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Uint, Uext, U� J internal, external and surface energies

v̄ m/s fluid volume e✏ux

v
�
S

/m phase-variable e✏ux

v↵ m/s velocity vector of '↵, v↵ =
0
x↵

V, V
↵ m3 overall volume of B and partial volume of B↵

w J/m3 strain energy density

wk - weight for the Gauss ian quadrature scheme

wF m/s seepage velocity

xi - global coordinate

x m current position vector of '

ẋ,
0
x↵ m/s velocity vectors of ' and '↵

..

x,
00
x↵ m/s2 acceleration vectors of ' and '↵

X↵ m reference position vector of '↵

Calligraphic letters

Symbol Description

AV ansatz (trial) function of the primary variables

B, B↵ aggregate body and partial constituent body

DFk

n+1 global residual tangent

F vector containing the global and local system of equations

GV weak formulation of a governing equation related to a primary
variable

GV abstract vector containing the weak formulations

H1(⌦) Sobolev space

I Crack-Opening Indicator
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K generalised sti↵ness matrix

M generalised mass matrix

N set of all nodes for the FE discretisation

O higher-order terms in Taylor ’s expansion

P , P↵ material points of ' and '↵

R set of response functions

R generalised residual vector

S, S↵ surfaces of the aggregate and constituent body

T V test (weighting) functions of the primary variables

V set of independent process variables

VS subset of independent process variables

y abstract vector containing all nodal DOF

Selected acronyms

Symbol Description

2-d two-dimensional

3-d three-dimensional

COI Crack-Opening Indicator

DOF degrees of freedom

FE-software Finite-Element software

FEA Finite-Element Analysis

FEM Finite-Element Method

IBVP initial boundary value problem

PANDAS Porous media Adaptive Nonlinear finite-element solver
based on Di↵erential Algebraic System

PDE partial di↵erential equation

REV representative elementary volume

SIF Stress Intensity Factor
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Zusammenfassung

Hydraulic Fracturing, auch Fracking genannt, ist eine weit verbreitete Stimulationstechno-
logie in der Energiewirtschaft. Während des Prozesses wird eine Frackingflüssigkeit unter
hohem Druck in eine Schicht mit geringer Permeabilität, wie beispielsweise Schiefer, ge-
presst. Dies erzeugt ein Vielzahl von Rissen, welche sich in diesem Bereich ausbreiten.
Diese künstlich erzeugten Risse tragen zur Verbesserung der Permeabilität der Schicht
bei und erhöhen dadurch die Öl- oder Gasproduktion signifikant. Trotz des o↵ensicht-
lichen wirtschaftlichen Nutzens kann das hydraulische Fracturing auch schwerwiegende
Umweltprobleme, wie die Instabilität der Schicht und die Verschmutzung des Wassers,
mit sich bringen. Daher ist es erforderlich, den Fracking-Prozess zu verstehen und das
potenzielle Risiko zu evaluieren. Es ist allgemein bekannt, dass das hydraulische Frac-
turing ein multiphysikalischer Prozess ist. Daher muss die Forschung mindestens zwei
Hauptphänomene umfassen, nämlich den Riss des Festkörpers durch Fluidinjektion sowie
die Kopplung zwischen dem Festkörper und dem Fluid.

Ziel der vorliegenden Monographie ist es, ein kontinuumsmechanisch basiertes, thermody-
namisch konsistentes, dynamisches Zweikomponentenmodell durch Einbettung des Pha-
senfeldmodells in die Theorie Poröser Medien vorzuschlagen.

Zur Beschreibung von Bruchvorgängen ist die Phasenfeldmodellierung ein vielversprechen-
der Ansatz, der seit zwanzig Jahren auf reine Feststo↵e angewendet wird. Diese Methode
hat sich als sehr brauchbar erwiesen, nicht nur wegen ihrer Einfachheit in der numeri-
schen Implementierung, sondern auch wegen ihrer Fähigkeit, dreidimensionale Probleme
zu bewältigen. Sie kann auch komplexe Rissbildungsphänomene, wie Rissverzweigung,
ohne zusätzliche Behandlung simulieren. Hinsichtlich der Modellierung von mehrphasigen
Materialien im Hinblick auf flüßigkeitsgesättigte porösen Feststo↵e hat sich die Theorie
Poröser Medien als ausgezeicheneter Modellansatz erwiesen. Die Einführung von Produk-
tionstermen in die Bilanzgleichungen ermöglicht eine Beschreibung der Kopplung zwischen
den Konstituierenden. Dadurch wird die Darstellung eines durch Fluiddruck initiierten
Risses ermöglicht.

Das vorgeschlagene Modell basiert auf der Theorie Poröser Medien. Die notwendigen Re-
striktionen zur Herleitung der konstitutiven Gleichungen des Zweiphasenmaterials (Fest-
körper und Flüssigkeit) werden für isotherme Prozesse aus der Clausius-Planck -Unglei-
chung hergeleitet. Bevor thermodynamisch konsistente konstitutive Gleichungen vorge-
schlagen werden, werden einige Merkmale des Fracking-Prozesses diskutiert.

Diesbezüglich sollte die freie Energie vom Festkörperskelett nicht nur von der Festkörper-
deformation abhängen, sodern auch von einer Variablen, die den Zustand des Festkörpers
im Hinblick auf das Risswachstum kennzeichnet. Diese Zustandsgröße (häufiger als Pha-
senvariable oder Order-parameter bezeichnet) kann den Einfluss beschreiben, der durch
Risse eingeführt wird. Außerdem wird angenommen, dass die freie Energie des Festkörper-
skeletts von dem Gradienten dieser Phasenvariablen abhängig ist. Dieser Gradiententerm
reguliert die Festkörperenergie und beseitigt den Größene↵ekt, wenn die Materialparame-
ter und die Elementgröße richtig gewählt werden.

XIX
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Die Phasenvariable �
S für den Festkörper ist durch zwei Grenzzustände (intakt und

vollständig gebrochen) begrenzt. Normalerweise entwickelt sich diese Variable monoton
von einem intakten Material (�S = 0) zu einem vollständig gebrochenen (�S = 1) Ma-
terial. Dies beruht auf den Beobachtungen, dass sich Bodenmaterial wie Schiefer norma-
lerweise nicht selbst heilt oder selbst versiegelt. Um diese Monotonie während der nume-
rischen Behandlung einzubeziehen, wird in die Evolutionsgleichung eine History-Variable
für einen robusten Algorithmus eingefügt. Diese Variable zeichnet den maximalen Wert
der erreichten spannungsinduzierten Festkörperenergie auf.

Weiterhin hängt die Entwicklung dieser Phasenvariablen für einen druckgetriebenen Riss
nur von der Akkumulation der Verzerrungsenergie des Festkörpers ab, nicht jedoch vom
Fluiddruck. Dies liegt an der Tatsache, dass der Fluiddruck als äußere Belastung dient, die
eine Festkörperverformung durch die Kopplung der Impulsproduktionsextragröße verur-
sacht. Dies erhöht die Festkörperenergie und löst schließlich einen Riss aus. In diesem Sinne
wurde der Einfluss des Fluiddrucks bereits durch die resultierende Festköperverformung
und die Verzerrungsenergie des Festkörpers berücksichtigt.

Letzlich ist die Rissinitiierung und -ausbreitung ein Ergebnis von Zugspannung, jedoch
nicht von Kompression. In dieser Hinsicht wird in dieser Monographie die spektrale Zerle-
gung der Festkörperdeformation und der entsprechenden Energie übernommen, vgl. Miehe
et al. [155]. Diese Energie unterscheidet die Anteile, die durch die positiven Hauptverzer-
rung und die negativen Hauptverzerrung verursacht werden. Der erste Anteil nimmt mit
der Entwicklung der Phasenvariable ab, während die zweite konstant bleibt.

Diese Merkmale berücksichtigend wird eine geeignete Form für die von Miehe et al. [155]
inspirierte freie Energie für das Festkörperskelett vorgeschlagen. Basierend auf dieser Form
verringert die Entwicklung der Phasenvariablen die Spannungsenergie vom Festkörper,
während die Oberflächenenergie erhöht wird. Darüber hinaus hat sich seine Anwendung
auf Festkörper in einem quasi-statischen Zustand als konsistent mit der klassischen Gri�th-
Theorie erwiesen, wenn der Längenparameter den Grenzwert 0 erreicht.

Wenn ein durch einen Riss induzierter flüssigkeitsgefüllter Raum entsteht, wird dort die
Kopplung zwischen dem Feststo↵ und dem Fluid aufgrund des Fehlens des Feststo↵s
und des entsprechenden Widerstands nicht länger dominieren. In dieser Hinsicht wird die
konstitutive Gleichung der Impulsproduktionsextragröße des Fluids so vorgeschlagen, dass
die Entwicklung der Phasenvariablen diese Produktion verringert. Darüber hinaus machen
sich die Fluidextraspannungen bemerkbar und in einem Grenzfall (vollständig gebrochen)
sind sie den Newtonschen Viskositätsspannungen gleich. Die spontanen Umwandlungen
der Fluidimpulsproduktionsextragröße und der Fluidextraspannung führen dazu, dass der
Flüssigkeitsdynamikausgleich von Darcyschem Gesetz in die Navier-Stokes-Gleichung um-
gewandelt wird. Somit ist das vorliegende Modell in der Lage, einen Druckriss und eine
daraus folgende Zustandsänderung der Flüssigkeit zu simulieren.

Eine weitere wichtige Tatsache ist, dass die Schicht normalerweise unvollkommen ist und
somit einige natürliche Risse vorhanden sind, bevor der hydraulische Frakturierungspro-
zess beginnt. In früheren Experimenten wurde bereits festgestellt, dass diese natürlich
vorkommenden Risse die Ausbreitung der hydraulischen Risse beeinflussen. Wenn zum
Beispiel unterschiedliche Druckspannungen angewendet werden, variieren die Muster des
hydraulischen Bruches in Bezug auf die bereits existierenden Risse, die geschlossen bleiben
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oder sich ö↵nen. Die vordefinierte Phasenvariable kann jedoch nur die Erzeugung von Ris-
sen aufzeichnen. Darüber hinaus ändert die Phasenvariable den Flusstyp der Flüssigkeit
monoton, allerdings können diese Risse unter den Druckspannungen wieder geschlos-
sen werden. Im Genaueren folgt der Flüssigkeitsfluss in einem o↵enem Riss der Navier-
Stokes-Gleichung, wohingegen der Fluss in einem wieder geschlossenem Riss durch eine
Darcy-Stimmung bestimmt wird. Diese bidirektionale Transformation des Strömungstyps
inspiriert ein neues Konzept, den Crack-Opening-Indicator, der die Möglichkeit einer
Rissö↵nung definiert. Durch die Kombination des Crack-Opening-Indicators und der Pha-
senvariablen können vier extremale Zustände poröser Materialien unterschieden werden,
nämlich intaktes Material mit zunehmender / abnehmender Porosität und vollständig
gebrochenes Material mit einem geschlossenen / o↵enen Riss. Nur wenn das Material
vollständig gebrochen ist und der Riss sich ö↵net, folgt die Flüssigkeit der Navier-Stokes-
Gleichung. Für die übrigen Fälle ist der Fluss vom Darcy-Typ.

Schließlich werden mehrere numerische Beispiele durch das Finite-Elemente Programm
PANDAS ausgeführt, um die Einsatzmöglichkeiten des entwickelten Modells zu präsentie-
ren. Das erste Beispiel untersucht das Geschwindigkeitsprofil der Flüssigkeit im intakten
und vollständig gebrochenen Bereich. Die Ergebnisse zeigen, dass die Strömung im intak-
ten Bereich dem Darcy-Gesetz folgt, während sich die Flüssigkeit im o↵enen Rissbereich
als Poiseuille-Fluss mit einer Gleitgeschwindigkeit auf der Rissoberfläche bewegt. Dieses
Ergebnis stimmt mit der analytischen Lösung von Beavers & Joseph [18] überein. Das
entwickelte Modell erweist sich somit als in der Lage, zwei Zustände des Strömungstyps
zu beschreiben, einen Darcy-Typ im intakten Bereich und einen Navier-Stokes-Typ im
vollständig gebrochenen Bereich. Das zweite Beispiel demonstriert die Leistung des ent-
wickelten Modells bei der Simulation eines unter Druck stehenden Risses im zweidimensio-
nalen Raum. Das dritte Beispiel konzentriert sich auf den hydraulischen Frakturierungs-
prozess mit zwei vorher existierenden Rissen unterschiedlicher Richtungen unter verschie-
denen Einspannungen. In den numerischen Ergebnissen neigt der neu erzeugte Riss dazu,
den vorher existierende Riss zu kreuzen, wenn die Druckspannung hoch genug ist um den
vorher existierende Riss aufrechtzuerhalten. Andernfalls wird der neue in den vorher exi-
stierende Riss eingefügt. Diese Beobachtung wird auch im Experiment von Blanton [24]
festgestellt. Im vierten Beispiel wird der hydraulische Bruchprozess in einer dreidimen-
sionalen Umgebung mit dem entwickelten Modell simuliert, was die mögliche Anwendung
des Modells auf realistische Probleme nahelegt.





Abstract

Hydraulic fracturing, also known as fracking, is a widely used stimulation technology in
the energy industry. During the process, a fracking fluid is pressed under high pressure
into a low-permeable stratum, for example, shale. A large number of cracks are then
triggered and further propagate in that region. These artificially generated cracks im-
prove the permeability of the stratum and as a result, dramatically increase oil or gas
production. Despite the apparent economic benefit, hydraulic fracturing might also bring
severe environmental problems such as the instability of the stratum and water contami-
nation. Hence, it is desired to recognise the fracking process and assess the potential risk.
As hydraulic fracturing is a multiphysics process, the ad-hoc research must deal with, at
least, two main phenomena, namely the cracking of the solid driven by fluid injection and
the coupling between the solid and the fluid.

The aim of this monograph is to develop a continuum-mechanics based, thermodynami-
cally consistent, dynamic, two-component model by embedding the phase-field model into
the Theory of Porous Media. The phase-field model has been proven to be a promising
approach in tackling fracture problems of pure solids after almost thirty years of study.
This method is very competitive not only because of its simplicity in numerical implemen-
tation but also due to its ability of handling three-dimensional problems without the need
of predicting all possible crack modes in advance. Besides, it is able to simulate complex
fracture phenomena such as crack branching. With regard to the modelling of multiphasic
materials such as liquid-filled porous solids, the Theory of Porous Media (TPM) provides
a systematic, general and rational framework. In particular, the TPM introduces produc-
tion terms into the balance equations and hence allows the description of the coupling
between the constituents, which further makes it feasible to depict a pressurised crack.

The integration of the phase-filed approach into the TPM framework starts with the basic
setting and definitions of the TPM and proceeds with the reformulation of the Clausius-
Planck inequality for an isothermal process. The su�cient conditions of the constitutive
equations can then be derived by evaluating this inequality. Before appropriate constitu-
tive equations are proposed, several features regarding the fracking process in saturated
porous media are discussed as follows.

Firstly the solid Helmholtz free energy should depend not only on the solid strain but
also on a variable denoting the state of the solid. This state variable (more often called
phase variable or order parameter) is able to describe the influence introduced by fracture.
Furthermore, this energy is assumed to be dependent on the gradient of that state variable.
This gradient-type term regularises the solid energy and eliminates the size e↵ect when
the material parameters and the mesh size are properly chosen.

Secondly the phase variable �S is defined for the solid, which is bounded by two limit
states (intact and fully broken). Usually, this variable evolves monotonically from an
intact material (denoted by 0) to a fully broken one (denoted by 1). This is based on the
observation that soil, like shale, usually does not self-heal or self-seal. In order to include
this monotonic crack growth into the numerical treatment, a history variable is introduced
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in the evolution equation for a robust algorithm. This variable records the maximum value
of the tension-induced solid strain energy that has been achieved historically.

Thirdly, for a pressure-driven crack, the evolution of this phase variable only depends
on the accumulation of the solid strain energy but not on the fluid pressure. This is
owing to the fact that the fluid pressure serves as an external loading, causes the solid
deformation by the coupling momentum production, increases the solid strain energy and
finally triggers a crack. In this sense, the influence of the fluid pressure has already been
accounted for by the resulting solid deformation and the solid strain energy.

Fourthly, the crack initiation and propagation is a result of tension but not of compression.
In this regards, the monograph adopts the spectral decomposition of the solid strain and
the corresponding solid strain energy, cf. Miehe et al. [155]. This energy distinguishes
the energy caused by the positive principal strains and the negative principal strains. The
first term decreases with the evolution of the phase variable while the second one stays
constant.

After noticing these features, a proper form for the solid free energy inspired by Miehe et
al. [155] is suggested. Based on this form, the evolution of the phase variable reduces the
solid strain energy, while the surface energy increases. Furthermore, its application on
pure solids has been proven consistency to the classical Gri�th theory in a quasi-static
state when the length-scale parameter approaches the limit value 0.

If there is a purely fluid-filled space induced by a crack, the coupling between the solid
and the fluid will no longer be dominant there because of the absence of the solid and
the corresponding resistance. In this regard, the constitutive equation of the fluid extra
momentum production is proposed in such a way that the evolution of the phase variable
will decrease this production. Moreover, the fluid extra stresses become apparent and
in a limit case (fully broken) equal to the Newtonian viscous stresses. The spontaneous
transformations of the fluid extra momentum production and the stresses result in the
fluid momentum balance being converted from Darcy’s Law to the Navier-Stokes equation.
Thus, the present model is able to simulate a pressurised crack and the spontaneous state
change of the fluid.

Another crucial fact is that the stratum is usually imperfect and some natural cracks
exist before the hydraulic fracturing process starts. Previous experiments have already
discovered the influence of these pre-existing cracks on the propagation of the hydraulic
cracks. For example, when di↵erent confining stresses are applied, the pattern of the
hydraulic fracture varies regarding the pre-existing cracks keep closed or start to open.
However, the predefined phase variable is only able to record the generation of cracks.
Moreover, it changes the flow type of the fluid monotonically as well, though these cracks
might be closed again under the confining stresses. And when the fluid flows through a
re-closed crack, it obeys Darcy’s Law again. This bi-directional transformation of the flow
type inspires a new concept, the Crack-Opening-Indicator, which defines the possibility
of a crack opening. The combination of the Crack-Opening-Indicator and the phase
variable makes it possible to distinguish four limit states of porous materials, namely
intact material with increasing/decreasing porosity and broken material with a close/open
crack. Only when the material is broken and the crack is opening, the fluid flow is governed
by the Navier-Stokes equation. For the other cases, the flow is of the Darcy type.
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At last, several canonical numerical examples are set up to demonstrate the performance
of the established model. The first example examines the velocity profile of the flow in
the unbroken and fully broken regions. The results confirm that the flow in the unbroken
region obeys Darcy’s law while the fluid in the open crack region moves as a Poiseuille
flow with a slippery velocity on the crack surface. The result of the flow in an open crack
is consistent to the analytical solution of Beavers & Joseph [18]. Thus, the proposed
model proves to be capable of describing two states of the flow type, the Darcy type in
the unbroken regions and the Navier-Stokes type in the fully broken regions. The second
example demonstrates the performance of the proposed model in simulating a pressurised
crack in a two-dimensional setting. The third example focuses on the hydraulic fracturing
process with two pre-existing cracks with di↵erent directions under di↵erent confining
stresses. The numerical results show that the hydraulic fracture tends to cross the pre-
existing crack when the confining stress is high enough to keep the pre-existing crack
closed. Otherwise, the hydraulic fracture is arrested by the pre-existing cracks. These
two di↵erent propagation patterns of the hydraulic fracture in the presence of the pre-
existing cracks were experimentally found by Blanton [24]. In the fourth example, the
hydraulic fracture process is simulated in a three-dimensional setting using the developed
model, suggesting the potential application of the model to large-scale realistic problems.





Chapter 1:
Introduction and overview

1.1 Motivation

Hydraulic fracturing, also shortened by “fracking”, is a widely used stimulation technique
in the oil and gas industry. In particular, it helps to dramatically increase the yield of
shale gas, which exists in a low-permeable stratum and hardly flows in a natural state.
In a hydraulic fracturing process, a number of fissures are generated by injecting a pres-
surised fracking fluid, cf. Figure 1.1, resulting in a much higher permeability and, finally,
adequate outflow rates. This technique has also been applied to other engineering fields,
such as deep geothermal energy plants and deep groundwater resources, cf. Adachi et al.
[2], Bažant et al. [17] and Hattori et al. [109]. Although it has been over seventy years
since the first hydraulic fracturing experiment conducted in southwest Kansas in 1947,
the assessment of the potential environmental risks, including the leakage of contaminant
and destabilisation of strata, remains a challenging topic. The main challenges come from
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Figure 1.1: Exemplary description of hydraulic fracturing.

the fact that hydraulic fracturing involves at least two complex phenomena, the initiation
and the propagation of cracks and the behaviour of a multi-component and multi-phasic
material. Owing to a large number of experiments and the related theoretical researches,
significant progress has been made in the theoretical interpretation and numerical simula-
tion of the crack initiation and propagation. Nevertheless, the application in engineering
fields requires a more e�cient approach tackling complex crack patterns, such as curvi-
linear cracks and crack branching. Just recently, the phase-field approach has attracted
intensive attention as a promising solution to crack simulations due to its simple imple-
mentation in numerics and successful applications in various fracture problems, such as
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2 1 Introduction and overview

ductile fracture of solids at finite strains, cf. Aldakheel [3]. However, the fracking pro-
cess usually occurs in a more complex environment including not only intact or fractured
solids but also di↵erent types of fluids. Hence, special consideration has to be paid to
describe such multi-component materials and the interaction therein. In this regard, Biot
suggested a more or less intuitive theory, modelling the mechanical behaviour of a poroe-
lastic medium in [22] and [23]. Despite the convenience in implementation, the initial
deficiency in Biot’s theory, namely the lack of individual description for the fluid, results
in a further di�culty in explaining the transition from an in-pore fluid to a bulk flow and
vice versa during a fracking process. In comparison, the Theory of Porous Media (TPM)
proceeds from the roots of Rational Thermodynamics and provides each constituent with
an individual motion function, as well as balance equations. Thus, a full description for
an overall aggregate is available, where a transformation of the fluid state can also be
included. Following this, the present work aims to postulate a thermodynamically con-
sistent model in the framework of the TPM by combining it with a phase-field model to
brittle fracture.

1.2 Scope, Aims and State of the Art

In the light of history, the e↵ort of understanding and predicting the world or even the
universe has never ceased. Owing to the limitation of the old-time techniques and devices,
it is straightforward to assume that the material is continuous over the space, based
on which the classical continuum mechanics is founded. The conventional theories of
continuum mechanics homogenise the micro-structures of materials and postulate a set of
axiomatic balance equations. The interested reader is referred to Chadwick [49], Gurtin
[102], Haupt [110, 111], Maugin [150] and Malvern [144].

As an important failure mode in engineering and nature, the mechanism of brittle fracture
has been studied for a long time, with topics ranging from the crack nucleation, initia-
tion, propagation to crack branching, arrest and kinking. In the meantime, experimental
investigations have been reported, for example, by Ravi-Chandar & Knauss [172–175],
Ramulu & Kobayashi [171], and Kaltho↵ & Winkler [126]. However, solids like steel ex-
hibit a large deformation before a macroscopic fracture occurs, which is then defined as
ductile fracture. This transition from brittle to ductile fracture was firstly found in 1987
when Kaltho↵ & Winkler impacted a double pre-notched steel plate by a projectile, cf.
[126] and [127]. Later on, similar experiments were conducted for a steel plate with a
single notch, cf. Ravi-Chandar [176] and Zhou et al. [205–207].

