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Abstract

This work targets mathematical solutions and software for complex numerical simulation
and optimization problems. Characteristics are the combination of different models and software
modules and the need for massively parallel execution on supercomputers. We consider two different
types of multi-component problems in Part I and Part II of the thesis: (i) Surface coupled fluid-
structure interactions and (ii) analysis of medical MR imaging data of brain tumor patients. In
(i), we establish highly accurate simulations by combining different aspects such as fluid flow and
arterial wall deformation in hemodynamics simulations or fluid flow, heat transfer and mechanical
stresses in cooling systems. For (ii), we focus on (a) facilitating the transfer of information such as
functional brain regions from a statistical healthy atlas brain to the individual patient brain (which
is topologically different due to the tumor), and (b) to allow for patient specific tumor progression
simulations based on the estimation of biophysical parameters via inverse tumor growth simulation
(given a single snapshot in time, only). Applications and specific characteristics of both problems are
very distinct, yet both are hallmarked by strong inter-component relations and result in formidable,
very large, coupled systems of partial differential equations.

Part I targets robust and efficient quasi-Newton methods for black-box surface-coupling of parti-
tioned fluid-structure interaction simulations. The partitioned approach allows for great flexibility
and exchangeable of sub-components. However, breaking up multi-physics into single components
requires advanced coupling strategies to ensure correct inter-component relations and effectively
tackle instabilities. Due to the black-box paradigm, solver internals are hidden and information
exchange is reduced to input/output relations. We develop advanced quasi-Newton methods that
effectively establish the equation coupling of two (or more) solvers based on solving a non-linear
fixed-point equation at the interface. Established state of the art methods fall short by either requiring
costly tuning of problem dependent parameters, or becoming infeasible for large scale problems.
In developing parameter-free, linear-complexity alternatives, we lift the robustness and parallel
scalability of quasi-Newton methods for partitioned surface-coupled multi-physics simulations to a
new level. The developed methods are implemented in the parallel, general purpose coupling tool
preCICE.

Part II targets MR image analysis of glioblastoma multiforme pathologies and patient specific
simulation of brain tumor progression. We apply a joint medical image registration and biophysical
inversion strategy, targeting at facilitating diagnosis, aiding and supporting surgical planning, and
improving the efficacy of brain tumor therapy. We propose two problem formulations and decompose
the resulting large-scale, highly non-linear and non-convex PDE-constrained optimization problem
into two tightly coupled problems: inverse tumor simulation and medical image registration. We
deduce a novel, modular Picard iteration-type solution strategy. We are the first to successfully solve
the inverse tumor-growth problem based on a single patient snapshot with a gradient-based approach.
We present the joint inversion framework SIBIA, which scales to very high image resolutions and
parallel execution on tens of thousands of cores. We apply our methodology to synthetic and actual
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clinical data sets and achieve excellent normal-to-abnormal registration quality and present a proof
of concept for a very promising strategy to obtain clinically relevant biophysical information.

Advanced inexact-Newton methods are an essential tool for both parts. We connect the two
parts by pointing out commonalities and differences of variants used in the two communities in
unified notation.
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Kurzzusammenfassung

Diese Arbeit befasst sich mit der Entwicklung mathematischer Lösungsstrategien und Compu-
tersoftware für komplexe numerische Simulationen und Optimierungsprobleme. Charakteristiken
hierbei sind die Kombination verschiedener Modelle und Softwaremodule sowie die Notwendig-
keit für massiv parallele Berechnung auf Höchstleistungsrechnern. In den Teilen I und II dieser
Arbeit betrachten wir zwei verschiedene Arten von Mehrkomponentenproblemen: (i) Die Simulation
von oberflächengekoppelten Fluid-Struktur Interaktionen und (ii) die medizinische Bildanalyse von
Gehirntumor MRT Bildern. In (i) erreichen wir Simulationen mit höchster Genauigkeit durch die
Kombination verschiedener Effekte wie beispielsweise Fluidströmung und verursachte Deformation
von Arterienwänden in Simulationen des Blutkreislaufes oder die Kombination von Fluidströmung,
Wärmetransport und mechanischen Belastungen im Zusammenhang mit Kühlungssystemen. Für
Problem (ii) legen wir unser Augenmerk auf (a) die Unterstützung des Tranfers bestimmter Informa-
tionen, wie etwa die Markierung funktionaler Gehirnregionen, von einem statistischen (gesunden)
Atlasgehirn zum jeweiligen Patientengehirn (welches wegen des Tumors topologische Unterschiede
aufweist), sowie (b) die Ermöglichung patientenspezifischer Gehirntumorwachstumssimulationen
aufgrund kalibrierter biophysikalischer Gehirntumormodelle (mit Parameterschätzung durch inverse
Gehirntumorsimulation mit nur einem Datenmesspunkt in der Zeit). Anwendungen und spezielle
Charakteristiken beider Probleme sind sehr unterschiedlich, jedoch vereinen beide starke Relationen
und Abhängigkeiten zwischen den beteiligten Komponenten und ihre mathematische Formulierung
resultiert in beachtlichen, sehr großen, gekoppelten Systemen von partiellen Differentialgleichungen.

Teil I zielt auf die Entwicklung robuster und effizienter quasi-Newton Methoden für die black-box
Kopplung partitionierter Fluid-Struktur Interaktion Simulationen ab. Der Partitionierungsansatz er-
möglicht hohe Flexibilität und erleichtert die Austauschbarkeit von Subkomponenten. Die Aufteilung
von Mehrphysik Problemen in einzelne Bestandteile erfordert jedoch hochentwickelte Kopplungs-
strategien um Relationen und Abhängigkeiten zwischen den Komponenten korrekt abzubilden und
Instabilitäten wirksam zu eliminieren. Wir entwickeln fortgeschrittene quasi-Newton Methoden, die
über die Lösung einer nicht-linearen Fixpunktgleichung am Interface wirksam die Kopplung von
zwei (oder mehreren) Komponenten herbeiführen. Allgemeinhin etablierte und hochmoderne Metho-
den erfordern entweder aufwändiges Einstellen von problemabhängigen Parametern oder sind nicht
praktikabel für die Lösung von Systemen mit sehr vielen Unbekannten. Durch die Entwicklung von
parameterfreien Alternativen mit linearer Zeit- und Speicherkomplexität heben wir die Robustheit
und parallele Skalierbarkeit von quasi-Newton Methoden auf ein neues Niveau. Die entwickelten
Methoden sind in dem parallelen Universalkopplungswerkzeug preCICE implementiert.

Teil II behandelt die medizinische Bildanalyse von Glioblastoma Multiforme Pathologien zur
Ermöglichung patientenspezifischer Gehirntumorsimulation. Wir kombinieren medizinische Bildre-
gistrierung mit biophysikalischer Parameter Schätzung (Inversion) mit dem Ziel der Erleichterung
der Diagnose, der Unterstützung zur Operationsplanung sowie allgemein zur Verbesserung der Wirk-
samkeit von Therapiemaßnahmen. Wir stellen zwei mathematische Formulierungen des Problems vor
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und zerlegen das resultierende großskalige, hoch nicht-lineare und nicht-konvexe, PDGL-beschränkte
Optimierungsproblem in zwei eng verzahnte Teilprobleme: inverse Gehirntumorsimulation und
medizinische Bildregistrierung. Zur Lösung des Problems erschließen wir eine neuartige, modulare
Strategie basierend auf einer Picard Iteration. Damit lösen wir erstmalig erfolgreich das Problem
der Tumorwachstumsinversion im Gehirn, basierend auf nur einem Datenmesspunkt in der Zeit,
mithilfe eines gradientenbasierten Ansatzes. Wir präsentieren SIBIA, ein Framework zur Realisierung
der gemeinsamen Invertierung, welches zu extrem hohen Bildauflösungen und massiv paralleler
Berechnung auf Zehntausenden Kernen skaliert. Wir wenden unsere Methodik auf synthetische
und reale klinische Bilddaten an und verzeichnen hervorragende Ergebnisse für die Registrierung
normaler und abnormaler (pathologischer) Gehirne. Desweiteren präsentieren wir Ergebnisse, die
einen Machbarkeitsnachweis für eine erfolgsversprechende Methodik zur Extrahierung relevanter
biophysikalischer Informationen liefert.

Hochentwickelte inexakte Newton Verfahren sind ein grundlegendes Werkzeug in beiden Teilen.
Wir verbinden beide Teile durch Herausarbeitung von Gemeinsamkeiten und Unterschieden der
verwendeten Varianten in beiden Forschungsfeldern und Angleichung der verwendeten Notation.
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1 Introduction

Interaction of Systems. The concept of interaction is ever-present and the essence of nature.
Communication, for instance—in all its variations—is one form of interaction. In science, a funda-
mental interaction is the mutual interplay of elementary particles. On a higher level, we speak of
the interaction of systems. Scientific computing targets the numerical simulation and assessment
of physical, chemical, or biological phenomena. Applications in engineering, medicine, or system
behavior forecasting raise the need for ever more complex models, capturing detailed effects and
their fine grained interactions to reveal ever deeper insights. Neglecting strong interactions between
involved fields, sub-components, or effects would lead to inaccurate or wrong results. With the
remarkable advances in technology and rapidly evolving, powerful compute systems, the numerical
treatment and analysis of the aforementioned effects of interacting systems have become feasible;
ever growing compute resources and massively parallel execution allow for the solution of such
large-scale and formidable problems with complicated numerics.

Solving Multi-Component Systems. The primary focus of this work is the numerical treatment
and solution of strongly coupled multi-component problems which are inherently hard to solve as
different components require tailored approaches, while the mutual interaction and dependencies
amongst the different models need to be fulfilled at all times. In this thesis, we focus on two
multi-component problems:

I. Multi-physics simulation, in particular, the coupling of partitioned fluid-structure interaction

II. Brain tumor biophysical parameter inversion coupled with medical image registration

Both problems find very different applications and feature quite distinct characteristics, yet both are
hallmarked by strong inter-component relations. Those systems have a natural need for high perfor-
mance computing, since the smaller modeling error we get when switching from a single-component
to a multi-component model is useless if we cannot sustain a high resolution. Furthermore, the
time-to-solution is critical. Thus, we opt for the development of coupling schemes and tailored,
highly efficient, parallel algorithms for the advanced numerical treatment of each of the challenging
problems above. The realization of modular, flexible solution strategies is another design goal for the
methodologies developed in this work.

In what follows, we give a short introduction to both problems, present their main challenges, and
discuss methodologies and solution approaches pursued in this work. A more detailed introduction
for each application problem, alongside with a review of relevant literature is given in §3.1 and §5.2.
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1.1 Multi-Physics Simulations (Fluid-Structure Interaction)

Fluid-Structure Interaction. Multi-physics simulations involve multiple physical models consti-
tuting the simultaneous treatment of various physical phenomena. Examples include the interaction
of electrostatics and magneto-statics, chemical reactions, or the interplay of fluid dynamics and
structural mechanics with heat transfer or integration of induced acoustics. They typically involve
the solution of coupled systems of partial differential equations. Within this work, we focus on
fluid-structure interaction simulations — a surface coupled multi-physics problem. They describe
the phenomenon of solid body deformation under fluid exitation, and the reciprocal impact of the
deformation on the fluid dynamics. The numerical simulation of this mutual interplay is of great
value in various disciplines ranging from different fields of engineering (aerospace engineering,
marine engineering, renewable energy) to computational medicine (hemodynamics and cardiovas-
cular system simulations); application examples include the simulation of aircraft structures, the
simulation of unsteady deformations of a parachute to improve safety, the simulation of blood flow
and heart valves.

Partitioned Solution. While the consideration of interacting effects significantly aids an accurate
representation of physical phenomena observed in nature, it also complicates the solution of
the problem and increases the overall difficulty and complexity dramatically. The complexity
of the corresponding solver algorithms and implementations typically can be tackled with so-called
partitioned simulations reusing existing and established software codes for involved components.
The partitioned approach profits from decades of experience and development in terms of models,
numerical methods, and parallel scalability of the single components. This strategy contrasts the
monolithic approach, where all governing equations (including coupling effects) are implemented in a
single, dedicated solver package and solved simultaneously. In this work, we employ the partitioned
strategy and opt for a generic, black-box coupling approach, which offers great flexibility and
reduces the time for setting up multi-physics simulation environments.

Equation Coupling. The separation into sub-components, however, inherently suffers from
stability problems and induced oscillations. To recover a consistent solution in every time step, an
outer coupling iteration that enforces the coupling conditions, damps oscillations, and improves
stability becomes necessary. Numerically, this is realized via the solution of a non-linear fixed-point
equation at the coupling interface. This step requires sophisticated coupling numerics. This is
what Part I of this thesis focuses on. Due to hidden solver internals1, quasi-Newton approaches are
a particularly promising numerical approach for the outer coupling of multi-physics simulations.
Based on input / output values, they establish a low-rank estimation of the inverse Jacobian.

Advanced Quasi-Newton Methods. In this work, we develop advanced, highly robust and efficient
state-of-the-art quasi-Newton methods with excellent convergence properties, applicable in a general
purpose setting with minimal tuning of parameters. In particular, we opt for highly scalable, parallel
distributed memory algorithms with a runtime and storage complexity that is linear in the number
of unknowns at the interface. We discuss this in Chapter 2. A full introduction into the coupling of
partitioned multi-physics simulations in given in Chapter 3.

1With the black-box paradigm, we assume that only input / output data is available, and, in particular, solver internals like
discretization or derivatives are inaccessible.
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1.2 Coupling Brain-Tumor Biophysical Models with Medical
Image Registration

Data Assimilation in Brain Tumor MR Image Analysis. The second part of this thesis targets the
volume coupling of inverse brain tumor progression simulation with medical image registration. We
target the analysis of brain tumor MR imaging data of patients diagnosed with glioblastoma, an
extremely aggressive grade IV primary brain tumor. The tumor is characterized by a highly infiltrative
nature and broad, diffusive invasion into surrounding healthy tissue; its aggressiveness is reflected
in a 100% fatality rate within 6-12 months. The integration of biophysical modeling with medical
image registration is intended to improve diagnosis and clinical decision making, aid prognosis, and
foster the design of new treatment protocols. Applications involve biophysically-augmented image
analysis and image-driven biophysical model development. Both subjects are essentially large-scale
data-assimilation inverse problems formulated as multi-component PDE-constrained non-linear
optimization problems. As opposed to forward problems, inverse problems are inherently ill-posed
and feature strong instabilities. The development of efficient, robust, and accurate solvers for these
formidable problems is very challenging. We focus on two main goals:

(a) biophysically aided normal-to-abnormal registration, and

(b) biophysical model calibration for patient specific simulations and prognosis.

The first is used in automated segmentation of MR imaging data or mapping of structural and
functional information from expert-labeled atlas brains to specific patient brains; this predominantly
supports surgical planning. Achievement of the second goal fosters quantitative understanding of
human physiology and cancer progression, along with enabling predictive medication choices for
individuals.

Atlas Patient

healthy atlas atlas w/ tumor patient w/ tumor

(a) (b) (c)

T
biophysical
inversion

R
registration

v

?
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FIGURE 1.1 Joint biophysical model inversion and medical image registration [Sch; Gho17c]. (a) Normal-to-abnormal
registration needs a biophysics enhanced formulation to solve for a (biophysically) plausible map between the topological
different spaces. (b) For patient individual tumor growth simulation, we need to calibrate a biophysical model by means of
inversion methods. Due to inaccessibility of the healthy patient’s brain, simulations need to be carried out in a standard
atlas brain (left image). This requires a coupling with medical image registration, mapping the two spaces. Figure modified
from [Goo13].

The Joint Biophysical Inversion and Medical Image Registration Approach. The stated goals
both require a tight integration of biophysical brain tumor models with medical image registration.
For (a), the topological differences between the healthy brain and the pathologic patient brain render
this problem extremely difficult for the registration, and the inclusion of biophysical constraints
becomes absolutely inevitable in order to aid the registration to result in a (biophysically) plausible
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deformation map. Inverse tumor-growth simulation for biophysical model calibration is a time-
dependent problem, requiring at least two snap shots in time. In practice, however, a snap shot of
the healthy patient is inaccessible. To achieve (b), we therefore deploy an atlas-matching technique,
and use a normal atlas brain to carry out tumor simulations. This step introduces the need for
registration between atlas and patient.

The integration of inverse tumor-growth simulation with image registration as explained above
is outlined in Fig. 1.1. The underlying idea is most intuitively accessible by explaining an exemplary
forward problem2. We grow an artificial tumor in the healthy atlas brain using the brain tumor
progression model, resulting in a new image of the atlas, comprising both healthy tissue and tumor.
The information of the artificially grown tumor is then used to compute a deformation map between
patient and atlas, which results in a tumor-plus-deformation warped atlas. Conversely, for the
inverse problem, we seek for a deformation map and biophysical model parameters such that the
tumor-plus-deformation warped atlas matches the patient input data.

SIBIA. Physics and imaging need to be tightly integrated both in terms of software and algorithms.
The latter need to be reliable and scalable in order to be useful in analyzing clinical data. The
need for scalability and distributed memory realization is due to the increasing scanner resolution
and advances in medical imaging [Chu13; Kut16; Tom14], which result in extremely large data
sets3. In this thesis, we develop SIBIA, a framework for Scalable Integrated Biophysics-based Image
Analysis, which provides highly scalable and efficient tools and solvers for the realization of the
above described integration of biophysics and image registration. Since the biophysical models and
registration formulations are always in a state of flux and varying in complexity, we opt for a flexible
modular approach and consider the viability of a Picard (or fixed-point) iteration to establish the
multi-component coupling. In particular, we are the first to solve this extremely challenging large-
scale, highly non-linear, and non-convex multi-component PDE-constrained optimization problem
with a gradient based approach. We provide an extensive literature review in §5.2.2.

A thorough introduction into the problem and our developed solver framework is given in Chap-
ter 5.2.

2The described forward problem results from the moving-patient formulation of our joint multi-component problem. Later,
we introduce another formulation, called moving-atlas.

3The resolutions of theses data sets can reach 5µmˆ5µmˆ5µm resulting in O(4.8TB), if stored in half precision.
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1.3 Contributions

Condensed, the main contributions of this thesis are:

• We develop and analyze coupling schemes for partitioned fluid-structure interaction simula-
tions. In particular, we develop highly robust and efficient advanced quasi-Newton methods
to accelerate the non-linear equation coupling at the coupling interface. We design powerful
linear complexity methods that are efficient without tuning of problem dependent parameters.
We demonstrate their efficiency and good parallel scalability.

• We give a lucid overview of and compare the methodological components and characteristics
of quasi-Newton methods utilized for acceleration of non-linear fixed-point problems and in
PDE-constrained optimization.

• We develop the SIBIA framework for integration of biophysical inversion and medical image
registration to be applied in brain tumor MR image analysis. It features reliable, highly efficient,
and highly scalable solvers to tackle the formidable coupled multi-component optimization
problem of joint tumor inversion and medical image registration. We are the first to solve this
problem employing a gradient based approach.

• We deduce two formulations for the coupled multi-component problem, tailored for goal (a)
and goal (b), respectively, and derive a modular Picard iteration-type solution strategy for each
formulation based on the two sub-components inverse tumor-growth simulation and image
registration. We show convergence of both schemes by monitoring the reduced gradient of the
coupled problem formulations.

• We demonstrate the validity and efficiency of our approach by thorough numerical analysis
on synthetic and actual clinical data sets. We compare both schemes with regards to quality
and suitability for normal-to-abnormal registration and reconstruction of clinically relevant or
diagnostically meaningful information.

• We optimize the parallel, distributed memory solvers and algorithms to achieve excellent
parallel scalability and significantly reduce the time-to-solution. Here, we reach a speedup
factor of 10-20 for the time-to-solution by employing quasi-Newton methods and a multi-level
grid-refinement strategy with gradually improving coarse level solutions for the non-linear
optimization.
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1.4 Structure of the Thesis

Chapter 2 – Multi-Secant Quasi-Newton Methods for Non-Linear Problems: This chapter is dedicated
to quasi-Newton methods used to accelerate non-linear fixed-point problems, or to solve
non-linear optimization problems. It gives a lucid overview and compares methodological
components of quasi-Newton methods for both applications. We introduce advanced, robust
quasi-Newton methods, and present their efficient algorithmic realization on distributed
memory architectures.

Part I – Partitioned Coupling of Surface Coupled Multi-Physics Simulation

Chapter 3 – Partitioned Multi-Physics Simulation and Fluid-Structure Interaction: Here, we give an in-
troduction to the black-box coupling of partitioned fluid-structure interaction simulations.
We present challenges of partitioned coupling and the realization in the parallel coupling
framework preCICE; emphasis is put on the equation coupling.

Chapter 4 – Evaluation of Robust Quasi-Newton Methods for Partitioned FSI Simulations: This chapter
investigates the performance of the developed advanced quasi-Newton methods in actual
partitioned FSI simulations. It studies convergence properties, characteristics, and parallel
efficiency of two highly advanced quasi-Newton methods in 3D applications.

Part II – Coupling of Bio-Physical Brain-Tumor Models with Medical Image Registration

Chapter 5 – Scalable Biophysics-based Image Analysis: This chapter introduces the second applica-
tion problem: Joint biophysical inversion and medical image registration for analysis and
quantification in brain tumor imaging. We present the sub-component solvers for inverse
tumor-growth and image registration and give numerical results for their parallel efficiency.

Chapter 6 – Coupling Schemes for the Multi-Component Problem: The formulation of the joint opti-
mization problem and its coupled solution are given in this chapter. Two different Picard-type
iteration strategies are derived. This chapter introduces the SIBIA framework developed in
this work.

Chapter 7 – Evaluation of Coupling Schemes and Advanced Methods: We provide a thorough numer-
ical analysis of our methodology, the two Picard iteration-type solution strategies and advanced
algorithms to speed-up the time-to-solution. We demonstrate the validity and efficiency of our
scheme for synthetic and real data.

Chapter 8 – Conclusion: A summary of the main contributions of this work and gained conclu-
sions is provided in this chapter. We also outline limitations of the current approach and
recommendations for future directions.
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2 Multi-Secant Quasi-Newton Methods
for Non-Linear Problems

This chapter is dedicated to quasi-Newton methods – a powerful tool to tackle non-linear
problems in regimes where full Newton’s method becomes infeasible (such as large-scale simulations,
inaccessible or too expensive Jacobians and inexact/erroneous evaluations). We examine method-
ological components, efficient algorithms and parallel implementations of quasi-Newton variants
that are tailored for or predominantly used in (i) partitioned black-box multi-physics coupling
(here, fluid-structure interaction (FSI), captured in part I of this thesis) in §2.2 and (ii) non-linear
optimization (here, non-linear PDE constrained optimization, considered in part II of this thesis)
in §2.3.

§2.2 contains algorithms and variations for advanced quasi-Newton methods and their efficient
implementation on distributed data, that have been shown to be particularly suited to solve the non-
linear interface fixed-point equation arising from coupling in partitioned, transient fluid-structure
interaction simulations. This part comprises significant own contributions that have been achieved
within this work [Sch15; Lin15; Blo15b; Bun16b; Bun16a; Hae15; Sch17] and is therefore emphasized.
The respective methods are implemented in the parallel black-box coupling software preCICE1 (pre-
cise Code Interaction Coupling Environment), which has been primarily developed and maintained
by Bernhard Gatzhammer, Benjamin Uekermann, Florian Lindner, Miriam Mehl and myself. The
presentation within this thesis principally focuses on contributions from [Sch17].

§2.3 on the other hand, mainly contrasts methodological and structural similarities and differ-
ences to quasi-Newton methods typically used in the context of non-linear optimization. This section
is kept shorter and its primary contribution is the relation of known textbook methods (i.e., LBFGS)
to the methods examined in §2.2. A summarizing comparison is given in §2.4.

2.1 Introduction to Multi-Secant Quasi-Newton Methods

A wide range of application problems from all kinds of disciplines boil down to or entail the solution
of a non-linear root-finding problem of the form

(2.1) R(x) = 0,

with R P RN,N , x P RN at their very heart – just as the two application problems considered within
this work:

I. The coupling of partitioned fluid-structure (or multi-physics) interaction (see §1.1; detailed in

1www.precice.org

www.precice.org
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part I) results in a fixed-point equation formulation

(2.2) H(x) = x with residual R(x) := H(x) ´ x = 0,

at the multi-physics interface, with an operator H : RN Ñ RN . Coupling conditions at the
interface (such as balance of displacements and forces for fluid-structure interaction coupling)
that ensure to recover a solution of the monolithic formulation, are fulfilled at a fixed point x‹

with H(x‹) = x‹ ô R(x‹) = 0.

II. The joint registration and tumor inversion problem (see §1.2; detailed in part II) is by its nature
a multi-component PDE-constraint optimization problem of the form

min
x

J [d, u, x] = D [d, u] + βS [x] subject to C [u, x] = 0,(2.3)

with the objective function J : Rn Ñ R quantifying the discrepancy D : Rn Ñ R between the
system’s predicted state u and the observed data d with the system dynamics encoded in the
constraints C. A necessary condition for a solution of (2.3) is stationarity of the first variation of
the Lagrangian functional L : Rn Ñ R with respect to x and u, i.e.,

(2.4) R(x) := g(x) = δL[x] !
= 0.

The Lagrangian functional L results from translating (2.3) into an unconstrained optimization
problem, following a standard adjoint approach.

The de facto standard tool for non-linear problems of the form (2.1) is Newton’s method, i.e.,

solve (∇R(xk))T∆xk = ´R(xk),(2.5a)

set xk+1 = xk + ∆xk(2.5b)

with the Jacobian (∇R(xk))T of the non-linear operator R at the current iterate xk. We will see,
that for multiple reasons, using full Newton is not desirable or even becomes infeasible for a large
class of problems of the form (2.1). In particular when going to large-scale applications, Newton
becomes infeasible due to unacceptably high computational cost and excessive memory requirements.
Less expensive, inexact alternatives, tailored to the specific problem at hand become indispensable.
So-called multi-secant quasi-Newton methods that establish an approximation to the system Jacobian
based on Taylor’s theorem using secant information from previous iterations, are a powerful, efficient
and robust alternative with a growing field of application. In [Fan08], Fang and Saad characterize
a class of problems of the form (2.1) that pose significant or even prohibitive challenges for full
Newton, yet can be tackled using multi-secant quasi-Newton methods. A problem belongs to this
class, if

(i) the dimension n of the non-linear operator R is large,

(ii) exact computation of (∇R(x))T is either too expensive or its analytic form is inaccessible,

(iii) the computational cost to evaluate R(x) is very high,

(iv) the evaluation of R(x) contains errors, i.e., the problem is noisy.

Characteristics (ii) and (iii) are predominant for the partitioned FSI problem (I), where black-box
single-physics solvers are coupled via an interface fixed-point equation (2.2) to recover the monolithic
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solution in every time step. Closed source codes, black-box solvers, table look-ups or internal
stochastics render access to Jacobian information impossible. The joint tumor inversion and medical
image registration problem (II) portrays all of the above mentioned characteristics. As a result,
various standard methods become impractical or infeasible. For instance, characteristic (i) suggests
matrix-free, limited memory algorithms, while (ii) renders standard exact Newton inapplicable.
Characteristic (iii) makes line-search algorithms and inner Krylov iterations very costly, and (iv)
poses significant convergence challenges on Newton-Krylov methods.

Multi-secant methods take inexact Newton steps by building an approximation of the Jacobian
matrix (∇R)T required in (2.5a), based on past information. Taylor’s theorem suggests that the
Jacobian has to satisfy secant equations (∇R)T∆xk

i « ∆rk
i , i = j, . . . , k for difference vectors ∆xk

i and
∆rk

i of input and output data of the operator R(xi) = ri, for xi not too far away from the current
iterate xk. By exchanging the roles ∆xk

i Ø ∆rk
i and (∇R)T Ø (∇R)´T , this strategy even allows us

to directly establish an approximation of the inverse Jacobian M´1 « (∇R)´T(xk), rendering the
linear system solve in (2.5a) dispensable by computing the Newton step form a simple matrix-vector
multiplication as

(2.6) xk+1 = xk ´ M´1R(xk).

This is a key point, enhancing multi-secant quasi-Newton methods to be competitive to rapidly
converging Newton methods due to significantly reduced computational cost per Newton iteration.
We calculate the approximation of the inverse Jacobian matrix, as a solution of the multi-secant
equation

(2.7) M´1V η
k = Wη

k ,

with the matrices V η
k P RNˆη and Wη

k P RNˆη storing the collected input/output difference vectors
throughout the performed Newton iterations k = 0, . . ., i.e.,

Wη
k =

[
∆xk

k´1, ∆xk
k´2, . . . , ∆xk

k´η

]
, with ∆xk

i = xk ´ xi ,(2.8a)

V η
k =

[
∆rk

k´1, ∆rk
k´2, . . . , ∆rk

k´η

]
, with ∆rk

i = R(xk) ´ R(xi).(2.8b)

The amount of past information incorporated into the inverse Jacobian approximation (i.e., the
memory of the quasi-Newton method) is controlled by the parameter η, 0 ă η ď k2. For the sake
of readability, we omit the parameter η if it is clear from the context and write short V k for V η

k and
W k for Wη

k . The specific choice of η gives raise to various instantiations of the method, featuring
different properties. In what follows, we discuss this in more detail.

In practice, it is natural to assume η ! N. In this case, (2.7) is highly under-determined and
suitable further restrictions in form of a norm-minimization term need to be added to find a unique
solution for the N2 entries of M´1. We thus search for a minimizer M´1 such that

›

›

›
M´1 ´ M´1

prev

›

›

›

X
Ñ min subject to M´1V η

k = Wη
k ,(2.9)

i.e., the new approximation M´1 incorporates new multi-secant information while staying as close as

2In a transient setting, convergence can be significantly improved if additionally secant information from previous time
steps (as opposed to previous information from only the current time step) is retained. In this case, η may be larger than
the current number of Newton iterations k, i.e., 0 ă η ď k +

řn´1
q=0 kq, depending on the taken time steps n and respective

Newton iterations kq per time step. This is detailed in §2.2.1.
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possible to a previous approximation (or initial guess) M´1
prev of the inverse Jacobian. Specific choices

for M´1
prev and the employed norm } ¨ }X result in different variations of this generic multi-secant

method with distinct characteristics and properties.

We will present different instantiations (i.e., choices for M´1
prev, η and } ¨ }X) of the generic

multi-secant quasi-Newton formulation (2.9) that are applied in the context of non-linear fixed-point
problems in §2.2 and others that are predominantly used in the field of non-linear optimization
in §2.3.

2.2 Multi-Secant Quasi-Newton for Fixed-Point Problems

A main contribution of this thesis is the design of highly scalable, robust, and efficient black-box
quasi-Newton variants and their efficient distributed memory implementation within the parallel
coupling library preCICE3 [Bun16a; Bun16b; Uek16; Gat14], that have been shown to perform very
well for the partitioned coupling of fluid-structure interaction simulations [Sch17]. This is detailed
in §2.2.1 and §2.2.2. The presentation follows our previous work [Sch17].

We consider non-linear fixed-point equations of the form (2.2) that arise from the coupling
of partitioned multi-physics simulations. Typically, the task function H is evaluated by several
software components together. For instance, assume a surface coupled multi-physics problem with
two existing solvers for the respective single-physics problems (e.g., compute one time step of the
single-physics problem for given boundary values). This induces operators S1 and S2 which map
input data at the coupling interface in the vector spaces X1 and X2 to output values at the coupling
interface. Hereby, S2 requires the output computed by S1 as input and vice versa, i. e., we have

(2.10) S1 : X1 Ñ X2 and S2 : X2 Ñ X1.

Implicit interface coupling is then realized via fixed-point equations at the interface. For a sequential
execution order, this results in the multiplicative Schwarz method, or Gauß-Seidel-type system (GS)

(GS) H(x) := S2 ˝ S1(x) = x

for x := x1 P X1. An additive Schwarz or Jacobi-type system (J)

(J) H(x) :=

(
0 S2

S1 0

)(
x1

x2

)
=

(
x1

x2

)

with x := (x1, x2)
T allows for parallel execution of the sub-solvers.

The exact Jacobian of the fixed-point operator or the sub-components is typically inaccessible and
solver internals are hidden. Multi-secant quasi-Newton methods that establish an approximation to
the system’s Jacobian have been shown to be particularly suited to solve (i.e., accelerate/stabilize the
fixed-point iteration) such types of fixed-point problems. In particular, for partitioned fluid-structure
interaction, plain fixed-point iteration for (2.2), i.e.,

(2.11) H(xk) = x̃k, xk+1 = x̃k

often times fails due to a strong interaction of fluid and structure sub-components coupled within

3www.precic.org

www.precic.org
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the operator H [Van09a; Wal99; Küt08]. Further, the evaluation of H is very expensive and reducing
the number of iterations until convergence is achieved is crucial. Appropriate stabilization of the
fixed-point iteration

(2.12) xk Fixed-Point
ù x̃k QN

ù xk+1

in the form of (dynamic) under-relaxation or quasi-Newton acceleration (QN) ensues convergence4.
While under-relaxation often times features slow convergence, quasi-Newton methods provide both
stabilization and fast convergence [Deg09; Deg08a; Hae09b; Lin15; Mic04; Sch15]. In what follows,
we focus on the latter. We discuss and study concrete instantiations of (2.9) used in literature to
solve partitioned fluid-structure interaction problems and propose advanced algorithms developed
in this work, which improve the stability and robustness of the methods and allow for large-scale
simulations on massively parallel systems.

2.2.1 Methodological Components

In this subsection, we present important methodological components required for fast and robust
convergence. Respective efficient algorithmic realization and parallelization on distributed data is
presented in §2.2.2.

Preliminary Remarks. Following strategy (2.12), we reformulate the residual operator R from (2.2)
in terms of the inverse fixed-point map H´1

(2.13) R̃(x̃) := x̃ ´ H´1(x̃) !
= 0

to include the latest fixed-point iterate x̃k in the quasi-Newton acceleration. Due to (i) x̃k = xk +R(xk)

and (ii) R´1 = R̃ ´ I5, a Newton step for (2.2) then reads

(2.14) xk+1 = xk ´ (∇R)´TR(xk)
(ii)
= xk ´ [(∇R̃)´T ´ I]R(xk)

(i)
= x̃k ´ (∇R̃)´TR̃(x̃k).

Thus, to construct an approximation M̃ « (∇R̃)´T(x̃k), we collect input/output relations of the
modified operator R̃, i.e.,

W̃η
k =

[
∆x̃k

k´1, ∆x̃k
k´2, . . . , ∆x̃k

k´η

]
, with ∆x̃k

i = H(xk) ´ H(xi) = x̃k ´ x̃i ,(2.15)

and Ṽ η
k = V η

k as R̃(x̃k) = R(xk) = rk. Using the fixed-point step x̃k = H(xk) and formulating the
quasi-Newton update from x̃k to xk+1 is critical. As we seek for the Newton update in the column
space of W k, going directly from xk to xk+1 and thus defining W k in terms xk and not x̃k would lead
to linearly dependent updates; the search space would stagnate at the original dimension 2 (x0 and
x1 ´ x0, where x1 is obtained from under-relaxation). For the sake of readability and comprehension,
we abuse our formulation for the remainder of this section and use M instead of M̃, R as opposed
to R̃, and W for W̃ .

Multi-Secant Quasi-Newton Variants. Within the context of solving non-linear fixed-point
equations, we consider Generalized Broyden methods of the form (2.9) that minimize the difference

4Compared to applying QN directly in the step xk ù xk+1, this modified approach allows for the efficient collection of
the data for W k and V k on the fly throughout Newton iterations. We explain this in more detail below; see also [Deg09].

5R´1 = R̃ ´ I as R´1R(x) = x = H(x) ´ (H(x) ´ x) = R̃´1R(x) ´ R(x)
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to a previous approximation of the inverse Jacobian M´1
prev in the Frobenius norm. Using the method

of Lagrange multipliers, problem (2.9) then translates to the unconstrained problem

(2.16) L[M´1, λ] :=
1
2

}M´1 ´ M´1
prev}2

F + λ(M´1V k ´ W k) Ñ min

with the Lagrangian functional L and Lagrange multiplier λ P RN,r. A solution to (2.16) needs to
satisfy the necessary first order conditions δL for optimality, i.e.,

δM´1L = 0 : M´1 ´ M´1
prev + λV T

k
!
= 0

δλL = 0 : M´1V k ´ W k
!
= 0.

Inserting the first equation into the second reads (M´1
prev ´ λV T

k )V k ´ W k yields λ̄ = ´(W k ´

M´1
prevV k)(V T

k V k)
´1 for a minimizer λ̄. As a result, we arrive at the generic update formula

(2.17) M´1 = M´1
prev + (W k ´ M´1

prevV k)(V
T
k V k)

´1V T
k = M´1

prev +ĂW kV:

k

for the approximate inverse system Jacobian matrix for generalized Broyden quasi-Newton methods.
Here V:

k := (V T
k V k)

´1V T
k is the pseudo inverse of V k and ĂW k is defined as W k ´ M´1V k.

We focus on two classes of methods to be applied in a transient setting, that either use M´1
prev := 0

(Least-Squares) or, minimize the distance to the approximation from the previous time step n ´ 1,
i.e., M´1

prev := M´1, (n´1)
prev (Multi-Vector Update). This leads to different strategies for choosing the

amount η of secant information, retained from the past.

Least Squares (LS). The least-squares approach typically re-uses η = k, i.e., all current time-step
information or even η = k +

řn´1
q=n´ξ kq with ξ P t0, . . . , nu difference vectors from the past to build

the matrices Vη
k and Wη

k in (2.7) and chooses M´1
prev := 0 as initial guess for the approximate inverse

Jacobian. This results in the simplified approximation formula

(2.18) M´1 = W k(V
T
k V k)

´1V T
k = W kV:

k

for the inverse system Jacobian. As M´1
prev = 0, the approximation solely builds upon explicitly

retained input/output vector histories that are represented in the multi-secant equation and incorpo-
rated into the Jacobian approximation in an at-once rank-η “update” of the zero matrix. The quality
of M´1 and therefore the convergence properties of the method are very sensitive with respect to
the amount η of retained past information; an optimal choice for η, however, is highly problem
dependent and tuning of the parameter involves a costly trial-and-error processes. For an increasing
number of columns in (2.7) (i.e., higher choice for η and ξ, respectively) the conditioning of the
multi-secant least-squares problem worsens due to nearly linearly dependent information, and V η

k
can even become rank deficient. Elimination of linear-dependent or outdated columns (filtering) to
maintain acceptable conditioning becomes necessary; different strategies are detailed below.

The advantage of M´1
prev = 0 is that it allows for a matrix-free realization of the method by

providing a Jacobian matvec routine, computing the action W kV:

k(´rk) = ´W kα of M´1 on the
residual vector ´rk. The vector α = V:

krk is computed from solving Rα = ´QTrk based on a
QR-decomposition of V k, V k = QR, which yields the Jacobian matvec or Newton update on xk as
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∆x = W kα. This approach is equivalent to solving the least-squares problem

(2.19) α = argminβPRη }V kβ + rk}2 ù ∆xk = W kα

with the reasoning

M´1(xk+1 ´ xk) = M´1W kα = M´1
η
ÿ

i=1

αi∆xk
k´i

.
=

η
ÿ

i=1

αi∆rk
k´i = V kα « ´rk

which is used, e.g., in [Hae09b; Hae09a] to derive the same method. More details can be found
in [Sch15; Uek13b]. A high-level pseudo-code implementation of the method is listed in Alg. 2.1.

Multi-Vector Update (MV). The multi-vector update approach implicitly retains past informa-
tion through the norm minimization condition (2.9) by searching for an approximation M´1 that
fulfills the multi-secant equation (2.7) while staying close to the estimation M´1

prev = M´1, (n´1)
prev from

the previous time step. This implicit conservation of information about the estimated operator M´1

allows to choose a small number η = k of explicitly retained difference vectors in (2.7) for the rank-η
update (2.17) for M´1. The latter reads

(2.20) M´1 = M´1, (n´1)
prev + (W k ´ M´1, (n´1)

prev V k)(V
T
k V k)

´1V T
k = M´1, (n´1)

prev +ĂW kV:

k

As a result, the tuning of the parameter η is rendered redundant and filtering of the matrices V η
k and

Wη
k is no longer strictly required6.

For stability and robustness reasons, a QR-decomposition of V k is used to compute the pseudo-
inverse V:

k , analogously to the LS method above. Unlike before, the MV method does not allow

for a straightforward matrix-free realization as the Jacobian approximation M´1, (n´1)
prev from the

previous time step needs to be stored explicitly. This can be seen from the update formula (2.20).
Explicit computation and storage of M´1 (or M´1, (n´1)

prev ) implies O(N2) memory requirement and
computational complexity, rendering the method impractical or infeasible for large-scale simulations.
Alg. 2.1 lists the algorithmical steps of the MV method.

Discussion. Multi-secant quasi-Newton methods [And65] have been widely used in various
application fields, predominantly in electronic structure computations [Ni09] and computational
quantum mechanics computations [Roh11; Pul80] in the chemistry community. Due to the black-
box nature (only input/output information of an operator required) of multi-secant methods
and their favorable properties for many different applications, methods within this solver class
recently regained increased interest in numerous application fields. Examples include computational
statistics [Wal11; Hen13a; Hen13b], groundwater flow problems [Ngu15], coupling of partitioned
multi-physics (FSI) simulations [Gan13; Deg09; Deg08b; Deg10; Blo15b; Lin15; Sch15], and dislocation
dynamics [Gar15], to only name a few. In particular when applied to problems that do not allow
access to an analytical or exact Jacobian, multi-secant methods have been shown to outperform
classical inexact Newton methods [Lot12; Wal11]. Over the past 50 years, various communities

6Re-using η ď k secant vector pairs from previous iterations of the current time step reduces the risk of linearly dependent
information in (2.7) to a minimum. Our numerical analysis[Sch15; Hae15; Sch17] (see also Chapter 4.2) shows that in
most cases, the MV method yields good convergence rates and maintains good conditioning of V η

k without extensive
filtering. Outdated and contradicting information in (2.7) is automatically corrected by minimizing the distance to the

previous estimation M´1, (n´1)
prev and linearly dependent columns within one time step only occur for near-convergence

(or stalling) of the method. Further, the cost for filtering of the matrices V η
k and Wη

k scales with η (O(Nη2) +O(η4)) and,
thus, remains cheap for small η.
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1 func Least-Squares(x0, η)
2 x̃0 = H(x0), and r0 = R(x0) = x̃0 ´ x0

3 x1 = x0 + ωr0

4 for k = 1, 2, . . . do
5 x̃k = H(xk), and rk = R(xk) = x̃k ´ xk

6 if converged then
7 break
8 Wη

k = [∆x̃k
k´η , . . . , ∆x̃k

k´1], ∆x̃k
i = x̃k ´ x̃i

9 Vη
k = [∆rk

k´η , . . . , ∆rk
k´1], ∆rk

i = rk ´ ri

10 compute Vη
k = QR and apply filter

11 solve Rα = ´QTrk, i.e., α = ´V:

krk

12 ∆xk = Wη
k α

13 xk+1 = xk + ∆xk

1 func Multi-Vector(x0, η, M´1
prev = M´1, (n´1)

prev )
2 x̃0 = H(x0), and r0 = R(x0) = x̃0 ´ x0

3 x1 = x0 + ωr0

4 for k = 1, 2, . . . do
5 x̃k = H(xk), and rk = R(xk) = x̃k ´ xk

6 if converged then
7 break
8 Wη

k = [∆x̃k
k´η , . . . , ∆x̃k

k´1], ∆x̃k
i = x̃k ´ x̃i

9 Vη
k = [∆rk

k´η , . . . , ∆rk
k´1], ∆rk

i = rk ´ ri

10 compute Vη
k = QR (and apply filter)

11 solve RV:

k = QT for V:

k P RηˆN

12 ĂW = (W k ´ M´1
prevV k)

13 M´1 = M´1
prev +ĂWV:

k
14 ∆xk = ´M´1rk

15 xk+1 = xk + ∆xk

ALGORITHM 2.1 Multi-secant variants Least-Squares (LS) (left) and Multi-Vector Update (MV) (right) in pseudo-
code. Input to the methods is an initial guess x0 and the amount η of retained secant information from the past. The MV
method requires M´1, (n´1)

prev from the previous time step.

independently reinvented and further developed variations of multi-secant methods. We give a brief
overview of the most important literature, classify existing methods, list names and notations, and
integrate the described instantiations LS and MV within this context. An exhaustive literature review
can be found in [Uek16; Sch15].

Anderson Acceleration (AA). The pioneering work [And65] of Donald G. Anderson dates back to
1965 and is the first formulation of a multi-secant method, designed and developed to accelerate
(potentially slow convergence of) fixed-point iterations or stabilize non-converging fixed-point
iterations. This original formulation of the Anderson acceleration method7 is equivalent8 to the
above presented LS method. Further mathematically equivalent formulations have been derived
independently by others in various disciplines for specific applications such as by Carlson and
Miller [Car98; Mil05] in method-of-lines applications, by Oosterlee and Washio [Oos00; Was97] for
accelerating non-linear multigrid methods and by Degroote [Deg09; Deg10] in the context of implicit
coupling of partitioned FSI simulations. Consequently, a multitude of names is used. In the language
of the chemistry community, terms like mixing, Anderson mixing [Ni09], Pulay mixing [Pul80], or
direct inversion in the iterative sub-space (DIIS) [Roh11] are used. The method is also referred to as non-
linear GMRES [Was97]. In the FSI context, Anderson acceleration is known as interface quasi-Newton
inverse least-squares (IQN-ILS) or inverse least-squares (ILS) method [Deg09]; [Hae10]. Based on the
idea of an interface-Newton-Krylov or interface-GMRES strategy for the coupling of partitioned FSI
by Michler et al. [Mic04; Mic11], Vierendeels et al. [Vie07] formulate a first block-iterative method
(IBQN-LS) in the spirit of AA (with approximation of the Jacobian as opposed to its inverse). In 2009,
Degroote et al. [Deg09]; [Deg10] proposed the above mentioned (IQN-ILS) which is identical to AA.

Recent theoretical work by Fang and Saad [Fan08], Walker and Ni [Wal11] and Toth and
Kelley [Tot15] revived the method’s attention and lay the foundation for a rigorous classification and

7Anderson referred to the method as extrapolation algorithm.
8If the mixing parameters βk ą 0 in Anderson’s formulation are set to 0; this does not limit the method’s properties or

worsens its approximation quality.
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theoretical assessment. In the same vein, Anderson commented on re-invention, recent developments
and theoretical aspects of his originally proposed method [And17].

Broyden (B). Broyden’s method (Charles G. Broyden; [Bro65]) describes rank-1 updates of an
approximation M´1

prev of the inverse Jacobian from the previous iteration. In other words, it only
uses secant information from a single iteration in the secant equation (2.7), i.e., η = 1 and M´1

prev =

M´1, (k´1)
prev in (2.9). This results in an iterative improvement of the inverse Jacobian approximation

according to the update formula

(2.21) M´1, (k) = M´1, (k´1)
prev +

(W k ´ M´1, (k´1)
prev V k)V T

k

V T
k V k

,

with the initial guess set to zero, i.e., M´1, (0) = 0. This method is known as bad Broyden’s method
as opposed to the original good Broyden’s method, where norm minimization and secant equation
are formulated in terms of the Jacobian matrix instead of its inverse9.

As opposed to the Anderson acceleration/extrapolation algorithm, Broyden’s method originates
from the classical quasi-Newton point of view. Although here we present Broyden’s method as a
special case of the generalized multi-secant template (2.9), it in fact constitutes pioneering work in
the class of methods minimizing the change to a previous estimation of the Jacobian. Historically,
the generic formulation (2.9) originates from a generalization of the rank-1 update (2.21) to a rank-η
update (2.17), incorporating secant information from η previous iterations and minimizing the
change by the update in the Frobenius norm across these η iterations, i.e., it minimizes the distance
to an estimation obtained at iteration k ´ η. In a transient setting (e.g., fluid-structure interaction
simulations), the natural choice for η is the number of iterations k = kn performed in the current time
step n. Hence, the update distance is with respect to the estimation M´1, (n´1)

prev from the previous
time step. This is identical to what we earlier described as multi-vector update method (MV). The
MV strategy has been shown to outperform Broyden’s method for systems with slow dynamics
and no erratic changes10, such as non-turbulent flow problems [Bog14; Sch15; Lin15]. In earlier
work [Sch15], I studied MV variants based on a multi-secant equation that spans several time steps,
as well as one that only spans a fixed, limited amount of iterations, without efficiency benefits. The
natural partitioning into sections of iterations per time step outperforms other choices.

Bogaers et al [Bog14] first applied the MV method (here referred to as MVQN) in combination
with a block-iterative scheme on the sub-components to couple partitioned FSI simulations. In
previous work [Sch15; Lin15; Blo15b], we generalized the method to be used in combination with
the more efficient (GS) and (J) system with the potential to exploit massively parallel execution.

Successive Rank-1 Updates (Sr1). Obviously, varying the minimization distance to the previous
inverse Jacobian estimate strongly affects the approximation quality. Another interesting question is
if an all-at-once rank-η update (as e.g. performed for MV) differs from performing η successively
rank-one updates (such as done for LBFGS, see §2.3.1) while keeping the minimization distance
fixed. In [Hae09a] Healterman shows that the LS inverse Jacobian update (2.18) can be written as a
sequence of rank-one updates

(2.22) M´1, (k+1) ´ M´1, (k) = AMV k+1V:

k+1 ´ AMV kV:

k = AM`k+1`
T
k+1

9The presented bad method not only exhibits better stability, but also renders the costly linear system solve redundant.
10The vast majority of systems modeling physical behavior are characterized by some extent of inertia or slow-acting state

changes. Generally speaking, nature does not jump.
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using a linear mapping AM that fulfills AMV k+1 = W k+1 and an orthonormalized representation
Lk+1 of the columns of V k+1. Here, the initial guess is set to zero, i.e., M´1, (0) := 0 and `k+1 indicates
the last column of Lk+1. The vectors `k+1 and AM`k+1 required in the least-squares (LS) rank-one
update (2.22) can be computed from

`k+1 =
(I ´ LkLT

k )∆rk+1
k

}(I ´ LkLT
k )∆rk+1

k }
and AM`k+1 =

(M´1, (k) ´ I)rk+1

}(I ´ LkLT
k )∆rk+1

k }
.

without knowing the actual mapping AM. Generalizing (2.22) to the multi-vector update (MV)
formula yields

(2.23) M´1, (k+1) ´ M´1, (k) = (AM ´ M´1
prev)`k+1`

T
k+1.

Here, instead of zero, an initial guess for M´1, using M´1, (n´1)
prev is employed, i.e., M´1, (0) :=

M´1, (n´1)
prev . This exact representation of (2.20) written in terms of successive rank-one updates can

be used to compare MV to rank-one update formulations. A prominent example is the limited
memory variant of the BFGS update formula (see §2.3.1 for details). An improved least-squares
method with implicit old time step reuse, following the same general idea as LBFGS of performing
η successive rank-one updates to a Jacobian estimation from iteration k ´ η, has been proposed
by Haelterman [Hae09a]. In other words, it uses the least squares method in rank-one update
formulation (2.22) with M´1, (0) = M´1, (n´1)

prev . We find that this method is similar, but not identical
to (2.23) as it lacks the term M´1

prev`k+1`
T
k+1 in the update.

