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abstract

The institutes of the grace science team recover monthly gravity �eld models in the

form of spherical harmonic (sh) coe�cients to study in particular the time-varying

part of the gravity �eld. Typical models contain up to 8281 coe�cients (degree and or-

der 90/90), which are derived by inverting approximately one-month range-rate measure-

ments of the grace satellites. Due to local and regional gravity variations, the coe�cients

vary by several orders of magnitudes; this is concerning the essential coe�cients but also

nonessential coe�cients, which only vary by numerical, e�ects in minute ranges. This

study shows that the same range-rate measurements when inverted to recover only the

essential coe�cients result in increasing the degree of freedom. Consequently, the re-

covered solution is more stable and have a less formal error.

Data mining methods have been utilized to segregate the sh coe�cients into essential

and nonessential coe�cients. The process starts with k-means clustering, followed by a

threshold, k-nearest neighbor and �nally an arti�cial neural networks (ann) based classi-

�cation. Since sh coe�cients of the grace models represent the seasonal and interannual

variations of the gravity �eld, they are expected to have a periodic behavior, which is used

to train the ann. The study found that among 8281 sh coe�cients 6490 coe�cients are

essential, and 1787 are nonessential.

ann is also used to identify the predictable coe�cients among the essential coe�-

cients. The time series of coe�cients are used to train separate anns, for each coe�cient.

Hence, the study found that out of 6490 essential coe�cients only 245 coe�cients are

predictable and the rest, 6245 coe�cients are unpredictable. Eventually, the list of essen-

tial coe�cients reduces after removing the predicable coe�cients from them. The gravity

�eld recovered on the bases of the reduced list is called a reduced grace solution.



abstract

Variational equation based gravity recovery simulation is used to recover the grav-

ity �eld from the range-rate observation. It turned out that the stability of the reduced

solution improves signi�cantly. However, it reduces the accuracy only within the formal

error limits of the original solutions.

xii



zusammenfassung

Die Einrichtungen des grace-Science-Teams bestimmen monatliche Modelle des Erd-

schwerefeldes in der Form von sphärisch-harmonischen ((sh) Koe�zienten, ins-

besondere um die zeitlich-variablen Anteile des Schwerefeldes zu untersuchen. Typische

Modelle enthalten 8281 Koe�zienten (Grad und Ordnung 90/90), welche aus der Inver-

sion von circa einem Monat an Range-Rate Messungen der grace-Satelliten gewonnen

werden. Aufgrund der lokalen und regionalen Variationen in der Gravitation variieren

die Koe�zienten um mehrere Größenordnungen. Dies betri�t sowohl die wesentlichen

Koe�zienten, als auch die nicht-wesentlichen Koe�zienten, wobei sich letztere nur durch

numerische E�ekte geringfügig ändern. Diese Arbeit zeigt, dass die Lösung der gleichen

Range-Rate Beobachtungen nur für die wesentlichen Koe�zienten den Freiheitsgrad er-

höht. Daraus ergibt sich, dass die bestimmte Lösung stabilier ist und kleinere formale

Fehler aufweist.

Methoden der gezielten Datensuche (sogenanntes „data mining“) werden eingesetzt,

um die sh-Koe�zienten in wesentliche und nicht-wesentliche Koe�zienten zu trennen.

Der Prozess beginnt mit einem k-mean Cluster-Algorithmus, gefolgt von einer Schranke,

einer k-Nächste-Nachbarschaft Klassi�zierung und zuletzt einer Klassifzierung durch ein

künstliches Neuronales Netz (ann). Da die sh-Koe�zienten der grace Modelle saisonale

und jährliche Variationen des Schwerefeldes repräsentieren, kann für diese ein periodisches

Verhalten erwartet werden, welches genutzt wird um das ann zu trainieren. Es stellt

sich heraus, dass sich unter den 8281 sh-Koe�zienten 6490 wesentliche und 1787 nicht-

wesentliche be�nden.

Neuronale Netze werden auch eingesetzt, um die vorhersagbaren Koe�zienten unter

den wesentlichen Koe�zienten zu identi�zieren. Die Zeitreihen der Koe�zienten werden



zusammenfassung

eingesetzt, um getrennte ann für jeden Koe�zienten zu trainieren. Dabei wird festges-

tellt, dass sich unter den 6490 wesentlichen Koe�zienten nur 245 vorhersagbar be�nden

und die verbleibenden 6245 sind nicht-vorhersagbar. Die vorhersagbaren Koe�zienten

werden dann von der Klasse der wesentlichen Koe�zienten ausgeschlossen. Damit wird

die Liste der wesentlichen Koe�zienten etwas verkleinert und die neue Lösung als „re-

duzierte grace-Lösung“ eingeführt.

In einer Simulation werden die Schwerefeldparameter aus den Range-Rate Beobach-

tungen bestimmt, wobei der Ansatz der Variationsgleichungen eingesetzt wird. Die Sim-

ulation zeigt, dass die Stabilität der reduzierten grace-Lösung deutlich verbessert wird,

während die Genauigkeit nur innerhalb der Grenzen der formalen Fehler aus der ursprüng-

lichen Lösung verringert wird.

xiv
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1introduction

Scientific development is evidence of the evolution of human thinking. Although it is

a long and slow journey, a rapid increase has been observed in the past few hundred

years. When human beings are in�uenced by their surroundings and compelled by their

needs, the �rst few disciplines about the universe which they began to think, geodesy is

one of those.

Geodesy deals with the Earth’s shape, size, its orientation in Space, nowadays in space-

times, its Newtonian and relativistic gravity �eld in a corotating Earth. Nowadays, the

temporal variations of the Planet Earth are described by the kinematics and dynamics,

observed at the Earth surface. Unfortunately, we have only limited information about the

Earth interior. Plate tectonics are observable on the continents, but only partly at the Sea

and the Atmosphere. The complex “System Earth” is a well-posed in a review by many

authors in Grafarend, Krumm, and Schwarze (eds) (2003). A breakthrough was the recent

development to observe the whole arsenal of new terrestrial, airborne as well as satellite-

borne measurement techniques for Earth Sciences. It made available a broad spectrum

of measurable Earth parameters with surprising accuracy and precision, in particular, to

resolve the time factor for a rotating-deforming Earth.

The Earth’s shape and size for a rotating-deforming body are complex, and there are

di�erent acting �elds. For example, for Geometric Geodesy a new standard tool is gps /

NavStar which helps to determine the position and its variation in time in a rotating frame

of reference de�ned as early as 1930, namely the International Reference Ellipsoid in terms

of the Somigliana-Pizzetti reference gravity �eld, for details see, (Grafarend and Ardalan,

1999b), (Ardalan et al., 2002) and (Grafarend, 2011). Unfortunately, the height of a point

is not possible to determine by geometric means, but as height above the Sea Level. As
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an equipotential height closest to Mean Sea Level it is well-de�ned by the Gauss-Listing

Geoid (Grafarend et al., 2000), unfortunately under the continents, a central research

object of Geodetic Science. The terrestrial gravity �eld is described well by Somigliana-

Pizzetti-iag/iugg Resolution of the year 1930 balancing “gravitation and rotation” (Gra-

farend and Ardalan, 2001). Such a gravity �eld comprises a harmonic part as well as an

anharmonic part and a much smaller time-variable part which is describable as a scalar

potential �eld as well as a vector “rot” part. The time variable is of the order of millimeters

to decimeters, namely expressed as vertical de�ections, geoidal heights and equivalent wa-

ter height. Mass redistribution under, on and above the Earth causes gravitational and

rotational e�ects (Polar Motion(pm) and Length-of-Day (lod)) variations in a deformable

Earth (Grafarend and Ardalan, 1999a).

Water circulation and Mass transport in the atmosphere are the most substantial ef-

fects of gravity variations with seasonal to interannual periods (Peters et al., 2002) (Wahr

et al., 1998). To obtain the global measurements of the gravitational potential satellite-

based observations are used; this gives birth to an entire �eld called Satellite Geodesy. The

most recent dedicated gravity satellite missions are the CHAllenging Minisatellite Payload

(champ) (Reigber et al., 2002), Gravity Recovery and Climate Experiment (grace) (Tapley

et al., 2004) and Gravity �eld and steady state Ocean Circulation Explorer (goce) (Rum-

mel et al., 2011). Speci�cally, the grace mission, accurately mapping variations in Earth’s

gravity �eld has been an overwhelming success. Usage of its data has marks on several

research �elds, for instance, some recent contributions include, ice-mass variation (Baur

et al., 2009) groundwater mapping (Castellazzi et al., 2018), hydrology (Wang et al., 2018)

and (Bai et al., 2018), atmosphere (Mehta and Linares, 2017) seismology (Xu et al., 2017)

and (Fatolazadeh et al., 2017) where Tkachenko and Lygin (2017) enlist the applications of

grace data for solving geological and geographic problems. A list of grace publications

is available at https://grace.jpl.nasa.gov/publications.

1.1 the grace mission

The grace was a dedicated gravity satellite mission, launched on 17 March 2002 and

completed its science mission in October 2017, consists of two identical satellites, in near-

2



1.1. the grace mission

Table 1.1: Orbital parameters of the grace satellites

Parameter Value
semi major axis [m] 6878000.0

eccentricity 0.002
inclination [◦] 89

orbit type near polar

circular, near polar and low earth orbits, separated from each other by approximately

220km along-track, and linked by a highly accurate inter-satellite K-Band microwave ran-

ging system. The important orbital parameters are given in Table 1.1.

The satellite altitude decays naturally (∼30 m/day); thus the satellite does not have the

same ground track pattern each month (Tapley et al., 2004). While at certain heights the

satellite has repeating ground tracks which cause poor ground coverage and eventually

degrade gravity solutions.

The changes in the gravity �eld perturb the inter-satellite distance caused by mass re-

distribution in the system Earth. The long term average of the mass distribution within the

Earth system determines the static or mean gravity �eld (Meyer et al., 2012). The motion

of water and air mostly causes mass redistribution. The period of redistribution ranges

from several hours to several decades, causes temporal gravity variations. Mean, and the

varying gravity �eld, both a�ect the motion of the satellite around the Earth. Since the

grace satellites are rotating at di�erent positions in the space, they are a�ected slightly

di�erently, which causes a small relative motion between the satellites. Microwave sig-

nals measure the distance between the two grace satellites. The change in the distance

between the satellites cases the phase change of the microwave signals. Continuous obser-

vation of the phase change gives the inter-satellite range-rate measurements. By precisely

tracking two satellite, their positions can be inverted for gravity �eld mapping (Devaraju,

2015). The institutes of grace science team provide gravity �eld in the form of sets of

spherical harmonics (sh) coe�cients up to degree and order 90/90 once per month.

In 1924 International Union of Geodesy and Geophysics (iugg) adopts the ellipsoid as

the reference surface of the Earth Caputo (1967). Contrary to suggestion, the use of sh

coe�cients for the gravity �eld of Earth is ubiquitous. Since the computation of the sh

3



1. introduction

is relatively straightforward and simple, e�cient algorithms are at hand and extensively

studied. On the other hand, the reluctance for ellipsoidal harmonics likely arises in part

from the overt computational complexity in the formulation of the series. Numerical in-

stabilities exist with the general formulation of the series that currently limit the model

resolution to low degrees, e.g. up to degree and order 14/14, which limits their use of

higher-degree expansions (Hu, 2012). The application of the spherical harmonics coe�-

cients for �eld modeling lost accuracy, but we have to live with available spherical data

instead of recommended ellipsoidal harmonics.

Major sources of error in grace starts from downward continuation problem and in-

cludes system-noise errors in the satellite-to-satellite microwave ranging measurements,

accelerometer and oscillator. The accuracy depends somewhat on the orbital con�gur-

ation, for instance, on the altitude and spacecraft separation (Wahr et al., 1998). The

altitude of grace satellites decay naturally (c.f. www2.csr .utexas.edu/grace) cause the

satellites to fall into near repeat orbit, which causes a lack of spatial coverage and eventu-

ally degrade the gravity solution (Pini, 2012) (Keiko Yamamoto, 2005). Another problem

is the presence of the correlated noise in grace sh coe�cients that increase with the de-

gree and causes the north-south striping in the spatial domain of variance level potential

maps (Swenson and Wahr, 2006). The Gaussian �lter is suggested to tackle this prob-

lem (Jekeli, 1981), which further cause loss of signal and leakage between the basin (Baur

et al., 2009). Wouters and Schrama (2007), Bentel (2010) and (Forootan, 2016) presented

alternating methods to remove the striping based upon the empirical orthogonal function

(eof) analysis. Due to orbital geometry and short separation between the satellites (∼ 200

km), the change in the coe�cient C20 are not well determined by grace, which a�ects

the basin-scale water storage estimates (Chen et al., 2005). Instead, the �rst and second

degree coe�cients are better estimated from satellite laser ranging (slr) and Earth rota-

tional (eop) data (Chen et al., 2004). Furthermore, some geophysical models of variability

can be better determined from other techniques besides grace, such as solid, ocean and

pole tides and atmospheric and ocean non-tidal variations, they are removed from the

background using the best available external knowledge (Bettadpur, 2012).

Furthermore, due to orbital track coverage limitations, rapid variability in the gravity

4
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1.2. research qestions

�eld cannot be well determined from grace, though, if neglected, it has the potential to

corrupt the grace estimate through aliasing.

Gravity variations can be obtained from the grace data after removing the static �eld

form the monthly solutions (c.f. Section 2.2.2). Gravity varies a lot in some places, for

example, the Amazon region and varies slightly in some other, for example, the Arabian

peninsula, see Figure 2.1. In the spectral domain, the varying amplitude of the sh coef-

�cients represents the gravity variation. Since we are interested in the gravity variation

information, therefore, the coe�cients which carry this information in the form of vary-

ing amplitude are the most important one and rest with slight amplitude variation are less

critical, which raises two critical questions, stated in the next section.

1.2 researchqestions

i. Can we classify sh coe�cients on the base of their information contents of gravity

variations?

ii. Can we ignore sh coe�cients with low information contents during the gravity

recovery?

1.3 research tasks

To seek the answers of the research questions, stated above, the research tasks are,

i. �nd and separate di�erent groups of grace sh coe�cients using the data mining

techniques, Such as,

• unsupervised classi�cation

– k-means clustering
– threshold

• supervised classi�cation

– k nearest neighbor (knn)
– arti�cial neural networks (ann)

ii. �nd out coe�cients which we can predict using the data mining techniques,

5



1. introduction

iii. recover full spectrum of sh coe�cients

iv. recover reduced spectrum of sh coe�cients, use coe�cients with high information

contents of gravity variations only,

v. compare the recovered �elds.

1.4 data mining

Data mining is the process of discovering insightful, thought-provoking, and novel pat-

terns, as well as descriptive, understandable and predictive models from large-scale data.

The goal of data mining is to uncover the hidden information (Larose, 2004). It involves

methods at the intersection of,

• arti�cial intelligence,

• machine learning,

• statistics,

• deep learning and

• database management.

The primary data mining tasks are data analysis, frequent pattern mining, clustering and

classi�cation using the statistical and probabilistic interpretation of data (Zaki and Jr.,

2014). Data mining task can be of descriptive and predictive types. Clustering and associ-

ation rules are the descriptive type while classi�cation, regression and time series analysis

is predictive type (Bala and Kumar, 2017). Many statistical and probability analysis comes

under the de�nition of data mining.

There are several clustering and classi�cation methods used in data mining (X. Wu,

2008). The study searches clusters using k-mean clustering, classi�es the coe�cients using

threshold k-nearest neighbor and ann, while predicts the future numerical values of the

coe�cients using arti�cial neural networks.

6



1.5. motivation

1.5 motivation

grace worked more than 15 years in the space and its science teams produce a dataset

almost every month, which make it a large collection of sh coe�cients containing the

monthly variation of the gravity �eld of the Earth. The idea behind this study is to im-

plement data mining techniques to explore its behavior and to look at these coe�cients

from a new point of view. Besides the formal techniques such as time series analysis and

�ltering, data mining equips us to analyze the dataset, suggest a procedure to reduce the

noise and improve the quality of the recovered coe�cients.

In this regard, Piretzidis et al. (2016) presents a very �ne example. According to the

details, the correlation error of the even and odd degree coe�cients are investigated. Sev-

eral uncorrelated and highly correlated coe�cients are selected and a database of several

features consists of geometric properties, such as the number of sign changes, total Euc-

lidean length and convex hull area of the coe�cients is created. This data is used to train,

test and validate the arti�cial neural networks (ann). Correlated errors free, mass change

coe�cients computed from gldas model are used as the external reference data. The fea-

tures of all grace monthly solutions are extracted. These features are then fed into the

trained ann, which identi�es and classi�es the coe�cients as correlated or uncorrelated.

During the study of the e�ects of gravity �eld on the satellite motion, Reigber (1974)

discusses the behavior of the sh coe�cients and divide them in the axial-symmetric (zonal)

coe�cients and length-dependent (tesseral) coe�cients. The zonal components are more

a�ected by the secular disturbances of nodular and perigee position and long-period dis-

turbances of eccentricity and argument of perigee. Such e�ects could be relatively ac-

curately separated from the analysis of orbital elements obtained during long-term orbit

determination. This led to a reasonably good knowledge of the zonal coe�cients. In con-

trast, the tesseral part, in particular, the high-frequency components, are not so readily

observable because of the small size of the amplitudes occurring and the shortness of the

individual periods. In the case of repeat orbit, he pointed out that the resonance occurs

and amplitude of the speci�c coe�cients of certain orders are a�ected.

Devaraju (2015) presents segregation among the coe�cients on the base of their noise

7



1. introduction

contents. For a given (sh) degree, sectoral and the near-sectoral elements of the coe�-

cients are more sensitive to the noise as compared to the noise levels of the tesseral and

zonal harmonics.

1.6 organization of chapters

Before implementing any clustering or classi�cation technique grace data undergoes pre-

processing steps, which includes formatting and long term mean removal processes.

Chapter 2 encompasses data preprocessing, data format and transformation issues and

introduces the grace data visualization plot and data analysis tools.

Chapter 3 begins with an introduction and discussion on the unsupervised classi�cation

techniques to identify and separate di�erent groups of coe�cients.

Chapter 4 introduces the k nearest neighbor as the supervised classi�cation technique.

Chapter 5 introduces ann and states all aspects of training and testing processes. It also

explains the feedforward algorithm, cost evaluation, and its minimization, back-

propagation and hyperparameters.

Chapter 6 explores ann as the supervised classi�cation techniques and validates the res-

ults of the unsupervised classi�cation.

Chapter 7 presents ann application as a prediction tool and identify a group of predictable

sh coe�cients.

Data mining techniques have identi�ed three groups of sh coe�cients which have di�er-

ent characteristics on the base of their information contents or their behavior. They prove

that only a fraction of all spherical harmonics up to degree and order 90 is necessary to

resolve the monthly changes in the gravitational �eld (Keller, 2015).

Chapter 8 treats the gravity recovery technique using the variational equations method. It

presents the cases of �rst all coe�cients recovery second only essential coe�cients

recovery and third only unpredictable coe�cients recovery.

Chapter 9 summarizes and the whole study and discuss the comparisons of gravity re-

covery and formal error; furthermore, it concludes the study with the remarks on

the bene�ts of the classi�cation and limitations of ann prediction.

8



2grace data

This chapter describes the grace dataset, its format for visualization, storage and

pre-processing. The dataset used here is available at the podaac data server, at:

ftp://podaac-ftp.jpl.nasa.gov/allData/grace/ . The server hosts the data produced by three

o�cial centres of the grace science team, including,

1. gfz (GeoforschungsZentrum Potsdam),

2. csr (Center for Space Research at the University of Texas, Austin) and

3. jpl (Jet Propulsion Laboratory).

The dataset contains the gravity recovery solutions in �le format, one �le for each

month, starting from April 2002. Every solution consists of sh coe�cients, Clm and Slm,

where l andm are the degree and order of a coe�cient, and de�ne the horizontal scale of

the product as, ∼ 20, 000/l km (Wahr et al., 2004). Though grace was initially launched on

a �ve-year program, it lasts longer. This study uses the grace sh dataset from April 2002

to June 2017, from gfz centre because it provides coe�cients up to degree 90 and order

90 along with their standard deviation. The data calendar is given in Table 2.1, where

the equivalent water height (ewh) maps of the available months are given in Mollweide

projection. For detail on Mollweide projection, see (Grafarend and Heidenreich, 1995).

2.1 data visualization

The numerical values of the sh coe�cients are very small and the color plots of a special

format named as sc format help us to display them for visualization. sc is a matrix format

in which sine (Sl,m) and cosine (Cl,m) coe�cients with degree l and order m are placed in

a triangular format.

ftp://podaac-ftp.jpl.nasa.gov/allData/grace/L2/
ftp://podaac-ftp.jpl.nasa.gov/allData/grace/L2/
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2.2. data preparation

l increases from top to bottom of the matrix whilem from center to the left for Sl ,m coe�cients

and to the right for Cl ,m coe�cients, as illustrated in the following matrix.

©«

C0,0

S1,1 C1,0 C1,1

S2,1 S2,1 C2,0 C2,1 C2,2

. .
. ...

...
...

. . .

Sl ,m . . . Sl ,1 Cl ,0 Cl ,1 . . . Cl ,m

ª®®®®®®®®®®®¬
Figure 2.1 represents a color display of the absolute values in logarithmic scale which gives best

visualization to the sh coe�cients in the sc matrix format. For this document, sc matrix is used to

represent the sh coe�cients, their formal errors and results of classi�cation, clustering, prediction

and gravity recovery processes. This study does not include the following �ve coe�cients. One

degree zero, i.e. C0,0, three degree one, i.e. S1,1,C1,0,C1,1 and a degree two coe�cient, i.e. C2,0,

therefore the plot starts from l = 2. If lmax denotes the maximum degree of spherical harmonics

then the total number of coe�cient L, ignoring the �ve mentioned coe�cients, is given by,

L = (lmax + 1)2 − 5 . (2.1)
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Figure 2.1: A colored representation of absolute values of sh coe�cients in logarithmic
scale.