The classical theory of brittle fracture in pure solids is elaborated in Gri�th [96, 97],
Irwin [120], and Barenblatt [14]. From an energetic point of view, Gri�th suggested a
surface energy which rises with the generation of the new surface induced by crack and in
the meantime, absorbs the released stored energy. In addition, the crack propagation was
related to a so-called critical energy release rate, which is responsible for creating new crack
surfaces and governs the resistance to crack growth. If the released stored energy is greater
than the increase in surface energy, the crack will propagate further. This innovative idea
o↵ers a general treatment when tackling a complex stress state around the crack tip.
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Following his idea, Irwin [120] proposed the concept of the Stress Intensity Factor (SIF)
instead of the critical energy release rate, which only requires the computation of the
stress in the vicinity of the crack tip but not the energy of the whole system. In order to
eliminate the stress singularity at the crack tip, the cohesive crack model was developed
by Barenblatt [14] and Dugdale [59]. In this model, a cohesive potential is assumed by
concluding the conservative stresses in the cohesive zone, cf. Gasser & Holzapfel [92].
As an extension of this approach, Rice [179] introduced the so-called J-integral which is
path-independent and accounts for the energy influx into the crack tip. Besides, Eshelby
[82, 83] reformulated the standard energy balance by introducing a new energy-momentum
tensor, which represents a configurational force. Regarding a detailed interpretation of
the configurational force applied to the crack problem, one may compare, for example,
Eshelby [81–83] while Stumpf & Le [192] and Maugin & Trimarco [150] proposed a set of
local formulations proceeding from the variational principle.

The aforementioned theories mainly focus on the mechanism of brittle fracture but fail
to describe the behaviour of solids like steel which undergoes large irreversible (plastic)
deformations around the crack tip. Irwin et al. [121] investigated the size of the crack
process zone, based on which Dugdale [59] interpreted ductile fracture as macroscopic
plasticity in the context of the cohesive zone model. In addition, the behaviour of ductile
fracture can also be modelled by a decreasing sti↵ness. Following this idea, a varying crack
resistance was introduced as the crack resistance curve concept in the work of Kra↵t et
al. [133].

For the fundamentals of fracture mechanics within continuum mechanics, one may refer
to Simo et al. [187], Hahn [105] and Oliver et al. [167, 168]. Additionally, an overview of
the classical theories of dynamic fracture mechanics is available in Freund [91].

Although these theories explain the criterion for crack propagation, the mechanism of
crack initiation in a defect-free ideal body remains unsolved. In order to overcome this
drawback, one may turn to Braides [43] and Ambrosio et al. [7], who predicted the crack
initiation by including additional incremental energy functionals, accounting for both vol-
ume and surface energies, in the standard variational formulation for fracture problems.
Therein, the discontinuity surface was represented by a new variable, which causes sin-
gularities when computing the energy minimisation numerically. In order to regularise
the derived formulation, Dal Malso [53] proposed the so-called �-convergence. The corre-
sponding applications to brittle fracture can be found in, e. g. , Francfort & Marigo [88],
Amor et al. [9], Bourdin [35], Dal Maso & Toader [54] and Buliga [46]. Following the
idea of image segmentation by Mumford & Shah [163], Bourdin et al. [34, 36] applied �-
convergence to the regularisation of the variational formulations. The details were further
elaborated in, for example, Ambrosio & Tortorelli [6], Dal Maso [53], Braides [43, 44] and
Bourdin et al. [37]. Almost contemporarily, a conceptually similar approach was applied
to brittle fracture, cf. Hakim & Karma [106], Karma et al. [131] and Eastgate et al. [60].
This method was inspired by the Ginzburg-Landau theory, which phenomenologically de-
scribes the phase transition in superconductivity. A variable denoting di↵erent phases
was used to distinguish the intact and fractured materials, thus leading to a phase-field
model of brittle fracture, cf. Miehe et al. [155, 156] Kuhn & Müller [136], Borden et al.
[33], and Schlüter et al. [185]. A review of phase-field models applied to brittle fracture
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can be found in Ambati et al. [4].

Apart from the numerical regularisation, the discontinuity induced by a sharp crack can
also be treated with other finite-element-based numerical methods. To name but a few,
the adaptive interface element succeeds in dealing with complex three-dimensional crack
scenarios, cf. Xu & Needleman [203], Camacho & Ortiz [47], Pandolfi & Ortiz [169],
Geissler et al. [93], Kaliske et al. [125] and Miehe & Gürses [100, 101, 154], while the
extended Finite-Element Method (XFEM), developed by Belytschko & Black [19] and
Moës et al. [161], later enriched by Belytschko et al. [20] and Song & Belytschko [190],
Moës & Belytschko [162] and Fagerström & Larsson [84], enhanced the standard Finite-
Element Method (FEM) by introducing additional shape functions characterising newly
generated cracks. Moreover, Armero & Linder [12, 140] proposed a FEM with embedded
discontinuities, where a velocity-based branching criterion was suggested to simulate,
especially, the branching problem.

In order to model brittle and ductile fractures simultaneously, Li et al. [139] o↵ered a
mesh-free Galerkin simulation regarding the failure mode transition, while Song et al.
[189] enhanced the XFEM with phantom nodes. While applying the interface element,
brittle fracture can be assumed dependent on the principal tensile stress, and ductile one
occurs owing to the nucleation and coalescence of voids, cf. Batra & Jin [16]. In addition,
an analysis of the crack growth in a double edge cracked model was reported in Needleman
& Tvergaard [164].

Regarding the mutual e↵ect between solid and fluid in a fracking process, the earliest
study of multi-component and multi-phasic materials is referred to the work of Reinhard
Woltman [201], who observed the significance of the volumetric portion of the soil and
the water against the overall volume in a dike construction and defines this ratio as the
volume fraction. However, the most famous equation does not come from him but is
named after a French engineer, Henry Philibert Gaspard Darcy. Darcy ’s law states that
when a fluid passes through a porous solid, the velocity of the fluid is the product of
the hydraulic conductivity (Darcy permeability) and the negative of the fluid pressure
gradient. Although this relation was determined experimentally, it has been widely used
in various engineering fields for its simplicity and later proved to be consistent with the
Navier -Stokes equations after homogenisation, cf. Whitaker [200]. Another competitively
significant finding, Fick’s laws, was discovered by Adolf Eugen Fick, which focuses on the
di↵usion process in the multi-component materials, especially liquids with various solutes.

During the first several decades of the twentieth century, two theories focusing on a
binary model of soil have formed with the increasing interest of geomaterials. From the
perspective of an engineer, Karl von Terzaghi set up a practical theory that is, however, not
continuum-mechanics-based while his opponent, Paul Fillunger, proposed an innovative
model containing two interacting constituents. Regardless of a more modern basis at the
very beginning, Fillunger still lost his conflict against Terzaghi, who pointed out a mistake
in assuming the buoyancy force linearly dependent on the di↵erence between the volume
and surface porosity. The race ended with the suicide of Fillunger in 1937, and after fifty
years, his brilliant idea again came up to the notice of Reint de Boer, who recovered his
articles during the stay at Fillunger’s university in Vienna in 1987. In 1956, Terzaghi’s
follower, Biot published his most famous work, [21–23], based on a more or less intuitive
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idea. The main content has been concluded as Biot’s theory and is nowadays widely used
when solving porous-media problems.

A new era came in the 1950s after Truesdell presented his Theory of Mixtures, which
is originated from “Rational Mechanics” [194]. In this work, he introduced “supply”
terms1 into the local balance equations for each constituent to describe the coupling
mechanics between constituents while the rest of these equations were retained as the
standard balance equations, cf. [195]. Besides, he proposed the metaphysical principles
defining the thermodynamical requirements for arbitrary mixtures [196]. Lots of papers
followed, to name but a few, Eringen and Ingram [79], Green and Naghdi [95], and Bowen
[39, 40]. Extending the TPM with the concept of volume fractions, Bowen proposed two
porous-media models regarding incompressible and compressible materials, respectively,
in [41, 42]. For a historical review in this regard, one may compare, for example, de Boer
[28] and Ehlers [72]. In addition, a detailed interpretation of the TPM, is available in, e.
g. de Boer [29], de Boer & Ehlers [26, 27] and Ehlers [61–63, 68, 70] while the successful
applications of the TPM have been reported in the works of Diebels & Ehlers [56], Ehlers
et al. [66] and Ammann [8]. If applied to biology, the TPM is able to model biological
tissues and their related medical treatment, for example, soft tissues [67], intervertebral
disc [129, 130], hip joint [143], tumour growth [134] and drug infusion in the human brain
[198]. According to the reports of Ehlers et al. [69], Heider [112], Avci [13], Koch [132],
Schenke [184] and Häberle [104], various problems of geoconstructions such as responses
to earthquake, CO2 sequestration into deep aquifers, can also be solved in the framework
of the TPM.

In order to achieve a better understanding of fracking processes, Rubin [182] studied the
behaviour of hard rocks while Bohloli [30] carried out experiments on the unconsolidated
soft rocks. Furthermore, experiments concerning the influence of confining stresses and
natural fractures were conducted by Blanton [24], Warpinski & Teufel [197] and Zhou
et al. [208]. Besides these experimental studies, the earlier theoretical investigation was
usually based on very limited simple cases, cf. Rice & Cleary [180], Boone & Ingra↵ea [31],
Boone & Detournay [32] and Detournay [55]. Thanks to the high-performance computers,
more complicated and general scenarios have been under consideration. De Borst and
Keschavarzi turned to the XFEM for a description of the fractured solid while Schrefler
introduced a cohesive interface element. Proceeding from the successful application of
the phase-field model to pure solid, some researchers attempted to combine it with Biot’s
theory in modelling saturated soil, cf. Bourdin et al. [38], Mikelic et al. [159, 160], Wheeler
et al. [199] and Miehe et al. [157, 158]. However, owing to the missing individual fluid
balance equation, the transition from an in-pore fluid to a bulk flow requires an alternative
treatment, for example, a substitution by an enlarging permeability. On the other hand,
researchers started from the TPM and embedded the phase variable di↵usive crack, cf.
Markert & Heider [113, 148] and Luo & Ehlers [141, 142]. In the work of Markert & Heider,
the model was based partially on the standard form of the TPM, mainly for the balance
equations, and partially on the variational formulations, mainly for the evolution of the

1
The quantities, “supply” terms, are now more often called as “production” terms according to the

suggestion by Ehlers [63] because the phrase, “supply” term, usually denotes a far-distance contribution

of a balance equation in the framework of Continuum Mechanics.
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phase variable. Furthermore, an artificial coe�cient was introduced in the computation
of the solid volume fraction, helping to eliminate the solid in the crack zone. Although
this treatment makes the result “beautiful” in a certain sense, it does not obey the mass
balance and results in an irreversible loss of weight in the crack zone. The problem
becomes severe when a recycling load is applied, or natural cracks are considered. The
first fully continuum-mechanical-based model dates back to the work of Ehlers & Luo [73].
This model is completely based on the TPM, where the evolution of the phase variable
is re-interpreted accordingly. Recently, the second part has also been published, cf. [74],
which proposed a concept of the so-called “Crack-Opening Indicator” (COI) to treat more
complex crack scenarios including the confining stresses and pre-cracks.

1.3 Outline of the Thesis

Apart from the above introduction, the following content starts with a brief introduction
of the fundamentals of the TPM inChapter 2. Therein, the basic concept such as volume
fraction, partial and real densities, together with the kinematic relations are given as a
preliminary. Subsequently, the global and local balance equations are discussed, leading
to the derivation of the entropy inequality which provides the necessary conditions for
a thermodynamically consistent material model. Note that the conclusions within this
chapter are always general and thus are valid for arbitrary porous-media problems.

In Chapter 3, the mechanism of crack from di↵erent scales are explained. Thereafter,
several famous theories in this regard, including Gri�th’s theory, Irwin’s theory, J-integral
and the phase-field approach, are briefly reviewed. Notably, the last one is subsequently
adopted as the method to tackle the crack phenomena in multi-constituent materials.

In order to simplify the derived model, Chapter 4 focuses on a biphasic, solid-fluid
material model and further applies several reasonable assumptions, for example, material
incompressibility. After reformulating the balance equations and inserting them into the
Clausius-Planck inequality, the inequality is divided into several parts. Before proposing
constitutive equations, the idea of the COI is explained. In addition, other essential
concepts such as geometrical linearisation and spectral decomposition of the solid strain
are also presented. Eventually, the constitutive relations are discussed regarding the solid
and the fluid, respectively.

After the theoretical interpretation, the detailed numerical treatments are presented in
Chapter 5. At first, several critical issues related to the fracturing process itself, such
as the threshold of fracturing, the irreversibility of crack generation, and the inclusion
of pre-existing cracks, are discussed. Afterwards, the implementation in the framework
of the Finite-Element Method is introduced. The process starts from the derivation of
the governing equations in a weak form and continues with the spatial and temporal
pressurised. The choice of the basic governing equations concerning the applied boundary
and loading conditions is, en passant, also discussed. The last part of this chapter exhibits
the derivation of the consistent tangent for convenience purposes only.

Chapter 6 displays numerical examples in two- and three dimensions. The first example
aims to justify the fluid-type transition with the proposed constitutive equations while
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the second one simulates the crack propagation under a pressurised load. In order to
demonstrate the performance of the material model under confining stresses and pre-
cracks, the third model is assumed to be under a plane-strain condition, contains two
di↵erent-oriented cracks and is assigned with di↵erent combinations of confining stresses.
The hydraulic fracture is triggered by injecting the fluid into one of the pre-existing cracks.
The derived crack patterns are then compared to the experiments reported in Blanton
[24]. The last model is set up in three dimensions and shows the capability of the model
in handling higher-dimensional problems.

The thesis is summarised in Chapter 7. The advantages, together with the limitations of
the presented numerical methodology are analysed. Moreover, an appropriate theoretical
extension and potential applications are outlooked.

The essential mathematical relations of tensor calculus are outlined in Appendix A
while essential supplements in thermodynamics are given in Appendix B. Furthermore,
Appendix C gives a short introduction of the customised colour scheme in the graphics
of this monograph.





Chapter 2:
Fundamentals of the Theory of Porous
Media

This chapter aims to give a brief introduction to the TPM, which sets up a basic framework
for the following work. The main concern includes several basic concepts of the TPM (e.
g. the concept of volume balance) and balance equations (e. g. mass balance equation).
The chapter is finalised with the derivation of the entropy inequality. This inequality
provides the derived material model with a necessary condition for the thermodynamical
consistency and will later be applied to define suitable constitutive relations for the solid
and the fluid in Chapter 4.

2.1 Basic Definitions

2.1.1 Concept of volume fractions

Starting from a macroscopic scale, the TPM provides an excellent and comprehensive
theory describing multi-phasic and multi-constituent materials. In this regard, a repre-
sentative elementary volume (REV) is selected from the original heterogeneous material.
During the homogenisation, the heterogeneity of micro-structures is neglected by a volu-
metric averaging process under the assumption of an ideal disarrangement state. Thus,
the derived homogenised model contains a statistical substitution of the detailed inner
structures, which leads to the statistical mean values of all geometrical and physical
quantities. In a concerned REV, immiscible constituents, denoted by '

↵, are assumed
to be superimposed in space from a macroscopical point of view, forming up the overall
aggregate ',

' :=
[

↵

'
↵
. (2.1)

However, if looking into the microstructures, the overall volume element dv is composed
of independent partial volume elements dv↵. The di↵erence between macroscopical and
microscopical scales requires the concept of the volume fraction, where the volume fraction
n
↵ of a constituent '↵ is defined as

n
↵ :=

dv↵

dv
. (2.2)

If no voids exist in the REV and the whole space is occupied by constituents '↵, then
this full saturation condition enforces the constraint that

X

↵

n
↵ = 1. (2.3)

9
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If we turn back to the macroscopic scale, the overall volume V of a body B is defined as
the sum of the partial volumes V ↵ of the constituent bodies B↵ as

V :=

Z

B
dv =

X

↵

V
↵ with V

↵ :=

Z

B↵

dv =

Z

B
dv↵ =

Z

B
n
↵dv. (2.4)

Based on these volume elements, two corresponding densities are defined, namely the real
density ⇢↵R with respect to the local partial volume element and the partial density ⇢↵

with respect to the local overall volume element, as follows,

⇢
↵R :=

dm↵

dv↵
and ⇢

↵ :=
dm↵

dv
, (2.5)

where dm↵ is the local partial mass element. These two densities are related to each other
via

⇢
↵ = n

↵
⇢
↵R

. (2.6)

From this equation, it is clear that the partial density depends not only on the real
density (the material compressibility) but also on the volume fraction. Considering an
incompressible constituent in TPM, the partial density may vary with a changing volume
fraction while its real density remains constant. In correspondence to (2.4), the overall
density is defined as

⇢ :=
X

↵

dm↵

dv
=
X

↵

n
↵
⇢
↵R

. (2.7)

2.1.2 Motion functions

Although the REV is simultaneously occupied by constituents '↵ at a moment t at po-
sition x, each constituent may proceed from a di↵erent reference position X↵. Thus,
the independent motion functions �

↵
are required to trace the movement of the material

particles,
x = �

↵
(X↵, t). (2.8)

Moreover, the motion should be uniquely invertible from its physical nature, which yields
non-singular functional derivatives (Jacobian1) J↵ in a mathematical manner,

X↵ = ��1
↵
(x, t) with J↵ := det

@ x

@X↵

6= 0. (2.9)

Notice that x and X↵ claim the positions of the material point P↵ in the current (spatial)
and reference (material) configurations, respectively. Other kinematical quantities related
to this material point can also be expressed in these two settings. For example, in the
reference configuration, the definition of the velocity and acceleration functions for the
constituents '↵ can be given as follows

0
x↵ = v↵ :=

d

dt
�

↵
(X↵, t) and

00
x↵ = (v↵)

0
↵
= a↵ :=

d2

dt2
�

↵
(X↵, t). (2.10)

1Carl Gustav Jacob Jacobi (1804-1851): German mathematician.
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Substituting x by its reference position X↵ yields the expressions in the current configu-
ration as

0
x↵ =

0
x↵[�

�1
↵
(x, t), t] =

0
x↵(x, t) and

00
x↵ =

00
x↵[�

�1
↵
(x, t), t] =

00
x↵(x, t). (2.11)

In comparison to (2.7), the velocity of the overall aggregate is introduced as

ẋ :=
1

⇢

X

↵

⇢
↵

0
x↵ , (2.12)

where ẋ is also known as the barycentric velocity. A detailed derivation of ẋ refers
to Section 2.2.2. Following this definition, the di↵erence between the velocity of the
constituent and the barycentric velocity is then defined as the so-called di↵usion velocity
via

d↵ :=
0
x↵ � ẋ with

X

↵

⇢
↵d↵ =

X

↵

⇢
↵

0
x↵ � ẋ

X

↵

⇢
↵ = 0. (2.13)

2.1.3 Deformations and strains

Due to the idea of a spatially superimposed material point, the position vectors for all
constituents are identical in the current configuration. Hence, there is no need to mention
the constituent when computing the spatial gradient. However, regarding the fact that
the constituents might start from di↵erent referential positions, the choice of the referred
constituent '↵ must be clarified when defining the material gradient. Based on this
finding, the material and spatial gradients are defined as

Grad ↵ :=
@ 

@X↵

and grad :=
@ 

@ x
. (2.14)

For example, the deformation gradient of the constituent '↵ and its inverse are defined
as

F↵ :=
@�

↵
(X↵, t)

@X↵

= Grad↵ x and F�1
↵

:=
@��1

↵
(X↵, t)

@ x
= gradX↵. (2.15)

These two tensors provide covariant vectors, e. g. the local line elements, with the so-
called covariant push-forward (from reference to current configurations) and pull-back
(from current to reference configurations) transformations, respectively,

dx = F↵ dX↵ and dX↵ = F�1
↵

dx, (2.16)

where dX↵ and dx are the local line elements in the reference and current configura-
tions. For contravariant vectors, e. g. the local area elements in the reference and current
configurations, dA↵ and da, the push-forward mapping tensor is given by cofF↵

da = cofF↵ dA↵ with cofF↵ := (detF↵)F
T�1
↵

. (2.17)

Herein, the determinant of the deformation gradient detF↵ also relates the reference
volume element dV↵ to its current one dv by

dv = detF↵ dV↵ and detF↵ =
dv

dV↵

. (2.18)
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Combining this relation and (2.5), the partial density is derived via

⇢
↵ = ⇢

↵

0 (detF↵)
�1
, (2.19)

where ⇢↵0 is the initial value of ⇢↵ at time t = 0. The inverse of the deformation gradient
can be formulated as

F�1
↵

=
(cofF↵)T

detF↵

with detF↵ > 0, (2.20)

which is a direct result regarding the physical meaning of volume elements (positive value).
The initial (undeformed) state yields that the deformation gradient must be an identity
tensor at the beginning and its determinant hence must be one,

F↵(t = t0) = Grad↵ X↵ = I and detF↵(t = t0) = 1. (2.21)

When one investigates the scalar product of the line elements, the following relations are
deduced, where the right and left Cauchy2-Green3 tensors, C↵ and B↵, transform the
square of line elements from the reference to current configuration and vice versa, as:

dx · dx = (F↵ dX↵) · (F↵ dX↵) = dX↵ ·C↵ dX↵ with C↵ := FT

↵
F↵,

dX↵ · dX↵ = (F�1
↵

dx) · (F�1
↵

dx) = dx ·B�1
↵

dx with B↵ := F↵ FT

↵
.

(2.22)

If the di↵erence between the square of the line elements in these two configurations is
compared, the notion “strain” of a body can be introduced via

dx · dx� dX↵ · dX↵ =

8
<

:

dX↵ · (C↵ � I) dX↵ = dX↵ · 2E↵ dX↵,

dx · (I�B�1
↵
) dx = dx · 2A↵ dx,

(2.23)

where E↵ and A↵ denote the Green-Lagrangean4 and Almansian5 strain tensors, respec-
tively,

E↵ =
1

2
(C↵ � I), A↵ =

1

2
(I�B�1

↵
). (2.24)

The factor, 1
2 , makes the definition of strain tensors consistent with the traditional engi-

neering strain or the well-known Hookean6 elasticity law after a geometrical linearisation.
The transformation between these two tensors refers to the contravariant push-forward
and pull-back mapping for a second-order tensor,

A↵ = FT�1
↵

E↵ F
�1
↵
, E↵ = FT

↵
A↵ F↵. (2.25)

2Augustin Louis Cauchy (1789-1857): French mathematician.
3George Green (1793-1841): British miller and self-taught mathematician.
4Joseph-Louis Lagrange, born Giuseppe Lodovico Lagrangia (1736-1813): Italian mathematician and

astronomer.
5Emilio Almansi (1869-1948): Italian physicist and mathematician.
6Robert Hook (1635-1703): English natural philosopher, architect and polymath. “Polymath” repre-

sents the person who has a broad interest ranged from mathematics, physics, biology, chemistry, astrology,

astronomy, philosophy, writing and gambling.
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2.1.4 Velocity gradient and deformation rates

When discussing the time derivative, the material time derivative is defined as the total
time derivative. Obviously, there is no di↵erence if the interested quantity is expressed
in the reference configuration. However, attention needs to be paid to the derivatives in
the current configuration. Unlike the single-phasic material, the material time derivative
in the TPM must be assigned to a specific constituent due to the existence of di↵erent
velocities at this superimposed material point. Hence, the material time derivatives of
scalar-valued and vector-valued quantities with respect to constituent '↵ are defined as

( )0
↵

=
d↵ 

d t
=
@ 

@ t
+ grad · v↵,

( )0
↵

=
d↵ 

d t
=
@ 

@ t
+ (grad )v↵.