Type I/Type II Classification. Fang and Saad [Fan08] view multi-secant methods in a more
generalized way in the sense of (2.9) and distinguish between type I (corresponds to “good” in
Broyden’s terminology) and type II (corresponds to “bad” in Broyden’s terminology) generalized-
Broyden methods. While type II methods build an approximation of the inverse Jacobian matrix by
minimizing and incorporating secant information in terms of the inverse Jacobian as in (2.9), type I
methods do so in terms of the Jacobian, resulting in an approximation of the Jacobian and not its
inverse. All type I expressions for the approximation of the Jacobian may be explicitly transformed to
type II approximations of the inverse Jacobian upon application of the Sherman-Morrison-Woodbury
formula [Woo50] and vice versa. For clarity, we refer to the methods as <name>-<type>, e.g., LS-II
for the above presented LS method. Besides refraining from the linear system solve and reducing the
computational effort per Newton iteration, type II methods have furthermore been found to be more
stable [Sch15].

The MV-II variant differs from the generalized-Broyden type II variant presented in [Fan08]. The
latter considers an update directly from xk to xk+1 and formulates the update in terms of difference
vectors ∆xk

i = xk ´ xi in W k as opposed to going from x̃k to xk+1 and using ∆x̃k
i = x̃k ´ x̃i as required

in the FSI fixed-point context (cf. preliminary remarks). A lucid overview of the different resulting
methods can be found in section 3.2 of [Uek16]. This difference is delicate. Generalized-Broyden
methods are sensitive to the initial guess for M´1

prev. For applications in partitioned FSI, an informed
initial guess of the fixed-point operator Jacobian, or the Jacobians of the sub-component solvers are
not accessible and M´1

prev is set to 0. Hence, MV-II falls back to LS-II in the first iteration, which, for
an update xk ù xk+1 leads to stagnation of the search space at dimension 2 and stall of convergence
(cf. preliminary remarks). The proposed variants in Fang and Saad [Fan08] are only applicable if
involved application specific heuristics or estimations for an effective initial guess of the (inverse)
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Jacobian are available, such as done by Marks and Luke in [Mar08]. A survey on the performance of
different variations of generalized Broyden (type I and type II) methods as used in partitioned FSI
simulations can be found in [Hae].

Walker and Ni [Wal11] use the same classification but always fix the previous Jacobian approxi-
mation (or initial guess) to zero, such that the herein presented type II method is identical to the
above presented LS method or AA-II.

Convergence Considerations. The literature addressing rigorous theoretical analysis and convergence
considerations (with proven convergence rates) for multi-secant methods is negligible and its outcome,
as of now, is of limited practical value. Various groups showed in independent work equivalence
of the LS-II (or AA-II) method to GMRES in the linear case, under the assumption of “unlimited”
storage11, i.e., η ě N; see, e.g., Walker and Ni [Wal11] and Rohwedder and Schneider [Roh11] in
2011 for LS-II and Haeltermann [Hae10] in 2010 for LS-I. These results are of poor practical relevance,
as typically a small number η ! N is used and necessary for efficiency reasons in application. In
2015, Toth and Kelley [Tot15] show general convergence results for the LS-II method as implemented
in practice and focus on a proof of acceleration rather than convergence. The results are improved
and generalized to inaccurate function evaluations in [Tot17]. Given that the fixed-point map H
is a contraction and the coefficients stay bounded, the method is locally r-linearly convergent12.
In other words, the authors show that LS-II does no worse than fixed-point iteration in terms of
convergence; however, locally (for xk not too far from the fixed-point x‹ ) rapid convergence can be
shown for LS-II, if the underlying fixed-point iteration converges. The local part and the assumption
that the fixed-point iterations converge is substantial and not given for most applications in FSI and
computational chemistry. The authors conclude that for a large group of problems, LS-II is much
better than plain fixed-point iteration and outperforms Newton-GMRES. However, the performance
depends on the physics (i.e., the application problem). Using different norms, i.e., `1 or `8 instead of
`2 in the least-squares problem (2.19) shows no benefit. A comparison of LS and exact Newton can
be found in [Lot12; Wal11]. If the Jacobian in Newton’s method is obtained from a finite difference
approximation, LS outperforms Newton; for an exact Jacobian, Newton’s method exhibits much
faster convergence, but at higher computational cost per iteration.

Improving Convergence and Robustness. To achieve high efficiency, quasi-Newton typically
requires careful parameter choices and additional measures such as filtering. In the following, we
accordingly propose techniques that accelerate convergence and increase the robustness and stability
of multi-secant methods.

Improving Convergence: Recycle. In our transient, coupled FSI case, the underlying system fixed-point
operator, and thus, the approximated inverse Jacobian M´1 changes only moderately13 information
from previous time steps can be retained to improve the quality of M´1 and, thus convergence.

We formalize this concept by enhancing the multi-secant equation (2.7) with columns from

11In this case, the LS method looks like a Krylov method and iteration histories of GMRES and LS can be constructed from
each other.

12In other words, Dc P [0, 1) and M ą 0 such that if x0 is not too far from the fixed-point x‹, then

}xk ´ x‹} ď Mck}x0 ´ x‹}

13This has been found to hold true for the application problems considered in this thesis. In general, consecutive fixed-point
operators of this kind may differ widely, in particular for erratic systems. The strategy has been showed to be very
effective for non-turbulent FSI problems [Deg13a; Deg08a; Deg09; Uek16; Sch15; Lin15].
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previous time levels, i.e.,

V η,n
k = [V k,n

k , V kn´1,n´1
kn´1

, . . . , V
kn´ξ ,n´ξ

kn´ξ
] and(2.24a)

Wη,n
k = [W k,n

k , W kn´1,n´1
kn´1

, . . . , W
kn´ξ ,n´ξ

kn´ξ
],(2.24b)

where V k,n
k and W k,n

k are constructed at the current time level n and iteration k, and

V kn´i ,n´i
kn´i

and W kn´i ,n´i
kn´i

, i = 1, ¨ ¨ ¨ , ξ

are the input and output matrices from the converged time step n ´ i and ξ P t0, . . . , nu determines
the number of explicitly retained time levels. η = η(ξ) = k +

řn´1
q=n´ξ kq as used earlier, indicates

the total number of columns in V η,n
k and Wη,n

k , respectively. We denote the LS method with explicit
reuse of ξ time steps as LS(ξ). For the sake of readability, we omit the explicit notation with the
superscripts η and n and write V k and W k, respectively, unless explicit indication of reused time
levels is necessary. Later, in the algorithm description, also the matrices at converged time steps
V kn´i ,n´i

kn´i
and W kn´i ,n´i

kn´i
are shortly written as V ki

and W ki
. Note, that the recycled data from past

converged time steps is inconsistent as the underlying fixed-point operator changes; the employed
multi-secant method, therefore, needs to be capable of dealing with this moderate amount of noise.

MV implicitly reuses past information through norm minimization imposing minimal change of
the update with respect to the previous time step estimation of the Jacobian. This may be combined
with explicit reuse. Our numerical tests [Sch15], however, showed no benefit from an additional
explicit reuse of information beyond the current time step for the MV method such that we do not
further consider MV(ξ) methods for ξ ą 0. The LS method, on the other hand, solely relies upon
explicit reuse in (2.7) and the convergence properties can be significantly improved by enlarging the
space spanned by the input vectors14 [Sch15; Lin15; Deg09; Uek16].

Convergence of the LS method is quite sensitive to the amount of recycled information from
the past. In practice, therefore, the parameter η(ξ) highly depends upon the application problem at
hand with its underlying physics and characteristics and needs to be identified in a costly offline
tuning phase. A non-optimal choice may cause stagnation or lead to numerical breakdown due to
stability issues. Numerical results in §4.2 point this out for different application cases. The next
section offers an attempt to remedy this problem through filtering.

Implicit reuse, on the other hand, resolves this problem automatically through the combination
of norm minimization and explicit data from the current time step: Already well resolved features
retain and linearly dependent or even contradicting information is implicitly overwritten. This
renders the tuning parameter η(ξ) obsolete, but comes at the expense of requiring an explicit
representation of the Jacobian.

Improving Robustness: Filtering. Nearly linearly dependent columns in V k both render the
calculation of V:

k = (V T
k V k)

´1V T
k costly and ill-conditioned, but also lead to low quality of M´1 as it

typically is an indication for outdated information in V k and W k. Linear dependencies can be caused
by the non-linearity of the mapping H, rounding errors, convergence towards a stationary solution
of the transient problem, or simply by too many reused history vectors η, the column vectors in
V η

k . As a result, we observe stagnation or numerical breakdown; acceptable conditioning of V η
k is

14Notice, that generating further input/output pairs within the current time step involves a full time step execution in every
participating sub-solver. This is equivalent to the cost of a coupling iteration and prohibitively expensive. Recycling
existing input/output pairs from slightly different fixed-point operators (at a different time instance) is therefore a cheap
and promising alternative.
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absolutely essential for convergence.
In an attempt to alleviate linear dependencies and obliterate contradicting information, we

consider so called filtering techniques that ought to identify and eliminate potentially dangerous
columns in V k and, accordingly, also in W k, and thereby maintain good conditioning of the QR-
decomposition and robustness of the quasi-Newton method. We describe two filtering methods
QR1 and QR2 based on a modification of the QR-decomposition and a third method that filters bad
information via truncation of a proper orthogonal decomposition (POD) of (V η

k )
TV η

k . The considered
methods have been proposed in our earlier work [Hae15], where in a joint effort15 we extensively
studied and compared the filtering techniques applied to LS and MV for different FSI application
scenarios and different single-physics solvers. Further thorough numerical analysis for a multitude
of different single-physics solvers and FSI test cases in combination with LS and MV can be found
in [Uek16]. Within this work, we are primarily interested in analyzing the method’s potential in the
face of extensive reuse, i.e., for LS(ξ) with very large ξ and forego a revision of an extensive analysis
(the interested reader is referred to [Hae15; Uek16]). Results for QR1 and QR2 in combination with
advanced variants of LS(ξ) and MV are given in §4.2 and have been earlier published in [Sch17].
Within this work, the stabilizing filter techniques have been integrated into the parallel multi-physics
coupling tool preCICE.

We focus on the filters QR1 and QR2, that, based on (a modified) QR-decomposition of Vη
k ,

indicate and eliminate (nearly) linearly dependent columns. The QR1 approach is widely used in the
FSI community to stabilize LS and has been first introduced in [Deg09]. Given an economy size QR
decomposition QR = V η

k of V k
16, QR1 monitors the condition of R (and thereby V k) and eliminates

the oldest column i for which

(2.25) Rii ă εF or Rii ă εF}R}2

from V k and consistently also in W k. If elimination occurs, the QR-decomposition is discarded
and re-computed for the reduced V k. The QR2 technique, on the other hand, compares and judges
columns already during the construction of the QR-decomposition with respect to their amount of
new information incorporated to the least-squares system. The latter is measured by the norm of the
orthogonalized column in Q (before normalization). Alg. 2.2 lists algorithmic details. Whereas QR1
is motivated from a numerical point of view17, QR2 is purely algebraic. Consequently, QR1 would
filter out a (potentially linearly independent) column just because it is small compared to other
columns. As a third approach, we mention POD [Bog12; Hae15; Sir87], which eliminates dangerous
information based on a truncated proper orthogonal decomposition of V T

k V k. Algorithmic steps are
given in Alg. 2.2. Our analysis in [Hae15] showed no advantage of POD over the QR variants, which
alongside with a more involved numerical implementation is the reason why we do not deepen its
analysis here.

For the QR2 filter, it is crucial to start the Gram-Schmidt orthogonalization with the most recent
information, as it probably reflects the dynamics of the current time step/iterate better than older
ones. This in turn requires a costly re-computation of the QR-decomposition in every quasi-Newton
iteration. While the implementation used in [Hae15] follows the same strategy for QR1, we decided
to employ a very efficient QR-updating scheme based on Givens rotations in combination with
QR1. This strategy is prone to filter out most recent information first, which contradicts the idea
15R. Haeltermann, A.E.J Bogaers, B. Uekermann, M. Mehl and myself
16To enhance readability, we drop the superscript.
17The filter threshold εF depends on the accuracy of the single-physics solvers and may be determined by analyzing propa-

gation of small input perturbations by the operator map H.
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1 func mGS-QR2-Filter(V k P RNˆη, εF)
2 Output: filtered V̆ k, W̆ k, Q̆ P RNˆη̆

3 R̆ P Rη̆ˆη̆ s.t. V̆ k = Q̆R̆

4 set R̆11 = }V k¨,1}2 and Q̆¨,1 = V k¨,1/R11

5 for i = 1, 2, . . . , η do
6 v̄ = V k¨,i

7 for j = 1, 2, . . . , i ´ 1 do
8 Rji = Q̆T

¨,j ¨ v̄

9 v̄ = v̄ ´ R̆ji ¨ Q̆¨,j

10 if }v̄}2 ă εF}V k¨,i}2 then
11 delete column i from V̆ k, W̆ k

12 restart procedure

13 R̆ii = }v̄}2 and Q̆¨,i = v̄/R̆ii

1 func POD-Filter(V k P RNˆη, εF)
2 Output: filtered V̆ k, W̆ k P RNˆη̆

3 compute corr. matrix Σ 1
r (V k)

TV k

4 compute eigenvalues λi and -vectors νi of Σ

5 s.t. ΣX = XΛ with X = (νi)
η
i=1

6 and Λ = diag(λ1, . . . , λη), λ1 ě . . . ě λη

7 determine c s.t. λc
λ1

ď εF ă
λc´1

λ1
or c = η

8 compute V = V kX and W = W kX
9 truncate V̆ k := [V ¨,1, . . . , V ¨,c] and
10 W̆ k := [W ¨,1, . . . , W ¨,c]

ALGORITHM 2.2 Pseudo-code for the modified Gram-Schmidt QR2 filer (left) and the proper orthogonal decomposi-
tion (POD) filter (right). Both algorithms filter V k based on a filter/truncation threshold εF and modify V k, W k P RNˆη

to V̆ k, W̆ k P RNˆη̆ .

of eliminating outdated columns and is therefore potentially less stable. In [Uek16], however,
Uekermann showed that the difference is negligible for a well chosen threshold parameter εF.

Other similar filter techniques are considered in literature [Fan08; Wal11; Mar08] primarily
discarding old columns. We like to emphasize that for transient problems, input/output modes from
old time steps might be essential for fast convergence and should not be discarded completely (restart
typically implies a loss in robustness). Rather, filtering ought to eliminate particularly dangerous
columns (e.g., dropping similar iterates from a “thick” recent time step). We apply QR1 and QR2
to LS(ξ) for large ξ and rely on the filtering to ensure robustness and stability. Although it might
improve robustness in some cases, for our application problems filtering for MV was not required.
The implicit reuse through norm-minimization can be seen as a filter for past information, and
secant-information within one time step is better conditioned.

Improving Robustness: Pre-Scaling for the Jacobi-System. Beyond the above mentioned issues, solving
the least-squares system (2.19), i.e., factorizing V k = QR to compute αk = R´1QTrk or V:

k = R´1QT ,
respectively, in combination with the Jacobi-system (J) is prone to be ill-conditioned as the coupling
variables x = (x1, x2)

T with x1 P X1, and x2 P X2 are likely to live on very different scales. To
stabilize the solution, a suitable pre-scaling of the least-squares system V k

1 := ΛkV k and rk1 := Λkrk

with Λk = diag(λk
1, . . . , λk

N) becomes necessary. Hereby, the weights λk
1, . . . , λk

N shall be chosen
such that entries in x1 and x2 are normalized. In a transient setting, this is typically done with
respect to the previous time step. Different choices are conceivable (cf. [Uek16]):

(i) per-entry normalization, i.e., λk
1 = λk

i = 1/(x(n´1)
i +εmach), i = 1, . . . , N,

(ii) per-sub-vector normalization, i.e., λ̄k
1 = λk

i = 1/}x(n´1)
1 }2, λ̄k

2 = λk
N/2+i = 1/}x(n´1)

2 }2, i =

1, . . . , N/2.

In [Uek16], Uekermann showed by thorough numerical analysis that a per-sub-vector normalization
yields more robust behavior than a per-entry normalization. Further, a per-sub-vector normalization
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based on the weighted sum of the residuals from k previous quasi-Newton iterations, i.e.,

λ̄k
1 = λk

i =

 k
ÿ

j=1

}S2(xj
1) ´ xj

1}2

}H(xj) ´ xj}2

´1

and λ̄k
2 = λk

N/2+i =

 k
ÿ

j=1

}S1(xj
2) ´ xj

2}2

}H(xj) ´ xj}2

´1

, i = 1, . . . , N/2,

has been shown to outperform other approaches18. We would like to emphasize that this choice for
the pre-scaling operator Λk results in varying scaling weights in every quasi-Newton iteration. As a
result, the QR-decomposition of V k needs to be re-computed from scratch in every iteration (i.e., the
columns updating scheme is no longer applicable). To allow for consistent input/output histories,
the pre-scaling needs to be reverted after the solution of the least-squares problem (2.19) (i.e., QR-

factorization of V k). For pre-scaled objects V k
1 := ΛkV k, W k

1 := ΛkW k, V:

k
1

:= V:

kΛ´1
k = R´1QTΛ´1

k ,
M´1

prev
1 := Λk M´1

prevΛ´1
k , ∆xk1 := Λk∆xk and rk1 := Λkrk, the computation of the MV quasi-Newton

update reads

∆xk1
= M´1

prev
1
rk1

´ (W k
1 ´ M´1

prev
1
V k

1)V:

k
1
rk1

= Λk(M´1
prevrk ´ ĂW k(R´1QTΛ´1

k Λk)r
k)

Reverting ∆xk via Λ´1
k ∆xk1

can then be simplified to the update

xk+1 = H(xk) + M´1
prevrk ´ ĂW k[V

:

k
1
Λk]r

k.

In particular, one can easily verify that the optimization problem (2.16) is invariant under pre-
scaling19. For our algorithm, this means, that we only have to (i) scale V k to V k

1 = ΛkV k, (ii) calculate

the QR-decomposition of V k
1 by factorizing V k

1 = Q1R1 = ΛkQR, and (iii) calculate V:

k
1
Λk =

R1´1Q1T
Λk. As a result, pre-scaling can be computed at negligible added cost. The residual-sum

weights, however, contradict the QR-updating scheme and trigger a re-computation from scratch. If
pre-scaling is combined with a filter technique, ΛkV k is computed prior to application of the filter.

Towards Scalable and Robust Black-Box Solvers. We conclude this section by abstracting the
characteristics of the introduced multi-secant quasi-Newton methods LS and MV. In particular, we
point out major drawbacks, ultimately rendering each of the methods impractical when going to large-
scale and massively parallel execution. Drastically increasing computational cost no longer allows
for extensive parameter tuning and O(N2) memory consumption to store the Jacobian becomes
infeasible when going to large-scale simulations. We introduce enhanced methods designed to
remedy each method’s limitations. A more detailed description of the methods’ efficient algorithmic
implementation on distributed data is provided in the next section.

18Uekermann considers (i) value based normalization per-entry and per-sub-vector, (ii) constant weighting per-sub-vector,
and residual based per-sub-vector normalization using (iii) the residuum from the previous iteration only as well as
(iv) the sum of k previous residuals. More details and thorough numerical analysis can be found in [Uek16], Sec. 3.6.3.

19Solving }M´1
prev

1
´ M´11

} Ñ min s. t. M´1
prev

1
V k

1 = W k
1 results in λ‹ = ´ĂW

1

kV:

k
1
= ´ΛkĂW kV:

k Λ´1
k = ´(ΛkW k ´

Λk M´1
prevΛ´1

k ΛkV k)V
:

k Λ´1
k , and }M´1

prev ´ M´1} Ñ min s. t. M´1
prevV k = W k results in λ‹ = ´ĂW kV:

k = (W k ´

M´1
prevV k)V

:

k .
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Abstract: Towards Scalability and Robustness

The Least-Squares (LS) method (i) uses M´1
prev := 0 and (ii) solely relies upon explicitly retained

multi-secant information in V and W . This introduces (iii) the tuning parameter η of the amount of
re-used secant information from the (transient) convergence history or requires (iv) sophisticated (and
costly) filtering/preconditioning for the multi-secant system (discussed in what follows) to maintain
acceptable conditioning of the pseudo-inverse V:. (v) The method can however efficiently be realized in a
matrix-free manner on distributed data.

The Multi-Vector Update (MV) method (i) implicitly retains past information by using M´1
prev :=

M´1, (n´1)
prev and incorporates an update based on (ii) a small number η of explicitly re-used multi-secant

information from the current time step. Omitting linearly dependent or contradicting information by
limiting η ensures good conditioning of V:

k while implicit reuse in M´1
prev still yields good approximation

quality; as a result (iii) filtering and (iv) the tuning of the parameter η become obsolete. (v) This comes
at the cost of explicitly storing a representation of the system Jacobian matrix M´1.

We introduce and compare two variations that remedy each method’s major drawbacks—(a) the
LS(8) method, rendering the tuning of η dispensable by reusing all previous information and ensuring
acceptable conditioning of V for stability and robustness by applying a powerful filtering technique, and
(b) the Multi-Vector Restart-SVD (MV-RS-SVD) method, enhancing the MV concept to a matrix-
free alternative by on-the-fly evaluations in combination with a limited-memory concept, storing ĂWq and
V:q for a limited number q of time steps; the method’s memory is periodically reset. To maintain the good
MV convergence properties, Jacobian information is retained across memory-resets via a sophisticated
SVD-based sub-space tracking method in O(N) overall complexity. The methods are detailed in the
remainder of this chapter.

Least-Squares (LS) LS(8) Multi-Vector Update (MV) MV-RS-SVD

update rank-η, η = k +
řn´1

q=n´ξ kq rank-η, η = kn

reuse explicitly in V k , W k implicitly in M´1
prev

tuning yes, ξ (for η) no, ξ = n no
filtering yes, cost O(Nη2) +O(η4) no
matrix-free yes no, cost O(N2η) yes, restart + sub-space-tracking

2.2.2 Efficient Algorithms for Calculation and Representation of Jacobians

In the previous section, we proposed advanced quasi-Newton concepts that minimize the need for
manual tuning of problem-dependent parameters and described techniques that improve robustness
and convergence, but also maintain numerical stability. To be practical for real application scenarios,
highly efficient and optimized algorithmic realization is an absolute necessity. In particular, real
applications typically feature large problem sizes and growing number of unknowns. Consequently,
distributed memory algorithms designed for massively parallel execution on high-performance
supercomputers become an imperative. In what follows, we describe the efficient algorithmic
realization of the main computational building blocks within the two considered multi-secant
variants LS and MV and their implementation on distributed data. We first describe the efficient
algorithmic realization for the non-matrix-free MV alternative such as stated in §2.2.1, followed by
the description of a more sophisticated, matrix-free variant of this method which remedies the O(N2)

complexity (memory and computational cost) by exploiting a limited memory strategy combined
with a periodically sub-space-tracking restart approach (MV-RS-SVD). The presented content is
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addressed in our previous work [Bun16a]; [Bun16b] (MV/LS) and [Sch17]. Also [Uek16] describes
algorithmic realization of MV and LS within the coupling library preCICE; the latter is, however,
genuine work attained within this thesis. We keep the algorithmic description short and omit details
to avoid needless repetition and refer to the above work for an elaborate description.

Algorithmic Building Blocks. The primary kernel of both quasi-Newton methods is the computa-
tion of the pseudo-inverse V:

k = (V T
k V k)

´1V T
k in (2.18) (LS) and (2.20) (MV). To compute the Newton

update xk+1 = xk + ∆x, it is sufficient to get the action z = V:

ky of the pseudo-inverse on a vector
y. As mentioned above, this is equivalent to solving the unconstrained least-squares optimization
problem20

(2.26) z = argminz̄PRη }V k z̄ ´ y}2,

which by using the right-hand-side y := ´rk and α := z replaces

xk+1 = H(xk) ´ W kV:

krk by xk+1 = H(xk) ´ W kαk and

xk+1 = H(xk) ´ (M´1
prev +ĂW kV:

k)r
k by xk+1 = H(xk) ´ M´1

prevrk ´ ĂW kαk.

For the LS method, the computation of α via QR-decomposition (backS) is followed by a
matrix-vector product W kα to calculate the quasi-Newton update in every iteration.

For the MV method, a similar product ĂW kα is required, together with an additional matrix-vector
product M´1

prevrk including the representation of the inverse Jacobian estimation from the previous

time step for the calculation of ∆xk for the current iteration. The matrix ĂW k = (W k ´ M´1
prevV k),

however, changes in every iteration and requires an additional matrix-vector multiplication M´1
prevV k,

denoted by (MV) for construction. Since MV requires an explicit representation of M´1
prev, the

Jacobian needs to be built and stored after convergence of the quasi-Newton iterations at the end
of every time step. This involves large and costly matrix-matrix multiplications. Instead of only
computing the vector α = V:

krk, the full matrix V:

k for the update of the Jacobian inverse according to
M´1 = M´1

prev +ĂW kV:

k is needed and computed from solving (2.26) for all unit vectors y := ei P RN ,

i = 1, . . . , N. We refer to this step as (iV). After calculating V:

k , the Jacobian update is computed
from (i) calculating ĂW k = (W k ´ M´1

prevV k) involving an RNˆN ˆ RNˆη matrix-matrix multiplication

(Wtil), followed by (ii) multiplying ĂW kV:

k with dimensions RNˆη ˆ RηˆN , denoted by (WV), and
finally (iii) adding M´1

prev. In what follows, we present the algorithmic design of the involved building
blocks and describe their efficient realization on distributed memory.

An Efficient QR-Updating Scheme. Solving (2.26) by factorizing V k = pQpR into an economy-sized21

orthogonal part pQ P RNˆη and an upper triangular part pR P Rηˆη and computing z from

(2.27) pRz = pQ
T

y

via backward-substitution is not only better conditioned and, thus, more stable as computing
20For the (J) system, pre-scaling the least-squares problem is required. The modified problem reads z =

argminz̄PRη }ΛkV k z̄ ´ Λky}2 for a suitable weighting matrix Λk (see sub-section Improving Robustness: Pre-Scaling for the
Jacobi-System). For changing weights in Λk , the QR-decomposition needs to be computed from scratch, i.e., we compute

qr(ΛkV k) = Λk pQ
T
k
pRk and α = pR

´1
pQ

T
Λ´1

k (Λkrk) in every iteration. After an initialization phase, the weighting factors
can be held constant and re-computation is no longer required. Consequently, the below described updating strategy can
be exploited.

21Here pQ P RNˆη and pR P Rηˆη is the economy-size QR-decomposition for “tall and skinny” matrices, computing only the
first η columns of the orthogonal matrix Q P RNˆN and the upper η ˆ η-block in R P RNˆη
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z = (V T
k V k)

´1V ky, but also particularly efficient. In every quasi-Newton iteration, one column is
added to the left of the matrix V k (and possibly one column is deleted from the right), i.e., V k =

[∆rk
k´1, V k´1(:, η ´ 1)] which leads to a sequence of similarly successive least-squares problems22.

Instead of recurrent re-computation of the QR-decomposition, we employ an efficient, stable updating
scheme of an existing decomposition based on Givens rotations [Bun16b; Dan76]. The update is
realized by means of column insertion and column deletion operations. Roughly speaking, inserting
a column v to an existing decomposition pQpR first requires orthogonalization of v against the columns
of pQ followed by application of a series of Given rotations to eliminate previously introduced non-
zero sub-diagonal entries in pR. This involves (η/2)(η ´ 1) Givens rotations. That means, given pQ and
V k = [v, V k´1], we search for the new orthogonal column q P RN , the respective orthogonalization
weight vector s P Rη and the normalization factor ρ P R such that v = pQs + ρq, i.e.,

(
v pQ

)
=
(

q pQ
)( ρ 0

s I

)
with pQ

T
q = 0 and }q}2 = 1

Then s is calculated from s = pQ
T

v. The orthogonal part ρq =: v̄ of v is computed via Gram-Schmidt

orthogonalization v̄ = v ´ pQs = (I ´ pQ pQ
T
)v and normalized, i.e., }q}2

!
= 1, hence ρ = }v̄}2 and

q := v̄/ρ; compare Alg. 2.2. This yields the new decomposition

(v, V k´1) = ( pQs + ρq, pQpR) = (q, pQ)

(
ρ pR
s 0

)
.

The column (ρ, s)T added to the front of pR destroys the upper triangular structure and requires the
application of suitable Givens rotations.

Analogously in case of deletion of a column by filtering, the column is dropped from the
decomposition and pR needs to be re-structured by means of Givens rotations to maintain upper
triangular structure. Note, that deletion of the oldest column on the right does not involve any
computations. For later reference, we refer to a column insertion or deletion operation with (iQR) and
to an update step consisting of ι column insertions/deletions23 with (updQR). A re-computation from
scratch24 is referred to as (QR). For a detailed and robust algorithmic description of the updating
scheme, we refer to [Dan76; Bun16b].

Re-Orthogonalization. Due to limited numerical accuracy and round off errors, the above column
updating algorithm may lead to non-orthogonal columns in pQ and re-orthogonalization becomes
necessary to avoid emphasized errors in subsequent computations (e.g., computation of α). We
shortly sketch the implemented re-orthogonalization strategy and detection of the necessity thereof.
Assume the orthogonal part ρ = }v̄}2 of v with respect to pQ is zero, it follows that the new column
v P span( pQ) and the column is discarded. Inexact floating point numerics and round off errors,

however, rather yield 0 ă ρ ! 1 and }pQ
T

v̄}2 almost zero, but not quite. That means }pQ
T

v̄}2 = ε}v}

22We slightly abuse notation here and in the following, and disregard the potential elimination of columns (filtering) when
referring to the object dimensions. In other words, we denote the number of columns used in the multi-secant equation
(whether filtered or unfiltered) for the current time step by η (instead of η̆), i.e., V k , W k , (V:

k )
T , ĂW k , pQ P RNˆη and

pR P Rηˆη . In the same spirit, we relate to the dimensionality of matrices from previous time steps, e.g., V
kn´i ,n´i
kn´i

(or

short V ki ) with ηi , i.e., V ki P RNˆηi .
23If no filtering is considered, 1 ď ι ď 2, i.e., one column is inserted at the front and possibly one column dropped at the

end, if k ą η, or
řn

q=n´ξ kq ą η (sliding-window approach). For enabled filtering, a larger number of columns may be
deleted.

24Re-computation of the QR-decomposition from scratch is done by performing η consecutive column insertion operations.
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for a small positive number ε. As a result, }pQ
T

q̄}2 = ε}v}2/ρ and orthogonality of [ pQ q] is no longer
given as the factor 0 ă ε/ρ can be large for ρ sufficiently small. To detect and remedy this problem, we
use a criterion similar to the QR2 filter and re-orthogonalize v̄ if ρ = }v̄}2 ă

?
2}v}2 and recursively

re-apply the Gram-Schmidt process until v̄ is sufficiently orthogonal to pQ, or the column is discarded
after 4 trials.

Updated QR-Decomposition on Distributed Data. Distributed memory algorithms and massively
parallel execution are inevitable for a growing problem size25. The here considered data distribution
is natural for partitioned surface-coupled multi-physics problems (such as FSI), but is also applicable
in a more generic setting. Assuming parallel execution on p MPI ranks, the vector of unknowns
is distributed into sub-vectors of length N/p, assuming ideal load-balancing26. This translates into
a row-block-wise distribution with blocks of size N/p ˆ η of the matrices V , W , pQ and ĂW , and,
analogously to a block-column-wise decomposition with blocks η ˆ N/p of the pseudo inverse matrix
V:. The quadratic η ˆ η matrix pR is locally replicated on each MPI rank as the number of columns η

is assumably small; cf. Fig. 2.1.
Inserting a column using the above QR-updating strategy requires communication between MPI

ranks only incurred by the inner products and `2-norm vector operations pQ
T

v and }v}2. Applying a
series of Givens rotations can be done fully locally without communication as pR is locally replicated
and only row elements in pQ are required. For (iQR), this translates into a computational complexity
of O(ηN/p) +O(η log p) for η inner products of length N in the orthogonalization process and a
O(η2N/p) +O(η3) complexity for the η2/2 local Givens rotations. This results in the parallel runtime
complexity

(iQR) O(η2N/p) +O(η log p) +O(η3)

for updating an existing decomposition (insertion/deletion of a column). Re-computing the decom-
position from scratch (QR), leads to a parallel complexity of O(η3N/p) +O(η2 log p) +O(η4).

Solving the quadratic system (2.27) via backward-substitution on distributed data requires the

parallel computation of pQ
T

y involving an allreduce operation, which translates to a runtime com-
plexity of O(ηN/p) +O(η log p), followed by the fully locally back-substitution step. Summarized,
the computation of the vector α, as used in the LS method has a parallel runtime complexity of

(backS) O(ηN/p) +O(η log p) +O(η2).

Computation of the pseudo inverse matrix V:, as required for the MV method, involves solvingf

the back-substitution for all unit vectors ei, i = 1, . . . , N. Computing pQ
T

ei, however, neither involves
computational cost nor communication effort and the overall parallel runtime complexity to form
the pseudo-inverse (iV) is given by O(η2N/p), assuming a block-column-wise distribution of V:.

An efficient, distributed memory implementation of the updating scheme with sophisticated
re-orthogonalization criteria including the above described QR filters has been added to the coupling

25Note, that for, e.g., partitioned FSI, the number of unknowns N at the coupling interface (i.e., a 2D surface) is small
compared to the number of unknowns within the three dimensional domains for the single-physics solvers. Domain
decomposition data distribution is thus typically induced and dictated by the sub-component solvers; the decomposition
at the interface then automatically defines the load-balancing and data distribution for the considered algorithms. As
a result, parallel execution and distributed memory algorithms might become necessary long before the number of
unknowns N at the interface grow too large. For volume coupled problems, however, the situation is different.

26For partitioned multi-physics simulations, the load-balancing and therefore, the domain decomposition is optimized with
respect to the unknowns in the volumetric domain of the single-physics solver. In general, this results in a non-optimally
balanced load at the interface.
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FIGURE 2.1
Decomposition and storage distribution of the matrices pQ P RNˆη , V:

k P

RηˆN and pR P Rηˆη . The matrices V k, W k and ĂW k are distributed analo-
gously to pQ. The matrix decomposition on distributed data is indicated with
different colors, representing local sub-blocks on different MPI ranks (here
p = 3 ranks); the purple color indicates a low-dimensional matrix that is
locally replicated on all processors (such as pR). η indicates the number of
stored columns and is typically small, e.g., η ă k for MV.

library preCICE in the course of this thesis. A similar implementation for the massively parallel
realization of the LS method is presented in [Lof15]. Numerical results demonstrating the robustness
of the implementation and, in particular, the effect of different filtering techniques to ensure stability
can be found in [Hae15; Uek16]. Results demonstrating the computational efficiency and parallel
scalability are published in [Bun16b; Sch17].

Least-Squares Method on Distributed Data. For the sake of completeness, we summarize the
computational steps required per iteration for the LS method. Updating of the QR-decomposition
and subsequent filtering, comprises ι insertion/deletion operations (iQR), or even re-computation
from scratch (QR), followed by calculation of α via (backS) and compute ∆x by locally multiplying
Wα on each rank. The parallel runtime complexity per iteration is dominated by

(LS / it) O(η2N/2) +O(η4) +O(η2 log p).

Multi-Vector Update Method on Distributed Data. The original MV method [Bog14] as presented
above requires explicit storage of the Jacobian and involves three large and costly dense matrix-
matrix products, namely (i) ĂW k = (W k ´ M´1

prevV k), (ii) ĂW kV:

k and (iii) M´1
prevrk. This results in O(N2)

complexity both in terms of computational effort and storage requirement. We first present the
realization of the plain-vanilla MV method on distributed data. Thereafter, an advanced limited-
memory variation with efficient storage management of the Jacobian which reduces the overall cost
to linear O(N) complexity, is introduced.

Dense Multiplication M´1
prevV on Distributed Data. Considering parallel execution on p MPI ranks,

the Jacobian is distributed into column-blocks of size N ˆ N/p (i.e., equaling the global size of the
matrices V , W); cf. Fig. 2.2. To compute M´1

prevV k, each processor j first computes its local contribution
M´1

prev#j
V k#j of size N ˆ N/p, which is then summed up via a reduce operation. The result needs to

be scattered to the sub-processes; compare Fig. 2.2 (left). The parallel runtime complexity for M´1
prevV

sums up to

(MV) O(ηN2/p) +O(ηN log p).

Alternatively, a distributed inner product per entry of the resulting matrix ĂW can be computed,
omitting the allocation of extra N ˆ N/p matrix blocks per MPI rank. The communication overhead
in turn increases. Both alternatives are available within the distributed memory implementation of
the plain-vanilla MV method in preCICE. This product is formed per iteration of the MV method.

Dense Multiplication ĂW kV:

k on Distributed Data. This matrix product is more involved as it requires
an all-to-all communication of information, i.e., each processor j requires corresponding sub-blocks
ĂW#i of ĂW from all other processors i ‰ j. A schematic illustration is given in Fig. 2.2 (right). This is
realized employing a cyclic communication principle, similar to Cannon’s algorithm for distributed
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FIGURE 2.2 Schematic view of the distributed memory matrix-multiplications involved in the MV method. Block
partitioning and parallel multiplication of M´1

prevV k (left) and of ĂW kV:

k (right). Figure modified from [Bun16b].

FIGURE 2.3
Schematic view of cyclic scheme for the dense
mat-mult M´1 = ĂW kV:

k . The arrows indi-
cate cyclic inter-processor communication of
sub-blocks ĂW#i with minimal communication
and memory overhead. After p multiplica-
tions and (p ´ 1)p send-receive operations of
sub-matrices ĂW#i (left), the multiplication is
completed and readily available on distributed
ranks (right); (cf. [Bun16b]).

matrix-multiplication. Each processor locally computes the product ĂW#iV
:

#i of the currently available
blocks of ĂW k and V:

k and hands over his local block ĂW#i to the neighboring processor “on the right”
and consequently also receives a new block “from the left”. The communication pattern and cyclic
strategy is given in Fig. 2.3. Multiplying the new block of ĂW k with the local block of V:

k yields
the next contribution. All contributions are computed after p cycles of send-receive operations and
the resulting matrix M´1 is readily available on distributed MPI ranks; no further communication
is required. This algorithm allows for an efficient communication-computation overlay: Before
computing the local matrix products, asynchronous send and receive operations for the next block of
ĂW are triggered. The local matrix products sum up to a parallel runtime complexity of O(ηN/p).
The communication cost is O(ηN/p) = O(ηN). Combined, the parallel cost sums up to

(WV) O(ηN2/p).

The computation of this expensive matrix-product is only required to explicitly form the Jacobian
update at the end of a (converged) time step.

Compute Update ∆x̃ = ´M´1rk on Distributed Data. Computation of the matrix-vector product
M´1rk is analogous to the above described computation of M´1

prevV k. Each processor locally computes
its additive contribution to the resulting Newton update vector. In a subsequent reduce step,
all contributions are summed up and row blocks scattered to the responsible processors. This
accumulates to a parallel runtime of

(Mr) O(N2/p) +O(N log p).

This product is formed per MV iteration. Summarizing, the MV method has a parallel runtime
complexity of

O(ηN2/p) +O(ηN log p)(MV / it)

per iteration.
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Conclusion. Summarizing, we note that the cost for LS grows linearly in N and scales down with
the number of parallel MPI ranks p. The QR-decomposition dominates the computational cost for LS.
Its cubic cost in the number of columns requires η to be small in order for LS to be computationally
efficient. On the other hand, a small η may hamper convergence. In comparison, the MV method
entails large, dense matrix multiplications that dominate the overall runtime and result in quadratic
cost; an additional linear term occurs which grows with log p instead of scaling down with the
number of parallel tasks. Furthermore, MV requires explicit storage of M´1

prev resulting in an O(N2/p)

memory footprint per rank. This quadratic memory consumption rules out the method for most
practical applications featuring a large number of unknowns. With an O(ηN/p) memory requirement
per rank, the LS method is well suited for large scale applications.

An Efficient and Scalable Multi-Vector Restart Alternative. We now present an enhanced variant
of MV which reduces both computational cost and memory requirement from quadratic complexity
to linear complexity by exploiting an efficient storage management and truncation of the Jacobian,
following a limited-memory approach with periodic restart strategy. We published this method
earlier in [Sch17]. The description herein follows our previous work. The fundamental idea is
to store a limited number m ď n of sub-matrices ĂW kq and V:

kq
for q = n, . . . , n ´ m over several

steps and compute the Newton update from matrix-vector operations on-the-fly instead of explicitly
building and storing the entire Jacobian matrix. Furthermore, we optimize the computation of ĂW k

and perform column updates rather than re-computations of the entire matrix.

Efficient Representation of the Jacobian. Unrolling the recursive MV Jacobian update formula (2.20),
the matrix at time step n decomposes into the explicit sum of products ĂW kV:

k from all previous time
steps, i.e.,

(2.28) M´1 = ĂW k0 V:

k0
+ĂW k1 V:

k1
+ ¨ ¨ ¨ +ĂW kn V:

kn
.

Without building the Jacobian, the Newton update can then be computed from on-the-fly matrix-
vector computations

(2.29) ∆xk+1 = xk ´

n
ÿ

q=0

ĂW kq(V
:

kq
rk).

Obviously, this approach is efficient only if the number of stored matrices is substantially smaller
than N. In a transient setting, however, n may grow arbitrarily large. Thus, we introduce a limited
depth m of the method’s memory and apply a periodic reset of storage, or restart of the method,
i.e., either re-setting the Jacobian estimate to zero (clear all) or transforming the sum representation
into a compact reduced representation. Consequently, we divide the simulation time in chunks of m
time steps for which each partition represents one era for the Jacobian estimation. At restart, we free
all memory for the sum representation and reset M´1 to ĂW0V:

0 with suitable matrices ĂW0 and V:
0.

Thus, with restart, M´1 is represented by

M´1 = ĂW0V:
0 +

n
ÿ

q=n´m

ĂW kq V:

kq

For transient problems, clear-all restart typically goes hand in hand with a severe degradation of
convergence speed due to the loss of Jacobian information. Other restart strategies allow retaining of
information from previous chunks to tackle this issue. Let m be an upper bound on the number of
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time steps held in memory and η̄ = max(kn´m, kn´m+1, . . . , kn) be an upper bound on the number
of columns/iterations per time step. We present and investigate three different restart alternatives:

(RS-0) Clear all. No information is retained and the Jacobian approximation is started from
scratch. The Newton update M´1rk is computed from 2m matrix-vector products, i.e.,

y = V:

kq
rk and W kq y, for q = n ´ m, . . . , n

This results in a (sequential) runtime complexity and memory consumption of O(mη̄N).

(RS-LS) Clear the sum representation of M´1, i.e., drop stored matrices ĂW kq , V:

kq
, but explicitly

retain secant information from ξrs ă m previous time steps within the current chunk. In other
words, restart MV with

M´1
prev := ĂW0V:

0, ĂW0 := Wηrs ,n
k and V:

0 := pR
´1

pQ
T

with V ηrs
rs = pQpR

where
V ηrs

rs = [V k, n
k , . . . , V

kn´ξrs , n´ξrs
kn´ξrs

] and Wηrs
rs = [W k, n

k , . . . , W
kn´ξrs , n´ξrs
kn´ξrs

].

The associated cost for this variant are O(ηrsN) +O(mη̄N) if ηrs previous columns are reused.

(RS-SVD) Clear the sum representation of M´1, but retain most dominant modes by employing
a truncated singular value decomposition (SVD) of the Jacobian estimation as restart, i.e., use

M´1
prev := ĂW0V:

0, ĂW0 := Ψ and V:
0 := ΣΦ

T

where

(2.30) M´1 =
(
Ψ¨,j
)

j=1,...,κ

=: Ψ


σ1

σ2
. . .

σκ


=: Σ

(
Φ¨,j

)T
j=1,...,κ

=: Φ
T

with Ψ, Φ P RNˆκ and Σ P Rκˆκ is the truncated version of the singular value decomposition

M´1 = ΨΣΦT with Σ = diag(σ1, σ2, . . . , σN) P RNˆN

of the Jacobian with σ1 ě σ2 ě . . . ě σN ě 0. The truncated SVD is obtained after cutting off
all singular values below a given threshold. We use an efficient rank-k updating strategy for the
computation of the SVD to track the estimated Jacobian’s sub-space. The storage requirement and
computational complexity for this approach accumulate to O(κ2) +O(κN) +O(mη̄N), disregarding
the computational effort for the restart numerics and assuming the SVD is truncated to the κ most
dominant singular values. For the sake of clarity, the RS-SVD restart alternative for the MV method
is outlined in Alg. 2.3.

While offering fast and robust convergence, the practicality of RS-SVD critically depends on
the efficient algorithmic realization of the singular value decomposition. SVD algorithms typically
feature cubic runtime complexity. We employ an efficient truncated SVD updating scheme with
computational cost growing cubically in the number of significant modes only, i.e., as a function
of the truncated rank κ of the SVD representation of the Jacobian. To obtain overall acceptable cost
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1 func MV-RS-SVD(x0, m, εsvd)
2 ĂW , V: = t u, Ψ, Σ, Φ = 0, s = 0

3 for n = 1, 2, . . . do
4 x0 = extrapolate(x˚

n´1, x˚
n´2, x˚

n´3)

5 x̃0 = H(x0), and r0 = R(x0) = x̃0 ´ x0

6 x1 = x0 + ωr0

7 for k = 1, 2, . . . do
8 x̃k = H(xk), and rk = R(xk) = x̃k ´ xk

9 if converged then
10 break
11 Wη

k = [∆x̃k
k´η , . . . , ∆x̃k

k´1], ∆x̃k
i = x̃k ´ x̃i

12 Vη
k = [∆rk

k´η , . . . , ∆rk
k´1], ∆rk

i = rk ´ ri

13 update QR-dec. Vη
k = QR and apply filter

14 solve RV:

k = QT for V:

k (2.27)

15 update ĂW k = W k ´
řn

q=n´s
ĂW kq (V

:

kq
V kq ) via (2.36)

16 ∆xk+1 = ´Ψ
(

ΣΦ
Trk
)

´
řn

q=n´s
ĂW kq

(
V:

kq
rk
)

(2.35)

17 xk+1 = xk + ∆xk

18 store ĂW = tĂW kn , . . . , ĂW kn´s u, V: = tV:

kn
, ¨ ¨ ¨ , V:

kn´s
u

19 s = s + 1, t = t + ∆t

20 if s ě m then
21 [Ψ, Σ, Φ] = update-SVD(ĂW , V:, εsvd)
22 clear ĂW , V: = t u, s = 0

ALGORITHM 2.3 Pseudo code for the MV restart method RS-SVD. Restart is triggered after completion of m time
steps. The truncated singular value decomposition representation of the inverse Jacobian approximation is efficiently
updated by means of rank-k updates. For a schematic overview of the SVD update, see Fig. 2.4; more details on distributed
memory implementation are given below.

(in particular we aim for linear complexity), the rank κ needs to be significantly smaller than the
number of unknowns N, i.e., κ ă

3?N. Consequently, the efficiency, robustness and applicability of
RS-SVD strongly depends on the assumption that the inverse Jacobian of the system matrix is of
low rank, or, that a good low-rank approximation exists27. Note that the low-rank approximability
requirement already is a prerequisite for quasi-Newton to work reliably. For algorithmic scalability,
we additionally require the rank of the inverse Jacobian to be invariant with respect to the number of
unknowns (i.e., mesh size and discretization), or at least to be bounded.

An Efficient SVD Updating Scheme. As before, we rely on a rank-k updating strategy to maintain an
existing, thresholded singular value decomposition, rather than re-compute from scratch. The latter
is not only much more expensive, but also would require the explicit computation of M´1. Assuming
a truncated SVD representation of M´1

prev as given in (2.30), the inverse Jacobian approximation upon
completion of the current chunk reads

(2.31) Ψ Σ Φ
T
+

m
ÿ

q=1

ĂW kq V:

kq
.

27Note, that in case the inverse Jacobian cannot be approximated sufficiently accurate by a low-rank matrix, the cost of
the RS-SVD approach can be kept acceptable by selecting a sharper threshold; the robustness of the method, however,
worsens.



2.2 MULTI-SECANT QUASI-NEWTON FOR FIXED-POINT PROBLEMS 49

FIGURE 2.4 Schematic view of the SVD rank-k update of the form Ψ Σ Φ
T
+ ABT . The three major steps are

indicated: (i) computation of the orthogonal parts AK := (I ´ Ψ Ψ
T
)A and BK := (I ´ Φ Φ

T
)B and QR-decomposition

thereof, resulting in AK = QARA and BK = QBRB; (ii) composition of the matrix S P Rκ+νaˆκ+νb with νa and νb
dimensionalities of the column space of AK and BK; and (iii) diagonalization of S via singular value decomposition and
subsequent rotation of left- and right-singular vector sub-spaces.

Clearing memory and re-setting MV requires the computation of a new truncated SVD, represent-
ing (2.31), which is done by means of m rank-kq updates of the form

(2.32) Ψ Σ Φ
T
+ ABT =

[
Ψ A

] [ Σ 0
0 I

] [
Φ B

]T

with A := ĂW kq P RNˆkq , BT := V:

kq
P RkqˆN , q = n ´ m, . . . , n. For an efficient realization of

these low-rank updates, we follow the algorithm proposed in [Bra06] and compute the orthogonal
components of A and B with respect to the left- and right-singular vectors Ψ and Φ, respectively. Via
QR-decomposition, we find matrices QA and QB, representing an orthonormal basis of the column
space of AK := (I ´ Ψ Ψ

T
)A and BK := (I ´ Φ Φ

T
)B with the corresponding upper triangular

matrices
RA := QT

A(I ´ Ψ Ψ
T
)A and RB := QT

B(I ´ Φ Φ
T
)B.

We can now restate (2.32) as the update of the orthogonal components AK and BK, only, in terms of
the respective QR-factors, i.e.,

Ψ Σ Φ
T
+ ABT =

[
Ψ QA

]
S
[
Φ QB

]T

with the matrix S P Rκ+νaˆκ+νb composed of

(2.33) S =

[
I Ψ

T A
0 RA

] [
Σ 0
0 I

] [
I Φ

T B
0 RB

]T

=

[
Σ 0
0 0

]
+

[
Ψ

T A
RA

] [
Φ

T B
RB

]T

,

compare Fig. 2.4. Here, νa and νb denote the dimensionality of the column space of AK and BK,
respectively. To re-establish singular value character, S needs to be diagonalized as Ψ1TSΦ1 = Σ1,
which finally leads to the rank-k update

(2.34) Ψ Σ Φ
T
+ ABT =

(
[Ψ QA] Ψ1

)
Σ1
(
[Φ QB] Φ1

)T
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of the truncated singular value representation of the inverse Jacobian. After each update, the SVD
is truncated with respect to a threshold εsvd to maintain a small, but accurate representation. A
schematic illustration for the computation of the SVD update is given in Fig. 2.4.

Before we give a more detailed algorithmic description of the SVD updating step, and, in
particular, its realization on distributed data, we discuss the efficient on-the-fly evaluation of the
Newton update as well as an improved column updating scheme for ĂW k on distributed data.

Efficient Limited-Memory Computation of the Newton Update. Unlike for the plain-vanilla MV method,
the quasi-Newton update for the RS-SVD restart variant is computed as on-the-fly evaluation of a
series of cheap matrix-vector operations

(2.35) ∆xk+1 = ´Ψ
(

Σ(Φ
Trk)

)
´

n
ÿ

q=n´s

ĂW kq

(
V:

kq
rk
)

,

where s ď m is the number of completed time steps since the last restart. In particular, this reduces the
quadratic O(N2/p) +O(N log p) cost of plain-vanilla MV to the linear28 parallel runtime complexity
of

(lmDx) O(κN/p) +O(mη̄N/p) +O(mη̄ log p)

for the computation of the quasi-Newton update. The runtime results from m matrix-vector products
γ = V:

kq
rk, computed in O(η̄N/p) +O(N log p) time each (local matrix-vector products and allreduce

operation), and m fully local matrix-vector multiplications ĂW kq γ with runtime complexity O(η̄N/p)

each. The intermediate result γ P Rkq is stored locally on each rank. The matrices Ψ and Φ are
distributed in row-blocks of size N/p ˆ κ and the computation of the products on distributed data is
analogous to the above described matrix-vector multiplications involving ĂW kq and V:

kq
.

