mapping algorithm is to be able to operate on arbitrary point
clouds, without needing any (topological) information about the underlying
mesh. preCICE does not need this information, but it can be provided optionally
to enable some more sophisticated methods like Nearest Projection Mapping.
One rather simple method to achieve data mapping on arbitrary point clouds
is to use Nearest Neighbor Mapping.

1.1 Nearest Neighbor Mapping
For some input points xi ∈ Ξ, some function f : Rd → R and some output
points yi ∈ Rd, define

SNN(yi) = f(arg min
xi∈Ξ

||yi − xi||)

as the interpolant which simply uses the nearest neighbor of each output mesh
point to interpolate.
Nearest Neighbor Mapping is conceptually simple but does not always yield
good results. Especially on non-matching mesh geometries the algorithm might
give very inexact results. A more sophisticated approach is given by the Nearest
Projection Mapping algorithm.

1.2 Nearest Projection Mapping
Nearest Projection Mapping works in two steps. First, some input point is
projected onto a geometric primitive in the output mesh (Edge, Triangle) by
using an orthogonal projection. This yields a point that is coplanar with the
geometric primitive. For this point, barycentric coordinates are calculated and
used as weights for interpolation onto the output mesh. However, this requires
some topological information about the output mesh, which might or might not
be given. Fortunately there is an algorithm that increases accuracy (in contrast
to Nearest Neighbor Mapping) without needing any topological information,
called RBF Interpolation
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2 Basic RBF Interpolation
2.1 Radialsymmetric functions
Let x ∈ Rd and let || · || denote a norm on Rd. Functions that fulfill

Φ(x) = Φ(||x||)

are called radial basis functions (RBF). Unless noted otherwise the euclidean
norm ||x||2 =

√
x2

1 + . . . x2
d is used.

For interpolation the shifted variant

Φ(||x− x0||)

with some x0 ∈ Rd, often called center, will be used.

2.2 Interpolation
For interpolation of a function f : Rd → R, known on some centers xi ∈ Ξ,
a radial basis function Φ(x) is used. There are multiple basis functions to
choose from, some more widely used choices are listed in Figure 1. Of these, the
Gaussian basis function is especially interesting because it will play an important
role for the RBF-QR algorithm in section 3. It can be seen in Figure 2 for two
dimensions.
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Figure 1: Different basis functions
Some basis functions are parameterized with a parameter ε that controls the shape of

the function.
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Figure 2: Gaussian radial basis function in 2-D
Basis function Φ(x, y) = e−ε2(x2+y2)

A linear combination of shifted versions of these basis functions is used:

S(x) =
N−1∑
i=0

λiΦ(||x− xi||) (1)

λ ∈ RN must satisfy
S|Ξ

!= f |Ξ
which can also be expressed as a linear system: Φ(||x0 − x0||) . . . Φ(||xN−1 − x0||)

...
. . .

...
Φ(||xN−1 − x0||) . . . Φ(||xN−1 − xN−1||)


︸ ︷︷ ︸

=:A

 λ0
...

λN−1

 !=

 f0
...

fN−1


(2)
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Figure 3: Basic RBF interpolation with Gaussian basis functions
RBF interpolation with ε = 1, interpolating f(x) = e−x + 1 at {−0.5, 0, 0.5}

Figure 3 shows how the interpolant s interpolates f by using Gaussian basis
functions. It can be seen that s interpolates f exactly at the points {−0.5, 0, 0.5}
and because f is "sufficiently smooth", the error is rather small even for as few
as 3 basis functions. The matrix A has some interesting properties. Firstly it
is symmetric, which results directly from the symmetry of the basis functions.
Furthermore for many RBF choices A is positive definite and therefore nonsin-
gular for arbitrary centers.

2.3 Condition
Condition of matrices plays an important role when discussing radial basis func-
tion interpolation, so some basics are outlined in the following.
The condition of a nonsingular matrix A ∈ RN×N is defined as:

κ(A) = ||A|| ||A−1|| (3)

for some norm || · ||. If A is normal (every symmetric matrix is normal) and
|| · ||2 (the spectral norm) is chosen, (3) becomes

κ||·||2(A) =
∣∣∣λmax(A)
λmin(A)

∣∣∣ (4)
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so the condition is the ratio of the biggest to the smallest eigenvalue of A.
Many radial basis function choices are parameterized with a parameter ε, also
referred to as the shape parameter. This parameter can control the condition
of the resulting interpolation matrix. In 2005 Schaback ([15]) showed that the
eigenvalues of the interpolation matrix A follow a pattern depending on ε for
most RBF choices. In particular, all of the parameterized basis functions from
Figure 1 (the last four) obey this pattern. They showed that in d dimensions
the matrix A has (

k + d− 1
d− 1

)
(k ∈ N0)

eigenvalues of size O(ε2k). The pattern is also given in table 1.

Power of ε 0 2 4 6
1-D 1 1 1 1
2-D 1 2 3 4
3-D 1 3 6 10

On the surface of a sphere 1 3 5 7

Table 1: Number of eigenvalues of size O(ε0), O(ε2), O(ε4), . . .

This table is to be read by considering successively higher powers of ε until
all N eigenvalues are accounted for.
For instance, a Matrix with N = 4 in 2-D would have one eigenvalue of size ε0,
two eigenvalues of size ε2 and one eigenvalue of size ε4. From here it becomes
evident that there is some severe ill-conditioning in the matrix A.
Changing the shape parameter influences how the basis functions look and
changes properties of the interpolations such as condition and accuracy. Con-
sider the Gaussian basis functions in Figure 4

9



-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

shape parameter 5
shape parameter 1
shape parameter 0.2

Figure 4: Gaussian RBF for different shape parameters
Choosing a small ε yields flat, global basis functions, whereas choosing a big ε yields

tall, local basis functions.

Defining a cutoff radius for the basis function leads to some entries in A
being 0, thus improving condition. This leads to a trade-off between accuracy
and condition.
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Figure 5: Interpolation with bigger ε
Interpolating f(x) = e−x + 1 at {−0.5, 0, 0.5} with ε = 5. The red interpolant does
not match the original function (blue) very well, thus accuracy of the interpolant is

bad.

In figure 5 one can see that choosing a bigger value for ε yields skinnier basis
functions at the expense of accuracy. Note how in figure 3 every basis function
is global, whereas in figure 5 basis functions vanish at every center except the
one center around which they are defined, thus creating an interpolation matrix
A that is diagonal.
Finding the optimal shape parameter has been discussed in many previous works
([8]) and some basic terms are defined in section 5.1.

2.3.1 Improving condition by adding a polynomial

Adding a polynomial to the interpolation can improve condition and for some
RBF choices it is even necessary in order to make sure the matrix A is unisolvent.
This section is based on [14]. However the principle is very widely used, for
instance [3] describes a similar approach. The principle will be outlined for first
order polynomials.
The basic idea is to replace (1) by:

S(x) =
n∑
i=0

γiΦ(||x− xi||) + β0 + βTx (5)
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with β ∈ Rd and β0 ∈ R. The interpolation conditions are the usual conditions
S|Ξ

!= f |Ξ and some additional conditions for the polynomial:
n∑
i=0

γi = 0 and
n∑
i=0

γix
(j)
i = 0 (6)

for all 1 ≤ j ≤ d and with x(j)
i denoting the j-th coefficient of xi.

The authors of [14] described two ways of including these additional require-
ments. The first is the integrated polynomial: As usual let xi denote some
data points. Let f = (f(x0), . . . , f(xN−1))T denote the function values at these
points: 

0 QT

Q P





β

γ


︸ ︷︷ ︸

=:p

=



0

f


with the usual interpolation matrix Pi,j = Φ(||xi−xj ||2) and an additional Ma-
trix Q where the i-th row of Q is (1x(1)

i . . . x
(d)
i ). The additional requirements

are "integrated" inside the interpolation matrix.
For evaluation the matrix E is constructed by

E =


V P ′


where P ′ is given by P ′i,j = Φ(||yi − xj ||2) and Vi, = (1 y(0)

i . . . y
(d)
i ) with yi

denoting some output mesh node. The output values are then computed by

S = E · p

The other way is the separated polynomial:
First solve the least-squares-problem[

Q

]
· [β] ≈

[
f

]
then subtract the polynomial values from f and solve for γ:

P · γ = f −Q · β

For evaluation the polynomial values have to be added again:

S = P ′ · γ + V · β
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2.3.2 Improving condition by rescaling the interpolant

Rescaling the interpolant is a rather simple extension to RBF interpolation but
has been shown in [6] to yield good results. One uses

S̄(x) = S(x)
S1(x) (7)

with s1(x) being the interpolant for the constant function g ≡ 1 as the new
interpolant. The algorithm is described in [6] and results are also found in [14].