2.2 data preparation

This section �rst describes the data format used for storage and analysis and then states the pre-

processing steps to remove the long-term mean or static mean to yield the variational level sh

coe�cients.
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2. grace data

2.2.1 data format for storage and analysis

sc format appears to be the best choice for the visualization of grace data and related results,

however, it is not good for data storage since it has higher % of sparsity i.e. 50%. This means that a

sc matrix is only half �lled with non zero numbers and half of it consists of zero or nonnumerical

numbers, as a result, they occupy more space in the memory. Therefore, for data storage, pro-

cessing and analysis some other formats are in use, the sc vector format, for instance, which has

sh coe�cients in increasing order m for each degree l of all sine coe�cient �rst, followed by all

cosine coe�cients in a vector as,

D =
[
S2,1 S2,2 S3,1 . . . Slmax ,lmax C2,1 C2,2 C3,0 . . . Clmax ,lmax

]
, (2.2)

The collection of all twelve vectors, one for each month, of a year y becomes a matrix as,

Dy =



S12,1 S12,2 S13,1 . . . S1lmax ,lmax
C1
2,1 C1

2,2 C1
3,0 . . . C1

lmax ,lmax

S22,1 S22,2 S23,1 . . . S2lmax ,lmax
C2
2,1 C2

2,2 C2
3,0 . . . C2

lmax ,lmax
...

...
...

...
...

...
...

...

Smon
2,1 Smon

2,2 Smon
3,1 . . . Smon

lmax ,lmax
Cmon
2,1 Cmon

2,2 Cmon
3,0 . . . Cmon

lmax ,lmax
...

...
...

...
...

...
...

...

S122,1 S122,2 S123,1 . . . S12lmax ,lmax
C12
2,1 C12

2,2 C12
3,0 . . . C12

lmax ,lmax


,

(2.3)

where mon = 1, 2, . . . , 12, is the month number in a year. Now after replacing both notions, i.e.

Sl ,m for sine coe�cients and Cl ,m for cosine coe�cients by d` in a way that d` , with ` from 1

to 4096 represents the sine coe�cients and d` , with ` from 4097 to 8276 represents the cosine

coe�cients, then the simpler form of the dataset emerges as,

Dy =



d11,y d12,y d13,y . . . d1
`,y . . . d1L,y

d21,y d22,y d23,y . . . d2
`,y . . . d2L,y

...
...

...
...

...

dmon
1,y dmon

2,y dmon
3,y . . . dmon

`,y . . . dmon
L,y

...
...

...
...

...

d121,y d122,y d123,y . . . d12
`,y . . . d12L,y


, (2.4)

where `= 1, 2, . . . , L, is the running coe�cient number and L is the total number of the coe�cients,

given in (2.1). A monthly data vector dmon
y formon

th from data matrix (2.4) can be written as,

dmon
y =

[
dmon
1,y dmon

2,y dmon
3,y . . . dmon

`,y . . . dmon
L,y

]
. (2.5)

12



2.2. data preparation

2.2.2 long term mean removal

To get temporal variations, a static gravity �eld based on a long time period should be subtracted

from the monthly solutions. The static �eld should consist of an integer number of years to avoid

seasonal biases (Meyer et al., 2012). Therefore, the static �eld computed here consists of a 16-year

data span starting from April 2002 to Jun 2017. Firstly the mean of all the months µmon have been

computed, with mon = 1, 2, . . . , 12, for January, February up to December, respectively, followed

by taking the mean of the monthly means µmon which serve as the long term mean or the static

�eld µs .

The following equation represents the mean of mon
th month of all years y from 2002 to 2017,

withmon = 1, 2, . . . , 12, for January, February up to December, respectively.

µmon =
1
M

M∑
y=1

dmon
y =

1
M

[
M∑
y=1

dmon
1,y

M∑
y=1

dmon
2,y

M∑
y=1

dmon
3,y . . .

M∑
y=1

dmon
`,y . . .

M∑
y=1

dmon
L,y

]
, (2.6)

or

µmon =
[
µmon
1 µmon

2 µmon
3 . . . µmon

` . . . µmon
L

]
, (2.7)

For each month , y ranges from 1 to M , where, only in this chapter, M denotes the total number of

monthly dataset available for a certain month. From Table 2.1 M can be counted as,

M =

mon =

[14 13 14 15 15 12 13 14 13 12 14 14] for

[Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec], respectively.

The additive mean of these 12 monthly means represents the long term mean or the static �eld

µs , such as,

µs =
1
12

12∑
mon=1

µmon =
1
12

[ 12∑
mon=1

µmon
1

12∑
mon=1

µmon
2

12∑
mon=1

µmon
3 . . .

12∑
mon=1

µmon
` . . .

12∑
mon=1

µmon
L

]
,

(2.8)

or

µs =
[
µ1 µ2 µ3 . . . µ` . . . µL

]
. (2.9)

Since the long term mean or the static �eld possesses the non-variational part of the gravity �eld

its removal from the grace sh coe�cients yields the variational level coe�cients as,

pmon
y = dmon

y − µs =
[
pmon
1,y pmon

2,y pmon
3,y . . . pmon

`,y . . . pmon
L,y

]
. (2.10)
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2. grace data

Now for a year y, withmon = 1, 2, . . . , 12, for January, February up to December, respectively,

the data matrix Py is represented as,

Py =



p11,y p12,y p13,y . . . p1
`,y . . . p1L,y

p21,y p22,y p23,y . . . p2
`,y . . . p2L,y

...
...

...
...

...

pmon
1,y pmon

2,y pmon
3,y . . . pmon

`,y . . . pmon
L,y

...
...

...
...

...

pN1,y pN2,y pN3,y . . . pN
`,y . . . pNL,y


, (2.11)

and µy represents the mean of the variational level monthly solutions for a year y as,

µy =
1
12

12∑
mon=1

pmon
y =

1
12

[ 12∑
mon=1

pmon
1,y

12∑
mon=1

pmon
2,y

12∑
mon=1

pmon
3,y . . .

12∑
mon=1

pmon
`,y . . .

12∑
mon=1

pmon
L,y

]
,

(2.12)

or,

µy =
[
µ1,y µ2,y µ3,y . . . µ`,y . . . µL,y

]
, (2.13)

and the variance of each coe�cients is,

σ 2
`,y =

∑12
mon=1

(
pn
`,y − µ`,y

)2
12 − 1 , (2.14)

therefore the variance vector of year y is,

σ2
y =

[
σ 2
1,y σ 2

2,y σ 2
3,y . . . σ

2
`,y . . . σ

2
L,y

]
. (2.15)

Next chapter starts with the unsupervised classi�cation of the monthly variational level datasets

pmon
y .
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3unsupervised classification

Every month a set of sh coe�cients up to degree and order 90 is recovered by gfz using

range-rates. For this study, the dataset from April 2002 to June 2017 has been analyzed. Due

to yearly mass redistribution, the time-varying part of the gravity �eld shows signi�cant �uctu-

ations. These �uctuations can be seen as the varying magnitudes of the sh coe�cients. However,

not all the sh coe�cients show variations. The di�erence in behavior of sh coe�cients is under

investigation in this study. The aim is to separate two groups of the sh coe�cients using di�erent

and independent techniques. The decision of the boundary between the two classes depends upon

the clustering or classi�cation methods. Respective sections describe the decision rules in details.

In this chapter two unsupervised classi�cation techniques, i.e. k-means clustering and threshold

classi�cation have been utilized to �nd the groups in the grace sh dataset.

Clustering and classi�cation are among the primary analysis techniques a human brain uses

for analysis. For instance, the grouping of things as living or nonliving is an example of clus-

tering and assigning mammals class to whales is an example of classi�cation. Clustering plays a

vital role in every �eld of life. For example, there are many web pages on the internet, and for a

particular search query, it may return a thousand pages. The grouping of the pages according to

their contents can make the search algorithms e�ective and e�cient. Eventuality smaller clusters

result in more speci�c outcomes of the query. Similarly, the periodic table of elements where the

elements are arranged in the order of their atomic numbers and the arrangement of books in a

library according to their subject, are speci�c applications of clustering.

Good clusters have high intra-class similarity (Madigan, 2017), where the similarity is ex-

pressed a distance function, which is typically metric. There are many types of clustering. Most

common are partitioning, hierarchical and density-based clustering. In this chapter a partitioning

clustering technique, known as k-means clustering has been used to analyze the grace dataset.

The details are given in the following section.



3. unsupervised classification

3.1 k-means clustering

k-means clustering is an iterative unsupervised classi�cation technique allows forming groups in

the feature dataset before de�ning and labeling them, where k is the user-speci�ed number of

clusters representing centroid of clusters. Once k is �xed, discussed in Section 3.3, each feature

or data point is then assigned to a closest centroid. The collection of data points assigned to a

centroid is a cluster. The centroid is recomputed once the assignment is complete. The procedure

of assigning the data points is repeated to rede�ne the clusters. The procedure continues until

points does not change their cluster or the centroid remains the same. The proximity of the data

point from the centroid is measured by L2 distance in the Euclidean space. The quality of the

clustering is measured as the sum of squares error (sse) (Tan et al., 2005) as,

sse =
k∑
i

∑
x∈Ci

dist(ci , x)2 (3.1)

where, x is the data point, only in this chapter,Ci is the ith cluster, ci is the centroid of the cluster

Ci , and k is the number of clusters. If the number of the data points in the ith cluster are mi , then

its centroid ci is de�ned by,

ci =
1
mi

∑
x∈Ci

x (3.2)

The major issues of the k-means clustering include choosing the number of centroids k and their

initialization. The number of centroids can be speci�ed by elbow rule, discussed in Section 3.3 and

they are initialized randomly. The di�erent sets of initialization results in di�erent sse minimiz-

ation. It is possible that several runs of k-means clustering are not able to produce minimum sse

because of miss placed initial centroids. One way of selecting the initial centroid is to randomly

select the �rst centroid and then for each next centroid select a point that is farthest from any of

the initial centroids.

3.2 feature dataset

A data matrix Py (c.f. 2.11) consists of rows equal to the number of monthly data available for a

speci�c year y from 2002 to 2017, of grace monthly sh coe�cients has been used as the feature

dataset. Next section discusses the results using this data matrix. The Py is given here for reference

as,
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3.3. results

Py =



p11,y p12,y p13,y . . . p1
`,y . . . p1L,y

p21,y p22,y p23,y . . . p2
`,y . . . p2L,y

...
...

...
...

...

pmon
1,y pmon

2,y pmon
3,y . . . pmon

`,y . . . pmon
L,y

...
...

...
...

...

pN1,y pN2,y pN3,y . . . pN
`,y . . . pNL,y


,

3.3 results

Deciding the number ofk is the starting point for thek-means clustering. After an iterative process

of clustering with di�erent values of k , ranges from 1 to 20, the sse is plotted against several values

of k for all years. It is observed from the curve, given in Figure 3.1 that the error decreases as the

k increases, sharply, in the beginning, represent elbow rule, because as the k increases the size of

the cluster decreases and therefore the error within each cluster decreases. The optimal value of
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Figure 3.1: sse minimization for years from 2002 to 2017. The optimal value of k is 5, since
the error does not decrease afterwords signi�cantly.

k is the point after which adding another cluster does not improve the model. Therefore k = 5 is

selected for clustering. Ask = 5 give �ve clusters, smaller clusters are merged in class a. Therefore,

two clusters can be seen in the results. The results are given in Figure 3.2 for each year separately.

It is observed from Sub-�gures 3.2(a) to 3.2(p) that the number of sh coe�cients in each cluster
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3. unsupervised classification

changes. The reason lies in the changing quality of the gravity recovery products due to changing

orbital track coverage of grace satellites.
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Figure 3.2: k-means clustering identi�es two clusters of di�erent sizes each year.

Clustering is also used as the initial processing for other analysis techniques. In this chapter

k-means provides the initial information about the natural partitioning exists in the dataset. Two

distinct groups have been identi�ed on the bases of distance between the data points and the

centroids in the feature space. A higher density of data points shows that the points have similar

data value and therefore stay closer to each other, whereas, the second group which has less density

therefore needs bigger space in feature space. The obvious reasons behind the density di�erence

of the two clusters are their variances. To verify this, in the next section threshold classi�cation is

used to treat the dataset, where the data will be classi�ed on the bases of their yearly variance. An

independent, unsupervised classi�cation technique will help us to con�rm the results of k-means

clustering. Moreover, we will be able to label the clusters with meaning full names which exhibit

their behavior.
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3.4. classification using threshold

3.4 classification using threshold

Threshold classi�cation is used as the second unsupervised classi�cation method. In the previous

section, k-means clustering bifurcates the data into two groups on the bases of their density in

the feature space. In this section threshold classi�cation will be used to analyze the coe�cients on

the bases of their yearly variance. It is a simple way of data segregation, mostly used in image

segmentation. According to Morse (2000), if д(x) is a threshold version of f (x) at some global

threshold T then

д(x) =


1 if f (x) ≥ T

0 otherwise
. (3.3)

In case if there exist two clear groups in a dataset, its histogram will be bimodal, and the threshold

can be a value at the bottom of the valley (Kapur and Wong, 1985). In case of unclear separation

of the modes, the threshold selection is a di�cult task (Prasad et al., 2011). To resolve the issue,

Otsu (1979) and Kapur and Wong (1985) proposed several methods. Sezgin and Sankur (2004) and

Patra et al. (2011) present comprehensive reviews of several techniques.

The principle of threshold classi�cation is to segregate sh coe�cients on the bases of their

yearly variance. For each year we have twelve datasets of monthly variational level sh coe�cients,

one for each month, consider variational level sh coe�cients pmon
`,y , with y = 1, 2, 3, . . . , 16 for the

years from 2002 to 2017, mon = 1, 2, . . . , 12, for January, February up to December, respectively

and `= 1, 2, 3, . . . , 8276, coe�cients, whereas the vector of monthly coe�cients, as given in (2.10)

as,

pmon
y =

[
pmon
1,y pmon

2,y pmon
3,y . . . pmon

`,y . . . pmon
L,y

]
.

During a year some of the coe�cients vary a lot whereas some of them very minutely, as shown

in Figure 3.3. Computing their variance σ 2
`,y using (3.7) gives the minimummin(σ2

y ) and the max-
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Figure 3.3: Time series of sh coe�cients having di�erent variance.

imum variancemax(σ2
y ) limits. The maximum variance,max(σ2

y ), selected as the thresholdTmon
y ,
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3. unsupervised classification

can segregate the whole data into two classes. Coe�cients with variance more than the threshold

belong to the essential class whereas coe�cients with variance less than the threshold belong to

the nonessential class. The following points present the process of threshold classi�cation for a

monthly dataset of a speci�c year in precise steps.

1. load the variational level coe�cients pmon
`,y of a year y for all monthsmon = 1, 2, . . . , 12, and

all coe�cients ` = 1, 2, 3, . . . , 8276,

2. compute mean µ
`,y and variance σ 2

`,y of each coe�cient `,

µy =
[
µ1,y µ2,y µ3,y . . . µ`,y . . . µL,y

]
, (3.4)

σ2
y =

[
σ 2
1,y σ 2

2,y σ 2
3,y . . . σ

2
`,y . . . σ

2
L,y

]
, (3.5)

where,

µ`,y =
1
N

N∑
mon=1

pmon
`,y , (3.6)

σ 2
`,y =

∑N
mon=1

(
pmon
`,y − µ`,y

)2
N − 1 . (3.7)

where, N is the number of months in the year.

3. note the minimum variance,min(σ2
y ),

4. setmax(σ2
y ) as the initial thresholds Tmon

y for eachmon,

5. compare Tmon
y with µ

`,y for each coe�cient ` in (3.5) and classify them as,

p̃mon
`,y =


essential, if σ 2

`
≥ Tmon

y and

nonessential, if σ 2
`
< Tmon

y ,
(3.8)

where, p̃mon
y , is a classi�ed coe�cient, and

a. essential are those coe�cients whose values change signi�cantly during a year, due

to information contents of gravity variation,

b. nonessential are these coe�cients whose values don’t change signi�cantly during a

year.

6. to authenticate Tmon
y the yearly mean values from the vector µy replaces the nonessential

coe�cients of the data vector pmon
y . Replacement modi�es the dataset therefore new dataset

gets the name, modi�ed dataset p′mon
y , which is constituted as,

p
′mon
y,` =


µ
`,y, if pmon

`,y is nonessential

pmon
`,y , else ,

(3.9)
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7. replacement introduces omission error , δPmon
y , which is computed as,

δpmon
y =: |pmon

y − p
′mon
y | . (3.10)

For optimal threshold, the δpmon
y must be smaller than the formal error Σmon

y , which are

also available on grace science team data server (f.c. Chapter 2).

8. compute ewh �eld of omission error M(δpmon
y ) and �nd its maximummax(M(δpmon

y )),

9. compute ewh �eld of the formal error M(Σmon
y ) of and �nd its maximum max(M(Σmon

y )),

for ewh synthesis see Appendix A

10. compare the two maximum values and verify thatmax(M(δpmon
y )) < max(M(Σmon

y )), if not,

decrease the threshold and repeat the process from step 5.

An iterative program checks the condition given in the step 10. for the threshold selection proced-

ure and reaches the optimal threshold values for each month. It is shown in Figure 3.4 that after

the selection of optimal threshold value for every month, the maximum value of the omission er-

ror �eld is less than the maximum value of the formal error �eld. The optimal threshold values of

each month are given in Appendix B.
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Figure 3.4: Formal error Σmon
y versus omission error δPmon

y at �lter cap 500 km. Omission
error remains below the formal error.

3.5 results

grace monthly coe�cients are classi�ed into essential and nonessential classes using the threshold

values given in Table B, Appendix B. Figure 3.5 shows the number of essential coe�cients in each

month for the period from April 2002 to June 2017. It is clear from the �gure that the essential

class have the most 7141 coe�cients in May. 2003 and the least 6204 in Nov. 2008, or in other

words there are 937 coe�cients which change their class, called unclassi�ed.
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Figure 3.5: Number of essential coe�cients in every month, from Apr. 2002 to Jun. 2017.

The plots in Figure 3.6 shows the essential coe�cients in sc format for three di�erent months,

i.e. minimum to maximum, from left to right. It shows that a region around the zonal coe�cients

starting from the degree ∼15 to ∼75 of the order up to ∼10 belong to the nonessential class, the

coe�cients with very minute information of the gravity variation. Rest of the coe�cients around

the nonessential class are essential coe�cients, carrying the most information of the gravity vari-

ation.
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Figure 3.6: Essential class varying in size, from left to right, minimum to maximum.

Figure 3.7 shows the unclassi�ed, essential and nonessential coe�cients in sc format. Unclas-

si�ed coe�cients, in a year, belong to one group and in some other year belong to another group.

The unclassi�ed coe�cients will be analyzed using the k nearest neighbor supervised technique in

chapter 4. The coe�cients in Clusters b. and c. does not change their clusters, whereas Figure 3.8

shows the number of coe�cients 937, 6204 and 1136 in unclassi�ed, essential and nonessential

classes, respectively.

These results bring us to the end of the unsupervised classi�cation, where k-means identi-

�es the existence of groups in the dataset, threshold classi�cation con�rms the results and yearly

variance of coe�cients enables to label the classes on the base of their information contents. Mean-

while, a group of coe�cients is also identi�ed in the region between the two classes. These coef-
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Figure 3.8: Number of coe�cients, 937, 6204 and 1136 in u) Unclassi�ed, a) essential and
b) nonessential classes, respectively.

�cients change their classes when the classi�cation results of di�erent months are analyzed. In

the next chapter, the k nearest neighbors (knn) supervised classi�cation method is discussed to

bifurcate the unclassi�ed coe�cients into essential and nonessential classes.
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4supervised classification

The objective of the classi�cation process is to segregate the sh coe�cients into two groups, i.e.

essential and nonessential. In the previous chapter clustering and threshold classi�cation

are successfully utilized to analyze the behavior of the sh coe�cients and to divide the coe�cients

into two groups. Meanwhile, we have found a group of sh coe�cients changing their class, which

means that during the analysis of one year they belong to one group and during the analysis of

some other year they belong to the other group. This group is called as unclassi�ed class. Es-

sential and nonessential coe�cients can be used to train the classi�er to classify the unclassi�ed

coe�cients too. This kind of classi�cation is called supervised classi�cation. In the following sec-

tions, supervised techniques are used to analyze the grace data. Followings are the supervised

classi�cation methods used in this study:

• k nearest neighbor (knn) and

• arti�cial neural networks (ann).

In this chapter, knn segregates the unclassi�ed coe�cients into essential and nonessential

classes and Chapter 6 using ann.

4.1 k nearest neighbor (knn)

If the classi�cation problem belongs to a category where a sample of the classi�ed dataset is avail-

able without any information about the distribution the best way to classify the candidate point

is to look its neighborhood. This kind of problems belongs to the �eld of nonparametric statist-

ics (Cover and Hart, 1967). It is reasonable to believe that the points which are close to each other

belong to the same class. knn has been successfully implemented for several classi�cation tasks

including pattern recognition, character recognition, and object and event recognition. Though

knn is very simple and e�cient it has some limitation and disadvantages related to memory re-
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quirements and complexities. Many techniques are developed to overcome these issues (Bhatia

and Vandana, 2010).

To start the process, we need a training dataset which has several points related to each target

class. Each candidate point is classi�ed on the bases of its distance from all training points. The

process starts by calculating the distance between all training points and the given candidate point,

sorting the distance in increasing order and counting the number of majority class of the k nearest

training points and �nally giving the label of majority class to the candidate point. The algorithm

as expressed by Kozma (2008), Mirkes (2011) and Sutto (2012) is given in the following list as,

a. a positive integer k is speci�ed, along with a new sample,

b. select the k entries in the training database which are closest to the new sample,

c. �nd the majority or most common classi�cation of these entries,

d. label the sample with the majority class.

The critical issue is to specify the number of k neighbors. To avoid the tie, k equals one more than

the number of classes in the sample dataset is selected. In the following section, a brief description

of the sample and target dataset is given; afterwards, in Section 4.3, results are presented.

4.2 datasets

To start with knn, �rstly, a training dataset is required which contains samples from the con-

stituent classes, secondly the observation dataset which requires classi�cation. Consider vari-

ational level sh coe�cients pmon
`,y , with y = 1, 2, 3, . . . , 16 for the years from 2002 to 2017, mon =

1, 2, . . . , 12, for January, February up to December, respectively and ` = 1, 2, 3, . . . , 8276, coe�-

cients, whereas the vector of monthly coe�cients, as given in (2.10), can be written as,

pmon
y =

[
pmon
1,y pmon

2,y pmon
3,y . . . pmon

`,y . . . pmon
L,y

]
.

The output of the threshold classi�cation acts as the training dataset, but only those coe�cients

which belong to the essential and nonessential classes and never changed their groups, for in-

stance, Figure 3.7, given here for quick reference, represents such sh coe�cients. The essential

and nonessential coe�cients from April 2002 to June 2017 act as training dataset and used to clas-

sify the unclassi�ed coe�cients given in Figure 4.1.