Efficient Column-Updating of ĂW . The matrix ĂW k depends on changes that propagate from the
matrices W k and V k. The latter change from iteration to iteration by adding a column to the front
and possibly deleting a column at the end or in the middle, due to filtering. Since M´1

prev remains
constant within a time step, these events can be translated to efficient column updating operations,
avoiding re-computation of the entire matrix. In the standard case, we update ĂW k := W k ´ M´1

prevV k

by adding the new column rw := ∆x̃k
k´1 ´ M´1

prev∆rk
k´1, i. e.,

(2.36) (ĂW kn)i,0 = rw = (W kn)i,0 ´

n
ÿ

q=n´s

ĂW kq

(
V:

kq
¨ (V kn)i,0

)
The computation of the new column on distributed data is analogous to the computation of the
Newton update above. The updating scheme reduces the quadratic runtime O(ηN/p) +O(ηN log p)
for (Wtil) to

(upWtil) O(mη̄N/p) +O(mη̄ log p).

Deletion of a column can be done without additional computations in O(1).

Efficient Computation of Truncated SVD Update. In the sequel, we give more details on the
28The rank κ of the truncated singular value representation of the inverse Jacobian approximation is assumed to be sig-

nificantly smaller than 3?N and the upper bound η̄ = max(kn´m, kn´m+1, . . . , kn) equals the number of quasi-Newton
iteration per time step and is typically small for MV.
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FIGURE 2.5 Schematic view of block partitioning of matrices and the distributed memory realization of the matrix
products, as required in step (i) of the SVD update. Shown are the involved steps to compute the orthogonal components of
A and B with respect to Ψ and Φ, respectively. κ denotes the rank of the existing, truncated SVD representation, kq the
number of columns to be considered in the update, and νa and νb the dimensionalities of the column space of the orthogonal
components AK and BK.

FIGURE 2.6
Schematic view of elimi-
nating a linearly depen-
dent column from the
QR-decomposition for
(I ´ Ψ Ψ

T
)A.

algorithmic realization of the SVD update strategy, presented above and discuss runtime complexities
for parallel execution on distributed data.

Algorithmic Steps on Distributed Data. We partition the matrices Ψ and Φ P RNˆκ into row-blocks
of size N/p ˆ κ and distribute the inverse Jacobian representation on p ranks. The rank κ of the
truncated SVD is assumably small and the diagonal of Σ is held locally on every rank. When
restart is triggered, m consecutive rank-kq updates (2.32) are performed. This involves the following
computational steps (compare Fig. 2.4):

(i) Compute the orthogonal components of the matrices A and B that form the update ABT ,
with respect to the left- and right-singular vectors Ψ and Φ of the existing SVD representation
(cf. (2.32)), and factorize the new orthogonal information by means of QR-decomposition:

AK := (I ´ Ψ Ψ
T
)A, qr(AK) = QARA(2.37a)

BK := (I ´ Φ Φ
T
)B, qr(BK) = QBRB,(2.37b)

with QA P RNˆνa , RA P Rνaˆkq , QB P RNˆνb , and RB P Rνbˆkq . This decomposes into the
following sub-steps:

(a) Compute the products rA := Ψ
T A and ΨrA, and compute AK = A ´ ΨrA; analogously for B.

A schematic illustration of the parallel computations is given in Fig. 2.5. For rA = Ψ
T A, every

rank computes its local contribution, followed by an allreduce step. The result is replicated
locally on every rank, as the rank of the truncated SVD κ and the number of columns kq are
assumably small. The parallel complexity for this step is given by O(η̄κN/p) +O(η̄κ log p).
Computing AK as A ´ ΨrA is fully local and requires no communication. The computational
cost are O(η̄κN/p).

(b) Compute the QR-decomposition AK = QARA and BK = QBRB, respectively. This is done
using the updating scheme described earlier, yet we insert the columns on the right as there
is no need to prioritize columns. As a result, no additional Givens rotations are required.
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The accumulated parallel runtime complexity for steps (a) and (b) is therefore given by

O(η̄κN/p) +O(η̄κ log p).

The numbers νa and νb of new orthogonal modes added to the SVD become smaller as the
simulation proceeds, since a lot of information is already encoded within the truncated SVD
representation. In particular, we have νa, νb ! kq. Due to numerical errors, however, AK is likely
to have the same number of non-zero columns as A. Normalization of the columns ai P img(Ψ)

within the QR-decomposition creates problems when dividing by (almost) zero. The respective
columns need to be deleted by dropping them from QA and eliminating the corresponding
row from RA, but not the column29 (compare Fig. 2.6). Note that, if columns are deleted, as
shown in Fig. 2.6, the additional application of Givens rotations is required to maintain QR
characteristics. In our case, this is rendered moot as we only eliminate rows at the end.

(ii) Construct the matrix S P R(κ+νa)ˆ(κ+νb) according to (2.33) locally on every rank. After step
(i), the components Ψ

T A, Φ
T B, RA and RB are readily available. All multiplications are

executed fully locally; the computational runtime complexity accumulates to O(η̄(κ + ν̄)), if
ν̄ := max(νa, νb).

(iii) Diagonalize S as Ψ1TSΦ1 = Σ1 and re-establish the SVD character for the truncated SVD
representation. This step decomposes into:

(a) Compute the SVD S = Ψ1Σ1Φ1T . This step is sequential and yields cubic runtime complexity
O((κ + ν̄)3) in terms of the dimensionality of S.

(b) Rotate left- and right-singular vector sub-spaces, i.e., compute rΨ and rΦ as

([
Ψ QA

]
Ψ

1
)

rΨ

Σ
1
([

Φ QB
]

Φ
1
)T

rΦ
T

.

Fig. 2.7 shows the rotations schematically. As Ψ
1 and Φ

1 are replicated on each rank, this
step is embarrassingly parallel without need of communication. The runtime complexity is
given by O((κ + ν̄)2N/p).

(c) Truncate the SVD representation of M´1 to the most dominant modes. That is, find
κ1 P t2, . . . , κ + min(νa, νb)u for which σκ1/σ1 ď εsvd ă σκ1´1/σ1 and truncate

Ψ Σ Φ
T

Ð rΨ rΣ rΦ
T

as

Ψ = [rΨ¨,1, . . . , rΨ¨,κ1 ], Φ = [rΦ¨,1, . . . , rΦ¨,κ1 ], and Σ = diag(σ1, . . . , σκ1).

Summarizing, the overall parallel runtime complexity to perform a rank-η̄ update on the
truncated SVD representation of the form (2.32) with ABT = ĂW kq V:

kq
, accumulates to

O(η̄(κ + 2)N/p) +O((κ + ν̄)2(N/p + η̄)) +O((κ + ν̄)3) +O(η̄(κ + 1) log p)

P O(κ(N/p + η̄)) +O(κ3) for κ ą η̄.(updSVD)

29The elimination of linearly dependent columns for the QR-decomposition as used for the SVD update differs from the
earlier described scheme. For the QR decomposition of V k , we delete the corresponding row and column in R in case of
linear dependence, which corresponds to deletion of the column from the matrix V k . In this context, however, a column
A Q ai P img(Ψ) is not related to Ψ

T A. Thus, we cannot delete the corresponding row in Ψ
T A as before.
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FIGURE 2.7
Schematic view of the par-
allel implementation of the
sub-space rotations.

For a complete update of the inverse Jacobian sub-space, such rank-kq updates have to be performed
m times. Restart occurs periodically after m time steps, hence, (updSVD) can be seen as cost per
time step. If amortized over the number of iterations, the cost can be bounded by a parallel runtime
complexity of

(updSVD / it) O(κ2N/p) +O(κ/η̄)

per iteration. With this, the amortized cost for the parallel runtime of the scalable and efficient
RS-SVD MV alternative can be stated as

(RS-SVD / it) O(η2N/p) +O(η log p) +O(η3) +O(mη̄N/p) +O(mη̄ log p) +O(κ2N/p) +O(κ/η̄)

per quasi-Newton iteration. For a small rank of the truncated SVD representation of the inverse
Jacobian, the method exhibits linear runtime and memory complexity in the number of unknowns N.

A Remark on Pre-Scaling for RS-SVD. We mentioned earlier that in cases where the underlying
fixed-point operator of the system we would like to solve stems from a Jacobi-type equation coupling,
pre-scaling of variables to ensure equal weighting, and good conditioning might become necessary.
We explained this concept in §2.2.1. Here, we outline modifications for the pre-scaling that are
required when applied to the RS-SVD algorithm. When computing the SVD update, QR-factorizations

of the matrices ĂW
K

kq = (I ´ Ψ Ψ
T
)ĂW kq and V:

kq

K
= (I ´ Φ Φ

T
)V:

kq
need to be computed, cf. (2.37).

Therefore, the SVD update has to be computed from pre-scaled matrices ĂW
1

kq
:= Λk̄

ĂW kq and

V:

kq

1
:= V:

kq
Λ´1

k̄ for q = n ´ m, . . . , n, i.e., at restart we compute

(2.38) Ψ Σ Φ
T
+

n
ÿ

q=n´m
Λk̄

ĂW kq V:

kq
Λ´1

k̄ ,

with k̄ = km. In other words, we maintain an SVD representation of the pre-scaled inverse Jacobian
matrix. In (2.38), it is important to keep the pre-scaling weights fixed to a certain value after the initial
SVD construction; all subsequent updates have to be scaled with the same weights Λk̄. Otherwise,
the matrices Ψ and Φ are not unitary matrices any more and the singular value decomposition
properties fall apart. Our numerical analysis showed that the weights for, e.g., the residual-sum
pre-scaling adjust to small oscillations around a fixed value after an initial phase. Therefore, keeping
the weights fixed after an initialization phase of m time steps has not shown unfavorable behavior.
In particular, we aim for chunk sizes m P t8, 16, 32u.

Complexity Overview. We wrap up this section with an overview of the parallel runtime
complexities of the presented quasi-Newton variants in Tab. 2.1.
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TABLE 2.1 Overview of the parallel runtime complexities of the algorithmic building blocks for the LS, MV and
RS-SVD quasi-Newton multi-secant variants. Parallel runtime complexities are given with respect to the number of
unknowns N (at the coupling-interface), the number of columns stored in the matrices W and V (denoted by η for the LS
method and by an upper bound η̄ = max(kn´m, . . . , kn) for the MV-RS-SVD method), the rank κ of the truncated SVD
representation of M´1, the chunk size m defining restart periods, and the number p of parallel MPI ranks. The number of
columns η within the least-squares system is typically much higher than for the MV method due to a high number ξ of
reused time steps (for the MV, we use ξ = 0), i,.e., it holds η̄ ! η. For most cases also η ą κ holds true. The effect for the
runtime complexity can be seen from the scaling results in §4.3.

Stage LS MV MV-RS-SVD

QR-comp. (QR) O(η3 N/p) +O(η2 log p) +O(η4) (updQR) O(η2 N/p) +O(η log p) +O(η3)

pseudo inverse (backS) pRα = ´pQ
T

r
O(ηN/p) +O(η log p) +O(η2)

(iV) pRV: = pQ
T

O(η2 N/p)
(iV) pRV: = pQ

T

O(η2 N/p)

Newton update (Wa) ∆x = W kα
O(N/p)

(Mr) ∆x = M´1r
O(N/p) +O(N log p)

(lmDx) ∆x = ´Ψ(ΣΦ
Tr) ´

řn
q=n´m

ĂW kq (V
:
kq r)

O(κN/p) +O(mη̄N/p) +O(mη̄ log p)

comp. ĂW — (Wtil) ĂW = (W ´ M´1
prevV)

O(ηN2/p) +O(ηN log p)
(upWtil) (ĂW)i,0 = (W)i,0 ´

řm
q=0

ĂW kq (V
:
kq (V)i,0)

O(mη̄N/p) +O(mη̄ log p)

restart/
build M´1

— (WV) ĂW kV:
k

O(ηN/p)
(updSVD / it) Ψ Σ Φ

T
+
řn

q=n´m
ĂW kq V:

kq

O(κ2 N/p) +O(κ/η̄)

Total / Iteration O(η2 N/2) +O(η4) +O(η2 log p) O(ηN2/p) +O(ηN log p) O(η2 N/p) +O(η log p) +O(η3) +O(mη̄N/p) +

O(mη̄ log p) +O(κ2 N/p) +O(κ/η̄)

2.3 Quasi-Newton for Non-Linear Optimization Problems (BFGS)

This section contrasts methodological and structural similarities and differences for quasi-Newton
methods used in the classic context of non-linear optimization to the above presented fixed-point
iteration context. In particular, we relate LBFGS, the most common quasi-Newton method in non-
linear optimization, to our previously studied variants. This section is kept shorter and makes no
attempt to be exhaustive; it serves as a preface and introduction to the discussion of the application
of inexact Newton methods, and specifically the LBFGS quasi-Newton method, for PDE-constrained
optimization problems in §6.4.

Non-linear optimization refers to the general problem of finding a candidate x‹ P RN such that

(2.39) f (x‹) Ñ min

for a non-linear, possibly non-convex, objective function f : RN Ñ R with sufficient regularity.
Within this work, we consider minimization of Lagrangian functions arising from PDE-constrained
optimization problems of the form (2.3); the discussed concepts are, however, fully generic. Finding
a minimum translates to vanishing first order derivatives, i.e., solving for a root x‹ of the gradient
g := ∇ f : RN Ñ RN of the objective function, i.e., g(x‹) = 0. The gradient g(x) relates to the
operator R(x) introduced in the opening words §2.1 as given in (2.4). A vanishing gradient of the
objective function is a necessary, though not sufficient condition for a local minimum: The objective
function’s Hessian matrix H := ∇∇T f : RN Ñ RNˆN additionally needs to be symmetric positive
definite for an admissible solution x‹.

Efficient optimization algorithms require an evaluation of the gradient g of the objective function
and employ an iterative approach xk+1 = xk + α∆xk with step-size α and step-direction ∆x. A
straightforward choice is gradient-descent, i.e., use the negative gradient ∆xk = ´g(xk) as step-
direction. This method is, however, only linearly convergent and not transformation invariant,
meaning that scaling the descent direction by a local measure can substantially improve convergence.
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One possible (or the “correct”) scaling is to use local curvature information, i.e., scale with the
inverse Hessian matrix for the current iterate as ∆xk = ´[H(xk)]´1g(xk), giving raise to the locally
quadratically convergent Newton method as outlined in (2.5a). Its basic idea is to locally form a
quadratic approximation

mk(∆xk) = f (xk) + g(xk)T∆xk + 1/2(∆xk)T H(xk)∆xk

of f at xk + ∆xk with the analytic minimizer ∆xk = [H(xk)]´1g(xk) obtained as a solution of the
respective linear system. Newton’s method is efficient in the sense that (i) for a quadratic objective
function, this algorithm would solve the minimization problem in one step, and that (ii) in a
neighborhood of the solution, the method features rapid quadratic convergence [Den77]. The
methods’ main drawback is, however, as discussed above in §2.1, its significant computational
cost (O(N2) for constructing the Hessian, O(N3) for Hessian inversion), rendering the method
impractical for high dimensional or large-scale problems. Various forms of inexact-Newton methods
that try to counterbalance computational cost and convergence speed are used in practice; we give
a discussion on different approaches in §6.4.3. A common solver in PDE-constrained optimization
is the Gauß-Newton-Krylov method (see §6.4.4), combining inexact Krylov solves for the Hessian
inversion with a cheaper symmetric positive definite Hessian approximation, omitting second order
terms; yet the cost for a Hessian matrix-vector operation are typically still high.

Powerful and widely used alternatives are quasi-Newton methods, which we will discuss here.
As we have seen above, these methods combine possibly fast convergence with low computational
cost by maintaining a low-rank approximation of the (inverse) Hessian matrix based on only gradient
information. In this sense, quasi-Newton methods are essentially learning methods. The optimization
and fixed-point communities have developed different manifestations due to different requirements
in the respective field. In the context of optimization and function minimization, it is crucial for the
quasi-Newton update to maintain an approximation of a symmetric positive definite matrix, since it
is sought for the approximation of a Hessian matrix rather then a Jacobian. The most widely known
variants in optimization are SR1 [Bro67], DFP [Fle63; Den68], and BFGS [Fle63; Noc06; Noc80; Bro69;
Sha70; Fle70; Gol70; Den68]. Recently, Hennig et al. presented variations capable to cope with noisy
evaluations for probabilistic optimization [Hen13a] and reinterpreted quasi-Newton multi-secant
methods as approximate Bayesian linear regression [Hen13b]. Many intermediate forms, mixtures
and advanced alternatives exist, and the literature is extensive. An excellent overview is given in the
text book [Noc06] and the older, yet ever relevant, insightful, and extensive review paper [Den77]
including theoretical discussion.

The BFGS method and, in particular, its limited memory alternative LBFGS is commonly
accepted to be the most efficient and powerful quasi-Newton method for non-linear optimization.
Its update formula maintains an symmetric positive definite (spd) matrix and, as opposed to DFP,
it directly approximates the inverse Hessian, rendering the linear system solve dispensable. As a
result, the method often features super-linear to near-quadratic convergence rates, while featuring
overall linear runtime complexity. In the following, we limit our discussions to the BFGS and LBFGS
quasi-Newton method and work out conceptual similarities and differences to earlier discussed
multi-secant methods.
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2.3.1 Methodological Components

Following the general idea of quasi-Newton as introduced in §2.1 in a more generic notation, we
estimate the objective function’s (or Lagrangian’s) Hessian with iterate- and gradient-differences
throughout the iterations, i.e.,

Wη
k =

[
∆xk

k´1, ∆xk
k´2, . . . , ∆xk

k´η

]
, with ∆xk

i = xk ´ xi ,(2.40a)

Vη
k =

[
∆gk

k´1, ∆gk
k´2, . . . , ∆gk

k´η

]
, with ∆gk

i = g(xk) ´ g(xi).(2.40b)

which, with the reasoning

∆g(xk
k´1) = g(xk) ´ g(xk´1) « H(xk)∆xk

k´1

and assuming a sufficiently good representation of the objective function by a local quadratic model,
motivates the (multi-)secant equation (2.7) as the core ingredient for quasi-Newton methods. Defining
R := g and M := H (or M´1 := H´1, respectively), the generic quasi-Newton formulation (2.9)
is inherited. To facilitate the comparison, we adopt the notation from §2.1 and refer to the inverse
Hessian approximation as M´1 from now on.

Symmetric, Positive Definite Rank-1 Updates. As opposed to the application in fixed-point
problems, we need the quasi-Newton update to respect two additional characteristics when used for
function minimization, that is, to maintain (i) symmetry and (ii) positive definiteness of the estimator.
To ensure these properties, the norm minimization in the generic formulation (2.9) is imposed under
a weighted Frobenius norm with the symmetric matrix Z and the additional symmetry constraint
M´T = M´1 is added, i.e., we solve

›

›

›
M´1 ´ M´1

prev

›

›

›

Z
Ñ min subject to M´1V η

k = Wη
k and M´T = M´1,(2.41)

with } ¨ }Z := }Z1/2 ¨ Z1/2}F using any symmetric matrix Z30 fulfilling the (multi-)secant equation
ZW k = V k.

Broyden-Fletcher-Goldfarb-Shanno (BFGS). Solving problem (2.41) for M´1 with W k = ∆xk
k´1 and

V k = ∆gk
k´1 (i.e., η = 1) yields the symmetric BFGS rank-1 update

(2.42) M´1, (k+1) =
(

I ´ W k(V
T
k W k)

´1V T
k

)
M´1, (k)

prev

(
I ´ V k(V

T
k W k)

´1W T
k

)
+ W k(V

T
k W k)

´1W T
k ,

which, using ρk := (V T
k W k)

´1 and U := (I ´ ρkV kW T
k ) can be re-written (in standard literature

presentation such as, e.g., in Nocedal & Wright [Noc06]) as

(2.43) M´1, (k+1) = UT
k M´1, (k)

prev Uk + ρkW kW T
k .

Limited-Memory BFGS (LBFGS). With a view to large-scale simulations, storing the inverse Hessian
estimator M´1, (k)

prev from the previous iteration is prohibitive. Similar to the MV restart alternative
in §2.2.2, a limited number µ of vectors is kept in storage; a sliding-window approach31 is employed

30For concreteness, say, we exemplarily use the average Hessian H, as weighting matrix, i.e., Z := H =[
ş1

0 ∇2 f (xk + τ∆xk)dτ
]
. Note that Z does not need to be given explicitly in the algorithm, we only need to state its

theoretical existence.
31With sliding-window, we mean always keeping a window of µ vectors in storage, i.e., dropping the oldest vector when
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rather than restart [Den77; Gil89]. With the additional matrices Lk taken to be the strictly lower
triangular part of the matrix V T

k W k and Dk as the diagonal of V T
k W k, the compact matrix form of

the LBFGS updates [Noc06] is given by

(2.44) M´1, (k+1) = M´1, 0
prev + ΓBΓT

where

Γ =
[

M´1, 0
prev W k, V k

]
and B =

[
W T

k M´1, 0
prev W k LK

LT
k ´Dk

]´1

.

It can be seen that the LBFGS update can be expressed as an outer product of two rectangular matrices
Γ and ΓT with an intervening multiplication by a small 2µ ˆ 2µ matrix. The update computed in this
form has (serial) runtime complexity of O(2µN) +O(µ3).

Two important points to notice are (i) the independent and arbitrary choice of the initial inverse
Hessian approximation M´1, 0

prev in every iteration, due to the limited memory character of the update,
and (ii) the successive rank-1 character of the limited memory update. The latter can be seen from
the efficient two way recursion for the LBFGS update in (2.51) and Alg. 2.4, see §2.3.2. More explicitly,
the LBFGS method solves µ successive optimization problems

›

›

›
M´1, i ´ M´1, i´1

prev

›

›

›

Z
Ñ min subject to M´1, iV1

k´µ+i = W1
k´µ+i and M´T, i = M´1, i,

for i = 1, . . . , µ, respectively, leading to µ rank-1 updates of the inverse Hessian estimator. The new
estimator in iteration k is then given by M´1 = M´1, (µ). Due to this fact, filtering such as used in
the context of solving non-linear fixed-point problems in §2.2.1 is not required for LBFGS.

The rank-η counterpart of the limited memory BFGS update (2.44) with η ą 1, alternatively, is
given by equation (2.42) assuming η ą 1 columns in the matrices W k and V k. Such an at-once rank-η
LBFGS method can be seen as analogous to the earlier presented multi-vector (MV) method, with
the additional property to maintain a symmetric and positive definite initial estimator M´1, 0

prev . To
the best of my knowledge, such a method has not yet been formulated, or is at least rarely used in
non-linear optimization. In §2.2.1, we showed that η successive rank-1 update and at-once rank-η
updates are not equivalent. Whether or not rank-η updates improve convergence (such as is the case
for coupling of partitioned FSI) is unclear, and numerical investigation of this variant in practical
application may be worthwhile; but this is beyond the scope of this work. Many concepts developed
in §2.2.1 may be beneficial, in particular, filtering can no longer be omitted.

Notice also, that the BFGS update formula such as stated in equation (2.41) is not standard; the
common display is in terms of vectors, rather than matrices. The presented formulation results from
relating the MV method to the BFGS update. This is what we discuss next.

Relation of BFGS to the Multi-Vector Method. In an attempt to align the notation of the multi-
vector (MV) method, discussed in §2.2.1, and standard text book BFGS, we would like to work
out conceptual differences and similarities. This fosters a better understanding of the respective
methodological characteristics and potentially allows a link to be forged between quasi-Newton
manifestations for different application fields.

Minimization in a Weighted Matrix Norm. Rather than using the canonical Frobenius norm to obtain
a unique solution of problem (2.9), classical quasi-Newton methods as used in optimization employ
a weighted matrix norm } ¨ }Z = }Z1/2 ¨ Z1/2}F with a symmetric matrix Z fulfilling the multi-secant

collecting the most recent, if the window is saturated.
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equation ZW k = V k, or, transformed W k = Z´1V k and solve the optimization problem

›

›

›
M´1 ´ M´1

prev

›

›

›

2

Z
Ñ min subject to M´1V k = W k,

to derive an expression for the Hessian estimator. This is equivalent to solving

›

›

›
Z1/2 M´1Z1/2 ´ Z1/2 M´1

prevZ1/2
›

›

›

2

F
Ñ min s.t. Z1/2(M´1 ´ M´1

prev)Z1/2Z´1/2V k = Z1/2(W k ´ M´1
prev).

We know the solution to this problem, cf. equation (2.17), and use Z´1V k = W k and the
symmetry of Z´1/2 to simplify the formula:

M´1 ´ M´1
prev = Z1/2(Z1/2(M´1 ´ M´1

prev)Z1/2)Z1/2

= Z1/2

(
Z1/2(W k ´ M´1

prevV k)
(
(Z1/2V k)

T(Z1/2V k)
)´1

(Z1/2V k)
T
)

Z1/2

= (W k ´ M´1
prevV k)

(
V T

k Z´1V k

)
loooooomoooooon

=W T
k V k=V T

k W k

´1
V T

k Z´1

= (W k ´ M´1
prevV k)

(
V T

k W k

)´1
W T

k .(2.45)

As a result, we get

M´1 = M´1
prev + (W k ´ M´1

prevV k)
(

V T
k W k

)´1
W T

k

= W k

(
V T

k W k

)´1
W T

k + M´1
prev(I ´ V k

(
V T

k W k

)´1
W T

k ).(2.46)

As can easily be seen, equation (2.46) is not symmetric for M´1
prev ‰ 032. However, it shows

some resemblance with the BFGS formula (2.41) in the sense that the latter can be recognized as the
symmetrized version equation (2.46):

In order to symmetrize M´1, we modify the estimator derived in (2.46) to

ĂM
´1

= M´1 + X such that ĂM
´1

= ĂM
´T

with XV k = 0 and }X}Z Ñ min.

The above is equivalent to X ´ XT = M´T ´ M´1. This implies

XTV k = (M´1 ´ M´T)V k with }X}Z Ñ min

and multiplying the pseudo-inverse (V T
k W k)

´1W T
k corresponding to the Z-norm from the right side

yields (analogous to the derivation of (2.46)):

XT = (M´1 ´ M´T)V k

(
V T

k W k

)´1
W T

k ,

32By setting M´1
prev = 0 in equation (2.46), we arrive at a symmetric Hessian estimator with the reasoning

M´T =
(

W k(V T
k W k)

´1W T
k

)T
= (W T

k )
T
(
(V T

k W k)
´1
)T

W T
k = W k

(
(V T

k W k)
T
)´1

W T
k = W k(W T

k Vk)
´1W T

k = M´1.

This is equivalent to the BFGS update formula (2.41) with likewise using M´1
prev = 0. This can be seen as symmetric

rank-η variant of the least-squares (LS) method, presented in §2.3.1
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which, after transposition and inserting of the definition of M´1 in (2.46) and some term transforma-
tion33 results in

(2.47) X = ´W k

(
V T

k W k

)´1
V T

k M´1
prev(I ´ V k

(
V T

k W k

)´1
W T

k )

Now, the term (2.47) exactly explains the difference resulting if subtracting equation (2.46) from
the BFGS estimator (2.41), i.e., the missing term for symmetry. With this, we conclude, that a
symmetric rank-η BFGS update formula as given in equation (2.42) for η ě 1 results from solving
the optimization problem (2.41), i.e., is derived in almost the same way as the quasi-Newton inverse
Jacobians in §2.2 with the only differences that a different norm is used and symmetry is enforced as
an additional condition.

Improving Convergence and Robustness: Dominant Factors. To achieve high efficiency and
rapid convergence rates, we need to understand and identify the method’s most dominant factors
influencing convergence, robustness, and computational complexity. Two of the most critical choices
are (i) the number µ of collected vectors used for the limited memory update, and (ii) the selection
of the initial guess M´1, 0

prev for the inverse Hessian approximation. This is what we discuss in the
following. We also look at the role and importance of line-search for quasi-Newton methods in the
optimization context. In particular, we draw connections to the specific PDE-constrained optimization
application problem of biophysical tumor inversion simulation, which is considered in part II of this
thesis.

Improving Convergence: Recycle. In analogy to the methods considered in §2.2, we consider recycling
previous information, which is reflected by keeping µ previous gradient- and iterate-observations
in storage (the limited memory sliding-window), cf. (2.40). This additional information is then
used in the LBFGS update formula. We have seen that the depth µ of the vector-storage sensitively
affects the method’s convergence and runtime complexity: generally speaking, more vectors improve
convergence but increase computational complexity. However, there is a turning-point due to
outdated, wrong, or contradicting information that potentially slows down convergence drastically.
An optimal choice is therefore highly problem dependent. With respect to computational effort, the
typically employed efficient two-loop recursion in Alg. 2.4 features a runtime complexity of O(4µN)

(disregarding the matrix-vector multiplication for the initial guess in line 6 of Alg. 2.4) and a memory
footprint of O(2µN).

As opposed to the rank-η update methods considered in §2.2 within the fixed-point context,
linearly dependent vectors are not an issue due to the successive rank-1 update nature of the classical
LBFGS update formula. On the downside, however, contradicting or wrong information cannot be
identified or ruled out anymore; this wrong information stays in the inverse Hessian approximation
and only gets corrected slowly.

In part II of this thesis, we consider a joint biophysical inversion and medical image registration
problem, which results in repeatedly solving non-linear PDE-constrained optimization problems
with continually modified observation data. An interesting question within this context is, if reuse of

33

ñ XT = (M´1 ´ M´T)V k

(
V T

k W k

)´1
W T

k , ñ X = W k

(
V T

k W k

)´1
V T

k (M´T ´ M´1)

= ´W k

(
V T

k W k

)´1
V T

k W k

(
V T

k W k

)´1
V T

k M´1
prev + W k

(
V T

k W k

)´1
V T

k M´1
prevV k

(
V T

k W k

)´1
W T

k
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vectors obtained from previous non-linear solves (for moderately changed operators due to modified
observation data) is beneficial. Various approaches to select the recycled vectors are conceivable; we
present two that might be worthwhile for investigation: recycling of µ ´ k vectors can be done either

(i) sequentially in analogy to (2.24), but with n denoting the number of recurrent solves34 of
the (slightly changing) non-linear problem, rather than the number of completed time steps,
and ξ P t0, . . . , nu as before the number of retained levels with the storage depth µ = µ(ξ) =

k +
řn´1

q=n´ξ kq; or we can

(ii) selectively retain information. By this we mean to collect only the first35 µ = µ´k/ξ, say, e.g.,
µ = 5 difference vectors from the ξ ď n ´ 1 non-linear problem solutions.

Initial Guess for Inverse Hessian Approximation. The choice of the initial guess for the inverse
Hessian approximation M´1

prev significantly affects the quality of the obtained step direction and is the
most dominant factor affecting the quasi-Newton LBFGS convergence. A good choice for M´1

prev is
non-trivial; for the quasi-Newton method to be competitive, we need (i) fast convergence, i.e., a good
initial guess, but coincidentally require it to be obtained with (ii) low computational complexity to
limit the cost of a Newton-step. The latter becomes more pressing when approaching large-scale; in
any case, finding a good trade-off is crucial. In contrast to the multi-vector update (MV) method we
discussed in §2.2 for fixed-point problems, the here considered LBFGS method allows us to choose a
different initial approximation M´1

prev := M´1, (k)
prev to the inverse Hessian in every iteration.

We discuss three conceptually different approaches and sketch the idea of several choices for
the initial guess. We refer to [Gil89; Noc06] for a discussion. Some of the presented alternatives
are also implemented in PETSc/TAO’s Limited Memory Variable Metric (LMVM) quasi-Newton
method (resembling the LBFGS method), which we use for our studies in §7.4.5; details can be
found in [Ben03]. We revisit some of these approaches in §6.4.5 and §7.4.5, where we investigate
quasi-Newton LBFGS for the tumor inversion sub-component of our joint biophysical inversion and
image registration application problem, discussed in part II, and compare its performance against a
Gauß-Newton-Krylov method.

A. Generic but uninformed approaches.

A.1 Use the (scaled) identity for the Hessian M(k)
prev = γI and “solve” γI∆xk = r in line 6

of Alg. 2.4.

A.2 Use the (scaled) identity for the inverse Hessian M´1, (k)
prev = γI, with γ P R. The canonical

choice is γ = 1, which, however, typically yields poor convergence. No additional cost occurs to
provide the initial guess.

B. Tailored approaches that incorporate complimentary a priori knowledge about the problem.

B.1 Use an informed approximation of the Hessian M(k)
prev = Z and solve M(k)

prev∆xk = r for ∆xk

in line 6 of Alg. 2.4. If anything, (partially) a priori information is available for the Hessian, not
for its inverse. With this approach, a linear system needs to be solved in every quasi-Newton
iteration. Although the initial guess M(k)

prev « H probably has a better condition number than the
true Hessian (or Gauß-Newton approximation), this approach destroys the complexity benefits of
quasi-Newton. If for all recurrent non-linear solves i = 1, . . . , n the same initial guess M(k)

prev = H0

34When presenting our solution algorithm for this coupled problem in Chapter 6, this will be the number of Picard iterations
executed.

35The first quasi-Newton iterations correct the most significant singular values in the inverse Hessian.
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is used, it could be factorized in an offline phase. In §6.4.5 we give some specific suggestions to
realize such an informed Hessian initial guess for the considered PDE-constrained optimization
application problem of biophysical inversion for brain tumor MRI.

C. Generic approaches that incorporate knowledge about the problem in an automated or implicit way.

C.1 Use a scaled identity M´1, (k)
prev = γI, where γ = diag(γ1, . . . , γN) P RNˆN is a diagonal

scaling matrix with weights γi P R. Here, various alternatives inspired by [Gil89] with different
computational cost are considered. These versions are also implemented in the PETSc/TAO
toolbox [Ben03]).

(i) Uniform scaling: with γ = diag(γ, . . . , γ) and γ P R chosen by solving the one-dimensional
optimization problem

(2.48) γ = minσ}σαV s
k ´ σα´1W s

k}2
F

where α P [0, 1] is given and V s
k and W s

k are matrices storing iterate and gradient difference
vectors from s ď µ previous iterations. In other words, γ is chosen to fulfill the multi-secant
equation γV s

k = W s
k in a least-squares sense. Another popular choice proven to be efficient

in practice is γ = wT
k´1vk´1/vT

k´1vk´1.

(ii) Broyden scaling: with γ = diag(γB
11, . . . , γB

nqnq) and γB
ii P R, i = 1, . . . , nq the diagonal

entries of a Broyden approximation of the inverse Hessian. This alternative requires
comparatively high computational costs to compute the Broyden factors for the scaling
matrix. However, it typically results in a significantly better convergence rate.

An additional re-scaling of the matrix γ, i.e., using M´1, (k)
prev = ωγI is a further option

to improve the convergence properties. Here, the scalar ω P R is chosen by solving the
one-dimensional optimization problem

(2.49) ω = minσ}σαγβV r
k ´ σα´1γβ´1W r

k}2
F

where α, β P [0, 1] are given and V r
k and W r

k are the matrices storing past iterate and gradient
information from r ď µ previous iterations. This has been shown to significantly reduce
the number of required quasi-Newton iterations for certain problems [Gil89], but it also
increases the computational effort for the LBFGS update and introduces further problem
dependent parameters that need costly and careful tuning.

C.2 Use a subspace tracking technique and approximate the inverse Hessian by an updated
and truncated singular value decomposition, i.e.,

Ψn, Σn, ΦT
n = update-SVD

(
Ψn´1, Σn´1, ΦT

n´1, M´1, kn´1
prev , εsvd

)
,

where the updating step update-SVD maintains an existing singular value factorization by
incorporating the latest inverse Hessian approximation M´1, kn´1

prev (from the previous non-linear
solve). Note that this information is given in implicit form in the matrices V k and W k via
the LBFGS update formula (2.51) to compute the matvec. The initial guess M´1, (k)

prev required
in the LBFGS update for the current iteration k is then encoded by appending the matrices
V 1

k = [V k ΣΦ
T
] and W 1

k = [W k Ψ]. We have given details on the realization of such an approach
in §2.2.2.
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Line-Search. Lastly, the employed line-search affects the convergence properties. The history of
taken quasi-Newton steps is remembered within the LBFGS update for the Hessian. Thus, the past
affects the quality of current step directions and sub-optimal or wrong steps stemming from inexact
or insufficient line-search conditions should be prevented. For quasi-Newton methods in general,
the line-search routine must enforce the Wolfe conditions

f (xk + α∆xk) ď f (xk) + c1α(g(xk))T∆xk, and(2.50a)

(g(xk + α∆xk))T∆xk ě c2 (g(xk))T∆xk,(2.50b)

for some constants 0 ă c1 ă c2 ă 1 to prevent possible degradation of the convergence rate [Noc06].
The sufficient decrease condition (2.50a) requires that the decrease in the objective function for a
trial step α∆xk is proportional to both, the step length α and the directional derivative (g(xk))T∆xk.
This is also known as the Armijo condition. To prevent unacceptably small or sub-optimal steps,
a second curvature condition (2.50b) is required. For an illustration of the Wolfe conditions and
further details, we refer to [Noc06], p. 33f.

While for other inexact-Newton methods such as, e.g., Gauß-Newton-Krylov, a line-search
that only satisfies the sufficient decrease condition (such as, e.g., Armijo-backtracking) is sufficient,
this does not apply for most quasi-Newton methods due to the lower quality of the computed
step-direction and the above mentioned issues. Furthermore, without satisfied Wolfe conditions,
we can (i) neither rely on the self-correcting properties of the BFGS update, (ii) nor do we have a
guarantee that the required curvature condition vT

k wk ą 0 for the well-posedness of the BFGS update
will be satisfied by the chosen step (step length α ą 1 may be required to satisfy this condition),
(iii) nor will the BFGS update formula maintain a positive definiteness of an initially positive definite
approximation of the Hessian.

For all Newton-type methods, a trial step length of α0 = 1 should always be used first to allow
for the rapid rate-of-convergence properties of these methods to take effect. Inaccurate line searches
with c1 = 1E´4 and c2 = 0.9 are commonly used and yield a good trade-off between computational
expense and accuracy of the step length, compare [Noc06], p. 143.

2.3.2 Efficient Algorithms for Calculation and Representation of Jacobians

An efficient, distributed memory realization of the LBFGS algorithm in conjunction with the Moré-
Thuente line-search method, ensuring fulfillment of the Wolfe conditions, is implemented in PETSc’s
optimization toolbox TAO, and known under the term Limited Memory Variable Metric Method
(LMVM). It comes with a wide variety of choices for the initial inverse Hessian approximation
(compare listing above). For more information, we refer to [Ben03].

Rather than implementing the compact matrix representation (2.44), the LBFGS update usually
is obtained from a recursive formulation. The latter is found by repeatedly applying (2.43), i.e.,
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1 func ∆xk = matvecLBFGS(gk, V k = (vi), W k = (wi), M´1, (k)
prev )

2 q = gk

3 for i = k ´ 1, . . . , k ´ η do
4 αi = ρiwT

i q
5 q = q ´ αivi

6 r = M´1, (k)
prev q

7 for i = k ´ η, . . . , k ´ 1 do
8 β = ρivT

i q̂k
9 r = r + wi(αi ´ β)

10 return M´1gk = ∆xk = r

ALGORITHM 2.4 Computation of LBFGS matvec based on stored vectors vi = V1
i and wi = W1

i , cf [Noc06],
p. 178

compute

M´1, (k+1) =
(

UT
k´1 . . . UT

k´η

)
M´1, (k)

prev

(
Uk´η . . . Uk´1

)
+ ρk´η

(
UT

k . . . UT
k´η+1

)
wk´ηwT

k´η

(
Uk´η+1 . . . Uk´1

)
+ ρk´η+1

(
UT

k´1 . . . UT
k´η+2

)
wk´η+1wT

k´η+1

(
Uk´η+2 . . . Uk´1

)
(2.51)

+ . . .

+ ρk´1wk´1wT
k´1,

with ρj := (vT
j wj)

´1 and U j := (I ´ ρjvjwT
j ) for j = k, . . . , k ´ µ, where we use vj = V1

j andwj = W1
j

for clarity. From this expression, we can directly verify the earlier given statement that the LBFGS
update results from µ successive rank-1 updates. We can further derive a recursive procedure
from (2.51) to compute the LBFGS Hessian matrix-vector multiplication ∆xk := M´1g(xk), i.e., the
quasi-Newton update. An exemplary pseudo-code implementation is given in Alg. 2.4. Disregarding
the matrix-vector multiplication for the initial guess in line 6, this two-loop recursion algorithm has
a runtime complexity of O(4µN). This algorithm exclusively relies on inner products of vectors and
matrix-vector products—two standard linear algebra operations for which highly efficient distributed
memory implementations exist. Thus, parallelization of LBFGS is straightforward; the resulting
algorithm is highly efficient.



64 CHAPTER 2: QUASI-NEWTON METHODS

2.4 Summary of Commonalities and Differences

LBFGS (optimization) MV/LS (fixed-point)

minxPRN f (x) solve H(x) ´ x = 0, x P RN

quadratic approx. of f at xk + ∆xk:
mk(∆xk) = fk + gT

k ∆xk + 1
2 (∆xk)T M´1∆xk

corr. to the linear approx. of g(xk + ∆xk) :=
∇ f (xk + ∆xk): rk(∆xk) = gk + M´1

k ∆xk
linear approximation of R = H ´ I at xk + ∆xk:
rk(∆xk) = H(xk) ´ xk + M∆xk

M´1 symmetric positive definite approx. of the
inverse Hessian of f , i.e., M´1

k « (∇2 f (xk))´1
M´1 approx. of the inverse Jacobian of R, i.e.,
M´1

k « (∇R(xk))´1

min∆xk mk(∆xk) corresponds to
solve rk(∆xk) = 0 solve rk(∆xk) = 0
ñ ∆xk = ´M´1

k ∇ fk ñ ∆xk = ´M´1
k (H(xk) ´ xk)

looooooomooooooon

= R(xk)

= ´(ĂM
´1

´ I)R(xk)

with the Jacobian ĂM
´1

of R̃ : x ÞÑ x ´ H´1(x).

secant equation for update of M´1
k to M´1

k+1 secant equation for update of ĂM
´1, n´1
prev to ĂM

´1, n

}M´1 ´ M´1, (n´1)
prev }F Ñ min s.t. M´1V k =

W k

}M´1 ´ M´1, (k´1)
prev }Z Ñ min s.t. M´1V k =

W k

and M´T = M´1

estimator:
M´1 = (I ´ W k(V T

k W k)
´1V T

k )M´1, (k´1)
prev

(I ´ V k(V T
k W k)

´1W T
k ) + W k(V T

k W k)
´1W T

k

estimator:
M´1 =

M´1
prev + (W k ´ M´1, (n´1)

prev V k)(V T
k V k)

´1V T
k

initial guess: M´1, 0
prev ‰ 0 (e.g. Broyden scaling) initial guess: M´1, 0

prev = 0

µ successive rank-1 updates at-once rank-η update
no filtering required filtering required
update symmetric, positive definite
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Part I

Partitioned Coupling of Surface
Coupled Multi-Physics Simulation
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3 Partitioned Multi-Physics Simulation
and Fluid-Structure Interaction

The first part of my thesis targets multi-physics simulations, in particular the simulation of fluid-
structure interaction (FSI). FSI describes the phenomenon of solid body deformation (or movement)
under fluid excitation; conversely, the deformation of the solid also influences the fluid phase,
which leads to a bi-directional coupling. Modeling and simulating this mutual influence is of great
importance for many practically relevant problems in various fields such as, e.g., quantification in
computational medicine, classical engineering, marine engineering and aerospace engineering.

This chapter summarizes the most important aspects of the coupling of partitioned fluid-structure
interaction simulations as required for a good understanding of the contributions within this thesis.
§3.1 introduces the coupled problem. We give a practical view on FSI simulations and exemplary
application problems in §3.1.1, followed by a brief description of the mathematical models for fluid
dynamics and structural mechanics in §3.1.2. The partitioned solution approach is abstracted in §3.1.3
and discussed against the monolithic approach. Methodological components of partitioned FSI are
covered in §3.2, where we discuss the required components for employing a partitioned solution
strategy in §3.2.1. In §3.2.2 we go into more detail on how to establish the external coupling via
fixed-point equations at the interface. The section concludes with an overview of the parallel general
purpose coupling library preCICE (precise Code Interaction Coupling Environment) for partitioned
multi-physics simulations in §3.2.3. All methods developed in this work (and described in Chapter 2)
are implemented in preCICE.

3.1 A Coupled Multi-Physics Problem: Fluid-Structure Interaction

Going from single-physics to multi-physics modeling allows for a highly accurate representation of
physical phenomena and helps to understand the effects of physical system interactions. Resolving
the mutual interaction dynamics, however, increases the computational complexity and overall
hardness of the problem dramatically. In addition to solving two (or more) possibly non-linear
sub-problems, strategies for the realization of the actual coupling of physical components become a
necessity and complicate the solution. High overall accuracy is desirable for the additional effort
of multi-physics modeling to pay off. This implies the careful solution of the sub-components,
high resolution and accurate models. Summarizing, coupled multi-physics simulations are a
computationally extremely challenging problem—numerically and algorithmically, but also in terms
of time-to-solution and computational complexity. Massively parallel execution and distributed data
are an imperative.

In the emerging field of multi-physics simulations, sub-component models might change or be
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enhanced by incorporation of further effects or new connections between physical fields need to be
established. It is desirable for the simulation environment to be adaptive to such modifications and
provide high flexibility. In particular, when new approaches are to be tested and fast prototyping
becomes important. We therefore consider a highly flexible partitioned coupling approach. Thereby,
an emerging challenge is to combine flexibility with parallel scalability and hardware efficiency.

3.1.1 Applications

With the rapid advances in computing power and the development of large parallel compute systems,
FSI problems have become feasible for numerical assessment and first FSI simulations date back
to the mid 90’s [Bat95; Ceb97; Mam95; Pip95; Ste97; Wal99; Wol96]. Due to the wide application
field of FSI in engineering and computational medicine, their importance has grown ever since. For
engineering, one of the classical applications is the assessment of the stability of an elastic body
exposed to a fluid flow, called aeroelasticity. In aeronautics, this is critical to estimate durability and
stability of an aircraft, based on the simulation of flow induced vibrations and flutter [Far06]; [Cav07],
in connection with the weight minimization [Far03]. Similar techniques are used for engineering
of wind turbines [Baz11]. Another prominent example for FSI is marine engineering, where the
interaction of foils [Lot13], or interactions of wind and sails [Lom13] are fields of research. In cargo
shipping, multi-phase fluid simulations become important to simulate the behavior of partially filled
tanks [Gra08]. Other important applications of FSI simulation in engineering are, e.g., the simulation
of opening and descending parachutes [Ste97; Ste05; Sat07], the simulation of other lightweight
structures such as tents [Glü01], and inflatable structures such as airbags [Wüc06].

When combined with the simulation of conjugate thermal flow, also referred to as thermal
FSI [Bir13], such simulations play an important role for the numerical simulation of combustion
engines [Mir16] in automotive engineering. Another effect often combined with FSI is the simulation
of induced acoustics for noise prediction [Sch10].

With the emerging importance of quantification in computational medicine in recent years, FSI
simulations have gained a growing significance in hemodynamics and simulations of the human
cardiovascular system. In particular, this includes, the simulation of artery flow [Le 05; Rie98; Vie07;
Cau05], the assessment of calcification and prediction of aneurysms [Tez07; Bal16b] as well as the
simulation of the human heart [Kam14; Qua15; Dum07; Din06; Loo06].

3.1.2 Fluid Dynamics and Structural Mechanics

When modeling the interplay of fluid dynamics and structural mechanics, three sets of equations
come into play. For the description of fluid dynamics, we herein use the Navier-Stokes equations for
incompressible flow and employ a standard structural mechanics model in conjunction with a Saint-
Venant-Kirchhoff material model. A set of coupling conditions ensures physical correctness and
consistency and implements the reciprocal interactions. We summarize the mathematical formulation
in the following; a more detailed description can be found, e.g., in [Gat14; Deg10] or standard text
books such as [Fle12] (fluid dynamics) and [Bre12] (structural dynamics).

Fluid Dynamics. The governing equations for modeling fluid dynamics are characterized by
the type of flow in the considered application problem. Important categories are compressible or
incompressible flow, viscous or inviscid flow, and laminar or turbulent flow. Within this work, we
focus on incompressible flow, characterized by a nearly constant density of the considered fluid and
very high speed of sound. These characteristics typically lead to stability problems when coupled
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with structural mechanics, and thus, constitute the most challenging configuration for partitioned
FSI. We furthermore merely focus on laminar flow as opposed to turbulent flow. The latter occurs
for high Reynold numbers and features highly irregular flow patterns in space and time.

The Navier-Stokes-Equations. The flow of a fluid in the space-time domain ΩF ˆ [0, T] P Rd ˆ R,
d P t2, 3u, is characterized by the Navier-Stokes equations

ρ

(
Bv
Bt

+ (v ¨ ∇)v
)
= ´∇p + µ∆v + ρ f in ΩF(3.1a)

∇ ¨ v = 0 in ΩF(3.1b)

where v : ΩF ˆ [0, T] Ñ Rd denotes the velocity field of the flow, p : ΩF ˆ [0, T] Ñ R the spatial
pressure distribution, and ρ : ΩF ˆ [0; T] Ñ R the fuild’s density. For incompressible flow, we assume
ρ(x, t) = ρ as constant. µ is the shear viscosity of the fluid and f denotes volume forces such as, e.g.,
gravity. The set of partial differential equations (3.1) is derived from the fundamental conservation
laws for mass (yields equation (3.1b)) and momentum (yields equation (3.1a)). A derivation can be
found, e.g., in [Gri97].

Boundary & Initial Conditions. To enhance equations (3.1) to a well-posed initial value problem (IVP),
proper boundary conditions and initial values need to be defined. Assuming a generic partitioning
of the boundary Γ = BΩF into a Dirichlet part ΓD and a Neumann part ΓN with Γ = ΓD Y ΓN and
ΓD X ΓN = H, we impose

v = vD on ΓD,(3.2a)

σ ¨ n = f N on ΓN ,(3.2b)

where the velocity is fixed to vD on the Dirichlet boundary ΓD, while the Neumann boundary ΓN

represents a free surface and the velocity values are set dynamically. σ = ´pI + τ is the so called
Cauchy stress tensor, composed of a unidirectional pressure p and a trace-less viscous (or deviatoric)
stress tensor τ, modeling the shear stresses. For a Newtonian fluid as considered in (3.1), the relation
∇ ¨ τ = µ∆v holds, i.e., the divergence of the stress appears in the momentum equation (3.1a)1. n
denotes the unit normal of the boundary. The initial condition v0 for the velocity

v(t0, x) = v0(x) in ΩF,(3.2c)

completes the set of boundary conditions.

Structural Dynamics. In structural mechanics, the governing kinematic equations are formulated
in terms of a constitutive model that describes the simulated material. The latter is often derived in
terms of tensor notation, i.e., the definition of a stress and strain tensor, and their mutual dependency
describe the material’s deformation properties. The variety of different models is broad and ranges
from elastic, inelastic, and viscoelastic to plastic and hyperplastic deformation models. When
considering fluid-structure interaction, the resulting material deformations can be quite large and the
commonly used linear-elasticity model is not sufficient. We thus employ a non-linear material model
known as the Saint-Venant-Kirchhoff material model, which furthermore assumes the solid to be
homogeneous and isotropic. In the following, we summarize the governing equations; a derivation
alongside with variations and discussion of different models can be found in [Bre12].