2.3.3 Improving condition by using a variable shape parameter

Many meshes are not regular and equidistant. Setting a fixed shape parameter
will therefore result in some basis functions spanning across many nodes and
other basis functions across few. Furthermore one would usually want to flatten
the basis functions a bit towards the boundary of a mesh, because some of their
support will be outside the mesh. This would suggest using a variable shape
parameter, which can be set for each basis function individually. However one
would need some kind of local density measure to set this shape parameter
usefully. This information can possibly be given by the input mesh but this
would compromise one of the biggest strength of RBF interpolation: To work on
arbitrary scattered data. Computing this information later is rather expensive
as well and finding good algorithms is a nontrivial problem.

2.3.4 Improving condition by using a preconditioner

Precondition of linear systems is an approach that is used universally when
solving linear systems. Instead of solving Ax = B, one solves

AP−1Px = b

by solving the linear system
AP−1y = b

and then solving
Px = y

Alternatively one can solve
PAx = Pb

The first way is called right preconditioning and the second way is called left
preconditioning (depending on the side of A that P is multiplied to). The lin-
ear operator should be cheap to invert and the product P−1A should be better
conditioned than A. Determining a "good" operator P is not easy. Iterative
methods like Jacobi method or the conjugate gradient method are widely used.
They provide operators P that are cheap to multiply with A and improve con-
dition iteratively by applying the preconditioning principle multiple times until
a sufficiently good condition is reached. However, often times these methods
require a significant amount of computation. Improving condition by using
preconditioners is discussed for instance in [9] or [2].
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3 RBF-QR Interpolation
3.1 RBF and polynomial interpolation
In 2002, Driscoll and Fornberg ([7]) discovered that if radial basis functions
meet some "simple conditions", they (rather surprisingly) converge to Lagrange
polynomials in 1D. More formally they showed:
Let N distinct data points in 1-D be given. Suppose the basis function

Φ(r, ε) = a0 + ε2a1r
2 + ε4a2r

4 + . . . (8)

is such that the RBF system (2) has a solution for all ε > 0. For integer n
define the symmetric matrices G2n−1 and G2n by:

G2n−1 =


(0

0
)
a0

(2
2
)
a1 . . .

(2n−2
2n−2

)
an−1(2

0
)
a1

(4
2
)
a2 . . .

( 2n
2n−2

)
an

...
...

...(2n−2
0
)
an−1

(2n
2
)
an . . .

(4n−4
2n−2

)
a2n−2


n×n

G2n =


(2

1
)
a1

(4
3
)
a2 . . .

( 2n
2n−1

)
an(4

1
)
a2

(6
3
)
a3 . . .

(2n+2
2n−1

)
an+1

...
...

...(2n
1
)
an

(2n+2
3
)
an+1 . . .

(4n−2
2n−1

)
a2n−1


n×n

If Gn−1 and GN are nonsingular, then the RBF interpolant s(x, ε), defined by

s(x, ε) =
N∑
k=1

λkΦ(||x− xk||, ε) (9)

satisfies
lim
ε→0

s(x, ε) = LN (x) (10)

where

LN−1(x) :=
N−1∑
j=0

fj lj(x)

denotes the Lagrance interpolating polynomial for f = (f0, . . . , fN−1) on the
nodes. This interpolating polynomial is defined with lagrange polynomials

lj(x) :=
∏

0≤m≤N−1
m 6=j

x− xm
xj − xm

The proof can be found in [7].
For infinitely smooth RBF choices (with gaussian RBFs being one of them) there
is an expansion (8) with a taylor series, as will be seen later.
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3.2 Higher dimension
In 2005, Larsson and Fornberg ([13])found a more general result applicable in
higher dimensions. They were able to show that in the ε→ 0 limit, depending on
the node layout and the choice of the radial basis function, the RBF interpolant
converges to polynomial interpolation. Moreover they were able to find a pattern
for eigenvalues in n-D.

3.3 RBF-QR on the unit sphere
In 2007, Fornberg and Piret ([11]) found a method for interpolating with radial
basis functions, when the nodes are scattered on the unit sphere, using spherical
harmonics. This method is generalized to the nonperiodic euclidean space in
section 3.4, however some key concepts of the algorithms are already outlined
in this section.

3.3.1 A better basis

They key concept of RBF-QR is to change the basis from the bad basis of shifted
RBFs to a better basis. This is not fundamentally new: When doing polynomial
interpolation one often prefers the chebyshev basis {T0(x), T1(x), . . . } over the
monomial basis {1, x, x2, . . . }. Both span the same space, but the latter leads
to better conditioned interpolation.

3.3.2 Spherical Harmonics

For the RBF-QR algorithm on the unit sphere, so called Spherical Harmonics
(SPH) are used. A class of functions that is defined as (assuming (x, y, z) ∈ S2

with S2 being the unit sphere):

Y νµ (x, y, z) =


√

2µ+1
4π

√
(µ−ν)!
(µ+ν)!P

ν
µ (z) cos(ν tan−1( yx )) v = 0, 1, . . . , µ√

2µ+1
4π

√
(µ−ν)!
(µ+ν)!P

−ν
µ (z) sin(−ν tan−1( yx )) v = −µ, . . . ,−1

where P νµ are associated Legendre functions:

Pmn (x) = (−1)m(1− x2)m/2 d
m

dxm
Pn(x)

with Pn(x) being the Legendre polynomial of degree n:

Pn(x) = 1
2nn!

(
dn

dxn
(x2 − 1)n

)
3.3.3 SPH Expansions

These SPHs can be used to express an arbitrary function defined on the unit
sphere:

s(x, y, z) =
∞∑
µ=0

µ∑
ν=−µ

cµ,νY
ν
µ (x, y, z)
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Hubbert and Baxter [1] give explicit expressions for the expansion of radial basis
functions:

Φ(||x− xi||) =
∞∑
µ=0

µ∑
ν=−µ

′

{cµ,εε2µY νµ (xi)}Y νµ (x) (11)

Where
∑′ means that the term at ν = 0 is halved. The coefficients take closed

algebraic forms, for instance Gaussian radial basis functions yield

cµ,ε = 4π3/2

ε2µ+1 e
−2ε2

Iµ+1/2(2ε2)

With Iα being modified bessel functions of the first kind.

3.3.4 SPH expansion expressed in matrix form

These expansions can be expressed in matrix form:

Φ(x) =


Φ(||x− x0||)
Φ(||x− x1||)

...
Φ(||x− xN−1||)

 = B · Y (x)

with

B =


c0,ε
2 Y 0

0 (x0) ε2c1,ε
1 Y −1

1 (x0) ε2c1,ε
2 Y 0

1 (x0) ε2c1,ε
1 Y 1

1 (x0) . . .
c0,ε
2 Y 0

0 (x1) ε2c1,ε
1 Y −1

1 (x1) ε2c1,ε
2 Y 0

1 (x1) ε2c1,ε
1 Y 1

1 (x1) . . .
...

...
...

... . . .
c0,ε
2 Y 0

0 (xN−1) ε2c1,ε
1 Y −1

1 (xN−1) ε2c1,ε
2 Y 0

1 (xN−1) ε2c1,ε
1 Y 1

1 (xN−1) . . .


and

Y (x) =



Y 0
0 (x)

Y −1
1 (x)
Y 0

1 (x)
Y 1

1 (x)
Y −2

2 (x)
Y −1

2 (x)
Y 0

2 (x)
Y 1

2 (x)
Y 2

2 (x)
...


with B ∈ RN×∞ and Y (x) ∈ R∞ Note that this idea is somewhat incomplete
as the resulting matrices would be infinitely big due to the infinite expansion
(11). Therefore these expansions must be truncated at some point.
Now split B = CE (this can be done analytically by simply factoring out the
increasing powers of ε).

B =

 C

 ·


ε0

ε2

ε2

ε2

ε4

. . .