26



4.3. results

-90 -45 0  45 90 
order

45 

90 

de
gr

ee

u

a

b

Figure 4.1: u) Unclassi�ed, a) essential and b) nonessential classes in sc format

u a b

1000

3000

5000

7000

Figure 4.2: Number of coe�cients, 937, 6204 and 1136 in u) Unclassi�ed, a) essential and
b) nonessential classes, respectively.

4.3 results

The essential and nonessential classes represented in Figure 4.1 acts as the source for the training

process and the goal of the classi�cation is to decide the association of the unclassi�ed coe�cients.

Since the source dataset consists of two classes, therefore, k = 3. The number ofk if set to odd helps

to avoid the tie situation. Let us call the coe�cients of the essential and nonessential classes as the

training points and the unclassi�ed coe�cients as the candidate points. Then, the training points

of 16 years grace data are stored in the memory and for each unclassi�ed candidate coe�cient,

the distance between the candidate and the training points are measured. The training points are

sorted on the bases of their distance from the candidate point. As the labels of the training points

are also given therefor the candidate point will be classi�ed as the majority class of the top three

training points of the sorted list. The process is repeated for all the candidate points. At the end

of the process, it is found that out of 937 unclassi�ed points 286 points are close to the essential

and 651 to the nonessential class, as shown in Figure 4.3. So the total number of essential and

nonessential coe�cients comes out to be 6490 and 1787, respectively, as given in Figure 4.4 and

4.5

These results bring us to the end of the �rst step of classifying the sh coe�cients. The combin-

ations of three independent algorithms help us to identify the two distinct classes in the dataset,

i.e. essential and nonessential. The coe�cients in essential class posses bigger place in the feature
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Figure 4.5: Number of coe�cients, 6490 and 1787 in a) essential and b) nonessential
classes, respectively.

space shows more yearly variance and therefore having the signi�cant information of the gravity

variation during the year. While the nonessential class is denser in feature space, therefore, possess

a small place in the feature space, show less yearly variance and therefore having non-signi�cant

information of the gravity variation during the year. As the second step of machine learning, in

the next chapter, another entirely di�erent and independent machine learning technique, i.e. ann,

has been described along with its development. In the forthcoming chapters, ann has been used

as a supervised classi�er and prediction tool.
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A computer is a machine which works on instructions. Now, the demand includes that the

computers must learn from the observations as humans do. This is the basic concept of

machine learning. Since its invention, the computer is analyzing the data, which are collected by

humans or captured by the sensors, using the known theoretical or mathematical models. Now

there is a need to look at the data from another viewpoint. Hence, rather than theoretical or

mathematical models, the data-driven analysis is in vogue. Human expects that the computer

must look at the data in a way the humans have not looked at it and unveil the facts and hidden

behavior or the relationships among its di�erent parameters and �nally make optimal decisions.

ann is one of the e�ective tools of machine learning. Web searching based on character, image

or sound recognition, self driven vehicles using driver assistance systems, robots doing sorting,

quality control, analyzing products and performing other importing jobs, face and object detection

in cameras, text recognition form images and videos, online gaming, real time analysis of behavior,

weather and natural hazard prediction, music composition, sound generation are some of its most

common application �elds. The salient feature of the ann is learning. It learns from the historical

data and improves its ability to do decisions. This study attempts to use the ann for the data

mining of the grace monthly datasets and uses it for two di�erent purposes, i.e.

• classi�cation and

• prediction of grace sh coe�cients.

The objective of the study is to analyze the behavior of the grace monthly sh coe�cients and

�nd patterns, trends, classes or groups among them. In this chapter, the discussion starts from the

introduction of ann followed by its applications in the coming chapters for the classi�cation and

prediction of grace sh coe�cients. The important steps towards the implementation of ann are,

1. source and target datasets

2. network architecture
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3. activation function

4. evaluation criteria

5. feedforward

6. optimization

7. error backpropagation

ann is a data processing unit. The basic components of an ann are source dataset, target

dataset and a network of neurons. Requirements determine the size of the ann, that is, the number

of layers in the network and the number of neurons in each layer. The �rst is the input and the

last is the output layer. Between the input and the output layers there exist inner layers. Except

the neurons in the �rst layer, each neuron has a numerical value associated with it, named as

bias, while the neurons in the �rst layer receive numerical values as input from the source dataset.

Each neuron in a layer is connected to each neuron of the next layer. The connection of a neuron

to the other neuron also has a numerical value, named as weight. The neurons, except the input

layer, contain activation functions. During the learning process weights and biases get new values,

due to which the output values changes. Activation function suppresses too small changes and

ensures that only the essential information is passed on. All applications require a trained, tested

and validated ann. Source dataset is generally a large dataset and a big part ∼60-70% of its trains,

and two relatively small parts ∼15-20% validates and ∼15-20% tests the ann, for instance. Target

dataset is the required output and training, which is an iterative process, tunes the weights and

biases of the network to produce an output like target dataset. The following section explains the

components in details.

5.1 source and target datasets

In ann, learning is a collection of three processes i.e. training, validation and test. During the

training, an ann using source data matrix learns how to reach closer to the target value (Goodfel-

low et al., 2016). In this chapter P with order κ × q denotes the source data matrix with κ is the

number of features in the data and q are the data samples, ranging from 1 to q, while T with order

m × q represents the target vector with m targets correspond to each sample in the source data

matrix.
P =

[
p1 p2 . . . pq . . . pq

]
κ×q

,

T =
[
t1 t2 . . . tq . . . tq

]
m×q

.

(5.1)

where pq and tq are the input sample vectors and corresponding target vectors, respectively.
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A cost minimization algorithm works on the di�erence of the output of the ann and the cor-

responding target value, and iterates to bring the cost close to zero. Before presenting the cost

function in detail, the following section describes the architecture of ann.

5.2 feedforward network architecture

Neurons are the basic data processing unit in the ann. They are arranged in layers in an ann. To

express the data �ow directions and the connections between the neurons in di�erent layers of

ann, literature uses di�erent terms such as topology (Stathakis, 2009), network, paradigm (Kaas-

tra and Boyd, 1996), design, and architecture (Hill et al., 1994). ann, on the bases of the data �ow

within the network and network topology, have many types such as, recurrent neural networks

(rnn), completely linked network and feedforward neural network (Kriesel, 2007) (Hassoun, 1995).

For this study feedforward architecture is used. Figure 5.1 represents an example of feedforward ar-

chitecture with 5, 4, 1 neurons in the input, inner and output layers, respectively. In a feedforward

network, neurons are arranged in layers in such a way that each neuron of a layer is connected to

each neuron of the next layer. This means there are no loops in the network. Information is always

fed forward, never fed back and the output of the activation functions always depends upon the

input (Nielsen, 2015).

Input 1

Input 2

Input 3

Input 4

Input 5

Inner
layer

Input
layer

Output
layer

Figure 5.1: Simple feedforward ann architecture. Neurons are arranged in layers.

The �rst layer in the ann is the input layer and last is the output layer. Between input and out-

put layers there exist inner layers. ann without any inner layer is good to solve a linear regression

model with linear activation function, for nonlinear regression models a multiple inner layers ann

is suggested (Kaastra and Boyd, 1996). l , in this chapter, denotes the layers of ann. l = 0 stands
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for the input layer, L represents the output layer and J l denotes the number of neurons in a layer

l . The output of a layer acts as the input of the next layer. Except for the �rst layer, each neuron

in all other layers has an unknown variable called bias. blj with jth neuron of l th layer, represents

a bias. The number of neurons in the input layer is equal to the number of rows in the source

dataset. The neurons in the input layer receive the source dataset. Each neuron in the �rst inner

layer receives the output of each neuron of the input layer. Similarly, each neuron in the next layer

receive the data from each neuron of the previous layer.

Data �ows from one layer to the next layer through the connections between the neurons. Each

connection has an unknown variable called weight and w l
jk represents a weight of a connection

from the k th neuron in the (l − 1)th layer to the jth neuron in the l th layer. Weights in matrix and

biases in vector format for the inner layer of Figure 5.1 are shown in (5.2)

Wl =



w l
1,1 w l

1,2 . . . w l
1,κ

w l
2,1 w l

2,2 . . . w l
2,κ

...
...

...
...

w l
j ,1 w l

j ,2 . . . w l
j ,κ


, bl =



bl1

bl2
...

blj


. (5.2)

If weights and biases from the above matrix are presented as the element x of a vector of unknowns

x then x for the whole ann can be written as,

x> =
[
x1 x2 . . . xn

]
=

[
w1

1,1 w1
1,2 . . . w1

1,κ . . . w1
j ,κ b11 . . . b1j w2

1,1 . . . b2j . . . wL
1,1 . . . bLj

]
,

(5.3)

where total number of unknowns n in ann is,

n = J 1(κ + 1) + J 2(J 1 + 1) + . . . + J l (J l−1 + 1) + . . . + JL(JL−1 + 1) . (5.4)

If alj represents the input to a neuron then a0j are the data values an ann receives at the neurons

in the input layer from the source data and w l
jka

l−1
k are the inputs at the neurons in all layers

l > 1. Now at a neuron, all the weighted inputsw l
jka

l−1
k and the bias blj are added together and the

resultant zlj goes to the activation function f . (5.5) expresses the procedure and Section 5.3 express

the activation function in detail.

alj = f (zlj ) , where zlj =
∑
k

w l
jka

l−1
k + blj , (5.5)

and in matrix format,

al = f(zl ) , where zl =Wlal−1 + bl . (5.6)
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5.2. feedforward network architecture

Consider Figure 5.1, a three-layer ann with 5, 4 and 1 neurons in the input, inner and output

layers, respectively. If matrix W1 of the order (j,κ) = (4 × 5) represents the weights connecting

the 5 neurons of the input layer to the 4 of the inner layer, W2 of the order 1 × 4 connecting the 4 of

the inner to the 1 neuron of output layer, b1 of the order 4 × 1 and b2 of the order 1 × 1 represents

the vectors of biases for neurons of inner and output layer and a0 = {a1 a2 a3 a4 a5}
> represents

source data vector, the input layer receives, then the inner and the output layers i.e. l = 1 and l = 2,

give the output vectors a1 and a2, respectively, as,

a1 =W1a0 + b1 =



w1
11 w1

12 w1
13 w1

14 w1
15

w1
21 w1

22 w1
23 w1

24 w1
25

w1
31 w1

32 w1
33 w1

34 w1
35

w1
41 w1

42 w1
43 w1

44 w1
45





a01

a02

a03

a04

a05


+



b11

b12

b13

b14


=



a11

a12

a13

a14


, (5.7)

a2 =W2a1 + b2 =
{
w2

11 w2
12 w2

13 w2
14

} 

a11

a12

a13

a14


+

{
b21

}
=

{
a21

}
. (5.8)

and Figure 5.2 expresses the feedforward mechanism for the output layer explicitly.

a11

a12

a13

a14

b21

a21 where a21 = f

(
4∑

k=1
w2
1k .a

1
k
+ b21

)
w2
11

w2
12

w2
13

w2
14

Inner
layer

Input
layer

Output
layer

Figure 5.2: Feedforward mechanism in the output layer of an ann with 4 neurons in inner
and 1 in output layer.

The number of neurons in the input layer is equal to the number of featuresκ in the source data

or rows of the source data matrix and the number of neuron in the output layer, for classi�cation,
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is equal to the number of classes in the target data and for prediction equals to one, for instance.

Now the question is, how to decide the number of the inner layers and their neurons?

The decision usually based on trial and error, heuristics and some time include the pruning.

Pruning is the method of ignoring the insigni�cant neurons during the training process (Stath-

akis, 2009). While discussing the required number of inner layers, McCullagh and Nelder (1989)

suggest that ann does not need any inner layer in a wide variety of linear and simple nonlinear

applications. For complex nonlinear applications, Bishop (1995) suggests and discusses in detail

the ann with one and two inner layers. Özkan and Erbek (2003) report that the cost minimiza-

tion or convergence is better in the ann with one inner layer than the ann with two inner layers.

Hecht-Nielsen (1990) and Kaastra and Boyd (1996) advocate that the ann with one inner layer can

approximate any continuous function.

White (1992) argued that ann are similar to linear and non-linear least squares regression and

can be viewed as an alternative statistical approach to solving the least squares problem. Both

ann and conventional regression analysis attempt to minimize the sum of squared errors. Linear

regression models may be viewed as a feedforward neural network with no hidden layers and one

output neuron with a linear transfer function and the number of input neurons is equal to the

number of independent variables while the output neuron(s) represent the dependent variable(s).

The weights connecting the input neurons to the single output neuron are analogous to the coef-

�cients in a linear least squares regression. Networks with one hidden layer resemble nonlinear

regression models. The weights represent regression curve parameters.

During the experiment, it has been observed that ann with one inner layer works perfectly

for the classi�cation as well as prediction while increasing the number of inner layers does not

improve the results.

For �nding the number of neurons, Hagan et al. (2014) states that if the number of neurons

is too large, the network will over�t the training data. Over�t means the network memorize the

data in the training set and fail to generalize to new situations. Kaastra and Boyd (1996) states that

the greater the number of weights relative to the size of the training set, the greater the ability

of the network to memorize idiosyncrasies of individual observation. Huang (2003) proposes the

following for the number of neurons in inner layers Nh with,
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5.3. activation function

q is number of input samples from the source data

κ is number of neuron in the input layer.

m is number of targets.

Nh = 2
√
(m + 2)q , (5.9)

Stathakis (2009), however, says that the number of neurons suggested by (5.9) causes over�t.

Another suggestion, by Hagan et al. (2014), is,

Nh =
q

(α × (κ + m)) , (5.10)

with, α , an arbitrary scaling factor, usually 2-5, controls the over�tting. But, before the �nal de-

cision, it is important to consider another fact about the relationship between the number of un-

known variables n in a system and the number of samples in the source data. To determine n, con-

sider (5.3), such as, for the network in Figure 5.1 where the number of inputs i.e κ = 5, the number

of neuron in inner and output layers are J 1 = 4 and J 2 = 1, therefore n = J 1(κ + 1) + J 2(J 1 + 1) =

4×(5+1)+1×(4+1) = 29 . In order to arrive at a regular linear system of equations we must have

more than 29 data samples to solve the 29 unknowns, otherwise, if the number of the observation

equations is less then the number of unknowns, we have an underdetermined system. We �nd a

regular inverse only if the number of data samples is larger than the unknowns, an overdetermined

system of equations (Grafarend and Awange, 2013). Therefore more the number of samples better

would be the results. In our case where the source data size is very small, we have to be very care-

ful and stay within the limits of the data size to set the number of layers and number of neurons in

an ann. The speci�c number of neurons in the inner layer are stated in the respective sections (c.f.

Section (6.2) for classi�cation and Section 7.2 for prediction). The following section introduces the

activation functions and describes their merits and demerits and afterward, Section 5.4 discusses

the cost function in detail.

5.3 activation function

ann is a data processing unit which makes a computer capable of doing decision on the base

of observations. This is machine learning. An activation function limits the amplitude of the

output of a neuron. It squashes the permissible amplitude range of the output signal to some �nite

value (Haykin, 2011). The activation function suppresses too small changes in zl . In this way,

it makes sure that only strong changes in zl in�uence the new weights w l
jk and biases blj . The

learning process, deep down in the ann environment, changes the numerical values of the biases
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blj and weights w l
jk . An activation function ensures that after each learning event, a small change

in the biases and weights bring a small change in the output (Nielsen, 2015).

∆zLj ≈
∑
k

∂zLj

∂w jk
∆w jk +

∑
k

∂zLj

∂bk
∆bk , (5.11)

where L represents the output layer. Multiplications and additions, two basic arithmetic opera-

tions, are operating in the core of the ann where neurons are arranged in multiple layers. In the

absence of an e�ective activation function, the output of the ann would blow up. It is the nature

of the activation function which keeps the output of the ann to the limits, usually between -1 and

+1. To keep the source data in the same range, in the literature it is suggested to use normalization

of the source data (Larose, 2004), (Io�e and Szegedy, 2015). Walia (2017) stressed the importance

of the activation function. According to him, without activation function, an ann would simply

be a linear regression model, which has limited power and does not perform well most of the

times. Without activation function ann would not be able to learn and model complicated kinds

of data such as images, videos, audio, speech etc. The list of possible activation functions is very

long (Ramachandran et al., 2017), in the literature, however, on mathematical and empirical bases,

the followings are discussed more than others:

• linear function

• sigmoid function

Sharma (2017) summarizes the advantages and disadvantages of these activation functions. The

following sections discuss them one after the other.

5.3.1 linear function

A linear function is a straight line function where activation is proportional to the input. as,

alj ∝ z
l
j , (5.12)

alj = const. × zlj . (5.13)

It gives a range of activations, so it is not binary. Walia (2017), however, expresses his view

about the limitations of the linear activation function. Firstly, a linear function is easy to solve but

has limits to learn complicated functional mappings from data. Moreover, for gradient descent, a

cost minimization algorithm (c.f. Section 5.6), uses the derivative of the activation function. The

derivative of (5.13) with respect to zlj is constant. That means, the gradient has no relationship

with input and descent is constant.
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Figure 5.3: Linear function.

Secondly, ann has connected layers. If each layer is activated by a linear function then it does

not matter how many layers we have, a combination of linear functions in a linear manner is still

another linear function. That means a single layer can replace all multiple layers. This way ann

lost the ability to stack layers. A nonlinear activation function can address this issue.

5.3.2 sigmoid function

A sigmoid or logistic function is an example of a nonlinear function as,

alj =
1

1 + e−z
l
j

. (5.14)
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Figure 5.4: Sigmoid function.

It looks like a smooth step function. It is nonlinear in nature and has a smooth gradient. Com-

binations of this function are also nonlinear, in other words, it supports stacking layers. Moreover,

zlj values range from -2 to 2, alj values are very steep. Which means, any small changes in the

values of zlj in that region will cause values of alj to change signi�cantly, that means this function
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has a tendency to bring the alj values to either end of the curve. Furthermore, unlike the linear

function, the output of the activation function is always going to be in range (0,1) compared to

(-inf, inf) of the linear function. So, in such a case we �nd a blow-up of the activations. Sigmoid

functions are one of the most widely used activation functions today. This study uses sigmoid as

the activation function.

Learning is an iterative process, and after each iteration, it is required to evaluate the ability

of the ann to perform the required task. The best way of evaluation is to compare the output of

the ann with externally available target data. The next section discusses the evaluation process

and its criteria in detail.

5.4 evaluation criteria

A cost function evaluates the ann learning, speci�cally during the training process. The objective

of the training process is to minimize the cost. Usually, a quadratic cost or estimated mean squared

error acts as the cost function (Kaastra and Boyd, 1996). If all unknown of an ann i.e weights and

biases are arranged in a vector x as given in (5.3) then for the set of a source data vector and its

corresponding target vector {pn, tn} with a is the output of the ann and t is the corresponding

target, the algorithm minimizes the mean square error based cost function as,

C(x) ≈ E 〈e|e〉 , where e = (t − a) , (5.15)

where E is the expected value. This type of training is called as the performance learning (Hagan

et al., 2014), a cost ≈ 0 means that the output of the network is close to the target, hence the

training has achieved the goal. On the other hand, a large value of cost shows a big di�erence

between output and target. The aim of the training is to minimize the cost. In other words, the

objective of the training process is to set the weights and biases which make the cost as small as

possible (Nielsen, 2015). This is called as performance optimizations. The goal of the optimization

is to �nd x that minimize C(x) with each iteration, i.e.

C(xi+1) < C(xi ) (5.16)

If we assume that C(x) is an analytical function and all of its derivatives exist then for the (i + 1)th

iteration a Taylor series expansion around the xi can be written as

C(xi+1) ≈ C(xi ) + ∇C(xi )
>
���
x=xi

∆xi +
1
2∆x

>
i ∇

2C(xi )
���
x=xi

∆xi + · · · , (5.17)
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where ∇C(x) is the gradient and is de�ned as,

∇C(x) = g =
[

∂
∂x1

C(x) ∂
∂x2

C(x) · · · ∂
∂xn

C(x)
]>
, (5.18)

and ∇2C(x) is the Hessian and is de�ned as,

∇2C(x) = H =



∂2C
∂2x1

∂2C
∂x1∂x2

· · · ∂2C
∂x1∂xn

∂2C
∂x2∂x1

∂2C
∂2x2

· · · ∂2C
∂x2∂xn

...
...

. . .
...

∂2C
∂xn∂x1

∂2C
∂xn∂x2

· · · ∂2C
∂2xn


. (5.19)

The su�cient condition for the point C(x)i to be a de�nite minimum point is,

∇C(xi )
>
���
x=xi
= 0, and ∇2C(xi )

>
���
x=xi
= positive de�nite. (5.20)

In the following sections, three di�erent iterative algorithms are introduced with the objective

to optimize the cost. They begin with the initial guess i.e. x0. If i denotes the iteration then the

expression,

xi+1 = xi − ηigi , or (5.21)

∆xi = −ηigi (5.22)

expresses the iterative process of cost minimization, where ηi is the learning rate which de�nes

the step size towards the minimum and gi gives the search direction of the cost function. Three

di�erent methods

1. gradient Descent (gd)

2. newton’s method

3. levenberg - Marqardt (lm)

are introduced in the following sections. gd uses gradient vector and Newton’s method uses Hes-

sian to optimize C(x). gd is slow and Newton’s method needs modi�cations to ful�ll the su�cient

condition of positive de�nite. lm is an improved version of both method, therefore, it is used in

this study for optimization. The discussion starts, with the introduction of gd, and the Newton’s

method followed by the lm algorithm.

5.5 gradient descent (gd)

Optimization means that the cost C(xi ) decreases with each iteration, as given in (5.16). To min-

imize the cost for the (i + 1)th iteration with a small learning rate, consider the �rst order Taylor
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series expansion, around the xi

C(xi+1) ≈ C(xi + ∆xi ) ≈ C(xi ) + g
>
i ∆xi , (5.23)

where gradient gi ≈ ∇C(x)
���
x=xi

. By substituting the value of ∆x from 5.22, we get,

C(xi+1) ≈ C(xi ) − ηig
>
i gi ≈ C(xi ) − ηi ‖g‖

2 , (5.24)

This shows that for every next iteration the cost decreases with positive and very small learning

rate ηi . This method converges very slowly and ηi has great in�uence on the convergence behavior

where ηi can be determined in two ways. Firstly, a constant value can be selected for all iterations.

However, if it is very small, the method takes more iterations to converge. On the other hand,

due to a large ηi , the algorithm becomes unstable and cost tends to increase instead of decreasing.

Secondly, a dynamic learning rate can be used which changes after every iteration.

Slow convergence is the drawback of the gd method. It is recommended for a very big ann

since it stores only a gradient vector. Before moving forward to the other two optimization meth-

ods, the development of backpropagation (bp) algorithm for gd is presented, since the later al-

gorithms are developed on its bases.