1It can be written in a more generalized form as ρ dv
dt = ´∇p +∇ ¨ τ + f .
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Mathematical Model. The dynamics of a solid structure ΩS P Rd are described by its deformations
over time [0, T] Ă R under the influence of an external force. These deformations are represented
by a displacement field u : ΩS ˆ [0, T] Ñ Rd. Based on Newton’s second law and an equilibrium of
forces, the equation of motion

ρ

(
B2u
Bt2

)
= ∇ ¨ σS + ρ f in ΩS(3.3a)

is derived, with the density ρ and the distributed volume force f . The stress tensor σS encodes the
constitutive material model; we employ the second Piola-Kirchhoff stress tensor given as

(3.3b) σS = λ ¨ tr(e)I + 2µe with e =
1
2

(
F + FT + FT F

)
.

It relates the stress σS to the strain F = ∇u, and models non-linear deformations for a material with
linear-elasticity like behavior. e is the Lagrangian Green strain tensor that models the kinematics in
terms of non-linear deformation. The parameters λ and µ are also known as the Lamé constants and
are directly related to material parameters such as Young’s modulus E and Poisson’s ratio ν, via

(3.4) E =
µ(3λ + 2µ)

λ + µ
and ν =

λ

2(λ + µ)
.

Boundary & Initial Conditions. As before, appropriate boundary and initial conditions are required
to enhance equation (3.3a) to a well posed initial value problem. Analogously as above, we impose
the following Dirichlet and Neumann boundary conditions

u = uD on ΓD,(3.5a)

σS ¨ n = f N on ΓN(3.5b)

for a fixed displacement uD and a prescribed vector force f N . Defining initial values u0 and v0 for
the displacement and deformation velocity

u(t0, ¨) = u0 in ΩS,(3.5c)

Bu(t0, ¨)

Bt
= v0 in ΩS(3.5d)

completes the initial value problem statement.

Surface Coupling of Fluid and Structure. To establish a consistent interaction of fluid dynamics
and structural mechanics, certain kinematic and dynamic coupling conditions have to be satisfied
at the fluid-structure interface ΓFS = ΓF X ΓS, also called wet-surface. In continuum mechanics,
interacting materials can neither overlap, nor give raise to gaps between material domains. A
direct consequence of this is the demand for equality of displacements and velocities normal to the
wet-surface. Based on the concept of molecular attraction forces, it is furthermore assumed that fluid
molecules in the vicinity of the fluid-structure interface stick to the solid boundary. This motivates to
further enforce the equality of forces and tangential velocities on ΓFS. Summarized, the kinematic
interface condition reads

vF =
BuS
Bt

on ΓFS(3.6a)
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whereas the dynamic interface condition is written as

σF ¨ nF = ´σS ¨ nS on ΓFS.(3.6b)

Together, they form the set of coupling conditions. Equation (3.6b) describes a point-wise balance
of forces at the interface, represented in terms of the surface stresses; nF = ´nS are the interface
normal vectors.

Discretization. Equations (3.1) and (3.3) are partial differential equations in space and time.
For their numerical solution, the continuous representations need to be discretized into a finite
number of unknowns. The thereby introduced error should be kept small to obtain an accurate
approximation of the continuous representation. At the same time, the computational complexity
needs to be balanced. Within this work, we consider black-box coupling, that means we abstract
from the actual solver numerics and focus on generic coupling concepts. Discretization details and
single-physics numerics are specific for the respective solvers and play a minor role in this work. We
therefore only summarize the most common concepts.

Spatial Discretization. Numerous approaches to discretize partial differential equations are used in
practice; amongst them the finite difference method (FDM), the finite volume method (FVM), and the
finite element method (FEM) are the most popular forms. FEM and FVM work with a partitioning of
the computational domain into elements or cells and are typically employed in fluid dynamics. For
structural mechanics, the FEM method has been shown to be most effective and is predominantly
used. For details of these standard methods, we refer to the vast literature; the text books [Bab01]
and [LeV02] are a good starting point. A fluid dynamics specific discussion can be found in [Gri97;
Hai96; Wan91; Gre98b]. For discourses on FEM in structural mechanics, we refer to [Bra07; Zie77].

The numerical treatment of fluids and structures raises different needs, which, are also reflected
in different discretization approach hes and different underlying grids. Integrating the numerical
treatment of fluid and structure is, therefore, not straightforward. This is closely related to the
the fact that, for fluid dynamics, commonly an Eulerian or Arbitrary Lagrangian Eulerian (ALE)
point of view is used to describe the system dynamics, while for structural mechanics, a Lagrangian
viewpoint is dominant. Deformations, caused by the interaction additionally may raise the need for
mesh-deformation, mesh-movement or re-meshing. In any case, data need to be mutually exchanged
between non-conforming or non-matching meshes for the fluid- and solid-domain, respectively.
Commonly used approaches to integrate moving structures in flow numerics are immersed boundary
(IB) methods [Mit05], fictitious domain (FD) methods [Yu05], cut-cell methods [Qui94], marker-
and-cell methods [Tom94], or dynamic mesh-movement methods combined with, e.g., radial-basis
function interpolation [Lyn80; Sar01; De 07].

Temporal Discretization. To solve the system of ordinary differential equations which arises after
spatial discretization in time, sequential, explicit or implicit time integration methods are used. As
opposed to explicit methods, implicit time integrators come at higher computational cost as they
additionally require the solution of a non-linear system of equations, but typically feature better
stability. For more details, we refer to standard text books, e.g., [Hai93; Wan91], and to [Dok89; Fle12;
Fle91] for an application specific discussion.

3.1.3 Monolithic and Partitioned Coupling

Solving multi-component problems featuring strong interactions such as, e.g., fluid-structure inter-
action, can be approached in two fundamentally different ways. The monolithic approach solves
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the set of all involved equations at once, that is, it typically employs the same discretization and
numerics for all sub-components and composes all governing equations into one global system of
equations, including the coupling terms. The monolithic problem can be stated as

(3.7) A(xF, xS) = 0

with the (usually) non-linear operator A and the discrete flow and structural unknown variables
xF and xS. Typically, (inexact-) Newton methods are employed for (3.7) resulting in the repeated
solution of a linear system for the Newton update. Examples for FSI simulations are, e.g., [Tur11;
Tez07]. Due to the direct integration and enforcement of the coupling conditions, the monolithic
approach yields very high robustness and highly accurate solutions for sophisticated problems.

When a monolithic solution is intended, though, usually a new tailored solver has to be
implemented which meets the special needs of the application problem, typically characterized
by a large condition number. The flexibility and adaptability of the monolithic solver to changing
demands or problem setups is, thus, quite limited. The implementation is tailored to a specific
application; changing the application, adding features, or exchanging sub-components involves a
significant amount of software development and maintenance.

By breaking up multi-component simulations into clearly defined sub-components and their
coupling, we can exploit full flexibility and benefit from decades of experience in developing the
sub-component solvers such as, e.g., computational fluid dynamics (CFD) or computational structural
mechanics (CSM) simulation software. This so called partitioned approach is what we consider
within this thesis and discuss further in what follows.

Towards a More Generic Solution: The Partitioned Approach. The partitioned approach (also
called loose coupling, segregated coupling, or staggered approach) originates from domain decom-
position theory [Tos06] and can be seen as Dirichlet-Neumann method for the iterative solution of
a decomposed problem with non-overlapping sub-domains. This induces operators F and S that
represent the fluid2 and the solid sub-component solver with the following input-output assignment
at the interface (compare (2.10) for a more generic setting)

(3.8) F (xΓ
S) = xΓ

F and S(xΓ
F) = xΓ

S,

that means, the fluid operator F maps kinematic input values (displacements) xΓ
S at the interface

Γ to dynamic values (forces/velocities) xΓ
F = σ ¨ n, while the structure operator S conversely takes

dynamic values xΓ
F as input and computes the kinematic output values xΓ

S = Btu. From now on, we
only consider unknown variables at the interface Γ; thus, to simplify notation, we omit the superscript
Γ in the following. The partitioned approach then allows to separately solve the single-physics
sub-component equations with respect to the imposed boundary conditions. It ensures the coupling
of the components externally, i.e., consistency of the kinematic and dynamic values at the coupling
interface as given in (3.6) is forced in an outer loop. For problems with strong interactions, this outer
coupling is formulated in terms of a non-linear fixed-point equation, compare (2.2). Besides the
two extremes, many hybrid and intermediate forms are employed in literature; [Uek16] gives an
extensive literature review.

Opportunities of the Partitioned Approach. The separation into well-defined sub-components
with a clear interface entails many benefits. The governing equations in fluid dynamics and structural

2We assume the mesh-movement or re-meshing entity to be part of the fluid solver.
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mechanics feature very different characteristics. As opposed to an all-at-once monolithic solution, the
partitioned approach allows for both sub-components to independently employ tailored discretization
schemes and numerical methods that precisely meet special needs. It is also noteworthy, that the
monolithic system (3.7) typically is substantially harder to solve than the sub-components alone. The
partitioned concept furthermore allows to effectively couple existing and closed source solvers, where
no information about solver internals is known, in a minimally-invasive way. With this, decades
of experience and sophisticated solvers for single-physics problems can be reused. In particular,
sub-component solvers are seen as modular black-boxes and can be easily exchanged in an almost
plug-and-play manner; exchanging one sub-component solver does not affect the remaining overall
coupling framework. Furthermore, often times FSI simulations are enriched by further physical
effects such as heat-transfer, acoustics, or the consideration of multiple fluid fields. Thus, there is a
need for FSI simulations to be flexible, which should be transparent to, and assisted by the solver
framework. This said, we can conclude that the time-to-solution seen as a process from problem
statement to implementation to numerical simulation is significantly reduced for a partitioned
coupling strategy as compared to the monolithic approach.

Challenges of the Partitioned Approach. On the downside, the partitioned approach inherently
suffers from stability problems and induced oscillations. Each sub-component takes the boundary
values as a result from the respective other component and assumes them to be fixed during its next
time step solution. The magnitude of the induced oscillations depends on the characteristics of the
problem and the nature of the coupling interaction. For strongly coupled problems, oscillations are
typically severe. Advanced equation coupling schemes that define rules on how to combine solutions
of the sub-components need to be employed to re-establish a consistent solution, i.e., the monolithic
solution. This additional equation coupling is accompanied with a loss in efficiency in terms of
runtime complexity due to an increased computational effort: Strongly coupled problems may
require a high number of outer coupling iterations to re-establish a consistent solution per time step;
for those scenarios, monolithic solvers are more efficient with respect to runtime complexity. Recent
advances in employing powerful and sophisticated acceleration methods such as those presented
in §2.2 to stabilize and speed up the equation coupling have been shown to make the partitioned
approach competitive, even for problems with very strong coupling interactions [Uek13a; Deg09;
Gat14; Bog14; Blo15b; Blo14a].

In the following, we briefly summarize challenges, specifically for FSI, which in turn motivate
the necessity of the main ingredients for efficient partitioned coupling of fluid-structure interaction
simulations. We discuss all remedies mentioned in this summary in §3.2.

• Due to the partitioning of equations and alternating solution of sub-components with fixed
boundary values throughout the solution process, stability problems and oscillations occur.
These effects become particularly emphasized if the density of the structure is similar or less
then the density of the fluid, the structural stiffness decreases, or a smaller time step size is
chosen. In partitioned FSI, this phenomenon is also referred to as added mass effect [Cau05;
Van09b]. Implicit fixed-point equation coupling tackles this issue.

• Due to different discretizations and numerics within the solvers, inconsistent surface repre-
sentations, non-matching or non-conforming grids occur. An inter-solver translation, or data
mapping becomes necessary.

• Due to different time scales of sub-component solvers, sub-cycling might become necessary.
This actually expresses an advantage of the partitioned approach, as time-scales can be easily
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decoupled if, e.g., the fluid solver needs significantly smaller time steps than the structure
solver.

• Due to required (implicit) equation coupling, the computational cost increases. This raises
the need for good parallel scalability.

• Due to the immense cost asymmetry between the fluid and the structure solver, the partitioned
approach as commonly used, however, has limited parallel scalability. Intra-solver paral-
lelism3 is improved by an efficient, decentralized peer-to-peer data communication approach,
and inter-solver parallelism4 is fostered by a parallel, Jacobi-type equation coupling, combined
with highly scalable quasi-Newton acceleration methods.

3.2 Components for Partitioned Coupling of Fluid-Structure
Interaction

Within this thesis, we employ the partitioned coupling approach for the numerical treatment of
fluid-structure interaction, which only requires minimal information at the coupling interface and
is independent of sub-component solver internals. With its high flexibility fostering the minimally
invasive and easy combination of independent sub-component solvers and allowing for the inter-
change of modular solvers in an almost plug-and-play manner, it perfectly meets the fluid-structure
interaction demands with a steady progression in physics modeling and solver development.

Using a partitioned coupling of interacting components, e.g., fluid and structure, poses a
number of challenges that need to be tackled to arrive at an efficient and accurate competitor for the
monolithic solution. We have summarized these challenges above. They define core functionalities
required for a realization using the partitioned approach; see Fig. 3.1 for an illustration. In §3.2.1,
we shortly present and discuss solution approaches and realization for these core functionalities.
Within this work, the focus lies on the development of advanced quasi-Newton schemes to accelerate
the fixed-point equation coupling. Highly efficient, robust and scalable acceleration methods have
been presented in §2.2 of Chapter 2. In §3.2.2 we re-visit the equation coupling and fixed-point
formulation to enforce the coupling conditions at the common interface and associate the earlier
discussed quasi-Newton methods with this context.

The entire coupling process can be realized in a separated coupling tool. In §3.2.3, we give a
reference to the general purpose parallel coupling library preCICE, which realizes all of the required
ingredients of the partitioned approach in a generic and modular way, allowing for execution on
massively parallel systems. All quasi-Newton methods developed in this work are provided in
preCICE.

3.2.1 Ingredients of the Partitioned Coupling Approach

In this section, we discuss the three main methodological concepts required to establish a partitioned
black-box coupling of sub-solver components that share a common interface where mutual interaction
occurs (coupling surface): (i) a translational data mapping between solver internal representations
and grids, (ii) a data transportation component, establishing peer-to-peer communication of sub-
solver ranks in a massively parallel setup, and (iii) a fixed-point equation coupling realizing the
external component coupling in an implicit way.

3degree of parallelism within a sub-component solver, i.e., parallel scalability of sub-components
4parallelism between solvers, i.e., possibility of simultaneous solver execution
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interface

A

B

FIGURE 3.1
Schematic view of partitioned coupling. We exemplarily con-
sider a two-dimensional surface coupled problem with two sub-
components (solver A and solver B), sharing a coupling surface.
Both solvers are executed in parallel and employ a domain decom-
position and data distribution as indicated by the coloring; only a
subset of ranks is involved in the coupling. The sub-components
use different discretizations which results in non-matching grids
at the shared interface. (i) A data mapping module is required
to translate between the different spatial representations while
preserving physical conservation laws. (ii) An inter-solver com-
munication mechanism is required to determine interacting pro-
cesses of the opposite solver, and effectively establish peer-to-peer
communication tunnels between sub-solver processes, avoid-
ing synchronization via a central instance. (iii) To enforce the
coupling conditions at the shared interface, implicit fixed-point
equation coupling is used. It retains the monolithic solution
and eliminates instabilities and oscillations. Image modified
from [Bun16b].

Translation: Data Mapping Between Solvers. The black-box nature and the modularity of
the partitioned approach render non-matching or non-conforming grids and coupling interface
representations to be a typical use case. Even gaps or overlaps may occur at the coupling interface.
Defining a mapping to translate data representation between solvers is an essential ingredient for
partitioned coupling. The mapping technique has to be chosen carefully to be capable of dealing with
challenging grid-configurations at the interface and to minimize introduced errors, while preserving
important physical conservation laws. A particular choice is application dependent, which is why
we aim for a modular approach with a well defined interface to be able to easily exchange specific
mapping implementations. Within this thesis, the mapping is subordinate: Thus, we merely abstract
three different approaches. Let xA P RNA and xB P RNB denote the vectors of unknowns located at
the nodes of the coupling interface representations ΓA and ΓB of the two participating solvers A and
B. (cf. Fig. 3.1). We consider interpolation-based methods. An interpolation from ΓA to ΓB is given
by a linear mapping ΠB

A, i.e.,
xB = ΠB

AxA

with ΠB
A P RNBˆNA . Constant functions are mapped exactly if a mapping is consistent, that means

all rows in ΠB
A sum up to one. Consistent interpolations are required if values such as, e.g., positions,

displacements, fluxes or densities are to be mapped. The transposed operator ΠA
B = (ΠB

A)
T induces

a conservative mapping in the reverse direction; such mappings are applied for mapping of integral
values, e.g., forces. They conserve the sum of the interface values.

(a) Nearest-Neighbor Mapping. This projection-based mapping simply identifies the closest neigh-
bor nk

ΓB
P ΓB of a node ni

ΓA
P ΓA on the surface representation of solver A among the vertices

on the surface representation of solver B. The respective values are then simply copied. An
illustration is given in Fig. 3.2. This first order method is mainly useful for matching grids, or as
a first step in coupling new models or software.

(b) Nearest-Projection Mapping. For every node ni
ΓA

P ΓA on the surface representation of solver A,
the projection-based mapping identifies the closest neighboring element ek

ΓB
(triangle or quad

element) among the elements in ej
ΓB

Ă ΓB. An orthogonal projection of the node ni
ΓA

onto the
element ek

ΓB
is then followed by a (bi-)linear interpolation of the values at the element’s adjacent
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FIGURE 3.2
Schematic sketch of inter-solver mapping strategies. The
nearest-neighbor mapping (left) simply copies values ac-
cording to an `2-distance-based nearest-neighbor relation
between solver A and B; the nearest-projection mapping
(right) performs (bi-)linear interpolation based on an or-
thogonal projection. Image modified from [Bun16b].

B

A

B

A

(a) nearest-neighbor (b) nearest-projection

vertices to the projection point which is then assigned to ni
ΓA

. A simple two-dimensional example
is given in Fig. 3.2. This results in a second order accurate method if there are no gaps or overlaps
between the grids of the solvers at the coupling interface.

(c) Radial Basis Function Mapping. This sophisticated mapping method builds up a global, contin-
uous interpolant of the discrete data points consisting of the mapped value at nodes nj

ΓB
P ΓB.

This interpolant is then evaluated for all nodes ni
ΓA

on ΓA. As a basis, radially symmetric basis

functions, centered at nj
ΓB

, j = 0, . . . , NB, are used for the interpolation.

For more information and the realization on distributed data, we refer, e.g., to [Gat14; Uek16;
Bun16b].

Transportation: Parallel Communication Between Solvers. Parallel execution on distributed
data is an imperative for demanding fluid-structure interaction simulations. As mentioned above,
using a partitioned approach allows to benefit from highly scalable sub-component solvers for fluid
dynamics and structural mechanics. Using independent solvers, however, results, in general, in
different partitioning of the coupling interface, due to independently chosen domain decompositions
of the sub-component solvers; compare Fig. 3.1. It is desirable to omit gathering and scattering of
send-receive data through a central instance, and to establish direct peer-to-peer communication
channels between MPI ranks of both solvers that correspond to sub-domains at the interface. Thus,
for every rank of solver A that “touches” the interface, we need to partition its local part of the
coupling interface grid representation according to the domain decomposition of solver B. In
other words, we need to identify destination rank numbers of solver B for every node ni

ΓA
P ΓA.

This send/receive rank relation is induced by the mapping. We do not consider re-meshing or
re-partitioning5 here. The computation of a corresponding destination rank for each node on ΓA and
ΓB requires the communication of the coupling interface grid representations. To avoid deadlocks,
asynchronous communication is used. To allow for an efficient and scalable overall simulation,
sophisticated algorithms have to be employed for the grid re-partitioning and the computation of the
communication maps6. Furthermore, setting up the point-to-point communication channels between
ranks of different communicators in an efficient way is critical. A detailed discussion on the efficient
realization of the peer-to-peer communication between the sub-components can be found in [Shu15;
Uek16; Gat14; Bun16b].

Equation Coupling. Employing the partitioned solution approach for strongly interacting sub-
components inherently causes stability issues and oscillations. In particular, for incompressible FSI,
the induced instabilities are severe due to the so called added mass effect [Cau05; Van09b]. To control
the induced instabilities, a solution of the same quality as the monolithic solution has to be recovered

5To maintain an optimal load-balancing, dynamic re-partitioning throughout the simulation might become necessary. This
is, however, typically only the case for solvers using dynamical grid adaptivity or Eulerian grids.

6relations for send-/receive-rank for each node on the coupling interface grid-representation
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in every time step. To this end, a sub-iteration process which repeatedly exchanges boundary
values and re-computes the current time step for the sub-component solvers becomes necessary. The
sub-component invocations are assumably very costly and the number of additional sub-iterations
(also called coupling iterations) critically affects the overall performance of the simulation.

Explicit schemes (cf. [Gat14], p. 33 ff and [Far00]) perform a fixed number of sub-iterations, and
thus, the introduced error is not directly controlled but depends on the severity of the present
instabilities; such schemes are sufficient and yield high efficiency for compressible FSI with moderate
interactions and slight oscillations (e.g., aerodynamics simulations), but fail to converge in the face
of severe oscillations and interaction with incompressible flow [Pip95; Pip01; Les98; Fel01].

Implicit schemes (cf. [Gat14], p. 44 ff), on the other hand, continue the aforementioned sub-
iteration until convergence is achieved, i.e., for FSI simulations until the kinematic (equality of
forces, cf. (3.6a)) and dynamic (equality of velocities, cf. (3.6b)) coupling conditions are fulfilled
sufficiently accurate. Numerically, implicit interface coupling is realized as the iterative solution of a
non-linear fixed-point equation H : RN Ñ RN , H(x) = x which, for an admissible solution, enforces
the Dirichlet-Neumann coupling conditions at the coupling interface. In what follows, we briefly
recapitulate and discuss the herein employed fixed-point formulations and their respective solution
to facilitate the relation with the concepts developed in §2.2.

3.2.2 Fixed-Point Formulations and Coupling Schemes

The implicit coupling iteration can be realized in various ways that primarily differ

(1) in terms of the execution order of the sub-components (i.e., fluid and structure solver), and

(2) in terms of employed methods used to accelerate and stabilize the coupling process.

The first item defines the fixed-point operator H. The second item critically affects the number of
coupling iterations, and, thus, the method’s efficiency in terms of runtime. A main contribution of
this thesis lies in the development of advanced, highly robust and scalable methods for (2), which
we presented in §2.2.

Execution Orders and Fixed-Point Equations. Various coupling strategies with diverse execution
orders for the sub-components of partitioned FSI have been investigated in literature. They result in
distinct fixed-point operators [Far00]; an overview is given in [Gat14], p. 33 ff. Within this work, we
only consider the Gauß-Seidel-type (GS) coupling system and the Jacobi-type (J) coupling system,
introduced in §2.2 in a more general setting. We shortly recapitulate both strategies. A detailed
discourse can be found in [Gat14].

The Serial Gauß-Seidel-type (GS) System. This scheme executes both solvers in a staggered way and
is the de facto standard approach in partitioned FSI simulations [Far00; Fel01; Deg09]. After the
execution of the flow solver sub-component, the resulting stresses and forces which are exerted on the
structure by the surrounding fluid are taken as input values by the structure solver sub-component
to compute the resulting displacements, and wet-surface velocities of the solid. In a converged state,
the displacements and velocities, i.e., structure deformations do not change anymore. This can be
written as a fixed-point equation, which is given in Fig. 3.3 (left) along with a flow chart for the
corresponding solver execution order.

The computational complexity of FSI simulations demands for massively parallel, distributed
memory execution on large systems. The inherently serial execution order of the (GS) system entails
some substantial drawbacks with respect to the efficient parallelization and parallel scalability. This
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FIGURE 3.3 Schematic illustration of the Gauß-Seidel-type (GS) and the Jacobi-type (J) fixed-point formulations to
establish the equation coupling of fluid and structure solver F and S (compare §2.2). The fixed-point iterates x̃k

S and x̃k
F

are modified to the iterates xk+1
S and xk+1

F of the implicit coupling iteration by an acceleration method acc, following the

two-step strategy xk FP
ù x̃k acc

ù xk+1 explained below. We employ quasi-Newton such as outlined in §2.2 to accelerate the
fixed-point iteration.

is caused by a usually large imbalance of work load between the fluid solver and the structure
solver: While the fluid solver can be efficiently scaled on a high number of processors 210 ă pF, the
computationally less expensive structure solver scales only to a fraction pS ! pF of the number of
fluid processors. As a result, the remaining processes are idle during the execution of the solid solver,
which leads to a worst case parallel efficiency of only 50%.

The Parallel Jacobi-type (J) System. The Jacobi-type system allows for a concurrent execution of the
sub-components fluid and structure solver, and, thereby, remedies the above mentioned drawbacks of
the (GS) system. It uses the original input/output relation for both solvers, but exchanges boundary
values after each parallel execution of the sub-solvers. This leads to the vectorial fixed-point equation,
outlined in Fig. 3.3 (right); compare also the flow chart for better understanding. If solved by plain-
vanilla fixed-point iterations, the parallel (J) system results in two independent instances of the serial
(GS) system, requiring twice the number of iterations as the (GS) system. To make the (J) system
competitive, the two computation strings need to be combined by a suitable acceleration method
(indicated by acc in Fig. 3.3) for the fixed-point iteration. Quasi-Newton methods as presented in §3.3
are powerful enough to stabilize and accelerate the fixed-point iteration sufficiently, such that one
iteration of the parallel (J) system becomes comparable to one iteration of the serial (GS) system
(cf. [Uek13b; Sch15]).

Other sub-component combination schemes are, e.g., the so called Steklov-Poincaré (P) scheme
[Dep06] or a block-iterative variant (B) of the (GS) system. The latter has been used widely due
to its improved stability over the (GS) system, but still entails strictly sequential solver execution.
Applications can be found, e.g., in [Bog14; Vie07].

Adopting the notation from §2.2, we define the fixed-point operator H : RN Ñ RN in matrix-like
notation as

H :=

$

’

&

’

%

S ˝ F(
0 F
S 0

)
and x :=

$

’

&

’

%

xS for the (GS) system ,(
xF

xS

)
for the (J) system .7
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and solve

(3.9) H(x) = x ô R(x) := H(x) ´ x !
= 0 .

Convergence Criteria. The set of convergence criteria affects the performance judgment of each
method. Simply monitoring the (relative) norm of the residual R of the fixed-point equation yields
an unfair comparison between the different equation coupling schemes: For the (GS) system, it
results in an displacement-check only, while for the (J) system, displacements and forces are required
to be small. As, typically, the displacement residual decays faster, both criteria need to be fulfilled
for either schemes. This is furthermore the physically most reasonable argument, as both metrics
depend on each other and a small displacement residual also implies a small residual for the forces.
Forces and displacements might, however, live on fairly different scales. We therefore rely on relative
convergence measures and use the convergence criteria

}xk+1
F ´ xk

F}2 ă εr}xk+1
F }2 and }x̃k

S ´ xk
S}2 ă εr}x̃k

S}2 for (GS) ,(3.10a)

}x̃k
F ´ xk

F}2 ă εr}x̃k
F}2 and }x̃k

S ´ xk
S}2 ă εr}x̃k

S}2 for (J) .(3.10b)

Note that the convergence criterion for the sub-component solvers has to be sufficiently tight (i.e.,
smaller than the tolerance ε for the implicit coupling iteration).

Fixed-Point Equation Solvers and Coupling Schemes. The canonical and most simple way to
solve (3.9) is plain vanilla fixed-point iteration (cf. eq. (2.11)), resulting in a multiplicative Schwarz
procedure for (GS), and an additive Schwarz procedure for (J), respectively. This iteration, however,
only converges if H is a contraction. For most strongly coupled problems, severe instabilities occur
and this is not the case. Therefore, the basic Schwarz procedures need to be enhanced with an
acceleration method which stabilizes the fixed-point iteration and improves its convergence rate.

Accelerating the Fixed-Point Iteration. As introduced in §2.2, we follow a two-step outline: In every
coupling iteration, a fixed-point iteration x̃k = H(xk) is followed by an acceleration method “acc”,
i.e., a new iterate is found by performing

xk FP
ù
H

x̃k acc
ù xk+1

with the residual rk = x̃k ´ xk. The simplest method for stabilization is to perform underrelaxation.
Here, the new iterate is found by computing

xk+1 = ωk x̃k + (1 ´ ω)xk = xk + ωrk

with a relaxation factor ω P (0, 1]. The optimal relaxation factor is problem dependent and might
also change throughout the solution process. A dynamic Aitken relaxation with

ωk = ´ωk´1 (r
k´1)T(rk ´ rk´1)

}rk ´ rk´1}2
2

has been widely used for (weakly coupled) FSI problems. However, for most challenging scenarios
with severe instabilities, the simple underrelaxation fails to stabilize the fixed-point iteration, or
features very slow convergence. [Bog14; Uek13b] provide a comparison of various acceleration

7Note that F and S are non-linear operators in general.
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methods. In particular, they compare Aitken’s dynamic relaxation with quasi-Newton. Aitken,
in some sense, belongs to the class of multi-secant methods: For the one dimensional case, it is
equivalent to the LS(η = 1) method, discussed in §2.2.

Quasi-Newton multi-secant methods have been shown to clearly outperform the above ap-
proaches and their excellent stabilization and convergence acceleration properties have been demon-
strated for a large number of FSI scenarios [Deg09; Uek13a; Blo14b; Deg13b; Bog14]. Furthermore,
only quasi-Newton methods are powerful enough to effectively combine the two simulation strings
for the parallel (J) system (cf. Fig. 3.3) [Uek13b]. Within this work, we focus on quasi-Newton
acceleration only. We discussed different methods and presented new contributions in §2.2.

Coupling Schemes. As coupling scheme we denote the combination of the execution order of
the sub-component solvers, i.e., the (GS) or (J) system (or also the (P) and (B) system), and an
acceleration method. §2.2 provides a thorough discussion, literature review and classification on
the most commonly used multi-secant acceleration methods. [Sch15] and [Uek16] provide a listing
of valid combinations along with a numerical analysis to judge and compare their performance
for a one-dimensional flexible tube problem with traveling pressure pulse (see §4.1.1). A review
and historically consideration of the development of these schemes within the FSI community can
be found in [Uek16], p. 36 ff. The most powerful, and, thus, practically relevant combinations are
the methods that are emphasized and improved within this work: The (J) system in combination
with the LS type II (J-LS-II) and MV type II (J-MV-II/J-RS-SVD) outperform other combinations
(cf. [Uek16], p, 36 ff and [Sch15], p. 60 ff).

3.2.3 preCICE: A Generic Library for Black-Box Component Coupling on
Parallel Systems

The general purpose coupling library preCICE8 has been designed as a tool to provide all func-
tionality required (compare §3.2.1) to carry out partitioned multi-physics simulations based on
the coupling of existing, sophisticated single-physics solvers. preCICE aims to meet two major
design goals: (i) minimize the effort of preparing an existing solver for partitioned coupling, and
(ii) maximize the flexibility that comes with the partitioned approach. In particular, this allows for
a minimally-invasive coupling of existing black-box solvers in an almost plug-and-play manner,
facilitates the exchange of solvers, and fosters quick and effortless coupling and fast prototyping.
preCICE is designed for parallel execution and inter-solver parallelism. Parallel communication
techniques help to exploit the massively parallel capabilities of current and future HPC machines. As
mentioned above, preCICE provides efficient, parallel implementations of the three main components
detailed in §3.2.1 that are required for partitioned multi-physics simulations. It implements an
(i) efficient, decentralized peer-to-peer inter-component communication via MPI or TCP/IP, (ii) vari-
ous data-mapping methods for translation between non-matching grids at the coupling interface,
and (iii) efficient and robust (explicit and implicit, serial (GS) and parallel (J)) iterative methods to
solve the interface fixed-point equation to enforce the coupling conditions and establish a consistent
solution. Figure Fig. 3.4 gives a schematic overview of the functionality included in preCICE.

preCICE is generic in the sense that it is not limited to FSI but can be used for any surface-
coupled multi-physics problem. Its primary focus is on bi-directional surface-coupled problems,
but also volume coupling can be tackled with preCICE; the communication cost, however, increase
dramatically for volume-coupling.

8http://www.precice.org and https://github.com/precice

http://www.precice.org
https://github.com/precice
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FIGURE 3.4 Schematic view on the preCICE functionality. preCICE provides highly efficient and parallel realizations
for the main ingredients of partitioned multi-physics simulations, i.e., (i) the equation coupling, enforcing the coupling
conditions in an implicit sub-iteration, (ii) the inter-solver communication, realized in a decentralized way with a peer-
to-peer concept allowing to inherit parallel scalability of sub-solvers, and (iii) the data mapping routines to translate
information between non-conforming grid representations at the interface. Image taken from [Uek16].

preCICE is open-source and not developed for use with dedicated solvers, it provides efficient
parallel realizations of all components required for partitioned multi-physics coupling, it comes with
a clean high-level API, is runtime-configurable, and, thus, allows for high flexibility. Therewith, it
features short time-to-solution, fosters prototyping and allows non-coupling experts to achieve stable
solutions with minimal effort.

An excellent introduction to preCICE from a user’s perspective can be found in [Uek16].
Gatzhammer originally presented preCICE in [Gat14] and gave an elaborate tract on all aspects
of partitioned multi-physics simulations with an emphasis on FSI. Uekermann extends this work
to a fully parallel, decentralized coupling tool that can be applied on massively parallel compute
systems. preCICE has been primarily developed by Bernhard Gatzhammer, Miriam Mehl, Benjamin
Uekermann, Florian Lindner and myself. I have been a member of the developer team since 2015
focusing particularly on improving robustness, performance and parallel scalability of the iterative
solution of the interface coupling based on quasi-Newton methods. The equation coupling methods
and their efficient parallel realization on distributed data have been developed in large parts within
this thesis.

Coupled Solvers. preCICE has been successfully coupled with a variety of solvers for compressible,
and incompressible flow, acoustics, and structural mechanics. This includes fluid-structure-acoustic
(FSA) coupling, fluid-structure (FS) coupling, fluid-fluid (FF) coupling and multi-phase coupling.
Coupled codes include, e.g., OpenFoam9, Ateles, Alya10, Carat11, SU212, FEAP13, FASTEST, Ansys
Fluent and COMSOL. A full listing of coupled solvers and more information about the respective
preCICE adapters can be found in [Uek16]. Within this work, we exclusively use fluid and structure
solvers based on the OpenFoam toolbox.

9http://www.openfoam.org
10http://www.bsc.es/es/computer-applications/alya-system
11http://www.st.bgu.tum.de/en/lehre0/research/carat
12http://github.com/su2code/SU2
13http://www.ce.berkeley.edu/projects/feap

http://www.openfoam.org
http://www.bsc.es/es/computer-applications/alya-system
http://www.st.bgu.tum.de/en/lehre0/research/carat
http://github.com/su2code/SU2
http://www.ce.berkeley.edu/projects/feap
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OpenFOAM. The open source numerical simulation toolbox OpenFOAM14 (Open Source Filed
Operation and Manipulation) provides solvers and functionality for the numerical simulation of
problems in continuum mechanics. It emphasizes on incompressible fluid mechanics, but also
compressible flow and non-linear elasticity is supported. The preCICE adapter and the actual fluid
and structure solver have been developed by David Blom from the Technical University Delft and
are freely available15. They build upon the foam-extend-3.1 fork16.

The fluid solver uses a second-order finite volume discretization of the incompressible Navier-
Stokes equations and employs a second-order implicit time integrator combined with a fully implicit
pressure-velocity solver [Dar09], rather than following the standard pressure implicit with splitting
of operator (PISO) algorithm. The governing equations are formulated in an arbitrary-Lagrangian-
Eulerian point of view. Grid deformation and grid-movement are realized based on radial-basis
function interpolation [Boe10].

The structure solver uses a Lagrangian formulation and a Saint-Venant-Kirchhoff material model
with FEM discretization. The time integrator is a second-order implicit scheme.

14http://www.openfoam.org
15http://github.com/davidsblom/FOAM-FSI
16http://www.extend-project.de

http://www.openfoam.org
http://github.com/davidsblom/FOAM-FSI
http://www.extend-project.de
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4
Evaluation of Robust Quasi-Newton
Methods for Partitioned FSI
Simulations

This chapter contains numerical results for the performance of the different multi-secant quasi-
Newton methods discussed in §2.2. We apply these advanced quasi-Newton methods to accelerate
the convergence of the implicit equation coupling at the wet-surface, to reduce instabilities, and to
establish a consistent solution for partitioned FSI simulations in every time step. In particular, we
present numerical results, that

• indicate the sensitivity of the convergence for the LS(ξ) method to the parameter η = η(ξ) of
reused histories in the multi-secant equation, and show the improved robustness of the MV
method (see §4.2.2),

• compare the different restart alternatives for the MV method with respect to convergence
speed and efficiency (see §4.2.3),

• compare the newly developed, (nearly) “parameter-free” and robust quasi-Newton methods
(cf. §2.2) — (i) the Least-Squares infinity-reuse method (LS(8)) and (ii) the Multi-Vector
Update SVD-restart method (MV RS-SVD) — with respect to their convergence, to their overall
efficiency, to their dependency and sensitivity to an efficient filtering method (see §4.2.4), as
well as to their parallel scalability and runtime (see §4.3).

The numerical analysis presented in this chapter suggests, that the Multi-Vector Update method
with SVD-restart approach is a highly robust and efficient acceleration method, which features
linear runtime complexity, offers very good parallel scalability and renders most problem dependent
tuning parameters redundant. Although various other aspects such as the performance of different
coupling schemes, the impact of the number of reused histories, the convergence improvement
through filtering, and pre-scaling have been investigated within this work, we limit the presentation
herein to the most relevant results towards “parameter-free” and robust quasi-Newton methods
for partitioned FSI as presented in §2.2. In §4.2.1, we shortly summarize some of the findings of
the omitted aspects and give references. Large parts of this chapter have been already published
in [Sch17].

We evaluate the efficiency of quasi-Newton acceleration methods based on the (averaged) number
of coupling iterations required to re-establish the monolithic solution with sufficient accuracy in
every time step. Since, for most practical cases, the cost for a call to the fluid or solid solver (to solve
for the current time step) outweighs the cost of the coupling numerics by orders of magnitude, a low
number of coupling iterations is critical. Furthermore, the employed algorithms for the coupling
numerics need to offer sufficient parallel scalability to not deteriorate the overall parallel efficiency
of the coupled partitioned FSI simulation.
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This chapter is organized as follows: An overview of the simulation setting with a detailed
description of the three considered test case scenarios is given in §4.1. §4.2 motivates the necessity
for more advanced and robust quasi-Newton acceleration methods, and, in particular provides a
thorough numerical analysis of the MV restart alternatives and the LS(8) method, described in §2.2.
In §4.3, we present results that show and compare the parallel scalability and runtime of the MV
RS-SVD and the LS(8) method.

4.1 General Setup of Fluid-Structure Interaction Test Cases

For our numerical experiments, we use the three different test cases: a simple 1D elastic tube for
extensive numerical tests, a 3D elastic tube and the FSI3 benchmark [Tur06] that, in contrast to the
tubes features an elastic structure immersed in the fluid.

4.1.1 1D Elastic Tube with Internal Flow

We consider the simulation of a traveling fluid pressure pulse through an elastic tube. The math-
ematical model is given by means of a simplified 1D fluid model. Despite its simplified nature
and lack of practical relevance, this test case scenario captures all relevant FSI characteristics and
features the added-mass instability. Due to its simplicity, it allows for fast prototyping and testing
of new methods. The test case has been originally formulated in [Deg10; Deg08a]. The description
follows [Gat14].

Mathematical Model. We model a radially-symmetric flexible tube with internal incompressible,
inviscid flow. Averaging across the radial coordinate yields a 1D model, as outlined in Fig. 4.1. The
conservation of mass and momentum simplifies to

Bt(av) + Bx(av2) +
1
ρ

aBx p = 0(4.1a)

Bta + Bx(av) = 0(4.1b)

with the independent variable x indicating the axial direction of the tube (Fig. 4.1), the inflow velocity
v, the kinematic pressure p, the cross sectional area of the tube a and the fluid density ρ. At the inlet,
a time-varying sinusoidal inflow velocity is imposed and non-reflecting boundary conditions are
applied:

(4.1c) vin = v0 ´
v0

100
sin2(π

t
T
) and Btv =

1
c

p.

Here, c with c2 = c2
mk ´ p/2 is the wave speed with the characteristic Moens-Korteweg wave speed

cmk defined as cmk :=
a

Eh/2ρr0 (with the tube’s Young’s modulus E, the radius r0 of the reference
configuration, the thickness h of the tube wall and the density ρ). For the structure model, the inertia
of the tube wall is neglected, and the flexible wall is modeled by a Hookean constitutive law with
linear circumferential stress

(4.2) σϕϕ = E
r ´ r0

r0
+ σ0.

This configuration leads to significant added-mass effect. The fluid exerts stresses only in circumfer-
ential direction. Therefore, the displacement of the tube wall is restricted to radial direction. The
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FIGURE 4.1 Schematic illustration of 1D elastic tube scenario. The scenario models a pressure pulse with flow in
x-direction traveling through an elastic tube with radius r, wall thickness h and total length L. The internal flow causes
pressure which acts on the inner tube walls in radial direction. Circumferential stresses σϕϕ(x) result in a deformation of
the elastic tube wall in radial direction. The test case is based on [Deg08a]. Image modified from [Gat14].

dynamic coupling condition at the interface is given by pr = σϕϕh. Combining (4.2) and the dynamic
coupling condition, the cross sectional area a can be written as an explicit function of the pressure

(4.3) a(p) = a0

(
p0 ´ 2c2

mk
p ´ 2c2

mk

)2

with a0 and p0 denoting the cross sectional area and pressure of the initial configuration. Note, that
the cross sectional area a and the pressure p are associated with the variables xS and xF, respectively,
used in Chapter 3. (4.1) constitutes the fluid model with input a and output v and p, (4.3) the
structure model with input p and output a.

Discretization. We discretize the spatial domain [0, L] using an equidistant, regular grid with cell
size hx = L/NS, and NS denoting the number of unknowns in space. The fluid and the solid solver use
a matching grid at the coupling interface; the unknowns ai, pi and vi are defined at the cell centers.
We employ a second-order accurate finite volume discretization approach for the fluid equations (4.1)
with a first-order upwind scheme for the convective part. Further, a pressure stabilization is used.
At the inflow and outflow boundary, values from the cell centers are linearly extrapolated to the
boundary. For discretization in time, a first-order backward Euler scheme is used with time step
∆t = T/NT, subdividing the time horizon (0, T]) into NT time steps. The discretized system can, e.g.,
be found in [Uek16], p. 39.

Time step size and structural stiffness of the flexible tube control the magnitude of the induced
instabilities and overall hardness of the problem. Similar to [Deg08a], we define the dimensionless
structural stiffness parameter κ and the dimensionless time step size τ as

κ :=

b

Eh
2ρr0

´
p0
2ρ

v0
, and τ :=

v0∆t
L

to control the physical properties of the scenario. The stability analysis in [Deg08a] shows increasing
instabilities due to a pronounced added-mass effect for decreasing κ, decreasing τ, and increasing
spatial resolution. We fix the spatial resolution to NS = 100 and choose NT = 100 time steps to
discretize a full period of the sinusoidal inlet velocity profile.

Numerical Solution. The above described solution algorithm for the fluid sub-component
and the quasi-static structure solver are implemented as MatLab modules. An open source C++
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FIGURE 4.2
Schematic illustration of the 3D elastic tube scenario. The
tube has a length of L = 5E´2 m and a wall thickness
of h = 1E´3 m; both ends are fixed. The internal fluid
domain has a diameter of d = 1E´2 m in the reference
configuration.

implementation is freely available1 within the preCICE package. The sub-solvers are coupled via the
coupling library preCICE, introduced in §3.2.3.

4.1.2 3D Elastic Tube with Internal Flow

Scenario Description. This 3D FSI scenario models the propagation of a flow wave through an
elastic tube. It has been widely used in literature as a benchmark application for FSI, e.g., in [Fer05;
Bat07; Bog14; Deg09] and was first described in [For01]. The scenario is inspired by the type of flow
problems encountered in hemodynamics and blood vessel simulations. The interaction of the internal
incompressible flow and the elastic tube wall constitutes a very strongly coupled FSI problem with
severe instabilities due to the added-mass effect and a density ratio of almost one between fluid and
solid. The geometry of the scenario is outlined in Fig. 4.2. The governing equations for the fluid and
the solid are given as described in §3.1.2.

A propagating wave is induced by a pressure driven internal flow. We consider two variations.
(a) For the first standard configuration, the pressure inlet is initially activated for a duration of 3E´3 s.
To avoid spurious pressure waves, the pressure-profile is ramped up linearly with a peak value
of 1333.20 N m´2. For t ą 3E´3 s, the pressure is set to zero at the inlet boundary. (b) The second
case is a modification featuring multiple pressure pulses: the inlet is opened to initiate a pressure
pulse with peak value 1333.20 N m´2 at t = 0 s, t = 6.00E´3 s and t = 1.00E´2 s with a duration
of 3.00E´3 s each. The outflow boundary uses homogeneous Dirichlet conditions for the pressure.
The tube wall is modeled using a hyper-elastic material model. The physical parameters are listed
in Tab. 4.1.

TABLE 4.1 Physical parameters for the FSI3 benchmark and the 3D tube scenario. The table lists the density ρ f and
ρs for fluid and solid, respectively, as well as the dynamic fluid viscosity ν f , the Reynolds number Re, the Young’s modulus
E, and the Poisson’s ratio νs.

FSI3 cylinder flap 3D flexible tube

Fluid Solid Fluid Solid
ρ f = 1E3 kg m´3 ρs =1E3 kg m´3 ρ f = 1E3 kg m´3 ρs =1.20E3 kg m´3

ν f = 1.0 ˆ 10´3 Pa ¨ s E =1.40E6 N m´2 ν f = 3.0 ˆ 10´3 Pa ¨ s E =3.00E5 N m´2

Re = 200 νs = 0.4 Re = 200 νs = 0.3
∆t = 1E´3 s ∆t = 1E´3 s ∆t = 1E´4 s ∆t = 1E´4 s

Numerical Solution. The scenario is included in the OpenFOAM FSI toolkit2 which has been
developed by David Blom for the partitioned coupling of OpenFOAM solvers via preCICE. For the
solution of the FSI scenario, we follow the partitioned approach with Dirichlet-Neumann coupling
and employ the modified fluid and solid solvers described in §3.2.3. The simulation is carried out in

1https://github.com/precice/elastictube1d
2https://www.github.com/davidsblom/FOAM-FSI

https://github.com/precice/elastictube1d
https://www.github.com/davidsblom/FOAM-FSI
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t = 0.19 s t = 0.30 s t = 0.43 s t = 0.55 s

FIGURE 4.3 Pressure profile and flow induced structural deformations for the 3D elastic tube scenario.

FIGURE 4.4
Schematic illustration of the FSI3 benchmark
scenario. A fixed cylinder with attached
elastic cantilever is placed a little off-centric
at point C = (0.20 m, 0.20 m). The Dis-
placement of the cantilever is monitored at
point A = (0.60 m, 0.20 m). A parabolic
inflow velocity profile is imposed at the left
boundary. Free outflow is assumed for the
right boundary. The test case was originally
proposed in [Tur06]. Image modified from
[Gat14].

parallel using preCICE. The respective preCICE adapters for the fluid and the solid solver are also
included in the mentioned FSI toolkit. To ensure a consistent solution, we use a relative convergence
criterion of εr = 1E´5 in (3.10) for the termination of the implicit coupling per time step. Due to
symmetry, the simulation can be reduced to only a quarter of the tube. We use unstructured grids
for both components with 16, 000 hexahedral cells for the fluid and 6, 400 hexahedral cells for the
solid solver. At the coupling interface, both grids match, and share 9, 600 unknowns. We simulate a
total time of T = 1E´2 s, subdivided into 100 time steps of size ∆t = 1E´4 s. This corresponds to a
full simulation period, i.e., a full propagation of the pressure wave through the tube. Fig. 4.3 shows
the traveling pressure pulse and the induced deformations for four different time instances.

4.1.3 FSI3 Benchmark (Cylinder Flap)

Scenario Description. The FSI3 scenario was proposed by Turek and Hron [Tur06] as a standard FSI
benchmark problem. It models a 2D flow around a fixed cylinder with attached flexible cantilever. To
foster oscillations, the cylinder is placed a little offcentric in vertical direction in the two dimensional
flow canal. Fig. 4.2 shows an illustration of the scenario’s geometry. The mathematical models as
presented in §3.1.2 are used. The incompressible flow is driven by a parabolic inflow velocity profile
from the left with a mean inflow velocity of v̄ = 0.20 m s´1. Free outflow is considered at the right
boundary. No-slip boundary conditions are applied for the top and bottom boundary as well as on
the cylinder and flap surface. To model the elastic cantilever, which is deflected by the flow around
the cylinder, we employ a Saint-Venant-Kirchhoff material model. The physical parameters for both,
the fluid and the structure, are listed in Tab. 4.1. Turek and Hron originally propose three different
variations. Here, we limit ourselves to the most challenging third case. After an initialization phase,
the unstationary flow induces regular oscillations of the attached cantilever. The magnitude of these
oscillations can be monitored and compared to a reference solution.

Numerical Solution. As before, we employ partitioned coupling and use OpenFOAM in conjunction
with preCICE for the numerical treatment of the test case. The fluid and the solid solver are identical
to the above 3D tube scenario. We bypass an up-ramping of the velocity magnitude by using a
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FIGURE 4.5 Pressure and velocity profile for FSI3 benchmark cylinder flap scenario. The pressure values (top) are
given in Pa and the velocity magnitude (bottom) is given in m s´1.

pre-computed velocity field for the canal flow as initial value. We use a rather coarse grid with 23, 924
cells for the flow solver and 328 cells for the solid solver, respectively. The grids are conforming
and match at the interface. This setup results in 672 unknowns at the interface for the (J) system.
After an initialization phase of 10 s, we monitor results for the simulation of a time frame of 0.18 s,
which corresponds to 10 oscillation periods of the cantilever. A time step of ∆t = 1E´3 s is used.
As before, we impose a relative criterion with εr = 1E´5 in (3.10) for termination of the implicit
coupling iteration.

Within this work, we focus on the performance of the implicit coupling iteration using different
quasi-Newton acceleration schemes. Quantitative simulation results to validate the correctness of
the numerical solution are presented in [Bun16a] for the given configuration and solvers. These
results are in very good agreement to the reference solution given in [Tur06], independent of the
convergence acceleration method of the implicit coupling iterations.

4.2 Convergence-Analysis of Quasi-Newton Variants

All of the above described FSI test case scenarios are characterized by strong physical interactions and
thus, depict challenging benchmarks for partitioned FSI simulations. Due to the strong oscillations
and instabilities, powerful quasi-Newton methods are a necessity for convergence. We report
numerical results for, and analyze the performance of the quasi-Newton methods developed within
this work (presented in §2.2). At first, we motivate the necessity of stabilizing features such as
filtering or implicit reuse in §4.2.2. A numerical analysis of the different restart alternatives is given
in §4.2.3. The restart strategy represents the central component that allows us to reduce the MV cost
to linear complexity and make MV feasible for large scale simulations. Aiming for robust efficient
and parameter-free quasi-Newton acceleration methods, we thoroughly analyze the herein developed
MV RS-SVD method and compare it with the LS(8) method in §4.2.4. The latter is equipped with a
powerful filtering method to ensure stability.
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4.2.1 Summary of Results Beyond the Scope of this Chapter

As mentioned above, the numerical analysis carried out within this chapter puts an emphasis on the
newly developed, efficient, robust and scalable MV restart alternatives from §2.2. The focus is clearly
towards “parameter-free” and efficient advanced quasi-Newton variants. In the following, we briefly
summarize other important findings that have been obtained within this work3, and give references
to respective publications.