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This is a very important step in the algorithm because it separates the (well-
conditioned) matrix C from the powers of ε. The powers of ε are responsible
for the bad conditioning of the original matrix, so they must be handled in a
special way, which will be seen later.
Next split C = QR:

B =

 Q


 r1,1 r1,2 r1,3

r2,2 r2,3
. . .


 ε0

ε2

. . .


However, neither C nor R are square. The expansion will always have more than
N elements, so B (as well as C and R) will have more columns than rows. Even
though a QR-decomposition is well-defined on arbitrary matrices, this will put
some limitations on the algorithm to be used for computing this decomposition.
More on that will be discussed in 4.6.
If B is multiplied with any nonsingular matrix from the left, the basis functions
change but the space that is spanned by them stays the same.
Let EN ∈ RN×N be the first N powers of E. Consider the new basis:

Ψ(x) := E−1
N QTΦ(x) = E−1

N REY (x)

The matrix E−1
N RE has some convenient properties in that it is upper triangular,

and only a few superdiagonals contain low powers of ε. Another important
property is the way the powers of ε enter the expansion. The pattern of powers
of ε exactly matches the sequence in Table 1. This is important because then
conditioning improves at the same pace as it would be worsening, therefore
staying invariant with ε. For instance if N = 4 the original matrix would have
a smallest eigenvalue of size O(ε2) (and the biggest eigenvalue of size O(1)
as always), but the matrix E would have powers of epsilon up to ε2 as well,
therefore extracting powers of ε at the exact same rate as they would worsen
the condition of the resulting matrix.

3.4 Nonperiodic cartesian space
The principle from section 3.3 shall now be applied to the Gaussian basis func-
tion in nonperiodic cartesian space.The original basis is given by

Φ(r) = e−(εr)2

Now, a polynomial expansion is needed. A taylor expansion would be a natural
choice. Fortunately the function ex is usually defined by its taylor series, so it’s
trivial to get:

ex =
∞∑
k=0

xk

k!

The taylor expansion for the Gaussian basis function follows directly:

e−(εr)2
=
∞∑
k=0

(−(εr)2)k

k! =
∞∑
k=0

(−ε2)k

k! r2k

17



The shifted variant in nonperiodic euclidean space is needed:

e−(ε||x−x0||) =
∞∑
k=0

(−ε2)k

k! (||x− x0||)2k =
∞∑
k=0

(−ε2)k

k! ((x− x0) · (x− x0))k

assuming the euclidean norm (||x|| =
√
x0 + · · ·+ xn) is used (I will assume

this for the remainder of this thesis unless noted otherwise). The next step
would now be to check if this expansion does indeed improve conditioning at a
sufficient rate. In other words, if the matrix E were constructed, which pattern
of ε2k would it have? Every expansion function is multiplied by a power of ε
which would in the next step be factored out into E, so expansion functions are
grouped by their power of ε. This reveals the following pattern in 1-D:

{{1}, {x, x2}, {x3, x4}, . . . }

The sequence of how powers of ε enter E would then be

{1, 2, 2, 2, . . . }

In 2-D:
{{1}, {x2, x, y, y2}, {x4, x3, x2y, x2y2, xy, xy2, y3, y4}}

yielding
{1, 4, 8, 12, 16, . . . }

In 3-D:
{{1}, {x2, x, y2, y, z2, z},

{x4, x3, x2y2, x2y, x2z2, x2z, xy2, xy, x2z2, xz, y4, y3, y2z2, y2z, yz2, yz, z4, z3}}

yielding
{1, 6, 18, . . . }

None of these sequences match any of the sequences in Table 1. This means
that this expansion does not eliminate ill-conditioning at the same rate as it
occurs. For instance in 3-D, with N = 20 there are eigenvalues up to O(ε6) .
However, because only 20 new basis functions are brought in, ill-conditioning is
only eliminated up to O(ε4). This effect worsens for bigger N at a disastrous
rate. So naively applying the RBF-QR algorithm for arbitrary basis functions
does not seem to work.
Fortunately Fornberg, Larsson and Flyer found an expansion for gaussian RBFs
that matches the sequences in Table 1 exactly.

3.5 A better Expansion for Gaussian RBFs
In the following the Gaussian basis functions (centered around x0) will be re-
considered:

Φ(x, x0) = e−(ε||x−x0||)2
= e−ε

2(x−x0)·(x−x0) = e−ε
2(x·x)e−ε

2(x0·x0)e2ε2(x0·x)

(12)
Now look at the Factors independently:

e−ε
2(x0·x0)

18



This is a constant factor, so it has no influence on the expansion.

e−ε
2(x·x) (13)

The authors of [10] called this factor "harmless as ε→ 0", This will be motivated
in the following. Section 3.7 will show that the mesh needs to be transformed
to fit into the unit sphere, so it can be assumed that ||x|| ≤ 1. This means that

e−ε
2(x·x) ≥ e−ε

2

Now, having a (global) minimum for (13), the error of assuming that e−ε2(x·x) ≈ 1
can be quantified as

E(ε) = 1− e−ε
2

Figure 6 shows how fast E(x) converges to 0 as ε→ 0

10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

ε

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

E
(x

)

Figure 6: Error E(x) for different values of ε

It can be seen that for ε ≤ 10−8 the error is of the same magnitude as
machine precision.
The last factor e2ε2(x0·x) can be expressed in terms of a Taylor series:

e2ε2(x0·x) =
∞∑
i=0

(2ε2)i

i! (x · x0)i

With (x · x0)i yielding new basis functions at the exact same rate as Table 1
predicts.
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3.6 Polar coordinates
When using the RBF-QRmethod, one has to handle rather high-degree-monomials.
This problem is not very uncommon, and can for instance be mitigated by us-
ing low-order piecewise polynomials. Unfortunately, this is not an option here.
The authors of [10] proposed transforming the expansion for the Gaussian basis
function (12) to polar coordinates. The full transformation can be found in the
paper. I will just restate the new expansion and new basis. Let (r, θ) denote a
point in polar coordinates. In 2-D this then becomes:

Φ(r, θ, r0, θ0) = 2 · e−ε
2r2

0 · e−ε
2r2

[

(ε2r0r)0
{

1
2 ·

1
0!0!Θ0

}
+ (ε2r0r)2

{
1
2 ·

1
1!1!Θ0 + 1

2!0!Θ2

}
+ (ε2r0r)4

{
1
2 ·

1
2!2!Θ0 + 1

3!1!Θ2 + 1
4!0!Θ4

}
+ · · ·+

(ε2r0r)1
{
· 1
1!0!Θ1

}
+ (ε2r0r)3

{
· 1
2!1!Θ1 + 1

3!0!Θ3

}
+ (ε2r0r)5

{
· 1
3!2!Θ1 + 1

4!1!Θ3 + 1
5!0!Θ5

}
+ . . .

] (14)

with Θm = (cosmθ0 cosmθ + sinmθ0 sinmθ) and the expansion split for even
and odd powers of ε2 ({1, ε4, ε8, . . . } and {ε2, ε6, ε10 . . . }). The new basis func-
tions are

e−ε
2r2
{

{1},
r{cos θ, sin θ}.

r2{1, cos 2θ, sin 2θ},
r3{cos θ, sin θ, cos 3θ, sin 3θ},

. . . } (15)

3.7 Chebyshev polynomials
The authors of [10] even went one step further and expressed (12) in terms of
chebyshev polynomials, thus improving condition even further. I will again just
outline the final expressions, but this time for all dimensions, as those are the
final expansions. Chebyshev polynomials are defined on [−1, 1] by:

T0(x) = 1
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T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x)

Or equivalently:
Tn(x) = cos(n arccos(x)) (16)

3.7.1 1-D Final Expansion

In 1-D the expansion is

Φk(x) =
∞∑
j=0

djcj(xk)T̃j(x) (17)

with expansion functions

T̃j(x) = e−ε
2x2
Tj(x)

These expansion functions can be seen in figure 7 and figure 8 for different values
of ε.