5.6 error back propagation

The optimization of the ann becomes more understandable when we consider them as the func-

tion appropriator. For example, in case of a linear function, a single layer ann receives sample

points and target data and compute the mean square error at the output neuron, as the error is a

linear function of the weights, therefore its derivatives are simple to compute. However, for the

multilayer ann, the error is not the linear function of the weights and therefore its derivatives are

not simple to compute and need optimization (Hagan et al., 2014). In this section, therefore a back

propagation (bp) algorithm is developed, to handle the nonlinear functions, which back propagates

the error sensitivities in case of gd. ann trained by back prorogation is widely used in most of its

applications after it is formally introduced by Rumelhart and McClelland (1986). Consider an ann

is provided with a sample dataset with corresponding target as,

{p1, t1} , {p2, t2} , . . . ,
{
pq, tq

}
. (5.25)

The algorithm for each input compares the output with the target data and adjust the vector of un-

knowns ann parameters i.e weights and biases to minimize the cost. If x denotes the ann unknown
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5.6. error back propagation

parameters in a vector as given in (5.3), then the cost as the function of unknown parameters is

written as,

C(x) ≈ E 〈e|e〉 , where e = (t − a) , (5.26)

where a is the output of the ann and t is the corresponding target. bp is an iterative algorithm

and cost is approximated by squares of error with each iteration, therefore, the expectation E is

replaced by a squared error at iteration i

Ĉ(x) ≈
〈
êi |êi

〉
, where êi =

(
ti − ai

)
, (5.27)

Therefore from (5.24), we can write the equations for the stochastic gd or incremental gd as,

(w l
j ,k )i+1 = (w

l
j ,k )i − ηi

∂Ĉ
∂w l

j ,k
,

(blj )i+1 = (b
l
j )i − ηi

∂Ĉ
∂blj

,

(5.28)

where stochastic or incremental gd means that process encounter only one data sample with each

iteration. This expression states the gd method for the development of the bp algorithm. To derive

the partial derivatives of the cost function with respect to the vector of unknown parameters which

is not a linear relation, a chain rule is introduced (Hagan et al., 2014). Consider (5.5), which shows

that �rstly the bias is added to the sum of weighted inputs, the resultant is called as z and then

it goes to the activation function f , the output of which is compared with the target to compute

error (c.f. section 5.2). In a similar way, we also relate the error to the initial product zlj and then

zlj to the unknowns w l
j ,k and blj as,

∂Ĉ
∂w l

j ,k
= ∂Ĉ

∂zlj

∂zlj
∂w l

j ,k
,

∂Ĉ
∂blj

= ∂Ĉ
∂zlj

∂zlj
∂blj

.

(5.29)

The derivative of the initial product zlj with respect to the unknowns w l
j ,k and blj is explicit as,

zlk =
∑
j

w l
k j a

l−1
j + b

l
k . (5.30)

and after taking the respective derivative,

∂zlj
∂w l

j ,k
= al−1j ,

∂zlj
∂blj

= 1 .
(5.31)

The derivative of the cost function with respect to the initial product zlj , however, get some new

meanings. The expression,

δ lj =:
∂Ĉ

∂zlj
, (5.32)
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de�nes the sensitivity of the cost function to the jth element of the layer l . The (5.29) can now be

rewritten in the simpli�ed form as,

∂Ĉ
∂w l

j ,k
= δ lja

l−1
j ,

∂Ĉ
∂blj

= δ lj ,

(5.33)

and hence, the expression for the approximated gd can be written as,

(w l
j ,k )i+1 = (w

l
j ,k )i −

η
Bδ

l
ja

l−1
j ,

(blj )i+1 = (b
l
j )i −

η
Bδ

l
j ,

(5.34)

and in matrix format
(wl )i+1 = (wl )i −

η
B δ

l (al−1)> ,

(bl )i+1 = (bl )i −
η
B δ

l ,
(5.35)

with B is the batch size and refer to the number of data sample used to update the vector of

unknowns, discussed in Section 5.7, where δl represents the sensitivity of the cost function due to

all the elements J l of the layer l ,

δl ≡
∂Ĉ

∂zl
=

[
∂Ĉ
∂zl1

∂Ĉ
∂zl2

. . . ∂Ĉ
∂zl

J l

]>
. (5.36)

Now to solve the nonlinear relation of the derivative of the cost function with respect to the initial

product zlj , chain rule is used again, therefore consider the relation,

∂Ĉ

∂zl
=
∂Ĉ

∂zl+1
∂zl+1

∂zl
. (5.37)

This means that the partial derivative of the cost function w.r.t initial product zlj is actually equal

to two things, �rstly, the derivative of the cost function with respect to the initial product of the

proceeding layer i.e zl+1j and secondly, the partial derivative of the initial product of the proceeding

layer i.e zl+1j w.r.t the initial product of the current layer i.e zlj , it is recursive relation, which leads

us to the Jacobean,

∂zl+1

∂zl
≡



∂zl+11
∂zl1

∂zl+11
∂zl2

. . .
∂zl+11
∂zl

J l

∂zl+12
∂zl1

∂zl+12
∂zl2

. . .
∂zl+12
∂zl

J l

...
...

...
∂zl+1

J l+1

∂zl1

∂zl+1
J l+1

∂zl2
. . .

∂zl+1
J l+1

∂zl
J l


. (5.38)

To get an expression for this matrix, consider its r , s element,

∂zl+1r
∂zls

=
∂
(∑j

c=1w
l+1
r ,c a

l
c+b

l+1
r

)
∂zls

= w l+1
r ,s

∂als
∂zls

= w l+1
r ,s

∂f l (zls )
∂zls

= w l+1
r ,s
Ûf l (zls ) ,

(5.39)
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where
Ûf l (zls ) =

∂ f l (zls )

∂zls
. (5.40)

and f l is the activation function. Therefore the Jacobean matrix can be written as,

∂zl+1

∂zl
=Wl+1 ÛFl (zl ) , (5.41)

where,

ÛFl (zl ) =



Ûf l (zl1) 0 . . . 0

0 Ûf l (zl2) . . . 0
...

...
...

0 0 . . . Ûf l (zl
J l
)


. (5.42)

Now back to (5.37), and after inserting the value for the recurrence relation equation can be

written as,
δl = ∂Ĉ

∂zl =
[
∂zl+1
∂zl

]>
∂Ĉ
∂zl+1 =

ÛFl (zl )(Wl+1)> ∂Ĉ
∂zl+1

= ÛFl (zl )(Wl+1)>δl+1 ,

(5.43)

This relation takes us to the last layer L from where the sensitivities are propagated backward

through the network to the �rst layer. Therefore consider the sensitivities in the last layer as,

δLr =
∂Ĉ

∂zLr
=
∂(t − a)>(t − a)

∂zLr
=
∂
∑j
c=1(tc − ac )

2

∂zLr
= −2(tr − ar )

∂ar
∂zLr

. (5.44)

Since,
∂ar
∂zLr
=
∂aLr
∂zLr
=
∂ f L(zLr )

∂zLr
= Ûf L(zLr ) , (5.45)

we can write,

δLr = 2(tr − ar ) Ûf L(zLr ) , (5.46)

and in the matrix form,

sL = 2ÛFL(zL)(t − a) . (5.47)

The gd, depending upon the learning rate, is capable of minimizing the cost function. The mul-

tilayer ann actually possesses many minima, therefore, it is not always possible to achieve global

minima (Kaastra and Boyd, 1996). Figure 5.5 shows a conceptual performance surface with local

and global minima.

One way to avoid local minima is to try several sets of initial weights. Nielsen (2015) suggests to

use the Gaussian random variables to initialize the weights and biases with mean = 0 and standard

deviation = 1/
√
n with n = is the number of unknown parameters in the ann. The next section

discusses it in details.
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Figure 5.5: A conceptual �gure of ann error surface. Target of training is to reach the
global minimum while escaping the local minima.

5.7 convergence

The principle of the ann training is to minimize the di�erence between the ann output and target

data, also known as convergence. Sometimes though the ann parameters minimized the mean

square error but the network response does not give the accurate approximation because of its

architecture limitations (Hagan et al., 2014). The solution to this is to test the performance by

changing the number of layers and the number of neurons in each hidden layer. On the other hand,

a well-designed network architecture failed to provide the accurate approximation because the

entire procedure is depending upon the initial values of the weights and biases, and the multilayer

architecture might have more than one minima and the minimization process is stuck in one of

them rather than searching for the global minimum. The suggested solution is to try several

di�erent sets of the initial weights.

learning rate η is an important factor while considering the optimization. The problem is that a

constantη can slow down the convergence, while a large learning rate destabilizes the convergence

on the steeper error surface, for instance. Therefore a variable learning rate is suggested in a way

that it increases on �at surfaces and then decreases as the slope increased.

1. If the squared error increases by more than some set percentage after a weight update, then

the weight update is discarded, the learning rate is reduced

2. If the squared error decreases after a weight update, then the weight update is accepted and

the learning rate is increased.

Another parameter which plays an important role in the convergence is the way an ann consume

the source data, sequentially or using batches, for instance. During the sequential learning, the

weights and biases are updated after each pass of a sample from source data, whereas in batch

learning the weights and biases are updated after the pass of a complete batch of samples from
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source data. The goal of learning is to reach the minimum possible cost. Nonlinear ann have mul-

tiple minima. Batch method reaches the minimum whatever basin the initial weights are placed,

however, due to individual samples having individual noise the weights can jump to another basin,

possibly deeper minimum (LeCun et al., 1998).

An advantage of sequential learning is that we can use shu�ed source data, which helps to

learn the nonlinear trend in the time series. Shu�e means that the order of the appearance of the

column changes, whereas, the order of the rows remains the same and the time behavior of the

coe�cient within a column remains intact. The target data vector gets the reshu�ing in the similar

order of the source data sets. The objective of the shu�ing is to presents the most unfamiliar

samples to ensure that the ann is learning from the di�erent classes and is not memorizing the

values of source data sets. This is most recommended for classi�cation.

Since gd is a slow method and depends upon the learning rate. lm is the ultimate solution to

the learning rate problem, however before moving towards lm Newton’s method for optimization

is presented, since its processing steps are the base of lm optimization. Therefore the next section

presents Newton’s method in brief.

5.8 newton’s method

Newton’s method is the second technique discussed in this study of cost optimization. The idea of

Newton’s method is to minimize the quadratic approximation iteratively, using the second order

Taylor series expansion of the cost function around xi as,

C(xi+1) = C(xi + ∆xi ) ≈ C(xi ) + g
>
i ∆xi +

1
2∆x

>
i Hi∆xi . (5.48)

The Hi is the n×n Hessian matrix of C(xi ), evaluated at C(x)i , given in (5.19). Hi requires the cost

function C(xi ) to be twice continuously di�erentiable with respect to the elements of x. Di�eren-

tiating (5.48) with respect to ∆xi minimizes the resulting change ∆C(x)i if,

gi + Hi∆xi = 0 . (5.49)

Solving this equation for ∆xi gives

∆xi = −Higi . (5.50)

This de�nes Newton’s method as,

xi+1 = xi + ∆x (5.51)

= xi − H
−1
i gi , (5.52)
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where H−1i is the inverse of the Hessian of C

gd �nds the minimum cost function in small steps whereas, Newton’s method is designed to

approximate a function as quadratic and then locates the minima of the quadratic approximation

in one step. However, if the function is not quadratic, then Newton’s method will not generally

converge in one step (Hagan et al., 2014). H has to be a positive de�nite matrix for all itera-

tions, which may not happen always. Therefore, Newton’s method needs modi�cation (Powell,

1987) (Bertsekas, 1995).

5.9 levenberg-marqardt method

The third optimization method presented in this study is the lm method. It gets its name from

(Levenberg, 1944) and (Marquardt, 1963). It is an improved form of the gd and Newton’s method

(Haykin, 2011). In section 5.5 it is presented that gd converge slowly and its convergence depends

upon a proper selection of learning rate, on the other hand, in 5.8 it is described that Newton’s

method converges rapidly near a local or global minimum, but may also diverge, because of the

Hessian matrix H, which may not be invertible for all iterations. lm solve this issue and presented

a method which prevents the noninvertible situation. Let’s start from Newton’s method, consider

the relation

xi+1 = xi − H
−1
i gi , (5.53)

where H−1i � ∇2C|x=xi and gi � ∇C|x=xi . Now for a multilayer ann, consider the mean square

error is the average of the error in all layers l = 1, 2, . . . , L, and all the sample points q = 1, 2, . . . , q,

then we can rewrite (5.15) as

C(x) =
q∑

q=1
〈e|e〉 =

q∑
q=1

J L∑
j=1
(ej ,q)

2 =
n∑
r=1
(vr )

2 = 〈v|v〉 , (5.54)

where ej ,q is the j
th element of the error for the qth sample (input/target pair) and

v> = [v1,v2, . . . ,vn] =
[
e1,1 e2,1 . . . e J 1,1 e1,2 e2,2 . . . e J 2,2 . . . eL,1 eL,2 . . . e J L ,q

]
(5.55)

where, n = q× JL , and x is the vectors of all unknowns of ann given in (5.3), then the jth element

of the gradient can be written as,

[∇C(x)]j =
∂C(x)
∂x j

= 2
n∑
r=1

vr (x)
∂vr (x)
∂x j

, (5.56)
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and the gradient in the matrix form is

∇C = 2J>(x)v(x) , (5.57)

where J is the Jacobin and can be written as,

J(x) =



∂v1 (x)
∂x1

∂v1 (x)
∂x2

. . .
∂v1 (x)
∂xn

∂v2 (x)
∂x1

∂v2 (x)
∂x2

. . .
∂v2 (x)
∂xn

...
...

...

∂vn(x)
∂x1

∂vn(x)
∂x2

. . .
∂vn(x)
∂xn


. (5.58)

The second part of the (5.53) is the Hessian matrix, it’s k, j element would be,

[∇2C(x)]k , j =
∂2C(x)
∂xk∂x j

= 2
n∑
r=1

{
∂vr (x)
∂xk

∂vr (x)
∂x j

+vr (x)
∂2vr (x)
∂xk∂x j

}
. (5.59)

If the second term in the braces considered being very small then the Hessian matrix can be ap-

proximated as

∇2C � 2J>(x)J(x) . (5.60)

No by substituting back the ∇C from (5.57) and ∇2C from (5.60) in (5.53), we get,

xi+1 = xi −
[
2J>(xi )J(xi )

]−1 2J>(xi )v(xi )
= xi −

[
J>(xi )J(xi )

]−1 J>(xi )v(xi ) .
(5.61)

As discussed at the beginning of the section that the Hessian may not be invertible, therefore, we

modify the matrix and make it sure that it inverts as,

G = H + µI . (5.62)

Now suppose that the eigenvalues and eigenvector of H are {λ1, λ2, . . . , λn} and {y1, y1, . . . , yn}

then

Gyj = [H + µI] yj = Hyj + µyj = λjyj + µyj = (λj + µ)yj . (5.63)

In this way eigenvectors of G are the same as the eigenvectors of H and eigenvalues are (λj + µ).

G would be de�nite positive by increasing µ until (λj + µ) > 0 for all j, therefore, the matrix is

invertible. This brings the de�nition of the Levenberg-Marquardt method

xi+1 = xi −
[
J>(xi )J(xi ) + µi I

]−1 J>(xi )v(xi ) ,
or

∆xi = −
[
J>(xi )J(xi ) + µi I

]−1 J>(xi )v(xi ) .

(5.64)
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5. artificial neural networks (ann)

The algorithm starts with a small value of µi . If a step does not yield a smaller value for C(x),

then the step is repeated with µi multiplied by some factor, for example, θ > 1. Eventually should

decrease C(x), since we would be taking a small step in the direction of steepest descent. If a step

does produce a smaller value for C(x), then µi is divided by θ for the next step, which should

provide faster convergence. The algorithm provides a nice compromise between the speed of

Newton’s method and the guaranteed convergence of steepest descent.

In the following paragraphs it is described that how we can apply the lm to the multilayer

ann. The process starts with the evaluation of the Jacobean matrix J(x). First of all consider

the de�nitions of v, x and n in (5.55), (5.3) and (5.4), respectively and then substitute them in the

Jacobean matrix in (5.58), we get,

J(x) =



∂e1,1
∂w1

1,1

∂e1,1
∂w1

1,2
. . .

∂e1,1
∂w1

j ,κ

∂e1,1
∂b11

. . .

∂e2,1
∂w1

1,1

∂e2,1
∂w1,2

. . .
∂e2,1
∂w1

j ,κ

∂e2,1
∂b11

. . .

...
...

. . .
...

...
∂e

j1 ,1
∂w1

1,1

∂e
j1 ,1

∂w1
1,2
. . .

∂e
j1 ,1

∂w1
j ,κ

∂e
j1 ,1

∂b11
. . .

∂e1,2
∂w1

1,1

∂e1,2
∂w1

1,2
. . .

∂e1,2
∂w1

j ,κ

∂e1,2
∂b11

. . .

...
...

...
...



. (5.65)

To compute the terms of J(x)we use the relations in Section (5.6) with small modi�cation. Consider

the term in the Jacobean matrix,

[J]h,n =
∂vh
∂xn
=
∂ei ,q
∂xn

, (5.66)

with h = (q − 1)JL + i , from (5.29) we can write here as,

∂Ĉ

∂w l
j ,k

=
∂Ĉ

∂zlj

∂zlj

∂w l
j ,k

, (5.67)

with the �rst term is de�ned as sensitivity

δ lj =:
∂Ĉ

∂zlj
, (5.68)

using the same concept, we can de�ne the sensitivity for the lm method as,

δ̃ lj ,h =:
∂vh

∂zlj ,q
=
∂ei ,q

∂zlj ,q
, (5.69)

elements of the Jacobean are computed as,

[J]h,c =
∂vh
∂xc
=
∂ei ,q

∂w l
j ,k

=
∂ei ,q

∂zlj ,q
×
∂zlj ,q

∂w l
j ,k

= s̃lj ,h ×
∂zlj ,q

∂w l
j ,k

= s̃lj ,h × a
l−1
k ,q , (5.70)
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and for bias

[J]h,c =
∂vh
∂xc
=
∂ei ,q

∂blj
=
∂ei ,q

∂zlj ,q
×
∂zlj ,q

∂blj
= s̃lj ,h ×

∂zlj ,q

∂blj
= s̃lj ,h . (5.71)

Now similar to the recursive relation (5.44) for the solution of the �nal layer, we can initiate the

computation as,
δ̃Lj ,h =

∂vh
∂zLj ,q

=
∂ei ,q
∂zLj ,q

=
∂(ti ,q−a

L
i ,q )

∂zLj ,q
= −

∂aLi ,q
∂zLj ,q

=


− Ûf L(zLj ,q) for j = i ,

0 for j , i .

(5.72)

Therefore when the input has been applied to the network and the corresponding network output

has been computed, the lm backpropagation is initialized with

δ̃Lq = ÛF
L(nLq ) , (5.73)

where is de�ned in Eq. (5.42). Each column of the matrix must be backpropagated through the

network using Eq. (5.42) to produce one row of the Jacobean matrix. The columns can also be

backpropagated together using

δ̃lq = ÛF
l (nlq)(W

m+1)>S̃l+1q . (5.74)

The total Marquardt sensitivity matrices for each layer are then created by augmenting the matrices

computed for each input is,

δ̃l =
[
δ̃l1 δ̃l2 . . . δ̃lq

]
. (5.75)

This brings the discussion of the feedforward ann optimization for cost minimization to an

end. In the next chapters, the optimized feedforward networks are used for the classi�cation and

prediction of the grace datasets. In this chapter, the whole process of training the ann is presented.

In the next section, the whole learning process using ann is summarized with a brief description

of the validation and test process as well.

5.10 validation and test

The training process starts with the �ow of the source data sample from the input layer to the inner

layer. It undergoes the following three steps. Firstly, from the input layer, after multiplication with

the connecting weights, each value goes to each neuron of the inner layer. The magnitude of the

weights decides how much impact of a certain component reduces or remains intact. Secondly,
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5. artificial neural networks (ann)

at each neuron in the inner layer, the products of inputs and weights from all the neurons of the

input layers are summed up and bias is added. Thirdly, the resultant value goes to the activation

function. The output of the activation function is a value between 0 and 1. Here the �ow of the

data completes its journey between the input layer and the inner layer. The data from the inner

layer to the output layer undergoes the same three steps. Eventually, At each neuron in the output

layer, the resultant value is compared with the target data and the di�erence is sent to a cost

minimization algorithm. The minimization process sets the new values of the weights and biases.

The process goes on with the whole source data and for several iterations until the cost value does

not change any further. Ideally, at this point, the training process achieves a minimum cost.

The validation process is the same as the training process. However, before the testing process,

this process �ne tunes the hyper-parameters such as, early stopping, in case if the cost remains

constant for several iterations, without taking care that the minimum cost is achieved or not.

Test process checks the ability of the trained ann as a classi�er. The data �ow is the same as in

the training step. One of the main di�erences between them is that the test process stops after

the output compared with the target data. In short, the cost minimization does not follow the

comparison step. In other words, the test process does not review the numerical values of the

weights and biases. Comparison step reveals the quality of the trained ann. It tells how many

sh coe�cients are correctly classi�ed. Higher % of classi�cation accuracy permits to use the ann

for classi�cation, contrarily, lower % unveil the shortcomings in the cost minimization process. In

such a case, the training process follows the test process with optimal values of cost minimization

parameters. This brings the theoretical discussion of the ann to an end. In the next two chapters,

its application for classi�cation and prediction are presented.
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6classification using ann

Ann is a data processing unit which provides a modern data mining and machine learning

tool. It helps to perform several tasks such as image, pattern and handwritten character

recognition, arti�cial intelligence, web searching, and language translation. Use of ann as a clas-

si�er is ubiquitous. ann as a classi�er is a supervised classi�cation tool, in which an ann is trained

using samples and afterward used for classi�cation of unknown dataset (Bischof et al., 1992) and

(Heermann and Khazenie, 1992). Besides the conventional classi�cation techniques, ann is a data-

driven self-adaptive method. It can adjust itself to the data without speci�cation of the functional

or distributional form of the underlying model, moreover, it can approximate any function with

arbitrary accuracy (Zhang, 2000).

In Chapter 5 ann has been introduced with details, where the activation function, cost function

and, its evaluation are elaborated and all related parameters are discussed. In this chapter, ann as

a tool for classi�cation of sh coe�cients has been described.