Serial (GS) versus Parallel (J) Equation Coupling Scheme. Apart from Tab. 4.2, we only present
results for the parallel Jacobi-type (J) system. When combined with powerful quasi-Newton accel-
eration methods, both equation coupling systems, the (GS) and the (J) system, show very similar
results in terms of required coupling iterations [Sch15; Uek16; Lin15]. Depending on the application
problem, (J) might even outperform (GS) in terms of coupling iterations. Even for cases where the (J)
system leads to a slightly higher iteration count, it’s overall efficiency always outperforms the (S)
system due to a better parallelization and simultaneous sub-component execution. We therefore only
consider the (J) system.

Performance of Different Equation Coupling Schemes. As coupling scheme, we refer to the
combination of equation coupling strategy with a suitable acceleration method. In [Sch15] we
examined a large variety of such combinations, including underrelaxation and sophisticated quasi-
Newton acceleration methods. [Uek16] extends this study by additional variants. For all tested
scenarios, the Jacobi-type equation coupling with either the LS(ξ) method or the MV method, i.e.,
(J)-LS(ξ) and (J)-MV, respectively yield the best performance.

Improving Robustness via Filtering and Pre-Scaling. When reusing information from previous
time steps, the application of a powerful filtering technique becomes necessary to maintain stability
and robustness of the method. A suitable filtering technique in combination with reuse of past
information can speed up convergence drastically (see, e.g. Tab. 4.3, and Fig. 4.6). Within this
work, three filter techniques, the QR1, QR2, and POD filter (see §2.2.1) have been implemented
in the black-box coupling library preCICE. A thorough numerical analysis of the performance of
the different filtering methods can be found in [Hae15] for a number of test cases and different
solvers. Large parts of the results therein have been obtained within this work. The numerical
results reported in [Hae15] suggest that the newly introduced QR2 filter, which judges columns by
their amount of new information, outperforms the well established QR1 filter, and also the POD
filter variant. In Fig. 4.6, we show an exemplary study considering the QR1 and QR2 filter used in
combination with the LS(ξ) and MV method for the 1D flexible tube scenario. We can conclude, that,
for this setting, (i) filtering becomes increasingly important for an increasing number of time steps,
that (ii) the QR1 filter fails to stabilize, and that (iii) only the QR2 filter allows to stabilize the LS(ξ)
method sufficiently to converge and reach the MV performance.

In [Uek16], Uekermann extends this analysis and considers different sub-component solvers;
namely, Alya Nastin for the fluid and Alya Solidz for the structure solver. He concludes that the
performance of the filtering techniques is problem and solver dependent: For the Alya Nastin–Alya
Solidz coupling, the QR1 filter yields best results. As opposed to the sophisticated radial-basis
function interpolation-based grid-movement of the OpenFOAM solvers, the approach employed
within the Alya coupling is very simple. Uekermann mentions this as reason for the discrepancy.

As different coupling variables may live on fairly different scales, the parallel (J) system requires
a pre-scaling to counterbalance the respective weight of the variables in the computation of the

3as a results of joint work with Benjamin Uekermann, Rob Haelterman, Miriam Mehl and myself
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FIGURE 4.6 Filtering techniques for LS and MV method, applied to the one-dimensional flexible tube scenario.
We report average iteration counts for the implicit coupling per time step of the one-dimensional flexible tube scenario
(see §4.1.1) using the LS(ξ) and the MV method. In particular, we study the stabilization properties of the QR1 and QR2
filter, described in §2.2.1 for different amount of reused information from the past. The first row shows ξ = 0, followed by
reuse of information from ξ = 4, ξ = 8, and ξ = 16 previous time steps. We consider four different parameter settings:
The induced instabilities and overall hardness of the problem increases for decreasing structural stiffness κ and decreasing
time step size τ.

quasi-Newton update. Uekermann proposes different strategies for an automatic choice of the correct
pre-scaling weight. An analysis is given in [Uek16].

Combining Manifold Mapping with Quasi-Newton Methods. In joint work with David Blom, we
investigated Manifold Mapping as acceleration method for partitioned fluid-structure interaction
simulations. Manifold Mapping [Ech05] is a defect-correction multi-level approach to accelerate the
solution of a high-fidelity model by means of repeatedly solving a surrogate low-fidelity or coarse
model. An introduction to Manifold Mapping and its application in the context of partitioned fluid-
structure interaction can be found in [Blo14a; Blo15a]. In [Blo15b] we applied Manifold Mapping
combined with different quasi-Newton methods to accelerate the fixed-point equation coupling for
partitioned FSI. By using quasi-Newton methods such as LS and MV as solver for the coarse model,
we could show a reduction of the number of high-fidelity (coupling) iterations of about 50%. Within
this work a prototype for the Manifold Mapping algorithm for the (GS) and (J) system has been
implemented into the coupling library preCICE. The implemented quasi-Newton solvers LS, MV
and MV RS-SVD can be used as coarse model solvers and be exchanged in a modular way.
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4.2.2 Basic Methods: LS(ξ) versus Plain-Vanilla MV

Purpose. We investigate the convergence properties of the LS(ξ) method with explicit reuse of
information from ξ previous time steps, as opposed to the convergence properties for the MV method
with implicit reuse of past information. We showed in [Sch15; Lin15] that the number of reused
vectors critically affects the convergence properties of the LS(ξ) method. An optimal choice for ξ is
problem dependent and involves a costly trial and error tuning. The MV method, on the other hand,
has been shown to yield best results if only vectors from the current time step are reused [Sch15];
[Lin15].

Setup. We consider all three test scenarios described in §4.1. The numerical treatment of the cases
is as described above, using preCICE to couple the OpenFOAM or simple 1D sub-component solvers,
respectively. For the 1D tube scenario, we vary the structural stiffness κ and the dimensionless time
step size τ, resulting in nine different cases with increasing degree of instability for decreasing κ

and τ. For the OpenFOAM scenarios, we consider the (GS) and the (J) system and report results for
MV without explicit reuse compared to LS with explicit reuse of ξ P t0, 2, 4, 6, 8, 16, 32u previous time
steps. A relative convergence criterion with εr = 1E´5 is used for all scenarios. The fluid and the
structure sub-components are solved with a criterion that is two orders of magnitude tighter.

Results. We report average iteration counts for MV and LS(ξ), ξ P t0, 8u for the 1D flexible
tube scenario in Fig. 4.7, and for ξ P t0, 2, 4, 6, 8, 12, 16, 32u for the OpenFOAM 3D tube and 2D FSI3
benchmark scenario in Tab. 4.2.

TABLE 4.2 Comparison of the convergence properties of the LS(ξ) versus the MV method. We report the average
number of coupling iterations for the LS(η) method with explicit reuse, and the MV method, using implicit reuse
of past information. The amount of explicitly retained previous information η = η(ξ) is varied for the LS method.
Results are reported for the (GS) and the (J) equation coupling system, respectively, for the 2D FSI3 benchmark scenario
([Tur06]; §4.1.3; Fig. 4.5) and the 3D flexible tube scenario ([For01]; §4.1.2; Fig. 4.3). The relative convergence criterion is
set to εr = 1E´5.

3d Flexible Tube FSI3 Cylinder Flap Benchmark
reuse η(ξ) 0 4 8 12 16 0 2 4 6 8 16 32

(GS)-LS 15.5 9.3 8.8 9.2 9.4 11.5 6.2 5.3 5.5 5.7 6.6 7.8
(GS)-MV 8.5 5.5

(J)-LS 28.9 14.6 13.4 13.2 13.3 20.0 8.0 6.2 5.6 5.3 6.2 11.9
(J)-MV 11.6 6.2

Observations. For all scenarios, the LS convergence properties highly depend on the number ξ of
reused time steps. Without reuse of previous information, the LS method is not competitive, the
optimal amount of reuse, however, remains problem dependent and is different for every scenario.
In Fig. 4.7 for example, LS shows excellent performance for the more challenging cases using ξ = 8.
For the easier cases, however, this configuration fails to converge. Typically, for the (J) system a
higher amount of reuse is beneficial than for the (GS) system (see also [Uek16]). For an optimal
choice of explicit reuse, LS shows fairly similar performance as MV. This is also supported by results
in [Uek16; Sch15].

Conclusion. The LS method benefits from explicit reuse. The optimal amount of reused
information is, however, highly problem dependent and involves a costly tuning process. The MV
method outperforms LS and renders the tuning parameter redundant.
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FIGURE 4.7
1D flexible tube scenario. Comparison of the aver-
age number of coupling iterations required using
LS(8), LS(0), and MV, respectively. We vary the
structural stiffness κ and the time step size τ. The
scenario becomes more challenging for decreasing κ
and decreasing τ. Image modified from [Sch17].
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4.2.3 Advanced MV Methods: Restart Alternatives

Purpose. We have seen the excellent convergence properties of the MV method, which by relying on
implicit reuse, renders the costly tuning of ξ for an acceptable LS convergence dispensable. Implicate
reuse comes, however, at the price of having to keep an explicit representation of the Jacobian. The
resulting quadratic storage and runtime complexity (cf. Tab. 2.1) makes the method impractical for
large scale simulations. We proposed three different MV restart approaches (cf. §2.2.2), that, with an
efficient limited memory Jacobian representation in conjunction with periodic restart, reduce the
method’s complexity to a linear one. Due to the superior robustness of the MV method, we restrict
ourselves to only compare the MV restart variants among each other and with the plain-vanilla MV
method, but not to LS(ξ), in terms of convergence properties The latter are variable as proposed
restart strategies differ in their ability to recover Jacobian information across restarts, and, thus,
influence the quality of the Jacobian estimation.

Setup. We benchmark and compare the restart variants for the one- and three-dimensional
flexible tube scenario described in §4.1.1 and §4.1.2, respectively. The numerical solution and setup
follows the description of §4.1.1 and the previous experiment in §4.2.2. For the 1D tube scenario,
the degree of the added mass effect and the amount of induced instabilities is controlled by specific
choices for the structural stiffness parameter κ and the time step length τ. We consider four different
cases (τ, κ) P t(0.1, 100), (0.1, 10), (0.01, 10), (0.001, 10)u with increasing difficulty. We apply three
approaches, the “clear all” RS-0, the “explicit reuse at restart” RS-LS, and the “subspace tracking”
RS-SVD approach, and study effects of different choices for the restart period m (also referred to as
“chunk size”), the truncation threshold ε for the subspace-tracking alternative, and the number of
explicitly reused time steps ξrs at restart for the RS-LS method. For the 3D flexible tube scenario, we
use ξrs = m and collect the first five iterations from each of the last ξrs time steps for explicit reuse
at restart. We additionally employ a QR2 filter with εF = 1E´2 to ensure stability. For all variants,
we use the (J) system only, together with a residual-sum pre-scaling. For all experiments, a relative
convergence criterion of εr = 1E´4 as given in (3.10) is used.

Results. In the course of prototyping and preliminary method testing, we analyze all three
restart alternatives for the 1D flexible tube scenario in Fig. 4.8. Despite its simplistic character the
scenario features different common characteristics of partitioned FSI simulations and allows to easily
vary the degree of induced instability and the hardness of the problem. We study the influence of
different choices for the restart period m, reflecting the number of time steps that fit in the method’s
limited memory. For the SVD-restart method, we investigate the trend of the rank of the SVD (after
truncation) and its reflection in the average iteration count for different truncation thresholds. For the
RS-LS method, we study the method’s performance in relation to the amount of retained information
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FIGURE 4.8 MV restart variants for the 1D flexible tube scenario. Comparison of the average number of coupling
iterations required using different MV restart strategies, outlined in §2.2. The chunk size m, i.e., the restart period is
varied in m P t1, 2, 4, 8, 16, 32u. We report iteration counts for the RS-0 (magenta), the RS-LS (green), and the RS-SVD
(blue) strategy. For the latter, a truncation threshold of ε = 1E´1 and ε = 1E´2 is used. Iteration counts for MV (red)
are given as a reference. Instabilities and the hardness of the problem increases for decreasing structural stiffness κ and
decreasing time step size τ. Image modified from [Sch17].

FIGURE 4.9 RS-LS restart strategy for the 1D flexible tube scenario. Average number of coupling iteration for the
RS-LS restart strategy with different number ξrs P t1, 2, 4, 8, 16u of retained previous time steps at restart. We report
results for different restart periods m P t2, 4, 8, 16u. Iteration counts for MV (black) are given as a reference. Instabilities
and the hardness of the problem increases for decreasing structural stiffness κ and decreasing time step size τ. Image
modified from [Sch17].

across restart, i.e., the number ξrs of explicitly reused time steps. Results for the latter are given
in Fig. 4.9. For a setting with more realistic problem dimensions and characteristics, we compare all
three variants in Fig. 4.10 in a similar fashion for the 3D flexible tube scenario.

Observations. The most important observation is, that the RS-SVD restart approach shows excellent
results for all considered experiments and preserves the original MV convergence properties. In
particular, this is achieved at a fraction of the original cost due to the small rank of the truncated
SVD, indicated by red lines in Fig. 4.10 (we investigate this in more detail in §4.2.4). The performance
slightly depends on a good choice for the truncation parameter ε.

Considering the 1D example, we observe that the RS-0 strategy (which discards all accumulated
information after m time steps) yields the worst performance. This method represents a mixture
between the LS(0) and the MV method, and, therefore, inherits the bad LS(0) convergence properties.
The implicit reuse within the MV part and its stabilizing properties become more pronounced for
larger restart periods m, and the number of coupling iterations decreases for increasing restart
periods. If, in contrast, explicit reuse of multi-secant information at every restart is considered, such
as done for the RS-LS method, good convergence is achieved for very small restart periods m P t1, 2u.
Only for the hardest case with (τ = 0.001, κ = 10) the amount of retained information across restart
borders is not sufficient and a larger m is required. The good convergence of RS-LS(ξrs, m = 2) for
cases 1–3 raises hope for a very cheap and efficient alternative for scenarios with a moderate degree
of instability. On the downside, employing explicit reuse at restart re-introduces the dependency on
the parameter ξ = ξrs, but in a less sensitive way. This can be seen from Fig. 4.9, where the amount
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FIGURE 4.10 MV restart variants for the 3D flexible tube scenario. Comparison of the average number of coupling
iterations required using different MV restart strategies, outlined in §2.2. The restart period m is varied in m P t4, 8, 16, 32u.
We report iteration counts (left axis) for the RS-0 (gray), the RS-LS (green), and the RS-SVD (shades of navy-blue)
strategy. For the latter, we monitor the rank of the truncated SVD representation (right axis; red dashed lines) for varying
truncation thresholds ε P t0.5, 1E´1, 1E´2, 1E´3u and outline the sensitivity of the iteration count to ε. For the RS-LS
strategy, the number of reused columns at restart is given (green dashed line). The dimensionality N of the Jacobian (as
required for the plain-vanilla MV method) is given as a reference (blue dashed line), along with the average MV iteration
counts (blue bars). We use a QR2 filter with εF = 1E´2 and a relative convergence criterion with εr = 1E´4. Image
modified from [Sch17].

of explicitly reused information at restart (i.e., the number of time steps ξrs) is varied for the RS-LS
method. As before, a small restart period of m = 2 outperforms other choices of m, regardless of the
number of reused time steps (except for the last case). The optimum is reached for ξrs = 2 for cases
1 and 2, and for ξrs = 8 for case 3. This coincides with the optimal parameter ξ for LS(ξ) for the
respective cases (cf., e.g., [Uek16], p. 42). For this scenario, RS-LS(M = 2, ξrs) even outperforms MV
as it benefits from both reuse approaches.

Considering the practically more relevant 3D flexible tube test case, Fig. 4.10 exhibits poor
convergence for both the RS-0 and the RS-LS strategy. To some extend, this contradicts the results
for the RS-LS method, for the one-dimensional example. Fig. 4.10 furthermore compares the number
of retained columns (dashed green line) for the RS-LS method, and the average rank of the truncated
SVD representation of the inverse Jacobian (dashed red lines) for the RS-SVD method, respectively.
The total number of unknowns at the interface (dashed blue line) is given as a reference. For both,
methods RS-LS and RS-SVD, the degrees of freedom are reduced to a fraction of the original system.

Conclusion. We conclude, that the SVD-based restart approach (RS-SVD) outperforms all other
variants in terms of convergence speed and robustness. In particular, it achieves identical performance
as the original MV method. A slight, yet clearly identifiable dependency on the truncation parameter
ε of the SVD representation, remains. The cost is reduced dramatically, due to a very low rank of the
truncated SVD representation of the Jacobian, compared to the number of unknowns at the interface.
The RS-LS method may, in some cases, be a cheap and efficient alternative, however, its convergence
properties are highly problem dependent.

4.2.4 Towards Parameter-Free Methods: MV SVD-Restart and LS(8)

In the following, we benchmark and compare the advanced, “parameter-free” and robust quasi-
Newton variants RS-SVD and LS(8), both featuring linear runtime and storage complexity. We
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FIGURE 4.11 SVD-restart strategy for the 1D flexible tube scenario. We report the method’s performance in terms
of average number of required coupling iterations (left axis; shades of navy blue) for varying truncation thresholds
ε P t1E´1, 1E´2, 1E´3u for the subspace tracking strategy at restart. The average rank of the truncated SVD after restart
is given as red dashed lines (right axis), dependent on the truncation threshold. In particular, the sensitivity of the truncated
rank of the SVD with respect to an increasing number of unknowns N P t200, 1000, 2000u is analyzed. As reference, the
number of unknowns N (blue dashed line) and the actual rank of the Jacobian as estimated by the plain-vanilla MV update
formula (green markers) are outlined. The restart period m is fixed to m = 8. We consider different cases with increasing
instabilities for decreasing structural stiffness κ and decreasing time step size τ. Image modified from [Sch17].

provide thorough numerical analysis of convergence properties and influencing parameters: (i) the
threshold ε for the truncation of the SVD, (ii) the length of the restart period m, and (iii) the employed
filtering method for LS(8).

Low-Rank Approximability in MV SVD-Restart.

Purpose. The rank κ of the SVD representation of the inverse Jacobian M´1 critically affects the
method’s runtime complexity (cf. Tab. 2.1). An overall linear runtime complexity (in the number of
unknowns N at the interface) can only be achieved if the rank of the internal representation of M´1

is substantially smaller than, and independent on N. Second, the actual inverse Jacobian (∇R)´T

needs to be low-rank approximable. Further, the rank needs to be independent of the number of
unknowns N at the interface. We investigate the trend of the actual rank of M´1 and the rank of the
truncated SVD representation for a growing number of unknowns N.

Setup. As before, we consider the one- and three-dimensional flexible tube scenario, described
in §4.1.1 and §4.1.2, respectively. Apart from what follows, we use an identical setup as in §4.2.3. For
the 1D flexible tube scenario, we consider the earlier viewed characteristic cases and run experiments
with a growing number of unknowns at the interface, i.e., N P t100, 200, 1000u. For the 3D tube
scenario, we consider five levels of refined grids, that result in a series where the number of unknowns
at the interface doubles at each refinement step.

Results. We report the trend of the average rank κ (red dashed lines) of the truncated SVD
representation of M´1 and the required number of coupling iterations (bars in shades of navy
blue) for a growing number of unknowns N at the interface in Fig. 4.11. Three different truncation
thresholds ε P t0.10, 0.01, 0.00u are considered. The actual rank of the estimator M´1 as obtained
from the original MV method is indicated with green markers. A similar study is carried out for
the 3D tube scenario (going from N = 9, 600 to N = 153, 600) and presented in Fig. 4.12. The
number of unknowns at the interface is given as a reference (blue dotted line). In Fig. 4.12, we
furthermore report the required number of coupling iterations for the original MV method on a grid
with N = 9, 600 unknowns at the interface. Beyond this point, the MV method exceeded the system’s
memory resources.

Observations. The most important observation is, that the rank κ (indicated by dashed red lines) of
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FIGURE 4.12 SVD-restart strategy for the 3D flexible tube scenario. We report average number of required coupling
iterations (left axis; shades of navy blue) for varying truncation thresholds ε P t0.5, 1E´1, 1E´2, 1E´3u applied to the
subspace tracking strategy at restart. The average rank of the truncated SVD after restart is given as red dashed lines (right
axis), dependent on the truncation threshold. In particular, we analyze the sensitivity of the truncated rank of the SVD
with respect to an increasing number of unknowns N at the interface. The average iteration counts for the plain-vanilla
MV method and the dimensionality of the corresponding Jacobian (blue dashed line) are outlined as a reference. A restart
period of m = 8 and a relative convergence criterion of εr = 1E´4 are used. For stabilization, a QR2 filter with threshold
εF = 1E´2 is applied. Image modified from [Sch17].

the truncated SVD remains constant for both scenarios (cf. Fig. 4.11 and Fig. 4.12) for an increasing
number of unknowns N, provided that the discretization has become sufficiently fine (N sufficiently
large) to capture all physically relevant interface modes. At the same time, the average iteration
count (depicted as bars in shades of navy blue) increases slightly, which is a little more pronounced
for the 3D tube in Fig. 4.12. We explain this by the effect of the employed grid-coarsening strategy4

within OpenFOAM, which results in a loss of accuracy and consequently higher iteration numbers to
establish the equation coupling5. Nonetheless, the iteration counts almost reach the numbers for
the original MV method for a suitable choice of the truncation threshold. In particular, the original
MV becomes infeasible beyond N = 9, 600 unknowns at the interface, while the RS-SVD approach
remains efficient and stable far beyond this point.

Conclusion. We conclude that, for the considered scenarios, the average rank κ of the truncated
SVD representation of M´1 is very small and remains (nearly) constant for ever finer resolutions
and a growing number of unknowns N at the interface. This is a very important characteristic and
renders the SVD-restart approach to be highly efficient.

Sensitivity to Restart Period m and Truncation Parameter ε.

Purpose. Since we claim the MV RS-SVD method to be “parameter-free”, we now investigate the
sensitivity of the method’s performance with respect to its two remaining parameters: the length
of the restart period m (in number of time steps) and the truncation threshold ε for the subspace
tracking.

Setup. We consider the FSI3 benchmark scenario (see §4.1.3) and the 3D tube scenario with a
single pressure pulse as used above, and, additionally, a variation with multiple pressure pulses

4Due to the high dimensionality of the problem, a grid-coarsening is applied which selects only a small subset of the grid
points for the grid-movement computations. This allows us to go to higher levels of grid refinement.

5The effect is emphasized for finer resolutions, as the coarse grid used for grid-movement calculation remains unchanged
and, thus, the error increases.



4.2 CONVERGENCE-ANALYSIS OF QUASI-NEWTON VARIANTS 97

FIGURE 4.13 3D tube scenario with multiple pressure pulses. The flow induced deformations of the flexible tube and
the traveling pressure wave are visualized for the 3D tube scenario at three different time points. The pressure inlet is
opened repeatedly to initiate multiple traveling pressure pulses. Image modified from [Sch17].
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FIGURE 4.14 SVD-restart strategy for the 3D flexible tube (with multiple pressure pulses) and the FSI3 benchmark
scenario. We report the average number of required coupling iterations (left axis; shades of navy blue) using different restart
periods m P t4, 8, 16, 32u and varying truncation thresholds ε P t0.5, 1E´1, 1E´2, 1E´3u applied to the subspace tracking
strategy at restart. The average rank of the truncated SVD after restart is given as red dashed lines (right axis), dependent
on the truncation threshold. The average iteration counts for the plain-vanilla MV method and the dimensionality of the
corresponding Jacobian (blue dashed line) are outlined as a reference. A relative convergence criterion of εr = 1E´4 is used
and a QR2 filter with threshold εF = 1E´2 is applied. Image modified from [Sch17].

(see §4.1.2 and Fig. 4.13). This modified tube scenario is used to foster displacements of the tube wall
that are harder to capture with quasi-Newton approaches. Further, results for the 1D tube scenario
are evaluated. The numerical setup is identical to the experiments above.

Results. We report results for the convergence of the RS-SVD method (in terms of the number of
coupling iterations; navy blue bars) and the resulting average rank (dashed red lines) for different
choices of the restart period m and variations of the truncation threshold ε. Results for the one- and
three-dimensional tube are given in Fig. 4.8 and Fig. 4.10, respectively. Results for the 3D tube with
multiple pressure pulses and the FSI3 benchmark scenario are given in Fig. 4.14.

Observations. With respect to the restart period m, we observe that the method is quite insensitive
for a proper choice of the truncation threshold ε. In theory, the restart period m controls the emphasis
on the employed restart strategy compared to the MV properties for implicit reuse (cf. the RS-0
curves for different m in Fig. 4.10). Small choices for m stress the restart and require a sophisticated
transmission of already captured information from the past across restart borders. From Fig. 4.8
(1D tube), Fig. 4.10 (3D tube), and Fig. 4.14 (FSI3 and 3D tube with multiple pulses), we observe
that the restart period can be set to a small number m P t4, 8u without loss of convergence speed or
robustness.

The truncation threshold ε controls the amount of retained information across restart boundaries,
i.e., the restart quality, but also critically affects the runtime complexity of the method. The latter



98 CHAPTER 4: NUMERICAL ANALYSIS: ADVANCED QUASI-NEWTON FOR FSI

grows cubically with κ. All experiments (Fig. 4.8, Fig. 4.10, Fig. 4.11, Fig. 4.12, and Fig. 4.14) exhibit a
clearly identifiable jump in the number of coupling iterations when going from ε = 10´2 to ε = 10´1

or from ε = 10´1 to ε = 0.5, respectively. We, thus, conclude that, for common FSI cases, most of the
information lies within a radius of one or two orders of magnitude around the largest singular value.
The truncation threshold can, therefore, be easily determined.

Conclusion. We conclude that (i) the RS-SVD method is powerful enough to allow for small restart
periods m, which is directly reflected in a lower storage and runtime complexity of the method;
(ii) the “correct” truncation threshold can be identified easily and does not involve a costly tuning
process. This shows the “parameter-free” nature of the method.

Summarizing, we state that the RS-SVD method in fact has a complexity that is linear in the
problem size N with a small constant factor and is expected to be well-suited and efficient for
coupled FSI simulation without any tuning of parameters.

Sensitivity to Filtering Methods: Comparison of filtered LS(8) and MV RS-SVD.

Purpose. With the goal to provide an efficient, fast and robust quasi-Newton acceleration
method with minimal requirements for tuning of additional parameters, we developed two different
approaches, (i) the filtered LS(8) method with basically unbounded number of reused time steps,
and (ii) the MV method with RS-SVD restart. In the remainder of this section, we compare both
approaches with respect to convergence properties and robustness. We further compare different
numbers of reused steps for the LS method, and, in particular, study the ability of two filter
techniques – QR1 and QR2 – presented in §2.2.1 to stabilize the method.

Setup. We employ the 3D tube scenario (with one and with multiple pressure pulses) (see §4.1.2)
and the FSI3 benchmark scenario (see §4.1.3). The numerical setting and solutions are identical to
those in the previous experiment.

Results. We study and compare the convergence properties of the LS(8) method and the MV
restart variant RS-SVD for the 3D tube scenario with a single pressure pulse in Tab. 4.3. Thereby, we
analyze the performance of two different filtering methods for varying filter thresholds εF. Results
for the MV and the LS(0) method are given as a reference.

Observations. Most importantly, we observe that both presented methods, the LS(8) and the MV
RS-SVD method yield comparable and excellent convergence properties, with a slight advantage of
MV RS-SVD over the optimally filtered LS method. Second, there is hardly any loss in convergence
speed when switching from the expensive, quadratic complexity MV method to the efficient SVD
restart counterpart.

With respect to the filtering method, we see that, for all configurations in Tab. 4.3, the combination
with the QR1 filter shows poor performance. The method fails to improve the condition of the
least-squares problem, and, thus, to accelerate the convergence speed of LS. On the contrary, the QR2
filter shows excellent stabilization properties and results in fairly good convergence rates, if combined
with the LS method – in particular for the challenging case of extensive reuse of information in LS(8).
The approach successfully selects beneficial information. This supports our findings summarized
in §4.2.1 and [Hae15]. The QR2 filter strategy, however, also results in higher runtime complexity
than QR1, as it triggers a re-computation (rather than column-updating) of the QR-factorization in
every iteration.

The MV method and its SVD restart counterpart perform best if no filter is applied (italic
numbers in Tab. 4.3 indicate that no columns have been deleted). This is expected as MV only holds
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TABLE 4.3 3D flexible tube scenario and FSI3 cylinder flap benchmark scenario. Averaged number of iterations for
the filtered LS(ξ), the plain-vanilla MV method and its efficient SVD-restart counterpart are reported. We investigate the
sensitivity of all methods to a powerful filtering technique, and compare the two filtering variants QR1 and QR2, presented
in §2.2.1. For the LS(ξ) method, we consider different amounts of reused steps, given in terms of retained time steps ξ.
Italic numbers indicate that no columns have been deleted by the filtering. Slight differences in the iteration numbers for
these cases between QR1 and QR2 are due to the different QR-decomposition algorithms used inducing different rounding
errors. For the RS-SVD method, we employ a restart period of m = 8 and two truncation thresholds ε P t1E´2, 1E´1u.
Bold numbers indicate the best results for each method type.

QR1-Filter QR2-Filter
Method 10´8 10´7 10´6 10´5 10´4 10´4 10´3 10´2 10´1
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LS(0) 21.53 21.53 21.53 21.52 21.99 21.53 21.53 21.37 24.41
LS(8) 10.26 10.52 10.52 11.94 13.95 10.13 9.74 9.21 10.35
LS(16) 9.53 9.82 9.82 11.65 15.00 9.25 8.27 7.59 8.86
LS(8) 15.04 15.97 15.97 33.21 21.42 12.16 7.55 6.18 6.33

MV 6.00 6.00 6.00 6.32 6.76 5.99 5.99 5.99 6.95
RS-SVD(1E´2) 6.07 6.07 6.07 6.36 6.77 6.03 6.03 6.03 7.06
RS-SVD(1E´1) 6.28 6.28 6.28 6.42 7.05 6.20 6.20 6.20 7.23

3D
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) LS(0) 21.10 21.10 21.10 21.22 21.46 21.10 21.10 21.14 23.54

LS(8) 14.05 14.39 19.45 41.61 37.07 9.78 7.11 5.74 5.45

MV 4.89 4.89 4.89 5.03 5.23 4.91 4.91 4.91 5.48
RS-SVD(1E´2) 4.93 4.93 4.93 5.08 5.30 4.93 4.93 4.93 5.55
RS-SVD(1E´1) 5.11 5.11 5.11 5.29 5.57 5.17 5.17 5.17 5.69

FS
I3

B
en
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ar
k

LS(0) 10.65 10.65 10.65 10.69 10.62 10.65 10.65 10.69 11.71
LS(8) 5.15 5.12 5.18 9.13 33.79 5.13 4.67 4.35 4.13

MV 3.27 3.27 3.27 3.41 3.33 3.28 3.28 3.43 3.72
RS-SVD(1E´2) 3.57 3.57 3.57 3.87 3.88 3.69 3.69 3.69 4.53
RS-SVD(1E´1) 4.64 4.64 4.64 4.79 4.81 4.49 4.49 4.49 6.07

information from the current time step in the multi-secant equation, and, thus, the risk of linearly
dependent information is reduced. This implies that neither the computation complexity of the MV
method (or its restart alternative) is increased by additional filter operations, nor tuning of the filter
threshold εF is necessary.

Conclusion. We conclude that the highly efficient, linear-complexity MV RS-SVD method achieves
the good MV convergence and outperforms all filtered LS(ξ) variants. In particular, it presents good
stability without necessity for additional filtering. This eliminates all tuning parameters for RS-SVD.
The optimally filtered LS(8) method also yields very good convergence, but introduces another
tuning parameter in finding the correct filter threshold εF. The QR2 filter (for our scenarios) is a
powerful stabilization technique, while QR1 fails. The former, however, triggers a re-computation of
the QR-factorization in every iteration.

4.3 Parallel Scalability and Runtime Efficiency

Purpose. With the upcoming exa-scale era and the access to very large parallel machines,
simulations that capture ever more physical effects and employ ever more complex models and
feature fine resolutions become feasible. This demands for highly scalable algorithms. We consider
surface coupled problems, which means that the coupling numerics act on a lower dimensional
subspace. Thus, we can assume that the main computational effort is associated to the single-physics
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solvers, which need to be scalable to hundreds of thousands of cores. For the coupling numerics,
we require to at least not deteriorate the parallel scalability of the single-physics solvers, i.e., for the
herein developed algorithms, we desire good parallel scalability up to the number of processors that
share the coupling interface.

Consequently, in this section, we benchmark the runtime and parallel efficiency of the two
advanced quasi-Newton alternatives, LS(8) and the MV RS-SVD, derived above. We limit our
analysis to the two mentioned methods; detailed scalability results for the original MV method
and all other involved algorithmic building blocks (such as, e.g., the QR-factorization and dense
matrix-multiplications) can be found in [Bun16b; Uek16]. As ever higher resolutions are critical to
resolve physical effects accurately, we are mainly interested in the parallel weak-scaling efficiency.

Setup. We benchmark the parallel weak-scaling efficiency of the LS(8) and MV RS-SVD method
for the 3D flexible tube scenario (see §4.1.2). Due to the high computational cost of the 3D flow
solver, the computational grid cannot be refined arbitrarily, as the expected runtime of the overall
simulation problem becomes infeasible. In order to evaluate the performance and scalability of the
interface numerics beyond this point in an isolated way, we therefore consider an additional artificial
test case. We describe both settings below.

Experiment Description. For the LS method, we use information from ξ = 30 previous time steps6.
For the MV RS-SVD method, we use a restart period of m = 8 and discard all singular values that
don’t lie within a radius of two orders of magnitude around the most dominant singular value (i.e.,
we chose ε = 1E´2). For a fair comparison, both methods are equipped with a QR2 filter method,
using a threshold of εF = 1E´2. While the filter is absolutely critical for LS, it does not have an effect
on the MV restart method7. We use a relative convergence criterion of εr = 1E´4 in (3.10) for the
termination of the implicit coupling per time step.

We report the overall parallel runtime of both methods, and also measure the computational
time spent in major algorithmic building blocks. The latter are subdivided into work per iteration
and work per converged time step and outlined in Tab. 4.4. The table also indicates the hierarchy
and relation of the measured components and gives references to the corresponding parallel runtime
complexities, as summarized in Tab. 2.1. On every level, we report parallel runtimes averaged over
five identical, independently executed experiments. Their standard deviation is indicated with error
bars in the figures.

We scale up to p = 128 and p = 2048 processors at the interface for the 3D tube scenario and
the artificial ASTE configuration, respectively. We’d like to remind the reader, that for the here
considered experiments, the number of processors only refers to the number of processors involved at
the coupling interface. The number of processors involved for the complete multi-physics simulation
is much higher.

Test Cases. For our weak-scaling study, we consider the following test case configurations:

(a) The 3D flexible tube scenario (3DFT). We consider six levels of successively refined grids,
doubling the number of unknowns N at the interface as well as the number of processors p at
the interface in between each level. The initial workload on the lowest level L0 corresponds to
N = 9, 600 unknowns at the interface, distributed on p = 4 processors. This corresponds to
60, 000 inner unknowns for the 3D flow solver. The last level features 307, 200 unknowns at the

6Note, that, in order to eliminate the dependency on ξ and fully rely on the filter in combination with LS(8), a reuse of
ξ = 30 is still small. Thus, runtime results given here have to be considered as a lower bound for LS(8) runtime.

7This is true in therms of convergence, but in terms of runtime, the filter increases the cost. Thus, runtime results given
here have to be considered as an upper bound for MV runtime.
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FIGURE 4.15 Schematic drawing of the artificial solver testing environment (ASTE) and the row-wise ordering of the
unknowns. Exemplarily, we show a decomposition into five sub-domains.

coupling interface, distributed on p = 128 processors. For the fluid solver, this translates to a
number of 10, 137, 600 inner unknowns.

(b) The Artificial Solver Testing Environment (ASTE)8. For the above considered FSI scenario, the
flow solver becomes a major bottleneck when scaling beyond N = 307, 200 unknowns at the
interface (and 10, 137, 600 inner flow solver unknowns). To evaluate the parallel performance of
the coupling numerics beyond this point, we employ artificial solvers that generate random data
at the coupling interface at a minimum computational load. Thereby, we isolate the coupling
functionality from single solver effects. Analogously to real parallel single physics solvers, the
coupling surface is decomposed, and unknowns reside on different processors. We consider
a row-wise ordering of the unknowns on the 2D coupling surface. We disregard the volume-
unknowns of the sub-domains. The grids for both “solvers” are identical. A schematic illustration
of the artificial solver setup, coupled via preCICE, is shown in Fig. 4.15 with an exemplary data
distribution on five processors.

To provide a realistic test environment for the benchmarked quasi-Newton solvers, we adopt the
parameter settings and characteristics of the 3D tube scenario. That is, we use the artificial solvers
to help emulating the behavior of the quasi-Newton methods for the 3DFT scenario. On average,
the simulations of 3DFT result in η = 230 columns in the multi-secant equation for the employed
LS(30) method, and in a rank κ of around κ = 210 for the truncated SVD representation of M´1

(MV RS-SVD method). Further, we observe convergence after approximately eight (LS(30)),
and seven (MV RS-SVD) coupling iterations, respectively, per time step. As a consequence, we
fix the maximum size of the least-squares system, the rank of the SVD representation and the
number of performed iterations per time step to these values. Apart from this, the numerical
preCICE settings remain unchanged compared to the flexible tube scenario.

Using this solver setup, we perform a weak-scaling series over ten levels, ranging from N = 8, 192
unknowns at the interface (distributed on p = 4 processors) to N = 4, 194, 304 unknowns at the
interface (distributed on p = 2, 048 processors).

Hardware. All experiments considered in this section were conducted on the Haswell nodes
partition (phase II) of the Tier-1 SuperMUC machine at the Leibniz Supercomputing Center9 in

8https://github.com/precice/aste
9https://www.lrz.de/

https://github.com/precice/aste
https://www.lrz.de/
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TABLE 4.4 Relation between the algorithmic building blocks studied in our weak-scaling experiments (see Fig. 4.16
and Fig. 4.17). We give references to the parallel runtime complexities, derived in §2.2.2 and summarized in Tab. 2.1 for
every algorithmic block.

work/iteration work/time step

‚ quasi-Newton iteration ‚ converged time step
– apply filter (QR) – update ĂW (upWtil)
– QR solve (backS)/(iV) – update SVD (after period m) (updSVD)
– compute qN update (Mr)/(lmDx)
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FIGURE 4.16 Parallel weak scalability study for the 3D flexible tube scenario. We report parallel runtimes for the
main algorithmic blocks of the LS(30) and the MV RS-SVD method. Both methods are stabilized with the QR2 filter. We
consider six levels, and successively double the number of unknowns N at the interface (problem size) and the number of
processors p between levels. The first level corresponds to N = 9, 600 unknowns at the interface, distributed on p = 4
processors. Image modified from [Sch17].

Garching. The system offers a peak performance of 3.58 Petaflops comprising 3, 072 nodes with
Haswell Xeon E5-2697 v3 processors, and 28 cores per node. The nodes are interconnected via an
Infiniband FDR14 network.

Results. We report parallel runtimes for the two described weak scaling experiment series for
3DFT and ASTE. In Fig. 4.16 and in Fig. 4.17, we furthermore compare the time-to-solution for the
parallel execution of the plain-vanilla MV method, the MV RS-SVD and the LS(30) method on the
coarsest grid for the 3DFT scenario in Tab. 4.5.

Observations. The most important observation is that, for both experiments (see Tab. 4.16
and Tab. 4.17), the total execution time and, in particular, the parallel weak scaling efficiency for the
MV RS-SVD method is considerably better than for the LS(30) alternative. The latter predominantly
suffers from expensive QR re-computations, triggered by the QR2 filter technique.

From Tab. 4.16 and Tab. 4.17, it can be seen that about 95% of the computational time is spent
in the apply filter block, which triggers a re-computation of the QR-decomposition. Due to the
large number η of reused vectors, this not only dominates the cost per quasi-Newton iteration, but
the implementation also shows a rather poor parallel scalability. The latter can be explained by
the O(η2 log p) factor in the complexity for the re-computation of the QR-decomposition. If, on
the other hand, a small number η of vectors is used, the cost for apply filter becomes negligible
(compare respective runtimes for the MV RS-SVD method). However, we in general observe a
non-optimal parallel scalability for all building blocks that include insertion of columns into the
QR-decomposition or re-computation of the latter.

For the MV RS-SVD method, the most expensive part is the restart numerics itself. Updating
the SVD representation of the inverse Jacobian with the information collected within the past MV-
estimation era comprises several QR-decompositions and eventually the sequential computation of a
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TABLE 4.5 3D flexible tube scenario. Comparison of parallel runtimes for the plain-vanilla MV method, MV RS-SVD
and LS(30) on the coarsest grid with N = 9, 600 unknowns (at the interface) distributed on p = 4 processors.

method/runtime per iteration [ms] per time step [ms]

MV 330 37
MV RS-SVD 3 291
LS(30) w. QR2 502 15
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FIGURE 4.17 Parallel weak scalability study for the artificial ASTE configuration. We emulate the behavior of the
quasi-Newton methods as observed for the 3D tube scenario by adopting the parameter settings and characteristic from
this previously studied example. We report parallel runtimes for the main algorithmic blocks of the LS(30) and the MV
RS-SVD method. Both methods are stabilized with the QR2 filter. We consider ten levels of refinement from N = 213

unknowns on p = 4 processors up to N = 222 unknowns distributed on p = 211 processors. Image modified from [Sch17].

small singular-value decomposition. We want to emphasize that restart is only performed after every
m = 8 time steps; the computational cost for the restart numerics is entirely included in the (much
lower) per-time-step cost depicted under converged time step. In particular, the MV RS-SVD cost
per time step is even lower than the LS(30) cost per iteration (compare converged time step and
apply filter for MV RS-SVD and LS(30), respectively in Tab. 4.16 and Tab. 4.17). For the study
in Tab. 4.17, this translates to a per-iteration execution time of « 2.60 s for LS(30) compared to a
per-iteration runtime of « 0.02 s and per (converged) time step runtime of « 0.56 s for MV RS-SVD
on the highest level. Lastly, the SVD update also shows very good parallel (weak scaling) efficiency.
This especially holds for the artificial ASTE configuration, where, due to a fixed rank of the SVD, we
observe perfect parallel scalability of the RS-SVD restart functionality. We furthermore note a perfect
agreement of the measurements for levels 1–6 between the experiments for the 3DFT scenario and
the artificial ASTE configuration, which justifies the choice of fixed parameters.

We close the performance considerations with a comparison of parallel runtimes for LS(30), MV
RS-SVD, and the parallel runtime of the plain-vanilla MV method in Tab. 4.5 (results are obtained
for the 3DFT scenario using N = 9, 600 unknowns at the interface). Considering an average of
seven iterations per time step for MV RS-SVD, the parallel runtime per iteration reduces by 87% to
« 44.50 ms for MV RS-SVD compared to MV. Moreover, we could produce any factor between the
runtimes for the plain-vanilla MV method and its restart counterpart if we increase the number of
unknowns N at the interface. The former suffers from a quadratic complexity with respect to N,
while the restart counterpart exhibits linear runtime complexity in N. The cost per time step for the
MV RS-SVD method does not grow remarkably when increasing the number of unknowns N at the
interface, as the rank of the SVD is small and independent of N (cf. §4.2). For more detailed strong
and weak scaling experiments for the LS and the MV method, we refer to [Bun16b], Fig. 16.

Conclusion. From the parallel weak scalability experiments, we conclude that the MV RS-SVD
method (i) outperforms the LS(30) method in terms of total execution time, and (ii) exhibits excellent
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parallel (weak scaling) efficiency for the (runtime dominating) restart numerics. The LS(30) method
suffers from very expensive re-computations of the QR-factorization (due to a large number of
retained columns η in the least-squares system), triggered by the QR2 filtering method. In particular,
this part does not scale well when increasing the problem size and the degree of parallelism. Thus,
the MV RS-SVD method developed within this work clearly outperforms other state-of-the-art
methods.
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5 Scalable Biophysics-based Image
Analysis

The second part of my thesis targets the coupling of a very different type of multi-component
system, the volume-coupling between the inversion of biophysical brain tumor progression (data
assimilation/model calibration) and medical image registration. Integrating biophysical modeling
with medical imaging may improve diagnosis and clinical decision making, aid prognosis, and foster
the design of new treatment protocols. Applications for medical image analysis algorithms include
image segmentation, registration and calibration of biophysical models. These tasks are inverse
problems, formulated as PDE-constrained non-linear optimization problems. Our goal is to design
inversion methods that incorporate complementary data by tight integration of physics and imaging,
and rigorously follow mathematical and physical principles, in an attempt to aid clinical decision
making. Clinical application demands for robust and reliable, high accuracy algorithms with a short
time-to-solution. The design of such algorithms is complicated by the ill-posed nature of inverse
problems and the typically large dimensionality of the resulting optimality systems. We propose,
evaluate and benchmark schemes and solvers that target the solution of this large-scale coupled
inverse problem. Thereby, some of the findings from coupling fluid-structure interaction simulations
and, in particular, insights about performance of different quasi-Newton methods from Chapter 2
are revisited and applied for this new type of coupled problem. The need for scalability is due to the
increasing scanner resolution for medical imaging and the critical time-to-solution aspect for clinical
use.

In this chapter, we motivate and present our target application. Both biophysically-augmented
image analysis and image-driven biophysical model development are essentially large-scale data-
assimilation inverse problems that involve non-linear partial differential equations (PDEs). The
associated optimality systems are sets of non-linear multi-component PDEs, for which the devel-
opment of efficient solvers is challenging. In §5.1, we give a brief introduction into the challenge
of solving large-scale, non-linear inverse problems, followed by the more specific presentation of
the coupled multi-component problem for our target application in §5.2. We discuss significance
and motivation for the problem in §5.2.1, review related literature and the state-of-the-art in §5.2.2
and summarize the main contributions within the present work in §5.2.3. §5.3 briefly introduces the
involved sub-components—inverse brain tumor progression simulation and medical diffeomorphic
image registration. Benchmark results, demonstrating the scalability and parallel efficiency of our
algorithms and solvers on massively parallel systems on distributed data conclude this chapter. In
Chapter 6 we present the mathematical formulation of the coupled PDE-constrained optimization
problem and present two different Picard-type coupling schemes: The so called moving-patient
coupling scheme in §6.1 and the moving-atlas coupling scheme in §6.2. §6.3 deals with details on
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the numerical optimization and algorithmic methodology including parameter and grid-continuation
schemes. Improved inexact Newton-type solvers to speedup the coupled non-linear optimization
are discussed in §6.4. A thoroughly qualitative and quantitative analysis of the presented coupling
schemes and algorithmic improvements based on numerical experiments for synthetic cases and
actual clinical patient MR-data is presented in Chapter 7. It includes a comparison of the proposed
schemes with respect to accuracy, clinical relevance, and time-to-solution, as well as careful analysis
of the algorithmic improvements.

5.1 Inverse Problems: PDE-Constrained Optimization

5.1.1 Introduction

So far, we considered (time-dependent) simulation processes in part I, modeled by partial differential
equations. Given some knowledge about the PDE parameters, e.g., initial conditions, boundary
conditions, domain geometry, domain sources and material properties, the ‘image’ of the system in
terms of defined state variables such as displacement, density, velocity, temperature field, or species
concentrations is computed at a certain time point. This can be viewed as the forward evaluation
of an abstract function, describing the targeted system. As opposed to these so called forward
problems, inverse problems describe the reversed task, i.e., parameter estimation of systems given an
observation of the system’s state (output of the forward problem). Typically, the considered systems
are governed by PDEs. Examples can be found in various application fields, ranging from weather
forecasting and global climate-change simulations via ocean and earthquake modeling, reservoir
simulation, turbulence modeling, electromagnetic sensing, hazardous substance attacks and medical
imaging to astrophysics.

The herein considered inverse problems can be formulated as non-linear optimization problems,
governed by partial differential equations.

min
q

J [d, u, q] = D [d, u] + βS [q] subject to C [u, q] = 0,(5.1)

We are given some partial observations d (target data) of the system, which we assume to be solutions
of a system of PDEs C [u, q] = 0 for a suitable parameter vector q. C P Ω̄ ˆ [0, T] is referred to as the
forward model, describing the underlying system or process; solving the forward model results in
the system’s predicted state u. Based on observations, we seek to estimate a subset of the underlying
system parameter(-functions) q such that the discrepancy D between the (partially) observed states d
and the solution u predicted by the model is as small as possible. This optimization goal is modeled
in the objective function J . The data-discrepancy measure can be defined as a simple L2 distance
D := 1/2}Ou ´ d}2

L2(Ω)
. Here, the observation operator O projects the state variables u into the

space of observed data d. Computing the solution of large-scale inverse problems represents one of
the most outstanding challenges in computational science and engineering. While the simulation
process (forward problem) is usually well-posed,1 the inverse problem can be ill-posed, meaning
that typically the solution is not unique and, in addition, appears to be highly sensitive to changes in
the data, as noise and high frequencies are amplified; the problem is, thus, highly ill-conditioned.
It needs to be reformulated applying a suitable regularization scheme [Eng96], including prior
knowledge and additional assumptions, such as smoothness of the solution. Within this work, we

1Well-posed in the sense of Hadamrd [Had02]: (i) A solution to the problem exists, (ii) the solution is unique, and (iii) the
solution’s behavior changes continuously with the initial conditions or input parameters.
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consider a Thikonov-type regularization functional S . The regularization parameter β balances data
fidelity with regularity. For theory and analysis of PDE-constrained optimization problems compare
[Ban89; Del11; Gun03; Lio72; Pir12].

To solve problem (5.1), we make use of a variational approach, translating the constrained
problem into an unconstrained one by defining the Lagrangian function

(5.2) L [d, u, q, λ] = J [d, u, q] + λTC [u, q]

which enforces the constraints C via an inner product with the Lagrange multiplier λ, or adjoint
variable. Solving the optimization problem requires stationarity of the Lagrangian δL = 0 with
respect to u, q and λ. This results in a large, non-linear system which can be addressed with
gradient-descent or Newton-type methods. The utilized solvers need to be robust, efficient, highly
accurate, and tailored to the structure of the operators.

5.1.2 Computational Challenges and Solution Approaches for Large-Scale
Inverse Problems

We consider large-scale inverse problems, formulated as (non-linear) PDE-constrained optimization
problems. Due to their characteristics, these inverse problems are typically incomparably harder to
solve than the forward simulation problem for the following reasons: (i) Inverse problems are usually
ill-posed and feature dense ill-conditioned operators, which leads to non-unique solutions and
noise amplification and, thus require regularization; (ii) solving inverse problems is computationally
extremely expensive as multiple evaluations of the forward simulation model are required. Their
complexity and high dimensional search space pose significant challenges for general-purpose
optimization algorithms; (iii) while forward operators are usually evolution operators, the inverse
operator introduces a space-time coupling, i.e., coupling the entire time history to the system’s
response; (iv) the optimization problem is often non-linear and non-convex, featuring multiple local
minima and urges multi-scale grid- and parameter-continuation schemes to convexify the objective
and prevent the solution process from getting stuck in local minima.
For their numerical solution, iterative solvers with efficient preconditioners and globalization schemes
are inevitable. To foster the efficiency of the solution process, inexact solves are important to prevent
over-solving, and the large-scale urges for parallel approaches; while there is a broad variety of highly
efficient and parallel large-scale PDE solvers for the solution of the forward problem, design and
implementation of numerical methods for the solution of the inverse problem is not straightforward.
Developing solvers that feature good scalability to both large numbers of processors (parallel
scalability2) and large problem sizes (algorithmic scalability3) is very challenging. The resulting
algorithms need to be highly tailored towards the structure and characteristics of the underlying
problem.