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
x

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

T̃
n
(x

)

T̃0(x)
T̃1(x)
T̃2(x)
T̃3(x)
T̃4(x)

Figure 7: New basis functions for a small ε
Choosing ε = 0.1 yields basis functions that are close to chebyshev polynomials.
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T̃0(x)
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T̃3(x)
T̃4(x)

Figure 8: New basis functions for a bigger ε
Choosing ε = 1 yields basis functions that are not quite chebyshev polynomials. Note
however that for x→ 0, they still converge to chebyshev polynomials (This can also

be seen from factor (13))

Scale factors and coefficients are given by

dj = 2ε2j

j! (18)

cj(xk) = tje
−ε2x2

kxjk0F1([], j + 1, ε4x2
k)

tj =
{

1
2 j = 0
1 j > 0

3.7.2 2-D Final Expansion

In 2-D the expansion is more complex:

Φk(x) =
∞∑
j=0

j−pj
2∑

m=0
dj,mcj,m(xk)T cj,m(x)

+
∞∑
j=0

j−pj
2∑

m=1−pj

dj,msj,m(xk)T sj,m(x) (19)

pj =
{

1 if j is odd
0 else
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Expansion functions are (input points must be given in polar coordinates xk =
(rk, θk)):{

T cj,m(x) = e−ε
2r2
r2mTj−2m(r) cos((2m+ pj)θ),

T sj,m(x) = e−ε
2r2
r2mTj−2m(r) sin((2m+ pj)θ), 2m+ pj 6= 0

with coefficients

cj,m(xk) = b2m+pj tj−2me
−ε2r2

krjk cos((2m+ pj)θk)1F2(αj,m, βj,m, ε4r2
k)

sj,m(xk) = b2m+pj tj−2me
−ε2r2

krjk sin((2m+ pj)θk)1F2(αj,m, βj,m, ε4r2
k)

with helping coefficients b0 = 1 and bm = 2, m > 0 as well as t0 = 1
2 and

tj = 1, j > 0. Parameters for the hypergeometric function 1F2 are: aj,m =
j−2m+pj+1

2 and βj,m =
[
j − 2m+ 1k, j+2m+pj+2

2

]
The scaling coefficients are:

dj,m = ε2j

2j−2m−1
(
j+2m+pj

2

)
!
(
j−2m−pj

2

)
!

(20)

3.7.3 3-D Final Expansion

In the following, the normalized associated legendre polynomials will be defined
by

Pmn (x) = (−1)m
√(

n+ 1
2
)

(n−m)!
(n+m)! P (m)

n (x)

where P (m)
n denote the (unnormalized) associated legendre polynomials

P (m)
n (x) = (−1)m

2nn! (1− x2)m/2 d
n+m

dxn+m (x2 − 1)n

The expansion in 3-D is given by

Φk(x) =
∞∑
j=0

j−pj
2∑

m=0
dj,m

2m+pj∑
ν=−(2m+pj)

cj,m,ν(xk)Tj,m,ν(x) (21)

with expansion functions

Tj,m,ν(x) = e−ε
2r2
r2mY ν2m+pj (θ,Φ)Tj−2m(r)

with spherical coordinates defined with θ as the colatitude (θ = 0 is the north
pole) and

Y νµ (θ,Φ) = P νµ (cos θ) cos(νΦ), ν = 0, . . . , µ

Y −νµ (θ,Φ) = P νµ (cos θ) sin(νΦ), ν = 1, . . . , µ
with P νµ (z) being normalized associated Legendre functions. The scaling coeffi-
cients are given by

dj,m = 23+pj+4mε2j

(
j+pj+2m

2

)
!(

j−pj−2m
2

)
! (j + 1 + pj + 2m)!
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and coefficients becoming

cj,m,µ(xk) = tj−2myµe
−ε2r2

krjkY
ν
2m+pj (θk,Φk)2F3(ρj,m, σj,m, ε4r2

k)

where y0 = 1
2 and yν = 1, ν > 0 and the parameters to the hypergeometric func-

tion 2F3 are ρj,m =
[
tj−2m+1

2 , j−2m+2
2

]
and σj,m =

[
j − 2m+ 1, j−2m+pj+2

2 .
j+2m+pj+3

2

]
.

When implementing these expansions, some issues will arise that will be dis-
cussed in section 4.

3.8 The final algorithm
The Algorithm can be expressed in matrix form, but there is still one issue
with the previous expansions: They are infinite, so these expansions have to be
truncated at some j = jmax. Determining this jmax will be discussed in section
4.5. Define K (d denotes the number of dimensions)1:

K :=
(
jmax + d

d

)
≥ N (22)

First, express the original basis Φ as

Φ(x) = C ·D · T (x) (23)

In 1-D the matrices are given by (Φ(x))k := φk(x) := φ(||x − xk||), Ck,j :=
cj(xk), Di,i := di, (T (x))i := T̃i(x) and
Φ(x) ∈ RN , C ∈ RN×K , D ∈ RK×K , T (x) ∈ RK .
Now split

C = Q · [R1 R2]

with R1 ∈ RN×N and upper triangular (and R2 ∈ RN×(K−N)) and rewrite D
as

D =
[
D1 0
0 D2

]
with D1 ∈ RN×N and D2 ∈ R(K−N)×(K−N)

This way, (23) can be written as

Φ(x) = Q · [R1 R2]
[
D1 0
0 D2

]
· T (x) (24)

= Q · [R1D1 R2D2] · T (x)

Now multiply from the left with D−1
1 R−1

1 QT to obtain a new basis that spans
the same manifold as the original basis:

Ψ(x) : = D−1
1 R−1

1 QTΦ(x)
=
[
I D−1

1 R−1
1 R2D2

]
· T (x) (25)

Computing D−1
1 R−1

1 R2D2 is a bit involved and will be discussed in section 4.4.
For now, simply define R̃ := D−1

1 R−1
1 R2D2 and rewrite (25) as

Ψ(x) =
[
I R̃

]
T (x) (26)

1This is the M from [10, equation (5.1)], but M is used ambiguously there
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Now compute
A := [Ψ(y0) · · ·Ψ(yM−1)]T

= [T (y0) · · ·T (yM−1)]T
[

I
R̃T

]
= TT1 + TT2 R̃

T (27)

Where (T1)i,j := T̃i(yj), T1 ∈ RN×M and
(T2)i,j := T̃N+i(yj), T2 ∈ R(K−N)×M

Then solve
Aλ = f

for interpolation weights λ. Use those to compute the interpolant

s(ẋ) = Ψ(ẋ)Tλ

at any given point ẋ.

3.9 Stability of the RBF-QR algorithm
The QR decomposition is inherently stable and the matrix C on which it is per-
formed contains entries of size O(1). Another important part of the algorithm
is the matrix R̃. Here it is interesting to look at how the powers of ε enter the
matrix. They are contained in D−1

1 and D2. The pattern how they enter R̃ is
described by the following schema:

ε2N

ε2N−2

...

ε0

ε2N+2

ε2N

...

ε2

. . .

. . .

. . .

. . .

ε2K

ε2K−2

...

ε2N


So it can be seen that R̃ is mostly lower trapezoidal, as entries get successively
smaller towards the upper right edge. This makes R̃ (and therefore A) well-
conditioned.

4 Implementation
The implementation of the algorithm was done in two steps. First, it was
implemented in Python in a very idiomatic way, with hardly any optimizations
applied. The second step was then to implement it in C++.
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Figure 9: The class hierarchy of the python implementation
Red functions are pure virtual functions.

4.1 The Python implementation
The python implementation can be found in the public Github repository PyRBF2.
It uses SciPy3 for linear algebra and special functions. The code is organized
into four classes that can be seen in Figure 9.

The function getK() computes jmax and then returns K (more on that
in section 4.5). getC() assembles the C matrix according to the respective
expansion. Some difficulties that arise when assembling C are given in section
4.3. getT is responsible for getting the new expansion functions (T (x)). This is
done by actually returning a list of functions (however the C++ implementation
uses a more efficient approach). The function getD_frac() returns a special
matrix Dfrac that is constructed by multiplying the ε-powers of D−1

1 in a column
vector with a row vector consisting of the powers of ε in D2. For instance in

2https://github.com/floli/PyRBF
3https://scipy.org/
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1-D this yields:

Dfrac, 1D =


ε0

ε−2

...
ε−2N

 · ( ε2N ε2N+2 . . . ε2K
)

(28)

This matrix has the same shape asR−1
1 R2 and the entrywise product (Hadamard

product) Dfrac ◦ (R−1
1 R2) equals R̃.