For ann based classi�cation, we need a source and a target dataset. The source dataset must

contain many samples of the constituting classes, whereas the target dataset must be a vector of

the size, equals to the number of samples in the source dataset and contains the label of the cor-

responding class. The source and the target dataset and ann architecture need detail description.

Therefore, the following paragraphs �rst describe the preparation of both datasets followed by a

discussion on the ann architecture.

6.1 source and target datasets

grace monthly sh coe�cients represent the seasonal and interannual variations in the gravity

�eld. Hence one could assume sh coe�cients posses a periodic behavior. Therefore the core as-

sumption is the value of a speci�c coe�cient depends upon its values in twelve previous epochs,



6. classification using ann

and consequently, the time series of the coe�cient can be written as the sum of linear and peri-

odic signal components. For instance, consider a time series like p includes linear and periodic

behaviors, then we can presents this time series as:

p(i) = a + bi + c sin(ωi) + d cos(ωi) + e sin(2ωi) + f cos(2ωi) , (6.1)

with a,b, c,d, e, f are the coe�cients of the signal components and i is the epoch. If one cycle

completes in twelve epochs, i.e. i = 12, it results in angular frequency ω = 2π/12 then one can

formulate a system of observation equations as,

p(1)

p(2)
...

p(12)


=



1 1 sin(ω1) cos(ω1) sin(2ω1) cos(2ω1)

1 2 sin(ω2) cos(ω2) sin(2ω2) cos(2ω2)
...
...
...

...
...

...

1 12 sin(ω12) cos(ω12) sin(2ω12) cos(2ω12)





a

b
...

f


. (6.2)

where, x = [a b c d e f ]>,only in this chapter, is the vector of unknowns. The least squares

adjustment (lsa) solves the system of linear equations and yields the estimated values x̂.

Consider the grace monthly solutions with the uninterrupted monthly variational level sh

coe�cients time series, range from January 2004 to December 2010 i.e 84 months. Out of 84

monthly dataset 83 i.e. up to November 2010 are used for training and testing and validation,

whereas December 2010 acts as the unseen dataset and will be classi�ed using the trained ann. If

m
`
, in this chapter, represents a monthly value then m

`
, in this chapter, represents the vector of

time series with 84 monthly values of a coe�cient ` as,

m` =
{
m1

`
m2

`
m3

`
. . . m83

`

}
. (6.3)

In the set of 83 months, there exists 71 sets of 12 consecutive months. Let τ denotes the

consecutive month number from 1, 2, . . . , q and q = 71 is the total number of consecutive months,

or number of samples in the source data, then sτ
`

denotes one of the consecutive sets from the set

m
`

as,

sτ` =
{
mτ

`
mτ+1

`
mτ+2

`
. . . mτ+(12−1)

`

}>
1×12

, (6.4)

consider a matrix S
`

consists of sτ
`

as its columns, as,

S` =
[
s1
`

s2
`

s3
`
. . . sτ

`
. . . s71

`

]
12×71

, (6.5)

Now if a set of 12 values of sτ
`

estimates, using lse, a vector of unknown x̂τ
`
=

[
âτ
`
b̂τ
`
ĉτ
`
d̂τ
`
êτ
`

f̂ τ
`

]>
as shown in the beginning of the section using the signal components estimation then the matrix
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of all consecutive set S
`

and the matrix X̂` containing the estimated vector x̂τ
`

can be written as,

S` =



m1
`

m2
`
. . . m τ

`
. . . m71

`

m2
`

m3
`
. . . m τ+1

`
. . . m72

`
...

... . . .
... . . .

...

m11
`

m12
`
. . . m τ+10

`
. . . m81

`

m12
`

m13
`
. . . m τ+11

`
. . . m82

`

12×71
, (6.6)

X̂` =
[

x̂ 1
`

x̂ 2
`

. . . x̂ τ
`

. . . x̂71
`

]
6×71

. (6.7)

By inserting the estimated values x̂τ
`

back to (6.1) with i = 13, we get the predicted value for the

proceeding sh coe�cient, say mτ
`
. Repeating this for all τ sets, a vector of predicted values for a

coe�cient ` can be written as,

m` =
[
m1

`
m2

`
m3

`
. . . mτ

`
. . . m71

`

]
1×71

, (6.8)

or in matrix format for all coe�cients ` ranges from 1, 2, . . . , L

M =



m1
1 m2

1 m3
1 . . . mτ

1 . . . m71
1

m1
2 m2

2 m3
2 . . . mτ

2 . . . m71
2

m1
3 m2

3 m3
3 . . . mτ

3 . . . m71
3

...
...

... . . .
... . . .

...

m1
`

m2
`

m3
`
. . . mτ

`
. . . m71

`
...

...
... . . .

... . . .
...

m1
L m2

L m3
L . . . mτ

L . . . m71
L

L×71

, (6.9)

where 71 columns represent the predicted monthly coe�cients starting from January 2005 up to

November 2010. Each superscript index τ represents a monthmon of the year y from 2005 to 2010,

such as, �rst twelve columns belong to 2005, the next twelve to 2006 and similarly last eleven

belong to January 2010 to November 2010. If m is replaced by p and instead of month number, at

superscript, ranging from 1 to 71 two indices i.e. mon in superscript and y in subscript is used in

a way that the columns equivalence is given by,

m 1
`

tom12
`
= p Jan

`,2005
to pDec

`,2005
,

m13
`

tom24
`
= p Jan

`,2006
to pDec

`,2006
,

m25
`

tom36
`
= p Jan

`,2007
to pDec

`,2007
,

m37
`

tom48
`
= p Jan

`,2008
to pDec

`,2008
,
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m49
`

tom60
`
= p Jan

`,2009
to pDec

`,2009
,

m61
`

tom71
`
= p Jan

`,2010
to pNov

`,2010
,

a vector of monthly predicted coe�cients, with elements instead of mτ
1 , is now denoted as pmon

`,y
,

can be written as,

pmon
y
=

[
pmon
1,y

pmon
2,y

pmon
3,y

. . . pmon
`,y
. . . pmon

l,y

]
. (6.10)

Here, a comparison of the original pmon
y (c.f. (2.10)) and predicted pmon

y
sh coe�cients is vital.

It reveals how well the frequency decomposition of the sh coe�cients keep the original gravity

variation information. The comparisons process segregate a group of sh coe�cients whose values

are relatively more preserved than the rest of coe�cients. The comparison process consists of the

following steps,

1. normalize both original grace pmon
y and predicted pmon

y
�elds of

December 2010,

2. compute their di�erence qmon
y and note the max-

imum max(qmon
y ) and minimum min(qmon

y ) di�erences,

where

qmon
y =

[
qmon
1,y qmon

2,y qmon
3,y . . . qmon

`,y . . . qmon
L,y

]
. (6.11)

3. select a threshold value Tmon
y between min(qmon

y ) and

max(qmon
y ) values,

4. compare the threshold to the di�erences in qmon
y and segregate

the coe�cients into

q̃mon
y =


preserved class, if qmon

`,y ≤ T
mon
y and

Non-preserved class, if qmon
`,y < T

mon
y ,

(6.12)

where, q̃mon
y , denotes a classi�ed coe�cients.

Figure 6.1 presents the majority of the preserved coe�cients belong to the same region in

the sc matrix as the nonessential coe�cients, (c.f. Figure 4.4). This shows the presence of two

di�erent kinds of coe�cients in the original grace data. They di�er not only on the bases of their
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Figure 6.1: a)Preserved class b) non-preserved class.

information content but their behavior as a time series signal. The task of the ann classi�cation is

to learn the behavioral properties of the coe�cients and recognize the di�erence between them.

After this test, the feature dataset which consists of signal components proves that it can represent

the original sh coe�cients in the ann classi�cation process as the source dataset.

The results of threshold classi�cation, Figure 3.7 and Figure 3.8, show that there are 937 un-

classi�ed, 6204 essential and 1136 nonessential coe�cients in grace data. The idea is to use the

estimated signal components X̂
`

of the essential and nonessential coe�cient, as samples for the

ann-based supervised classi�cation and include them in the source dataset with labels ‘1’ and ‘0’

in the corresponding target vector for the essential and nonessential coe�cients, respectively. For

a coe�cient `, the source and the target dataset are written as,

X̂` =
[
x̂ 1
`

x̂ 2
`
. . . x̂τ

`
. . . x̂71

`

]
6×71

. (6.13)

t` =
[
t1
`

t2
`
. . . tτ

`
. . . t71

`

]
1×71

, where tτ` ∈ {0, 1} (6.14)

The coe�cients from the unclassi�ed class do not take any part as source dataset for ann classi-

�cation. If n coe�cients (essential or nonessential) are selected for the training set then the source

and corresponding target datasets for n coe�cients can be written as:

X̂ =
[
X̂1 X̂2 . . . X̂n

]
, (6.15)

t =
[

t1 t2 . . . tn
]
. (6.16)

After the description of the source and target datasets, the following section discusses the archi-

tecture and the working of the ann in detail.

6.2 network architecture

A trained ann is used to classify the dataset into essential and nonessential classes. The �rst step

is to decide the size of the ann, i.e. the number of inner layers and the number of neuron in
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each layer. Since the basic unit of the source data is the set of six estimated coe�cients of signal

components, therefore the ann has an input layer with six neurons and the target is to identify the

two classes, i.e. essential and nonessential, presented by ‘1’ and ‘0’ in one target vector, therefore,

the output layer consists of one neuron. Regarding the number of the inner layers and the number

of neurons in these layers, there exist several guidelines. Most of these guidelines are the outcomes

of the heuristics. Therefore, di�erent combinations of layers and neurons are tested. According to

the observations, increasing the number of the inner layers decrease the relative accuracy of the

classi�cation, while only one inner layer gives the best results. Moreover, the literature suggests

that the number of neurons in the inner layers must be integer multiple of the number of neurons

in the input layers. It works up to a certain extent. The number of neurons in the inner layer,

for this case, equals twice the number of neurons of the �rst layer, i.e. 12, gives the best relative

accuracy. While, 3× and 4× neutrons of the number of neurons of �rst layers improve the relative

accuracy, but not signi�cantly and take longer processing times. In the end, however, hit and trial

show that ten neurons in the inner layer give a �ne tune to the classi�cation results.

With six neurons in the input layer ten in the inner layer and one in the output layer, the total

number of unknown variables is 81 using equation (5.4). On the other hand, the input data samples

are in several thousand. Therefore it is an overdetermined system. Since it is nonlinear, we have

to iterate it to optimize.

6.3 training the ann

lm algorithm has been used to training the ann for classi�cation, whereas the output of the

threshold classi�cation is used as the external validation or the target dataset. Figure 6.2 repres-

ents the target classes with a) nonessential and b) essential coe�cients, where the ring-like white

region in the center represents the unclassi�ed sh coe�cients which are not used as a sample in

the source dataset. The source dataset composed of only essential and nonessential coe�cients is

used to train the ann.

Eventually, 91.4% classi�cation accuracy during the training was achieved, which means that

we can still expect some miss-classi�cation in the output, for instance, the salt-piper like a spread

of green pixels in the essential region shown in the training output is given in Figure 6.3. A glance

of the relative classi�cation accuracy of the three processes given in Table 6.1 shows that how well

the ann is trained. Results are given in percentage. According to the details, during the training
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Figure 6.2: Regions of a) essential class and b) nonessential class used for the source data
formulation. The ring like white space represents the unclassi�ed coe�cients
and not used as the source data samples.

process, 91.4% of the coe�cients are correctly classi�ed and only 8.6% are misclassi�ed. Similarly,

in the validation and test process, 87% and 88% are correctly classi�ed whereas 13% and 12% are

misclassi�ed, respectively.

Table 6.1: % classi�cation accuracy of the training, validation and test processes. The
higher accuracy suggests that the ann is ready for the classi�cation task.

Training Validation Test Total
Process Process Process

correctly classi�ed coe�cients (%) 91.4 87 88 88
misclassi�ed coe�cients (%) 8.6 13 12 12
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Figure 6.3: Training output for the sh coe�cients, into a) essential class and b) nonessen-
tial class.

6.4 results

The trained ann is now ready to classify the unseen dataset of December 2010. The ann segregates

the sh coe�cients on the bases of what it learns during the learning process. Figure 6.4 shows that

the ann identi�es a) essential and b) nonessential classes.

A trained ann, using the uninterrupted dataset from January 2004 to November 2010, has

classi�ed the dataset of December 2010. The classi�cation output shows that 1553 coe�cients

concentrated in the region around the zonal coe�cients of sc format matrix from degree ∼10 to

∼75 and order ∼15 of both sine and cosine coe�cients belong to the nonessential class and 6724
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Figure 6.4: ann classi�cation output for the sh coe�cients of December 2010, into a) es-
sential class and b) nonessential class.

belong to the essential class. The comparison of the two outputs, i.e. from (knn) (c.f. Figure

4.4) and ann classi�cation con�rms the presence of two distinct groups in the dataset. Though

these methods utilize di�erent techniques reaches a similar result. The classes have a more fuzzy

boundary in case of ann classi�cation because of less then 100% accuracy in the training phase.

The source data preparation for ann classi�cation shows that the presentation of sh coe�cients

as the time series signal also preserve the time behavior of the coe�cients. This concept is used

in the prediction of sh coe�cients using ann in the next chapter.

58



7prediction using ann

The objective of the study is to analyze the behavior of the grace monthly sh coe�cients and

�nd patterns, trends, classes or groups among them. Chapter 3 �nds clusters in the data

using k means clustering and classi�es the data using threshold method. Chapter 4 classi�es the

unclassi�ed coe�cients using k nearest neighbor algorithms. Chapter 6 also bifurcate the grace

sh coe�cients into two groups using ann. All of these techniques point out the presence of two

distinct classes, i.e. essential and nonessential, in the grace monthly sh data. Essential possess

the most and nonessential possess very minute information of the gravity variations. The idea is

to exclude the nonessential sh coe�cients from the gravity recovery process, which decrease the

formal error spectrum of the recovered sh coe�cients. This chapter exploits the ann to identify

the predictable coe�cients. The successful prediction enables us to reduce the number of grace

coe�cients during the gravity recovery process, which eventually reduces formal error spectrum,

even further. Chapter 8 discusses the gravity recovery process and formal error of the recovered

�eld, in details. The usage of ann as a prediction tool is ubiquitous in forecasting and �nance. Fin-

ancial services have been the second largest sponsors of research in ann applications (Kaastra and

Boyd, 1996), (Trippi and Turban, 1992). In the following sections the discussion about prediction

using ann starts with the description of the source and target data formulation.

7.1 source and target datasets

The process of classifying sh coe�cients into essential and non essential groups utilizes one ann,

as discussed in Section 6.2, however prediction process treats each sh coe�cient separately. In

other words, prediction process uses separate ann for each sh coe�cient.

Consider the grace monthly solutions with monthly variational level sh coe�cients time

series, range from April 2002 to June 2017 i.e 183 months. Chapter 2 discusses the grace data

preprocessing and extraction of variational level coe�cients in detail (c.f. 2.1). The grace sh data
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range from April 2002 to November 2016 i.e. 176 data values, act as the source data to predict sh

coe�cients of December 2016 and the values from January 2017 to June 2017 are used for com-

parison with predicted values. The missing values are �lled by interpolation. If m
`
, represents a

coe�cients ` then the time series of 176 monthly values in a vector can be written as,

m` =
{
m1

`
m2

`
m3

`
. . . m176

`

}
. (7.1)

Since the variational level sh coe�cients represent the seasonal and interannual variations in

the gravity �eld, hence one could assume that variational level sh coe�cients posses a periodic

behavior. Therefore the core assumption is that the value of a monthly coe�cient depends upon its

instance in the last few, say κ months. Let τ denote the consecutive month number from 1, 2, . . . , q

and q is the total number of consecutive months, also the number of samples in the source data,

then sτ
`

denotes one of the consecutive sets from the set m
`

as,

sτ` =
{
mτ

`
mτ+1

`
mτ+2

`
. . . mτ+(κ−1)

`

}>
1×κ
, (7.2)

where κ denotes the size of the set. κ plays an important role in the formulation of the source data

matrix and ann design. Its value could be di�erent for each coe�cient. Rather than following any

statistical property such as auto-correlation in monthly values of a coe�cient, the ann iterates

the prediction process for κ in search of best prediction. The value ranges from 5 to 12. Failure

to get a higher accuracy of prediction during this range means the time series of the coe�cient

is unpredictable. In this way, κ is one of the parameters to compose the list of predictable sh

coe�cients. For source data formulation for a coe�cient `, consider a matrix X
`

consists of sτ
`

as

its columns, as,

X` =
[
s1
`

s2
`

s3
`
. . . sτ

`
. . . sq

`

]
κ×q

, (7.3)

with, q represents the total number of sτ
`

sets, or the samples in the source data. Firstly, a process

calculates q, depending upon κ, from the range of grace data. For instance, if κ = 5 then there

exist 171 sets between January 2002 to November 2010 i.e. q = 171, with each set has 5 consecutive

months that acts as the source data set and a proceeding month as its target value. Therefore for

a sh coe�cient `, a matrix X
`

of the order 5 × 171 is ready as source data matrix and a vector t
`
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7.1. source and target datasets

of the order 1 × 171 as target data vector, one target point for one sample in source dataset, as,

X` =



m1 m2 m3 . . . m171

m2 m3 m4 . . . m172

m3 m4 m5 . . . m173

m4 m5 m6 . . . m174

m5 m6 m7 . . . m175

5×171
, (7.4)

t` =
[
m6 m7 m8 . . . m176

]
1×171

, or in general (7.5)

t` =
[

t1 t2 t3 . . . t171
]
1×171

. (7.6)

In ann, learning is a collection of three processes i.e. training, validation and test. During the

training an ann using source data matrix, learns how to reach closer to the target value (Goodfel-

low et al., 2016). A cost minimization algorithm works on the di�erence of the output of the ann

and the corresponding target value, and iterates to bring the cost close to zero. Eventually, after

the successful learning, the numerical values of the same coe�cient ` from July 2016 to November

2016, considering κ = 5, act as the source data set i.e. s̃
`

of size 5×1 as in (7.7) and the trained ann

predicts value of December 2016. In this way, the size of the source data for the prediction step is

also same as κ.

s̃` =
[
m172 m173 m174 m175 m176

]>
1×κ
. (7.7)

The prediction process can be extended to the next epochs i.e. January 2017 to June 2017 by

including the freshly predicted value in the source data as,

s̃
`
=



m173

m174

m175

m176

m177


s̃
`
=



m174

m175

m176

m177

m178


s̃
`
=



m177

m178

m179

m180

m181


t` =

[
m178

]
︸           ︷︷           ︸
predicting Jan. 2017

, t` =
[
m179

]
︸           ︷︷           ︸

predicting Feb. 2017

, · · · , t` =
[
m182

]
︸           ︷︷           ︸

predicting Jun. 2017

.

During the learning, sequential and batch learning are two di�erent ways a ann can consume

the source dataset. This study utilizes the batch methods for prediction. The batch method utilizes
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7. prediction using ann

the input data in small bunches. The batch size B means how many columns of the source data

includes in each bunch while the rows remain intact.

In the example stated above related to the variable κ = 5, for instance for the batch size B = 6

means that the source data matrix of 5 × 171 with κ = 9 is now composed of 19 batches, each of

size 5×9, and during the training process the system updates the weights and biases after learning

from each six columns of a batch. For this study, for each value of κ i.e. 5, 6, . . . , 12 ann iterates

for B ranges from 1 to 8. Note that, B = 1 means sequential, incremental, stochastic (Hagan et al.,

2014) or online learning (Stegemann, 1999). In the next section the architecture of the ann for the

prediction is described.

7.2 network architecture

The architecture of ann for prediction is di�erent from that for classi�cation. According to the de-

tails, for classi�cation the source dataset is composed of all sh coe�cients, whereas for prediction,

the study treats each sh coe�cient separately. This means that here in prediction we have sep-

arate ann for each coe�cient and they could have di�erent architecture. Furthermore, in case if

they have same ann architecture, for sure they must have di�erent values of parameters specially

biases and weights.

The feedforward network for prediction consists of three layer i.e input, inner and output

layers. The number of neurons in the input layer is equal to the number of features, i.e. κ, in the

source dataset. The neurons in the input layer receives the source dataset. Each neurons in the

�rst inner layer receives the output of each neuron of the input layer. Similarly, each neuron in

the next layer receive the data from each neuron of the previous layer.

Now back to the example of κ = 5 with batch size B = 9 from section 5.1, the input layer

have 5 neurons and the output layer have one neuron. The number of neurons in the input layer

is equal to the number of features in the source data or rows of the source data matrix which is

controlled by κ and the number of neuron in the output layer is equal to the number of rows of the

target data which is one, in our case of prediction. During the experiment, I observe that ann with

one inner layer works perfectly for the prediction, while increasing the number of inner layers

does not improve the results, as suggested by literature mentioned in Section 5.2. Concerning the

number of neurons in the inner layer Nh , the equation (5.10), i.e. Nh = q/(α × (κ +M)) ,
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7.2. network architecture

with, α , an arbitrary scaling factor, usually 2-5, controls the over �tting, q is number of samples

in source data, M number of target classes, suggests that if κ = 5, q = 171, κ + M = 5 + 1 = 6,

then the round o� values of Nh are 17, 10, 7, 6 for α = 2, 3, 4, 5, respectively. But, before the �nal

decision it is important to consider the relationship between the number of unknown variables n

(weights and biases) in an ann and the number of sample q in source dataset. To determine total

number of unknowns n, consider once again Figure 5.1, the ann with 5,4,1 neurons in three layers.

The number of unknown variables n is given by (5.4), i.e. n = J 1(κ + 1)+ J 2(J 1 + 1)+ . . .+ J l (J l−1 +

1)+ . . .+ JL(JL−1 + 1) , where, κ is the number of neurons in the input layer and J l is the number

of neuron in the layer l = 1, 2. Therefore the number of unknown variables is 29. In order to arrive

at a regular linear system of equations we must have more than 29 observations to solve the 29

unknowns. More the number of observations better would be the results. In our case where the

source data size is very small, we have to be very careful and stay within the limits of the data size

to set the number of neurons in the inner layer of an ann.

The time series, for this study, consists of 171 data points i.e. from April 2002 to November

2017, one for each month. The learning process utilizes the time series not only for training,

but also for validation and testing as well. Usually, the data split ratio is 70%, 15% and 15% for

training, validation and testing, respectively. Which reduced the available data sample for training,

even further. Kaastra and Boyd (1996) suggests that the training set is at least twice as large as

the number of weights or preferably more. Therefore, this study restricts the size of ann with

maximum 85 number of unknowns n. With n = 85, suppose κ = 12 then the maximum number

of the neuron in the inner layer can reach up to 6. To restrict the ann up to n = 85 is a very

strict limit, however keeping in view the size of the dataset, this is optimal. Table 7.1 presents the

number of maximum neurons, an ann possibly have in the inner layer against the di�erent values

of the κ and keeping the maximum number of n ≤ 43.