While Newton’s method is a classical choice for the treatment of non-linear systems, it unveils
significant difficulties when trying to solve optimality systems arising from large-scale non-linear
optimization problems governed by PDEs. Newton’s method requires exact Jacobian information
(Hessian information of the Lagrangian in the context of optimization, as considered here) to solve
for the Newton step. Due to the large dimensionality of the non-linear systems, not only assembling

2Parallel scalability refers to the speedup for the execution time when using p processors compared to single core execution.
For ideal scalability, the speedup would be p.

3Algorithmic scalability refers to scalability of the used methods when increasingly finer discretizations are used. Often
time, the condition number of systems depends on the discretization, causing e.g., iterative methods such as Newton or
Krylov solvers to require considerably more iterations.
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and storing the Hessian becomes infeasible, but also solving the resulting Newton system becomes
intractable for direct or matrix-based solvers: Building the Hessian is prohibitively expensive as it
involves numerous solves of the forward and adjoint model, its dense structure rules out sparse
matrix formats, thus, it cannot be kept in memory, and the system is of the order of the number
of inversion variables, which often depends on the mesh size of the PDE constraint. Thus, a
popular remedy to overcome the extremely expensive or infeasible construction of the Hessian is
to employ twofold inexactness by combining a Gauß-Newton approximation of the Hessian with
a matrix-free Krylov-subspace method for the solution of the resulting inexact Newton system.
Designing powerful preconditioners for these methods becomes increasingly important when more
sophisticated regularizers are used to ensure well-posedness of the inverse problem, yet also more
challenging. Typical examples include multi-level or quasi-Newton preconditioners. Lastly, a careful
globalization scheme has to be used in order to prevent the method from getting stuck in local
minima, or to prevent the solver from diverging due to the non-convex structure.

Due to the computational expense of Hessian based solvers, a large number of large-scale
PDE-constrained optimization problems rely on gradient information only. The simplest of which is
gradient-descent, yet it usually shows poor convergence. A more favorable gradient based method is
non-linear conjugate gradients (NLCG) and even more advanced are quasi-Newton methods such
as L-BFGS, which build a limited amount of curvature based on changes in the observed gradient
values. Gradient-based methods build mostly upon PDE solves for the gradient evaluation and thus,
yield a high parallel scalability due to the availability of highly efficient solvers for the forward and
adjoint problem.

For recent algorithmic trends in large scale applications, we refer to [Bie03]. An excellent
overview on parallel algorithms for PDE constrained optimization can be found in [Akc06; Bir99],
and in particular Newton-Krylov schemes in [Bir05a; Bir05b; Kno04]. [Kel87a] investigate quasi-
Newton for large-scale unconstrained optimization.

We will see, that the formulation and numerical solution of the herein considered application
problem results in a large-scale, ill-conditioned, strongly coupled system of non-linear PDEs, featuring
all of the above mentioned challenges. In an attempt to solve this formidable system, we go a step
further and decompose it into smaller sub-components, whose characteristics are better understood.
We employ a matrix-free, inexact, preconditioned Gauß-Newton-Krylov approach for the solution of
each sub-system, and establish the coupling between the sub-components by means of two different
Picard iterations, resembling a block-Newton-type solution of the overall coupled formulation. The
coupling itself is subtle and requires tight integration of the sub-components; it asks for careful tuning
of solver tolerances and continuation schemes to allow for a robust and computationally feasible
solution. We additionally evaluate advanced quasi-Newton methods for one of the sub-component
solvers.

5.2 A Coupled Multi-Component Problem: Biophysics-Based
Tumor Models Coupled with Medical Image Registration

As mentioned in the introduction, this second part of the thesis targets a volume coupled multi-
component problem, motivated by applications in brain tumor analysis and biophysics. The scope is
to develop a framework targeting the analysis and patient specific simulation of the progression of
Glioblastoma multiforme (GBM), one of the most common and most malignant forms of primary
brain tumors. We approach this highly involved and sophisticated physiological phenomenon using a
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FIGURE 5.1 The image shows different MRI modalities (left to right: T1-weighted (contrast-enhanced), T2-weighted,
FLAIR and a segmentation into tissue labels) of two different patients diagnosed with Glioblastoma multiforme grade IV.
The images illustrate the highly infiltrative and invasive nature of such tumors which leads to a poorly defined brain-tumor
interface and a strong mass effect, i.e., deformation of the surrounding brain tissue as a result of tumor growth. Image
modified from [Goo13].

joint medical image registration and biophysical inversion strategy, which tightly integrates methods
for non-rigid, large deformation image registration with biophysical models for (inverse) brain
tumor growth simulation. The herein developed framework SIBIA (Scalable Integrated Biophysics-
based Image Analysis;[Gho17c; Sch]) provides solvers and algorithms to address (i) biophysics aided
medical image registration, by adding meaningful prior information about the underlying biophysical
process, (ii) parameter estimation and biophysical model calibration, fostering prediction of tumor
progression, and (iii) automated atlas-based segmentation; all of which targeting at facilitating
diagnosis, aiding and supporting surgical planning, and, improving the efficacy of brain tumor
therapy.

5.2.1 Motivation and Background

Pathology and Clinical Significance. Tumor cells emerge from healthy cells by occasionally
occurring cell mutation, leading to erratic cell proliferation and growth. Tumor cells replace healthy
tissue cells, which leads to an impairment to health due to organ malfunction and, as the pathology
progresses, eventually leads to death. Tumors are classified according to their grade of malignancy:
one distinguishes between benign and malign tumors of different grades. While benign tumors
usually show slow growth rates and feature a clearly visible boundary between cancerous cells
and healthy tissue, and, thus facilitate therapy through effective resection, malignant tumors are
characterized by their rapid growth rate and massive infiltration into healthy tissue far beyond the
visible tumor bulk. This highly infiltrative and diffusive character leads to an indefinite and obscure
boundary between cancerous and healthy tissue [Man06], which strongly aggravates both diagnosis
and efficient therapy.

Within this work, we consider Gliomas, the most common form of primary brain malignancies,
with different degrees of aggressiveness and variable prognosis. They primarily originate from
glial cells. Amongst them, we focus on one of the most malignant and most common forms,
Glioblastoma multiforme (GBM), a WHO grad IV Glioma [Col98; Mar05; Wei12; Lou07]. Fig. 5.1
shows different magnetic resonance imaging (MRI) data for two different patients, diagnosed with
GBM grade IV. GBM tumors are the most aggressive form of primary brain tumors, accounting for
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FIGURE 5.2
Schematic view of a typical cross section Glioblas-
toma cell density distribution as seen by MRI in
T1wce (T1-weighted contrast-enhanced) and T2w
(T2-weighted) imaging (cM denotes tissue carry-
ing capacity). The schematic thresholds for T1wce
and T2w indicate the lowest cell concentration de-
tectable by the respective modality. Image modified
from [Man14; Har07].
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about 50% of all Gliomas [Tov93; Hol01], and are characterized by their highly infiltrative nature
and diffusive invasion into the surrounding healthy tissue (compare Fig. 5.1). Due to the rapid
growth of GBM, tumor cells are exposed to acidosis and nutrient deficiency, which requires them
to be extremely adaptable to changing conditions in their micro environment, further hampering
efficient therapy. GBMs feature various heterogeneous histological sub-regions, such as a necrotic
core (due to nutrient deficiency), an enhancing and non-enhancing core, and peritumoral edema
(compare Fig. 5.3). Gliomas are almost impossible to cure, as they generally grow and invade
extensively before the patient notes any symptoms. The tumor is CT detectable when it reaches a size
comparable to a sphere of a diameter of 3 cm (death occurs at a diameter of approximately 6 cm). By
this time peripheral cells already have invaded healthy tissue in remote areas, thus despite maximum
treatment involving total resection of all obvious tumor, followed by radiation and chemotherapy,
the tumor shows notorious recurrence either near the edge of resection or at more distant locations
within the brain [Gas92; Lia98; Pri07]. The tumor’s aggressive nature is reflected in its 100% fatality
rate within 6-12 months after diagnosis and massive treatment; without therapy, survival time is
usually three months.

Imaging. Medical imaging is absolutely crucial for clinical diagnosis and therapy. The most
common imaging techniques related to brain tumor imaging are magnetic resonance imaging
(MRI) [Bro14] and computer tomography (CT) [Buz08]. Within this work we only consider imaging
data originating from MRI scans. Gliomas feature a highly heterogeneous structure, with various
different sub-structures that represent different biological tumor properties (cf. Fig. 5.3). To visualize
these highly diffuse sub-regions, different (contrast-enhancing) MRI modalities – visualizing different
sub-regions – are employed. We give a brief summary of the most important modalities, for
details see [Man14]. For T1-weighted MRI (T1w) the image contrast is based predominantly on the
T1 (longitudinal) relaxation time of tissue; tissue with short T1 relaxation time appears brighter
(hyperintense) (adipose appears brightest, followed by white matter, gray matter, and cerebrospinal
fluid (CSF) has lowest signal). In T2-weighted MRI (T2w) the image contrast is based predominantly
on the T2 (transverse) relaxation time of tissue, so tissue with long T2 relaxation time appears
hyperintense (CSF is brightest followed by gray matter and white matter; muscle appears darkest).
The fluid-attenuated inversion-recovery MRI (FLAIR) technique allows to suppress hyperintense signals
from fluids, so the bright signal of the CSF (cerebrospinal fluid) is suppressed which allows for
a better detection of small hyperintense lesions. These are potentially combined with different
contrast-enhancing techniques. The different modalities are illustrated in Fig. 5.1 The diffusion tensor
imaging (DTI) [Bas94] technique allows to extract diffusion anisotropy in white and gray matter,
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FIGURE 5.3 Glioma sub-regions. The image shows Glioma tumor sub-structures, annotated in different modalities
by human expert raters (top left) and the final segmentation for the entire detest (right). From left to right, the image
shows (A) the whole tumor (yellow), as visible in T2-FLAIR MRI, (B) the tumor core (red) observable in T2, and (C) the
enhancing tumor regions (light blue, T1Gd MRI) together with the necrotic core (green). The combination of which yields
the final labels (right): edema (yellow), non-enhancing core (red), necrotic core (green), enhancing core (blue). Figure and
explanation taken from BraTS IEEE TMI paper [Men15]

which is of great importance for tumor simulation modeling, as tumor cells preferentially migrate
along the direction of fiber tracts [Gie03; Gie96; Man06; Pri07; Pri04; Ale07].

Despite the ensemble of different modalities, the true extend of tumor invasion and boundaries of
tumor sub-structures are still obscure and not clearly recognizable [Kel87b; Kel87c; Sil97]. Further, it
is commonly accepted that there is no sharp borderline between tumorous and healthy tissue [Har07;
Kon09; Kon10a; Swa08], which is illustrated in Fig. 5.2. Thus, biophysical tumor progression
simulation has the potential to be of great value for clinical diagnosis and treatment.

Goals and Challenges. With recent advances in physiology and medical imaging, the demand for
increasingly sophisticated and tightly integrated imaging algorithms and computational biophysical
models has increased drastically to facilitate and aid diagnosis, and provide insights for prognosis
and therapy, especially surgical-planning. We aim at providing a framework (SIBIA) that tightly
couples biophysical models for the simulation of the progression of primary brain tumors with
medical imaging analysis. Based on a volumetric segmentation of a magnetic resonance imaging
(MRI) data-set of a Glioma patient, SIBIA provides functionality to register this image to a segmented
MRI data-set of a normal patient, also referred to as atlas, while simultaneously fitting a biophysical
tumor growth model.

Applications and needs for such a joint registration-biophysical inversion approach for analyzing
medical MRI data are manifold. We focus on three practical problems, for each of which the tight
integration of biophysics with medical imaging within SIBIA is the core ingredient:

(1) Calibration of complex macroscopic biophysical PDE models by means of parameter esti-
mation [Swa08; Rah17]. Biophysical models enable predictive medicine, are beneficial in
providing quantitative understanding of human physiology and cancer progression, and can
furthermore foster the development and design of new treatments. Examples include models
for cardiac electrophysiology and mechanics, flow and transport in micro-circulation, therapy
models, atherosclerotic plaque growth, soft tissue and bone mechanics and tumor growth models.
Especially when analyzing high grade Gliomas, calibrated models can be used for subsequent
prediction of diffusive and invasive tumor margins as it progresses from the initially observed
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boundary (CT/MRI imaging based). This information is crucial for surgical and/or radio-
therapeutic treatment, as conventional imaging (CT, MRI) falls short in determining the degree
of diffusive invasion of tumor cells peripheral to the bulk of the tumor mass. Furthermore
biophysical model based simulation has the potential to reveal hidden information not accessible
by visible inspection of the data only, and can be helpful in predicting sites of potential recurrence.
It therefore has the capability to highly advance therapy without having to wait for reemergence
on follow-up imaging.

Our work lays the basis for estimating and calibrating the unknown patient specific parameters in
these models. One of the most important parameters is the exact position of the tumor’s genesis,
the initial tumor seed. The growth rate of GBM highly depends on the invaded tissue: it grows
faster in white matter than in gray matter (10-100 times), and it is halted by the dura mater or the
ventricles [Gie03; Man06; Pri07; Pri04; Ale07] (for a brief overview of the human brain anatomy,
see §5.3.1). Thus, in order to get meaningful and highly diagnostic tumor growth simulation
results (or, conversely, parameter estimates), the underlying brain structure (segmentation of
tissue regions such as white matter (WM), gray matter (GM), glial matter (GLM), ventricles (VT)
with cerebrospinal fluid (CSF) and cerebellum (CB)) of the patient needs to be known.

A stand-alone inverse tumor solver can not solve this problem for the following reason: In
practice, information about the healthy patient brain structure is inaccessible, as imaging data
usually only exists at the time the pathology already is present, and the tumor evolution
drastically changes and destroys the initially healthy tissue. In addition, we are only given a
single snapshot (i.e., we do not have patient-specific longitudinal (transient) data). Thus, in
order to solve the time dependent inverse tumor-growth problem, we need to artificially create a
second time point by means of a pre-segmented healthy atlas brain. This step requires image
registration to establish a relation between patient and atlas brain. The approach is summarized
in Fig. 5.4. Assuming we are given a healthy segmented brain image, a tumor growth model,
and a deformation map, the process is most intuitively accessible by explaining the forward
problem. We grow an artificial tumor in the healthy atlas brain using the tumor growth model
to produce a new segmentation, comprising both healthy tissue and tumor. This segmentation
is then used to compute the deformation map between patient and atlas which results in a
tumor-plus-deformation warped atlas.

Conversely, in the inverse problem we simultaneously seek to compute the biophysical tumor-
growth model parameters and deformation parameters such that the tumor-plus-deformation
warped atlas image matches the patient data. For model calibration, emphasis is put on getting
meaningful parameters and realistic tumor growth simulations that reconstruct the patient’s
pathology in the best possible way. This may include the need for a slightly more complicated
scheme and imposing additional constraints. This is explained in more detail in §6.2.

(2) Normal-to-abnormal registration [Moh06; Kwo14; Zac09]. Here, we aim at registering normal
MR images to MR images with abnormalities, i.e., we seek to compute a deformation map that
registers topologically distinct images with the objective to get the best possible (visual) match
between the warped atlas image and the patient’s MR image showing a pathology (see Fig. 5.4).
This problem appears to be a unusual hard (and ill-posed) because of the large deformations and
topological differences due to the presence of the tumor. Standard intensity based deformable
registration methods fall short solving this problem, showing up significant errors and resulting
in implausible deformation maps, particularly in areas near the tumor. Thus, adding biophysical
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constraints to the registration problem allows for biophysics induced deformations and aids the
registration process [Hog08a; Goo13].

Normal-to-abnormal image registration is used to map structural and functional information
from atlases to specific patients (atlas-based segmentation) and first and foremost finds appli-
cation in (neuro-)surgical planning [Zac08b], but also in longitudinal studies, followups, or
population studies. In atlas-based segmentation, first the patient MRI is co-registered to an
already segmented normal-brain (or atlas) MRI to solve for a deformation map between the
images, which is then used to transfer the labels in the normal brain to the patient [Goo13;
Hog08a; Rik10]. Conversely, normal-to-abnormal registration is also applied to pool data from
different brain tumor patients (and possibly information from different modalities such as MRI
and CT) into a common stereotaxic space to construct statistical brain tumor atlases.

In contrast to the biophysical model calibration, normal-to-abnormal registration emphasizes the
quality and match of the final registration result, and obtaining meaningful physical parameters
and diagnostic significance of the tumor model is of secondary importance. The basic idea of the
simulation and inversion scheme, however, remains unchanged, cf Fig. 5.4.

(3) Automated atlas-based image segmentation [Bak15; Goo13; Pra09]. The imaging phenotype
(appearance and shape) of Gliomas highly reflects their intrinsic heterogeneity, as their sub-
regions are described by varying intensity profiles disseminated across multimodal MRI scans
as can be seen from Fig. 5.3. This highly heterogeneous appearance and shape renders the
segmentation of brain tumor in multimodal MRI scans to be one of the most challenging tasks in
medical image analysis. In current clinical routine, MRI scans of Glioma patients are evaluated
based on qualitative criteria only (e.g., indicating presence of characteristic hyper-intense tissue in
T1-weighted MRI), or by rudimentary quantitative indicators such as the largest tumor diameter
observable in axial slices of the pathology. Thus, image processing routines that are capable of
automatically analyzing brain tumor scans from different modalities, that means, automatically
provide highly accurate and reproducible measurements of the tumor substructures, including
their segmentation, would be of tremendous potential value for improved diagnosis and treatment
planning.
Developing such automated brain tumor segmentation techniques is a very challenging task.
There is a broad variety of different approaches, the best of which are summarized in the
"multimodal brain-tumor segmentation challenge (BraTS)" [Men15]. The approach relevant
for this work combines the above mentioned atlas-based normal-to-abnormal biophysics-aided
image registration with a supervised machine learning algorithm [Man17c]. The latter is used to
create probability maps (spatial priors) for the target classes (white matter, gray matter, glial
matter, ventricles, CSF, whole tumor, edema and enhancing tumor), which are then processed
by the joint registration and biophysical inversion scheme (SIBIA) to implicitly impose spatial
correlations. These steps can be iterated to further improve the result. The described approach is
part of the BraTS’17 challenge and is based on [Goo13] and [Hog08a]. It uses SIBIA [Gho17c;
Sch] as core building block and embodies a fully automated atlas-based segmentation technique.
Related schemes that use similar approaches are [Goo13; Rik10; Cla05].
Within this work, we do not investigate the above described automated atlas-based segmentation
technique any further, but only focus on it’s main building block, SIBIA.
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FIGURE 5.4 The big picture. Illustration of the targeted problem and motivation for the need of joint registration
and biophysical inversion approach. We would like to (1) solve for highly diagnostic tumor model parameters Ψ to aid
clinical diagnosis and treatment, or (2) register normal-to-abnormal MRI scans. To solve (1), we don’t have access to the
healthy patient brain structure, thus we deploy an atlas-matching technique. For (2), the topological differences render this
problem extremely hard and biophysical constraints aid the registration process to get meaningful deformation maps. Both
solution schemes are based on the same joint approach, however, for (1) emphasis is put on getting meaningful physical
parameters, while for (2) focus lies on getting best agreement applying the transformation map y. The input data is based
on the patients’ MRI data (c). This could either be (prior) probability maps for distribution of different tissue regions
(i), or different MRI modalities (ii). Output data is improved (posterior) probability maps of tissue distribution, tumor
growth parameters Ψ and the deformation map y. Lacking healthy patient data (d), a (healthy) atlas brain (a) is employed.
The objective is to (simultaneously) solve for tumor growth parameters Ψ and registration parameters y, such that the
simulated tumor and (atlas) brain structures (c) match best with the patient input data.

5.2.2 Related Work

The formulation and numerical solution of the targeted problem result in a highly non-linear mixed-
type PDE-constrained optimization problem. This type of non-linear optimization problems is
inherently ill-posed and hard to solve, posing significant numerical challenges. Thus, these problems
demand for sophisticated algorithms, and highly efficient and accurate solvers. For an excellent
introduction into general approaches for PDE-constrained optimization, we refer to [Bie03; Bor12;
Her10; Hin09b], and to [Man17d] for a review on its importance and applications to medical image
analysis. Profound surveys for medical image analysis in the context of brain tumor imaging can
be found in [Ang07; Bau13]. In [Gho17c], we presented fast algorithms and the key computational
kernels for the individual solver components of SIBIA and showcased their excellent scalability
on very large image resolutions and distributed-memory architectures on up to thousands of cores.
Our coupling scheme (the moving-patient scheme, see §6.1) for the tight integration of biophysical
brain tumor models with medical image registration is presented in [Sch]. This is to our knowledge
the first work approaching the coupled optimization problem using gradient-based optimization
techniques and a state-of-the-art algorithm for constrained large deformation diffeomorphic image
registration [Man18a; Man15; Man16a; Man16b; Man17a]. In what follows, we give a skim on related
work and similar approaches, but limit ourselves to the work most closely related to ours.

A general overview on medical image registration is given in [Mod04; Sot13]. Here, we focus
on the biophysics augmented image registration used for analysis and data assimilation in brain
tumor MR imaging. We give a brief review on diffeomorphic image registration as such in §5.3.2.
Normal-to-abnormal image registration (registering the atlas to the patient image) requires finding
correspondences between images that are topologically different. The ill-defined correspondence
arising from the presence of a tumor in only one of the images portrays the key challenge that has
to be addressed in order to get meaningful image registration results. A straightforward strategy
to overcome this issue is to simply mask the area affected by the tumor from the optimization,
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and thereby declare it as non-informative [Hen04; Ste04; Bre01]. A similarly motivated approach
is to relax the registration in areas affected by the tumor [Par14]. However, these strategies are
only practical for small lesions, and they will certainly give very poor registration results when
having to deal with large pathologies and a severe deformation of healthy tissue. In [Li10; Li12], the
authors presented an embedded maps approach that simultaneously inverts for the deformation
field and a drift in intensity that represents the topological abnormality associated with the tumor.
This approach has the advantage of being generic, i.e., it can easily be applied to other registration
problems featuring abnormalities or topological differences between the images that do not originate
from tumor growth (for instance, Alzheimer’s, or pre- and postoperative image registration [Kwo14]).
Considering the purpose of atlas-based segmentation and registration, i.e., goals (2) and (3), this
approach may produce acceptable results. However, if we are interested in the biophysics, model
calibration and prediction, this approach cannot be used.

A popular strategy to meet this goal is to augment an optical control PDE constrained optimiza-
tion formulation for diffeomorphic image registration [Man18a; Man15; Man16a; Man16b; Man17b;
Man17a] with more complex biophysics operators. Several approaches have been presented in
literature for the biophysical model inversion and calibration of parameters to individual medical
imaging data [Gho16a; Gho17a; Gho17c; Yan13; M M98; Rek13], among them a parabolic, non-linear,
reaction-diffusion tumor progression model [Mur89; Swa02]. We review some different brain tumor
models when presenting our cancer progression model in §5.3.1. Despite its phenomenological
character, this model has been shown to generate simulations that are in good agreement with
observations of abnormalities in clinical MR imaging data [Cla05; Hog07a; Har07; Kon10a; Kon10b;
Le16; Lim16; Mos12; Men11; Man12; Rek13; Swa08]. The literature on related optimal control
formulations for tumor progression simulation is numerous; we, e.g., refer to [Col14; Hog08b; Kno13;
Kno17; Liu14; Man12; Qui15; Qui16; Won15].

This tightly integrated biophysical tumor progression models with deformable medical image
registration has been previously targeted in [Goo13; Hog08a; Moh06; Zac08b; Zac08a; Zac09]. The
work in [Moh06; Zac08b; Zac08a; Zac09] uses a purely mechanical model for tumor progression
featuring some major limitations. The considered tumor progression model is oversimplified and
not capable of generating or reconstructing tumors with complex shape. Furthermore, because of
its purely mechanical character, the model does not provide information about progression and
infiltration of cancerous cells in the surrounding healthy tissue. The primary focus of the work
mentioned above is the atlas-based segmentation and registration, drawing an emphasis on achieving
good registration results, i.e., similarity of the registered images at lowest computational cost.
In [Zac08a] the authors showcase that the tumor model can be drastically simplified, yet the approach
still shows good similarity results of the registered images. The solution of the considered coupled
problem has been targeted employing various strategies: Besides PDE-constrained optimization
formulations, a generative approach based on Bayesian inversion has been used [Men11]. In [Bak15;
Kwo14; Hog08a; Goo13], the authors propose a framework for joint segmentation, registration and
tumor modeling, which is very similar to our approach. Like ours, their methodology employs a
PDE-constrained optimization approach with a non-linear, mixed-type reaction-diffusion-advection
equation woven into the formulation as transport constraints, modeling the tumor progression.
However, the previously mentioned approaches suffer from several shortcomings, such as requiring
manual seeding for the tumor, monofocal tumors, oversimplified models and extremely long time-
to-solution. The latter is critical in medical application. Reasons for longer response times in the
above work are inferior algorithms based on either derivative free optimization, gradient descent
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algorithms, lack of powerful preconditioners, and an algorithm and implementation design which is
not tailored for distributed data and massively parallel execution.

5.2.3 Contributions and Limitations

Contributions and Outline. Within this work, we developed the framework SIBIA [Gho17c;
Sch], providing methods and algorithms for the analysis of clinical imaging data of primary brain
malignancies. The goals and target applications (1)-(3) we aim at are described above. This work
tightly integrates a sophisticated state-of-the-art large deformation diffeomorphic image registra-
tion method (CLAIRE; Constrained Large Deformation Diffeomorphic Image Registration [Man18a;
Man15; Man16a; Man16b; Man17b; Man17a] following the pioneering work of [Chr96; Tro98; Beg05])
with a biophysical model inversion method for the simulation of brain tumor progression [Gho16a;
Gho17a]. Both sub-problems are by their nature non-linear, PDE-constrained optimization problems,
that have their validity and applications as standalone solvers. While medical image registration
is a supremely generic tool of crucial importance in clinical routine (e.g. for cardiovascular dis-
eases [Ser06a; Ser06b; Cos01; Ma13; Cot99; Won07], oncology [Cla05; Goo13; Goo11; Hog06; Yan13;
Kon10a], and surgical-planning [Hin09a; Fer01; Ger01; War03]), the tumor inversion solver without
image registration is only applicable when patient’s longitudinal data (i.e., imaging data of multiple
time instances, ideally including the healthy brain), is given [Rek13; Gho16a]. The sub-solver com-
ponents have been developed prior to this work and are described in §5.3. The utilized methods
and computational kernels representing the main building blocks of the sub-solvers are explained
in §5.3.3. This work builds upon the tremendous previous effort of my collaborators, Andreas
Mang (large deformation diffeomorphic image registration framework CLAIRE) and Amir Gholami
(tumor inversion solver and computational kernels; Fast-Fourier Transform and cubic interpolation).
While the registration code CLAIRE is kept as a sub-module of SIBIA with a clear defined interface,
the biophysical model inversion solver has been redesigned, and, in joint work with Shashank
Subramanian, a revised version has been tightly integrated into SIBIA.

Our work improves the approach in [Bak15; Kwo14; Hog08a; Goo13] in terms of formulation
of the problem, employed algorithms and solvers, scalability, performance, and overcomes some of
the shortcomings of the existing approaches. In particular, SIBIA is distinguished by (i) the utilized
solvers and the highly efficient and scalable computational kernels, resulting in algorithms that scale
to very large resolutions and thousands of cores [Man16b; Gho17c]: instead of using derivative-free-
optimization methods [Goo13; Hog08a; Moh06; Zac08b; Zac08a; Zac09; Won15], we propose a Picard
iteration-type solution on both control variables (tumor controls and registration controls) resulting
in a block-Newton-like solver. We employ globalized inexact Newton methods, i.e., Gauß-Newton-
Krylov and quasi-Newton methods, to solve the respective (modified) sub-problems—registration
and biophysical inversion; (ii) two different formulations and respective optimality systems for the
fully coupled problem; (iii) a parametrization of the tumor initial condition that not only allows us to
represent multifocal tumors, but also significantly reduces the number of inversion parameters and
simplifies the PDE constraints without loosing segmentation accuracy. Finally, (iv) our methodology
integrates one of the most advanced state-of-the-art algorithms for constrained large deformation
diffeomorphic image registration [Man18a; Man15; Man16a; Man16b; Man17a].

In §5.3.4, we present efficiency and scalability results for the computational kernels (FFT and
interpolation), the registration solver and the inverse tumor solver for up to 16 thousand cores and
200 billion unknowns (problem size 64 times larger than state-of-the-art) on two x68 super computing
systems – HazelHen at the Stuttgart High Performance Computing Center and Lonestar5 at the
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Texas Advanced Computing Center. For clinically relevant test cases, SIBIA is up to eight times faster
than the state-of-the-art. These optimization and scalability results are a contribution within this
work and arose from joint work with Amir Gholami, Andreas Mang, George Biros and Miriam Mehl
(published in the proceedings of CM/IEEE Conference on Supercomputing’17 [Gho17c]).

An important contribution of this work is the formulation of the fully coupled PDE-constrained
optimization problem and the presentation of an iterative Picard-type solution scheme to solve the
strongly coupled problem. In Chapter 6, we present two different formulations of the problem.
The first, moving-patient formulation (MP) in §6.1 focuses on the highest possible biophysics aided
registration- and segmentation quality, and is best suited to accomplish goals (2) and (3). The
second, moving-atlas formulation (MA), presented in §6.2, is more involved and allows for more
diagnostically meaningful biophysical inversion results and is targeting goal (1). We use an adjoint
approach and derive the first order optimality system for both formulations, respectively, and
introduce two Picard iteration-type solution schemes to solve the respective system of strongly
coupled, non-linear PDEs by means of modular sub-solvers. For both schemes, the sub-solvers need
to be modified and tightly integrated into a tailored solution scheme, featuring inexact sub-problem
solutions and parameter-continuation.

To this end, in §6.3.3 we propose several parameter-continuation schemes and investigate the
convergence of the considered optimization scheme. As for the clinical application, the time-to-
solution is an absolute critical factor; we further optimized and improved the employed algorithms
and solvers. In §6.3.3, we present a multilevel based coarse-to-fine grid-continuation scheme which
gradually improves a prolongated coarse level initial guess, reducing the overall time-to-solution
by a factor of 4. We extended the tumor inversion solver by an advanced quasi-Newton variant,
requiring only gradient information and renders the solution of the Hessian system for the Newton
step redundant. For this alternative, we benefit from the small number of inversion variables for the
biophysical model inversion, and intend to learn from the findings from the previous chapters. We
compare quasi-Newton against Gauß-Newton-Krylov to evaluate if the significantly reduced costs
per iteration outweigh the slower convergence of quasi-Newton. Combining all optimizations, we
were able to make the overall solution process approximately 10 ´ 20 times faster.

The two fully coupled inversion schemes, moving-patient and moving-atlas, are thoroughly
analyzed and compared for synthetic and clinical imaging data. In Chapter 7, we present numerical
experiments that demonstrate the quality, validity and efficiency of our solution schemes. Empirically,
we show that the Picard iteration-type solution schemes reduce the gradient of the respective fully
coupled formulation and converge to a local minimum. We conduct a mesh-independence study,
and show that convergence of our scheme is not sensitive with respect mesh-size (i.e., the number
of unknowns for both, p and v) We analyze the quality of the moving-atlas results for diagnostic
relevance. Timings and speedup factors are provided for all optimization variants and judged under
consideration of the overall reconstruction quality and accuracy.

Within this work, a highly scalable and efficient joint image registration and biophysical inversion
framework for image analysis and data assimilation in brain tumor imaging has been developed. At
a glance, this comprises the following main contributions:

• The derivation of two formulations for the fully coupled optimization problem, focusing on different
aspects, i.e., (i) registration quality and image similarity, and (ii) biophysical parameter estimation.

• The derivation of the first order optimality conditions for both formulations of the joint registration and
biophysical inversion for brain tumor growth.

• Two Picard iteration-type block-Newton solution schemes for both formulations, respectively, for solving
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the fully coupled optimization problem based on modular tumor and image registration components. The
modular approach allows for great flexibility in the employed biophysical model and registration approach,
but also the concrete realization of the underlying solvers. We empirically showcase convergence of the
Picard iterations to a local minimum, monitoring the gradient of the fully coupled scheme.

• Optimization and scalability of the utilized solvers and algorithms, allowing for extremely large
resolutions and efficient parallel execution on thousands of cores.

• Significant reduction of time-to-solution (factor 10 ´ 20) by improving and optimizing the employed
solvers, usage of quasi-Newton methods and a multilevel based grid-continuation scheme, gradually
improving coarse level solutions.

• Thorough numerical experiments and analysis on synthetic and real data that demonstrate the validity
and efficiency of our approach. We compare results for the two schemes (i.e., different formulations
of the coupled problem), present speedup factors for optimized solvers, and different use cases of the
SIBIA framework. We further show a mesh-independent convergence rate for our solution scheme.

• Examination of the sensitivity of our solver on the choice of the tumor model variant and judgment of
our schemes by the capability of producing diagnostically meaningful results.

Limitations and Open Issues. Our current work features some limitations and unresolved issues
remain. As of now, our framework only accepts segmented MRI data as input, or more precisely,
probability maps, showing the distribution of cell concentration of the different tissue regions.
Usually, one can only get tissue and tumor classes from segmentation, but not their concentration
values [Man12]. Especially for goal (2) and (3) it is of great potential value to input and process
different MRI modalities (T1w, T2w, FLAIR, etc.) and combine various feature spaces. One main
limitation is that we do not have a theoretical proof for the convergence of our Picard iteration-type
solution schemes, we only have empirical evidence; the gradient of the fully coupled problem
continues to decrease.

Further, our tumor model is a rather simplistic and phenomenological reaction-diffusion
model [Swa00; Swa02; Mur89] with very limited predictive capabilities that further currently does
not include a tumor mass-effect (deformations of the parenchyma due to tumor growth). While the
model yields very good quantitative results and is greatly useful for image analysis, segmentation
and tumor characterization [Man12; Swa08; Jac15; Lim16], it might be too simplistic to provide
diagnostic biophysical insights. Therefore, currently we mainly focus on goals (2) and (3). We want
to state, however, that more complex tumor models accounting for effects such as mitosis, apoptosis,
chemotaxis, and deformation of brain parenchyma (mass-effect) can theoretically be embedded into
our framework due to a modular design pattern. Furthermore, we derived a more sophisticated
problem formulation, presented as the moving-atlas coupling scheme, which lays the basis for a
sophisticated and predictive, data-driven biophysical model calibration from the methodological
side. On the biophysical model side, straightforward improvements include anisotropy for the
diffusion and enhancing the model to involve a tumor mass-effect, edema, necrosis, angiogenesis and
chemotaxis [Eng15; Hab03; Haw13; Hog07b; Hog08b]. This is ongoing work. Notwithstanding the
above, the biophysical model and tumor progression solver is integrated in a modular way within
SIBIA and can be exchanged by a more predictive model in the future. Self-evidently, with these
more complex models, further tests would be necessary to demonstrate convergence of the Picard
iteration-type solution scheme. Typically, a more sophisticated model also drives the hardness and
computational expenses of the model inversion. The fully coupled optimization problem we try to
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solve is highly non-convex and non-linear, therefore multiple solutions may exist. In order to reduce
the chance of getting trapped in local minima, we employ a coarse-to-fine grid-continuation strategy
together with a parameter continuation for the registration regularization parameter, which both
gradually improve approximate initial guesses for the inversion variables. Nonetheless, our solver
only guarantees convergence to a local minimum.

Within this work, we exclusively consider a deterministic problem formulation. In reality,
however, all quantities and models, i.e., the measurement of the observed data, the mathematical
model for the description of the underlying process, the model parameters/controls, and the
inversion algorithm itself are subject to uncertainties due to noise, modeling error or numerical
errors. Thus, instead of point estimates for our quantity of interest, confidence intervals are required,
in order to allow for an uncertainty quantification and propagation from the input to the quantity of
interest. This is of particular interest in the case where the seeked for model parameters are not the
final quantity of interest, but only used to compute or predict a future quantity of interest (such as,
e.g., degree of cancerous cell infiltration, an estimate on life expectancy, or the probability of tumor
recurrence). To account for uncertainties, our deterministic inversion approach can be combined
with statistical inference methods, such as Bayesian posterior sampling [Mar12; Pet14]. We only
consider deterministic inversion.

Summarized, the limitations of this work are:

• Our tumor model is very simplistic and not predictive. It does not model edema, necrosis, angiogenesis
and chemotaxis and is lacking a description of tumor mass-effect.

• We do not have a theoretical proof for the convergence of our Picard iteration-type solution scheme, but
provide empirical evidence for convergence. We present preliminary results, that are primarily a proof
of concept, but show very promising characteristics and provide evidence that our scheme has great
potential to be of clinical relevance if enhanced with more complex models.

• Our framework, as of now, cannot integrate and process multimodal data from different MRI modalities.
Input is assumed to be a set of probability distributions for each brain tissue and actual tumor
concentration values.

• We only guarantee convergence to a local minimum.

• We consider deterministic inversion methods and do not account for uncertainties in input data and
models.

5.3 Tumor Simulation and Medical Image Registration –
Sub-Components

Our joint inversion method for analyzing brain tumor MR imaging data builds upon the two sub-
components, a brain tumor progression solver for biophysical model estimation [Gho16a], and a large
deformation diffeomorphic image registration solver (CLAIRE; [Man18a; Man15; Man16a; Man16b;
Man17b; Man17a]). We present formulation, models, solver strategies and employed algorithms for
both sub-components. The methods and algorithms for the sub-components have been developed
for the past few years at the Institute for Computational Engineering and Sciences (ICES) at the
University of Texas at Austin. This section lays the foundation of the contribution covered within
the second part of this thesis and briefly reviews the work of my collaborators, Andreas Mang
(image registration, CLAIRE), Amir Gholami (computational kernels, tumor solver) and George Biros.
This description is not extensive and we limit ourselves to the most relevant parts that are crucial
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for the subsequent chapters; we refer to the above mentioned references for further details. This
description introduces both components with a view towards the coupled formulation in the next
chapter; it follows [Sch; Man18b]. In §5.3.4, we demonstrate the parallel scalability and efficiency of
the involved sub-components. These result have been originally published at the Supercomputing’17
conference [Gho17c]; a joint effort including significant own contributions.

5.3.1 The Biophysical Model Inversion

Within this work, we rely on a phenomenological model to simulate brain tumor progression, which,
due to its simplistic nature allows for inversion, and, thus, parameter estimation for model calibration.
We give a brief abstract of brain anatomy and present the utilized reaction-diffusion brain tumor
progression model along with some non-exhaustive view on related work. We then state the inverse
problem, based on a PDE-constrained optimization formulation, with the goal to seek for estimates
of the tumor seed, i.e., the initial concentration at time tT = 0, and the rate of tumor cell invasion
into different tissue regions of the human brain.

The biophysical model inversion for the simulation of the progression of Gliomas addresses
multiple bio-medical challenges: (i) The highly infiltrative nature of the tumor well beyond the visible
tumor bulk and the ambiguous imaging criteria make differential diagnosis difficult. Simulations of
Glioma progression with a calibrated biophysical model may allow for a more reliable prediction
of the extent of tumor infiltration. (ii) Clinical data is static, i.e., no information about past and
future progression is available at the time of diagnosis. Sophisticated tumor growth models have the
potential to enable prediction of patient specific individual outcome. (iii) The data space is very large
and cannot be assessed by visual inspection only. Further insights and hidden information is likely
to be revealed by designing a consistent and unbiased simulation-based framework for data analysis.

Synopsis of Brain Anatomy. The brain is a central organ, consisting of billions of neurons that
govern the central nervous system and the peripheral nervous system. Thus, the brain controls
most of our activities; it processes, integrates and coordinates information, makes decisions and
sends control signals to the rest of the body. The brain is a highly complex structure. It consists of
cerebrum, the brainstem and the cerebellum (CBM) and is contained in and protected by the skull.
The cerebrum is connected to the spinal cord via the brainstem. The main components of the human
brain are white matter (WM), gray matter (GM), the ventricles (VT) with cerebrospinal fluid (CSF), and
blood. For a schematic illustration of these components, see Fig. 5.5 The cerebrum is the largest part
of the brain, and divided into (nearly symmetric) left and right hemisphere, each of which is split
into four lobes; the frontal, temporal, parietal, and occipital lobes. The outer part of the cerebrum,
the cerebral cortex, is primarily made up of gray matter, and covers the core of white matter. The
ventricular system lies within the cerebrum and consists of interconnected ventricles, filled with
cerebrospinal fluid. The latter serves as suspension for the sensitive brain structures. White matter is
primarily composed of glial cells and axonal nerve fibres. The nerve fibres are bundled to fiber tracts,
and diffusion along these fiber tracts is significantly higher than those perpendicular to them. The
brain surface is folded into ridges and grooves that present various manifestations across individuals.
No two human brains are alike. While the basic anatomical structures are always encountered, their
individual shapes and characteristics may vary greatly.

Brain Tumor Progression Models—Literature. The difficulty in brain tumor progression modeling
is that we have to cope with a highly heterogeneous system with countless interacting constituents
(e.g., cell division, nutrients, hypoxic cells, viable tumor cells, extracellular matrix, etc.). The challenge
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WM GM CSF TU

FIGURE 5.5 Schematic view of the primary brain structures. From left to right, the probability maps for white matter
(WM), gray matter (GM), cerebrospinal fluid with ventricles (CSF), and tumor (TU) are shown. The rightmost image is an
overlaid combination of all previous probability maps.

is to develop mathematical characterizations and relations that describe the biological phenomena
responsible for emergence, growth, or decline of tumor (compare 8 hallmarks of cancer [Lim16])
and are consistent with basic physical laws. The variety of Glioma progression models is extensive.
They can be classified into two main approaches: discrete [Kan00] and continuous [Ara04]. Models
belonging to the discrete setting are on the microscopic scale and describe cellular division and
migration. The spatio-temporal evolution of cells and the interaction between surrounding cells is
described by probabilistic phenomenological rules to model, e.g., mitosis, apoptosis, chemotaxis, and
random motion. Cellular automata [Kan00] and lattice-based models belong to this class. Continuous
models don’t track cancerous cells individually, but describe the evolution of local tumor cell density
on the macroscopic scale, often times governed by the laws of continuum mechanics expressed
via PDEs [Cri03; Lim16; Hog08a; S05; Tra99]. Most of these models assume cancer progression
to be dominated by two main phenomena, cell division/mitosis and cell migration, reflected by
reaction-diffusion-advection models [Jac15; Mur89; Swa00; Swa02], that effectively take into account
the impact of the nature of the surrounding brain tissue. Attempts that consider locally changing
diffusivity parameters effectively capture the infiltrative nature of brain tumors [S05; Pri04; Pri07;
Ale07]. More complex macroscopic models based on multi-species mixture theory and porous media
flow, that take into account cellular heterogeneity and incorporate mechanical effects in tissue, have
been shown to be capable of generating very realistic simulations of tumor progression [Sci13; Ara05;
Byr03; Gu12; Haw13; Rah17]. However, they are characterized by an excessive number of parameters
and their complexity renders them impractical for parameter estimation and model calibration.

We employ a simplistic reaction-diffusion model, which by no means, is predictive on its own,
but captures the most important phenomenological characteristics of Glioma growth. It is the de-facto
standard approach for modeling brain tumor progression when linked to medical imaging [Swa00;
Swa08; Cla05; Har07; Kon10a; Hog08a]. Despite its simplistic nature, some results available in
literature accredit this model to offer some predictive capabilities when integrated with medical
imaging [Swa00; Tom14]. The diffusion part of the model is a good fit to describe the highly
infiltrative character and submicroscopic invasion into surrounding tissue and the small number of
model parameters allows for effective model personalization, i.e., model calibration.

Mathematical Formulation

Notation. Our formulation is based on probability maps mi(x, t) P [0, 1], (i.e., tissue cell
distributions) for all dominant tissue region types. Namely, we use probability maps for white
matter (WM), gray matter (GM), ventricles with cerebrospinal fluid (CSF), and tumor. Fig. 5.5
exemplarily shows a set of probability maps for a real data set. The tissue probability maps evolve
in the space-time interval Ω ˆ T with Ω = (0, 2π]d, T = [0, 1], d = t2, 3u and spatial boundary BΩ.
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They are composed into a space-time vector field

(5.3) m(x, t) = (mi(x, t))i=1,...,3 P R3 with m1 = mGM, m2 = mWM, m3 = mCSF

encoding the brain anatomy in the space-time domain. We interpret the normalized concentration of
cancerous cells as probability distribution c(x, t) : ΩB ˆ [0, 1] Ñ [0, 1], which represents the probability
to encounter cancerous cells at a location x at time t. For better readability, we additionally define
the space-time domains U = Ω ˆ (0, 1], UB = ΩB ˆ (0, 1] and Ũ = Ω ˆ [0, 1), ŨB = ΩB ˆ [0, 1).
To simplify notation, we assume that all probability maps are defined in Ω4. We will see, that
the registration solver (cf. §5.3.2) also introduces a pseudo-time variable to model image intensity
transport. For clarity of notation, we distinguish between the physical time tT P T of tumor evolution
and the pseudo-time tR P T for image advection. The subscript may be omitted if obvious from the
context. To reduce complexity, for most formulations we only explicitly state the dependency on
time, but omit the dependency on the spatial position x. For instance, we indicate the initial tumor
probability map (the tumor seed) by c(0), whereas c(1) denotes the probability map of the ’grown’
tumor at time tT = 1 (solution of the forward problem).

The Tumor Growth Model (Forward Problem). We consider a non-linear mixed-type reaction-
diffusion partial differential equation model, which has been widely adopted in literature [Swa00;
Swa08; S05; Roc10; Har07]. As of now, we do not account for a tumor mass-effect, i.e., the deforma-
tions of parenchyma due to tumor growth. Our model describes the spatio-temporal tumor growth
based on the normalized tumor density c(x, tT), which in our setup is also interpreted as cancerous
cell distribution. The model encodes two main phenomena: proliferation (cell division/mitosis) of
cancerous cells and the net migration of malignant cells into surrounding healthy tissue [Mur89].
The cell proliferation is modeled as a logistic growth function

(5.4) Rm(c) := ρm c(1 ´ c),

with reaction coefficient

(5.5) ρm(x) := ρ f ρm,0(x) = ρ f
(
ρw mWM(x) + ρg mGM(x)

)
,

where ρ f is a scaling of the characteristic growth rate parameters ρw and ρg in white and gray matter,
respectively. The infiltrative migration model is given by an inhomogeneous, (potentially anisotropic)
diffusion process

(5.6) Dm(c) := ∇ ¨ km ∇c,

with diffusion coefficient

(5.7) km(x) := k f km,0(x)I + ka T(x) = k f
(
kwmWM(x) + kgmGM(x)

)
I + ka T(x),

km P tk̃ : ΩB Ñ Rd,d | k̃ ą 0, k̃ = k̃T
u, with I := diag(1, . . . , 1) P Rd,d and k f and ka representing the

scaling factors for the isotropic and anisotropic parts of the diffusion tensor. Experimental biological
studies [Gie96] have shown, that, due to a higher cell density in gray matter, Glioma cells have a

4The biophysical tumor progression model equations require Neumann boundary conditions on ΩB Ă Ω, where ΩB is the
area of the brain, enclosed by the skull. By using a penalty approach, we extent the equations onto whole Ω. This is also
known as fictitious domain method [Del03; Man12]; for details, see §5.3.3.
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2-100-fold higher motility rate in white matter than in gray matter [Swa00]. Therefore, we consider
an inhomogeneous diffusion model km,0(x), based on the distribution of white matter and gray
matter cells with their respective characteristic motility rates kw and kg [Swa00; Swa02; Hog07a;
Sil97]. Further, it is commonly accepted that glial cells (thus tumor cells) preferably migrate along
white matter fiber tracts [S05; Le 01; Pai13; Rek13; Eng15; Gie03; Gie96; Man06; Pri07; Pri04;
Ale07]. This can be reflected by an anisotropic diffusion model with weighted diffusion tensor
T(x) P Rd,d, derived from diffusion tensor imaging (DTI) data5. Although integration of anisotropy
is straightforward, the experiments within this work only consider isotropic diffusion, i.e., we fix
ka := 0. We therefore omit details on the various formulations of the anisotropic diffusion tensor and
refer to [Gho16a; S05; Cla05] for details. Our model is stated in dimensionless form. Typical values
we use for proliferation and migration rate are ρ f = 10 in non-dimensional form (with ρw = 1 and
ρg = 1/5), which corresponds to a proliferation rate of ρ = 0.003 per day in dimensional form, and
k f = 1E´2 (with kw = 1 and kg = 1/10), corresponding to k f = 0.001 mm2 per day in dimensional
form.

Summarizing, the non-linear parabolic tumor forward model PDE with non-constant coefficients
for the tumor concentration c is given by

Bt c ´ Dm(c) ´ Rm(c) = 0 in ΩB ˆ (0, 1],(5.8a)

Bnc = 0 on BΩB ˆ (0, 1],(5.8b)

c(0) = Φp in ΩB.(5.8c)

For the tumor initial condition, we use a parametrization c(0) := Φp, as stated in (5.8c), in an
np-dimensional space spanned by a Gaussian basis, i.e., p P Rnp , Φp :=

řnp
i=1 ϕi pi with Gaussian basis

functions ϕi : ΩB Ñ R, x ÞÑ (2πσ1/2)´1exp(´1/2(x ´ xi)
Tσ´1(x ´ xi)). For notational convenience,

we represent the process of solving (5.8) based on the operator

(5.9) T Ñ [p] := c(1),

which maps the parametrization p of the initial conditions in (5.8c) to the tumor density c(1) at
physical (end-)time tT = 1. An exemplary illustration of a tumor forward simulation obtained by
our model is given in Fig. 5.6.

The Tumor Inverse Problem. A key issue for successful tumor progression modeling with the
objective of clinical, patient-specific decision making is the personalization of the model, i.e., the
ability to determine reasonable patient-specific parameters from medical imaging data. The most
important parameters to be identified for our reaction-diffusion model are (i) a combination of
the diffusion and reaction coefficient (i.e., characteristic (average) diffusion rates in white and gray
matter, diffusion tensor information, anisotropy, and proliferation rate), (ii) the initial position and
the initial concentration (cell distribution) of the tumor at physical time tT = 0, and (iii) the tumor
progression time horizon. The model calibration task does not have a unique solution, as different
combinations of the above mentioned parameters may result in the same grown tumor result. Thus,
not all parameters can be estimated simultaneously. In our approach, we fix the proliferation rate
and the time horizon. From the (pre-processed/segmented) patient MR data, we then solve for

5Diffusion Tensor Imaging (DTI) is a modern magnetic resonance imaging method that helps to reveal human brain struc-
ture by tracing the diffusion behavior of injected water molecules [Mor08; Le 01; Pai13; Bas94; Pri04; Ale07]. The result
of this measurement is a tensor-field that can be directly integrated in the formulation in (5.7)
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FIGURE 5.6 Brain tumor progression simulation results as obtained from our reaction-diffusion forward model at
different time instances: The leftmost image shows the initial condition; the rightmost image shows the grown tumor as
solution of the forward model at physical time tT = 1. The top row shows an axial slice cut through the tumor center; the
bottom row shows a 3D illustration. Locations of high tumor cell density are visualized as white areas, while darker areas
indicate low tumor density. Figure originally published in [Gho17c].

estimates of the initial tumor concentration6 as well as for average diffusivity rates in white matter
and gray matter, respectively.