The rest of the algorithm is split into an offline phase (__init__(...)) and
an online phase (__call__(...)). The offline phase consists of determining K,
assembling C, computing QR = C, computing R̃, computing A = TT1 + TT2 R̃

T

and solving Aλ = f for lambda. The online phase then only evaluates the in-
terpolant s(ẋ) on some output mesh. The offline phase is computationally way
more expensive than the online phase, but if the input mesh and the input values
do not change it only has to be performed once. Then the values can be inter-
polated onto any output mesh cheaply. The implementation of __init__(...)
and __call__(...) is rather straightforward as it only requires calling the re-
spective SciPy routines. In fact the entire code of __init__(...) is given in
listing 1 and consists of as few as 15 lines of code. The parameters scale and
translate indicate another issue with the RBF-QR algorithm, because it only
works on for points x with ||x|| < 1 (this is because of the chebyshev polynomials
used). Therefore the mesh is scaled and translated to fit into this space and after
the mapping is computed, the inverse scaling and translation is done. NumPy
(part of SciPy) uses the @-operator to express matrix multiplication and the
*-operator expresses entrywise multiplication (and applying broadcasting rules
if the shapes don’t match).

Listing 1: The offline phase in python

def __init__ (self , shape_param , in_mesh , in_vals ):
self. shape_param , self.in_mesh , self. in_vals

= shape_param , np.copy( in_mesh ), np.copy( in_vals )
in_mesh = self. in_mesh # update reference after copy
self.N = M = N = in_mesh .shape [1]
# Step 1: Compute jmax and K
self.K = K = self. _get_K (np. float64 )
# Step 2: Assemble C
C = self. _get_C ()
# Step 3: QR decomposition of C and R_tilde
Q, R = np. linalg .qr(C)
R_dot = solve_triangular (R[:, :N], R[:, N:K])
D_fraction = self. _get_D_frac ()
R_tilde = R_dot * D_fraction
# Step 4: Evaluate expansion functions on in_mesh and compute A
T = np.empty ((K, M))
T_dynamic = self. _get_T ()
for i in range(K):

T[i, :] = T_dynamic [i]( in_mesh )
self.A = A = T[:N, :].T + T[N:K, :].T @ R_tilde .T
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# Step 5: Solve for lambda
self.lamb = np. linalg .solve(A, in_vals )
# Step 6: Prepare evaluation
self. I_R_tilde = np. hstack ((np. identity (N), R_tilde ))

The code for the online phase is even shorter and is found in listing 2. It basically
only performs a matrix multiplication [I R̃] · T (ẋ) · λ

Listing 2: The online phase in python

def __call__ (self , out_mesh ):
# Step 6: Evaluate
out_length = out_mesh .shape [1]
T_out = np.empty (( self.K, out_length ))
T_dynamic = self. _get_T ()
for i in range(self.K):
T_out[i, :] = T_dynamic [i]( out_mesh )
Psi_out = self. I_R_tilde @ T_out
predicition = Psi_out .T @ self.lamb
return predicition

4.2 The C++ Implementation
The python implementation has three major drawbacks: It is potentially slow
because every entry in the matrices is assembled by python. The other problem
is about scalability: The python code is inherently single-threaded. Thirdly the
preCICE project is written in C++, so this mostly rules out python for the final
implementation. The C++ Implementation must be capable of running inside a
distributed parallel application like preCICE which assumes a special execution
model.

4.2.1 Memory and communication model

For massively parallel computations one can no longer assume that there is
some memory that every process can randomly access. Thus one must assume
distributed memory. An example is outlined in figure 10. Every node consists
of one or more processors, which share some kind of memory. Reads and writes
to this memory are assumed to be rather fast and random access is possible.
When processors of different nodes want to communicate with each other, some
kind of transmission medium has to be used. This is assumed to be rather
slow, and there is no random access possible. Instead message passing is used.
Each processor can communicate with another processor by sending messages.
This model has some implications on how to parallelize algorithms, because in
parallel algorithms one will rather think in terms of message passing instead of
synchronization.
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Figure 10: Distributed memory
Each CPU has some memory shared with other CPUs and some memory that is
remote. Sometimes communication between CPUs can use shared memory, but

sometimes the node interconnect has to be used, which is usually much slower than
shared memory. Thus avoiding communication is a major goal when designing a

parallel algorithm.

4.2.2 MPI

For sending these messages the Message Passing Interface4 standard became the
de-facto standard for HPC applications.
In MPI message passing is performed between processes (also called ranks there).
The programmer usually only specifies the message and MPI handles the actual
transmission via shared memory, IPC, Ethernet, Infiniband, etc. Aside from
simple send/receive routines there is also some collective communication pos-
sible. Two of these collective routines were used and shall be described briefly
here:
MPI_Gatherv(...) collects data from all ranks to one rank.
MPI_Allgatherv(...) lets every rank specify some data which is then ex-
changed in a way that every rank has the data of every rank.
More information on these routines is given in [12].

4.2.3 Eigen

Eigen5 is a library for (sequential) linear algebra. It is widely used in scien-
tific applications, but in this application it is only used wherever no parallel
algorithm was available.

4https://www.mpi-forum.org/
5http://eigen.tuxfamily.org
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4.2.4 PETSc

PETSc6 is a library for parallel solution of partial differential equations. As such
it has some algorithms for solving linear system in a parallel way. It is already
used in preCICE and therefore using it will not introduce new dependencies
to preCICE. The C++ implementation also uses PETSc to some extent, but
unfortunately PETSc is specialized on solving PDEs so it does not have much
support for dense linear algebra.

4.2.5 Elemental

Elemental7 is yet another library for parallel linear algebra, but with support for
dense linear algebra. It is used as an optional feature for the implementation,
as preCICE does not use Elemental yet. For evaluation elemental has also been
used, but proved to be problematic as well, as can be seen in section ??.

4.2.6 Architecture

The architecture of the C++ implementation is quite similar to figure 9. How-
ever in the python implementation the virtual functions returned a full matrix,
whereas in the C++ Implementation they only return one entry (they are given
a row and a column as parameter). getT() can now simply be implemented as
getT(int index, VectorXd x) (VectorXd is a vector of arbitrary size contain-
ing doubles in Eigen), actually evaluating the respective function at some point
x. This is possible because C++ does not necessary need virtual functions
to realize inheritance, but can instead perform some kind of "compile-time-
inheritance" (CRTP). This has the advantage that the compiler can see through
the function call and possibly inline/vectorize the matrix assembly.

4.2.7 Parallel Implementation

The C++ implementation tries to stay as close to the python implementation as
possible, but sometimes has to diverge in order to apply optimizations or because
of parallelization. When looking at the performance of the algorithm, there are
two major places for optimization (they are the routines with O(N3) complexity,
the rest is O(N2)). The first is the QR factorization. Unfortunately PETSc does
not provide a routine to compute a general QR factorization, so I had to roll my
own implementation (actually, PETSc has routines which use QR factorizations
internally but they don’t expose the matrices publicly and don’t construct the
full matrix explicitly). Details can be found in section 4.6. The other place is
when λ is computed fromAλ = f . Solving linear systems in a stable and fast way
is a delicate problem, far beyond the scope of this thesis, but since A is rather
well-conditioned a fast algorithm like LU-factorization or even simple gauss
elimination (both with column pivoting) would probably be sufficient. However
PETSc only provides a solver based on a QR-factorization, called KSPLSQR, for
dense linear algebra. It is a general solver that is also applicable for least-squares
problems. In section ?? the performance of this solver can be seen. Figure 11
shows how the algorithm is implemented in C++. There are quite a few steps
of the algorithm implemented in a serial fashion, which is due to the fact that

6https://www.mcs.anl.gov/petsc/
7http://libelemental.org/
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PETSc does not support multiplying dense matrix in parallel. Instead, I focused
on parallelizing the expensive parts of the computation.
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Figure 11: The offline phase in C++
The Parallel QR decomposition is executed first. This combines assembling and

factoring the matrix. The results are then collected at rank 0, which then computes
R̃ and A in a serial fashion. The equation Aλ = f is then solved in a parallel fashion,

which is done by using PETSc or Elemental.
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4.3 Index transformation
When assembling the Matrix C the question of how to map the expansion to C
arises. Usually some index i denoting the number of terms so far is given. One
is interested in the highest j that is reached within expansion (19). In 2-D, the
number of terms are connected to the highest j in the following way:

s(jm) :=
jm∑
j=0

j−pj
2∑

m=0
1 +

jm∑
j=0

j−pj
2∑

m=1−pj

(29)

=
jm∑
j=0

(
j − pj

2 + 1 + j − pj
2 + pj

)

=
jm∑
j=0

(j + 1)

= (jm + 1)(jm + 2)
2 (30)

s(jm) gives the maximum number of terms that can be reached if j ≤ jm. Any
number of terms can be expressed as:

n = s(jm) +m

for some jm ∈ Z and some m < jm. This makes it possible to express the
matrices from section 3.8 for the 2-D case in the following way:

D j(j+1)
2 +m, j(j+1)

2 +m =
{
dj,m m ≤ j−pj

2
d
j,m−

j+pj
2

else.