(2.26)

Moreover, the material time derivatives between two di↵erent constituents '↵ and '� are
related by the following equations,

( )0
↵
= ( )0

�
+ grad · (v↵ � v�), ( )0

↵
= ( )0

�
+ grad (v↵ � v�), (2.27)

.
If one recalls the preceding sections, the material and spatial velocity gradients are ob-
tained by

(F↵)
0
↵
=

d↵

d t
(
@x↵

@X↵

) =
@

0
x↵

@X↵

and L↵ =
@

0
x↵

@x
, (2.28)

which map the material and spatial line elements to its velocity elements, respectively.
These velocity gradients are related to each other by the inverse of the deformation gra-
dient, i.e.,

d
0
x↵ = (F↵)

0
↵
dX↵ = (F↵)

0
↵
F�1

↵
dx = L↵ dx and L↵ = (F↵)

0
↵
F�1

↵
. (2.29)

Regarding the definition of the spatial velocity gradient, the trace of L↵ can also be

interpreted as the divergence of the velocity
0
x↵, compare,

L↵ = grad
0
x↵ and L↵ · I = div

0
x↵. (2.30)

By splitting the tensor L↵ into a symmetric part and a skew-symmetric part, one yields
the rate of deformation D↵ and the spin tensor W↵. When computing the rate of the
square of the current line elements, the following relation is derived,

(dx · dx)0
↵
= dX↵ · (C↵)

0
↵
dX↵ = dX↵ · (2FT

↵
D↵ F↵) dX↵ = dx · (2D↵) dx, (2.31)

where the transformation is considered as

(C↵)
0
↵
= (FT

↵
F↵)

0
↵
= ((F↵)

0
↵
)TF↵ +FT

↵
(F↵)

0
↵
= FT

↵
LTF↵ +FT

↵
L↵F↵ = 2FT

↵
D↵F↵. (2.32)

It is concluded that the rate of the deformation tensor D↵ maps the square of the current
line element dx to the temporal change of this square (dx · dx)0

↵
while (C↵)0↵ transforms
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the square of the referential line element dX↵ to this time derivative. Additionally, (E↵)0↵
is derived as a half of (C↵)0↵, which can also be obtained by a contravariant pull-back
transformation of D↵, compare (2.25),

(E↵)
0
↵
=

1

2
(C↵)

0
↵
= FT

↵
D↵F↵. (2.33)

2.1.5 Stresses

In a typical thermodynamical problem, the load coming from the environment around
the body B results in changes of certain quantities, e. g. mass or temperature, within the
body. For an arbitrary point on the surface, the traction force applied to it is not only
dependent on its position and time but also the orientation of the surface. Therefore,
the traction vector per unit surface area is defined as a function of x, t and the outward-
oriented unit surface normal vector n. Regarding this, the Cauchy stress theorem defines
the Cauchy stress tensor T via

t(x, t, n) = T(x, t)n, (2.34)

which states that the stress tensor T maps the surface normal vector n to the correspond-
ing traction force t. Attention needs to be paid that both of the vectorial terms, n and t,
are in the current configuration. In addition, the Cauchy stress tensor for a constituent
'
↵ is denoted by T↵. If di↵erent area elements of the constituent ↵ are considered, the

partial stress tensors ⌧↵ and P↵ related to the current force element dk↵ are then defined
as the Kirchho↵ 7 and 1st Piola8-Kirchho↵ stress tensors, respectively,

dk↵ = T↵ d a = ⌧↵ dā↵ = P↵ dA↵
, (2.35)

where dA↵ is the reference area element and the weighted area element dā↵ is given by

d ā↵ = (detF↵)
�1d a. (2.36)

Pulling back the force element to the reference configuration introduces the partial 2nd
Piola-Kirchho↵ stress tensor S↵:

dK↵ = F�1
↵

dk↵ = S↵ dA↵
, (2.37)

where the traction force in the reference configuration dK↵ does not exist but is an
imaginary object. To summarise the stress tensors, the following relations are found,

T↵ = (detF↵)
�1 ⌧↵ = (detF↵)

�1 P↵ FT

↵
= (detF↵)

�1 F↵ S
↵ FT

↵
, (2.38)

where ⌧↵ can be obtained by a covariant push-forward transformation of S↵.

7Gustav Robert Kirchho↵ (1824-1887): German physicist.
8Gabrio Piola (1794-1850): Italian mathematician and physicist.
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2.2 Balance Relations

Following the procedure in Ehlers [63] and [68], this section starts with an introduction
to the balance for an arbitrary physical quantity in the global and local forms. Subse-
quently, the fundamental balances for a single-phasic material in the range of Continuum
Mechanics are given. After a brief explanation of the metaphysical principles, the local
balance equations for a constituent ↵, together with its further derivations, are concluded.
At last, an additional discussion on the entropy balance is held so as to derive the Clau-
sius9-Planck 10 inequality that is also the necessary condition for the thermodynamical
consistency.

2.2.1 General structures

Before discussing the balances for multi-phasic materials, the conclusions in continuum
mechanics are recalled. The general and global form of the balance for an arbitrary
physical quantity can be interpreted as

R
B vector-valued:

d

dt

Z

B
 dv =

Z

S
(�n) da+

Z

B
� dv +

Z

B
 ̂ dv, (2.39)

where  and  are the volume-specific scalar- and vector-valued physical quantities while
their production terms are expressed by  ̂ and  ̂. The external influence includes the
e✏uxes denoted by � and �, which directly enter the body B over the surface S, and the
volume-specific supply terms � and �, which contribute from a distance. In other words,
it tells that the temporal change of a certain quantity within the body B must be a result
of the external loads (acting in the vicinity or distant supply) and the productions (within
the body for a closed system or across the surface for an open system). In order to rewrite
(2.39) in a local form, the temporal change of an arbitrary quantity can be rewritten as

d

dt

Z

B
( · ) dv =

Z

B
[ ˙( · ) dv + ( dv ).], with (dv). = div ẋ dv

=

Z

B
[ ˙( · ) + ( · )div ẋ ] dv.

(2.40)

Besides, the divergence theorem is necessary to transform the e✏ux integral through a
closed surface to a volume integral over the region inside that surface,

Z

S
(� · n) da =

Z

B
div� dv and

Z

S
(�n) da =

Z

B
div� dv. (2.41)

Insertion of (2.40) and (2.41) into (2.39) and assuming that this balance is valid for any
arbitrary volumes yields the general form of the balance equations in a local sense:

scalar-valued:  ̇+ div ẋ = div�+ � +  ̂,

vector-valued:  ̇+ div ẋ = div�+ � +  ̂.

(2.42)

9Rudolf Julius Emanuel Clausius (1822-1888): German physicist and mathematician.
10Max Karl Ernst Ludwig Planck (1858-1947): German physicist.
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For a thermodynamical process, the basic balances include the balances of mass, momen-
tum, moment of momentum (m.o.m), energy and entropy. For each balance, the involved
terms are listed in Table 2.1, where b is the body force, which in most cases can be con-

Table 2.1: Definition of the specific terms in the balance equations

 ,  �, � �, �  ̂,  ̂

mass ⇢ 0 0 0

momentum ⇢ẋ T ⇢b 0

m. o. m x⇥ (⇢ẋ) x⇥T x⇥ (⇢b) 0

energy ⇢"+ 1
2 ẋ · (⇢ẋ) TT ẋ� q ẋ · (⇢b) + ⇢ r 0

entropy ⇢⌘ �
⌘

�⌘ ⌘̂

sidered as the gravitation force g. Moreover, in the energy balance, " is the mass-specific
internal energy, which is influenced by the heat influx q and the external heat supply r. As
⌘ is a common expression for the mass-specific entropy, �

⌘
and � give the entropy e✏ux

and external entropy supply, respectively, while ⌘̂ is defined as the entropy production.
Insertion of the above-mentioned definitions into (2.42) yields the local balance equations,
compare Table 2.2. Recalling the property of the cross products for two second-ordered

Table 2.2: Local balance equations for a single-phasic material

mass: ⇢̇+ ⇢ div ẋ = 0

momentum: ⇢
..

x = divT+ ⇢b

m.o.m: 0 = I⇥T

energy: ⇢ "̇ = T · L� divq+ ⇢ r

entropy: ⇢ ⌘̇ = div�
⌘
+ �⌘ + ⌘̂

tensors, cf. Appendix A.1.1, the balance of m.o.m is fulfilled by

T = TT
. (2.43)

Additionally, the 2nd thermodynamic law postulates that the entropy production is never
negative, namely ⌘̂ � 0. Thus, the entropy inequality can be derived as

⇢ ⌘̇ � div�
⌘
+ �⌘. (2.44)

2.2.2 Specific balance relations for a TPM model

Tackling the multi-phasic materials requires a bridge over the balance relations of each
constituent and the balance relation of the overall aggregate. In this regard, Truesdell11

11Cli↵ord Ambrose Truesdell III (1919-2000): American mathematician, natural philosopher, historian

of science, and polemicist.
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suggested his well-known metaphysical principles, which conclude the general properties
of all multi-phasic and multi-constituent materials, cf. Table 2.3.

Table 2.3: Truesdell’s metaphysical principles

1. All properties of the mixture must be mathematical consequences of properties of
the constituents.

2. So as to describe the motion of a constituent, we may in imagination isolate it
from the rest of the mixture, provided we allow properly for the actions of the
other constituents upon it.

3. The motion of the mixture is governed by the same equations as is a single body.

To be consistent with the structure in (2.39), the global balance equations of the con-
stituent are suggested to be

scalar-valued: d↵
dt

R
B 

↵ dv =
R
S(�

↵ · n) da+
R
B �

↵ dv +
R
B  ̂

↵ dv,

vector-valued: d↵
dt

R
B 

↵ dv =
R
S(�

↵ n) da+
R
B �

↵ dv +
R
B  ̂

↵

dv.
(2.45)

Moreover, their local forms are given by

scalar-valued: ( ↵)0
↵
+ ↵ div

0
x↵ = div�↵ + �

↵ +  ̂↵
,

vector-valued: ( ↵)0
↵
+ ↵ div

0
x↵ = div�↵ + �↵ +  ̂

↵

.

(2.46)

To fulfil the third principle in Table 2.3, the terms in the balances of the overall aggregate
are obtained by summing up the balances for each constituent and comparing with (2.39)
and (2.45).

quantity e✏ux supply production

scalar-valued  =
X

↵

 ↵ � · n =
X

↵

(�� ↵ d↵) · n � =
X

↵

�
↵  ̂ =

X

↵

 ̂↵

vector-valued  =
X

↵

 ↵ �n =
X

↵

(�� ↵ ⌦ d↵)n � =
X

↵

�↵  ̂ =
X

↵

 ̂
↵

In analogy to the definition in Table 2.1, the required terms in the balances are listed
in Table 2.4. Herein, ⇢̂↵, ŝ↵, ĥ↵ and ê

↵ denote the mass, momentum, m.o.m and energy
productions, respectively. Compared to the definitions in Table 2.1, these four terms
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Table 2.4: Definition of scalar-, vector- and tensor-valued terms for each constituent in balance

equations

 ↵
,  ↵ �↵

, �↵
�
↵
, �↵  ̂↵

,  ̂
↵

mass ⇢
↵ 0 0 ⇢̂

↵

momentum ⇢
↵

0
x↵ T↵

⇢
↵b↵ ŝ↵

m. o. m x⇥ (⇢↵
0
x↵) x⇥T↵ x⇥ (⇢↵b↵) ĥ↵

energy ⇢
↵
"
↵ + 1

2

0
x↵ · (⇢↵ 0

x↵) (T↵)T
0
x↵ � q↵

0
x↵ · (⇢↵b↵) + ⇢

↵
r
↵

ê
↵

entropy ⇢
↵
⌘
↵

�
↵

⌘
�
↵

⌘
⌘̂
↵

are no longer zero due to the fact that additional productions might come from the
exchange between the constituents within the body B by crossing the internal boundaries
in REV. Furthermore, to distinguish the source of the productions, all production terms
are decomposed into a direct production (such as the momentum production due to the
contact force between constituents) and an additional production (e. g. the momentum
production due to the mass production). According to Truesdell ’s metaphysical principles,
the sum of the productions must vanish such that the overall aggregate behaves as a single
body, cf. Table 2.5.

Table 2.5: Decomposition of the total production for each balance

total direct additional

production = production + production

X

↵

⇢
↵ = 0

X

↵

ŝ↵ =
X

↵

p̂↵ + ⇢̂
↵

0
x↵ = 0

X

↵

ĥ↵ =
X

↵

m̂↵ + x⇥ (p̂↵ + ⇢̂
↵

0
x↵) = 0

X

↵

ê
↵ =

X

↵

"̂
↵ + p̂↵ · 0

x↵ + ⇢̂
↵("↵ + 1

2

0
x↵ · 0

x↵) = 0

X

↵

⌘̂
↵ =

X

↵

⇣̂
↵ + ⇢̂

↵
⌘
↵ � 0

For the same consideration, the basic thermodynamic quantities for the overall aggregate
are given in (2.47). Therein, ⇢ and ẋ have already been introduced in Section 2.1.1 and
2.1.2. With the definition in Table 2.4, the general balance equations (2.46) are extended
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in Table 2.6.

⇢ =
X

↵

⇢
↵
, T =

X

↵

(T↵ � ⇢d↵ ⌦ d↵) ,

⇢ ẋ =
X

↵

⇢
↵

0
x↵, ⇢

..

x =
X

↵

h
00
x↵ � div (⇢d↵ ⌦ d↵) + ⇢̂

↵
0
x↵

i
,

⇢ r =
X

↵

⇢
↵ (r↵ + b↵ · d↵) , ⇢ " =

X

↵

⇢
↵
�
"
↵ + 1

2 d↵ · d↵

�
,

⇢b =
X

↵

⇢
↵ b↵

, q =
X

↵

⇥
q↵ � (T↵)Td↵ + ⇢

↵
"
↵ d↵+

⇤
,

+ 1
2 (d↵ · d↵)d↵

⇤

(2.47)

Due to the existence of production terms, further discussion is needed for the m.o.m
balance. For a single-phasic material, the m.o.m balance is fulfilled by (2.43), while for
a multiphasic material, this balance holds for the case that the Cauchy stress tensor is
linked to its transpose by

T↵ = (T↵)T � M̂↵ with m̂↵ =
1

2
( I⇥ M̂↵), (2.48)

where M̂↵ is the skew-symmetric moment of momentum coupling tensor, cf. Ehlers [70].
Thereafter, the definition of the stress of the overall aggregate is recalled, cf. (2.47)2.
It is apparent that the term ⇢d↵ ⌦ d↵ is a symmetric tensor. Hence, if each individual
constituent is a standard Cauchy material and the stress tensor of each constituent is
symmetric (in a micro-structure sense), the stress tensor of the overall aggregate will
also be symmetric (in a macro-structure sense). In other words, the property of the
symmetry of the constituent stress tensor is preserved during the homogenisation process,
cf. Hassanizadeh and Gray [108] and Ehlers [68]. Hence, it is assumed that

T↵ = (T↵)T , (2.49)

which results in M̂↵ = 0 and
m̂↵ = 0. (2.50)

Proceeding from the definition of m.o.m production, one observes that the sum of the
additional production term must vanish,

X

↵

x⇥ (p̂↵ + ⇢̂
0
x↵) = x⇥

X

↵

(p̂↵ + ⇢̂
0
x↵) = 0, (2.51)

because the term inside the parentheses is the momentum production and the sum of this
term is a zero tensor. Regarding this, the restriction of the m.o.m production is reduced
to X

↵

m̂↵ ⌘ 0, (2.52)

which reduces the sum of m.o.m production to the sum of the direct m.o.m production.
This equation is automatically satisfied by the assumption (2.50).
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Table 2.6: Local balance equations for constituent

mass: (⇢↵)0
↵
+ ⇢

↵ div
0
x↵ = ⇢̂

↵

momentum: ⇢
↵

00
x↵ = divT↵ + ⇢

↵ b↵ + p̂↵

m.o.m: 0 = I⇥T↵ + m̂↵

energy: ⇢
↵ ("↵)0

↵
= T↵ · L↵ � divq↵ + ⇢

↵
r
↵ + "̂

↵

entropy: ⇢
↵ (⌘↵)0

↵
= div�↵

⌘
+ �

↵

⌘
+ ⇣̂

↵

As an opposite case against Cauchy type materials, granular materials are so-called micro-
polar materials, which, at the micro scale, are defined as rotatable particles. As a result,
an additional degree of freedom, the rotation angle must be accounted for leading to an
asymmetrical stress tensor. The interested reader might refer to the work of Cosserat
brother [50, 51]. For the Cosserat model in the framework of the TPM, compare the work
of Diebels & Ehlers [57], Diebels [58], Ehlers [68], Ehlers & Volk [64, 65] and Scholz [186].

2.2.3 Entropy inequality

For further discussion about entropy, a priori constitutive equations are given here,

�↵

⌘
=

1

✓↵
q↵ and �

↵

⌘
=

1

✓↵
⇢
↵
r
↵
, (2.53)

where ✓↵ is the absolute Kelvin12 temperature and subject to the condition that ✓↵ > 0.
These relations correspond to a single-phasic material, cf. Ehlers [63]. As a consequence
of (2.44), the entropy of the overall aggregate must satisfy that

⌘̂ =
X

↵

⌘̂
↵ =

X

↵


⇢
↵ (⌘↵)0

↵
+ div (

1

✓
q↵)� 1

✓↵
⇢
↵
r
↵ + ⇢̂

↵
⌘
↵

�
� 0. (2.54)

The internal energy "↵ is usually considered as a function depending on the strain tensor,
e. g. E↵ and the entropy ⌘

↵. However, the conjugate term of the entropy, namely the
temperature ✓↵, is easier to measure or to observe during the natural process or exper-
iments. Thus, the so-called Helmholtz 13 free energy  ↵, depending on the temperature
and the strain, is introduced into the energy balance by the Legendre14 transformation as

 
↵ := "

↵ � ✓
↵
⌘
↵
. (2.55)

Therewith, the entropy inequality is reformulated as
X

↵

1

✓↵

n
T↵ · L↵ � ⇢

↵[( ↵)0
↵
+ (✓↵)0

↵
⌘
↵]� p̂↵ · 0

x↵�

�⇢̂↵( ↵ +
1

2

0
x↵ · 0

x↵)�
1

✓↵
q↵ · grad ✓↵ + ê

↵

�
� 0,

(2.56)

12William Thomson, 1st Baron Kelvin (1824-1907): Scots-Irish mathematical physicist and engineer.
13Hermann Ludwig Ferdinand von Helmholtz (1821-1894): German physician and physicist.
14Adrien-Marie Legendre (1752-1833): French mathematician.
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which is also known as the Clausius-Duhem15 inequality. For a purely mechanical model,
where the thermal e↵ect does not play a role, the temperature is assumed to be spatially
and temporally constant:

✓ = ✓
↵ ⌘ const. (2.57)

Taking into account that the absolute Kelvin temperature is always a positive number
helps to reduce the above-mentioned inequality to the so-called Clausius-Planck inequal-
ity: X

↵

[T↵ · L↵ � ⇢
↵( ↵)0

↵
� p̂↵ · 0

x↵ � ⇢̂
↵( ↵ +

1

2

0
x↵ · 0

x↵)] � 0. (2.58)

This inequality provides a necessary condition for the thermodynamical consistency and
will be further discussed in Chapter 4.

15Pierre Maurice Marie Duhem (1861-1916): French physicist, mathematician and philosopher of sci-

ence.





Chapter 3:
Fundamentals of Fracture Mechanics

This chapter aims to give a brief introduction to the basic theory of fracture mechanics. It
starts with an explanation of the physical mechanism from both macro- and nanoscopic
points of view and follows an elementary knowledge of several classical theories such
the Stress Intensity Factor, Gri�th’s theory, and the J-integral. In the last section,
a phase-field model applied to fracture is presented, which in the following context is
chosen as an approach for the crack phenomena in porous media. For a detailed depiction
of fracture mechanics, compare the books of Gross & Seelig [98], Anderson [10], and
Kanninen & Popelar [128]. Note that the discussion within this chapter is limited to the
failure in a pure solid. For porous media, special considerations need to be paid owing to
the heterogeneity of the micro-structure. For example, the failure mechanism of porous
materials under compression is discussed in Salje et al. [183].

3.1 What is Fracture?

Fracture is one of the most common and important reasons for structural failure. How-
ever, it is not that easy to find an exact definition to conclude these phenomena. From
a macroscopic point of view, a fracture can be straightforwardly interpreted as the sep-
aration of an object or material into two or more pieces. When one fracture occurs, it
must be accompanied by the generation of two new surfaces, forming additional internal
boundaries within the body. These new boundaries are the so-called crack surface in
three dimensions or the crack lips in two dimensions, the joint curve or point of which is
known as crack front or crack tip correspondingly. According to the relative movement
of the crack surface, three independent fundamental fracture modes are defined by Irwin
[119], cf. Figure 3.1. These basic fracture modes are usually known as Mode I (Opening
Mode/Tension), where the two crack surfaces only move in e2 direction symmetrically

Mode I Mode II Mode IIIe1

e2

e3

Figure 3.1: Three fundamental fracture modes.

23
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with respect to the undeformed crack plane (e1 � e3 plane); Mode II (Sliding Mode/In-
plane Shear), where the crack surfaces slide against each other with the same magnitude
in e3 direction; and Mode III (Tearing Mode/Out-of-plane Shear), where the crack parts
proceed in the opposite directions parallel to the crack front. In particular, an arbitrary
fracture mode can be described as one of these three modes, or their combinations.

On the other hand, from a nanoscopic point of view, a fracture is directly caused by a
break of bonds that hold atoms together. These bonds are formed, for example, when the
liquid-state metal is cooled down until a polycrystalline structure is accomplished. The
bonds are stable owing to the electromagnetic forces between the electrons of neighbour
atoms. Note that the inter-atomic distance is reduced with the decrease of temperature,
leading to an equilibrium state at the critical distance x0 of a bond creation. Assume an
opposite condition, when a su�cient stress is applied under a tensile test, these bonds will
be broken if the atoms are far away from each other and the mutual attractive forces are
too small. Following an interpretation in Anderson [10], the bond energy is proposed to
be a function of the separation distance d that reaches a minimum at the critical distance
x0, cf. Figure 3.2. In order to force this distance greater than x0, an external tension
force needs to be applied while, on the other hand, the bond shrinks under a compression
force. In particular, the work done by the external force has to be equal to the di↵erence
of the bond energy. So as to compute the critical strength in this setup, the dependency
of the inter-atomic force f̄ between atoms on their distance is ideally approximated by a
sine wave as shown in Figure 3.2 with a dashed curve,

f̄ = fc sin [
⇡(x� x0)

�
] for x 2 (x0, x0 + �). (3.1)

Herein, � is chosen to be the two-time value of the distance between the moments when
the force turns from compression to tension and when the maximum tensile force fc is
achieved. Since sin(⇡x

�
) ⇡ (⇡x

�
) for a small x, the elastic sti↵ness around x0 can be

approximated by

k = fc
⇡

�
. (3.2)

Notice that k measures the sti↵ness of each bond and the more common elastic modulus,
Young ’s1 modulus E, is referred to a unit area. Therefore, if the number of bonds per
unit area is known and expressed by Nb, the Young ’s modulus can be computed by

E =
kNb

x0
. (3.3)

In addition, the multiplication of fc and Nb yields the critical force per unit area, which
is usually named after the critical stress and expressed by �c. Thus, this stress takes the
form of

�c =
E�

⇡x0
. (3.4)

As the bond energy measures the work done by the external force, it can be approximated
under the above assumptions by

Eb =

Z 1

x0

f d x ⇡
Z

x0+�

x0

fc sin [
⇡(x� x0)

�
] d x. (3.5)

1Thomas Young (1773-1829): English polymath.



3.1 What is Fracture? 25
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Figure 3.2: Schematic illustration of potential energy and force with respect to the distance

between two atoms (originated from Anderson [10]).

Correspondingly, the surface energy per unit surface area �s is defined as one half of the
multiplication of Eb and Nb by noticing two surfaces with the same areas are created
when a material fractures. In some references, �s is also called the surface tension of the
material.

�s ⇡
1

2

Z
x0+�

x0

�c sin [
⇡(x� x0)

�
] d x = �c

�

⇡
(3.6)

In order to rewrite the critical stress in terms of the surface energy, insertion of (3.17)
into (3.5) yields

�c =

r
E�s

x0
. (3.7)

It is observed that for most materials, the surface energy �s is usually on the order of
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�2

�2

�2

�2

(a) (b)

Figure 3.3: (a) straight stress trajectories (lines of force) in an unbroken plate (b) curved stress

trajectories in a plate with an elliptical hole in the middle.

0.01E x0, cf. Cottrel [52]. Hence, a practical estimation of the theoretical strength is given
by

�c =
E

10
. (3.8)

However, this result has a large deviation from the one discovered by experiments whereas
the experimental result is much lower. The main reason for such a discrepancy is the stress
concentration caused by the inevitable flaws in the practical-size bulk material. Details
in this regard will be discussed in the following section.