Our numerical optimization approach extends [Hog07a] by using second order (Hessian) infor-
mation (instead of only using gradient information, or employing a derivative-free approach [Man12]).
Most of the following has been introduced in [Gho16a]).

We state the inverse tumor problem as PDE-constrained optimization problem, where we seek
to find coefficients p for the parametrization of an initial condition c(0) = Φp for the forward tumor
problem and (isotropic) diffusivity rates k̄ = (k1, k2, k3)

T = (kw, kg, 0)T in white matter and gray
matter, respectively, that allow the model to recover a given patient tumor concentration cD as good
as possible, i.e., we solve the minimization problem

(5.10a) min
q=(p,k̄)

JT [q, c, cD] := Dc [c, cD] +
βp

2
Sp [p]

subject to

Bt c ´ Dm(c) ´ Rm(c) = 0 in ΩB ˆ (0, 1],(5.10b)

Bnc = 0 on BΩB ˆ (0, 1],(5.10c)

c(0) = Φp in ΩB.(5.10d)

The driving data similarity term

Dc [c, cD] :=
1
2

}c(1) ´ cD}2
L2(ΩB)

(5.11a)

is a squared L2-distance that measures the discrepancy between the simulated tumor c(1) at time
tT = 1 (solution of forward model (5.10b)–(5.10d)) and the target patient data cD. The second term is
a L2-Thikonov regularization term with the regularization parameter βp. Here, we choose to penalize

6The initial tumor concentration (initial condition) implicitly also yields the initial tumor position.
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large values in the initial condition

Sp [p] := }Φp}2
L2(ΩB)

(5.11b)

Other new regularizations will be considered in Chapter 6. Regularization is inevitable when solving
inverse problems, as they are usually ill-posed, instable (amplify noise and high frequencies), and/or
do not have a unique solution per se. In particular, the null-space of the inversion operator contains
high frequency components of the inversion variables. Our Thikonov-type regularization penalizes
high variations in the reconstructed initial condition of the tumor, thus effectively eliminates the
null-space of the inverse operator. The regularization term and its weighting parameter βp usually
have a large influence on the solution process. For theory and application of different regularizations,
see [Eng96]. The solution of problem (5.10), i.e., the parameter tuple q = (p, k̄)T is referred to as
control variables and determined based on performance goals defined in the objective function
(5.10a). Together, this defines the inverse tumor operator

(5.12) T Ð [cD] := q = arg min
q̂

JT [q̂, cD] .

5.3.2 The Registration Solver

The second sub-component of our joint inversion framework for image analysis is medical image
registration. We consider non-rigid (deformable) registration, which allows for more complex
deformations, as required in the analysis of brain tumor magnetic resonance imaging data. We
assume images (in our case, probability maps) as continuously differentiable functions7 with compact
support on a domain Ω = [0, 2π)d with closure Ω̄ = Ω Y BΩ and data dimensionality d P t2, 3u.
Image registration is a classical task in medical image analysis, which essentially tries to establish
a point-wise spatial correspondence y : Ω̄ Ñ Rd, x ÞÑ y(x), between two images mT : Ω̄ Ñ R,
x ÞÑ mT(x) and mR : Ω̄ Ñ R, x ÞÑ mR(x) of the same or a similar object, such that the warped (or
transformed) template image m(1) = mT ˝ y becomes similar to the reference image mR [Mod04;
Mod09]. In generic form, this can be formulated as finding a minimizer y of the variational problem

(5.13) minyDm [mT ˝ y, mR] + βSy [y] subject to C [mT , y] = 0

driven by the data similarity measure, quantifying8 Dm the proximity between mR and mT ˝ y; here,
˝ denotes the function composition. In absence of regularization, the above problem is usually
ill-posed and lacking a unique solution. The regularization term, whose influence is weighted by the
regularization parameter β, effectively eliminates the null-space of the inverse operator and ensures
the required regularity of the solution. Its particular choice is highly dependent on the application at
hand; typically it is given as a Sobolev norm of a certain order. Together with possible constraints
C [mT , y] = 0 (typically a set of partial differential equations), the regularization operator penalizes
and rules out unwanted solutions and ensures plausible mappings.

In the context of medical image registration, a key requirement for a deformation map to
be considered as plausible is to be a diffeomorphism, i.e., a smooth, invertible, and continuously
differentiable map with smooth inverse that maps Ω onto itself (automorphism). This is locally

7If required, we pre-smooth the input data or use appropriate mollifiers to obtain the required regularity.
8Different choices for the data similarity measure are conceivable [Mod04; Mod09; Sot13], the most common of which is a

L2-distance Dm = 1/2}mT ˝ y ´ mR}2
L2(Ω)

based on image intensities.
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FIGURE 5.7 Image registration. Given scalar intensity values of two images mR and mT of the same object (left), the
inverse problem of image registration seeks for a deformable geometric transformation y that relates points in the reference
image mR to its corresponding points in the template image mT (green arrows). The existence of a deformable geometric
relation between the images is assumed and part of the model. As we seek for point correspondences based on intensity
values, the solution of this problem may easily result in implausible mappings, if no further restrictions are imposed. In our
formulation, we consider a mapping to be meaningful or plausible if it is a diffeomorphism, meaning it is unique, smooth,
and invertible. The formulation may be further augmented by certain material properties and biophysical constraints. The
transformation process is modeled as a transport equation. The deformed template image is illustrated in the middle image,
and on the right, the residual between the images before and after the registration process, is shown. Figure originally
published in [Gho17c].

fulfilled if the functional determinant of the transformation map det(∇y) is strictly positive and can
be guaranteed by a suitable regularization operator. Further complimentary data or prior knowledge
about the underlying problem may be incorporated by adding additional constraints to the problem,
e.g., incompressibility or elasticity properties of the material, or descriptions of physiological and
biophysical processes.

By its nature, image registration is an inverse problem, which due to its vast number of
unknowns, inherent instabilities and computational complexity poses significant mathematical and
algorithmical challenges. As a result it asks for carefully designed, fast, robust, and highly scalable
algorithms and solvers that allow for precise control of the physical and mathematical properties
of the deformation map y. In the sequel, we recapitulate the most important parts of the work of
Andreas Mang [Man18a; Man15; Man16a; Man16b; Man17b; Man17a] with respect to the application
targeted within this thesis. The image registration task is illustrated in Fig. 5.7. Before presenting
the optimal control-based formulation for the large-deformation diffeomorphic image registration,
we review an extract of the most important and most closely related literature on non-rigid image
registration.

Non-Rigid Image Registration—Literature. There is a vast body of literature on image registration
and no attempt is made for an extensive review. We focus on closely related work only, i.e., non-rigid
approaches that view image registration as a problem of optimal control and model the deformation
map via a velocity field. For a general introduction to the problem, including applications and
algorithmic approaches, we refer to [Fis08; Mod04; Mod09; Sot13]. In the context of medical
image registration, small deformation models [Bro81; Fis02; Fis03] reveal many limitations and
lead to unsatisfying results. To overcome these shortcomings, viscous fluid mechanical models for
diffeomorphic image registration have been proposed [Chr94; Chr96], which consider diffeomorphic
registration as hyperbolic optimal control problem [Bor02; Che11a; Har09; Man15; Man16a; Man17a;
Man16b]. The basic idea is to introduce a pseudo-time variable tR, and instead of solving for the
deformation map y, we seek for a (possibly non-stationary) velocity v, which parameterizes y via
a hyperbolic transport or continuity equation. The latter explicitly appears as a constraint in the
optimization problem. The relation between a diffeomorphic deformation map y and the regularity
requirements on v have been studied in [Beg05; Che11b; You10]. Loosely speaking, a sufficiently
smooth velocity v gives raise to a diffeomorphic map y. The required regularity of v P S Ă Hk(Ω)
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the Sobolev space of order k P t1, 2, 3u is typically attained by a Sobolev norm9 in the regularization
operator. This approach has been extended and embedded into a variational framework [Beg05;
Dup98; Gre98a; Mil01; Tro98]. These formulations directly search for an optimizer on the manifold
of diffeomorphic mappings by employing a geodesic distance10 regularization functional on the
velocity v. However, solely restricting the search space to the manifold of diffeomorphisms does
not necessarily result in physically meaningful deformations. Further, these models do not allow
the control of geometric properties and might result in transformation maps that are close to being
non-diffeomorphic. Thus, some applications may benefit from imposing further constraints11 on
the resulting deformation map. Related formulations that use constraints on the velocity v and the
functional determinant det(∇y) of y can be found in [Lee10; Lee11].

The here considered PDE-constrained (Eulerian) formulation for diffeomorphic image regis-
tration does not operate on the space of diffeomorphisms, but models the transport of intensities
in mT via a linear advection equation. This only depends on the velocity v, and, thus allows
the augmentation of the formulation with additional constraints [Bor02; Che11b; Man15; Man16a;
Man16b]. This formulation also lays the foundation to augment the image registration process by
more complex biophysical operators [Goo13; Hog08a; Sun09; Zac08a; Zac08b; Zac09], which also is
the objective of this thesis.

Within this work, we employ the registration framework CLAIRE [Man18a; Man15; Man16a;
Man16b; Man17b; Man17a], which implements the above mentioned formulation. So far, only
little effort has been made in the velocity-based diffeomorphic image registration community to
design efficient state-of-the-art algorithms; thus, its advanced numerical methods, massively parallel
scalability and distributed memory algorithms, as well as the utilized discretization scheme is what
mainly sets CLAIRE apart from similar tools. While almost all existing related efforts exclusive make
use of first-order derivative information for numerical optimization [Ash07; Beg05; Bor02; Che11b;
Chr94; Chr96; Har09; Her09; Lee10; Lee11; Mus09; Via12; You07], the methodology considered here
employs second-order information. As opposed to slowly converging gradient-descent methods, the
use of Hessian information gives rise to extremely powerful, inexact Newton-type solvers featuring
fast convergence rates. Here, preconditioners for the Hessian system become an indispensable
presupposition to obtain a short time-to-solution; approaches therefore are discussed in [Ben11;
Her18; Man15; Man17a; Man17b; Sim12] and find application in CLAIRE. Not least, it significantly
reduces the memory footprint and features scalable distributed memory algorithms with highly
optimized computational kernels [Man16b; Gho17c], to solve e.g. the transport equation and to
compute derivatives. This allows for the registration of extremely large imaging data resulting from
recently emerging high resolution medical imaging methods [Chu13; Kut17; Tom14]. For a more
detailed literature review on diffeomorphic image registration, we refer to [Man15; Man18b].

9The regularity of the chosen Sobolev space determines the regularization of the solution. The order of the Sobolev
norm is chosen depending on the smoothness of the input images mT and mR, the form of the transport equation and
the existence of additional constraints, e.g., incompressibility, that is penalization of divergence of v, or biophysical
information of the underlying deformation process. To meet the key requirement of y being diffeomorphic, the Sobolev
norm in the regularization operator needs to enforce v P S Ă Hk to be sufficiently smooth. The minimum required order
k depends on the dimensionality d of the data space; for d = 3, the norm }(´

∇

+ I)k̂v}2
L2(Ω)

with k̂ ą 1.5 guarantees y to
be a diffeomorphism[Beg05]

10The typical formulation for these approaches takes the form minv
1
2 }mT ˝ ϕ(1)´1 ´ mR}2

L2(Ω)
+ β

2

ş1
0 }v}2

S dt subject to

dtR ϕ = vϕ for tR P (0, 1]) and ϕ = I for tR = 0, with the time integral of the squared Sobolev norm as regularization
term, embedding the manifold of diffeomorphisms in a Riemann space. The Sobolev norm guarantees that the resulting
transformation map as solution of dtR ϕ = v(ϕ) is a diffeomorphism.

11In medical image registration, incompressibility of tissue may be a reasonable additional constraint on the deformation
map, which can be realized by enforcing det(∇y) = 1. Controlling the deviation of the functional determinant from 1,
i.e., penalizing the divergence of v is also an alternative, if we allow for a bounded extent of compression or expansion.
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Mathematical Formulation

Advection-Based Deformation Map. Within this work, reference and template images are
magnetic resonance images, or probability maps of brain tissue regions of different brains. We use
a Lagrangian formulation for the deformation map and parametrize the actual mapping y via a
velocity field v : Ω̄ ˆ [0, 1] Ñ R, (x, tR) ÞÑ v(x, tR) by introducing the pseudo-time variable tR P [0, 1].
As a consequence, the deformation map y does not occur explicitly in our formulation but can be
computed as y = x ´ u(1) by solving

(5.14) Btu +∇u ¨ v = v in U, u(0) = 0 in Ω

with periodic boundary conditions on BΩ for the displacement field u : Ω̄ ˆ [0, 1] Ñ Rd, (x, tR) ÞÑ

u(x, tR). Although CLAIRE provides support for a transient (variable in time) as well as for a
stationary (constant in time) velocity field, we limit ourselves to stationary velocity fields, as it
significantly reduces the dimensionality of the search space, and for medical image registration both
approaches yield comparable results in terms of image similarity (mismatch) [Ars06; Ash07; Her09;
Man16a; Man17b; Man16b].

Advective Image Transformation (Forward Problem). Given a stationary velocity field v(x), the
forward problem describes the advective transformation of the template image towards the reference
image in a pseudo-time interval [0, 1]. The transported intensities of the warped template image
m(1) := m(x, tR = 1) are computed by solving

Btm +∇m ¨ v = 0 in U,(5.15a)

m(0) = mT in Ω,(5.15b)

a hyperbolic transport equation with periodic boundary conditions on BΩ forward in time. This
formulation may be augmented by further constraints to control the geometric properties of the
resulting deformation map. As mentioned above, a possibly beneficial augmentation for medical
image registration is the incompressibility of tissue. This translates to enforcing a divergence free
velocity field ∇v = 0 (equivalent to imposing det(∇y) = 1 on the functional determiant12 of the
deformation map y). This constraint can be relaxed by introducing a mass-source map w to control
the extent of compression and expansion of the deformation

γ(∇ ¨ v ´ w) = 0 in Ω.(5.15c)

The parameter γ P t0, 1u is introduced for clarity, to enable or disable the incompressibility
constraint. If prior information and complimentary data for the underlying physiological process
is available, further biophysical constraints might be added to the formulation to give raise to a
deformation map that respects actual biophysical processes. Approaches to do so are proposed and
analyzed within this work. This is covered in Chapter 6. The set of equations in (5.15) defines an
implicitly given operator, the parameter-to-observation map

(5.16) RÑ [v, mT ] := m(1)

12The functional determinant det(∇y) := det(F(1)), with F : Ω̄ ˆ [0, 1] Ñ Rd,d of the transformation map y P C2(Ω) reflects
local volume change and can be used to assess invertability of y. In our formulation, the deformation tensor field F can
be computed from the velocity v by solving

BtF + (v ¨ ∇)F = (∇v)F, in U, F(0) = I in Ω,

with periodic boundary conditions on BΩ and the identity tensor I = diag(1, . . . , 1) P Rd,d
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mapping the template image mT to the reference image mR at pseudo-time tR = 1.

Image Registration (Inverse Problem). The actual image registration problem is given by the
inverse problem, where we seek a velocity field v(x) such that the transported intensities of the
template image mT at pseudo-time tR = 1 (i.e., solution of (5.15)) match the intensity values in the
reference image mR as good as possible. That is, we solve for v P V Ă L2(Ω) and w P W Ă L2(Ω) as
follows

min
v

JR [v, w] with JR [v] := Dm [m, mR] + βvSv [v] + γβwSw [w](5.17a)

subject to

advection Btm +∇m ¨ v = 0 in U,(5.17b)

m(0) ´ mT = 0 in Ω,(5.17c)

incompressibility γ(∇ ¨ v ´ w) = 0 in Ω,(5.17d)

for a minimizer (v, w) with the data similarity term

Dm [m, mR] :=
1
2

}m(1) ´ mR}2
L2(Ω)(5.18a)

as squared L2-distance, quantifying the discrepancy between the data and the warped template. We
want the velocity v to give raise to a plausible mapping. As discussed above, this is attained by a
suitable regularization term; The type and weight of which are selected to drive the solution towards
a diffeomorphic map y at acceptable cost and maintaining good registration quality in terms of
data similarity. An appropriate choice depends on many factors such as smoothness of mR and mT ,
desired properties of the resulting deformation, or additional constraints, and needs to be made
with care; a theoretical discussion can be found in [Bar16; Beg05; Bor02; Che11b; Man16a; Via12].
The regularization operators Sv [v] and Sw [w] define the regularity of the Sobolev spaces V and W ,
respectively; the regularization parameter βv ą 0 balances the influence of the smoothness penalty
on v, while βw ą 0 acts as a penalty on ∇ ¨ v and controls the extent of incompressibility.

We require y to be diffeomorphic, and thus v to be of sufficient regularity. Further, we consider
γ = 1 and by adding (5.17d) we ask for a (nearly-) incompressible deformation map. As a result, we
chose the regularization operator Sv [v] to enforce smoothness on v as a H1-semi-norm13, and an
H1-norm in Sw [w], respectively

Sv [v] =
1
2

ż

Ω

3
ÿ

i=1

|∇vi(x)|2 dΩ, Sw [w] =
1
2

ż

Ω
|∇w(x)|2 + |w|2 dΩ.(5.18b)

Using an H1-seminorm for the regularizer of v is motivated by the fact that upon solution of (5.17)
using a variational approach, we obtain optimality conditions that are similar to Stokes equations in
fluid mechanics. For discussion and numerical results for different choices14 of theses operators we

13This choice is appropriate if incompressibility is considered, i.e., ∇v = 0, as suggested by experimental and analytical anal-
ysis [Che12]. In [Man16a] it is shown by experimental analysis, that the choice of an H1-seminorm in combination with
controlling the deformation gradient (parameter w and βw), yields small mismatch values and good-natured deformation
maps, while converging significantly faster than using an H2 seminorm.

14Often times, an H2-seminorm Sv [v] = }

∇

v}2
L2(Ω)d is used in large deformation diffeomorphic image registration [Beg05;

Har09; Via12]. In [Man16a], the authors’ suggestion is based on extensive numerical analysis, that an H1-seminorm
is favorable in terms of computational complexity. It reduces the time-to-solution significantly, while yielding plausible
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refer to [Man15; Man16a; Man17b]. Overall, this defines the (inverse) registration operator

(5.19) RÐ [mT , mR] := v = arg min
v̂

JR [v̂] .

5.3.3 Numerical Methods

In the sequel, we present the strategies, methods, and solvers to numerically solve the presented prob-
lems in §5.3.1 and §5.3.2. For numerical optimization we employ an adjoint approach and introduce
Lagrange multipliers (adjoint variables) to transform the constrained optimization problems (5.10)
and (5.17) into unconstrained ones by defining the respective Lagrange functional. For the registra-
tion problem, we follow an optimize-then-discretize (OTD) strategy, i.e., we arrive at continuous
equations for the first order optimality conditions after requiring stationarity of the Lagrangian
and taking variations with respect to the state, adjoint and control variables. These optimality
conditions are then discretize in a second step. This approach contrasts the discretize-then-optimize
(DTO) approach, where the Lagrangian is first discretized and thereafter, optimality conditions
for the discrete approximation are derived [Wil15], p. 55ff. For OTD, it is neither guaranteed that
the discretized gradient is consistent to the discretized objective function, nor that the discretized
forward and adjoint operators are transposes of each other; also, the discretized Hessian may not be
symmetric. This can have negative effects on the convergence of the solvers15. For DTO, the operators
are consistent by construction. However, the numerical accuracy of the solvers, e.g., forward and
adjoint solver, may be different [Hag00]. For a discussion on the discretization strategies, we refer
to [Gun03; Bor12].

First, we derive optimality conditions for the considered sub problems in §5.3.1 and §5.3.2. As a
result, we arrive at large systems of coupled non-linear PDEs, which upon discretization, give raise to
large, ill-conditioned, non-linear operators that are formidable to solve and pose significant numerical
challenges and feature very high computational complexity. We summarize the discretization in
space and time, numerical strategies, and utilized solvers to efficiently tackle these challenges. The
employed numerical schemes are tailored to efficiently solve the occurring PDE operators. The vast
number of unknowns and computation complexity urge for massively parallel distributed memory
implementations that scale up to tens of thousands of cores. Two major computational kernels
emerge, whose efficient parallel implementation is at the heart of the solvers. We shortly outline the
methods and give references for a more in-depth description.

Optimality Conditions

Biophysical Model Inversion. A classical way to solve the constrained optimization problem (5.10)
is to introduce a Lagrange multiplier field α : ΩB ˆ [0, 1] Ñ R, and α(0) = α(x, tT = 0), corresponding
to the state c, and define the Lagrange functional

(5.20) LT [c, α, q] = JT [c, q] + αTT Ñ [q] ,

well-behaved deformation maps if the deformation gradient det(∇y) is bounded appropriately (i.e., βw needs to be tuned
accordingly). In this case, the resulting registration quality in terms of image mismatch is similar as if the more expensive
H2-regularizer was used.

15For our application, we found by numerical analysis, that a relative reduction of the gradient of more than three orders of
magnitude is impractical. Thus, the discretization error lies below the required accuracy. For a more accurate solution,
our solvers may fail to converge, and discrete operators and solvers that preserve the continuous properties are required.
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which takes into account the constraints T Ñ = 0 (residuals of (5.8)) via an inner product with α.
The Lagrange multiplier α is also called co-state or adjoint variable. For the biophysical tumor
progression model inversion problem (5.10) the Lagrangian is given by

LT [c, α, q] = JT [c, q] +
ż 1

0
xα, Btc ´ ∇ ¨ k∇c ´ ρc (1 ´ c)yL2(ΩB)

dt + xα(0), c(0) ´ ΦpyL2(ΩB)
(5.21)

As a necessary condition for minima, we require stationarity of the Lagrangian with respect to the
state c, adjoint α and control variables q. Stipulating vanishing first order variations

(5.22) δLT :=
(
δαLT , δcLT , δqLT

)T
=
(

gα, gc, gq

)T
= 0,

we can derive the following system of coupled, non-linear PDEs, often referred to as the strong form
of the First Order Optimality Conditions, or the Karush-Kuhn-Tucker (KKT) conditions [Noc06],
p. 323ff:

state eq.: δαLT = 0 : Btc ´ ∇ ¨ (k∇c) ´ ρc(1 ´ c) = 0 in UB,(5.23a)

δα(0)LT = 0 : c(0) ´ Φp = 0 in ΩB.(5.23b)

adjoint eq.: δcLT = 0 : ´Btα ´ ∇ ¨ (k∇α) ´ αρ + 2αρc = 0 in ŨB,(5.23c)

δc(1)LT = 0 : α(1) ´ cD + c(1) = 0 in ΩB.(5.23d)

inversion eq.: δpLT = 0 : gp := βpδpSp [p] ´ Φ‹α(0) = 0 in ΩB,(5.23e)

δki
LT = 0 : gk :=

ż 1

0

ż

ΩB

mi(∇c)T∇α dx dt = 0 i P t1, 2u,(5.23f)

with δpSp [p] = Φ‹Φp for our particular choice (5.11b) of the regularization operator for p. The state
equations, are given by the earlier defined forward simulation problem (5.8) of tumor progression.
The adjoint equation (5.23a) originates from stationarity with respect to the state variable and is
a final value problem, linear in the adjoint variable α. Note, that the final condition in (5.23d) at
tT = 1 depends on c, which is the solution of the forward problem (5.8). Finally, the inversion
equations for the control variables are given by (5.23a) and (5.23f). The set of coupled, non-linear
PDEs given by the optimality system (5.23) is formidable; it portrays high complexity, indefiniteness,
ill-conditioning, and a very large number of unknowns.

For numerical optimization, we therefore employ a reduced space approach, where the state
and adjoint equations are assumed to be solved exactly (i.e., their gradients vanish, gc = gα = 0),
and the search space is reduced to the (low dimensional) space of the control variables q. This not
only reduces the system’s size to a manageable one, but the reduced system (and its first order
approximation, the reduced Hessian) typically also feature better-behaved numerical properties.
Assuming we are given state and adjoint variables rc and rα such that gα = gc = 0, the reduced
gradient defines the non-linear root finding problem

(5.24) gq(q)
!
= 0 in ΩB, with gq = (gp, gk̄)

T
ˇ

ˇ

ˇgα(q,rc)=0
gc(c,rα)=0

,

which is then to be solved by means of gradient-descent or Newton-type iterations. This is in contrast
to the full space approach, considering the system as is, and solves for updates of state, adjoint
and control variables simultaneously. The evaluation of the reduced gradient (5.24) for a given
trial q then involves the following steps: (i) Compute the system’s state c(1) by solving (5.23a) for
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the control q = (p, k̄) forward in time; (ii) given the final state c(1) (prediction of data), compute
α from solving the adjoint equation (5.23c) backward in time. This final value problem depends
on the predicted state c(1) and models the data misfit (residual differences to the observed data)
backwards in time. (iii) Using the data misfit α(0), the expression for the reduced gradient can then
be evaluated to compute updates for the control q in a suitable numerical optimization scheme.
For the latter, the canonical approach is to use gradient descent schemes. Within this work, we use
inexact Newton method to solve (5.24), i.e., Gauß-Newton-Krylov and quasi-Newton. Details are
provided in subsequent sections and §6.4.

Diffeomorphic Image Registration. From the PDE-constrained optimization problem (5.17) for
diffeomorphic image registration, we obtain the Lagrangian functional by introducing the Lagrange
multipliers λ : Ω̄ ˆ [0, 1] Ñ R, λ(0) : Ω Ñ R, corresponding to m, and ν : Ω̄ Ñ R, associated with w
as

LR [m, v, w, λ, λ(0), ν] =
1
2

}m(1) ´ mR}2
L2(Ω) +

βv

2
}∇v}2

L2(Ω) +
βw

2
}w(x)}2

H1(Ω)

+

ż 1

0
xλ, Btm +∇m vyL2(Ω) dt + xλ(0), m(0) ´ mTyL2(Ω)(5.25)

+

ż 1

0
xν,∇ ¨ v ´ wyL2(Ω) dt.

We arrive at the First-Order Optimality Conditions in strong form [Man16a] by requiring stationarity
of the Lagrangian, taking variations and applying integration by parts

state eq.: δλLR = 0 : Btm +∇m ¨ v = 0 in U,(5.26a)

δλ(0)LR = 0 : m(0) ´ mT = 0 in Ω,(5.26b)

δνLR = 0 : γ(∇ ¨ v ´ w) = 0 in Ω,(5.26c)

adjoint eq.: δmLR = 0 : ´Btλ ´ ∇ ¨ (vλ) = 0 in Ū,(5.26d)

δm(1)LR = 0 : mR ´ m(1) ´ λ(1) = 0 in Ω,(5.26e)

inversion eq.: δvLR = 0 : gv := βvδvSv [v] +K[

ż 1

0
(∇m)Tλ dt] = 0 in Ω.(5.26f)

with the elliptic operator δvSv [v] =

∇

v for our particular choice (5.18b) of the regularization
operator; for different choices, see [Man15; Man16a; Che11b]. The resulting optimality system (KKT-
system), consists of three blocks of equations, all of which are strongly coupled, non-linear PDEs.
(5.26a) is referred to as the state equation, which based on the control parameters (v, w), (5.26c)
and the initial condition (5.26b) yields the system’s predicted state. The adjoint equation (5.26d)
with final condition (5.26e) models the transport of the mismatch between the deformed template
image m(1) and the reference image mR backward in time. As we approach an admissible solution
of the system (5.26), λ will tend to vanish. Finally, (5.26f) is the control equation for the unknown
velocity v. Note that we haven’t given an equation for δwLR; the associated penalty constraint on
the divergence of v, γ(∇v ´ w) = 0, controlling the local volume change, is eliminated from the
formulation. As a result, we get the pseudo-differential operator K in (5.26f), projecting v onto the
space of nearly-incompressible velocity fields. For the considered regularization terms, K takes the
form

(5.27) K = I ´ ∇M´1 ∇´1∇¨, with M = βv(βw(´

∇

+ I))´1 + I
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for a non-zero mass-source map w. In case of incompressibility, i.e., w = 0, M simplifies to the
identity operator, and K is given by the Leary projection operator K = I ´ ∇ ∇´1∇. For γ = 0, we
obtain K = I and the incompressibility constraint is dropped. For details on the elimination and
derivation of K for the considered and other regularization schemes, we refer to [Man16a].

In the same manner as for the biophysical model inversion, we attempt a reduced space approach
by assuming state and adjoint fields rm and rλ such that gλ = gm = 0, resulting in the (non-linear)
root-finding problem for the reduced gradient

(5.28) gv(v)
!
= 0 in Ω, with gv = βv∇v

∇

v +K[

ż 1

0
(∇ rm)T

rλ dt]

ˇ

ˇ

ˇ

ˇ

ˇgλ(v,rm)=0
gm(m,rλ)=0

For the image registration, evaluating the reduced gradient (5.28) for a given trial velocity v involves
the following algorithmic steps: (i) We compute the deformed template m(t) as a result of the
forward operator RÑ [mT , v] by solving equations (5.26a)-(5.26c) forward in time; (ii) we then solve
the adjoint equation (5.26d) using the previously computed final state m(1) in (5.26e) for λ backward
in time. (iii) Finally, the expression for (5.28) can be evaluated given the state and adjoint variable
m(t) and λ(t), respectively. The latter is an integro-differential operator, requiring the time history
for the state and adjoint equation, i.e., checkpointing approaches to store the time history of these
variables become necessary.

As before, we employ a reduced space, inexact, matrix-free Gauß-Newton-Krylov solver [Man15;
Bir05a; Bir05b] for numerical optimization. The numerical optimization using a Gauß-Newton-Krylov
solver involves methods and algorithms, parallel implementation, and main computational kernels,
which we discuss next.

Numerical Optimization

Strategy. For both sub-problems, we have derived the first order optimality systems (5.23)
and (5.26) by requiring stationarity of the Lagrangian functionals with respect to state, adjoint
and control variables, and taking variations. The reduced space approach results in the non-linear
equations (5.24) and (5.28). Abstracting from the specific sub-problems, we require the gradient with
respect to the control variable to vanish, i.e., we arrive at the non-linear equation

(5.29) g(w‹) = 0, with g P
 

gq, gv
(

and w P
 

q‹, v‹

(

,

for the reduced gradient g and control variable w. For an admissable solution w‹ of the respective
optimization problem, equation (5.29) needs to be solved by means of a suitable iterative solver. The
canonical choice are gradient-descent methods, requiring only gradient evaluations, and thus, can
be implemented with limited effort. Despite their poor convergence properties, gradient-descent
schemes have been widely used in the context of PDE-constrained optimization and the considered
application problems [Ash07; Beg05; Bor02; Che11b; Chr96; Har09; Her09; Lee11; Mus09; Via12].
With a view to large scale simulations and more sophisticated formulations (i.e., considering more
expensive regularization operators, etc.), these methods become infeasible in terms of time-to-solution,
or fail to converge due to increasingly ill-conditioned operators. Preconditioned, inexact-Newton
methods have been shown to outperform the simpler gradient-descent schemes in these regimes,
especially if we strive for high inversion accuracy [Man15; Akc06; Kel87a; Bir99; Bir05a; Bir05b].
A further, strong reason for using second-order derivatives for our optimization algorithm is the
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non-linearity of the inverse problem in the control variables16 and the typically poor conditioning of
the resulting operators. Here, a Newton linearization is used to solve the optimality systems (5.23)
and (5.26). Following the aforementioned reduced space approach, the reduced Hessian operator
corresponding to (5.29) is obtained as a Schur-complement for the control variables, i.e., a block-
elimination of the state and adjoint variables from the full space KKT system. High-resolution
volumetric images result in a vast number of unknowns and large-scale severely ill-conditioned
operators. As a result, matrix free solvers and different degrees of inexactness for the Newton-type
solvers as well as powerful preconditioners are inevitable.

Newton Step. A Newton-type solution for (5.29) requires second-order variational information
of the Lagrangian. Adhering to the reduced-space approach, this results in the reduced Hessian
Hw P Rnw ,nw (after block-elimination), given as the Schur-complement of the control w of the second-
order optimality system. The system has reduced dimensionality of the number of control variables
nw. We employ a globalized, inexact, preconditioned, matrix-free, reduced-space Gauß-Newton-
Krylov (GNK) solver for numerical optimization. Given an algorithm that evaluates the reduced
gradient gw, the Newton step reads

(5.30) Hk
wŵk = ´gk

w, wk+1 = wk + γkŵk, k = 1, 2, . . .

As we opt for a matrix-free, iterative Krylov solution to compute the Newton update ŵk =

´(Hk
w)´1gk

w on the control wk, we only need the action of the reduced Hessian on the incre-
mental control variable ŵk, i.e., the Hessian matvec Hk

w[ŵk] in every Newton iteration k. For our
considered sub-components, the concrete representations for the Hessian matvec are given by

Hp [p̂] := βvδ2
pSp [p] ´ ΦT α̃(0) = ´gp(5.31a)

Hv [v̂] := βvδ2
vSv [v] +K[

ż 1

0
λ̂∇m + λ∇m̂ dt] = ´gv(5.31b)

for the biophysical inversion and image registration problem, respectively. Note, that for the former,
we only state second-order information for the inversion of the initial condition parametrization p;
for the inversion of the diffusivity, k̄ = (kW , kG), we use a quasi-Newton approach without deriving
Hessian expressions. Here, δ2

pSp [p] = p̂ and δ2
vSv [v] =

∇

v̂ are the second-order variations of
the respective regularization operators. In order to evaluate these expressions, we have to solve
an incremental state and incremental adjoint equation; this is a direct consequence of the reduced
space approach and block-elimination. That means, in order to compute the reduced Hessian action
Hp [p̂] on the incremental control p̂ of the biophysical inversion problem, we first have to solve the
incremental state equation

Bt ĉ ´ ∇ ¨ (k∇ĉ) ´ ρĉ(1 ´ 2c) = 0 in UB,(5.32a)

ĉ(0) ´ Φ p̂ = 0 in ΩB,(5.32b)

with periodic boundary conditions on BΩ for ĉ, forward in time. In a second step, given the state c,

16While the constraints, i.e., the forward problem is linear in the decision or control variables, the inverse problem is not; it
is non-linear.
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incremental state ĉ, and adjoint λ, solve the incremental adjoint equation

´Btα̂ ´ ∇ ¨ (k∇λ̂) ´ ρλ̂(1 ´ 2c ´ 2α) = 0 in ŪB,(5.33a)

λ̂(1) + ΦTΦĉ = 0 in ΩB,(5.33b)

with periodic boundary conditions on BΩ for α̂, backward in time. The Hessian action can then be
computed from evaluating the expression (5.31a).

In a similar manner, the Hessian matvec Hv [v̂] for the registration problem is computed from
first solving the incremental state equation

Btm̂ +∇m̂ ¨ v +∇m ¨ v̂ = 0 in U,(5.34a)

m̂(0) = 0 in Ω,(5.34b)

γ(∇ ¨ v̂ ´ ŵ) = 0 in Ω,(5.34c)

with periodic boundary conditions on BΩ based on a current (Newton-) iterate v for the incremental
state m̂, forward in time. This is followed by solving the incremental adjoint equation

´Btλ̂ ´ ∇ ¨ (vλ̂ + v̂λ) = 0 in Ū,(5.35a)

m̂(1) + λ̂(1) = 0 in Ω,(5.35b)

with periodic boundary conditions on BΩ for λ̂ backward in time. Again, the action of Hv on v̂ is
computed evaluating the expression (5.31b), an integro-differential equation with the incremental
body force λ̂∇m+ λ∇m̂. Note, that the reduced Hessian system not only depends on the incremental
state, adjoint, and control variables m̂, λ̂, v̂, but also on m, λ and v; it is a strongly coupled system.
Similar to the first order optimality conditions, the incremental state and adjoint variables m̂ and λ̂

are functions of v̂ via (5.34) and (5.35). The same applies for p̂ via (5.32) and (5.33) for the biophysical
inversion problem. Furthermore, the computation of the adjoint equations as well as the evaluation of
the Hessian matvecs, require time histories for the state and/or adjoint fields. Suitable checkpointing
schemes or domain-decomposition methods [Akc02; Gri92; Hei05] and tailored time-integration
schemes allowing for few time-steps become necessary.

The step size γ for the Newton update (5.30) is obtained from an Armijo-backtracking [Noc06],
p. 33,48ff line search technique to guarantee global convergence. Inexactness is introduced in two
ways: (i) To solve the Newton system Hk

wŵk = ´gk
w, a matrix-free, preconditioned Conjugate

Gradient (PCG) method is used with an inexact Eisentat-Walker criterion [Eis96; Noc06]; and (ii) a
Gauß-Newton approximation of the reduced Hessian is exploited to guarantee positive definiteness
of the latter far away from a solution. For the reduced Hessian expressions (5.31a) and (5.31b), we
arrive at the Gauß-Newton approximations HGN

p and HGN
v by dropping all terms in the incremental

state and incremental adjoint that include the adjoint variable α and λ, respectively.
In §6.4, the mentioned Gauß-Newton-Krylov solver is explained in more detail for a general

problem including in particular the reduced space approach and block-elimination resulting in the
reduced Hessian operator. There, we further review different granularities of inexactness of Newton-
type solvers, present different manifestations of solvers, and in particular, draw a comparison of
Gauß-Newton-Krylov versus quasi-Newton methods in the context of large-scale PDE-constrained
optimization. Within this thesis, we extend the biophysical inversion sub-component by an advanced,
robust quasi-Newton solver, which, for a series of test cases, outperforms the GNK solver. Details
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are given in §6.4 and §7.4.5.

Preconditioner. For the considered Newton-Krylov optimization, most work is spent in the inner
Krylov method to iteratively solve the Hessian system. Per Krylov iteration, this involves the solution
of two PDEs, which is costly, thus powerful preconditioners are obligatory. For the biophysical
inversion problem, we use the inverse of the diffusion operator with constant approximation of
the diffusion coefficient [Gho16a] to precondition the reduced Newton system. For the registration,
we employ the inverse regularization operator as a preconditioner for the Hessian system [Man15;
Man16a]. This is a standard approach in PDE-constrained optimization. A more advanced, two-level
multi-grid inspired preconditioner for the registration has been developed in [Man17a]. As we employ
a spectral approach (details follow below), the application of the preconditioners has vanishing
costs, due to fast and accurate evaluations of spatial differential operators. Assuming that all image
features are fully resolved spectrally, the preconditioners are theoretically mesh-independent17, i.e.,
yield the same number of Krylov iterations for increasing mesh-resolutions. Medical imaging data,
however, typically features high contrast and sharp edges; thus, a grid that fully resolves the diffusion
coefficient is likely to become prohibitively large. As a result, the number of Krylov iterations to
solve the Hessian system increases as the resolution is refined. Further, the utilized preconditioners
are not β-independent; in other words, changing the regularization parameter changes the number
of required Krylov iterations. An exhaustive description of the utilized preconditioners is beyond
the scope of this thesis; details can be found in the references given above.

Discretization

We discretize the space-time domain Ω ˆ [0, 1], Ω = [0, 2π)d Ă Rd, d = t2, 3u, using regular grids. In
space, we consider n =

śd
j=1 nj, nj P N regular grid points, with xi = 2πi/n, i = (i1, . . . , id) P Rd and

0 ď ij ď nj ´ 1, j = 1, . . . , d. For all spatial operations, we use a spectral projection scheme [Man16b;
Gho17c], that is we approximate all considered functions (and images) as

m(x) =
ÿ

`

m̂`exp(´` ¨ x), where ` = (`1, . . . , `d) P Rd

is a multi-index with ´nj/2 + 1 ď `j ď nj/2, j = 1, . . . , d. A spatial function m is associated with its
spectral coefficients tm̂`u. The mapping between tm̂`u and tmiu is done using forward and inverse
Fast Fourier Transforms (FFT). We assume all functions/images in our formulation to be periodic,
sufficiently smooth, and continuously differentiable in space. We apply appropriate filters and
smoothers, and, if necessary, periodically extend (zero-padding) or mollify our discrete data to meet
these requirements. All spatial derivatives and differential operators are then approximated by
applying the appropriate weights in the spectral domain and using forward and inverse FFTs to map
back and forth between spatial and spectral representation. This approach allows us to apply all
spatial differential operators (and their inverse) in a stable and efficient way with spectral-accuracy
and computational costs dominated by the FFT mappings.

The biophysical tumor progression problem in (5.8) requires Neumann boundary conditions
on BΩB. For numerical treatment and discretization, we apply periodic boundary conditions on
BΩ, and extend the diffusion coefficient k by a small parameter ε outside of ΩB in Ω. The original
homogeneous boundary conditions (5.8b) can be re-imposed on BΩ and will be satisfied on BΩB in

17A mesh-independent preconditioner is a key pre-requisite for good algorithmic scalability. For the results presented
in §5.3.4, the diffusion coefficient is not fully resolved, thus the number of Krylov iterations increase as we refine the
mesh resolution for the weak-scaling experiments. The algorithmic scalability is not optimal.
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1 func [c] = StrangSplitting(p P Rnp , Φ P Rnp ,np , nt)
2 c(0) = Φp, δt = 1/nt

3 for j = 0, 1, . . . , nt do
4 solve for rc : (I ´ δt

4 Dh)rc = (I + δt
4 Dh)c(tj) in (tj, tj + δt

2 ]

5 solve for pc : Btpc = ρc(1 ´ c) in (tj, tj+1]
6 c(tj) = rc
7 solve for c(tj+1) : (I ´ δt

4 Dh)c(tj+1) = (I + δt
4 Dh)pc in (tj + δt

2 , tj+1]

ALGORITHM 5.1 Second order strang splitting for the parabolic tumor growth equation (5.23a). Here, Dh =
[∇¨]hk∇h is the discretized diffusion operator D.

the limit ε Ñ 0 [Del03]. This penalty strategy is known as fictitious domain method [Del03; Man12;
Gho16a]. It can be shown that it approximates (5.8), and eventually converges to the correct solution
as the discretization is further refined.

In time, we use a nodal discretization, resulting in nt + 1 discretization points. We use different
time-integration schemes, dependent on the characteristics and nature of the respective equations.
This is what we discuss next.

Numerical Time Integration

The optimization problems for biophysical inversion and image registration involve repeated solu-
tions of the forward and adjoint operators, given as parabolic and hyperbolic partial differential
equations. In the sequel, we sketch the time-integration schemes for both types of equations. Our
solvers require the storage of time-histories for the adjoint and/or state variable. Unconditionally
stable schemes that are not bounded by the CFL number and allow for larger time steps are a key
part in order to limit the memory footprint and make the usage of high resolution imaging data
feasible. For details, we refer to [Man16b; Gho17c; Gho16a].

Parabolic PDEs. To solve the parabolic equations in the tumor forward and adjoint operators, we
employ a unconditionally stable, second order Strang-splitting method [G68; Hog08b]. Generally
speaking, splitting methods are beneficial for PDEs that involve several differential operators, which
might have to be treated differently. We exemplarily explain the method for (5.23a). Let c(tj) denote
the tumor distribution at time tj = j ¨ δt, δt = 1/nt. We take advantage of the splitting approach by
applying an implicit Crank-Nickolson method for the diffusion part and plugging in the analytical
solution for the reaction part of the PDE. The method is outlined in Alg. 5.1.

To solve the diffusion part in line 4 and line 7 of Alg. 5.1 for half a time step, we use a
preconditioned conjugate gradient (PCG) method with a fixed absolute tolerance of 1E´6. Similar
to the preconditioner for the Hessian matvec, we use a constant approximation of the diffusion
coefficient for the preconditioner, given by Ph

T := (I ´ δt
4 D̃h), where D̃h = ([∇¨]hk̃∇h) and k̃ is the

average diffusion coefficient. The application of this preconditioner (computing the action of Ph
T

´1
x

for a vector x) involves a forward and inverse Fourier transformation and an Hadamard product in
the frequency domain; the costs are negligible. For sufficiently smooth images, the preconditioner is
mesh independent, in practice however, the number of inner Krylov solves is expected to increase
for a refined mesh resolution.

Hyperbolic PDEs. The solution of hyperbolic advection dominated equations, such as the transport
equation (5.15) is a core step for the registration solver. [Ewi01] gives an overview of solvers for
advection dominated systems. Examples include explicit high-order total variation diminishing
schemes [Bor02], or explicit, pseudo-spectral second order Runge-Kutta schemes [Man15; Man16a].
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tj−1 = tj − δt

X?

FIGURE 5.8 Illustration of semi-Lagrangian scheme. Starting with a grid point x in the regular (Eulerian) grid at
time point tj (right figure), we compute its departure point X‹ = X(tj´1) at time point tj´1, by solving equation (5.36)
for the characteristic X(t) (black line in left figure) backward in time. The value of the advected quantity mh(x) at the
current time point tj is then given by its value at the departure point mh(X‹), which is interpolated from computed grid
point values of mh at the previous time point tj´1. The grid of departure points is illustrated in light blue, while the
original is given in gray (left figure). Figure modified from [Man17a].

These approaches are conditionally stable and suffer from possibly small time step limitations due
to the CFL number restriction18. Since our solver requires the storage of time histories of the state
and/or adjoint variable, using CFL restricted schemes is prohibitive (due to a possibly very small
time step length). Thus, we opt for unconditionally stable schemes19 allowing for large time steps20

and thereby significantly reduce the memory footprint.

While Eulerian schemes suffer from the CFL limitation, unconditionally stable, pure Lagrangian
schemes [Man17b] use a non-regular grid which is deformed over time and eventually may become
highly irregular; as a result, we get potentially poor approximation quality of the solution due to
non-uniform deformations. To combine the best of both worlds, we use a hybrid between Eulerian
and Lagrangian, i.e., a high order, unconditionally stable semi-Lagrangian scheme, to solve the
hyperbolic transport equations that occur in the registration problem. We consider the equation
of the form Btm +∇m ¨ v = f (m, v). The time-stepping for the advection term is based on an
approximation of the total time derivative based on backward trajectories (characteristics) in time:

m(x, tj) = m(X‹, tj ´ δt), with X‹ « x ´

ż tj

tj´δt
vdt.

As opposed to the Lagrangian scheme, semi-Lagrangian schemes trace back characteristics only for
the past time step and revert to a uniform (Eulerian) grid via interpolation. For every time step
tj, two basic steps are involved: (i) We need to compute the departure point X‹ = X(tj ´ δt) of a
transported particle, by solving the characteristic equation

(5.36) BtX(t) + v ¨ ∇X(t) = v(X(t)) in (tj´1, tj], with X(tj) = x

for X : [tj´1, tj] Ñ Rd backward in time. We use a second order Runge-Kutta scheme to solve (5.36).
This requires evaluation of v at off-grid locations at Runge-Kutta stages, i.e., we have to interpolate v
in space. (ii) In a second step, we need to compute the transported quantity m along the characteristic

18For conditionally stable time-integration schemes, the CFL condition defines an upper bound on the time step size to
guarantee a stable solution. It is defined as C = vδt

δx ď 1, which for high spatial resolutions severely limits the maximum
time step size δt allowed to still guarantee a stable time-integration scheme.

19Examples include Lax-Friedrich [Ben11], Lagrangian [Man17b] and semi-Lagrangian [Beg05; Che11b; Man17a; Man16b]
schemes.

20The time step is chosen based on accuracy reasoning, rather than stability requirements.
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X(t), i.e., we have to solve an equation of the form

(5.37) Btm(X(t), t) + v ¨ ∇m(X(t), t) = f (m(X(t), t), v(X(t))) in [tj´1, tj]

along the characteristic X(t). This is done using a second order Runge-Kutta scheme. Once again,
this involves evaluations of v and m at off-grid locations and interpolation is required. The method is
outlined in Fig. 5.8. The accuracy of the semi-Lagrangian method strongly depends on the employed
time integration scheme and the quality of the interpolation method. For the latter, we use a cubic
spline interpolation model; details are given in the sequel. For a more detailed description of
the utilized semi-Lagrangian solver, the time-integration, interpolation, and solution of transport
equations with time-dependent velocities, we refer to [Man17a].

Computational Kernels

The image registration solver as well as the tumor inversion solver are both based on two main
computational kernels; (i) the FFT which is used for all spatial differential operators in our spectral
approach, and (ii) the cubic interpolation which is required to compute off-grid values of velocity
and advected quantities in the semi-lagrangian scheme. From the numerical analysis in §5.3.4 we
will see, that about 90% of the compute time is spent in FFT or interpolation routines. As a result,
scalability and performance of CLAIRE and SIBIA is mainly inherited from these kernels. In the
sequel, we briefly discuss implementation and optimization for each of the kernels. For a more
thorough description of the specific optimization and implementation details, we refer to [Man16b;
Gho17c]. For all linear algebra operations, PETSc [Bal16a] is used, and its toolbox TAO [Mun14]
is used for the non-linear optimization. The 3D FFTs are executed in parallel using the library
AccFFT [Gho17b].

Data Distribution and 3D Fast-Fourier Transform (AccFFT). We employ a spectral approach,
which means that all spatial differential operators such as gradient, laplacian, or divergence are
evaluated in the frequency space. This involves two Fast Fourier Transforms (FFT) and an Hadamard
product in the frequency domain: A forward FFT is used to map from spatial into frequency domain;
there, the differential operator is computed by applying an Hadamard transformation, and the result
is mapped back to the spatial domain using an inverse FFT, i.e., to compute a x-derivative of a scalar
field f , we have to compute

(5.38) Bx f (x) = F´1
x (´iωxFx( f (x))),

where Fx is the 1D FFT transform in x-direction. Large scale simulations and 3 dimensional imaging
data urge for a distributed memory design. The data distribution among processors is defined by
a pencil decomposition [Gra03] for 3D FFTs (see Fig. 5.9). For our three dimensional imaging data
with ni, i = 1, 2, 3 grid points per spatial dimension, this results in a distribution such that each of the
p = p1 p2 MPI tasks, gets a portion n1/p1 ˆ n2/p2 ˆ n3 grid points. To compute the 3D FFTs, we use
the open-source library AccFFT [Gho17b; A15] which is based on 1D FFT calls from the FFTW [Fri17;
Fri05] package. After a 1D FFT in the first coordinate, which due to our data partitioning can
be computed in parallel without communication, we perform a 2D FFT in the second and third
coordinate. Each of these subsequent FFTs requires a data re-distribution, involving

?p concurrent
alltoallv communications between groups of

?p MPI tasks; details can be found in [A15; Gra03].
AccFFT supports CPU and GPU implementation for parallel 3D FFTs in double and single precision,
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FIGURE 5.9
Parallel data partitioning, determined by the pen-
cil decomposition [Gra03] for 3D FFTs. Each color
represents the data distributed to an MPI task. The
initial data distribution of a volumetric input image
is given in (a); the z-direction is not distributed and
owned locally. To perform FFT in x- and y-direction,
a re-distribution of data, requiring ?p all-to-all
communications of groups of ?p MPI tasks, is nec-
essary. This is illustrated in figures (b) and (c),
respectively. Figure modified from [Man16b; A15].
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FIGURE 5.10 Illustration of the data distribution and evaluation of the parallel interpolation kernel. The (2D) domain
is decomposed into a 2 ˆ 2 grid (i.e., we use pi = 2); figure (a). The deformed grid corresponding to the domain of the
bottom right processor, is overlaid; figure (b). In our parallel scheme, we encounter three different cases, illustrated in
figure (c). The values to be interpolated, as given by the departure point X‹,i, are (i) owned by the processor (owner and
worker MPI tasks are identical), (ii) owned by another processor (owner and worker MPI tasks are different), and (iii)
not owned by a processor (i.e., the departure point is close to or on the boundary of two MPI processors; illustrated in
figure (d)). The last two cases involve communication. For case one, we communicate the coordinates to the worker (three
values), evaluate the interpolation kernel on the worker, and communicate the result back (one scalar value) to the owner.
To handle the latter case, we introduce ghost points (figure (d); shaded in gray). Figure provided by Andreas Mang.

and features optimization for gradient and divergence operators by avoiding unnecessary 3D FFTs
and global transpose operations. As a result, the optimized algorithm to compute the gradient
or divergence of a function reduces the communication volume by a factor of two (only 4 global
transpose operations are required instead of 8) [Gho17c].