In short, the input layer contains the neurons equal to the number of the input values from

source dataset or in other words, the input layer contains the neurons equal to κ. The output layer

have only one neuron. The ann have one inner layer. The number of the neurons in the inner

layer, ranges between 6-11, depends upon, �rstly, the size of the data, specially κ, secondly the

relative accuracy of the prediction. Sigmoid functions acts the role of the activation function. The

output of the output layer i.e aL is compared with the target data value tτ for each data point in

the cost function. The di�erence between the two determines the current status of the training

process. The objective of the training process is to reduce the cost and bring it close to zero. Since,
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7. prediction using ann

Table 7.1: For di�erent values of κ the maximum number of neurons in the inner layer of
an ann does not exceed the limit of 43

κ size of inner layer n
(neuron) (bias + weights)

5 11 78
6 10 81
7 9 82
8 8 81
9 7 78

10 7 85
11 6 79
12 6 85

the time series of the coe�cients have yearly periodic behavior, therefore before moving towards

the prediction for sh coe�cients lets consider the ann prediction for an equivalent sine function.

7.3 example: sine wave prediction

The time series of sh coe�cients posses an inter annual behavior. A prediction process, with the

assumption that a sine wave can represent a time series of a sh coe�cient, provides a starting point

for the prediction of a sh coe�cient time series. A sine wave having 16 cycles with 12 equidistant

points in each cycle is shown in Figure 7.1. 16 cycles represent 16 years from 2002-2017 and 12

points in each cycle are equivalent to the 12 months of a year. In this example the prediction process

uses the data from April 2002 to November 2016 as the source data and predict the coe�cient for

December 2016. Both, gd and lm algorithm are used for prediction. In the following paragraph

�rstly the procedure and outcomes of gd are presented, afterwards the description and results of

lm are discussed.

2002 2004 2006 2008 2010 2012 2014 2016 2018

Years

0

0.5

1

Figure 7.1: A sine wave, acting as a sh coe�cient time series.

The prediction starts with a network of three i.e. input, inner and output layers, with one

neuron in the output layer and four neurons in the inner layer, as discussed in the previous section.
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7.3. example: sine wave prediction

The number of the neurons in the input layer κ, the learning rate η, number of iterations i , batch

size B and most importantly the vector of initial values for biases and weights x are the variables

which need �ne tuning to get the best prediction. First of all, to get the initial guess for the vector of

unknown variables x a source data and the target data with arbitrarily selectedκ = 8 and B = 4 has

been formulated, as described in Section 7.1. 70% of which is set as training and 30% as test data.

Figure 7.2 represents the training and test targets using a thin and thick blue line, respectively.

At the end of the thick line, a cyan circle represents the target for the prediction. The data is

2003 2005 2007 2009 2011 2013 2015 2017

Years

0

0.5

1 original signal

training targets

test targets

prediction target

Figure 7.2: Target datasets for training process in thin blue line, for test process in thick
blue line.

then used to train the ann several times to test the randomly initialize the vector of unknown

variables x. The initial set which gives the best results has been saved and used in the rest of the

process. The second parameter needed to be analyzed is the learning rate. Using the above-stated

setting for κ, B and initial values of x, di�erent values of the learning rate has been investigated.

The changing shape of cost minimization curve gives an insight into the learning process. For

example, Figure 7.3 displays curves of cost minimization due to di�erent learning rates η. It shows

that a small η requires more iterations to minimize the cost whereas cost minimizes quickly as the

η increases. On the other hand, Figure 7.4 displays the cost minimization curve is jumping around

10 20 30 40 50 60 70
0.4

0.5

0.6

0.7

Iterations

C
os

t

 

 

η=.03
η=.06
η=.09
η=.12

Figure 7.3: Cost minimization curves with di�erent learning rates (η). A small η requires
more iterations to minimize the cost.

to achieve the minimum because the η is too large. An optimal learning rate brings the cost to

the minimum value quickly and therefore the process does not need many iterations. The plot in

Figure 7.3 shows that the cost curve due to η = .12 does not decrease very slowly either jumping

around the minimum, therefore, it is selected as an initial learning rate. The optimal learning rate
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Figure 7.4: Cost minimization curves with large η jumping around the minimum.

also helps us to set the number of iterations. Kaastra and Boyd (1996) discusses the issue of the

number of optimal iterations in detail and suggest several checks to alter the number of iterations,

such as

• if the cost remains constant for several iterations such as 20-30 iterations there is no need

to iterate the process any further.

• If the cost decreases up to 50-60 % in the �rst few iterations,

– reduce the number of iterations signi�cantly,
– reduce the learning rate to half.

In this way, by changing the learning rate in fewer iteration algorithm reaches the minimum,

however, to start the process i = 200 is set as the initial value. κ and B are arbitrarily selected to

initialize the other variable. Now by iterating the process for κ and the B bring us to an optimal

combination which produces the best trained ann. A �ow chart in Figure 7.6 summarizes the

iterating process. It generates the cost curves and the predicted values with combinations of κ, B

and i . Loops iterate κ from 5 to 12, B from 1 to 8 and i 1 to 200.

A painstaking work, while observing the behavior of the cost minimization curve and changing

the number of iteration and learning rate, leads to the outcome. A combination of κ = 6 and B = 8

with η = 1.9 and i = 160 produces the best results for the sine wave prediction. Figure 7.5(a)

represents the �nal results. Thin green marks show that the trained ann is able to imitate the

target points of the training data matrix. Moreover, thick green marks and a red mark inside

the cyan circle represent the accurate output of the test and prediction targets, respectively. To

verify the prediction ability of the trained ann the prediction process is extended up to May 2011.

Figure 7.5(b) represents the predicted curve using a red line.

In the second part of the sine function example, the lm algorithm is used for optimization. In

contrary to gd, lm is self-tuning optimizing algorithms as described in Section 5.9. Figure 7.5(c)
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2003 2005 2007 2009 2011 2013 2015 2017

Years

0

0.5

1 training target

test target

prediction target

training result

test result

prediction result

(a) Prediction results for the training, testing and prediction processes.

2003 2005 2007 2009 2011 2013 2015 2017

Years

0

0.5

1

(b) Prediction results using gd extended up to June 2017.

2003 2005 2007 2009 2011 2013 2015 2017

Years

0

0.5

1

(c) Prediction results using lm extended up to June 2017.

Figure 7.5: Prediction results: Sine function using gd and lm

represents the output. The blue color line in the background shows the targets and the green

marks show the corresponding output, whereas the red thick line represents the outcome of the

prediction step.

Using the lm algorithm, one has to iterate di�erent values of the κ and B, however, there is

no need to search for the learning rate. As the lm is the improved version of Newton’s method

and the gd and it operates with dynamic learning rate and reachs the global minimum in one step,

therefore the di�erence between the two results is quite obvious. The following plot shows that

the error of lm is less than that of gd.

The experience gained during the process of this example helps to initiate the ann prediction

process for the sh coe�cients. The following section reports the results of the prediction using

ann.

67



7. prediction using ann

Source data X`

κ = 5

for 5 ≤ κ ≤ 12 stop

B = 1

for 1 ≤ B ≤ 8

i = 1

initialize wl , bl

for 0 ≤ i ≤ 200
1. Test the ann
2. Plot output
3. Plot cost

Feedforward: al = σ (wlal−1 + bl ). eq. (5.6)

Evaluation: Ĉ(x) ≈ 〈e(i)|e(i)〉 ,with e = (t − a). eq. (5.27)

Backpropagation:
(
∂C
∂blj

∂C
∂wl

jk

)
=

(
δ lj δ

l
ja

l−1
k

)
. eq. (5.33)

updateb,w : wl → wl −
η
B
∂C
∂wl , bl → bl −

η
B
∂C
∂bl

. eq. (5.35)

Target
data T

bl

wl

yes

no

yes

yes

no

no

κ = κ + 1

B = B + 1

i = i + 1

Figure 7.6: Flow chart summarizes the processing steps to train ann using gd.
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Figure 7.7: Relative error of gd is higher w.r.t. lm for training the ann for sine function.

7.4 results

Section 7.3 present a simple case of sine wave prediction, which acts as a base for grace sh coef-

�cient prediction. Selection of initial values for the parameters, analyzing the output of the cost

function for all sh coe�cients is a very time-consuming task, therefore lm which o�er automatic

adjustment of the number of iteration i and learning rate η is used. The process iterates the value

of κ, B, and initial values of x to reach the minimum cost. Figure 7.8(a) and 7.8(b) present the

outcome of the coe�cient prediction of C19,1 and S13,7 . The green marks show that the trained

ann successfully imitate the targets, while a thick red line represents the predicted values of the

coe�cient from December 2016 to June 2017.

Despite the hard work, there are many sh coe�cients could not be predicted, for example,

Figure 7.8(c) presents time series of S3,3. The relative error of three cases, presented in Figure

7.8(d), show that the prediction of the S3,3 given in Figure 7.8(c) is not acceptable. After analyzing

the cost, error curves and predicted values, several coe�cients are identi�ed as the predictable

coe�cients. Figure 7.9 presents the predicted coe�cients in the sc format. Each sh coe�cient has

its separate ann with di�erent sets of initial weights and biases. All of them have one inner layer

which is composed of 4 to 6 neurons.

The lengthy process of ann has predicted 245 coe�cients successfully. The rest of essential

coe�cients are random and therefore even after tuning the parameters, such as changing the

number of neurons in the inner layer, batch size, κ and initial weights, anns are not able to predict

them. After removing the predictable coe�cients from the essential coe�cients, the class is called

a reduced solution. According to the results, the �nal number count of the essential, nonessential

and predictable classes of coe�cients are 6245, 1787 and 245, respectively. Finally, the next section

illuminates the comparison of prediction using ann and polynomial �t.
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(a) prediction using ann of C19,1. The red curve show the higher prediction quality.
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(b) prediction using ann of S13,7. The red curve show that the prediction quality is reliable.
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(c) prediction using ann of S3,3. The red curve show that the prediction quality is not reliable.
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(d) The relative errors of the predicted time series for C19,1, S13,7 and S3,3.

Figure 7.8: Prediction results using lm for selected coe�cients and their relative errors.
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Figure 7.9: a) essential and b) nonessential classes in sc format
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Figure 7.10: Number of coe�cients, 6245, 1787 and 245 in a) essential, b) nonessential and
p) predictable classes, respectively.

7.5 ann vs polynomial prediction

Polynomial �tting is an alternative or equivalent to the ann prediction. However, based on nu-

merical simplicity the polynomial �tting is better than the ann. Indeed, an ann requires tough

training phase and large computer memory to be available for prediction. However it outruns

performance of polynomial �tting. Polynomial �tting performs well for interpolation within the

data limits if it �ts the data optimally. Even an optimal polynomial �t does not perform well for

extrapolation. Either the values increase or decrease immediately outside the input data limits.

Contrarily ann has mechanisms of training and testing to check under and over-�t situations. An

ann is more �exible to mimic a time series.

Suppose N is the number of the given data point x,y then interpolation is de�ned as a way to

�nd the data values at the unknown points within the data limits and extrapolation is to �nd the

data point beyond the data limits. Trigonometric polynomial, given in the following equation, is

one of many ways to extrapolate the data for prediction.

p(x) = a0 +
K∑
k=1

ak cos(kx) +
K∑
k=1

bk sin(kx) (7.8)

where a0,a1, . . . ,ak ,b1, . . . ,bk are 2K + 1 unknown coe�cients. After �nding the coe�cients, (c.f.

for solution and other details Restrepo et al. (2001)), we get a function which passes through the

N data points,

p(xn) = yn, n = 0, 1, 2, . . . ,N − 1 (7.9)

The plots in Figure 7.11 shows the result of prediction using trigonometric polynomial. The

time series of the coe�cientsC19,1 and S3,3 are given in the Figure 7.11(a) and 7.11(b), respectively.

The plots show that for both curves the interpolation using trigonometry give excellent results
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however for the prediction phase it fails badly. Figure 7.11(c) and 7.11(d) show the prediction

results in closeup for coe�cients C19,1 and S3,3, respectively.

2002 2004 2006 2008 2010 2012 2014 2016 2018

Years

0

0.5

1

original signal

interpolation

prediction

(a) prediction of C19,1. The red curve show bad prediction quality.

2002 2004 2006 2008 2010 2012 2014 2016 2018
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1

(b) prediction of S3,3. The red curve show bad prediction quality.

2015 2016 2017 2018
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-0.5
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(c) Closeup C19,1.
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(d) Closeup S3,3.

Figure 7.11: Prediction results using trigonometric polynomial �t for selected coe�cients.

The results in Figure 7.11 shows the inability of the trigonometric polynomials to predict the

data value outside the given data limits. The comparison of prediction curves of C19,1 in Figure

7.8(a) and 7.11 show that the ann predicts far more batter than trigonometric polynomial. While

in case of S3,3 trigonometric polynomial is better in interpolation but both method fail to predict

the random time series.

Next chapter presents a gravity recovery process based on the variational equation method

and ends with the comparison of full and reduced solutions of the recovered gravity �elds.
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8gravity recovery

The objective of the study is to identify classes in the grace monthly sh coe�cients. Chapter 3

and Chapter 4 identify essential and nonessential classes while Chapter 7 identi�es a group

of predictable coe�cients. The goal of the study is to show that if the gravity recovery process ig-

nores nonessential and predictable classes during the recovery process, the quality of the recovered

coe�cients improves. This chapter proves this point with the help of a closed loop gravity recov-

ery simulation. The process starts with the variational level monthly coe�cients of Dec. 2016

denoted by pDec .
`,2016, which refers to the grace monthly coe�cients after subtracting µs the static

�eld or long term mean �eld (Meyer et al., 2012). In vector form can be written as,

pDec2016 =
[
pDec .1,2016 pDec .2,2016 pDec .3,2016 . . . pDec .`,2016 . . . pDec .L,2016

]
, (8.1)

where ` = 1, 2, . . . , 8276 is the running coe�cient number in the vector of all coe�cients, for

details see Chapter 2, (c.f. (2.10)).

grace data

Nonessential
coe�cients

Essential
coe�cients

Unpredictable
coe�cients

Predictable
coe�cients

Figure 8.1: Flowchart of classi�cation scheme.

Clustering and classi�cation of pDec .2016 identify two classes of coe�cients, i.e. essential and

nonessential. Afterwards, ann distinguishes predictable and unpredictable coe�cients among the

essential class. Flowchart in Figure 8.1 summarizes the classi�cation scheme. In this chapter, µ2016
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(c.f. (2.13)) the mean �eld of the year 2016 acts as the reference �eld, hereafter called a priori �eld

and pDec .2016 serves as the true �eld (Jäggi et al., 2006). The gravity recovery simulation using a priori

and true �elds recovers a set of sh coe�cients, hereafter called recovered �elds.

This chapter describes the details of the gravity recovery process. The process has its roots

in the grace gravity recovery technique, for instance, the true range-rates Ûρ(t) are expressed

as the truncated Taylor series with respect to unknown dynamic parameters pDec .
`,2016 about the a

priori range-rates Ûρ0(t) (Jäggi et al., 2010). grace, a constellation of two free falling low earth

orbiting gravity recovery satellites, is an implementation of a low-low satellite to satellite (ll-

sst) tracking system in which on-board sensors measure the inter-satellite range-rates (Rummel

et al., 2002) (Freeden et al., 2002). The variation in inter-satellite range is due to the gravity �eld

variation underneath the satellites. Regions of slightly stronger gravity a�ect the leading satellite

�rst, accelerating it slightly stronger than the trailing satellite (Nasa, 2002). There are several

methods in practice to recover the gravity �eld from range-rates observation such as variational

equation approach (Ballani, 1988) (Reigber, 1989) (Reigber et al., 2005) (Förste et al., 2008) (Tapley

et al., 2005), short arc approach (Mayer-Gürr et al., 2005), energy balance approach (Weigelt, 2007)

and acceleration approach (Rummel, 1979) (Reubelt, 2008) (Liu, 2008). The handbook of Geodesy

summarizes all methods (Keller, 2013). In this study, the variational equation approach is utilized

for gravity recovery.

Gravity �eld recovery from range-rates measurements can be considered as a di�erential or-

bit improvement process (Jäggi et al., 2006). Use of range, range-rates for the analysis of satellite

based geodetic network is explained in details by Grafarend and Livieratos (1978). Grafarend and

K.Heinz (1978) present the rank defect analysis of satellite geodetic network in the dynamic mode

where the coe�cients of sh representation of the gravity �eld are unknown is presented. This

study uses numerical integration, �rstly, to generate the position and velocity vectors of the two

grace satellites and later to compute the partial derivatives of the position and velocity vectors

with respect to a priori �eld. Section 8.1 introduces the observables of a ll-sst system. Section 8.2

states the mathematical details of the orbit determination. Section 8.3 formulates the variational

equations for gravity recovery. Section 8.4 explains the process of computing the position and

velocity vectors of the a priori satellites and function of partial derivatives of the position and

velocity vectors with respect to the coe�cients of a priori �eld using the variation of constants

method. Section 8.5 shows how to solve the �rst order linear integral equation obtained by vari-

ation of constants method. Section 8.6 states the process to compute the range-rates using the
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8.1. ll-sst observables

position and velocity vectors integrated earlier in Sections 8.2. Section 8.7 describes the process

of coe�cient estimation and evaluate the performance of the variation of constants method. Sec-

tion 8.8 presents results, comparisons and analysis.

In the study, the gravity recovery process simulates the grace system with certain simpli�ca-

tions. It ignores all kinds of tides, the gravitational forces due to Sun, Moon and planets and all non

gravitational accelerations during the orbit integration. Furthermore, it considers only the Green-

wich Apparent Sidereal Time (gast) to convert the coordinates of position and velocity vectors

from the Earth-�xed system to the inertial system.

8.1 ll-sst observables

Inter-satellite range-rates are the key observations of the grace system. For the simulation, range-

rates are computed using the position and velocity vectors generated by the orbit determination

process (c.f. Section 8.2). Let x represents the position vectors of grace satellites in the Earth-�xed

reference frame as,

xs = xse1 + yse2 + zse3, (8.2)

where s = a, b, represents two satellites i.e. a is the leading and b is the trailing. and e1, e2 and

e3 are the three unit vectors in the x,y and z directions. The di�erences between the respective

position vectors are,

δx = xb − xa. (8.3)

Then the scalar inter-satellite range is

ρ =
√
〈δx|δx〉 , (8.4)

The unit vector in the direction of the inter-satellite range is

e = {ex , ey, ez } =
δx
ρ
. (8.5)

ρ and e constitutes the inter-satellite range vector as,

δx = ρe . (8.6)

Di�erentiating (8.6) results in range-rates,

δ Ûx = Ûρe + ρ Ûe , (8.7)
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8. gravity recovery

where, δ Ûx is the di�erence between the velocity vectors of grace satellites. e is a unit vector and

therefore

〈e|e〉 = 1 ⇒ 〈e| Ûe〉 = 0 . (8.8)

The time derivative Ûe of the line of sight vector (los) is perpendicular to the los vector itself. The

vector Ûe itself is not a unit vector. Therefore (8.7) becomes

〈δ Ûx|e〉 = Ûρ 〈e|e〉 + ρ 〈Ûe|e〉 , (8.9)

or

Ûρ = 〈δ Ûx|e〉 . (8.10)

which represents a projection of the velocity di�erence vector along the line-of-sight vector. It is

noted that this quantity is not the magnitude of the velocity di�erence vector (Kim, 2000). Finally,

using (8.5), the range-rates are equal to

Ûρ =

〈
δ Ûx|

δx
ρ

〉
. (8.11)

Mathematical derivation from (8.2) to (8.11) summarizes the computation of range-rates, provided

the position and velocity vectors are available. In the following section, a detail discussion unveils

the orbit determination process to compute the position and velocity vectors.

8.2 orbit determination

The motion of a satellite around a celestial body can be expressed as a second order di�erential

equation. From the law of gravitation we know that the gravitational force F between a satellite

with massm under the central gravitational force of a single point mass M is given by F = GMm
r 2 er ,

with the gravitational constantG, the distance between the satellite and the center of point mass r

and the direction vector along the force of gravitation er . Furthermore, from Newton’s second law

of motion F =mÜx, therefore, the equation of motion of a satellite under the in�uence of a isotropic

central force can be written as,

mÜx = −G
Mm

r 2
er . (8.12)

As er = x
|x | , the (8.12) becomes,

Üx = −
GM

|x|3
x , (8.13)

In case of Earth as the central gravitational body, there are number of additional forces acting on

the satellite due to which the satellite experience addition acceleration, such as, acceleration due to

non-spherically and inhomogeneous mass distribution within Earth, neighboring celestial bodies,
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8.2. orbit determination

Ocean and earth tides, atmospheric drag and solar radiation. These forces are called perturbed

forces (Seeber, 2003). For this simulation, only the acceleration f(x) due to non-spherically and

inhomogeneous mass distribution within the Earth is considered. It can be added into the equation

of motion as addition term as,

Üx = −
GM

|x|3
x + f(x) . (8.14)

It is a non-linear second order di�erential equation with initial state vector {x(t0) , 0, Ûx(t0) , 0}.

An alternative form of motion of equation is

Üx = grad V = ∇V , (8.15)

where V is the gravitational potential and is given by,

V (r , θ , λ) =
GM

r

(
1 +

∞∑
l=2

(
R

r

) l l∑
m=0

P lm(cosθ )
[
Clm cos(mλ) + S lm sin(mλ)

] )
. (8.16)

The �rst term GM
r describe the potential due to the isotropic center force while the remaining part

represents the �nite estimation of the disturbing potential, estimated up to certain degree lmax of

the sh.