3.2 Stress Concentration and Stress Intensity Factor

In order to explain the discrepancy between the theoretical critical stress and the actual
strength, one may firstly consider the following example. As shown in Figure 3.3, a vertical
tensile stress is applied to an infinite rectangular plate. In an ideally homogeneous case
(a), the paths of the force through the plate are a set of uniformly-distributed straight
lines. If an elliptical void is located in the centre, the lines are curved surrounding the
hole and squeezed together to fit in a smaller cross-section. This phenomenon is known
as the stress concentrations, and the analytical solution was derived by Inglis [118]. In his
work, an elliptical hole is settled in the centre of the plate, whose major and minor axis
have the lengths of 2a and 2b, respectively, cf. Figure 3.4. The maximum stress occurs at
the end of the major axis, and its value is suggested as

�22 (x1 = ±a, x2 = 0) = �2 (1 + 2
a

b
). (3.9)

Note that a macroscopic notch, in this context, is equivalent to a slit-like ellipse (1
b
>> 1).

Therefore, the corresponding stress is given by

�22(x1 = ±a, x2 = 0) ⇡ 2 �2
a

b
. (3.10)
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e1

e2

2a

2b

�2

�2

(a)
e1

e2

(b)

Figure 3.4: (a) an elliptical hole in an infinite plate subjected to tension (b) an elliptical

coordinate system.

An alternative expression of this conclusion is achieved by substituting the minor axis b
by the radius of curvature at the end of a, which reads

�22(x1 = ±a, x2 = 0) ⇡ 2 �2

r
a

r
with r(x1 = ±a, x2 = 0) =

b
2

a
. (3.11)

After realising the significance of (3.11), implying that the stress concentration depends on
the shape of the void (the ratio of the major and minor axes) rather than on its absolute
size, Irwin proposed his famous concept of Stress Intensity Factor (SIF) in [119, 120].
The SIF is usually denoted by K with sub- or superscript I, II, and III corresponding
to the three basic crack modes. As shown in Figure 3.5, a polar coordinate system is set
up originated from the crack tip which allows an easier expression of the stress field in its

e1

e2

✓

r �12/�21

�22

�11

crack tip

Figure 3.5: The polar coordinate system around a crack tip.
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2s

e1

e2

�2

�2

Figure 3.6: Exemplary illustration of an infinite plate with a sharp crack of length 2s subjected
to remote stress �2.

vicinity as given by

�11 =
KIp
2⇡r

cos(
✓

2
)


1� sin(

✓

2
)sin(

3✓

2
)

�
,

�22 =
KIp
2⇡r

cos(
✓

2
)


1 + sin(

✓

2
)sin(

3✓

2
)

�
,

�12 =
KIp
2⇡r

cos(
✓

2
)sin(

✓

2
)cos(

3✓

2
).

(3.12)

Regarding the specific boundary conditions, di↵erent solutions are derived, cf. Rooke &
Cartwright [181] and Wu & Carlsson [202]. A detailed review in this regard is referred to
Yarema [204] and the book of Gross & Seelig [98, 99].

3.3 Gri�th’s Theory

Gri�th’s theory is widely accepted as the origin of the modern theory of continuum
mechanics applied to brittle fracture, although it is motivated, at the beginning, by the
di↵erence between the theoretical stresses for breaking atomic bonds of glass (about 10,000
MPa) and the experimentally detected glass strength (around 100 MPa). By noticing
the existence of the inherent defects in brittle materials, Gri�th set up a theoretical
model, where the defect is substituted by a sharp crack of length 2s, see Figure 3.6.
The criterion of the crack propagation is given as (in his words), “A crack will propagate
when the decrease in elastic strain energy is at least equal to create the new crack”. To
be consistent with the classical continuum mechanics, the total energy of the model is
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extended by the surface energy of the whole body denoted by U�,

U = Uint + Uext| {z }
Upot

+U�. (3.13)

In order to compute the minimum of this potential, a standard approach is to satisfy the
following relation

@U

@s
= 0. (3.14)

According to Inglis [118], the increment of the strain energy due to an elliptical crack is
given by

�Uin =
⇡(�2s)2

E 0 with E
0 =

E

1� ⌫2
for plane-strain cases, (3.15)

where ⌫ is known as the Poisson’s2 ratio. Based on Clapeyron’s3 theorem, cf. Fosdick &
Truskinovsky [87], the work done by the external load is obtained by

Uext = �2Uint (3.16)

for linear elastic materials. In addition, the total surface energy U� can be computed via
the predefined surface energy per unit surface area �s

U� = 4�ss. (3.17)

where the symbol �s is also called the critical strain energy-release rate and substituted
by Gc, Inserting (3.15) and (3.17) into (3.14) yields the critical stress triggering the crack
propagation

�c =

r
2E 0�s

⇡s
, (3.18)

which exhibits a clear relation between the critical stress and the size of an inherent defect,
and thus, explains the discrepancy between the theoretical and actual strengths by the
comparison with (3.8).

3.4 J-integral

Heretofore, the fracture mechanism is only explained within a pure-elastic domain, which
is a rather strong assumption. In order to propose a more general model including inelastic
material behaviour, e. g. plasticity, the concept of J-integral is introduced by Eshelby
[81, 82] and well spread with the literature of Rice [179], which sets up a two-dimensional
quasi-static model with a horizontal crack, cf. Figure 3.7 (a). The material is assumed
homogeneously linear or nonlinear elastic and the body force is neglected. The J-integral
is defined as a line integral along the curve � surrounding the notch tip and takes the
form of

J :=

Z

�

✓
w dx2 � t · @u

@x1

◆
ds, (3.19)

2Siméon Denis Poisson (1781-1840): French mathematician, geometer, and physicist.

3Benôıt Paul Émile Clapeyron (1799-1864): French engineer and physicist.
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Figure 3.7: (a) exemplary illustration of the J-integral (b) supplementary illustration in the

proof of its path-independency.

where w is the so-called strain-energy density defined as

w =

Z "

0

� · d". (3.20)

Note that � and " in this subsection denote a generalised stress and strain tensor as
an exemption in order to be consistent with Rice [179]. Moreover, u and t are the
displacement and traction force applied to the surface � with a normal n. In order to
prove the path independency of this integral, a further closed curve � is considered, see
Figure 3.7 (b). It should be mentioned that the closed curve is divided into four parts
and the line integral J is defined with respect to the counterclockwise direction,

Ji =

Z

�counter
i

✓
w dx2 � t · @u

@x1

◆
ds where i = 1, 2, 3, 4. (3.21)

Regarding this, the J-integral for this closed curve can be computed via

J� := J1 � J2 � J3 + J4 =  
Z

�

✓
w dx2 � t · @u

@x1

◆
ds. (3.22)

The application of the Green’s theorem then transforms the line integral into an integral
over the closed domain bounded by this curve,

J� =

Z

⌦�


@w

@x1
� div

✓
�
@u

@x1

◆�
da. (3.23)

Furthermore, the first term of the integrants can be reformulated by the chain rule yielding
the following equation,

@w

@x1
=
@w

@"
· @"
@x1

= � · @"
@x1

. (3.24)

After expanding the second term, one may find the same result

div (�
@u

@x1
) = div� · @u

@x1
+ � · grad @u

@x1
= � · @"

@x1
, (3.25)



3.5 A Phase-field Approach 31

if noticing that the momentum balance is reduced to div� = 0 with the absence of
acceleration and body forces while taking the symmetry of the stress tensor into account,

� · grad @u

@x1
= � · 1

2

"
grad

@u

@x1
+

✓
grad

@u

@x1

◆T
#
= � · @"

@x1
. (3.26)

Inserting the above results into (3.23) proves the J-integral along any arbitrary closed
curve always vanishes.

J� = J1 � J2 � J3 + J4 = 0 (3.27)

However, as no traction force is applied to the crack surface and the range of dx2 is zero
along the crack, the J-integrals along the surface �3 and �4 thus are eliminated.

J3 = J4 = 0 (3.28)

Therefore, the integrals J1 and J2 are identical,

J1 = J2, (3.29)

which proves the path-independency of the J-integral. For further application of the J-
integral, the interested reader may compare, for example, Eriksson [80] and Huber et al.
[116].

3.5 A Phase-field Approach

The aforementioned theories mainly focus on the mechanism of fracture. In order to
describe the material behaviour before and after fracture, the most simple solution is to
introduce an additional variable d into the sti↵ness. For example, the linearised strain-
stress relation for a one-dimensional case is modified as

� = (1� d)E". (3.30)

If d evolves according to a certain criterion such as an accumulation of the potential en-
ergy, a straightforward simulation of fracture nucleation will be done. By interpreting
the variable as a damage variable in, e. g. Kachanov [123], this equation also repre-
sents a typical damage model. The standard damage model considers failure as material
softening, meaning a decreasing stress concerning an increasing strain, see, for example,
Kachanov[124], Frémond [90] and Lemaitre [137]. In reviewing the brittle fracture from a
macroscopic point of view, a fracture can be regarded as a structural change, e. g. gener-
ation of two surfaces and loss of cohesion in-between. In this regard, the damage model
substitutes such a structural change by an evolution of material property, in particular,
the decrease of sti↵ness. This approach has an apparent advantage in the numerical im-
plementation because no extra consideration needs to be paid to the geometry and its
corresponding mesh. However, it su↵ers from a so-called pathological e↵ect, since the
width of fracture is always dependent on the mesh size, cf. Jirásek [122]. This e↵ect is
due to the fact that in a standard damage model, an artificially imperfect region is re-
quired to trigger the softening. In addition, the size of this region has to be consistent
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with the minimum mesh size, which leads the derived result to be highly influenced by
the mesh size. This drawback can be conquered by introducing the non-local theories
such as gradient damage model, where a sharp crack is approximated by a di↵usive one,
cf. Capriz [48], Mariano [145] and Frémond & Nedjar [89].

Nevertheless, without realising the above methodologies, scientists from the physics com-
munity proposed a phase-field model to brittle fracture under the inspiration of the
Ginzburg-Landau equation, which initially describes superconductivity and then is ex-
tended to the phase transition problems. Instead of the damage variable, an order param-
eter � is usually adopted to characterise di↵erent phases. Here, for the sake of uniformity,
� is defined as

� =

(
0 for intact material,

1 for fully cracked material.
(3.31)

Although various formulation under di↵erent considerations can be found in the work of
Aranson et al. [11], Hakim & Karma [106], Gurtin [103], and Henry & Levine [114], the
basic form of the potential energy may be concluded as

 (", �) =

Z

⌦

{g(�)[ 0(")�  c] + V (�) +D�|grad�|2}d v, (3.32)

which involves the overplus stored energy measuring the di↵erence of the total strain
energy  0(") and the critical energy  c, a so-called Ginzburg-Landau double-well potential
V (�), and a gradient-type phase energy D�|grad�|2.  c is defined as the critical strain
energy for crack initiation and thus, the di↵erence between it and the stored strain energy
 0(u) provides the work of generating crack surfaces. Note that this potential will be
released with the arising cracks, a necessary coupling between the elastic and phase field
is then introduced by the degrading function g(�) that can be chosen in various ways but
must hold for

g(�) � 0 for � 2 [0, 1] , g(� = 0) = 1 , g(� = 1) = 0. (3.33)

The inclusion of the double-well potential V / �
2(1� �

2) guarantees the two minima for
two preferred states � = 0 and � = 1 while creating an energy barrier between them,
cf. Hakim & Karma [106]. The square terms, by the way, keeps the potential always
a positive value. The constant coe�cient D� usually contains a so-call length scale,
governing the width of di↵usive cracks. In addition, the constitutive equation for stress
and the evolution equation for the phase variable reads

� := g(�)
@ 0

@"
and M �̇ = � � 

��
, (3.34)

where M is the dynamic modulus.

Almost in the meantime, another phase-field model based on Gri�th’s theory was in-
dependently developed by scientists with more mechanical backgrounds. Based on the
variational principle, the fracture process is governed by minimising the energy functional

F (", �) =

Z

⌦

g(�) 0(") d v +Gc

Z

@⌦

�(�) d a, (3.35)
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Figure 3.8: A one-dimensional bar with a crack in the middle under elongation.

where the first term represents an elastic energy density degrading with an evolution of
� while the second term, denoting the surface energy, increases. In order to avoid the
divergence and instability in the numerical implementation, an artificial residual sti↵ness
coe�cient ⌘r is added into the degrading function g to prevent the zero-sti↵ness and the
resulting singular sti↵ness matrix. According to the definition in (3.31), the most common
form of g is given by

g = [(1� �)2 + ⌘r], (3.36)

which fulfils the condition in (3.33). If the elastic potential energy and surface energy is
chosen in a proper way, the phase-field model proves to be consistent with the classical
Gri�th theory, cf. Kuhn & Müller [135]. Herein, an example based on isotropic material
behaviour is proposed with the linearised elastic stored energy

 0 :=
1

2
" · (

4

C"), (3.37)

and the phase-field-dependent coe�cient

� :=
1

✏
�
2 + ✏ |grad�|2. (3.38)

where
4

C denotes a linearised elastic sti↵ness tensor, and ✏ is the smear crack width or the
length-scale parameter. In addition, the evolution equation of the phase variable � reads

M �̇ = 2(1� �) 0 +
Gc

✏
(�� ✏

2div grad�). (3.39)

In order to understand the physical meaning of the above equation, a simple one-dimensional
model is considered. Therefore, assume that a bar with a crack in the middle is elongated,
see Figure 3.8. Then, the bar will be divided into two parts, and no strain will occur in
both pieces as a response to the disappearing resistance. Following this, the evolution
equation (3.39) for a quasi-static case will be reduced to

�� ✏
2div grad� = 0, (3.40)

since (1 � �) is zero for the cracked part and  = 0 for the intact but no strain part,
which eliminates the first term of the right side of this equation. Solving this ordinary
di↵erential equation yields

� = ⇤e�
|x|
✏ , (3.41)
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Figure 3.9: The distribution for � of a one-dimensional bar of a crack in the middle regarding

di↵erent length scales.

where ⇤ = 1 should be found by fulfilling the boundary condition, �(x = 0) = 1 for a
crack in the middle. Insertion of this solution into the energy functional gives

F = Gc

Z
l

�l

1

✏
�
2 + ✏ |grad�|2d x = Gc(2� 2e�

2l
✏ ). (3.42)

If the extreme case ✏ ! 0 is considered, the energy functional is found to be one half
of Gri�th’s critical energy-release rate Gc. By plotting (3.41) in Figure 3.9, it is clearly
concluded that the length scale parameter ✏ controls the width of the smeared crack.
When it approaches zero, a sharp crack (a jump) occurs.



Chapter 4:
Constitutive Settings for a Fracturing
biphasic Material

This chapter formulates the constitutive equations for fracturing biphasic materials based
on the derived Clausius-Planck inequality, cf. (2.58). In order to simplify the problem,
several reasonable assumptions are introduced in Section 4.1 at first. Then, the Clausius-
Planck inequality, together with the balance equations for mass and momentum, are
reformulated to obtain the requirements for the constitutive equations. In Section 4.3,
a new concept, namely the Crack-Opening Indicator (COI), is suggested to enhance the
model for tackling more complex conditions, e. g. pre-cracked materials or cyclic loading
cases. So as to further simplify the derived model, a geometrical linearisation is applied
in Section 4.4. After a brief introduction of the spectral decomposition of the solid strain
tensor in Section 4.4.2, the constitutive equations for the solid and the fluid are postulated
in Sections 4.4.3 and 4.4.4, respectively.

4.1 Preliminaries

Strata are usually composed of solid matters, e. g. organic matter and minerals, liquid
matter, e. g. underground water and oil, and gas matter, e. g. methane. However, when
developing the constitutive equations for a typical hydraulic fracturing process, the dom-
inant composites can be reduced to the solid skeleton and pore fluid, denoted by S and
F , respectively. Correspondingly, the solidity and porosity are defined by their volume
fractions,

↵ :=

(
S for solid,

F for fluid.
and

(
n
S
, solidity

n
F
, porosity.

For the solid, the displacement uS is usually chosen as the primary variable,

uS := x�XS, (4.1)

while for the fluid, the velocity is preferred due to the fact that the referential position
of the fluid XF is usually unknown. In addition, the seepage velocity wF is introduced
as the di↵erence between the fluid and solid velocities such that the motion of the fluid
can be easily expressed in relation to the solid motion, which is also called the modified
Euler 1ian setting.

wF := vF � vS. (4.2)

After choosing the solid displacement to be the primary variable, the deformation gradient
and its inverse are reformulated as

FS = GradS (XS+uS) = I+GradS uS and F�1
S

= grad (x�uS) = I�graduS. (4.3)

1Leonhard Euler (1707-1783): Swiss mathematician, physicist, astronomer, logician and engineer.
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Recalling (2.3), the saturation condition is given by

X

↵

n
↵ = n

S + n
F = 1. (4.4)

In hydraulics, the fluid is usually considered as an incompressible material. The solid
skeleton can also be regarded as materially incompressible in an isothermal process due
to the fact that the change of the real density is negligible compared to the bulk density
change. Hence, for a hydraulic fracturing model, the real densities for both constituents
are assumed constant:

⇢
↵R = const. (4.5)

As there is no exchange between the solid and fluid constituents, the mass production
term is always absent, viz.:

⇢̂
↵ ⌘ 0. (4.6)

While using the phase-field model to describe the fracture process, the phase variable
needs to be defined. Herein, it is defined as

�
S =

(
0 for intact material,

1 for fully cracked material.
(4.7)

When solving a general continuum-mechanical Initial-Boundary-Value problem (IBVP),
the total state of certain quantities is assumed to be known. These quantities usually
include but not limited to motion and temperature, volume fractions and densities. Be-
sides, the initial values of some quantities are also given, e. g. the initial densities and the
initial volume fractions. The other quantities, which can not be derived directly by either
the above-mentioned quantities or the balance relations, are called the response functions
R, cf. Ehlers [70]. For example, the Helmholtz free energy and the Cauchy stress tensor
can be summarised into the response functions. It is straightforward to conclude that
the response functions are governed by a set of independent process variables V . The
insertion of this dependency of R on V into the entropy inequality helps to define ap-
propriate constitutive equations. However, before determining the dependency between
R and V , the fundamental thermodynamical principles, namely the principles of deter-
minism, equipresence, local action, material frame-indi↵erence and dissipation, have to
be introduced at first. Note in passing that these principles guarantee the thermodynam-
ical consistency, which a physical material model is supposed to satisfy. The principle of
determinism restricts the undetermined response functions to be uniquely defined by the
given V , which excludes the randomness of the response functions at any time t and any
positions x. Following the principle of equipresence, the response functions R depends on
the whole basic set of the variables V , which includes not only the current state but also
the history information. However, the choice of the variable set is not unique. For the
so-called first-grade or simple material, it is assumed that the response functions for the
material point P are dependent on itself, e. g. x, and its immediate neighbourhood, e. g.
FS (GradS x). This assumption is also known as the principle of local action. In contrast,
the second -grade material considers additional gradient terms besides the basic variables,
for example, GradS FS. For a multiphasic material, this second-gradient term GradS FS
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can be excluded from the process variables V because it is only related to the produc-
tion terms, cf. Bowen [41]. More discussion regarding this issue is referred to Ehlers
[62, 70]. The principle of material frame-indi↵erence is also called material objectivity,
which states that the proposed constitutive equations should always be objective, cf. Noll
[165, 166]. For example, when the observer moves in the space, the scalar quantity (e.
g. the Helmholtz free energy) is invariant. According to the principle of dissipation, any
thermodynamic processes are admissible only if the entropy inequality is fulfilled. Apart
from these above-mentioned basic principles, Ehlers introduced the principle of phase sep-
aration in [70], which was originally named after “principle of constituent separation”.
This principle states that the free energy of each individual constituent only depends on
the state variable of the concerned constituent and not of the overall aggregate. Following
this, the Helmholtz free energy for the solid is considered as a function of the solid defor-
mation gradient FS or its equivalent substituent, the Green-Lagrangean strain tensor ES.
Additionally, a phase variable �S, together with its material gradient GradS �S also plays
a role when the phase-field model is applied for describing the fracture process. For the
fluid, the energy can be considered as a constant in the absence of the thermal e↵ects. To
summarise, the following dependencies are given,

 
S =  

S(FS, �
S
, GradS �

S) =  
S(ES, �

S
, GradS �

S) and  
F =  

F (�). (4.8)

4.2 Reformulation of Balance Relations and Clau-
sius-Planck Inequality

As a direct result of the material incompressibility assumption (4.5) and vanishing mass
production terms (4.6), the mass balance is reduced to the volume balance,

(n↵)0
↵
+ n

↵ div
0
x↵ = 0. (4.9)

Hence, the time derivative of the volume fraction is given by

(n↵)0
↵
= �n

↵

) div
0
x↵. (4.10)

By reformulating (2.19), the volume fraction of the constituent ↵ is given by

n
↵ = n

↵(detF↵)
�1
. (4.11)

Due to the saturation condition in (4.4), it is deduced that the temporal change of the
sum of the volume fractions is zero. Hence, if this change is with respect to the solid
deformation, the following equation is derived, viz.:

(
X

↵

n
↵)0

S
= (nS + n

F )0
S
= 0. (4.12)

If one consider this equation as an additional condition and multiply it with a Lagrange
multiplier (i. e. the pore pressure p), an extended form for the Clausius-Planck inequality
for the overall aggregate will be written as

X

↵

[T↵ · L↵ � ⇢
↵( ↵)0

↵
� p̂↵ · 0

x↵] + p (
X

↵

n
↵)0

S
� 0 (4.13)
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With the following relation

(nF )0
F
= (nF )0

S
+ gradnF ·wF , (4.14)

(4.12) leads to
n
S divvS + n

F divvF + gradnF ·wF = 0. (4.15)

As no mass production occurs, the additional momentum production also vanishes. Then,
the sum of the direct momentum production is equal to the total momentum production,
which also vanishes:

p̂S + p̂F = 0. (4.16)

Since the Cauchy stress is a symmetric tensor, cf. (2.49), the stress power T↵ ·L↵ can be
rewritten by

T↵ · L↵ = T↵ ·D↵. (4.17)

Insertion of (4.15), (4.16) and (4.17) into (4.13) yields

TS

E
·DS � ⇢

S( S)0
S
+TF

E
·DF � ⇢

F ( F )0
F
� p̂F

E
·wF � 0, (4.18)

where the subscript E denotes an extra or e↵ective term:

TS

E
:= TS + n

S
p I, TF

E
:= TF + n

F
p I and p̂F

E
:= p̂F � p gradnF

. (4.19)

Proceeding from (4.8), the material time derivatives of the Helmholtz free energy for the
solid and the fluid are given by

( S)0
S
=
@  

S

@ES

· (ES)
0
S
+
@  

S

@�S
(�S)0

S
+

@ �
S

@GradS �
S
·GradS (�

S)0
S

and ( F )0
F
= 0, (4.20)

respectively. Applying the divergence theorem to the last term of the first time derivative
for the solid yields

@�
S

@GradS �
S
·GradS (�

S)0
S
= DivS


(�S)0

S

@�
S

@GradS �
S

�
� (�S)0

S
DivS (

@ 
S

@GradS�
S
). (4.21)

Moreover, the stress power may take the form

T↵ ·D↵ =
⇥
(detF↵)

�1 F↵ S
↵ FT

↵

⇤
·
⇥
FT�1

↵
(E↵)

0
↵
F�1

↵

⇤
= (detF↵)

�1 S↵ · (E↵)
0
↵
, (4.22)

which is reformulated in the referential configuration. With (4.21) and (4.22) at hand,
the inequality in (4.18) is then rewritten as

(detFS)
�1(SS

E
� ⇢

S

0

@ 
S

@ES

) · (ES)
0
S
� ⇢

S


@ 

S

@�S
�DivS (

@ 
S

@GradS�
S
)

�
(�S)0

S
�

�⇢S DivS

(�S)0

S

@�
S

@GradS �
S

�
+TF

E
·DF � p̂F

E
·wF � 0.

(4.23)

In order to fulfil this inequality, one may decompose it into the equilibrium parts, which
vanishes finally, and the non-equilibrium (dissipation) parts, which are required to be
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non-negative.