C
k,
j(j+1)

2 +m =
{
cj,m(xk) m ≤ j−pj

2
s
j,m−

j+pj
2

(xk) else.

T (x) j(j+1)
2 +m =

{
T cj,m(x) m ≤ j−pj

2
T s
j,m− j+p

2
(x) else

Some way to compute j and m from a given index i when assembling Ck,i is
needed. A simple solution would be to maintain an array of all needed indices j,
m inside an array of sizeK. This is also the way the authors of [10] implemented
this issue in their attached MATLAB Code. However, this means having an
additional lookup in the loop assembling C.
Fortunately there is another possibility. One just needs to invert s(n − 1) =
n(n+1)

2 using the identity

∀y ∈ Z : max
{
j ∈ Z

∣∣∣∣∣j(j + 1)
2 ≤ y

}
=
⌊

1
2

(√
1 + 8y − 1

)⌋
(31)

to determine j. Then m is given by m = i− s(j).
For 3-D one can derive similar formulas by applying this principle but unfortu-
nately the resulting equations become really unwieldy (as they are the solution
to a general cubic equation). The derivation is outlined in appendix A but is
not used in the implementation.
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4.4 Computing R̃

When naively computing R̃ = D−1
1 R−1

1 R2D2 a lot of cancellation and overflow
would occur due to the powers of ε contained in D−1

1 and D2, thus negating the
positive effects of the algorithm.
Define Ṙ, R̃ ∈ RN×(K−N):

Ṙ := R−1
1 R2

S := ṘD2 = R−1
1 R2D2

R̃ := D−1
1 S = D−1

1 R−1
1 R2D2

Ṙ can be computed by backward substitution. S and R must be obtained
analytically, as this is where the powers of ε enter. (Note that (D2)i,i = dN+i):

Si,j = Ṙi,jdN+j

R̃i,j = Ṙi,j
1
di
dN+j (32)

In 1-D this yields together with (18):

R̃i,j = Ṙi,j
i!

2ε2i ∗
2ε2(N+j)

(N + j)! = Ṙi,j
ε2(N+j−i)

(N + j − i)! (33)

In 2-D, the equation for R̃ gets really unwieldy, so instead only dN+j
di

(without
the index shift applied) is considered:

d j1(j1+1)
2 +m1

d j2(j2+1)
2 +m2

=
ε2j12j2−2m2−1

(
j2+2m2+pj2

2

)
!
(
j2−2m2−pj2

2

)
!

2j1−2m1−1
(
j1+2m1+pj1

2

)
!
(
j1−2m1−pj1

2

)
!ε2j2

=
ε2(j1−j2)

(
j2+2m2+pj2

2

)
!
(
j2−2m2−pj2

2

)
!

2j1−2m1−j2+2m2

(
j1+2m1+pj1

2

)
!
(
j1−2m1−pj1

2

)
!

(34)

In 3-D the equation (34) becomes

dj1,m1

dj2,m2

=
23+pj1 +4∗m1ε2j1

(
j1+pj1 +2m1

2

)
!
(
j2−pj2−2m2

2

)
! (j2 + 1 + pj2 + 2m2)!

23+pj2 +4m2ε2j2

(
j2+pj2 +2m2

2

)
!
(
j1−pj1−2m1

2

)
! (j1 + 1 + pj1 + 2m1)!

dj1,m1

dj2,m2

= 2pj1−pj2 +4∗(m1−m2)ε2(j1−j2)(
j1+pj1 +2m1

2

)
!
(
j2−pj2−2m2

2

)
! (j2 + 1 + pj2 + 2m2)!(

j2+pj2 +2m2
2

)
!
(
j1−pj1−2m1

2

)
! (j1 + 1 + pj1 + 2m1)!

(35)
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4.4.1 Computing R̃ for big K

When calculating R̃ for large K, a lot of cancellation occurs. In the following,
a way of computing R̃ even for large K is described.
Consider terms like

a(i) :=
i∏

k=1
a(k)

For instance ab can be written as:
b∏

k=1
a

And a! would be:
a∏
k=1

k

A product a(i1)
1 ∗ a(i2)

2 ∗ . . . a(in)
n can then be calculated as

n∏
m=1

a(im)
m =

max{i1,...,in}∏
k=1

n∏
m=1

{
am(k) k ≤ im
1 else.

(36)

By using (36) computing R̃ becomes feasible even for large K (although it might
be a bit slower than the naive approach).

4.5 Determining jmax

The authors of [10] described a way of determining where to cut off the expan-
sions (17), (19), (21):
The basic idea is to choose jmax so that the scaling coefficients di get truncated
once the ratio formed by D (cf. (32)) exceeds machine precision eps:

max
i≥K

Di,i

min
0≤i<N

Di,i
< eps (37)

If ε ≤ 1 in 1-D, or ε ≤
√

2 in 2-D and 3-D, di is monotonically falling, thus the
denominator becomes DN,N . However, if this is not the case, a formula is given
by:

min
0≤i<N

Di,i =


min(1, djN ) in 1-D
min(2, djN ,0) in 2-D
min(8, djN ,0) in 3-D

Note that this estimation from [10, Appendix B.2] is a bit conservative. D is
indexed from 0, but still d0 = 2 in 1-D, for instance.
In two and three dimensions one has to consider the biggest scaling coefficient
within each block of D as well8. For ε ≤ 1 the blocks are monotonically falling,9

8The formulation "blocks" may be a bit misleading as D is still a diagonal matrix. "block"
refers to the part of the main diagonal that corresponds to one summand of the first sum in
the expansion.

9Note that this again differs from [10, Appendix B.2], because j is indexed from 0, and
p0 = 1
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and simply min0≤i≤N Di,i = DN,N . Otherwise, [10] gives approximations by

max
0≤m≤

j−pj
2

dj,m ≈

{
e0.223j+0.212−0.657pjdj,0 in 2-D
e0.223j−0.012−0.649pjdj,0 in 3-D

Now one can simply increase jmax until the ratio in (37) exceeds machine pre-
cision to get jmax.

4.6 Parallel QR factorization
For a matrix A ∈ Rm×n there exists some Q ∈ Rm×m and some R ∈ Rm×n, so
that

A = QR

with Q being orthogonal (that is QTQ = I) and R being upper triangular.
For computing a QR factorization there are three algorithms (and variations
thereof) that are widely used: Gram-Schmidt, Householder transformations and
Givens rotations. For the implementation the Givens rotations algorithm was
used. It uses special orthogonal matrices (Givens rotations) that are defined by:

Gi,j(c, s) :=



1 0 0
. . .

...
...

1 0 0
0 . . . 0 c 0 . . . 0 s 0 . . . 0

0 1 0
...

. . .
...

0 1 0
0 . . . 0 −s 0 . . . 0 c 0 . . . 0

0 0 1
...

...
. . .