T (r , θ , λ) =
GM

r

lmax∑
l=2

(
R

r

) l l∑
m=0

P lm(cosθ )
[
Clm cos(mλ) + S lm sin(mλ)

]
, (8.17)

where R is the semi-major axis of a reference ellipsoid of the earth, S l ,m and Cl ,m with l is sh

degree,m is sh order, are fully normalized spherical harmonics (sh) coe�cients for the disturbing

potential, and P lm(cosθ ) are the fully normalized associated Legendre functions, for detail, see

(Heiskanen and Moritz, 1967). The disturbing potentialT is observed in local north oriented frame,

which if de�ned as,

• 1st axis is pointing in radial direction

• 2nd axis is oriented towards north

• 3rd axis points eastwards

then the partial derivatives of 8.17 or the gravitational potential gradients (Liu, 2008) with respect

to r , θ , λ are,

∂T
∂r = −GM

r 2

lmax∑
l=2

(
R

r

) l l∑
m=0

P lm(cosθ )
[

Clm cos(mλ) + S lm sin(mλ)
]
(l + 1) ,

1
r
∂T
∂θ = −GM

r 2

lmax∑
l=2

(
R

r

) l l∑
m=0

P
′

lm(cosθ )
[

Clm cos(mλ) + S lm sin(mλ)
]
sinθ ,

1
r sin θ

∂T
∂λ = GM

r 2

lmax∑
l=2

(
R

r

) l l∑
m=0

P lm(cosθ )
[
−Clm sin(mλ) + S lm cos(mλ)

]
m

1
sinθ .

(8.18)
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If n, e and i , in this chapter only, represent local north oriented, earth �xed and inertial frame of

references, respectively then the transformation matrix Ren in 8.19 converts gradient vector from

north oriented frame to earth �xed frame.

Ren =


sinθ cos λ − cosθ cos λ − sin λ

sinθ sin λ − cosθ sin λ cos λ

cosθ sinθ 0


. (8.19)

Afterwards, Rie = R3(−gast) rotation matrix rotates the vector from earth �xed frame to inertial

frame. The complete transformation turns out to be

Rin = RieR
e
n , (8.20)

and (8.21) shows the complete coordinate transformation with
[
дx ,дy,дz

]>
i as estimated gradient

vector of the force �eld f(x) in inertial coordinate frame, as,

f(x) =



дx

дy

дz

 i
= Rin



er ∂T
∂r

eθ 1
r
∂T
∂θ

eλ 1
r sin θ

∂T
∂λ

n
, (8.21)

where, er , eθ and eλ are the base vector of gradient in local frame. The integration of (8.14) for the

perturbed motion of equation is worked out numerically. A multi-step integrator ode113 is used

to solve it for the position and velocity vectors of the satellite orbit. The position vectors of the

satellites are used to simulate the range-rates measurements. The details are given in Section 8.6.

In the next section, the gravity recovery using variational equation is introduced.

8.3 variational eqations

Variational equations method is used to recover the gravity �eld. Variational equations are always

linear (Riley et al., 1967). Consider the following equation of motion,

Üx = ∇U (x) + ∇T (x) , (8.22)

whereU represents the isotropic part of the gravitational force as given by (8.13) andT represents

the anisotropic part of the gravitational force as given by (8.17) with x is the position vector of

the satellite. To study the impact of slightly changing gravity parameters such as sh coe�cients,

i.e. Clm and Slm on the position and velocity of satellites, the partial derivatives of the position

and velocity with respect to these parameters are required (Ballani, 1988) (Montenbruck and Gill,
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8.3. variational eqations

2000). For simplicity Clm and Slm are denoted as p
`
, where ` is the running coe�cient number

from 1 to 4096 represents the sine coe�cients and from 4097 to 8276 represents cosine coe�cients

in the monthly data vector (c.f. Section 2.2), Therefore after di�erentiating (8.22) with respect to

p
`
, the equation becomes,

∂Üx
∂p

`

=
∂∇U (x)
∂p

`

+
∂∇T (x)
∂p

`

. (8.23)

SinceT is much smaller thanU and therefore the orbit x can be replaced by the reference orbit x0.

Then the term ∂∇T (x0)
∂p

`
does net depend upon x, now by applying the chain rule only on the �rst

term of the right hand side, the equation becomes,

∂Üx
∂p

`

=
∂∇U

∂x
∂x
∂p

`

+
∂∇T (x0)
∂p

`

. (8.24)

Now after considering the de�nition,

ξ` =
∂x
∂p

`

, (8.25)

the (8.24) becomes,
Üξ` = ∇

2U ξ` +
∂∇T (x0)
∂p

`

, (8.26)

where ∇2U initially computed in lnof and then rotated to the inertial frame using Rin from the

left and its transpose, i.e. Rni from the right. Its components in lnof are given as,

Uxx = ∂
∂r

(
∂U
∂r

)
,

Uyy = 1
r

∂
∂θ

(
1
r
∂U
∂θ

)
+ 1

r
∂U
∂r ,

Uzz = 1
r sin θ

∂
∂λ

(
1

r sin θ
∂U
∂λ

)
+ 1

r
∂U
∂r −

1
r 2 tan θ

∂U
∂θ ,

Uxy = ∂
∂r

(
1
r
∂U
∂θ

)
− 1

r 2
∂U
∂θ ,

Uxz = 1
r sin θ

∂
∂λ

(
∂U
∂r

)
− 1

r sin θ
∂U
∂λ ,

Uyz = 1
r sin θ

∂
∂λ

(
1
r
∂U
∂θ

)
,

where Uxy = Uyx ,Uxz = Uzx and Uyz = Uzy see, (Wermuth, 2008). The system in (8.26) is a

linear inhomogeneous di�erential equation system with ξ
`
(t) to be its particular solution, where

the initial state vector can be set to zero i.e. {ξ
`
(t0) = 0, Ûξ

`
(t0) = 0}, since the initial state does

not depend upon the dynamic force �eld. The solution vector ξ
`
(t) consists of partial derivatives

of the position and velocity vectors with respect to gravity parameters p
`

(c.f. (8.25)), one solu-

tion vector for each of gravity parameter p
`

of a priori coe�cients. As the general solution of

the inhomogeneous di�erential equation is the sum of the general solution of the corresponding

homogenous part and the particular solution of the inhomogeneous (Kreyszig, 2000). Therefore,
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8. gravity recovery

at �rst, consider the homogeneous part of the variational equation, i.e.

Üξ`(t) = ∇
2U (t)ξ(t)` . (8.27)

It is a second order di�erential equation with two fundamental solutions, both of them having three

components k , this makes it a system of equations with six unknowns which needs six solutions.

Let the partial derivatives ζk ,q(t), and Ûζk ,q(t) q = 1, 2, . . . , 6, with respect to the initial values are

the six fundamental solutions. The six di�erent solution starts with six di�erent initial conditions,

as,

ζk ,q(t0) =


0 , k , q

1 , k = q
and Ûζk ,q(t0) =


0 , k , q

1 , 3 + k = q
(8.28)

The solutions ζq(t) and Ûζq(t) along with initial conditions given in (8.28) de�nes a complete system

of solutions of coupled homogeneous equations (8.27). The linear combinations of the q solutions

of the homogeneous system
ξ
`
(t) =

∑6
q=1 ζqαq(t) ,

Ûξ
`
(t) =

∑6
q=1
Ûζqαq(t) ,

(8.29)

with constant coe�cients, αq is also a solution of the homogeneous system, which may be con-

sidered as the general solution of the homogeneous system (8.27). The solution vector ξ
`
(t) for

the inhomogeneous system (8.26) is obtained by variation of constants using 8.29 as the general

solution of the homogeneous equation. Next section describes the usage of variation of constants

method in detail.

8.4 variation of constants

Solving the variational equations, for each satellite and each parameter p
`

up to degree and order

90, i.e. 8276 gravity parameters, requires much computational time. The numerical e�ort of the

solution of the variational equations dominates the computational load of the whole gravity �eld

determination process (Antoni and Keller, 2013). Beutler (2005) and Jäggi (2007), therefore, present

the variation of constants method to solve the inhomogeneous system of equations (8.26).

The solution vector ξ
`
(t) and its �rst derivative Ûξ

`
(t) are obtained through the method of

variation of constant as a linear combination of q = 6 linear homogeneous solutions.

ξ
`
(t) =

∑6
q=1 ζqαq(t) ,

Ûξ
`
(t) =

∑6
q=1
Ûζqαq(t) ,

(8.30)
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where the functions ζq(t) and Ûζq are solutions of the homogeneous system (8.27), the coe�cients

αq are functions of time t and can be written as α>(t) =
[
α1(t) α2(t) . . . αq(t)

]
. Therefore we

can write (8.30) in matrix form
ξ
`
(t)

Ûξ
`
(t)

= Z(t)α(t) ,

= ÛZ(t)α(t) ,
(8.31)

where Z(t) and ÛZ(t) are the rectangular matrices with q columns and k rows, in which column

contains the elements of the solution ζk ,q(t) and Ûζk ,q(t) of the homogeneous system. Now accord-

ing to variation of constant method, (c.f. Appendix C), a system of linear algebraic equations from

the system of solutions (8.30) can be written with conditions as,

d

dt
(Zα) = ÛZα −→ Z Ûα = 0 , (8.32a)

d2

dt2
(Zα) = ÜZα + ÛZ Ûα −→ ÛZ Ûα = f , (8.32b)

where f = ∂∇T
∂p

`
. Because the columns of Z ful�lls the homogenous equation, we have,

ÜZα = ∇2U · Zα , (8.33)

and Zα has to be the solution of the non-homogeneous equation, we can conclude,

ÜZα + ÛZ Ûα =
d2

dt2
(Zα) = ∇2UZα +

∂∇T (x0)
∂p

`

, (8.34)

which leads to
ÛZ Ûα =

∂∇T (x0)
∂p

`

. (8.35)

Combining the last solution with 8.32a, we get,

Z̃ Ûα = Y(t) , (8.36)

where, Z̃ =

Z

ÛZ

 and Y(t) =


0
∂∇T (x0)

∂p
`

 .

After rearranging the equation becomes

Ûα(t) = Z̃(t)−1Y(t) , (8.37)

while integration of Ûα(t) leads us to α(t) as,

α(t) =

∫
Ûαdt . (8.38)

Simpson’s rule, a numerical integration method is used to solve the �rst order di�erential equation

(8.38). The following section presents the details.
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8.5 numerical integration

In this section the method of numerical integration is presented, to solve the problem like (8.38).

The idea of a numerical evaluation is to solve the integral,

I =

b∫
a

f (t)dt , (8.39)

with, a and b are the given integration limits and f is a given analytical or empirical function. Nu-

merical integration helps to solve the integrals whose analytical evaluation would be di�cult or

impossible or whose integrand, as in (8.38) is an empirical function given by numeric values (Krey-

szig, 2000). Most popular numerical integration methods are rectangular rule, trapezoidal rule,

Simpson’s rule and Gauss quadrature. Since the numerical values in (8.38) are given at an equal in-

terval, therefore Gauss quadrature method can not be used. First three methods evaluate at equal

intervals, with constant approximation results in the Rectangular rule, linear in the trapezoidal

rule and quadratic results in Simpson’s rule. Simpson’s rule is computationally time consuming

however provide su�ciently accurate results with respect to former two methods.

Simpson’s rule divides the interval of integrations a ≤ t ≥ b into even numbers of equal sub-

intervals, suppose n = 2m and the interval between them is h = (b − a)/2m which starts from

a or t0 and goes up to b or tm as, t0, t1, t2, . . . , t2m−2, t2m−1, tm , then for the �rst two

intervals, i.e. from t0 to t2 the integral can be written as,
t2∫

t0

f (t)dt ≈ h

(
1
3 f0 +

4
3 f1 +

1
3 f2

)
. (8.40)

A similar expression can be written for the next two sub-intervals, i.e. from t2 to t4 and so on till

t2m−2 to t2m (c.f. (Kreyszig, 2000)). So the summation of allm formulas lead to the Simpson’s rule,
b∫

a

f (t)dt ≈
h

3 (f0 + 4f1 + 2f2 + 4f3 + · · · + 2f2m−2 + 4f2m−1 + f2m) . (8.41)

Inserting the values of α(t) back to the (8.31) yields the solutions {ξ(t), Ûξ(t)} as,

ξ
`
(t) = Z(t)α(t) =

[
ξx (t) ξy (t) ξz (t)

]>
,

Ûξ
`
(t) = ÛZ(t)α(t) =

[
Ûξx (t) Ûξy (t) Ûξz (t)

]>
.

(8.42)

Above relations leads us to the end of the theoretical background of the variational equation.

The solution {ξ(t), Ûξ(t)} of the variational equations 8.26 along with the simulated range-rates are

used to formally write the observation equation of the gravity recovery process in Section 8.7. The

process to simulate the range-rates is described in the following section.
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8.6 range-rates

This section states the sequential processing to simulate the range-rates observations through orbit

determination. The simulation starts with the transformation of Osculating Kepler elements given

in Table 8.1 using the equations given in Box 1 in (Austen and Grafarend, 2001) into the position

xa(t0), xb(t0) and velocity Ûxa(t0), Ûxb(t0) vectors, which act as the initial values for the numerical

orbital integration of satellites a and b, respectively. Orbital integration, �rstly, yields true orbit

xa(t), Ûxa(t), xb(t), Ûxb(t) for grace satellites a and b for (t) epochs, using the true �eld followed by

the integration of a priori orbit x0a(t), Ûx0a(t), x0b(t), Ûx0b(t) using the a priori �eld. The simulation

yields the orbit in arcs of 90 min with the frequency of tan sec. The last position and velocity values,

of the previous arc, act as the initial values for the next arc. Therefore, each arc is composed of 540

observations. While 480 such arcs, to solve 8277 unknown sh coe�cients, make this problem an

overdetermined system of equations. In this way, the orbits are computed for one month period.

True Position and velocity vectors of both satellites yield true Ûρ(t) range-rates. Similarly, a pri-

ori Position and velocity vectors of both satellites yield a priori Ûρ0(t) range-rates. The process for

computing range-rates from position and velocity vector is given in Section 8.1. Figure 8.2 summar-

izes the process as a �ow chart. The di�erence between the two range-rates i.e δ Ûρ(t) = Ûρ(t)− Ûρ0(t)

acts as the observation y of the least square adjustment process, as discussed in Section 8.7. The

noise of the level of 1×10−7m is added to the error-free simulated range-rate observations to imit-

ate grace like situation. The next task, discussed in the next section, is to formulate an expression

for the partial derivatives of position and velocity with respect to the a priori sh coe�cients. The

expression gives birth to the design matrix and the vector of unknown coe�cients for the least

squares adjustment.

Table 8.1: Initial osculating ke of the two grace satellites for simulation

ke Sat. A Sat. B
semi major axis [m] 6838136.6 6838136.6

eccentricity 0.002 0.002
inclination [◦] 89 89

right ascension of ascending node [◦] 0 0
argument of perigee [◦] 0 0

mean anomaly [◦] +1 −1
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Initial values
xa(t0), Ûxa(t0), xb(t0), Ûxb(t0)

True �eld a priori �eld

Orbit integration Orbit integration

Compute
range-rate Ûρ(t) Ûρ(t) − Ûρ0(t)

Compute a priori
range-rate Ûρ0(t)

δ Ûρ(t)

Figure 8.2: Flow chart for computing range-rates.

8.7 coefficient estimation

Gravity �eld recovery from range-rates measurements can be considered as a di�erential orbit

improvement process. Therefore, Ûρ(t) is expressed as truncated Taylor series with respect to p
`

about Ûρ0(t). (Jäggi et al., 2010). Let us formally express it as,

Ûρ(t) = Ûρ0(t) +

[
∂ Ûρ0
∂p1
(t), ... ,

∂ Ûρ0
∂pL
(t)

] 
∆p1
...

∆pL


, (8.43)

so the �nal observation equation becomes,

δ Ûρ(t) =

[
∂ Ûρ0
∂p1
(t), ... ,

∂ Ûρ0
∂pL
(t)

] 
∆p1
...

∆pL


, (8.44)

where δ Ûρ(t) = Ûρ(t) − Ûρ0(t). For simplicity, let us drop (t) and the index 0, for each p
`

we write

d Ûρ

dp
`

=

〈
∂ Ûρ

∂xa
|
∂xa
∂p

`

〉
+

〈
∂ Ûρ

∂ Ûxa
|
∂ Ûxa
∂p

`

〉
+

〈
∂ Ûρ

∂xb
|
∂xb
∂p

`

〉
+

〈
∂ Ûρ

∂ Ûxb
|
∂ Ûxb
∂p

`

〉
, (8.45)

or after using de�nition ξ = ∂x
∂p

`
from (8.25)

d Ûρ

dp
`

=

〈
∂ Ûρ

∂xa
|ξa

〉
+

〈
∂ Ûρ

∂ Ûxa
| Ûξa

〉
+

〈
∂ Ûρ

∂xb
|ξb

〉
+

〈
∂ Ûρ

∂ Ûxb
| Ûξb

〉
, (8.46)

where ∂ Ûρ
∂xa
,
∂ Ûρ
∂ Ûxa
,
∂ Ûρ
∂xb

and ∂ Ûρ
∂ Ûxb

are the partial derivatives of the range-rate, which is the function of

both position and velocity (Kim, 2000). After inserting the value Ûρ = 〈δ Ûx|e〉 from (8.10) we can

write,

d Ûρ

dp
`

=

〈
∂ 〈δ Ûx|e〉
∂xa

|ξa

〉
+

〈
∂ 〈δ Ûx|e〉
∂ Ûxa

| Ûξa

〉
+

〈
∂ 〈δ Ûx|e〉
∂xb

|ξb

〉
+

〈
∂ 〈δ Ûx|e〉
∂ Ûxb

| Ûξb

〉
, (8.47)
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8.7. coefficient estimation

or

d Ûρ

dp
`

=

〈
δ Ûx
∂

∂xa
(e) |ξa

〉
+

〈
e
∂

∂ Ûxa
(δ Ûx) | Ûξa

〉
+

〈
δ Ûx
∂

∂xb
(e) |ξb

〉
+

〈
e
∂

∂ Ûxb
(δ Ûx) | Ûξb

〉
, (8.48)

insert δ Ûx = Ûxb − Ûxa from (8.3)

d Ûρ

dp
`

=

〈
δ Ûx
∂

∂xa
(e) |ξa

〉
+

〈
e
∂

∂ Ûxa
(Ûxb − Ûxa) | Ûξa

〉
+

〈
δ Ûx
∂

∂xb
(e) |ξb

〉
+

〈
e
∂

∂ Ûxb
(Ûxb − Ûxa) | Ûξb

〉
.

(8.49)

For simpli�cation, derive the terms ∂
∂xa
(e) , ∂

∂ Ûxa
(Ûxb − Ûxa) ,

∂
∂xb
(e) , and ∂

∂ Ûxb
(Ûxb − Ûxa). Firstly, con-

sider ∂
∂xa
(e), where e = δx/ρ, from (8.5),

∂

∂xa
(e) =

∂

∂xa

(
δx
ρ

)
=
ρ ∂
∂xa
(δx) −

〈
δx| ∂ρ∂xa

〉
ρ2

, (8.50)

inserting the value δx = xb − xa from (8.3)

=
1
ρ2

(
ρ
∂

∂xa
(xb − xa) −

〈
δx|
∂ρ

∂xa

〉)
. (8.51)

Since from (8.4) ρ is =
√
〈δx|δx〉, therefore,

∂ρ

∂xa
= −

1
ρ
(xb − xa) = −

δx
ρ
= −e, as e = δx/ρ, from (8.5), (8.52)

∂xa
∂xa
= 1 and ∂xb

∂xa
= 0 , (8.53)

by inserting these results back into (8.51) we get,

∂

∂xa
(e) =

1
ρ2
(−ρ + 〈δx|e〉) (8.54)

multiply both side by δ Ûx,

δ Ûx
∂

∂xa
(e) = −

1
ρ

(
δ Ûx −

〈
δ Ûx|

δx
ρ

〉
e
)
, (8.55)

insert Ûρ =
〈
δ Ûx| δxρ

〉
from (8.11) and �nally

δ Ûx ∂
∂xa
(e) = − 1

ρ (δ Ûx − Ûρe) . (8.56)

Secondly, consider ∂
∂ Ûxa
(Ûxb − Ûxa) from (8.49). Since, ∂ Ûxa

∂ Ûxa
= 1, ∂ Ûxb

∂ Ûxa
= 0 ,

∂
∂ Ûxa
(Ûxb − Ûxa) = −1 . (8.57)
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8. gravity recovery

Thirdly, consider ∂
∂xb
(e), where e = δx/ρ, from (8.5),

∂

∂xb
(e) =

∂

∂xb

(
δx
ρ

)
=

©«
ρ ∂
∂xb
(δx) −

〈
δx| ∂ρ∂xb

〉
ρ2

ª®®¬ , (8.58)

inserting the value δx = xb − xa from (8.3)

∂

∂xb
(e) =

1
ρ2

(
ρ
∂

∂xb
(xb − xa) −

〈
δx|
∂ρ

∂xb

〉)
. (8.59)

Since from (8.4) ρ is =
√
〈δx|δx〉, therefore,

∂ρ

∂xb
=

1
ρ
(xb − xa) =

δx
ρ
= e, as e = δx/ρ, from (8.5), (8.60)

∂xa
∂xb
= 0 and ∂xb

∂xb
= 1 , (8.61)

by inserting these results back into (8.59) we get,

∂

∂xb
(e) =

1
ρ2
(ρ − 〈δx|e〉) (8.62)

multiply both side by δ Ûx,

δ Ûx
∂

∂xb
(e) =

1
ρ

(
δ Ûx −

〈
δ Ûx|

δx
ρ

〉
e
)
, (8.63)

insert Ûρ =
〈
δ Ûx| δxρ

〉
from (8.11) and �nally

δ Ûx ∂
∂xb
(e) = 1

ρ (δ Ûx − Ûρe) . (8.64)

Lastly, consider ∂
∂ Ûxb
(Ûxb − Ûxa) from the right hand side of (8.49). Since, ∂ Ûxa

∂ Ûxa
= 1, ∂ Ûxb

∂ Ûxa
= 0 ,

∂
∂ Ûxb
(Ûxb − Ûxa) = 1 . (8.65)

by inserting the four terms form 8.56, 8.57, 8.64 and 8.65 in (8.49) we can write

d Ûρ

dp
`

= −

〈
1
ρ
(δ Ûx − e Ûρ) |ξa

〉
−

〈
e| Ûξa

〉
+

〈
1
ρ
(δ Ûx − e Ûρ) |ξb

〉
+

〈
e| Ûξb

〉
, (8.66)

Note that the quantities for satellite a and satellite b are same but with opposite signs. Solving (8.66)

for each p
`

leads to the formulation of the design matrix A. The orbit integration in Section 8.6

provides the observation y in the form of δ Ûρ(t). From equation 8.1, pDec2016 represents the vector of

unknown sh coe�cients and here for simplicity replaced by p So, the �nal observation equation

is,

y = Ap + ϵ,where ϵ is the error vector , (8.67)
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which leads us to the following system of normal equations (Koch and Kusche, 2002) (Elsaka et al.,

2014)

Np = b with N = A>WA and b = A>Wy , (8.68)

where W is the weight matrix and here it is identity matrix. The normal equations are directly

accumulated from the individual arc-wise blocks as,

N =
m∑
i=1

A>i WiAi and b =
m∑
i=1

A>i Wiy . (8.69)

where, m = 480 is the number of 90 min arcs in 30 days. The solution of the normal equations

yields the estimation of the unknown parameters as

p = N−1b = (A>WA)−1A>Wy . (8.70)

The output is then a set of estimated sh coe�cients. Whereas, adding them back to the a priori sh

coe�cients, gives the recovered �eld. In the next section a detailed analysis of the three di�erent

recovered �elds are presented.