Equilibrium parts:

(detFS)
�1(SS

E
� ⇢

S

0

@ 
S

@ES

) · (ES)
0
S
= 0 ! S↵

E
= ⇢

S

0

@ 
S

@ES

(4.24)

⇢
S DivS


(�S)0

S

@�
S

@GradS �
S

�
= 0 (4.25)

Non-equilibrium (dissipation) parts:

�⇢S

@ 

S

@�S
�DivS (

@ 
S

@GradS�
S
)

�
(�S)0

S
� 0

! (�S)0
S
/ �⇢S


@ 

S

@�S
�DivS (

@ 
S

@GradS�
S
)

� (4.26)

TF

E
·DF � 0 ! TF

E
/ DF (4.27)

�p̂F

E
·wF � 0 ! p̂F

E
/ �wF (4.28)

For the equilibrium part, the first equation is a standard relation in the small-strain
elasticity due to the fact that for an arbitrary strain rate (ES)0S, the entropy production
should be zero in a non-dissipative process. The second equation is more or less considered
as the continuity equation for the vector term in the bracket, and its realisation is done by
integrating the term over the whole domain. By applying the Gauss2 integral theorem,
this volume-specific integral term can be equivalently transformed to a surface integral as

Z

⌦

⇢
S DivS


(�S)0

S

@�
S

@GradS �
S

�
dv =

Z

⌦

⇢
S

0 DivS


(�S)0

S

@�
S

@GradS �
S

�
dV↵

=

Z

@⌦

⇢
S

0 (�
S)0

S

@�
S

@GradS �
S
· n dA↵,

(4.29)

where ⌦ is an arbitrary volume bounded by its surface @⌦ with an outward-oriented unit
normal vector n. If the equation holds for any closed surface, the integrant must be
perpendicular to the unit normal n:

⇢
S

0

@�
S

@GradS �
S
· n = 0. (4.30)

This equation will later be applied as the boundary condition for the phase-variable
evolution in the numerical implementation, cf. (4.58).

2Carl Friedrich Gauss (1777-1855): German mathematician and physicist.
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4.3 Crack-Opening Indicator (COI)

Before postulating the constitutive equations for the dissipative parts, one may concern
the fact that for a hydraulic fracturing process, the stratum is usually imperfect, where
pre-cracks exist. Furthermore, there are confining stresses in the deep-buried stratum
due to the weight of the strata above it. These stresses are also known as the geological
stresses which squeeze the cracked stratum together. In such cases, the porous material
behaves in a manner of an intact one despite the existence of the pre-cracks until the
loadings, e. g. injection of the fracking fluid or the tension from the outside, pull them
apart, where the pre-cracks are again open. Proceeding from this finding, one concludes
that it is not enough to determine the state of a crack (whether a crack is open or closed)
and the state of a fluid in the crack zone (whether the flow type is a Darcy ’s3 filter flow
or a Navier 4-Stokes 5 free flow) only by the phase variable (that distinguishes the cracked
material from the intact one) . In order to conquer this drawback, a new variable, the
COI, is then introduced as,

I =

(
1, if a crack opening is possible,

0, else.
(4.31)

Particular emphasis is placed on the fact that like the phase variable, this COI alone is
unable to determine whether there is an open crack or not. According to the definition,
when I = 1, two extreme states exist, namely intact solid (�S = 1) and cracked material
(�S = 0) with an open crack. Analogously, for I = 0, corresponding states refer to
an intact solid (�S = 1) and a cracked solid (�S = 0) with a closed crack. In order
to investigate a proper criterion for the COI, the following case is considered as shown
in Figure 4.1. A one-dimensional bar (of length l) with a crack in the middle is under
consideration, and a displacement of �l is enforced on the right side. Two possible
deformations are given as (b) and (c). In the first case, the extension occurs in the
middle, at the pre-existing crack, while the rest remains unchanged. For the second case,
the whole bar is extended evenly along the length, and the strain throughout the bar is
�l/l. With (4.4) and (4.11) at hand, the porosity is related to the solid strain by

n
F = 1� n

S = 1� n
S

0 (1 + "1)
�1
. (4.32)

It is easy to find that in the first case, the porosity is a constant for these two separate
parts while for the second case, the porosity is increased by n

S

0
�l

�l+l
. However, due to

the existence of the crack, an additional restriction has to be fulfilled that the cracked
material can bear no tensile stress. Hence, the second case is unrealistic for the given
displacement. In other words, once there is a crack in a one-dimensional setting, an
increasing porosity is always much more easily achieved by opening the crack than by
enlarging the pores since there is no resistance against tension in the cracked material.

3Henry Philibert Gaspard Darcy (1803-1858): French engineer.
4Claude Louis Marie Henri Navier (1785-1863): French French engineer and physicist.
5George Gabriel Stokes (1819-1903): Irish physicist and mathematician.
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(a)

(b)

(c)
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Figure 4.1: (a) geometry and boundary conditions for a one-dimensional hydraulic fracturing

problem (b, c) possible responses to the given displacement

Based on this understanding, the COI is then defined via the porosity change as,

I =

8
<

:

1: for increasing porosity n
F
> n

F

0 ,

0: for decreasing or constant porosity n
F  n

F

0 .

(4.33)

The detailed definition of the COI in this monograph will be given in the following section,
cf. (4.40), where a geometrical linearisation with respect to the solid deformation is
applied. The COI, together with the extreme value of the phase variable, defines four
states for each material point P , see Table 4.1. It is apparent that for �S = 0, no matter
if the porosity increases (State I) or decreases (State II), the fluid flows compliant with
Darcy ’s filter law since the solid skeleton is intact. However, for a fractured porous media,
the fluid flow is governed by the Navier -Stokes equation in an open crack (State IV) while
tends to be a filter flow if the crack is closed again (State III).

state �
S I description flow type

I 0 0 intact solid with reducing pores Darcy

II 0 1 intact solid with enlarging pores Darcy

III 1 0 fractured solid with closed cracks Darcy

IV 1 1 fractured solid with open cracks Navier -Stokes

Table 4.1: Four states of porous media in hydraulic fracturing categorised using �S
and I
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4.4 Constitutive Relations

4.4.1 Geometrical linearisation

From a mathematical point of view, an arbitrary function  can be represented by the
sum of an infinite number of terms that are computed from the function and its derivatives
at a single point x0. This function decomposition is also called Taylor ’s6 expansion or
Taylor series, viz.

 (x) =  0(x0)+
d

dx
 

����
x=x0

· (x�x0)+
d2

dx2
 

����
x=x0

· [(x�x0)⌦ (x�x0)]+O(x3) (4.34)

For practical reasons, if the higher order terms are su�ciently small, for example,

|x� x0|2 ⇡ 0, (4.35)

the function can be approximated by the sum of the local value and the terms related
to its first-order derivative. This simplification is also called a geometrical linearisation
and commonly adopted in geomechanics, which helps to reduce the complexity not only
of the model formulation but also of the numerical implementation. Therefore,

 (x) ⇡ lin (x) :=  0(x0) +
d

dx
 

����
x=x0

· (x� x0) (4.36)

In this context, a simplification is applied regarding the solid displacement such that the
following equations hold, viz.

GradS(·) ⇡ grad (·) "S := linES =
1

2
(graduS + gradT uS)

DivS(·) ⇡ div (·) �S := linTS = lin ⌧ S = linPS = linSS

JS ⇡ 1 + divuS DF ⇡ 1

2
( gradvF + gradT vF )

(JS)�1 ⇡ 1� divuS �S = ⇢
S

0

@ 
S

@"S

(4.37)

Recalling (4.11), one can derive

n
S = n

S

0 (detFS)
�1 ⇡ n

S

0 (1� divuS). (4.38)

Insertion of the above relation into n
F = 1� n

S, one derives

n
F = 1� n

S

0 (1� divuS) = 1� n
S

0| {z }
n
F
0

+n
S

0divuS = n
F

0 + n
S

0divuS. (4.39)

6Brook Taylor (1685-1731): English mathematician.
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Based on this equation, it is apparent that if the term, divuS, is positive, the porosity
n
F will increase and vice versa. Regarding (4.33), the COI can be defined as

I =

8
<

:

1: for divuS > 0 ,

0: for divuS  0 .
(4.40)

For a geometrically linearised model, if the load is applied under a moderate velocity, the
seepage velocity wF is supposed to be very small, and as a consequence, the higher-order
terms of (gradvF )wF are negligible, cf. Zienkiewicz et al. [209]. Therefore, when com-
puting the material time derivative of the fluid velocity, the convection term is omitted,
i.e.

(vF )
0
F
= (vF )

0
S
+ gradvFwF ⇡ (vF )

0
S

(4.41)

For a detailed derivation of relations under a geometrically linearised setting, one may
compare the works of Ehlers [76], Eipper [77], Markert [146] and Karajan [129].

4.4.2 Spectral decomposition of solid strain

In continuum mechanics, a decomposition is often applied to the deformation tensors,
e. g. the polar decomposition of the deformation gradient, such that di↵erent deforma-
tion modes are distinguished from one another. Herein, considering the symmetry of the
geometrically linearised strain tensor "S, the spectral decomposition is adopted. Notwith-
standing the importance of the decompositions of the deformation tensors in postulating
the constitutive equations, only a brief but a necessary introduction is given in this sec-
tion. For further interest in this topic, one may compare, e. g. Lambrecht [138], Markert
[146] and the references therein. According to the definition of the spectral decomposi-
tion, an arbitrary symmetric tensor can be expressed by the sum of the multiplication of
its eigenvalues and the dyadic productions of its corresponding vectors, or in other words,
its eigentensors. For the geometrically linearised strain tensor "S, it reads

"S =
3X

i=1

�SinSi ⌦ nSi =
3X

i=1

�SiMSi. (4.42)

where MSi denotes the eigentensor and the eigenvalues �Si and eigenvector nSi must
satisfy the following equation,

("S � �SiI)nSi = 0 (4.43)

with the condition nSi 6= 0. To calculate the eigenvalues, one may apply the Cayley7-
Hamilton8 theorem, which states that the eigenvalues make the associated characteristic
polynomial zero,

det ("S � �SI) = �
3
S
� IS1�

2
S
+ IS2�S � IS3 = 0, (4.44)

7Arthur Cayley (1821-1895): British mathematician.
8William Rowan Hamilton (1805-1865): Irish mathematician, physicist and astronomer.
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the principal invariants of which are defined as

IS1 = tr "S = "S · I,

IS2 = tr (cof "S) =
1
2 [(tr "S)

2 � tr ("S "S)],

IS3 = det "S.

(4.45)

It is worth mentioning that the principal invariants are related to the eigenvalues by

IS1 = �S1 + �S2 + �S3,

IS2 = �S1�S2 + �S2�S3 + �S1�S3,

IS3 = �S1�S2�S3.

(4.46)

Furthermore, the derived eigenvectors nSi form one set of orthogonal coordinates, math-
ematically speaking,

nSi · nSj = �ij, (4.47)

where �ij is the Kronecker 9 Delta:

�ij =

⇢
1, for i = j,

0, for i 6= j.
(4.48)

. As a result, the sum of the eigentensors MSi yields the identity tensor,

3X

i=1

MSi = I with MSi = nSi ⌦ nSi. (4.49)

More properties of the eigentensor MSi are including but not limited to

(MSi)n = MSi ; MSiMSj = 0 for i 6= j

"SMSi = MSi"S = �SiMSi ; MSiMSj = �ij.

In order to solve the balance equations by a numerical method iteratively, as discussed
later in Chapter 5.2.2, the consistent tangent is required, cf. Chapter 5.3. Here, several
preliminary derivatives are given,

@�Si

@"S
= MSi

@MSi

@"S
=

1

2

3X

j=1, j 6=i

1

�Si � �Sj
[(MSi ⌦MSj)

23
T + (MSi ⌦MSj)

24
T+

+ (MSj ⌦MSi)
23
T + (MSj ⌦MSi)

24
T ] =:

4

MSi.

(4.50)

9Leopold Kronecker (1823-1891): German mathematician.
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Note that this equation only works for the case where three distinct eigenvalues exist. For
the other cases (two or three equal eigenvalues), the eigenvectors for the corresponding
eigenvalues are not unique. For example, if there are two equal eigenvalues, the corre-
sponding eigenvectors can be two arbitrary orthogonal vectors which are located on the
surface perpendicular to the third eigenvector. In this regard, the eigenvectors have to
be set manually. Moreover, in this case, the denominator of the coe�cient in (4.50),
�Si��Sj, is zero and no longer physical. When computing the mapping tensors in (5.33),
modifications must be introduced to compute the limiting values which can be found by
the rule of de l’Hôspital10. Relative derivation procedures can be found in the work of
Miehe & Lambrecht [153].

In the work of Miehe et al. [155], the idea of decomposing the strain tensor according to
the sign of the eigenvalues was firstly introduced. This stems from the observation that
a crack is generated only due to tension but not to compression. To put it another way,
the sti↵ness for the fractured material decreases only in the direction where tension is
applied. Hence, it is persuasive to separate the strain tensor according to the sign of its
eigenvalue, which actually measures the principal strain,

"±
S
:=

3X

i=1

�Si ± |�Si|
2

MSi =
3X

i=1

(�)±
Si
MSi with (�)±

Si
:=

�Si ± |�Si|
2

, (4.51)

where the plus/minus superscripts denote that the tensor contains positive/negative prin-
cipal strains. Based on these considerations, the solid stress energy, introduced in Sec-
tion 4.4.3, is able to describe an anisotropic degradation of sti↵ness according to ten-
sion/compression stress directions.

4.4.3 Constitutive relations for the solid

In the work of Miehe et al. [155], the free energy for a pure solid was proposed. If combing
the formulation suggested therein with (4.7), the Helmholtz free energy then takes the
form,

⇢
S

0 
S("S,�S

, grad�S) =
⇥
(1� �

S)2 + ⌘
S

r

⇤
⇢
S

0 
S+("+

S
) + ⇢

S

0 
S�("�

S
)+

+Gc �S(�S
, grad�S) ,

(4.52)

where

⇢
S

0 
S+("+

S
) = µ

S ("+
S
· "+

S
) +

1

2
�
S[(tr "S)

+]2 ,

⇢
S

0 
S�("�

S
) = µ

S ("�
S
· "�

S
) +

1

2
�
S[(tr "S)

�]2 ,

�S(�S
, grad�S) =

1

2✏
(�S)2 +

✏

2
grad�S · grad�S

.

(4.53)

Herein, an additional definition is introduced by

(tr "S)
± =

tr "S ± |tr "S|
2

. (4.54)

10Guillaume de l’Hôpital (1661-1704): French mathematician
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Because ⌘S
r
is introduced only due to a numerical consideration and it adds more or less

an artificial sti↵ness to the solid skeleton. Hence, it should be chosen as small as possible
provided that the computation is stable. The smeared crack length or the length-scale
parameter is expressed by ✏ while µ

S and �
S are the partial Lamé11 constants. From

(4.52), the total stress energy per referential bulk volume ⇢S0 
S consists of a tensile energy

⇢
S

0 
S+("+

S
) with a factor (1��S)2+⌘S

r
, a compressive energy ⇢S0 

S�("�
S
) and a crack energy

Gc �S. Thanks to the split of the strain tensor into a negative part and a positive one, the
evolution of the phase variable reduces the storage stress energy only resulting from the
positive principal strains instead of the total strains. In contrast, the compressive energy
depends only on the solid deformation despite the phase variable. When the positive stress
energy decreases, the fracture energy Gc �S grows with the increasing phase variable and
its gradient.

By inserting the stress energy (4.52) into (4.37)8, the linearised e↵ective stress of the solid
will take the form,

�S

E
= ⇢

S

0

@ 
S

@"S

=
⇥
(1� �

S)2 + ⌘
S

r

⇤ ⇥
2µS "+

S
+ �

S (tr "S)
+ I

⇤
+ 2µS "�

S
+ �

S (tr "S)
� I .

(4.55)

In order to fulfil the proportionality in (4.26), the simplest form is to set up a linear
dependency via

(�S)0
S
= � 1

M


⇢
S

0

@ 
S

@�S
� div

✓
⇢
S

0

@ 
S

@ grad�S

◆�
, (4.56)

where M is a mobility parameter and must have a non-negative value. In the work
of Miehe et al. [155], it is concluded that a rate-independent process (an exclusion of
the evolution term, (�S)0

S
, from (4.56) by setting M = 0) makes the numerical algorithm

robust. In order to prevent the singularity of a zero-value denominator, the above equation
is equivalently rewritten as

M(�S)0
S
= 2 (1� �

S) ⇢S0 
S+ �Gc(

�
S

✏
� ✏ div grad�S ) . (4.57)

With the given energy function at hand, the equilibrium in (4.30) holds if

Gc ✏ grad�
S · n = 0. (4.58)

4.4.4 Constitutive relations for the fluid

Proceeding from the investigation of the entropy inequality and the introduction of the
COI, the e↵ective fluid stress is defined as

TF

E
= 2 I (�S)2 nF

µ
FR DF , (4.59)

11Gabriel Lamé (1795-1879): French mathematician.
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where the e↵ective dynamic viscosity of the pore fluid is denoted by µ
FR and the square of

�
S guarantees a non-negative value of the coe�cient during the numerical computation.

With this form, the fluid stress is equivalent to that of a Newtonian12 fluid for the case
when I = 1 and �S = 1, corresponding to an open crack. Meanwhile, an e↵ective fluid
momentum production given by

p̂F

E
= �

⇥
1� I + I(1� �

S)2
⇤ (nF )2�FR

kF
wF , (4.60)

is vanishing. The hydraulic conductivity k
F is related to the intrinsic permeability K

S

by the specific weight �FR = ⇢
FR|g| via

k
F =

�
FR

µFR
K

S
. (4.61)

For an increasing porosity (I = 1), the fluid momentum production decreases with the
evolution of the phase variable, which corresponds to the fact that the accumulation of
the micro-cracks decreases the resistance of the solid when the fluid penetrates the solid
skeleton. In order to review the state of the fluid, its momentum balance is rewritten as

⇢
F (vF )

0
F
= div (TF

E
� p n

F I) + ⇢
Fg + (p̂F

E
+ p gradnF ). (4.62)

Inserting the above constitutive relations into the balance equations and considering the
extreme values of the phase variable and the COI, four corresponding states are obtained,
cf. Table 4.2.

Table 4.2: Review of the four states in Table 4.1

state �
S I TF

E
p̂F

E
flow type

I 0 0 0 �(nF )2�FR

kF
wF Darcy

II 0 1 0 �(nF )2�FR

kF
wF Darcy

III 1 0 0 �(nF )2�FR

kF
wF Darcy

IV 1 1 2nF
µ
FRDF 0 Navier -Stokes

As shown above, the three states, I, II and III, correspond to the same state of the fluid.
Rewriting the fluid momentum balance for these states under a creeping flow condition
with (vF )0F ⇡ 0 yields

n
FwF = � 1

�FR
k
F (grad p� ⇢

FRg), (4.63)

12Sir Isaac Newton (1642-1726/27): English mathematician, astronomer, theologian, author and physi-

cist.
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which is known as a standard form of Darcy ’s law. For the open-crack case (corresponding
to state IV), the balance is transformed into

⇢
F (vF )

0
F
= div (2µFR DF )� grad p+ ⇢

Fg. (4.64)

In comparison with the momentum balance of a single fluid, it agrees with the Navier -
Stoke’s equation of an incompressible Newtonian fluid.



Chapter 5:
Numerical Treatment

This chapter follows the material model proposed in the above chapters and elaborates the
numerical treatment. Firstly, three supplementary problems involving the strain energy
of triggering fracture, the prevention of fracture from recovery and the realisation of pre-
existing cracks are under study in Section 5.1. Subsequently, the strong and weak forms of
the governing equations, as well as the spatial and temporal discretisation, are presented
in Section 5.2. At last, the consistent tangent for an iteration method is computed in
Section 5.3.

5.1 Specific Consideration Based on the Solid Frac-
turing Process

5.1.1 Threshold of fracturing

When describing the brittle fracture of a solid, one may expect a purely elastic behaviour
until the first macro-crack is triggered by the accumulated strain energy. With this in
mind, (4.57) shall be confined to

M(�S)0
S

(
= 0, for ⇢S0 

S+  ⌥S

t
,

> 0, for ⇢S0 
S+

> ⌥S

t
,

(5.1)

where ⌥S

t
represents the so-called triggering strain energy when the fracture is initiated.

Correspondingly, (4.57) is modified as

M(�S)0
S
= 2 (1� �

S)�⇢S0 
S+ �Gc (

�
S

✏
� ✏ div grad�S) (5.2)

with the overplus part of the positive energy defined as

�⇢S0 
S+ :=

8
<

:

⇢
S

0 
S+ �⌥S

t
, for ⇢S0 

S+
> ⌥S

t

0, else.
(5.3)

From (5.2), the evolution of the phase variable will not start until the strain energy reaches
the triggering energy. This guarantees an elastic and non-dissipative material behaviour
before a crack occurs. Moreover, only the overplus part of the positive energy, �⇢S0 

S+,
instead of the total positive energy, contributes to the phase-variable evolution. Thus, the
crack growth owing to the micro-crack accumulation depends on the part of the positive
strain energy which is greater than the triggering strain energy. The crack will propagate
only if the strain energy is larger than the triggering energy.

49



50 5 Numerical Treatment

5.1.2 Fracturing as an irreversible process

Fracture in a fracking process is usually considered to be irreversible since the solid skele-
ton, e. g. shale, cannot be self-healed or self-sealed. Therefore, the evolution of the phase
variable, reflecting the accumulation of the micro-cracks, must be monotonic, viz.:

(�S)0
S
� 0. (5.4)

If this condition is considered in (5.2), the evolution equation will be rewritten as

(�S)0
S
= Max

⇢
1

M


2(1� �

S)�⇢S0 
S+ �Gc(

�
S

✏
� ✏ div grad�S)

�
, 0

�
. (5.5)

However, the switch in this equation may lead to divergence in the numerical implemen-
tation. In order to address this problem equivalently without losing e�ciency, a history
variable defined as

H = Max
t=t0

(�⇢S0 
S+), (5.6)

has been introduced in the work of Miehe et al. [155]. The evolution equation is thus
reformulated as

(�S)0
S
=

1

M


2(1� �

S)H�Gc(
�
S

✏
� ✏ div grad�S)

�
. (5.7)

For a comprehensive explanation, one may compare, e. g. Miehe et al. [155] and Hofacker
[115].

5.1.3 Implementation of initial cracks

In order to initialise a crack in an ideally homogeneous material, a straightforward way
is to introduce a geometrical singularity as an imperfection. The realisation of such a
geometrical imperfection may be obtained by two approaches. One is to introduce a
notch when setting up the geometry of the model while the other requires an initial
pseudo-energy in the target area such that the phase variable evolves until reaching the
limiting value 1.0 and the resistance of the solid skeleton vanishes in the meantime. In

Table 5.1: Parameters for the single-phasic solid material

µ
S 8.077⇥ 1010 Pa �

S 12.115⇥ 1010 Pa Gc 2.7⇥ 103 N/m

✏ 0.01m ⌘r 1⇥ 10�4
M 3⇥ 10�6 N/(ms)

order to compare these two approaches, an example is given here where a standard tensile
test on a pure solid is simulated. The geometry, material properties and loading settings
are inspired by the work of Miehe et al. [155]. The material properties are listed in Table
5.1. The geometry, together with the boundary conditions, is demonstrated in Figure 5.1.



5.1 Specific Consideration Based on the Solid Fracturing Process 51

u = u2e2

e1

e2

1.0

0.
5

0.
5

0.
01

initial crack with
a width of 0.01 m

u = u2e2

e1

e2

unit: m

(a) (b)

Figure 5.1: Geometry and boundary conditions of a pure solid block.

In case (a), a rectangular notch with an open crack of 0.01m and a length of 0.5m is
located in the left middle of a square which has a length of 1m. In case (b), this notch
is substituted by a rectangular area with a size of 0.5m ⇥ 0.01m. In order to obtain
a phase variable with the value of one that denotes a fully cracked material therein, an
initial pseudo energy H0 is introduced into the evolution equation such that a smeared
crack is generated before the load u is applied. The value of this initial pseudo energy
has been investigated in the work of Borden et al. [33] and reads,

H0 =
Gc

4 ✏ (1� �S)
. (5.8)

By choosing �S = 0.999 (when �
S = 0.999, the material is considered to be fully frac-

tured), the initial pseudo energy is then computed to be 6.75⇥ 107J/m3 for case (b). For
the geometrical notch in the first case, this pseudo energy is not necessary and omitted.
Furthermore, the displacement function u is given by

u2 =

8
<

:

0, for t  10s

1⇥ 10�5(t� 10)m, for t 2 (10, 70)s
(5.9)

Figure 5.2 shows the vertical reaction force with respect to the vertical displacement at the
top. In comparison, no distinct di↵erence is found except that in case (b), a higher reaction
force is found after the crack has penetrated the whole cross-section. This is because the
pre-defined di↵usive crack provides the model with an extra residual sti↵ness. However,
a di↵usive crack has a unique advantage when treating the re-closing phenomena of pre-
existing cracks. The continuous geometry of the di↵usive crack prevents the adjacent
crack surfaces from penetration. In opposite to that, in case (a), an extra description
of the displacement in the notch has to be announced when the crack surfaces might
contact each other. For example, a possible way is to compute the minimum distance
between these two surfaces and prevent this value from being negative, which is feasible
but becomes quite complex when a three-dimensional geometry comes into play. In this
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regard, the di↵usive crack model is a better solution and the small deviation of the force
occurs when the generation of the crack is completed.
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Figure 5.2: Comparison of the displacement-force relations between a geometrical notch (case

a) and a di↵usive crack (case b).