0 0 1



(38)

Row i

Row j

Column i Column j

The algorithm is outlined in algorithm 1. The transformed A becomes R
and the product of all Gi,j is Q.
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for j = 1, . . . , n do
for i = j + 1, . . . , m do

if ai,j 6= 0 then
ri,j =

√
a2
j,j + a2

i,j

ci,j = aj,j/ri,j
si,j = ai,j/ri,j
A← Gj,i(ci,j , si,j) ·A

end
end

end
Algorithm 1: QR factorization with Givens rotations

Note that in every iteration of the inner loop the entry ai,j is set to 0 (a
proof and more details can be found in [5]). For parallelization, I have to
assume distributed memory, which makes transferring data rather expensive.
This algorithm leaves some room for parallelization, which becomes evident
when looking at the data dependencies in figure 12. From this scheme one can
derive a strict weak partial ordering (two elements can be ordered the same, but
still be different) for the way the loops are iterated:

·
1 ·
2 3 ·
3 4 5 ·
4 5 6 7 ·
5 6 7 8 9 ·

 (39)

Every iteration order that preserves the order in (39) is valid. For parallelizing
the algorithm there are two options. The first one shall be called row-wise and
assigns each process one or more rows to set to 0. The second one shall be
called column-wise and assigns each process one or more columns to set to 0.
When looking at figure 12, one can see that in a row-wise parallel algorithm,
there would be two rows transferred after each iteration of the inner loop (when
setting ai,j to 0, rows i and j have to be transferred to the next rank), whereas
in a columns-wise parallel layout, only one row has to be transferred to the next
rank (for entry ai,j that is row j). Furthermore, the row that stays within the
process is always the same row for each process, so for medium size matrices
the memory might stay "hot" (it is cached). However when a process computes
multiple columns, iterating row-wise is preferred, as this yields rows to the next
process earlier, thus speeding up the pipeline. This is summarized in figure 13.
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Figure 12: Data dependencies in givens rotation algorithm
Each tuple (i, j) indicates one iteration of the inner loop. Red arrows indicate where
rows are to be transferred. Green arrows indicate where rows are finished. From

these data dependencies there is already some inherent constraint visible regarding
the execution order, as each iteration first needs to receive the respective rows. So
for instance (2, 1) must be executed after (2, 0), but can be executed concurrently

with (3, 0).

38



Figure 13: A hybrid approach for givens iteration order
This approach combines row-wise traversal with column-wise traversal. Each process
"possesses" some subset of columns that is traversed row-wise. This ensures that

data dependencies of the next process are fulfilled as early as possible. The
communication for each process is bounded by n ∗m, where n denotes the number of
rows and m denotes the number of columns. The overall communication is bounded

by n·k·m
2 , so there is definitely some communication overhead present.
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5 Results
When investigating the results of RBF-QR, the question arises, what the algo-
rithm should be compared to. One choice would be the unmodified RBF ap-
proach (In [10] it is referred to as RBF-Direct). However, there is a lightweight
extension of RBF-Direct, which is RBF-Interpolation with an added polyno-
mial. It has already been investigated and compared to RBF-Direct in [14] and
it is also the way RBF-Interpolation is done in preCICE. Therefore this will be
the algorithm that RBF-QR will be compared to.

5.1 Choosing the right ε
When choosing the "right" ε, one has to consider the size of the mesh too. This
is why the shape parameter is sometimes also expressed in terms of nodes that
are within the carrier of the basis function (c.f. [14]). For a given cutoff value -
e.g. 10−9 - one can get ε from the number of nodes m within the carrier of the
basis function by using

ε =
√
− ln ymin
m · hmax

(40)

for some cut-off value ymin and the maximum distance between two adjacent
centers being given by hmax.
For the RBF-QR algorithm the mesh has to be rescaled to lie within the unit
sphere in d dimensions anyway, so scaling the shape parameter is less important.
For comparison of RBF-QR with RBF-interpolation with polynomials, I will
always use a mesh within the unit sphere. For a uniform mesh one can derive
from (40):

ε =
(N − 1)

√
− ln(ymin)

m · 2 (41)

for N centers. For other node layouts, this formula is applicable as well, if I
accept that instead of defining ε in terms of hmax, I will instead define it in
terms of the maximum distance between centers.
There is a "minimal" shape parameter εmin so that every basis function with
ε ≤ εmin is global on the input mesh. A formula for εmin can be derived from
(40) and is given by

εmin(ymin) =
√
− ln(ymin)

2
With ymin = 10−9 for instance, it yields εmin ≈ 2.2761. This is important,
as one would expect no further improvement in accuracy below that value.
However, this is not a good value to choose for RBF-QR, as discussed in section
5.3.1.

5.2 Chebyshev nodes
For solving PDE’s in real-world applications, the choice of a proper mesh is
crucial. Even though RBF interpolation is a mesh-free method, the node layout
given by a solver does have some influence on the interpolation quality. In
this paper, two kinds of node layouts are considered - equidistant nodes and
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chebyshev nodes (used in a gauss-chebyshev mesh). In one dimension those are
given by

xk = cos
(

2k + 1
2n π

)
, k = 1, . . . , n

on the interval [−1, 1]. An example is given by Figure 14. For arbitrary intervals
one can use any affine transformation on these nodes, and for higher dimensions,
every combination of chebyshev nodes in every dimension will be considered,
which is also shown in Figure 15.

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Figure 14: 1-D chebyshev nodes
One cell of order 10 is shown. Points are clustered towards the boundary.

41



-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

Figure 15: 2-D chebyshev nodes
One cell of order 10 (in each dimension) is shown.

This node layout can usually be found within one cell, but a mesh consists of
multiple cells (also called elements in FEM), so this node layout repeats within
one mesh, as shown in figure 16.
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Figure 16: 2-D chebyshev nodes consisting of multiple elements
In each dimension there are 3 cells with order 10 each. Overall, this makes 900

points split among 9 cells.

5.3 Condition and Accuracy
When the following sections refer to condition, for RBF interpolation with a
polynomial the condition of the matrix of the linear system is meant (that is the
matrix P ). For RBF-QR, condition refers to the condition of A (from equation
(27)). For interpolation with an added polynomial, the separated polynomial
was used, which is also referred to as Separated Poly in the following sections.

5.3.1 Condition in the small-ε domain

When ε is made small, the basis functions become increasingly flat. Figure 17
shows the effect on the condition of A for the two algorithms.

43



10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 101

ε

106

1016

1026

1036

1046

1056

1066

1076

Co
nd

iti
on

RBF-QR and Separated Poly in the small ε domain

Condition RBF-QR on Gauss-Chebyshev mesh
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Figure 17: Interpolation with varying ε
Interpolating an arbitrary function on two different 1D-meshes with N = 100 nodes

each.

One can make several observations from this Figure. Firstly, the condition
stays invariant within ε < 1. Interestingly, the condition deteriorates terribly
when ε > 1. This is not very surprising, because I previously assumed at several
points that ε is rather small. For instance, when reconsidering figure 6, it can be
seen that the factor (13) can no longer be assumed to be negligible. Secondly,
the condition is rather bad if interpolation is done on equidistant nodes, but is
almost perfect on gauss-chebyshev nodes. This observation can also be made
from figure 18 and figure 19, where an explanation is given. For interpolation
with RBF-QR ε = 10−5 is chosen, which ensures that the condition of RBF-QR
does not worsen because of ε. For RBF interpolation with polynomials, m = 5
is chosen. This value yields a good trade-off between condition and accuracy,
which has been shown in [14].

5.3.2 Condition and accuracy in one dimension

For comparison, the function

f(x) = e−|x−3|2 + 2 (42)

will be used.
The alternative algorithm will be RBF-interpolation with an added polynomial.
The resulting linear system is solved by using a direct solver (LU). However,
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Figure 18: Accuracy and condition of RBF-QR and RBF with a poly-
nomial on an equidistant mesh
For the separated polynomial RBF interpolation m = 5 was chosen, thus condition
stays invariant with the mesh size. The condition of RBF-QR deteriorates very

quickly with increasing mesh size and the error of RBF-QR also deteriorates when
N > 16, and RBF-QR becomes even worse than RBF with polynomials for big

values of N .