8.8 results

In this chapter, a closed loop simulation for gravity recovery has been presented. The simulation

aims to show that if we recover a reduced �eld, the recovered coe�cients are more stable since

they have a less formal error. To establish this point gravity recovery simulation is used in three

di�erent scenarios, discussed in the following paragraphs.

The process starts with the original grace �eld for December 2016. Clustering and classi-

�cation segregate the data into two classes, nonessential and essential. Afterwards, a prediction

process bifurcates the essential class into predictable and unpredictable coe�cients using ann. For

the �rst scenario, a complete set of sh coe�cients is recovered. In the second and third scenarios,

only essential coe�cients and unpredictable coe�cients are recovered, respectively. At the end of

three scenarios, a comparison of output unveils the improvement in the recovered �eld. Formal

error plots, curves and their relative improvement, ewh maps, their di�erences and some statistics

based on their standard deviation are used as the comparison tools.

For the �rst scenario, the simulation recovers the complete �eld up to degree 90 and order 90.

A �owchart in Figure 8.3 describes the process.
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Original �eld
Dec. 2016

Mean �eld
2016

Orbit integration Variational
equation

Formulate design matrix

Orbit integration

Ûρ(t) − Ûρ0(t) Gravity recovery

Recovered �eld
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Ûρ 0
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x0a(t), Ûx0a(t)

x0b(t), Ûx0b(t)

Ûρ(t)

δ Ûρ(t)

Figure 8.3: Flowchart of gravity recovers simulation. Case 1. recovery of complete sh
spectrum up to degree 90 and order 90.

Original �eld
Dec. 2016

Mean �eld 2016 essential
coe�cient only

Orbit integration Variational
equation

Formulate design matrix

Orbit integration

Ûρ(t) − Ûρ0(t) Gravity recovery

Recovered �eld

tru
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�e
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a
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�eld

Ûρ 0(
t)

x0a(t), Ûx0a(t)

x0b(t), Ûx0b(t)

Ûρ(t)

δ Ûρ(t)

Figure 8.4: Flowchart of gravity recovers simulation. Case 2. recovery of essential coe�-
cients only.

First of all the orbit integration using the true �eld gives the true range-rates. On the other

hand, the integration process using the a priori �eld gives a priori range and partials derivatives

of the orbit. The di�erence between the two range-rates gives the observation vector. Using this

observation vector and the matrix of the partial derivatives which acts as design matrix, least

squares adjustment estimates the vector of unknown coe�cients or recovered �eld. Figure 8.5(a)
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8.8. results

and 8.5(b) represent the ewh map and the formal error in sc format of the recovered �eld, respect-

ively where Figure 8.6 displays the degree variance of the recovered �eld in red color, which acts

as the reference point to measure the improvement in the next two scenarios.

(a) ewh, full spectrum recovered.
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(b) formal error, full spectrum recovered.

(c) ewh, only essential recovered.
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(d) formal error, only essential recovered

(e) ewh, only unpredictable recovered + predictable
through ann.
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(f) formal error, only unpredictable re-
covered.

Figure 8.5: Comparisons of three scenarios using ewh maps and formal errors in meter

For the second scenario, the simulation recovers only the essential coe�cients. A �owchart

in Figure 8.4 represents the process, according to which besides getting the true range-rates the

nonessential coe�cients of the a priori �eld are removed and the orbit and the partials are in-

tegrated from the remaining essential coe�cients of the a priori �eld. The simulation in the end,

therefore, recovers the essential coe�cients. Figure 8.5(c) and 8.5(d) display the ewh map and the

formal error in the sc format of the recovered �eld, respectively for the second scenario and the

blue curve in Figure 8.6 represents degree variance of second scenario.

For the third scenario, the simulation follows the same procedure as the second scenario but

recovers only the unpredictable coe�cients. Figure 8.5(e) and 8.5(f) display the ewh map and
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8. gravity recovery

the formal error in sc format of the recovered �eld, respectively for the third scenario, where the

green curve in Figure 8.6 is presenting its degree variance. Where, Figure 8.7 shows the di�erence

of ewh map and recovered �eld of true �eld and all three scenarios.

Three ewh maps given in Figure 8.5(a), 8.5(c) and 8.5(e), are identical. For example, the red

feature which shows gravity decreases due to water drainage out of the Amazon basin is almost

the same. Which shows in case of reduced �eld recovery the information is not lost.
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(a) Degree variance up to 90 degree.
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(c) Relative error up to 25 degree.

Figure 8.6: Degree variance of the three cases. Firstly, full spectrum is recovered, secondly
only the essential coe�cients are recovered and thirdly only the unpredictable
coe�cients are recovered.

Three curves in Figure 8.6(a) show that the formal error reduces if the simulation has to recover

fewer coe�cients during the gravity recovery process. Here the bene�t of the increase of the

degree of freedom improves and stabilizes the output. The e�ect is also clear from Figure 8.5

in three formal error sc plots, where the area covered by blue has extended towards the lower

frequency values. Figure 8.6(c) shows that the error percentage for each degree has been decreased

in the third scenario where only unpredictable coe�cients are recovered. The decrease in the

formal error in the low degree range as shown in Figure 8.6(c) is an excellent sign for recovered
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8.8. results

�elds since the gravity signal of all important river basins such as Amazon, California, Colorado,

Congo and Danube lie in this region.

(a) Change in ewh, full spectrum recovered.

(b) Change in ewh, only essential recovered.

(c) Change in ewh, only unpredictable recovered +
predictable through ann.

Figure 8.7: ewh di�erence maps between true �eld and the recovered �elds in the three
scenarios

Di�erence between the ewh maps of the true �eld and the recovered �elds of the three scen-

arios given in Figure 8.7 show that the di�erence decreases as the number of coe�cients in the

recovered �eld decreases.

The statistical comparison of the two cases, i.e. full recovery and the reduced recovery shows

that the ratio of the row-wise mean to the column-wise mean is equal to one. The ratio of the

row-wise standard deviation to the column-wise standard deviation of the full recovery is 1.325,

whereas in case of the reduced solution it is 1.304. While the norm of the full recovery �eld is

0.1216 and the reduced �eld recovery �eld is 0.1204. In conclusion, the comparison shows that

the gravity variation information does not lose in case of reduced �eld recovery and we can ig-
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nore the nonessential and predictable coe�cients during the recovery process. The next chapter

summarizes the whole process of data mining for grace monthly solutions.
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9summary

Grace, a tandem constellation, was launched in March 2002, since then the range-rates between

the two satellites have been inverted to recover the gravity �eld in the form of sh coe�-

cients, once per month, by gfz. The gravity �eld in the form of sh coe�cients are available from

three o�cial data centres, i.e.

1. gfz (GeoforschungsZentrum Potsdam),

2. csr (Center for Space Research at University of Texas, Austin) and

3. jpl (Jet Propulsion Laboratory).

In this study, the data form gfz is used because it provides coe�cients up to degree 90 and or-

der 90 along with their standard deviation. The �rst data �le has sh coe�cients of April 2002 and

the last June 2017, i.e. 183 months, however, data for 20 di�erent months are missing due to some

technical failures and batteries issues. Thus the data �les for 163 months are available. Each �le

has sh coe�cients up to degree and order 90/90, so the total number of coe�cients, in each �le, is

8281. grace dataset unveils the monthly variation in the gravity �eld of the Earth. Due to gravity

variation, the magnitude of several coe�cients changes signi�cantly, called essential coe�cients.

On the other hand, the magnitude of several others do not change signi�cantly, called nonessen-

tial coe�cients. Succinctly stated, essential possess the most and nonessential possess very little

information of the gravity variations. If we recover only the essential coe�cients using the same

one-month range-rates dataset, we can reduce the formal error and get more stable gravity �eld

solutions. In other words, we get the bene�t of increasing the degree of freedom while reducing

the number of recoverable coe�cients. In the study, several data mining methods are presented

to identify essential and nonessential coe�cients.

Data mining is shaping up the relation between the data and the information. For the last

hundred years, since the advent of sensors to measure the phenomenon, the size of available data

is growing. It has been observed that in some cases the information is lost in such a signi�cant



9. summary

amount of data. Besides that, there is some related information hidden in the data which requires

the e�cient time analysis of the data. Data mining techniques have been successfully used to cap-

ture the information from large datasets. In the study, data mining methods are used for clustering,

data mining and prediction of the grace datasets. The use of data mining techniques to study the

behavior of the sh coe�cients of the gravity solution is entirely new and presented �rstly in the

study. The following list states the details as,

i. the idea of classifying the coe�cient on the bases of their behavior is entirely new. The

earlier studies that represent the relationship between the coe�cients in the bases of their

behavior includes,

a) while investigating the stripes problem in the grace data, the correlation between

some coe�cients has been found at higher orders (Swenson and Wahr, 2006),

b) coe�cients are classi�ed on the bases of some geometric properties such as sign

changes, total Euclidean length and convex hull area of the coe�cients is created

(Piretzidis et al., 2016),

c) during several studies coe�cients are classi�ed on the bases of noise accumulation,

such as (Reigber, 1974) and (Devaraju, 2015),

ii. present study exploits several di�erent and independent ways to classify the grace dataset,

including,

a) k-means clustering, which utilizes the density of the data points by measuring the L2
distance in Euclidean space or cosine similarity in vector space,

b) threshold bifurcates the data on the bases of yearly variance,

c) k neatest neighbor which works in the density measurement using the closest neigh-

bor method,

d) ann deals with the historical data to train a network of neurons using weights and

later perform as a supervised processing unit,

iii. the most exciting part of the study is the ann-based prediction of sh coe�cients. The most

challenging part of the prediction is to optimize the output for this purpose three di�erent

methods are investigated.

To state the sequential process succinctly, consider the clustering. k-means clustering proves

the underlying hypothesis that there exist two distinct groups. Threshold classi�cation validates

two classes and helps us to label them on the bases of yearly variance. The class which has higher

variance contains the signi�cant information of the gravity variance and vice versa. During the
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threshold classi�cation, the yearly variance has been computed, and an optimal value between the

maximum and minimum limits of the yearly variance is selected as the threshold. The coe�cients

having the variance below the threshold value are the nonessential coe�cients and coe�cients

having variance higher than the threshold value are essential.

Suppose we replace the nonessential coe�cients with their yearly mean before using it as the

a priori �eld in the gravity recovery process, are introducing omission error. The omission error

must stay within the standard deviations limits of the original grace monthly solutions. If the

replacement process ful�lls this requirement, then we will not recover the identi�ed nonessen-

tial coe�cients during the gravity recovery process. During the 16 year analysis of coe�cients

through classi�cation, it has been observed that there are some coe�cients which belong to one

class in one year and belong to other class in some other year. They have been classed as unclas-

si�ed coe�cients. k nearest neighbor is used to classify them. Afterwards, ann has been used as

an independent technique to verify the classi�cation results.

ann is a modern machine learning technique. It uses several primary mathematical techniques,

including, linear algebra, probability, dynamic system, and optimization. Besides classi�cation,

it has been used for prediction purposes. A set of predictable coe�cients has been identi�ed

among the essential coe�cients. Hence the list of essential coe�cients is reduced and therefore

the recovered solution is called as the reduced grace solution.

At the end of the study, the variational equation method is used to recover the gravity �eld

for three di�erent cases. For the �rst case, a complete set of coe�cients is recovered. In the

second case only the essential coe�cients are recovered and in the third case, a set of reduced

essential coe�cients is recovered. The results of the three recovered �elds are compared using the

degree variance curves of the formal error and the ewh maps and their changes. The results show

that the reduced gravity �eld is more stable while having the low formal error and the statistical

comparison of the recovered �eld show that the information is not lost.

In the end, it is worthwhile to state that the potential of the ann can be further explored for

sh coe�cients prediction. Among 8277 coe�cients, only 245 coe�cients could be predicted, by

the end of the study. The number of predictable coe�cients can be increased. The bene�ts of

prediction include,

i. �lling the data gaps for the missing months,

ii. predicting the natural hazard such as drought or �oods,
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The major limitations in the way to predict are,

i. random behavior of the coe�cients,

ii. limited historical data to train the ann.

Since the grace-fo is in the space and hopefully extend the sh coe�cients data for the gravity

�eld, therefore the data availability to train the ann is becoming easier by each passing month. On

the other hand, the ann to predict the random time series are becoming robust and more e�cient

since the trading stock market is growing every day and people are trying to predict the random

time series of stocks. Therefore there are possibilities that the random behavior prediction can be

used in the prediction of sh coe�cients for gravity �eld.
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Aeqivalent water height (ewh)

In this study, the geoidal variation is analyzed in term of ewh. To compute the ewh �eld from the

grace data, consider Clm and Slm represent the spherical harmonic coe�cients, given by the

grace data product, and ∆Ĉlm and ∆Ŝlm represent their variation from the mean coe�cientsClm

and S lm . Now, we assume that if time variable signal is concentrated near the surface of the earth,

the spherical harmonic coe�cients are converted to surface density by the following expression:

∆σ (ϕ, λ) = Rρw

∞∑
l=0

l∑
m=0

P lm(cosϕ)
[
∆Ĉlm cos(mλ) + ∆Ŝlm sin(mλ)

]
. (A.1)

∆σ is the surface density, R is the mean Earth radius, ρw is the density of water, P lm(cosϕ) are

the normalized associated Legendre polynomials, is the latitude, λ is the longitude, with origin at

center of the earth, l is the degree,m is the order and ∆Ĉlm/∆Ŝlm are rescaled spherical harmonic

coe�cients, given as,
∆Ĉlm =

ρave
3ρw

2l + 1
1 + kl

∆Clm ,

∆Ŝlm =
ρave
3ρw

2l + 1
1 + kl

∆Slm ,

(A.2)

with, ρave is the average density of the Earth (5517 kg/m3), ρw is the density of water, l is the

degree, kl is the Love number of degree l used to account for the change in shape of the elastic

Earth. The ewh is therefore given by,

M(ϕ, λ) =
∆σ

ρw
, (A.3)

for detail, see (Wahr et al., 1998), and (McCullough, 2013).





Bthreshold values

This appendix states the threshold values for each month from January 2005 to December

2010. Section 3.4 explains the process to get the optimal threshold values.

Month, year Threshold

April, 2002 8.452e-24

May, 2002 8.197e-24

August, 2002 5.872e-24

September, 2002 5.178e-24

October, 2002 9.510e-24

November, 2002 4.829e-24

December, 2002 6.770e-24

January, 2003 6.900e-24

February, 2003 8.823e-24

March, 2003 6.735e-24

April, 2003 5.163e-24

May, 2003 6.707e-24

July, 2003 3.955e-24

August, 2003 4.824e-24

September, 2003 4.443e-24

October, 2003 3.706e-24

November, 2003 3.657e-24

December, 2003 3.647e-24

January, 2004 2.591e-24

February, 2004 2.791e-24

continued . . .

Month, year Threshold

March, 2004 2.4159e-24

April, 2004 2.4641e-24

May, 2004 4.2988e-24

June, 2004 3.2486e-24

July, 2004 3.5103e-24

August, 2004 3.0367e-24

September, 2004 3.7566e-24

October, 2004 3.7881e-24

November, 2004 2.5728e-24

December, 2004 3.3431e-24

January, 2005 2.1445e-24

February, 2005 3.8052e-24

March, 2005 3.6186e-24

April, 2005 2.6332e-24

May, 2005 3.5757e-24

June, 2005 3.4617e-24

July, 2005 3.5877e-24

August, 2005 4.6937e-24

September, 2005 3.2540e-24

October, 2005 3.7513e-24

continued . . .



B. threshold values

Month, year Threshold

November, 2005 2.7854e-24

December, 2005 4.6166e-24

January, 2006 2.2512e-24

February, 2006 3.0433e-24

March, 2006 3.1791e-24

April, 2006 3.0603e-24

May, 2006 2.1876e-24

June, 2006 2.7849e-24

July, 2006 3.5237e-24

August, 2006 3.3424e-24

September, 2006 5.1801e-24

October, 2006 2.7984e-24

November, 2006 3.1571e-24

December, 2006 3.2731e-24

January, 2007 3.1612e-24

February, 2007 2.8217e-24

March, 2007 2.9202e-24

April, 2007 2.6832e-24

May, 2007 3.1639e-24

June, 2007 1.9626e-24

July, 2007 3.0278e-24

August, 2007 3.6950e-24

September, 2007 3.3104e-24

October, 2007 3.9731e-24

November, 2007 3.4464e-24

December, 2007 2.7898e-24

January, 2008 3.0420e-24

February, 2008 4.4418e-24

March, 2008 4.1806e-24

April, 2008 3.0336e-24

May, 2008 3.0827e-24

continued . . .

Month, year Threshold

June, 2008 2.5242e-24

July, 2008 2.6365e-24

August, 2008 2.1201e-24

September, 2008 3.2301e-24

October, 2008 3.0235e-24

November, 2008 3.8128e-24

December, 2008 2.4879e-24

January, 2009 2.5537e-24

February, 2009 3.5165e-24

March, 2009 4.1663e-24

April, 2009 3.3951e-24

May, 2009 2.7728e-24

June, 2009 2.6179e-24

July, 2009 2.6245e-24

August, 2009 3.9760e-24

September, 2009 3.4145e-24

October, 2009 3.5833e-24

November, 2009 3.5463e-24

December, 2009 3.0706e-24

January, 2010 5.2747e-24

February, 2010 5.2747e-24

March, 2010 5.3683e-24

April, 2010 3.7700e-24

May, 2010 4.1038e-24

June, 2010 4.0694e-24

July, 2010 2.8884e-24

August, 2010 3.3486e-24

September, 2010 3.6398e-24

October, 2010 3.4459e-24

November, 2010 3.6017e-24

December, 2010 1.7525e-24

continued . . .
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Month, year Threshold

February, 2011 2.698e-24

March, 2011 5.027e-24

April, 2011 4.364e-24

May, 2011 2.912e-24

July, 2011 3.076e-24

August, 2011 3.698e-24

September, 2011 4.390e-24

October, 2011 4.412e-24

November, 2011 2.910e-24

December, 2011 3.443e-24

January, 2012 3.322e-24

February, 2012 3.702e-24

March, 2012 4.529e-24

April, 2012 4.071e-24

June, 2012 3.827e-24

July, 2012 3.594e-24

August, 2012 4.561e-24

September, 2012 3.897e-24

November, 2012 3.607e-24

December, 2012 3.126e-24

January, 2013 2.828e-24

February, 2013 3.511e-24

April, 2013 3.714e-24

May, 2013 2.382e-24

June, 2013 2.636e-24

July, 2013 3.101e-24

October, 2013 2.984e-24

November, 2013 3.280e-24

December, 2013 3.939e-24

January, 2014 3.366e-24

March, 2014 3.769e-24

continued . . .

Month, year Threshold

April, 2014 3.389e-24

May, 2014 2.739e-24

June, 2014 2.433e-24

August, 2014 2.446e-24

September, 2014 2.720e-24

October, 2014 2.855e-24

November, 2014 2.720e-24

January, 2015 6.214e-24

February, 2015 1.536e-24

March, 2015 6.881e-24

April, 2015 7.496e-24

May, 2015 7.212e-24

July, 2015 2.429e-24

August, 2015 2.918e-24

September, 2015 1.962e-24

December, 2015 1.930e-24

January, 2016 2.928e-24

February, 2016 4.281e-24

March, 2016 6.991e-24

May, 2016 4.303e-24

June, 2016 2.970e-24

July, 2016 2.940e-24

August, 2016 5.401e-24

November, 2016 4.505e-24

December, 2016 2.677e-24

January, 2017 6.229e-24

March, 2017 3.585e-24

April, 2017 1.073e-24

May, 2017 3.839e-24

June, 2017 1.711e-24

Table B.1: Threshold values from April 2002 and 2017
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Cvariation of constants

This appendix brie�y describes the derivation of a linear system of two algebraic equations

for the unknown functions u(t) and v(t) using the variation of constants method, as a part

of the solution of second order inhomogeneous di�erential equation. According to the variation

of constants method, for a second order linear inhomogeneous system,

Üy + a(t) Ûy + b(t)y = f (t) , (C.1)

whose homogeneous part,

Üy + a(t) Ûy + b(t)y = 0 , (C.2)

have yh(t) as a particular solution,

yh(t) = c1y1(t) + c2y2(t) , (C.3)

where y1 and y2 are the two general solutions of (C.2) and c1 and c2 are the constant coe�cients

which can be replaced by functions u(t) and v(t).

yh(t) = u(t)y1(t) +v(t)y2(t) , (C.4)

To determine the varying constants we have to impose two conditions. Before moving towards

the conditions, let us have the �rst derivative of the solution (C.4)

Ûyh = Ûuy1 + u Ûy1 + Ûvy2 +v Ûy2 , (C.5)

Now to avoid the second derivative of the varying constant in the solution, the �rst condition state

that

Ûuy1 + Ûvy2 = 0 (C.6)

due to the �rst condition, the (C.5) reduces to

Ûyh = u Ûy1 +v Ûy2 , (C.7)



C. variation of constants

Di�erentiating (C.7), we obtain

Üyh = Ûu Ûy1 + u Üy1 + Ûvy2 +v Üy2 , (C.8)

Now substituting the yp, Ûyh and Üyh from (C.4), (C.7) and (C.8), respectively, into (C.1). Collecting

terms in u and terms in v , we obtain,

u( Üy1 + a Ûy1 + by1) +v( Üy2 + a Ûy2 + by2) + Ûu Ûy1 + Ûv Ûy2 = f (t) , (C.9)

since y1 and y2 are the general solution of (C.2), therefore Üy1 + a Ûy1 + by1 and Üy2 + a Ûy2 + by2, both

are equal to zero, and the (C.9) reduces to

Ûu Ûy1 + Ûv Ûy2 = f (t) , (C.10)

which form the second condition, which along with (C.6) form the linear system of two algebraic

equations for the unknown functions Ûu and Ûv and derivatives of general solutions y1 and y2. The

system can be solved using several methods, elimination followed by Cramer’s rule, for instance,

where for the varying constants Ûu and Ûv we need to integrate to get u and v (Kreyszig, 2000).
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