5.2 Finite-Element Method (FEM)

When tackling a set of Partial Di↵erential Equations (PDEs) for an Initial-Boundary-
Value problem (IBVP), analytical solutions can be obtained only for a very limited num-
ber of cases. As an auxiliary numerical approach, the FEM provides approximate solu-
tions with satisfactory accuracy, if appropriately applied. Thus it has become the most
commonly used numerical method in a variety of engineering fields. For an elaborate
introduction into the theory and application, the reader may compare, e. g. the textbook
of Bathe [15], Braess [45] and Hughs [117].

The Institute of Applied Mechanics (Chair of Continuum Mechanics) has dedicated thirty
years in solving various coupled problems for multi-phasic materials and thus has accu-
mulated enormous experience. The preparatory work in this field was accomplished by
Ellsiepen [78], Eipper [77] and Ammann [8], who set up the fundamentals of the numerical
software PANDAS, which specialises in the study of porous media. Moreover, Acartürk
included real chemical mixtures in his work [1] while an advanced model concerning the
viscoelasticity at large strains was considered by Markert [146] and his successor Karajan
[129]. In addition, more specific characteristics of a solid skeleton were introduced by, e.
g. Graf [94] and Avci [13] who discussed the elastoplastic behaviour, and Rempler [178]
who described the fracture process in combination with the XFEM. Various applications,
to name but a few, the drug-infusion processes in the brain tissue, the remodelling of
the bone and the simulation of the human hip joint, have been investigated by Wagner
[198], Krause [134] and Mabuma [143]. Furthermore, a tri-phasic material concerning a
fluid-phase transition was proposed in the dissertation of Häberle [104], as well as Koch
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[132] took the thermal e↵ect into account. In order to discover the stability of the nu-
merical methods applied to the coupled problem, Zinatbakhsh compared several typical
numerical methods in his work [210].

5.2.1 Governing equations in strong and weak forms

Before solving the coupled problem, the set of primary variables needs to be determined.
In order to avoid the second-order derivative terms, e. g. the acceleration of the solid,
one may introduce the intermediate term, i. e. the solid velocity vS as a primary variable
such that the solid acceleration aS is regarded as the first-order time derivative of vS.
Furthermore, either the fluid velocity vF or the seepage velocity wF can be chosen as the
primary variable for the kinematical description of the fluid phase. Herein, five primary
variables are selected as

V =
�
uS, vS, vF , p, �

S
 
, (5.10)

which corresponds to five partial di↵erential equations. For uS, the equation corresponds
to the solid displacement relation as

(uS)
0
S
= vS (5.11)

Due to the absence of spatial-gradient terms in this relation, it is not necessary to approx-
imate the nodal value by a discretisation in space within the numerical implementation.
Therefore, in the next step, this equation will not be rewritten in a weak form nor be
integrated over the whole domain. Instead, it is computed in the sense of a strong form
in space.

Proceeding from the volume balance for one constituent, one derives the overall volume
balance by summing up (4.9). Rewriting the sum by taking (4.12) into account yields

X
(n↵)0

↵
+n

↵ div
0
x↵ = n

S divvS +n
F divvF +gradnF ·wF = div

�
vS + n

FwF

�
. (5.12)

This equation will later correspond to the primary variable p.

By considering the momentum balance in Table 2.6, the overall momentum balance is a
direct result of the sum of the momentum balance of both constituents. Thus, an arbitrary
choice of two from these three momentum balance equations, namely the solid, the fluid
and the overall aggregate, forms the set of momentum balances. As an example, the first
set (Set I) selects the momentum balance of the overall aggregate and the fluid,

(
⇢
S(vS)0S + ⇢

F (vF )0S = div (TS

E
+TF

E
� p I) + (⇢S + ⇢

F )g,

⇢
F (vF )0S = divTF

E
� n

Fgrad p+ ⇢
Fg + p̂F

E
,

(5.13)

while the second choice (Set II) is a combination of the momentum balances of the solid
and the fluid, (

⇢
S(vS)0S = div�S

E
� n

Sgrad p+ ⇢
Sg � p̂F

E
,

⇢
F (vF )0S = divTF

E
� n

Fgrad p+ ⇢
Fg + p̂F

E
.

(5.14)
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Table 5.2: Summary of governing PDE: Set I

solid displacement-velocity relation:

(uS)
0
S
= vS

overall volume balance:
div

�
vS + n

FwF

�
= 0

overall momentum balance:

⇢
S(vS)

0
S
+ ⇢

F (vF )
0
S
= div (TS

E
+TF

E
� p I) + (⇢S + ⇢

F )g

fluid momentum balance:

⇢
F (vF )

0
S
= divTF

E
� n

Fgrad p+ ⇢
Fg + p̂F

E

phase-field evolution equation:

(�S)0
S
=

1

M


2(1� �

S)H� Gc

✏
(�S � ✏

2 div grad�S)

�

p

vF

v̄S

ttF
E

v̄

v
�
S

n

�
S

⌦

�

Figure 5.3: Boundary conditions applied to the target domain ⌦

Both sets are physically feasible, and an appropriate combination depends on the specific
initial-boundary conditions in the application. For Set I, the required governing equations
are summarised in Table 5.2. In accordance with each equation, the boundary conditions
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can be split into the Dirichlet1 (essential) and the Neumann2 (natural) boundary con-
ditions over the whole surface @⌦. In particular, either the Dirichlet or the Neumann
boundary condition must be defined for any arbitrary boundary such that each equation
has a unique solution. However, simultaneously defining both boundary conditions causes
a contradiction since, logically, one should be the response to the other. Thus, the two
boundary conditions at a certain time instance on the same surface are mutually exclusive,
and only one is definable and must be defined. In this context, the Dirichlet boundary
conditions include the value for the primary variables as given by (5.10) while the Neu-
mann boundary conditions are the overall traction term t, the extra fluid traction tF

E
, the

fluid volume e✏ux v̄ and the phase-variable e✏ux v
�
S
. The aforementioned restrictions

are given by

�S = �vS [ �t and �vS \ �t = 0,

�F = �vF [ �tEF
and �vF \ �tEF

= 0,

�p = �p [ �v̄ and �p \ �v̄ = 0,

��
S
= ��S [ �

v�
S and ��S \ �

v�
S = 0,

and the definition of the Neumann boundary conditions are given as

t = (�S

E
+TS

F
� p I)n, tF

E
= TF

E
n, v̄ = (nFwF ) · n and v

�
S
= grad�S · n.

Analogously, the governing PDEs for Set II are summarised in Table 5.3. Comparing
the equations in both sets, one recognises that the key di↵erence lies in the Neumann
boundary conditions for the momentum balance. As the solid momentum balance is
considered in Set II instead of the overall momentum balance, its corresponding Neumann
boundary condition is the extra solid traction and subjected to

�S = �vS [ �tES
and �vS \ �tES

= 0,

where the extra solid traction is defined via

tS
E
= �S

E
n. (5.15)

For a typical consolidation process of soil, the soil block takes over the compressive load,
usually coming from the top. This downward force is applied to the whole surface, con-
sisting of the solid and the fluid. However, the ratio of the load, which each constituent
undertakes, depends on the real-time deformation and hence cannot be defined as a bound-
ary condition. Therefore, Set I is more appropriate in this scenario as the overall traction,
instead of the extra solid traction is prescribed as the Neumann boundary condition. To
give a contrast illustration, one may regard the process of squeezing a foam full of water
with a net full of holes. The water will flow out of the foam freely, and for this reason, no
constraint force from the net is carried by it. Therefore, the force is completely applied
to the solid skeleton and thus Set II makes the boundary conditions easier to be included
in the numerical implementation.

1Peter Gustav Lejeune Dirichlet (18051859): German mathematician.
2Carl Gottfried Neumann (1832-1925): German mathematician.
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Table 5.3: Summary of governing PDE: Set II

solid displacement-velocity relation:

(uS)
0
S
= vS

overall volume balance:
div

�
vS + n

FwF

�
= 0

solid momentum balance:

⇢
S(vS)

0
S
= div�S

E
� n

Sgrad p+ ⇢
Sg � p̂F

E

fluid momentum balance:

⇢
F (vF )

0
S
= divTF

E
� n

Fgrad p+ ⇢
Fg + p̂F

E

phase-field evolution equation:

(�S)0
S
=

1

M


2(1� �

S)H� Gc

✏
(�S � ✏

2 div grad�S)

�

5.2.2 Discretisation in space and time

For an IBVP, if one can find a set of solutions satisfying the PDEs in Table 5.2 or
Table 5.3, then this solution is exact at each material point P , and these PDEs are the
balance/evolution equations in the so-called strong form. However, in order to compute
the approximate solution instead of the exact one, the PDEs need to be transformed into
the “weak” form at first. This is realised by multiplying each PDE with its corresponding
test function and then by integrating the product over the whole domain. These equations
hold in a “weak” sense because the equilibrium stays for the whole body B in an integral
(distributed) manner instead of being satisfied for every material point P . In addition,
the original PDEs are also weighted by the test functions. Based on the given two sets
of governing equations, the weak forms are listed in Table 5.4 and Table 5.5, respectively.
Note that the solid displacement-velocity relation is not considered here. Hence, only
the remainder of the primary variables VS require the so-called ansatz functions, which,
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Table 5.4: Weak form of the governing partial di↵erential equations: Set I

overall volume balance:

Gp =

Z

B

�
divvS �p � n

FwF · grad �p
�
dv +

Z

S
v̄ �p da = 0

overall momentum balance:

GvS =

Z

B

�
[⇢S(vS)

0
S
+ ⇢

F (vF )
0
S
] · �vS + (�S

E
+TF

E
� p I ) · grad �vS �

� ( ⇢S + ⇢
F )g · �vS

 
dv �

Z

S
t̄ · �vS da = 0

fluid momentum balance:

GvF =

Z

B
[⇢FR (vF )

0
S
· �vF +TF

E
· grad �vF + n

Fgrad p · �vF � ⇢
Fg · �vF�

� p̂F

E
· �vF ] dv �

Z

S
t̄F
E
· �vF da = 0

phase-field evolution equation:

G�S =

Z

BS

✓
[M(�S)0

S
� 2(1� �

S)H +
Gc

✏
�
S] ��S +Gc✏ grad�

S · grad ��S

◆
dv�

�
Z

S
Gc✏ grad�

S · n ��S da = 0

together with their Sobolev 3 spaces H1(⌦)4, are defined as

AvS(t) := {vS 2 H1(⌦)d : vS(x) = v̄S(x, t)on �
vS
D
},

AvF (t) := {vF 2 H1(⌦)d : vF (x) = v̄F (x, t)on �
vF
D
},

Ap(t) := {p 2 H1(⌦)d : p(x) = p̄(x, t)on �p

D
},

A�
S
(t) := {�S 2 H1(⌦)d : �S(x) = �̄

S(x, t)on ��
S

D
},

(5.16)

with
VS =

�
vS, vF , p, �

S
 
. (5.17)

3Sergei Lvovich Sobolev (1908-1989): Soviet mathematician.
4
The Sobolev space H1

(⌦) is a vector space, where the first-order derivatives of the functions are

square integrable, cf. e. g. Bathe [15].
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Theoretically, the test functions can be any arbitrary functions, since the equations hold
for any material points at an arbitrary time instance in the strong forms. However, in
practice, the test functions are usually considered to be identical to the ansatz functions,
which is also known as the Galerkin5 method. If the test functions are not identical to
the ansatz functions, then the method is referred to Petrov 6-Galerkin Method. In this
context, the Galerkin method is applied, namely,

T vS(t) := {�vS 2 H1(⌦)d : �vS(x) = v̄S(x, t) on �
vS
D
},

T vF (t) := {�vF 2 H1(⌦)d : �vF (x) = v̄F (x, t) on �
vF
D
},

T p(t) := {�p 2 H1(⌦)d : �p(x) = p̄(x, t) on �p

D
},

T �
S
(t) := {��S 2 H1(⌦)d : ��S(x) = �̄

S(x, t) on ��
S

D
} .

(5.18)

During integration the multiplication products, the Gauss ian integral theorem is used
such that certain terms in the volume domain, e. g. the total stress, are equivalently
substituted by other terms over the surface, e. g. the overall traction force. Note that
the application of the Gauss ian integral theorem not only helps to reduce the derivative
order of the integrants but also allows the Neumann boundary condition to be explicitly
assigned to the PDEs.

⌦ ⌦h ⌦e

⌦ ⇡⌦h =
E[

i=1

⌦e and N =
N[

j=1

P
j (⌦e)

Figure 5.4: Exemplary spatial discretisation of a certain domain.

With the weak forms at hand, a standard FEM procedure then discretises the whole
continuous domain ⌦ into a number E of non-overlapping finite subdomains ⌦e, which
are also known as the finite elements. For an infinitely great number E, the discretised
domain ⌦ is equivalent to the original domain ⌦. In addition, nodal points with a number
of Ne in each finite element are introduced, which are mutually interconnected with the
common nodes of the adjacent element. In this context, the sum of all nodes is expressed
by N .

After approximating the domain ⌦ by its discretised one ⌦h, the continuous ansatz func-

5Boris Grigoryevich Galerkin (1871-1945): Soviet mathematician and engineer.
6Georgy Petrov (1912-1987): Soviet engineer.
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Table 5.5: Weak form of the governing partial di↵erential equations: Set II

overall volume balance:

Gp =

Z

B

�
divvS �p � n

FwF · grad �p
�
dv +

Z

S
v̄ �p da = 0

solid momentum balance:

GvS =

Z

B
[ ⇢S(vS)

0
S
· �vS + �S

E
· grad �vS + n

S grad p · �vS � ⇢
Sg · �vS+

p̂F

E
· �vSdv �

R
S t̄

S

E
· �vS da = 0

fluid momentum balance:

GvF =

Z

B
[⇢FR (vF )

0
S
· �vF +TF

E
· grad �vF + n

Fgrad p · �vF � ⇢
Fg · �vF�

� p̂F

E
· �vF ]dv �

Z

S
t̄F
E
· �vF da = 0

phase-field evolution equation:

G�S =

Z

BS

✓
[M(�S)0

S
� 2(1� �

S)H +
Gc

✏
�
S] ��S +Gc✏ grad�

S · grad ��S

◆
dv�

�
Z

S
Gc✏ grad�

S · n ��S da = 0

tions are approximated according to the nodal values and the basis functions,

vS(x, t) ⇡ vh

S
(x, t) = v̄h

S
(x, t) +

NX

j=1

Q
j

vS
(x)vj

S
(t) 2 Ah

vS
,

vF (x, t) ⇡ vh

F
(x, t) = v̄h

F
(x, t) +

NX

j=1

Q
j

vF
(x)vj

F
(t) 2 Ah

vF
,

p(x, t) ⇡ p
h(x, t) = p̄

h(x, t) +
NX

j=1

Q
j

p
(x) p(t) 2 Ah

p
,

�
S(x, t) ⇡ (�S)h(x, t) = (�̄S)h(x, t) +

NX

j=1

Q
j

�S(x)�
S(t) 2 c.

(5.19)
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Analogously, the test functions are also meshed into the finite elements as,

�vS(x, t) ⇡ �vh

S
(x, t) = �v̄h

S
(x, t) +

NX

j=1

Q
j

vS
(x) �vj

S
(t) 2 T h

vS
,

�vF (x, t) ⇡ �vh

F
(x, t) = �v̄h

F
(x, t) +

NX

j=1

Q
j

vF
(x) �vj

F
(t) 2 T h

vF
,

�p(x, t) ⇡ �p
h(x, t) = �p̄

h(x, t) +
NX

j=1

Q
j

p
(x) �p(t) 2 T h

p
,

��
S(x, t) ⇡ �(�S)h(x, t) = �(�̄S)h(x, t) +

NX

j=1

Q
j

�S(x) ��
S(t) 2 T(�

S)h.

(5.20)

The values of the primary variables set VS at every node are the so-called degrees of
freedom (DOF) of the system. In order to guarantee exact values at these nodes, the
easiest way is to assume that the basis function Q

j

VS
holds for

8
<

:

Q
j

VS
(x) = 0, for x /2

S
e2E⇤ ⌦e

Q
j

VS
(xP

i
) = �ij, for x 2

S
e2E⇤ ⌦e.

(5.21)

After the spatial discretisation, the present target is to find
8
>>>>>>>><

>>>>>>>>:

vh

S
2 Ah

vS
8�vh

S
2 T h

vS

vh

F
2 Ah

vF
8�vh

F
2 T h

vF

p
h 2 Ah

p
8�ph 2 T h

p

(�S)h 2 T h

p
8�(�S)h 2 T(�

S)h

9
>>>>>>>>=

>>>>>>>>;

such that

8
>>>>>>>><

>>>>>>>>:

Gh

vS
= 0

Gh

vF
= 0

Gh

p
= 0

Gh

�S = 0

9
>>>>>>>>=

>>>>>>>>;

(5.22)

for a given set of initial and boundary conditions. In this regard, the test functions are
limited by the so-called Partition-to-Unity principle, which states that the sum of the
basis functions at each node must be equal to one. Basically, di↵erent or identical ansatz
functions for each primary variable are both feasible to solve the problem. Nevertheless,
a poor choice may cause computational instability and results in an oscillation of the
solution, cf. Acartürk [1] and Graf [94]. Concerning the fracking problem, the unknown
quantities, e. g. the solid displacement uS and the pore pressure p, are present in both
governing equations. This feature leads to a strong coupling when solving the problem si-
multaneously by a numerical method. Hence, a so-called mixed finite-element formulation
of the basis functions is suggested by Acartürk [1]. Following his consideration, quadratic
shape functions are used for the solid displacement vS and the fluid velocity vF , while the
pore pressure p and the phase variable �S are approximated by linear shape functions.
To be consistent, the solid displacement uS has the same order as the basis function of
vS. This choice yields an equal-order approximation between the extra solid/fluid stress
and the pore pressure if one notices that the stress, together with the strain, is a function



5.2 Finite-Element Method (FEM) 61

containing the gradient term of the displacement. This element type is usually known as
the extended Taylor-Hood type, cf. Taylor & Hood [193], and is exemplarily illustrated in
Figure 5.5 for a 10-noded tetrahedron and a 20-noded hexahedron in a three-dimensional
case. In this example, the blue circles (only at the corners) denote nodal values for p and
�
S while the solid coral dots (both at the corners and in the middle of the edges) represent

nodal values for vS and vF . For any arbitrary element in the numerical model, one can

solid velocity vS , fluid velocity vF

pressure p, phase variable �S

Figure 5.5: Extended tetrahedral and hexahedral Taylor-Hood elements in three dimensions.

transform its geometry to a standard reference element, where the local coordinates are
denoted by, for example, ⇠. The location position x(⇠) reads

Pj (⌦e)

⌦e

⇠1
⇠2

⇠3

⌦e

Figure 5.6: Example of the geometry transformation for a hexahedral element with the local

coordinates ⇠i (i = 1, 2, 3).

x(⇠) =
N

eX

j=1

�j

geo
(⇠)xj =

N
eX

j=1

�j(⇠)xj. (5.23)

Herein, x(⇠) is an arbitrary position depending on the local coordinates ⇠, and �j

geo
(⇠) is

the basis function of the geometry transformation. If applying an isoparametric mapping,
one can conclude �j

geo
= �j. Such a transformation saves computational e↵ort by unifying

the basis/test functions and establishing a local but invariant coordinate system, where
the weak formulations, given in Table 5.4 and 5.5, within one element can be reformulated
with respect to the local coordinates. For an arbitrary vectorial function f(x), this yields

Z

⌦e

f(x)dv =

Z

⌦⇠
e

f(x(⇠))Je(⇠)d v⇠ with Je(⇠) = det

✓
dx(⇠)

d ⇠

◆
, (5.24)
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where d v⇠ denotes the incremental volume element of the standard reference element
whose Jacobian determinant is known as Je. Regarding the chosen basis/test functions
(polynomial), one benefits further from a reduction of computational e↵ort by exploiting
certain integral schemes. The n-point Gauss-Legendre quadrature for a line element, for
instance, can produce an accurate result up to an order of 2n-1 for polynomial functions
within the range of [-1, 1], cf. Stoer & Bulirsch [191]. Thus, for a standard reference
element, the limits of the coordinates can be chosen as [-1, 1] and the integral of each
element is approximated by a summation of the product between the values at the inte-
gration points KG at fixed local positions ⇠

k
and its corresponding quadrature weights

wk, viz.:

Z

⌦⇠
e

f(x(⇠))Je(⇠)d v⇠ =
KGX

k=1

f(x(⇠))Je(⇠)wk. (5.25)

To summarise, the integral over the whole domain results in

Z

⌦

f(x)dx =

Z

⌦h

f(x)dx =
NeX

e=1

Z

⌦h
e

f(x)dx ⇡
NeX

e=1

KGX

k=1

f(⇠
k
)Je(⇠k)wk. (5.26)

After the spatial discretisation, the time-derivative term in the governing equation also
needs to be approximated. For this purpose, a finite di↵erence scheme is applied here,
where the numerical solution only depends on the previous time-step. Note that the
current di↵erential-algebraic equations (DAE) are of a first-order system, the implicit
Euler time-integration method is chosen from the available Runge7-Kutta8 class in the
PANDAS solver. Proceeding from Taylor ’s expansion, this method computes the time
derivative at time tn based on its value ytn at the current time tn and that ytn�1 at the
time instance tn�1,

[(y)0
S
]tn =

1

tn � tn�1
(ytn � ytn�1) =

1

�tn
(ytn � ytn�1), (5.27)

where y includes the complete set of primary variables. Besides, an adaptive time stepping
is applied such that the time-step size is adaptively controlled by the truncation error
within one time step. The algorithm for this adaptive time stepping is also included in
the FEM-solver PANDAS. Thanks to the introduction of the solid displacement-velocity
relation, the governing functions can be simply expressed as a set of functions depending
on the primary variables y, their first-order time derivatives with respect to the solid

7Carl David Tolmé Runge (1856-1927): German mathematician, physicist and spectroscopist.
8Martin Wilhelm Kutta (1867-1944): German mathematician.
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deformation (y)0
S
, and the time t, viz.:

F(y, (y)0
S
, t) =

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

(uS)0S � vS

@

@�vS

GvS

@

@�vF

GvF

@

@�p
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@

@��S
G�S

9
>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>;

!
= 0 with y :=

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

uS

vS

vF

p

�
S

9
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>>>>>>>>>>>>;

and (y)0
S
=

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

vS

aS

(vF )0S

(p)0
S

(�S)0
S

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

Up to now, a group of nonlinear algebraic equations with N DOF is derived. In the next
step, the values satisfying these equilibriums need to be determined. A proper computa-
tion method needs to be chosen carefully as it highly influences the results and computa-
tional e�ciency. Herein, a monolithic scheme that derives all solutions simultaneously is
applied. In general, it is also possible to solve the equations by a staggered scheme, which,
in certain circumstance, o↵ers a robust algorithm, cf. Miehe et al. [155] and Markert et
al. [147]. Nevertheless, regarding the numerical consistency and stability, a monolithic
method, together with the aforementioned Taylor-Hood elements and a backward Euler
time integration method, provides an unconditionally stable solution, cf. Ehlers et al.
[71]. This conclusion is guaranteed by fulfilling the Layzhenskaya9-Babuška10-Brezzi11

condition (LBB condition), often known as the inf-sup condition, cf. Markert et al. [147].
In addition, compared to the monolithic scheme, the computational e�ciency gained by
the partitioned strategy is not guaranteed for the case that the di↵erential equations are
coupled through production terms throughout the whole domain, compare, e. g. , Felippa
& Park [86].