in real world applications one would very likely apply some preconditioner to
the linear system first. Choosing such a preconditioner is a delicate problem.
For interpolation on a uniform mesh, condition and accuracy can be seen in
Figure 18. RBF-QR performs rather badly on big meshes, whereas the RBF
algorithm accuracy stays invariant from N = 100 onwards. This is due to the
fact that the basis function is scaled in a way where a fixed number of vertices
is included for each basis function (c.f. section 5.1). In Figure 19 the same
principle is applied for a gauss-chebyshev-mesh. (here m = 5 means that for
RBF with polynomials at least 5 nodes are included within each basis function.
This principle will again be applied in the 2-D case). Interestingly, the results
are very different from Figure 18: RBF-QR accuracy improves very quickly until
machine precision (where no further improvement is possible) and the condition
stays very low even for big mesh sizes. The algorithm works almost perfectly.
On the other hand, for the RBF algorithm with a polynomial, the condition
number increases with the mesh size and accuracy only improves at a rather
slow rate. The reason for the difference between Figure 18 and Figure 19 can be
seen when looking at the new basis for 1-D. When ε is chosen to be small, the
new basis functions are close to chebyshev polynomials. This means that in 1-D
the new basis performs polynomial interpolation with chebyshev polynomials on
gauss-chebyshev points. This has been seen to yield very good results in many
previous works.
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Figure 19: Accuracy and condition of RBF-QR and RBF with a poly-
nomial on a gauss-chebyshev-mesh
For RBF-QR, condition and accuracy are almost perfect. The condition for RBF

with a polynomial does not stay invariant with N , because each basis function must
at least include 5 points. Thus, towards the boundary each basis function includes

more than 5 points and the condition of the system worsens.
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Figure 20: The benchmark function for 2-D

5.3.3 Condition and accuracy in two dimensions

In 2-D, a different function is used for comparison. It is given by

f(x, y) = sin(x)− cos(y) (43)

and can be found in Figure 20. This function is again evaluated on an regular
(equidistant) mesh first. Condition and accuracy for interpolation on a uniform
mesh are shown in Figure 21. From this figure multiple observations can be
made. The accuracy of RBF-QR improves at a steady pace when increasing
the mesh size (Note that a mesh size of 50 in one dimension means having 2500
nodes). The condition stays invariant for RBF-QR at a high value which inter-
estingly does not affect accuracy too much (considering that a direct (partial
pivoting LU) solver was used). The results for RBF interpolation with an added
polynomial are less surprising. The condition number increases with the number
of points until 1015, and accuracy improves at the same time. From a mesh size
of 20 in one dimension onwards, neither condition nor accuracy change much
anymore. This is because of the way ε is scaled. There are always 5 nodes
included in one dimension.10 An analogous investigation was done on gauss-
chebyshev points in 2-D. The results are shown in Figure 22. For RBF-QR, not
much has changed. The error improves by roughly one order of magnitude, the
condition stays about the same. For interpolation with an added polynomial a

10The actual number of points contained within the (circular) carrier of the basis function
varies, but can be safely assumed to be ≤ 25.
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Figure 21: Accuracy and condition in 2-D on a uniform mesh
RBF-QR improves accuracy with the mesh size, even though the condition of A is
rather bad. For RBF with an added polynomial, condition and accuracy are staying

more or less invariant with increasing mesh size.
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Figure 22: Accuracy and condition in 2-D on a gauss-chebyshev mesh
The results are quite similar to Figure 21, but this time the accuracy of RBF-QR is a

bit better and the condition of the RBF interpolation with an added polynomial
worsens with the mesh size.
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similar effect as in 1-D occurs. When increasing the number of nodes the con-
dition worsens, because towards the boundary, more points are included within
the carrier of each basis function. However accuracy does not increase from this
effect for some reason.

5.4 Performance
Performance is an important factor for a mapping algorithm, and in the follow-
ing sections the performance of RBF-QR will be investigated. However, there
are some severe restrictions to the overall efficiency of the algorithm, which
will be discussed in the following as well. The performance of RBF-QR will be
compared to RBF interpolation with an added polynomial. For the latter, the
preCICE implementation will be used, with all compiler optimizations enabled.
However, there were some restrictions as well.

5.4.1 Scaling to multiple nodes

Before considering the time needed to compute RBF-QR for different mesh
sizes, it might be interesting how well the algorithm scales to different levels of
parallelism. For this, a fixed 2D-mesh of with 20 nodes in each dimension (400
nodes overall) was used. The time was then measured for the two interesting
parts of the algorithm: The QR factorization (as outlined in section 4.6) and
the solver for the system Aλ = f . In Figure 23 the results by using PETSc
can be seen. There is no real performance gain from using more processors,
which might be because dense linear algebra incurs a significant communication
overhead. Also note that PETSc does not prioritize parallel dense linear algebra
and usually advocates the use of Elemental for the solution of these systems.
The performance of using Elemental can be seen in Figure 24. Elemental seems
to perform worse on many ranks, which might hint at a bug within Elemental.
Since neither of these libraries benefit very much from parallelism, the following
sections will only investigate sequential performance.
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Figure 23: Performance of RBF when scaled to different levels of par-
allelism, using PETSc
A fixed problem size of 20 ∗ 20 = 400 nodes was used. The performance does not

change much when increasing the number of ranks (therefore increasing parallelism).
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Figure 24: Performance of RBF when scaled to different levels of par-
allelism, using Elemental

A fixed problem size of 20 ∗ 20 = 400 nodes was used. The performance actually
decreases severely when increasing the number of ranks.
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5.4.2 Varying shape parameter

Changing the shape parameter ε has some performance implications for the tra-
ditional RBF algorithms, because the system to be solved is a sparse matrix.
Decreasing the shape parameter means having more non-zero entries in the sys-
tem matrix and therefore increasing computational cost. For RBF interpolation
with added polynomial this can be seen from Figure 25. There, a fixed mesh
of size 10 ∗ 10 is used and the basis functions are made increasingly flat. Once
all basis functions are global, performance does not deteriorate any further. At
this point the matrix P is no longer sparse, because all entries are now non-zero.
For RBF-QR the shape parameter does not play a role, as dense linear algebra
is used anyway.
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Figure 25: Performance of RBF interpolation with added polynomial
for different values of m
A fixed problem size of 10 ∗ 10 = 100 nodes was used. The number of points included
within the carrier of a basis function in one dimension (m) is used for the x-axis.

The time increases until m = 10, where no further increase is visible.

5.4.3 Variable mesh size

The mesh size obviously has some effect on the runtime as well. Increasing the
number of points means increasing the size of the matrices involved and thus
increases runtime of the algorithm. Unfortunately the implementation of RBF-
QR and the implementation of RBF interpolation with an added polynomial
use very different data structures. This makes comparing these two algorithms
rather hard. In particular, assembling the matrix turned out to be rather slow
for RBF interpolation with an added polynomial, whereas RBF-QR takes more
time to actually solve the system. An investigation how these effects might
change for very big meshes could be interesting for future work. For this work i
will therefore restrict measurements to RBF-QR. In Figure 26 the time needed
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Figure 26: Performance of RBF-QR for different mesh sizes
As the mesh size increases, runtime increases as well. The (theoretical) runtime of
O(x6) is shown as well and rescaled to match the last value of RBF-QR.

to perform the offline phase is depicted. The theoretical runtime of the algorithm
in would be cubic in the mesh size and thus one would expect O(x6) time for
a mesh with x points in each dimension. From Figure 26 one can see that the
algorithm almost matches this time.
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Appendices
A 3d index transformation
Here is a derivation of the index shift outlined in 4.3 in the 3D-case. This time
the formula is given by

s(n) =
n∑
a=0

j−pj
2∑
b=0

2b+pa∑
c=−(2b+pa)

1 (44)

=
n∑
a=0

j−pj
2∑
b=0

(4b+ 2pa + 1)

=
n∑
a=0

b a2 c∑
b=0

(4b+ 2pa + 1)

Splitting into even and odd a’s and halving them.

=
bn2 c∑
a=0

a∑
b=0

(4b+ 1) +
bn2 c∑
a=0

a−1∑
b=0

(4b+ 3)

=
bn2 c∑
a=0

(
(a+ 1) + 4a(a+ 1)

2 + 3a+ 4a(a− 1)
2

)

=
bn2 c∑
a=0

(4a2 + 4a+ 1)

Now look at

t(k) :=
k∑
a=0

(4a2 + 4a+ 1) (45)

Using square pyramidal number for 4a2 and gaussian sum formula for 4a:

= 1
3(k + 1)(2k + 1)(2k + 3)

Getting t−1 means having to solve

y = 1
3(k + 1)(2k + 1)(2k + 3)

For y > 1 the expression

1
3(k + 1)(2k + 1)(2k + 3)− y

only has one (real) root. It is given by

k = 1
2

 3
√√

3
√

243y2 − 1 + 27y
3
√

9
+ 1

3
√

3 3
√√

3
√

243y2 − 1 + 27y
− 2

 (46)
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From here one could get s−1(n), but the resulting equation would be even more
unwieldy, as there would be an additional distinction between even and odd
n.
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