5.3 Computation of the Consistent Tangent

When solving the non-linear system, an iteration scheme, for example, the Newton-
Raphson12 scheme is usually applied. This scheme is inspired by the Taylor -series ex-
pansion with respect to the variables y and (y)0

S
, which is expressed, e. g. based on

(5.2.2),

F im+1
tn

| {z }
Rim+1

= F im
tn

|{z}
Rim

+
@F
@y

����
im

tn| {z }
Kim

(yim+1
tn

� yim
tn
)

| {z }
�yim

+
@F
@(y)0

S

����
im

tn| {z }
Mim

([(y)0
S
]im+1
tn

� [(y)0
S
]im
tn
)

| {z }
[�(y)0]im

, (5.28)

9Olga Aleksandrovna Ldayzhenskaya (1922-2004): Russian mathematician.
10Ivo M. Babuška (1926-): Czech American mathematician.
11Franco Brezzi (1945-): Italian mathematician.
12Joseph Raphson (1648-1715): English mathematician.
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where the subscript tn denotes the time instance, while the superscript im is the iteration
index in two consecutive time instances, progressing from m to m+1. Assuming that the
di↵erences between the solutions are very small, the higher-order terms are negligible. As
the residual terms R should approach zero, the following equation holds,

Rim+1 = Rim +Kim�yim +Mim [�(y)0
S
]im = 0, (5.29)

where the sti↵ness matrix K and the mass matrix M are both denoted as consistent
tangents. For the interpretation of the material time derivatives (y)0

S
, the backward

Euler di↵erence scheme is applied. Taking notice of (5.27), one obtains the increment by
solving the equation

(Kim +
1

�tn+1
Mim)

| {z }
DF im

tn

�yim = �Rim +
1

�tn+1
Mim�yim�1 . (5.30)

Then the solution is updated via

yim+1 = yim +�yim (5.31)

Insertion of these values into the governing equations yields the new residual vectorRim+1
tn

.
In order to evaluate the convergence of the solution, the norm of the residual vector is
computed as the error and compared to a predefined tolerance ✏tol until the criterion,

||Rim+1
tn

||  ✏tol, (5.32)

is fulfilled. Considering the decomposition the solid strain tensor, (4.51), two mapping
tensors are defined as the partial derivatives of the solid positive/negative strain tensors
with respect to the solid strain,

4

G+ :=
"+
S

"S
and

4

G� :=
"�
S

"S
. (5.33)

The summation of these two mapping tensors yields the fourth-order eigentensor,

4

G+ +
4

G� = (I⌦ I) =:
4

I, (5.34)

where
4

I is the fourth-order identity tensor. With the aforementioned equations at hand,

the consistent tangent
4

BS takes the form of

4
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@�S

E
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S

0
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2
 

S
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+] I⌦ I

�
+
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�] I⌦ I ,
(5.35)
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where the sign function sgn(x) is defined as

sgn(x) :=

8
>><

>>:

�1, if x < 0,

0, if x = 0,

1, if x > 0.

(5.36)

Nevertheless, the temporal and spatial discretisations are introduced for the present model
in a rather brief way. For more details, the interested reader is referred to, e. g. Ammann
[8], Ellsiepen [78] and Rempler et al. [177].





Chapter 6:
Numerical Examples

In order to demonstrate the capability and advantage of the material model proposed
in Chapter 4 and the numerical scheme presented in Chapter 5, representative numerical
simulations are carried out, and the results are discussed in this chapter. The first example
focuses on the transition of the flow state by examining the fluid profile in the closed
fracture, the open crack, and the unbroken region. Subsequently, a two-dimensional
hydraulic fracturing process is simulated, where a fracture in solid is triggered by a fluid
injection. Furthermore, three main material parameters are studied for their influences on
the fracturing process. The third example is concerned with a pre-fractured case, where
two pre-cracks with di↵erent orientations are considered. By applying di↵erent boundary
conditions to the model, the new cracks are found to propagate in distinct ways. At last,
a model describing a fracking process in a three-dimensional cylindrical block is provided
to demonstrate the feasibility of the developed model in practical problems.

6.1 Fluid Profile in 2 Dimensions

In order to examine the capacity of the proposed model in describing the flow transition
regarding open cracks, a fluid-saturated rectangular block is set up, cf. Figure 6.1. Under
plane-strain conditions, the length and width of the block are both 0.5 m. Moreover, the
left and right sides are fully permeable while the top and bottom are impermeable.

According to the investigation of Hofacker [115] who studied a pure solid fracture case
with linear quadrilateral elements, the minimum element size should be smaller than the
length-scale parameter. In the following numerical examples, this conclusion is adopted
as the criterion of the spatial discretisation. Moreover, an additional study regarding the
influence of di↵erent length-scale parameters ✏ within this fluid-solid model and quadri-
lateral elements will later be discussed in the second example. In this model, the crack
zone is divided into eight elements along the crack width, yielding a minimum element
size of 1.25⇥10�3m, which helps to exhibit the fluid profile therein more detailedly. After
choosing the required material parameters as listed in Table 6.1, a horizontal pre-fractured
zone with a width of 0.01 m at x2 = 0 is generated as an initial crack. The complete
loading process is given as follows:

Step 1: From 0 s to 10 s, an initial pseudo-elastic energy H0 is applied to the predefined
area, which is located precisely between �0.25  x1  0.25 m and �0.005 
x2  0.005 m.

Step 2: From 10 s to 20 s, the top edge moves upwards for 10 s with a velocity of
5⇥ 10�6 m/s, and thus a total vertical displacement of 5⇥ 10�5 m is achieved.

67
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Figure 6.1: Geometry and boundary conditions of a two-dimensional fluid-saturated porous

block.
Table 6.1: Material parameters for the model in Section 6.1

µ
S : 8.077⇥ 1010 Pa �

S : 12.115⇥ 1010 Pa Gc : 2.7⇥ 103 N/m

✏ : 1⇥ 10�2 m ⌘
S

r
: 1⇥ 10�3

M : 3⇥ 10�6 Pa · s
µ
FR : 1.002⇥ 103 Pa · s n

S

0 : 0.8 k
F : 1⇥ 10�8 m/s

⇢
SR

0 : 3⇥ 103 kg/m3
⇢
FR : 1⇥ 103 kg/m3

Step 3: From 20 s to 100 s, the fluid is injected on the left edge under an increasing
pressure with the value of p = (t�20)⇥106 Pa. The maximum of the pressure
is 8⇥ 107 Pa.

If (5.8) is taken into account, the pseudo-elastic energy in Step 1 takes a value of

H0 =
Gc

4 ✏ (1� �S)
= 6.75⇥ 107 J/m3

, (6.1)

where the material parameters of Table 6.1 have been considered, and �
S has been set

to 0.999. In addition, the triggering strain energy ⌥S

t
is set to zero in this model and

the others in this Chapter as it is not of main interest here. In Step 2, a dilation over
the whole domain is achieved under the given displacement and boundary conditions.
Consequently, the COI will yield one over the whole model, allowing for a possibility of
crack opening. Nevertheless, in reality, due to the vanishing resistance in the pre-cracked
zone, most of the displacement occurs in that region leading to a crack opening. This
opening in the proposed model is detected by a combination of the COI and the phase
variable. In the last step, a fluid injection is applied to the left side of the model under
an external fluid pressure that increases towards the maximum value pmax. Regarding the
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Figure 6.2: Temporal development of the fluid velocity in the fractured region.

boundary condition of the fluid, a horizontal layer flow is then obtained and the temporal
evolution of the horizontal fluid velocity along the cross-section x1 = 0.01m between
x2 = �0.02m and x2 = 0.02m is shown in Fig. 6.2. It is seen that the fluid velocity is
constant over the cross-section at the beginning. With an increasing pressure, the velocity
profile with respect to x2 becomes convex and the curve can be divided into three parts,
corresponding to a Darcy-type filter flow with a rather small velocity magnitude in the
region |x2| > 0.01m, a transition zone for 0.01m > |x2| > 0.005m, and a free flow in the
pre-fractured zone where |x2| < 0.005m, respectively. In comparison to the Darcy-type
flow, the free flow has a much higher velocity, indicating a transition from a Darcy-type
flow to the Navier -Stokes flow. In addition, the di↵erence becomes larger when a higher
pressure is applied.

After the maximum fluid pressure is reached, the flow profile can be computed in a quasi-
static setting, which is described by

vF1 = � k
F

nF�FR

@p

@x1
(for the intact porous media),

@
2
vF1

@x
2
2

=
1

µFR

@p

@x1
(for the crack-opening region),

(6.2)

where the vertical body force is neglected. (6.2)1 is a simple expression for a Darcy-type
flow, suggesting that the fluid velocity is proportional to the pressure gradient. In a
quasi-static setting, this gradient for the present model is assumed to be constant in the
e1 direction and yields the value of @p/@x1 = �p/�x1 = �1.6 ⇥ 108 Pa/m after time
t > 100 s. Correspondingly, the Darcy-type flow has a velocity of vF1 = 8.15⇥ 10�4 m/s
when the parameters of Table 6.1 are used, together with g = |g| = 10 m/s2. In the
fully fractured zone �0.005 m  x2  0.005 m with �

S = 1, the Navier -Stokes flow is
reduced to a Poiseuille flow with a permeable boundary condition, which describes the
flow of a Newtonian fluid in a pipe. Considering the symmetric setting of the model,
the integration of (6.2)2 over the fully fractured zone provides a distribution of the fluid
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Figure 6.3: Pore-fluid velocity profile ranging from the Darcy type to the Navier-Stokes type.

velocity as

vF1 = �0.5
�p

�x1
(x2)

2 + v0 . (6.3)

In order to determine the value of v0, one may either choose the velocity at the slippery
boundary vF1(x2 = 0.005m) or takes the velocity at x2 = 0m from the direct numerical
result. As the slippery boundary is usually defined via experiments, the latter value is
chosen here such that the relative distribution of the fluid velocity in the numerical result
can be compared to this theoretical one.

In both Figure 6.3 and 6.4 (right), the brown solid line indicates the results from the
present Finite-Element Analysis (FEA) with the dots indicating the nodal solution, while
the beige solid line in Figure 6.4 represents the referential solution (Poiseuille flow) from
Beavers & Joseph [18], who experimentally investigated the boundary conditions of a free
flow between an impermeable top layer with a no-slip boundary condition and a naturally
permeable wall. It is observed that the simulation result is in a good agreement with the
referential one, thus validating that the transition of the fluid regarding the crack opening
is successfully described by the proposed model.

6.2 Hydraulic Fracturing in 2 Dimensions

The second example demonstrates the capability of the developed model in describing
the crack initiation and propagation in a hydraulic-fracturing process. A fluid-saturated
square specimen is simulated. The geometry and boundary conditions are shown in Figure
6.5, while the material parameters remain identical to the first example, cf. 6.1. It needs
to be mentioned that two loading conditions with di↵erent pressure p(t) and fluid influx
v̄(t) are studied here, respectively.

Considering the symmetric geometry and boundary conditions for the axises x1 = 0m
and x2 = 0m, the computation is only conducted with the top-right quarter for e�ciency.
The quarter is discretised into 792 quadrilateral Taylor-Hood elements, which results in
a minimum element size of he ⇡ 4 ⇥ 10�3 m. In the first case, a uniform fluid pressure
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Figure 6.4: Pore-fluid velocity profile in the fractured zone compared to the experimental

study of Beavers & Joseph [18].

with an increasing rate of p̄ = 5.5 ⇥ 104 tPa is applied to the notch located at x2 = 0
between x1 = 0m and x1 = 0.1m. In Figure 6.6, the normalised principal shear stresses,
computed by

⌧
⇤ =

max ⌧

(max ⌧)⇤
(6.4)

where max ⌧ is the largest principal shear stress and (max ⌧)⇤ the largest principal shear
stress in the domain, at time t = 2, 331 s, is demonstrated and found to be in line with
the analytical solution by Sneddon [188], where the stresses around a Gri�th crack in an
elastic medium were investigated.

v
⇤ = log10 (

|vF |
min|vF |

). (6.5)
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Figure 6.5: Geometry and boundary conditions for a two-dimensional hydraulic fracturing

problem.
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both taken at t = 4, 831 s

With an increasing pressure, the notch starts to open, and a crack is initiated at the
right end of the notch. Subsequently, this crack propagates towards the right end hori-
zontally, cf. Figure 6.7 contouring the phase variable �S in (a)-(c), and the corresponding
pore pressure in (d)-(f). Immediately after applying the pore pressure, the pressure is
distributed roughly radially around the notch. Owing to that the crack has not been
generated yet, the fluid moves still as a Darcy-type filter flow, following the direction per-
pendicular to the pressure isolines towards the permeable boundaries. With an evolving
phase field, one observes that the fluid pressure is re-distributed and the pressure within
the fully fractured zone (where �S = 1) drops much less slowly compared to the other
regions, which directly results from a disappearing resistance of the solid skeleton there.
This phenomenon is easily understood if one recalls the fluid momentum balance in Table
5.2 with the corresponding constitutive equations (4.59, 4.60) that describe a shrinking
momentum production p̂F

E
, and in the meantime, a rising friction term divTF

E
regarding

an increasing phase variable �S. It should be mentioned that the viscosity of the fluid
is rather small here, which thus results in almost constant fluid velocity along the crack.
The influence of the viscosity will be further investigated in the next example. As the
fluid velocity varies within a rather big range, a scaled velocity for a clear understanding
of the variation is preferred. The scaled norm is defined via (6.5). Note that min|vF | is
the minimum of the norm of the fluid velocity for each time step. At time t = 4, 831 s,
the scaled velocity, together with the streamlines, is illustrated in Figure 6.8 (a). It is
seen that around the crack zone, v⇤ is around 3.5 and the corresponding fluid velocity is
103.5 ⇡ 3162 times of the minimum value 1, located at the upright corner. From Figure
6.8 (b), one discovers that the fluid flows in two main directions. It moves along the
crack until reaching the joint region, then turns perpendicular to the crack and eventually
approaches the permeable boundaries. Along the axis x2 = 0m, the turning points coin-
cide with the crack tip, as shown in Figure 6.8(b) near the bottom of the block, around
x1 ⇡ 0.2m.

When increasing the fluid pressure until the crack penetrates the right end, one contra-
diction will come to notice. As the pressure drop in the crack zone is rather small, the
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fluid pressure on the right end should be more or less in the same order of the loading
pressure p̄. However, the pressure is predefined as a Dirichlet boundary condition, which
results in a rather large pressure gradient in the vicinity. In Figure 6.10 (a), the sudden
drop of the solid force at the top around time t = 7, 000 s is caused by this singularity
issue. In this regard, another attempt is made by defining the fluid injection on the notch
instead of the fluid pressure. The rate of the injection is set to v̄ = 2.5�3 m3

/(m2s), and
the corresponding fluid pressure distribution is demonstrated in Figure 6.9.

For a pressure-driven crack propagation, additional attention has to be paid to the time
instant when the crack approaches the permeable surface. Here, one problem occurs that
the pressure drop in the cracked zone is rather small, meaning that p is approximately
in the order of the loading pressure p̄, while the boundary is stress-free. As a result, the
computation tends towards a singularity in the pressure field, when the crack approaches
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Figure 6.9: Pressure distribution under a constant fluid influx at di↵erent time steps
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the boundary. In this regard, Figure 6.10 (a) reveals a sudden drop of the resultant solid
force at the top bearing at approximately t = 7, 000 s after having started the loading by
p̄. Consequently, the crack propagates only very slowly due to this convergence problem.
In order too overcome this di�culty, the loading has been changed from pressure-driven
to influx-driven by an amount of v̄ = 2.5�3 m3

/(m2s). This change leads to the pressure
contours of Figure 6.9. Although the same boundary condition p = 0 is set on the right
side, the convergence is achieved by reducing the fluid pressure on the notch after the
crack propagates across the entire bottom. Based on this model, a few parameter studies
are performed, cf. Figure 6.10. As implied in (4.60), a higher hydraulic conductivity k

F

will result in a larger e↵ective coupling term p̂F

E
between the solid skeleton and the pore

fluid in the intact saturated solid. For a fracking process, this leads to a higher maximum
vertical solid force, cf. Figure 6.10 (b). In contrast, the e↵ective dynamic viscosity of
the fluid influences the coupling terms in a very limited range, compare Figure 6.10 (c).
This weak correlation is due to that only after the crack is initiated, the friction term will
rise, and even so, it is rather small compared to the momentum production. Besides, as a
measurement of the smear crack width, the length scale parameter ✏ is the most important
quantity for the solution of the problem because it governs the mean permeability of the
crack zone. In other words, a greater value of ✏ corresponds to a higher permeability and
a smaller solid resistance, hence resulting in a smaller vertical solid force. Vice versa,
decreasing ✏ yields a higher pore pressure when pumping the same amount of water into
the model. Through the momentum production, the increased fluid pressure is loaded to
the solid skeleton, and a larger solid reaction force is observed, cf. Figure 6.10 (d).

6.3 Hydraulic Fracturing in 2 Dimensions with Pre-
cracks under Pre-stresses

The third example is inspired by the work of Blanton [24], which investigated the hydraulic
fracturing of a pre-cracked block under di↵erent settings of confined fluid pressures, cf.
Figure 6.11. For the sake of simplification, a two-dimensional model under a plane-strain
condition is set up here. The model is rectangular with dimensions of 1.0 m ⇥ 0.5 m. Two
pre-cracks, one horizontal of 0.15 m length at the middle of the left edge and one vertical
of 0.4 m length located in the middle of the block are considered. Note that the pre-cracks
are both 0.01 m wide and generated by the pseudo-elastic energy of H0 = 6.75⇥107 J/m3,
the same as in the first example. For the whole computation process, the left side of the
block is assumed impermeable in the meantime all other boundaries are permeable. Also,
the required material parameters are again from Table 6.1, and the loading process is
divided into three steps, cf. Figure 6.11, detailed as follows,

Step 1. As in the example described in Subsection 5.1.3, a pseudo-elastic energy H0 =
6.75 ⇥ 107 J/m3 is applied between 0 s to 10 s in the zones indicated as pre-
fractured with a width of 0.01 m.

Step 2. From 10 s to 20 s, vertical and horizontal displacements �u1 and �u2 are
enforced by the application of confining pre-stresses (�S

E
)11 and (�S

E
)22 onto the
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Figure 6.10: Vertical resultant solid reaction force at the top bearing versus time: (a) under a

pressure-driven loading (b)-(d) under a volume-injection-driven loading with di↵erent parameter
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solid skeleton.

Step 3. From 20 s on, a linearly increasing fluid flux is injected at the left end of the
horizontal fracture at a rate of v̄ = 1 ⇥ 10�3(t � 20) m/s, thus initialising the
hydraulic fracturing process.

Unlike a geometrical crack, for example, the notch in the second example, the pre-cracks
in Step 1 are modelled by a di↵usive phase-field crack. The advantage of this approach
is to avoid an additional problem, i.e., the contact of the boundaries, which requires an
additional numerical treatment to prevent the boundaries in a FEM model from pen-
etration. In particular, owing to the existence of the confining stresses, the pre-cracks
are usually closed and compressing normal stresses are found on both contact surfaces.
Thanks to the COI, the proposed model is able to distinguish a closed crack and tackle
the corresponding inverse transition from a Navier -Stokes flow to a Darcy-type without
any numerical di�culty.

In Step 2, two di↵erent horizontal displacements (case 1: �u1 = 1 ⇥ 10�4 m versus case
2: �u1 = 5 ⇥ 10�4 m) are assumed at time t = 20 s while both cases have the same
vertical displacements �u2 = 4 ⇥ 10�5 m. Correspondingly, two sets of confining stresses
are achieved, cf. Table 6.2, yielding a ratio (�S

E
)11/(�S

E
)22 with values of either 1.4 or

2.0. According to the given boundary conditions, the fluid is squeezed out from the

Table 6.2: Vertical and horizontal displacements and pre-stresses for cases 1 and 2.

Case No. �u1/�u2 (�S

E
)11/(�S

E
)22

1 2.5 1.4
2 12.5 2.0

impermeable boundary (the left side) to the permeable boundaries (the other three sides),
cf. Figure 6.12, exemplarily displaying the Darcian streamlines over the whole domain for
case 1 at t = 20 s. At the same time instant, in case 2, qualitatively similar results
of the primary quantities, e. g. , streamlines, strains and stresses, are found like those
in case 1 despite some quantitative di↵erences in specific values, for example, a larger
horizontal compression stress of the solid compared to that in case 1. Besides, Figure 6.12
demonstrates the evolution of the phase variable, as well as the fluid pressure ranging
from low (grey-blue) to high (dusty pink).

In Step 3, with an increasing fluid injection rate, completely di↵erent hydraulic fracturing
patterns are obtained at t = 100 s for these two cases, cf. Figure 6.13. For case 1
with a lower stress ratio, the fluid at first flows into the horizontal pre-fractured zone.
Subsequently, the hydraulic fracturing is initiated at the right end of that pre-crack and
propagates further rightwards until it reaches the vertical pre-crack. Afterwards, the
fluid mainly flows along this vertical pre-cracked zone, and at both ends, two wing-like
hydraulic fractures are formed up. In the meanwhile, the rest fluid seeps out in the
direction perpendicular to the fracture isolines through the fluid-saturated porous solid
towards the permeable boundaries. During the whole process, the streamlines, the turning
point of which is consistent with the tip of the newly generated crack, always corresponds
the hydraulic fracture propagation.
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Figure 6.12: (a) pre-crack patterns (b) pore-fluid pressure (c) streamlines of the fluid flow at

t = 20 s (case 1).

In contrast, case 2 exhibits a di↵erent fracturing pattern where the hydraulic fracture
propagates directly across the model along the axis x2 = 0, which usually occurs for the
completely intact model. It is also observed that the streamlines mainly diverge into two
directions, one along the hydraulic fracture and the other perpendicular to that crack,
similar to the result in the second example.

These two patterns are also observed experimentally by Blanton [24], who investigated
the propagation of hydraulic fracturing in pre-fractured shale blocks. In his research, he
concluded that the hydraulic fracture tends to cross the pre-crack only when the horizontal
stress is much higher than the vertical one. Contrariwise, the hydraulic fracture will
be “arrested” by the open pre-cracks. With reference to the experimental results, the
e↵ect of the confining-stress conditions on the numerical results can be interpreted by
examining the streamlines and the fluid pressure contours in Figure 6.13. In case 1,
the fluid pressure in the vertical pre-fractured zone is almost the same as the one at
the injection point, indicating that the fluid flows without any resistance from the solid
skeleton. This occurrence is only possible if the cracks on this routine, including the
horizontal and the vertical pre-cracks and the adherent hydraulic fractures, are all open.
In opposition, case 2 displays an even fluid pressure only along the horizontal and hydraulic
fracturing. The pressure gradient in the vertical pre-fractured zone is consistent to the
one of its neighbour, suggesting that the fluid pressure there drops as an unbroken porous
medium and the vertical pre-crack is closed in this model.

The results confirm that the present model is in a good agreement with the experimen-
tal observations. Thus, this example illustrates the capacity of the developed model in
tackling the hydraulic fracturing problem under pre-cracks and pre-stresses conditions.
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Figure 6.13: Comparisons of the hydraulic-crack patterns, the fluid pressure and the stream-

lines of the fluid flow between case 1 and case 2.

6.4 Hydraulic Fracturing in 3 Dimensions

The last example aims to show the performance of the proposed model in handling full-
dimensional fracking problems. Regarding this, a fully three-dimensional example of a
fluid-saturated cylindrical specimen with an outer radius R1 = 1m and a height H1 = 1m
is under consideration, see Figure 6.14. The specimen is fixed at the top and bottom
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surfaces but freely expandable in the middle. Moreover, the fracking fluid is injected
through a rigid borehole, located at the middle of the top surface and drilled downwards
with a radius R0 = 0.1m and a depth H0 = 0.5m, and enters into the specimen by the
bottom of the borehole with an injection rate of 5⇥10�2 m3

/(m2 s). All the surfaces except
the bottom of the borehole and the bottom of the cylinder are assumed impermeable. The
bottom of the cylinder allows the fluid to pass by freely under a zero ambient pressure
p = 0Pa. Note that both the geometry and the boundary conditions are axial-symmetric.
Thus, in order to simplify the numerical model, only a quarter of the complete structure
is simulated with an appropriate BC setting on the cross-sections. The quarter model is
discretised into 2350 quadrilateral Taylor-Hood elements, resulting in 11,118 nodes and
105,636 degrees of freedom. The minimum mesh size is around 0.01 m, he ⇡ 0.01m,
which is located in the vicinity of the potential crack zone. The material parameters are
consistent with the previous numerical examples, as shown in Table 6.1.

R0

R1

H0

H1

Figure 6.14: Geometry of a three-dimensional fracturing model.

In order to distinctly exhibit the transition of the fluid type with the evolution of the
phase-field variable, the cracked zone with �

S
> 0.9, denoted by a pastel pink surface,

together with the streamlines of the cross-sections, is shown from an anterolateral view,
cf. Figure 6.15. It is observed that the fluid within the crack zone flows along the crack
surface, depart from which the rest flows towards the permeable boundaries. For example,
the streamlines starting from the bottom the borehole, proceed directly downwards to the
bottom boundary while the part of the fluid in the crack leaves the crack surface upwards
at first and then bends downwards in a parabolic way, approaching the side and bottom
boundaries. Furthermore, a volumetric dilation is noticed as a direct result of the injected
fluid.
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Figure 6.15: Propagation of the crack surface together with the streamlines.





Chapter 7:
Summary and Outlook

7.1 Summary

This monograph presents a thermodynamically consistent model for describing dynamic
brittle fracture in porous media. This model has been achieved by embedding the phase-
field approach into the well-established TPM. The derived model has been further im-
plemented in the in-house FE-software (PANDAS) and applied to hydraulic fracturing
problems. Numerical results of two- and three-dimensional examples have demonstrated
the capacity and e↵ectiveness of the developed model.

Proceeding from the TPM, each constituent owns its independent balance equations which
are related to each other by the production terms accounting for the mutual e↵ects be-
tween them. After applying several reasonable and necessary assumptions such as the
absence of thermal e↵ects, the entropy inequality guaranteeing the thermodynamical con-
sistency is derived. Furthermore, an overview of the state-of-the-art fracture modelling in
solid mechanics was carried out where the phase-field fracture approach stood out owing
to its capacity in the description of complex crack phenomena and the ease in numer-
ical implementation. Thus, the remaining work is to introduce the phase variable into
the TPM while maintaining the thermodynamic consistency. Herein, a biphasic material
composed of solid and fluid was focused on the model formulation. Before proposing
suitable constitutive equations, two essential ingredients of phase-field modelling of frac-
turing solids were discussed and accommodated to porous media problems, including (i)
the decomposition of the solid strain tensor to ensure that the material fractures only
owing to the accumulation of the energy induced by tensile stresses and the resistance
degrades only in the directions where tension occurs; and (ii) the introduction of the
history variable recording the maximum over-threshold energy in the evolution equations
of the phase field. More important is that the evolution equation of the phase field was
considered to be solely dependent on the solid stored strain energy since cracks only occur
in solid and the fluid-induced pressure can be regarded as an external load of the solid
skeleton and has already been taken into account by the production term. Subsequently,
the fluid in the generated cracks was treated. Owing to the lack of solid resistance, the
fluid in the crack zone flows as a free flow in a pipe. If assuming a Newtonian fluid, the
flow can be described as a Poiseuille flow. In this regard, the phase variable was also in-
troduced into the constitutive equations for the fluid momentum production and e↵ective
fluid stress such that the momentum production disappears in the crack zone while the
e↵ective fluid stress arises. In the meantime, the fluid momentum balance is transformed
from a standard form of Darcy ’s law into the Navier -Stokes equation.

Further addressed were the issues concerning applying the developed model to more re-
alistic hydraulic fracturing problems. The nature of a phase-field crack is to substitute a
real crack by a material with zero or very little resistance in that region. Although this
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approach preserves the structure and corresponding mesh, one of the main drawbacks is
the loss of the geometry of cracks, especially, of crack surfaces. As crack is interpreted as
a material state (cracked) indicated by the phase variable and the evolution of this phase
variable is monotonic, the missing geometrical information may lead to inconsistency
in complex cases, for example, the re-closing of the pre-existing cracks under confining
stresses. This inconsistency is because when cracks close after opening, the phase vari-
able stays for a cracked material and the fluid momentum production remains vanishing.
Based on this finding, a new concept, the Crack-Opening Indicator was defined. Thus,
besides the phase variable characterising the intact and cracked material, the indicator
additionally distinguishes the cracked material from two states, namely closed and open
cracks. Afterwards, the constitutive equations for the fluid were redefined such that the
production terms vanish and the e↵ective fluid stress comes into play only when there is
a crack and this crack is open.

With all those ingredients, the proposed model has been made capable of describing the
most important phenomena of hydraulic fracturing, which involves not only the mono-
tonic crack generation in the solid but also the bidirectional transition of the fluid states
between a Navier -Stokes bulk flow and a Darcy-type filter flow. The derived strongly
coupled partial di↵erential equations were then solved under a standard FEM proce-
dure. After yielding the weak form of the governing equations, a spatial discretisation
with mixed finite elements and an implicit Euler time integration scheme are applied.
Subsequently, a monolithic solution was achieved by the in-house FE-software PANDAS.
Numerical simulations were performed to demonstrate the capacity of the proposed model
in describing typical hydraulic fracturing processes with either pressure-driven or volume-
driven loadings. In these cases, the solid stress state around the crack tip has been found
in good agreement with the theoretical deduction while the fluid profiles in the open crack
zone are consistent to the findings based on Poiseuille flow. In addition, complex scenarios
involving pre-existing fractures and pre-stressed situations were also investigated. For two
models with identical geometries and materials under the same loading cases, di↵erent
crack patterns were obtained with respect to two combinations of horizontal and vertical
confined stresses. These phenomena were also discovered by experiments in the 1980s.

7.2 Outlook

Although the present monograph proves that a phase-field model embedded in the TPM is
capable of solving complex hydraulic fracturing problem, the potential of this combination
has not been fully exploited. Considering the attempts of Aldakheel [3] and Ambati et
al. [5] in setting up a phase-field model to ductile fracture, it will not be astonishing
to further extend the current model to ductile hydraulic fracturing, which is suitable
to describe many geomechanical phenomena, for example, the landslide. Recently, a
study of replacing the fracking fluid with supercritical CO2 has become attractive due to
the great benefit compared to the traditional fracking fluid involving only the decrease
of environmental pollution but also the increase of the gas production, cf. Middleton
[152]. In this regard, an extension from a biphasic model towards a tri-phasic material
is desirable. Since the temperature plays a significant role for the gas and the viscosity
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of the fracking fluid and its sand-carrying capability are very temperature-sensitive, a
thermodynamical TPM model has to be considered. The largest challenge comes from the
phase transition of the gas owing to the in-situ high-pressure high-temperature condition
of the underground hydraulic fracturing region. During the injection process, the liquid
carbon dioxide begins to vaporise after reaching the supercritical temperature with the
increasing temperature, thereby forming a carbon dioxide foam with the water-based
fracking fluid. The supercritical CO2 has similar behaviour of the gas and will return to
the ground in a gaseous form with the decreasing pressure. As the phase-field model was
successfully applied to the phase-transition problem, it is possible to define two phase
variables describing the crack phenomena in the solid and the vaporisation of the CO2,
respectively.

Apart from the diversity in the material model, improvement is also expected in the
numerical methods. As the mesh size is always controlled by the length-scale parameter
and this parameter is usually rather small compared to the size of the model, a very fine
mesh at least around the crack tip is thus always required. However, the crack tip moves
as the crack propagates, which causes a fine mesh along the predicted crack path by a
standard FEM. An adaptive mesh refinement will considerably reduce the number of the
elements and the resulting degrees of freedom if the fine mesh follows the movement of
the crack tip, especially for three-dimensional problems.





Appendix A:
Selected Relations of Tensor Calculus

This appendix complements the monograph by providing the fundamental rules and rela-
tions that are necessary and frequently recalled in this main context. Those supplements
are provided in the form of “handbook”, and hence, a detailed derivation is unfortunately
neglected. For a comprehensive introduction, the interested reader is referred to the text-
book of de Boer [25], whose notation is followed here. The full mathematical deduction
can be found in Marsden & Hughes [149]. Additionally, a compact summary is also avail-
able in the online lecture notes of the Institute of Applied Mechanics (Chair of Continuum
Mechanics) at the University of Stuttgart, cf. Ehlers [76], which involves the following
content.

A.1 Tensor Algebra

As a conventional notation, set {↵, �} 2 R to be arbitrary rational scalar quantities,
{a, b, c, d} 2 V3 be arbitrary vectors of the proper Euclidean1 3D vector space V3, and
{A, B, C, D 2 V3 ⌦ V3} be arbitrary second-order tensors of the corresponding dyadic
product space.

A.1.1 Selected rules for second-order tensors

Products of tensors with scalars or vectors:

↵(�)A = (↵�)A : associate law

A(↵ a) = ↵(Aa) = (↵A)a : associate law

(↵ + �)A = ↵A+ �A : distributive law

↵(A+B) = ↵A+ ↵B : distributive law

A(a+ b) = Aa+Ab : distributive law

(A+B)a = Aa+Ba : distributive law

↵A = A↵ : commutative law

a = Ab : linear mapping

Ia = a I: second-order identity tenor

0a = 0 0: zero tensor

1Euclid of Alexandria (Mid-4th century BC - Mid-3th century BC): Greek mathematician, often

regarded as the “founder of geometry”.
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Scalar (Inner) product of tensors:

(↵A) ·B = A · (↵B) = ↵(A ·B) : associate law

A · (B+C) = A ·B+A ·C : distributive law

A ·B = B ·A : commutative law

A ·B = 0 8A, ifB ⌘ 0

A ·A > 0 8A 6= 0

A · (a⌦ b) = a · (Ab)

Tensor product of tensors:

↵(AB) = (↵A)B = A(↵B) : associate law

(AB)a = A(Ba) : associate law

(AB)C = A(BC) : associate law

A(B+C) = AB+AC : distributive law

(A+B)C = AC+BC : distributive law

AB 6= BA : non-commutative law

IA = A I: second-order identity tensor

0A = 0 0: zero tensor

Transposed tensor:

(a⌦ b)T = (b⌦ a) (↵A)T = ↵AT

(AB)T = BTAT a · (Ab) = (ATa) · b
A · (BC) = (BTA) ·C (A+B)T = AT +BT

Definition of determinant and cofactor:

detA =
1

6
(A A) ·A =

1

6
(trA)3 � 1

2
(trA)(AT ·A) +

1

3
(AA)T ·A

cofA =
1

2
A A, where cofA =

1

2
(aikanoeinjekop)(ej ⌦ ep) :=

+
ajp(ej ⌦ ep)

Inverse tensor:

A�1 = (detA)�1adjA = (detA)�1(cofA)T ! A�1 exists if detA 6= 0

AA�1 = A�1A = I

(A�1)T = (AT )�1 =: AT�1 = A�T

(AB)�1 = B�1A�1
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Trace operator:
trA = A · I

tr (↵A) = ↵trA

tr (a⌦ b) = a · b
trA = trAT

tr (AB) = tr (BA) = A ·B = B ·A
tr (ABC) = tr (BCA) = tr (CAB)

Determinant operator:

detAT = detA detA�1 = (detA)�1

det (AB) = detA detB det (↵A) = ↵
3detA

det I = 1 det (A+B) = detA+ (cofA) ·B+

+A · (cofB) + detB

A.1.2 Selected rules for higher-order tensors

Third-order fundamental (Ricci2) tensor:

3

E = eijke1 ⌦ e2 ⌦ e3 with the “permutation symbol” eijk

eijk =

8
><

>:

1 : even permutation , e. g. e123 = e231 = e312 = 1

�1 : odd permutation , e. g. e321 = e213 = e132 = �1

0 : double index

Cross product:

a⇥ b =
3

E (a⌦ b)

a⇥B = [
3

E (a⌦B)]2

A⇥B =
3

E (ABT )

I⇥A =
3

EAT = 2
A

a with
A

a := 1
2

3

EAT (
A

a is the axial vector of A )

Fourth-order fundamental tensors:

4

I := (I⌦ I)
23
T ! (I⌦ I)

23
TA = A : identical map

(I⌦ I)
24
T ! (I⌦ I)

24
TA = AT : transposing map

I⌦ I ! (I⌦ I)A = (A · I) I : tracing map

2Gregorio Ricci-Curbastro (1853-1925): Italian mathematician.
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Note that the transposition operator ( · )
ij
T exchanges the positions of the i-th and j-th

basis vectors. Moreover, the transpose of a fourth-order tensor is defined as

4

A
T

= (
4

A
13
T )

24
T

Properties of simple fourth-order tensors:

(A⌦B)
23
T = (BT ⌦AT )

14
T

[(A⌦B)
23
T ]T = (AT ⌦BT )

23
T

[(A⌦B)
23
T ]�1 = (A�1 ⌦B�1)

23
T

((A⌦ (B)
24
T = [((B⌦ (A)

13
T ]T

[((A⌦ (B)
24
T ]T = ((B⌦ (A)

24
T

[((A⌦ (B)
24
T ]�1 = ((BT�1 ⌦ (AT�1)

24
T

Other related rules:

(A⌦B)
23
T (C⌦D)

23
T = (AC⌦BD)

23
T

(A⌦B)
23
T (C⌦D) = (ACBT ⌦D)

(A⌦B)(C⌦D)
23
T = (A⌦CTBD)

(A⌦B)
23
TC = ACBT

(A⌦B)
23
T a = [A⌦ (Ba)]

23
T

(A⌦B)
24
T (C⌦D)

24
T = (ADT ⌦BTC)

23
T

(A⌦B)
23
T (C⌦D)

24
T = (AC⌦DBT )

24
T

(A⌦B)
24
T (C⌦D)

23
T = (AD⌦CTB)

24
T

(A⌦B)
24
T (C⌦D) = (ACTB⌦D)

(A⌦B)(C⌦D)
24
T = (A⌦DBTC)

(A⌦B)
24
TC = ACTB

A.2 Tensor Analysis

Derivative of products of functions:

(a⌦ b)0 = a0 ⌦ b+ a⌦ b0 and (AB)0 = A0B+AB0
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Selected derivatives of tensors and their invariants:

@A

@A
= (I⌦ I)

23
T =

4

I
@trA

@A
= I

@AT

@A
= (I⌦ I)

24
T

detA

A
= cofA = (detA)AT�1

@A�1

@A
= �(A�1 ⌦A�1)

23
T

@cofA

@A
= det [(AT�1 ⌦AT�1)�

�(AT�1 ⌦AT�1)
24
T ]

Selected rules related to the gradient and divergence operators:

grad (↵�) = ↵ grad � + � grad↵ div (a⌦ b) = a divb+ (grad a)b

grad (↵b) = b⌦ grad↵ + ↵ gradb div (↵B) = B grad↵ + ↵divB

grad (↵B) = B⌦ grad↵ + ↵ gradB div (Ab) = (divAT ) · b+AT · gradb

div (↵b) = b · grad↵ + ↵ divb div

✓
b

↵

◆
=

1

↵
divb� 1

↵2
b · grad↵





Appendix B:
Solution of a Cubic Equation

In order to tackle the characteristic polynomial (4.44), the possible algorithms to solve a
cubic equation are detailed here. The most famous general solution to this question refers
to Cardano’s1 method. In the first step, a cubic equation expressed as

ax
3 + bx

2 + cx+ d = 0 with a 6= 0,

is regularised such that the coe�cient of the third-order term is unit, as

x
3 + b̄x

2 + c̄x+ d̄ = 0,

where b̄ = b/a, c̄ = c/a and d̄ = d/a. The second step is to eliminate the second-order
term by substituting x with y � b̄/3. The corresponding equation is also called as a
depressed cubic and written as,

y
3 + py + q = 0,

where the coe�cients take the form of

p = c̄� b̄
2

3
and q =

2b̄3

27
� b̄c̄

3
+ d̄.

In the third step, the unknown y is assumed to be a sum of another two variables u and
v, namely

y = u+ v.

As the number of the unknowns is extended from one (only y) to two (u and v), another
constraint can be added as

3uv + p = 0.

Inserting y = u+ v into the modified cubic equation yields

(u3 + v
3 + q) + (u+ v)(3uv + p) = 0.

As the constraint eliminates the second term, this equation is valid if

u
3 + v

3 + q = 0.

Set U = u
3 and V = v

3, this equation is transformed into

U + V + q = 0.

Recalling the constraint yields another relation between U and V as UV = �p
3

27
. If

neither U nor V is zero (this is guaranteed by p 6= 0), U can be computed via

U = � p
3

27V
.

1Gerolamo Cardano (1501-1576): Italian polymath.
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Substituting U in the equation U+V +q = 0 and multiplying this equation with V yields
a quadratic function

V
2 + qV � p

3

27
= 0.

This second-order equation has di↵erent sets of roots classified by the discriminant, which
is defined as

� = q
2 +

4p3

27
= �(bc� 9ad)2 � 4(b2 � 3ac)(c2 � 3bd)

81a4
= �B

2 � 4AC

81a4
,

where A = b
2 � 3ac, B = bc� 9ad and C = c

2 � 3bd. It is well known that regarding the
value of �, di↵erent sets of roots will be derived. They are two identical real roots, two
di↵erent real roots and two non-real roots that are complex conjugates. The solution of
u and v can be obtained afterwards as cubic root of U and V . It should be noticed that
in a complex space, there are three cube roots for a real number. For example, the cubic
roots of 1 are 1, �1+

p
3i

2 and �1�
p
3i

2 , respectively. Then the sum of u and v gives y and
eventually the solution of x is found from y. Although the basic idea of Cardano’s method
is straightforward, its algebraic solution related to the complex space is complicated and
lengthy. An elegant expression is derived if one recalls the Euler formula

e
ix = cosx+ isinx,

which relates the complex exponential function to the trigonometric functions. For the
depressed cubic equation y

3 + py + q = 0, its corresponding roots can be written as

yi = 2

r
�p

3
cos


1

3
arccos

✓
3q

2p

r
�3

p

◆
� 2⇡i

3

�
for i = 0, 1, 2.

This expression is also known as Viète’s2 formula. However, this analytical solution
encounters numerical di�culty when two or three of the cubic roots are identical or
nearly identical, see Hartmann [107]. In order to avoid the instability induced by the
multiple roots, one may refer to Shengjin’s3 formula, see Fan [85]. There are three sub-
discriminants A, B and C, defined as

A = b
2 � 3ac, B = bc� 9ad, C = c

2 � 3bd

and the main discriminant is
�S = B

2 � 4AC.

For the case A = B = 0, the solutions are

x1 = x2 = x3 =
�b

3a
=

�c

b
=

�3d

c
for b 6= 0, c 6= 0.

2François Viète (1540-1603): French mathematician
3Shengjin Fan (1955-2018): Chinese mathematician, who developed a new method to compute the

cubic roots when he was a mathematics teacher at a high school. His method is adorable not only because

of its simple expression but also due to the similar structure of the discriminant as the one of a quadratic

equation.
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For the case �S = 0, A 6= 0, B 6= 0, there are three real roots and two of them are
identical,

x1 = � b

a
+

B

A
, x2 = x3 = � B

2A
.

For the case �S < 0, there are three di↵erent real roots,

x1 =
�b� 2

p
Acos ✓3

3a
, x2,3 =

�b+
p
A(cos ✓3 ±

p
sin ✓

3)

3a
,

where

✓ = arccos
2Ab� 3aB

2A
p
A

.

For the rest cases, there are always non-real roots and hence no more discussion is con-
tinued. Note that it is proven that for �S < 0, A must be greater than zero. Hence,

�1 <
2Ab� 3aB

2A
p
A

< 1

must hold and ✓ exists. The drawback of Shengjin’s formula is that it is only valid when
all the coe�cients of the cubic function are real numbers. Despite this, it provides a
simple way to check whether there are multiple roots. The algorithm is given in Table
B.1.

In addition to the aforementioned analytical solutions, it is also possible to compute the
eigenvalues by iterative algorithms, to name but only a few, Arnoldi iteration, Givens
rotations, and Householder transformations. The basic idea behind is to transform the
target matrix to a diagonal matrix that has the same eigenvalues. As the strain tensor
is a symmetric tensor and all the coe�cients are real numbers, it is suitable to compute
its eigenvalues by combing the QL-decomposition to a Householder transformation, cf.
Markert [146]. The Householder transformation reflects an arbitrary matrix with a plane
(or a hyper plane) containing the origin and reduces this matrix to a tridiagonal form.
For a 3⇥ 3 symmetric matrix,

A =

2

4
a11 a12 a13

a12 a22 a23

a13 a23 a33

3

5

if a13 = 0, then A has already been a tridiagonal matrix. If a13 6= 0, the corresponding
tridiagonal matrix B after Householder transformation is

B =

2

4
a11 l 0
l a22 + vw a23 � uw

0 a23 � uw a33 � vw

3

5

with l =
p

a
2
12 + a

2
13, u =

a12

l
, v =

a13

l
, w = 2a23u+ (a33 � a22)v and the transformation

matrix

QH =

2

4
1 0 0
0 u v

0 v �u

3

5 .
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The matrices A and B are related to each other by B = QT

H
AQH . After the tridiag-

onalisation is accomplished, the Givens rotation is applied such that the derived matrix
B is decomposed to an orthogonal matrix QG and a lower triangular matrix L such that
B = QGL. The diagonal entries of L are the eigenvalues of A. For the details of the QL
decomposition routine, one may refer to Press et al. [170].

Table B.1: Algorithm for Shengjin’s formula

• I"S = I · "S, II"S = I
2
"S

� "S · "S, III"S = det"S

• a = �1, b = I"S , c = II"S , d = III"S

• A = b
2 � 3ac, B = bc� 9ad, C = c

2 � 3bd

• IF A = 0 and B = 0,

�1 = �2 = �3 = � b

3a
,

ELSE
�S = B

2 � 4AC

IF |�S| = 0),

�1 = � b

a
+

B

A
, �2 = �3 = � B

2A
,

ELSE

✓ = arccos
2Ab� 3aB

2A
p
A

�1 =
�b� 2

p
Acos ✓3

3a
, �2,3 =

�b+
p
A(cos ✓3 ±

p
sin ✓

3)

3a
.

END
END



Appendix C:
Applied Colour Scheme

No matter whether the importance of the colour scheme is realised in presenting the
numerical results, the colour does influence the feeling of the observers about the output
information of the figure. It should be emphasised that most default colour schemes
are highly perceptually nonuniform, which results in the consequence that small changes
in data values may lead to significant changes in the appearance or vice versa. Such
nonlinearity makes the interpretation of the data more di�cult and also may cause false
boundaries. There is an example based on the most common colour scheme, cf. Figure
C.1 (from https://bids.github.io/colormap/). Even without knowing the exact meaning

Figure C.1: (top left) the colour scheme (top right) grayscale version (bottom left) perceptual

deltas (bottom right) perceptual lightness deltas.

of the perceptual deltas, one may observe that the colour scheme has two regions where
the colour changes rapidly. One is between the blue and green while the other is between
green and red. By plotting this colour scheme in black and white, it is easy to find two
brighter narrow areas therein. When representing the colour with the RGB (red, green,
blue), the Euclidean distance between two colours is defined by

d =
p

(R2 �R1)2 + (G2 �G1)2 + (B2 � B1)2. (C.1)

In order to produce a uniformly distributed colour scheme, the most straightforward way
is to choose two colours and interpolate a linear space between them. This approach
guarantees a constant gradient in the corresponding colour scheme.

People also find that colour might change the appearance of the object. For example, a
ball in white looks bigger than another of the same size but in black. Besides, colour also
transmits emotion. It is commonly accepted that warm colours like red and orange, evoke

97



98 Appendix C: Applied Colour Scheme

emotions while cool colours like blue recall calm. In order to provide the readers with a
neutral feeling when reading this dissertation, the author has chosen the colours and the
corresponding colour schemes inspired by Giorgio Morandi 1, which mainly comes from
Figure C.2.

Figure C.2: Painting by Giorgio Morandi.

1Giorgio Morandi : (1890-1964) an Italian painter and printmaker who specialised in still life.
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