Parallel Semi-Lagrangian and Cubic Interpolation. The semi-Lagrangian scheme to solve the
advection equation for the registration problem, requires interpolation of velocity and image data
points at off-grid locations. We consider tricubic Lagrange-interpolation. The value of a scalar or
vector field m at off-grid location (x, y, z) is computed as

(5.39) m(x, y, z) =
3
ÿ

i=0

3
ÿ

j=0

3
ÿ

k=0

mijk`i(x)`j(y)`k(z), with `i(x) =
3
ź

n=0,n‰i

x ´ xn

xi ´ xn

where mijk is the function value at grid point (ihx, jhy, khz), the sampling points for interpolation,
and `i is the ith-Lagrange basis polynomial. The off-grid interpolation points are determined by
back tracing fluid particle characteristics, computed from (5.36). Considering the parallel, distributed
memory layout defined by the FFT pencil decomposition (Fig. 5.9), the corresponding departure
point X i,‹ for a grid point xi P ΩPj on MPI task Pi does not necessarily need to lie on the same MPI
task, i.e., X i,‹ P ΩPk , j ‰ k. We encounter three different cases. An illustration is given in Fig. 5.10.
The values to be interpolated as given by the departure point can either (i) be owned (i.e., reside
on) locally, that means the owner and worker (i.e., the task performing the interpolation) MPI task
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are identical, or (ii) they can be owned by a different processor, i.e., owner and worker MPI task
are different; lastly they can be (iii) not owned by any processor. This occurs if the departure point
is close to or on the boundary between sub-domains of processors (note that the partitioning is
non-overlapping). The last two cases require costly communication, which affects the scalability of
the interpolation kernel [Man16b; Gho17c]. Prior to the computation of the transport equation (5.37),
in the so called scatter phase, we need to send all points along the backwards characteristic that
happen to lie in another processors domain to the corresponding MPI rank. An interpolation planner
distributes this information via a sparse point-to-point alltoallv communication. The interpolation
kernel has been further optimized [Gho17c] to significantly reduce cache misses by re-ordering the
processing of departure points using a binning technique to group them by spatial proximity. Further
optimization include AVX vectorization of the interpolation kernel and OpenMP support. Scalability
results are presented in §5.3.4

5.3.4 Numerical Results: Optimizing Parallel Scalability and Efficiency

Recent advances in medical imaging lead to data sets with increasing resolution. Seven Tesla
MRI scanners can reach a resolution of up to 0.5 mm which corresponds to « 4503 voxels [Lüs13];
ultra high resolution CT scanners even capture a resolution of 0.25 mm with approximately 5123

voxels [Kak15]. This translates to a drastic increase in memory consumption and high computational
complexity. Consequently, distributed memory algorithms become inevitable and the critical time-to-
solution constraint in a clinical application context urges for good strong-scaling efficiency. Highly
optimized and scalable solvers allow for patient-specific simulations in the clinical setting; massively-
parallel execution reduces the computation time to the scale of minutes, as opposed to days or weeks.
Besides that, in biological imaging, biophysics and neuro-science, extreme high O(µm) resolutions
(« 20003) voxels) of animal Micro-CT [Sta15], raise the need for good weak-scaling efficiency. A
novel optical imaging technique in small animal neuro-imaging, called CLARITY [Tom14], delivers
sub-micron resolution with images of 10 ´ 100 billion voxels. Also in human clinical imaging, we
observe a trend towards higher-resolution data in order to capture detailed brain (and other tissue)
structure, which is decisive in tumor progression. All this manifests the need for HPC computing in
medical image analysis and data assimilation software.

In this section, we present efficiency and scalability results of the presented sub-components,
tumor inversion solver for biophysical model calibration and diffeomorphic image registration.
We target strong-scaling performance on up to 16 thousand cores, and showcase results which
demonstrate that our solver can be used to solve registration problems of unprecedented scale,
n = 40963 resulting in approx 200 billion unknown—a problem size that is 64ˆ larger than the
state-of-the-art. The presented results have been previously published in [Gho17c], and are the
result of joint work with my collaborators Andreas Mang, Amir Gholami, George Biros and Miriam
Mehl. The scalability and parallel efficiency of the biophysical inversion solver is primarily own
contribution and achieved within this thesis. We therefore focus on the discussion of the tumor
inversion solver, but give results for the registration solver as well, for the sake of completeness. The
optimization of the computational kernels 3D FFT and parallel interpolation kernel is not part of this
thesis, and details can be found in [Gho17c].

Implementation, Hardware and Data. SIBIA and its components are written in C++ and use MPI
for parallelism. PETSc [Bal16a] is used for linear algebra operations and its toolbox TAO [Mun14] for
non-linear optimization. The library AccFFT [Gho17b] is used for computation of parallel 3D Fourier
Transforms and PnetCDF [Uni] for parallel I/O. We benchmark the tumor inversion solver on the



144 CHAPTER 5: SCALABLE BIOPHYSICS-BASED IMAGE ANALYSIS

10
0

10
1

10
2

10
3

ru
nt

im
e 

[s
]

n = 643
ideal
FFT time
2 p
4 p
8 p
16 p
32 p

n = 1283
ideal
FFT time
4 p
8 p
16 p
32 p
64 p
128 p
256 p

n = 2563
ideal
FFT time
32 p
64 p
128 p
256 p
512 p
1024 p
2048 p

n = 5123
ideal
FFT time
256 p
512 p
1024 p
2048 p
4096 p
8192 p
16384 p

FIGURE 5.11 Strong- and weak-scaling performance for the tumor inversion solver. We illustrate timings
from Tab. 5.2, i.e., time to solution and time spent in the FFT kernel (in seconds), as a function of the number of
unknowns (in space) and the number of tasks; modified from [Gho17c]

Tier-1 supercomputer HazelHen at the High Performance Computing Center HLRS in Stuttgart21,
a Cray XC40 system with 7, 712 noes with Xeon E5-269 v3 processors and 24 cores on two sockets
per node, resulting in a peak performance of 7.42 Petaflops. Each node has 128 GB of memory and
they are connected with an Aries interconnect. Additionally, we use the Lonestar5 (same nodes
as HazelHen, but only 64 GB memory per node) HPC system of the Texas Advanced Computing
Center (TACC)22 to benchmark the registration solver.
For the tumor inversion runs, we use medical brain imaging data obtained from the University of
Pennsylvania with a spatial resolution of n = 2563. For weak- and strong-scaling experiments, we
rescale the data to coarser or finer resolutions n P t643, 1283, 2563, 5123u using cubic interpolation and
band-limit the data by applying a Gaussian smoothing operator with spatial bandwidth σ = 1/ni. For
the registration runs, we use the open-access data repository ’Non-rigid Registration Evaluation
Project (NIREP)’ [Chr06] with an original resolution of (n1, n2, n3) = (256, 300, 256). We apply zero
padding and resampling for different resolutions.

Parallel Performance for the Biophysical Inversion Solver

Setup. We present strong- and weak-scaling results for the tumor inversion solver on HazelHen.
We report the overall runtime, i.e., the time spent in the inversion, referred to as time-to-solution,
and analyze its portions spent in the main computational kernels, subdivided into execution and
communication time. We outline the time spent in the diffusion PCG solver, the Hessian matvec,
and the 3D FFT kernel. All timings reflect the maximum time across all MPI tasks. For all runs, we
use 12 MPI tasks per node. We benchmark the inversion solver for a regularization parameter of
βp = 1E´3 using a Gauß-Newton-Krylov solver for optimization. We limit the number of Newton
iterations to three, and the number of Hessian matvecs per outer iteration to three (inner Krylov
solver). We solve the diffusion operator up to an absolute tolerance of 1E´6 for forward and
adjoint, using a preconditioned conjugate gradient (PCG) method and nt = 4 time steps for the
numerical time-integration scheme. This setup results in an overall gradient reduction of one order
of magnitude and 13% relative data mismatch for the predicted tumor at physical time tT = 1 and
the observed data. As data, we use a synthetically grown tumor, obtained by our forward tumor
solver with ρ f = 15, k f = 1E´2.

Observations. We report strong- and weak-scaling results in the regime of n P t644, 1283, 2563, 5123u

numbers of unknowns in space and parallel execution on p P t21, . . . , 214u MPI tasks. Timings for
the overall time-to-solution for the inversion and a detailed breakdown into its main computational

21https://www.hlrs.de
22https://www.tacc.utexas.edu
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kernels is given in Tab. 5.2. Across all runs, the 3D FFT kernel, which computes all spatial differential
operators, consumes about 82% of the overall computation time. As a result, the parallel scalability
of the tumor inversion solver is primarily inherited from the parallel performance of the 3D FFTs, in
our case the scalability of the AccFFT library. Further, nearly all the computational time (98%) is
spent in the PCG method to solve the diffusion part of the employed Strang-splitting method (we use
an analytic solution for the reaction part; all other parts in the code have vanishing computational
costs). About 65% of the runtime goes to the Hessian matvec and inner Krylov solve to compute the
Newton step; the remaining percentage is spent in gradient and objective function evaluations.

We observe excellent strong-scaling results for n = 2563 unknowns in space, with a strong-
scaling efficiency of 98%, going from 32 to 2048 MPI tasks (runs #13 ´ #19). Similar observations
can be drawn from the strong scaling series for n = 1283 and n = 643 unknowns in space, yielding
slightly worse but still acceptable parallel efficiency rates of 67% and 52%, going from 4 to 256, and 2
to 32 MPI tasks, respectively. We illustrate the strong-scaling performance in Fig. 5.11 and contrast
the measured runtime to the ideal runtime, assuming 100% parallel efficiency (red diamonds).
Considering the n = 5123 runs, that represent a high level of parallelism going up to a total of 16384
MPI tasks, we observe a degradation of parallel efficiency beyond 2048 parallel tasks. Our analysis
showed that this degradation in performance is due to an increasing communication overhead caused
by MPI routines. Not least this is supported by the fact that the time consumed by the diffusion
solver drops to 50%, as opposed to 98% before. By experimentally increasing the MPI buffer and the
maximum message size for the MPI eager protocol, the performance of run #25 could be increased
by approximately 30% (run #26). This indicates that the performance degradation is mainly due to
non-optimal MPI settings and might be resolved with careful optimization of the HPC environment,
or introducing hybrid parallelism with OpenMP.

We further analyze algorithmic and parallel weak-scaling efficiency, indicated as effW and
(ĂeffW), respectively, in Tab. 5.2. We consider a setup, where the number of unknowns in space as
well as the number of parallel MPI tasks is increased by a factor of eight in between weak-scaling
levels; the series of runs #3, #10, #17, #24, #26 is exemplarily highlighted in Tab. 5.2. We observe an
algorithmic scaling efficiency of 30% increasing the spatial resolution and number of MPI tasks by a
factor of eight. As mentioned earlier, the utilized preconditioner requires the diffusion coefficient
to be fully resolved spectrally in order to yield a mesh-independent condition number. For the
considered data set, this is not the case, and, consequently the number of PCG iterations required to
solve the diffusion equation increases from 10 iterations (on average) per diffusion solve on n = 643

to around 50 iterations per diffusion solve on a n = 10243 grid. Exact numbers are shown in Tab. 5.2.
Fixing the number of allowed PCG iterations, results in a parallel weak-scaling efficiency of about
45%, increasing unknowns and MPI tasks by a factor of eight. We observe a perfect correlation
of the FFT weak-scaling efficiency with the overall weak-scaling efficiency of the tumor inversion
solver. For a increasing number of MPI tasks, the FFT becomes more and more dominated by the
communication time, and as a result the parallel efficiency deteriorates. If we only use one MPI task
per socket, i.e., two MPI tasks per node, the parallel weak-scaling efficiency increases to 80% going
from n = 643 to n = 2563. These runs, exploiting maximal communication bandwidth, are reported
as runs #29-#32 in Tab. 5.2. Note, that there is always an inherent overhead for memory allocation
and increased communication time due to larger message sizes when increasing the number of
unknowns.
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Conclusion For the biophysical inversion solver, we obtain almost optimal scalability results up to 2048
MPI tasks with a parallel efficiency, ranging between 60% and 100%. Beyond 2048 MPI tasks, we encounter a
fall off of parallel efficiency due to increased communication overhead of MPI routines. Optimizing the MPI
environment and settings or hybrid parallelism with OpenMP are expected to solve this problem. With respect
weak-scaling efficiency, we are bound by the weak-scaling efficiency of the underlying AccFFT library, which
consumes about 80% of the overall compute time. Computing the 3D FFTs becomes increasingly expensive
for larger numbers of unknowns due to increasing communication costs (global transpose and alltoallv
operations).
Without limiting the number of Newton and inner Krylov iterations, we solve the inverse tumor problem on
clinical brain data with a resolution of n = 2563 up to a relative gradient of 1.20E´4 and a resulting final
data mismatch of 0.2% in 22 minutes using 512 MPI tasks of HazelHen. The objective function is reduced by
three orders of magnitude.

Parallel Performance for the Image Registration Solver

Setup. We consider two sets of test-cases, clinical real brain MR data from the open access
repository ’Non-rigid Registration Evaluation Project (NIREP)’ [Chr06], and smooth, synthetic
images. For the latter, we set the template image as mT(x) = (sin(x1)

2+sin(x2)
2+sin(x3)

2)/3, and gen-
erate a reference image via advection with the smooth velocity v(x) = (v1(x), v2(x), v3(x))T with
v1(x) = sin(x3)cos(x2)sin(x2), v2(x) = sin(x3)cos(x3)sin(x3), v3(x) = sin(x2)cos(x1)sin(x1). We fix
a number of parameters for the conducted experiments. We use a H1-regularization with a penalty
of βw = 1E´4 on the divergence of v to control volume change, and experimentally determined
the regularization parameter βv = 1.00E´2. For the semi-Lagrangian, 4 time steps are used. The
number of Newton and inner Krylov iterations are limited to 3 and 5 for the real data input images,
and to 5 and 10 for the smooth synthetic images, respectively. We perform strong-scaling series
for 4 resolution levels and resample the data accordingly, i.e., κ` ¨ (256, 300, 256), κ` P t1/4, 1/2, 1, 2u.
We report timings (in seconds) as maximum across all MPI tasks for (i) the overall runtime, (ii) the
accumulated time spent in spectral operations, FFTtotal, (iii) the FFT communication time FFTcomm,
(iv) the accumulated time spent in the interpolation, INTtotal, with (v) the respective time spent in
interpolation kernel operations only FFTkernel, and (vi) the portion of time spent in communication
FFTcomm.
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FIGURE 5.12 Strong- and weak-scaling performance for diffeomorphic image registration. Illustrated results corre-
spond to timings in Tab. 5.3. The time to solution and the time spent in the computational kernels (summarized) is shown
(in sec.) as a function of the number of unknowns (in space), and the number of MPI tasks; modified from [Gho17c]

Observations. Scalability results for the diffeomorphic registration on Lonestar5 are reported
in Tab. 5.3 and Fig. 5.12. More than 90% of the overall runtime is spent in the main computational
kernels, FFT and interpolation for the semi-Lagrangian. Similar as for the tumor inversion solver, the
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TABLE 5.1 Computational performance of the tumor inversion solver for real data, on HazelHen. We report the
time-to-solution and its portion spent in the Hessian matvec, 3D FFT kernel, and diffusion PCG solver, respectively.
We give absolute timings in seconds and percentage for a strong- and weak-scaling setting as a function of number of
unknowns and parallel MPI tasks. We show the strong-scaling efficiency effS and the algorithmic weak-scaling efficiency
effW . To demonstrate the effective weak-scaling efficiency reffW , we fix the number of PCG iterations for the diffusion solver
for all resolutions. We perform 3 Gauß-Newton iterations with 3 Hessian matvecs for the inner Krylov solver each. For
runs marked with : we observed higher runtimes due to MPI problems arising from non-optimal settings. Improved
performance was observed, increasing the MPI buffer and the maximum message size for the MPI eager protocol (run
marked ;). Results originally published in [Gho17c]

N nodes tasks runtime effS effW (ĂeffW) FFT ([%]) H-matvec ([%]) diffusion ([%])

#1 643 1 2 4.07E+1 100.0 100.0 (100.0) 3.23E+1 (79.5) 2.57E+1 (63.2) 3.98E+1 (97.8)
#2 1 4 2.60E+1 78.2 100.0 (100.0) 2.12E+1 (81.7) 1.64E+1 (63.3) 2.55E+1 (98.1)
#3 1 8 1.33E+1 76.6 100.0 (100.0) 9.92 (74.7) 8.38 (63.1) 1.30E+1 (97.9)
#4 2 16 6.05 84.0 100.0 (100.0) 5.05 (83.5) 3.82 (63.2) 5.89 (97.4)
#5 3 32 4.81 52.8 100.0 (100.0) 4.14 (86.1) 3.02 (62.8) 4.68 (97.3)

#6 1283 1 4 4.91E+2 100.0 4.24E+2 (86.3) 3.14E+2 (63.9) 4.87E+2 (99.2)
#7 1 8 3.07E+2 80.0 2.56E+2 (83.2) 1.96E+2 (63.9) 3.04E+2 (99.1)
#8 2 16 1.37E+2 89.6 29.7 (43.7) 1.12E+2 (81.5) 8.77E+1 (64.0) 1.36E+2 (99.2)
#9 2 32 8.46E+1 72.6 30.7 (45.2) 6.72E+1 (79.5) 5.41E+1 (63.9) 8.38E+1 (99.1)

#10 6 64 4.15E+1 73.9 32.0 (46.8) 3.24E+1 (78.1) 2.65E+1 (63.9) 4.11E+1 (99.0)
#11 11 128 2.08E+1 73.7 29.0 (42.0) 1.71E+1 (82.2) 1.33E+1 (63.8) 2.06E+1 (98.7)
#12 22 256 1.13E+1 67.7 42.5 (60.9) 9.49 (83.7) 7.20 (63.5) 1.11E+1 (98.0)

#13 2563 3 32 1.58E+3 100.0 1.31E+3 (82.9) 1.02E+3 (64.4) 1.57E+3 (99.1)
#14 6 64 8.06E+2 98.2 6.75E+2 (83.7) 5.19E+2 (64.4) 7.99E+2 (99.1)
#15 11 128 3.63E+2 109.0 11.2 (22.9) 3.01E+2 (82.9) 2.35E+2 (64.7) 3.61E+2 (99.5)
#16 22 256 1.81E+2 109.6 14.4 (29.3) 1.49E+2 (82.6) 1.16E+2 (64.4) 1.80E+2 (99.5)
#17 43 512 1.00E+2 98.9 13.3 (26.6) 8.26E+1 (82.5) 6.45E+1 (64.4) 9.95E+1 (99.3)
#18 86 1024 4.03E+1 123.0 15.0 (31.0) 3.45E+1 (85.7) 2.55E+1 (63.4) 3.97E+1 (98.6)
#19 172 2048 2.50E+1 98.9 19.2 (38.5) 2.17E+1 (86.9) 1.59E+1 (63.5) 2.38E+1 (95.0)

#20 5123 22 256 2.52E+3 100.0 2.15E+3 (85.2) 1.65E+3 (65.5) 2.50E+3 (99.4)
#21 43 512 1.32E+3 95.8 1.13E+3 (86.2) 8.61E+2 (65.5) 1.31E+3 (99.4)
#22 86 1024 7.54E+2 83.5 5.4 (13.6) 6.24E+2 (82.8) 4.93E+2 (65.4) 7.52E+2 (99.7)
#23 172 2048 3.47E+2 90.7 7.5 (19.0) 2.87E+2 (82.8) 2.32E+2 (66.9) 3.45E+2 (99.4)
#24 342 4096 2.57E+2 61.2 5.2 (11.6) 1.98E+2 (77.1) 1.66E+2 (64.6) 2.50E+2 (97.3)
#25: 683 8192 2.00E+2 39.3 3.0 (5.6) 1.30E+2 (65.1) 1.32E+2 (65.9) 1.71E+2 (85.5)
#26; 683 8192 1.43E+2 55.1 4.2 (7.8) 9.20E+1 (64.4) 8.96E+1 (62.7) 1.15E+2 (80.7)
#27: 1366 16384 3.89E+2 10.1 1.2 (2.0) 2.16E+2 (55.6) 2.34E+2 (60.2) 2.69E+2 (69.2)

#28 10243 2732 32768 1.61E+3 100.0 0.8 (1.2) 6.58E+2 (40.9) 9.25E+2 (57.5) 8.19E+2 (50.8)

#29 643 2 4 2.20E+1 100.0 (100.0) 1.85E+1 (84.2) 1.40E+1 (63.5) 2.15E+1 (97.7)
#30 1283 16 32 4.00E+1 55.0 (80.7) 3.49E+1 (87.2) 2.56E+1 (64.1) 3.94E+1 (98.6)
#31 2563 128 256 6.96E+1 31.6 (64.8) 6.05E+1 (87.0) 4.52E+1 (65.0) 6.90E+1 (99.1)
#32 5123 1024 2048 1.39E+2 15.9 (37.5) 1.14E+2 (82.3) 8.82E+1 (63.7) 1.36E+2 (98.2)

TABLE 5.2 Number of PCG iteration to solve the diffusion problem up to an absolute tolerance of 10´66 for different
spatial resolutions along with the relative gradient and relative tumor mismatch after 3 Gauß-Newton with a maximum of
3 PCG iterations for the inversion of the Hessian.

N3 #its diffusion rel. gradient rel. mismatch

643 2599 4.20E´2 1.34E´1
1283 4088 4.52E´2 1.38E´1
2563 6110 4.63E´2 1.40E´1
5123 8512 4.45E´2 1.43E´1
10243 13929 4.64E´2 1.41E´1
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main computational time goes to the PDE solves, i.e., solving the transport equation (about 87% of
the overall runtime). 4 of these PDE solves are done in gradient and objective function evaluation,
respectively, and twelve PDE solves are carried out in the Hessian matvec routine.

For clinical relevant problem sizes, we observe excellent strong-scaling results with parallel
efficiencies between 52.1% for run #5 and 80% for run #28; compare also Fig. 5.12. In these regimes,
the FFT and interpolation kernel exhibit perfect scalability. Note, that the maximum degree of
parallelism for the considered implementation is limited by the support of the interpolation kernel;
for cubic interpolation a minimum of 3 ˆ 3 ˆ n3 points per MPI tasks are required. For the original
resolution of the NIREP data we reduce the gradient by a relative factor of 3.17E´1 and the final
data mismatch between the transported template image and the observed reference image by a factor
of 1.89E´1 for the reported runs23.

For the real brain NIREP data, we achieve a weak-scaling efficiency of 62.7%, 44.6% and 32.6%
when comparing the runs #1, #9, and #19 through #28 in Tab. 5.3. Again we observe an increase of
the FFT time, due to rising communication costs, as we approach larger scales (FFT is communication
bound). This has negative effects on the weak-scaling performance; for run #28, e.g., 80% of the
total FFT time is spent in communication. The interpolation on the other hand shows very good
weak-scaling efficiency of about 50%, comparing runs #1 and #28. For the synthetic large-scale
runs, we observe an excellent overall weak-scaling efficiency of 82%, across 128 MPI tasks for 10243

resolution (run #29) and 8192 MPI tasks for 40963 resolution (run #34).

Conclusion For the diffeomorphic image registration, we solve an inverse problem with input images of
40963 resolution, resulting in « 200 billion unknowns (only considering the unknowns in the velocity field
and neglecting state and adjoint fields), a problem size that is 64ˆ larger than the state of the art. We obtain
excellent strong-scaling performance which is critical for a feasible time-to-solution for 3D registration problems
in a clinical application setting. We obtain a parallel strong scaling efficiency between 52% and 80%. The
negative effects of the degrading FFT scalability are not as pronounced for the registration solver, as the overall
computational time is roughly balanced between spectral operations and interpolation kernel. Overall this
allows for application of the registration solver to high resolution images, arising e.g. from ultra high resolution
CLARITY data [Kut16; Tom14; Kut17].

23Note, that for real brain data sets and inter-subject registration, the data misfit cannot be reduced to zero due to incompat-
ible topology and intensity variations.
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TABLE 5.3 Computational performance for the distributed-memory algorithm for diffeomorphic image registration,
performed on TACC’s Lonestar 5 (runs #1 to #28; NIREP data-sets) and HLRS’ Hazel Hen for the large-scale runs.
(SYN data-sets). We use 12 MPI tasks per node. We set the upper limit for the Gauss–Newton iterations to three/five
and the number of PCG iterations to five/ten for NIREP/SYN. We report (from left to right) the total time spent in the
inversion (runtime), the strong-scaling efficiency, and the time spent in the computational kernels (spectral operations/FFT
and interpolation), respectively (in seconds) as a function of the number of unknowns N (in space), and the number of
nodes and tasks. All timings are accumulated. We report the max. value across all MPI tasks; Here FFTtotal corresponds
to the time spent in all spectral operations; FFTcomm is the communication time; INTtotal is the overall time spent
in the interpolation; FFTkernel is the time spent on the execution of the interpolation operator, and FFTcomm is the
communication time for the interpolation. We also report the strong-scaling efficiency and the percentage of the total
interpolation and FFT time with respect the overall runtime. Results originally published in [Gho17c]

N nodes tasks runtime eff. FFTtotal ([%]) FFTcomm INTtotal ([%]) INTkernel INTcomm

#1

(6
4,

75
,6

4)

1 2 2.07 100.0 8.21E´1 (39.7) 9.31E´2 1.05 (51.0) 7.18E´1 6.71E´2
#2 1 4 1.13 91.4 4.83E´1 (42.7) 7.36E´2 5.30E´1 (46.8) 3.70E´1 3.68E´2
#3 1 8 6.26E´1 82.6 2.67E´1 (42.7) 4.44E´2 2.87E´1 (45.9) 1.95E´1 1.78E´2
#4 2 16 3.70E´1 69.9 1.72E´1 (46.6) 6.88E´2 1.59E´1 (43.1) 9.84E´2 9.95E´3
#5 3 32 2.47E´1 52.3 1.27E´1 (51.3) 7.51E´2 9.28E´2 (37.5) 5.00E´2 5.54E´3

#6

(1
28

,1
50

,1
28
)

1 2 2.15E+1 100.0 9.35 (43.4) 5.07E´1 9.91 (46.0) 6.83 8.22E´1
#7 1 4 1.13E+1 95.4 5.06 (44.9) 6.73E´1 5.05 (44.7) 3.42 4.28E´1
#8 1 8 6.19 86.9 2.79 (45.0) 3.89E´1 2.78 (44.9) 1.82 2.32E´1
#9 2 16 3.30 81.6 1.59 (48.2) 5.52E´1 1.44 (43.6) 9.24E´1 1.14E´1

#10 3 32 1.79 75.2 8.94E´1 (50.0) 3.86E´1 7.50E´1 (41.9) 4.63E´1 5.93E´2
#11 6 64 1.04 65.0 5.61E´1 (54.2) 3.68E´1 4.22E´1 (40.8) 2.32E´1 3.05E´2
#12 11 128 6.49E´1 51.8 3.69E´1 (56.9) 2.64E´1 2.47E´1 (38.1) 1.22E´1 1.90E´2

#13

(2
56

,3
00

,2
56
)

1 2 2.36E+2 100.0 1.13E+2 (48.0) 6.40 1.02E+2 (43.4) 5.88E+1 1.05E+1
#14 1 4 1.22E+2 96.4 6.04E+1 (49.3) 8.33 5.25E+1 (42.9) 2.95E+1 5.51
#15 1 8 6.73E+1 87.6 3.23E+1 (48.0) 4.58 2.99E+1 (44.5) 1.56E+1 3.95
#16 2 16 3.59E+1 82.1 1.82E+1 (50.7) 7.80 1.55E+1 (43.2) 7.82 2.69
#17 3 32 1.81E+1 81.4 9.38 (51.8) 3.60 7.48 (41.3) 3.92 1.18
#18 6 64 9.70 76.0 5.57 (57.5) 3.30 3.93 (40.5) 1.99 7.07E´1
#19 11 128 4.63 79.5 2.72 (58.6) 1.50 1.69 (36.5) 9.98E´1 1.49E´1
#20 22 256 2.66 69.2 1.63 (61.1) 1.21 9.81E´1 (36.9) 4.98E´1 8.26E´2
#21 43 512 1.52 60.5 8.09E´1 (53.1) 6.15E´1 6.43E´1 (42.2) 2.54E´1 6.80E´2

#22

(5
12

,6
00

,5
12
)

2 16 3.28E+2 100.0 1.81E+2 (55.0) 4.84E+1 1.35E+2 (41.2) 6.33E+1 2.50E+1
#23 3 32 1.73E+2 94.7 9.57E+1 (55.2) 2.85E+1 6.86E+1 (39.6) 3.17E+1 1.15E+1
#24 6 64 8.66E+1 94.7 5.04E+1 (58.2) 2.42E+1 3.48E+1 (40.2) 1.59E+1 6.31
#25 11 128 4.32E+1 94.9 2.46E+1 (56.9) 1.10E+1 1.63E+1 (37.8) 7.95 2.84
#26 22 256 2.36E+1 87.0 1.56E+1 (66.3) 1.08E+1 8.83 (37.5) 4.03 1.64
#27 43 512 1.31E+1 78.1 8.92 (67.9) 6.56 4.41 (33.6) 2.03 7.27E´1
#28 86 1024 6.35 80.7 4.35 (68.5) 3.52 2.02 (31.9) 1.02 2.08E´1

#29 10243 11 128 1.97E+2 100.0 1.20E+2 (60.9) 3.30E+1 6.90E+1 (35.0) 2.35E+1 2.23E+1
#30 22 256 9.88E+1 99.7 6.17E+1 (62.5) 2.15E+1 3.49E+1 (35.4) 1.16E+1 1.16E+1

#31 20483 86 1024 2.10E+2 100.0 1.37E+2 (65.0) 4.33E+1 7.21E+1 (34.3) 2.73E+1 2.40E+1
#32 171 2048 1.11E+2 94.8 7.17E+1 (64.7) 2.63E+1 3.64E+1 (32.8) 1.35E+1 1.05E+1

#33 40963 342 4096 4.42E+2 100.0 3.22E+2 (72.8) 1.31E+2 1.17E+2 (26.4) 4.20E+1 3.97E+1
#34 684 8192 2.38E+2 93.1 1.73E+2 (72.9) 8.27E+1 6.25E+1 (26.3) 2.10E+1 2.30E+1
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6 Coupling Schemes for the
Multi-Component Problem

The main contribution and research emphasis of the second part of this thesis is the development
of methodologies for effective data-assimilation and image analysis in brain tumor imaging. The
formidable and large-scale inverse problems involved within this task ask for highly scalable
and robust parallel solvers. An exceptional challenge of our considered application (described
in Chapter 5) lies in the necessity of combining inversion in two directions: the identification of point
correspondences in two different images of similar objects, and the calibration of biophysical models
for brain tumor progression simulations for specific patient data. A meaningful overall solution
requires tight coupling of the sub-components. In this chapter, we present two different formulations
for the general inversion problem described in Chapter 5. Both methodologies tightly couple image
registration and inverse tumor growth simulation, yet target different aspects of brain tumor image
analysis.

(1) The moving-patient strategy (presented in [Sch]; detailed in §6.1) is of particular interest for bio-
physics aided normal-to-abnormal image registration and the resulting clinically relevant task of
automated segmentation of MR imaging data, as described earlier in Chapter 5. Such techniques
are useful for mapping different functional regions of the brain from a labeled/segmented atlas
brain to the patient anatomy for, e.g., surgical planning. The scheme allows for a straightforward
decomposition into the sub-component solvers tumor inversion and registration (see §6.3.1). It
results in good visual reconstruction and small errors for the observed data. However, it falls
short in reconstructing meaningful biophysical model parameters if the anatomies of patient and
statistical atlas differ significantly; the identified tumor parameters for this scheme “live” in the
space of the atlas brain as opposed to the patient brain, and thus the biophysics part primarily
aids the registration to find a plausible mapping in spite of topological differences. In addition,
the registration also acts on the tumor concentration and can therefore assist to still produce
a small tumor data mismatch (in case of an insufficient tumor model) by fitting the data to a
potentially poor tumor reconstruction.

(2) With a view towards a more biophysically meaningful scheme that allows for calibration and
personalization of brain tumor progression models, we designed a second, more advanced
formulation of the problem. This so called moving-atlas strategy (detailed in §6.2) results in
a coupling scheme that gradually improves on the approximation of the usually inaccessible
healthy patient brain anatomy. As a result (a) the tumor inversion eventually operates in the
space of the brain anatomy of the given patient at hand, yielding more reliable estimates for the
biophysical parameters, whose clinical significance no longer is a function of the proximity of
atlas and patient space; (b) the registration operates on the brain anatomy only, which forces the
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FIGURE 6.1 Schematic view of the two formulations. The moving-patient formulation (dark blue arrows) grows a
tumor in a healthy atlas brain and advects the patient image/pathology towards the resulting atlas with tumor; the tumor
inversion then operates in the atlas space, i.e., the estimated biophysical parameters live in the atlas space (left figure).
The velocity is chosen such that the distance between the simulated tumor in the atlas brain and the advected patient data
is minimal (right figure). For moving-atlas (light blue arrows), we advect the healthy atlas brain towards the patient
and grow a tumor in this approximation of the healthy brain geometry; the tumor inversion then yields biophysical
parameters in the patient space (left figure). For the moving patient, the advection velocity is chosen such that the
distance between the atlas brain with simulation of the pathology and the warped patient data is as small as possible (right
figure; dark blue arrows). For the moving atlas, we intend to find correspondence relations between the healthy atlas brain
and the pathologic patient brain. Due to the topological differences, we require the tumor solver to aid the registration (black
arrow) and solve a modified registration formulation for the advection velocity (right figure; light blue arrows). Images
modified from [Hog08b].

tumor solver to produce a biophysically meaningful tumor that matches the observed input data
as good as possible.

The two formulations are compared in Fig. 6.1 in two images, combining advection and tumor
inversion (left) and registration with forward tumor growth (right); whereas the moving patient
formulation utilizes image registration to transport the patient data to its corresponding locations in
the atlas space, followed by tumor inversion, the moving-atlas strategy improves an approximation
to the healthy patient brain anatomy starting from the healthy atlas. For moving-patient, the velocity
used for transportation of brain anatomy and tumor concentration is chosen such that the distance
between the simulated tumor in the atlas geometry and the warped-to-atlas-space patient data, is as
small as possible (cf. Fig. 6.1, right). For the moving-atlas, a modified registration formulation that
incorporates information of the tumor solver will become necessary to allow for registration of the
healthy atlas with the pathologic patient data.

For numerical optimization of the two formulations of the multi-component problem, we follow
a modular approach, resulting in two different iterative Picard schemes, respectively, that combine
separate image registration and tumor inversion sub-components. The schemes can be viewed as
block-Newton-type solvers, each of which fulfills a subset of the derived optimality conditions of the
respective formulation.

Notation and Data

Before presenting the formulations for the considered multi-component problem, let us summarize,
recapitulate and extend the required notation.

Tissue Labels and Probability Maps. Patient and statistical atlas are given by means of separate
probability maps mX(x, t) P Ω ˆ [0, 1], X P tWM, GM, CSFu for the three primary healthy tissue
types, i.e., white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF; which includes the
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ventricles (VE)), giving the probability to encounter a cell of the respective tissue type at every spatial
location x. The probability maps are computed from MR image data or segmented MR data in a
pre-processing step. We gather the probability maps in a space-time vector field

(6.1) m(x, t) = (mi(x, t))i=1,...,3 P R3 with m1 = mGM, m2 = mWM, m3 = mCSF

which we refer to as brain geometry. We further consider the normalized tumor cell concentration
(saturation) c : ΩB ˆ [0, 1] Ñ [0, 1], (x, t) ÞÑ c(x, t) and likewise interpret it as the probability to
encounter a cancerous cell at location x P ΩB and time t P [0, 1]. ΩB is the domain occupied by
brain tissue (healthy or unhealthy) and is delimited by the skull; it is embedded1 in the simulation
domain ΩB Ă Ω = [0, 2π)3. For completeness, we recapitulate the space-time domain definitions
U = Ω ˆ (0, 1], Ū = Ω ˆ [0, 1), UB = ΩB ˆ (0, 1], and ŪB = ΩB ˆ [0, 1).

Segmentation labels, i.e., characteristic functions calculated based on given threshold values for
the healthy tissue types and normalized tumor concentration are used only for computing overlap
measures (such as Dice coefficients) for the reconstruction and image output of our solver.

Dependency on Time and Space. For simplicity, we omit the explicit dependency on the spatial
position x for most formulations, but explicitly state only the dependency on the time. The considered
probability maps evolve along two independent time scales; an illustration is given in Fig. 6.2. For
the tumor evolution, we consider the physical time tT , normalized to [0; 1], i.e., c(0) = c(x, tT = 0)
denotes the initial tumor probability map, whereas c(tT = 1) = c(x, tT = 1) is the grown tumor at
final time tT = 1 (solution of the forward simulation). For the diffeomorphic image registration, we
introduce a pseudo-time variable tR P [0, 1] without physical meaning. The pseudo-time describes
the transient advection process and probability maps m(0) = m(x, tR = 0) = mT are associated with
the undeformed template image and m(1) = m(x, tR = 1) with its deformed representation. For
convenience, we indicate by the negative time tR = ´1 the advection of the template image with
the negative velocity in the opposite direction to obtain the action of the inverse deformation map2,
i.e., m(´1) = RÑ [´v, mT ]. For clarity of notation, we introduce an index tuple superscript (tR, tT)

for all considered probability maps, where tR denotes the pseudo-time associated to registration
advection, and tT the physical tumor progression time. Note, that all probability maps are still
space-time objects m P Ω ˆ [0, 1] and evolve in only one direction – either “tumor growth” or
“registration deformation” – at a time. The differentiation between physical tumor time and virtual
registration time for the advection can therefore be as well omitted, however, the state and meaning
of the evolved objects are better to grasp if stated explicitly.

Patient and Atlas Data. We annotate probability maps of brain tissue regions and cancerous
cells with subscripts to indicate the space they originate from. A subscript D (mD, cD) denotes
input patient data, subscript A objects either represent the healthy statistical atlas m(0,0)

A , or are

derived from direct calculation of the latter (m(0,1)
A ; moving-patient, and m(1,1)

A , m(1,0)
A ; moving-atlas),

and subscript P (m(1,¨)
P , c(1,¨)

P ; moving patient only) objects are derived by direct calculation from
the patient image data. The dependency on time (tR, tT) and space is summarized and illustrated
in Fig. 6.2 for both schemes. Note that the registration advection process is working in opposite
direction for both schemes: for the moving-patient formulation, the registration advects objects

1Although the tumor growth equations are formally defined in ΩB, we discretize them in Ω using periodic boundary
conditions in combination with extension methods to approximate the correct boundary conditions (e.g., Neumann
conditions) on BΩB.

2For velocity based image registration, the inverse of the deformation map can be easily accessed by solving the forward
problem for the negative velocity ´v
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FIGURE 6.2 Notation for the moving-patient and the moving-atlas formulation and outline of dependency on
time and space. m denotes the vector of probability maps for white matter, gray matter and cerebrospinal fluid defining the
brain geometry. c denotes the probability map for tumor. Superscripts (tR, tT) denote the time associated to registration
(tR, virtual advection time, first index) and tumor growth (tT , normalized to [0; 1], second index). In cases where only
one of them is applicable, we mark the second one with ’¨’. The dependency on the times (tR, tT) and the brain anatomy
spaces A, P and D are outlined on the right. The subscript D denotes data given from the patient imaging data (after
pre-processing), subscript A data derived by direct calculation from the statistical atlas brain, subscript P data derived by
direct calculation from the patient image data. Entries marked by ‹ have to be artificially derived and are no direct output of
the respective formulation (see for example the healthy patient and initial condition in patient space for the moving-patient
scheme, shaded light gray); entries marked by – are not used and calculated at all for the respective scheme.

from the patient space into the atlas space (i.e., uses patient data as template image), whereas
the registration forward direction for the moving-atlas scheme points from atlas to patient space,
warping the healthy atlas towards an approximation of the healthy patient brain.

Vector Notation. Given a vector field m P R3, we compute ∇m = (Bjmi)i,j=1,2,3, P R3,3. That is,
given a velocity field v P R3, ∇m v P R3 indicates a matrix-vector multiplication. The standard
scalar product in R3 is denoted by “¨” and the outer product between two vector fields will be
denoted by “b”. In addition, we define the following inner products:

xm, m̃yL2(Ω)3 :=
3
ÿ

i=1

xmi, m̃iyL2(Ω), }m}2
L2(Ω)3 :=

3
ÿ

i=1

}mi}2
L2(Ω).(6.2)

Distance Measures. We formulate the coupled schemes as PDE-constrained optimization problems.
Their respective objective functionals feature the following two L2-distance measures to judge
proximity of the predicted data to the observed data:

Dc [c1, c2] :=
1
2

}c1 ´ c2}2
L2(Ω), and Dm [m1, m2] :=

1
2

}m1 ´ m2}2
L2(Ω)3(6.3)

The chapter is structured as follows. We present the moving-patient formulation for the multi-
component problem and corresponding first order optimality conditions in §6.1. This is contrasted
with the moving-atlas formulation in §6.2 of the multi-component problem. For both schemes,
we derive a Picard-iteration-type coupling algorithm for numerical optimization in §6.3, allowing
for a modular combination of sub-component solvers. The Picard-type coupling is enhanced with
a parameter- and grid-continuation scheme to prevent the solution process from getting stuck in
local minima and allow for successively refined solution. A prerequisite for more biophysically
meaningful results is the implementation of a sparsity constraint for the tumor inversion, such
that the time horizon can be fixed to the time where we are only given point-source tumor seeds.



6.1 THE MOVING PATIENT COUPLED MULTI-COMPONENT PROBLEM 155

Furthermore, we add a limited memory BFGS (L-BFGS) quasi-Newton solver to the tumor inversion
solver, allowing for significant speedups for the time-to-solution. We provide a generic explanation of
different reduced-space methods and align their notation to ease comparison. The above mentioned
features are presented in §6.4.

6.1 The Moving Patient Coupled Multi-Component Problem

We present a coupled formulation based on diffeomorphic image registration and inverse tumor
growth simulation for the application problem introduced in §5.2. This moving-patient formulation
aims at minimizing the difference between observed data (segmented MR imaging data of pathology)
and reconstructed data (result of brain tumor progression simulations) simultaneously from two
sides: (i) for the registration part, we consider the observed patient data (input) as template images
and wish to advect it towards a reference image, given a suitable velocity; (ii) the reference image
itself is generated by synthetic tumor growth simulation in a healthy standard brain geometry (atlas
brain; input) using the biophysical tumor progression model. In the inverse problem, we identify the
tumor growth initial condition parametrization p and characteristic diffusivity k̄ = k f (kw, kg) for the
tumor model and an image registration velocity v that together minimize the distance between the
atlas with simulated tumor and the patient-to-atlas warped input data. In this sense, the image
registration closes the gap that is caused by the fact that we can grow tumors (by simulation) only
in atlas brain geometries for which we know the healthy geometry and, at the same time, have to
match the observed tumor in the specific patient brain. Or, from a registration perspective, the tumor
solver aids the registration in overcoming topological differences between atlas and patient. We
simultaneously register four different images: three brain regions in m (see (6.1)) and the tumor
concentration c. An illustration of the scheme is given in Fig. 6.3.

This formulation has been presented in our earlier work [Sch] and has been proven to yield
very good results in terms of data similarity of reconstruction and observation, overlay measures
(i.e., Dice coefficients), and registration quality. It is thus greatly suited for normal-to-abnormal
registration tasks where the inverse biophysics solver aids the registration. For biophysics inversion,
however, we observe the drawbacks mentioned above; as a result this formulation is prone to falling
short in reconstructing reliable tumor progression parameters that allow for prediction and clinical
decision making.

6.1.1 Formulation of The Coupled Problem

We consider a formulation based on optimal control theory. It results in a PDE-constrained, non-
linear optimization problem. We seek for a stationary velocity field v(x) = (v1(x), v2(x), v3(x))T

(which establishes spatial correspondences between patient and atlas space), a mass-source map
w (which controls the compressibility of the deformation pattern), and biophysical parameters in
form of a coefficient vector p (which defines the tumor initial condition via c(¨,0) = Φp) and the
characteristic diffusivity k̄ = k f (kw, kg)T (controlling the tumor infiltration into surrounding tissue)
as follows:

min
v,w,p,k̄

JMP
[
v, p, k̄, w

]
with(6.4a)

JMP
[
v, p, k̄, w

]
:= Dc

[
c(¨,1), c(1,¨)

P

]
+Dm

[
m(0,1)

A , m(1,¨)
P

]
+ βpSp [p] + βvSv [v] + βwSw [w]
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subject to

tum: Btc(¨,t) ´ ∇ ¨ k∇c(¨,t) ´ R(c(¨,t), ρ) = 0 in U,(6.4b)

c(¨,0) = Φp in Ω,(6.4c)

reg: Btm
(t,¨)
P +∇m(t,¨)

P v = 0 in U,(6.4d)

m(0,¨)
P = mD in Ω,(6.4e)

Btc
(t,¨)
P +∇c(t,¨)P ¨ v = 0 in U,(6.4f)

c(0,¨)
P = cD in Ω,(6.4g)

∇ ¨ v = w in U,(6.4h)

cpl: m(0,1)
A = m(0,0)

A (1 ´ c(¨,1)) in Ω.(6.4i)

with periodic boundary conditions on BΩ. The optimization is driven by the following building
blocks in the objective functional JMP in (6.4a):

(i) the two L2-distance measures Dc[c(¨,1), c(1,¨)
P ] and Dm[m(0,1)

A , m(1,¨)
P ] (see (6.3) for a definition)

that measure the discrepancy between the simulated tumor in atlas space c(¨,1) and the warped-
to-atlas probability map c(1,¨)

P of cancerous cells for the input patient data, as well as the

discrepancy between atlas brain regions with grown synthetic tumor m(0,1)
A (computed according

to (6.4i)) and the warped-to-atlas probability maps for patient brain regions m(1,¨)
P (c(¨,1) is

given as solution of the forward tumor growth simulation (6.4f) with initial condition (6.4g);
c(1,¨)

P and m(1,¨)
P are computed from (6.4f) and (6.4d), respectively),

(ii) three regularization operators balanced against the discrepancy measures Dc and Dm based
on regularization weights β j ą 0, j P tv, w, pu involving a regularization operator Sv for v,
a regularization operator Sw for w (an H1 Sobolev semi-norm3 and an H1 Sobolev norm4,
respectively; defined in (5.18b) in §5.3.2) and a regularization operator Sp for p for which we
combine two variants S i

p, i P t1, 2u defined as

(6.5) S1
p [p] =

1
2

}p}L1(Ω) and S2
p [p] =

1
2

}p}W,

where }p}W = }W p}L2(Ω) with W P Rnpˆnp is a weighted L2-norm. For the special case W = Φ
we obtain the L2-regularization on the initial condition5 considered in (5.8) in §5.3.1. To favor
sparse initial conditions/point sources for the tumor seed6, we combine a L1- and weighted
L2-regularization, where the weighting matrix W ensures that the L2-regularization solve using
S2

p penalizes p-entries corresponding to Gaussian basis functions that have not been selected
by a prior L1-regularization solve using S1

p. For details on the inverse tumor regularization
strategies enforcing sparsity and the switching between L1- and L2-regularization solves, we
refer to §6.3.3.

Notice, that for the registration, we use the probability maps from the input patient imaging data
mT := (m(1,¨)

P , cD)
T as template images. The reference image mR := (m(0,1)

A , c(¨,1))T is modified by

3The H1 Sobolev semi-norm for v is given by Sv [v] = 1
2

ş

Ω
ř3

i=1 |∇vi(x)|2 dΩ.
4The H1 Sobolev norm for w is given by Sw [w] = 1

2

ş

Ω |∇w(x)|2 + |w|2 dΩ.
5The L2-regularization on the initial condition Φp reads S2

p [p] = 1
2 }Φp}L2(Ω).

6In other words we fix the time horizon of the inverse tumor growth such that the initial condition consists of point sources
only.
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the tumor sub-component solver. For the latter, recall, that the tumor progression is dictated by
the diffusion coefficient k(m(0,0)

A ), a tensor field parametrized by scalar characteristic diffusivity
weights for white matter and gray matter, respectively, i.e., k(m) = k̄m(x)I = k f (kw, kg, 0)m(x)I,

and the reaction coefficient ρ(m(0,0)
A ) for the logistic growth function R(c, ρ) = ρ(m)c(1 ´ c) with

respective characteristic cell proliferation rates, i.e., ρ(m) = ρ̄m(x) = ρ f (ρw, ρg, 0)m(x); see §5.3.1
for details. The geometric coupling condition (6.4i) combines the result of the tumor progression
simulation with the surrounding healthy tissue by imprinting the probability of tumor cells into the
healthy tissue probability maps. Note that (6.4i) does not consider mass effect, that is deformation of
brain parenchyma due to the tumor growth. For the integration of mass effect, the condition reads
m(0,1)

A = m(0,0)
A ˝ ϑ ¨ (1 ´ c(¨,1)) in Ω for a map ϑ describing the deformations of healthy tissue due to

tumor growth.

6.1.2 Optimality Conditions

For the numerical solution of (6.4) we employ an adjoint approach. Introducing Lagrange multiplier
functions α : Ω ˆ [0, 1] Ñ R for the tumor state c(¨,t), λc : Ω̄ ˆ [0, 1] Ñ R and λm : Ω̄ ˆ [0, 1] Ñ R3

for the advected maps c(t,¨)P and m(t,¨)
P , respectively, ν : Ω̄ Ñ R associated with the penalization

of compressibility (6.4h), and ξ : Ω̄ ˆ [0, 1] Ñ R3 for the geometrical coupling condition (6.4i), we
transform the constrained optimization into an unconstrained one.

The resulting Lagrangian functional reads

LMP [Θ] = Dc

[
c(¨,1), c(1,¨)

P

]
+Dm

[
m(0,1)

A , m(1,¨)
P

]
+ βpSp [p] + βvSv [v] + βwSw [w]

+ xα(0), (c(¨,0) ´ Φp)yL2(Ω) +

ż 1

0
xα, Btc(¨,t) ´ ∇ ¨ k∇c(¨,t) ´ R(c(¨,t), ρ)yL2(Ω) dt

+

ż 1

0
xλm, Btm

(t,¨)
P +∇m(t,¨)

P vyL2(Ω)3 dt + xλm(0), m(0,¨)
P ´ mDyL2(Ω)3

+

ż 1

0
xλc, Btc

(t,¨)
P +∇c(t,¨)P ¨ vyL2(Ω) dt + xλc(0), c(0,¨)

P ´ cDyL2(Ω)

+

ż 1

0
xν,∇ ¨ v ´ wyL2(Ω) dt + xξ, m(0,1)

A ´ (1 ´ c(¨,1))m(0,0)
A yL2(Ω)3 ,

(6.6)

with the argument vector Θ = (c(¨,1), c(1,¨)
P , m(1,¨)

P , m(0,1)
A , α, λc, λm, ν, ξ, p, k̄, v, w), composed of the

state fields c(¨,1), c(1,¨)
P , m(1,¨)

P , and m(0,1)
A , the adjoint fields α, λc, λm, ν, and ξ, and the inversion fields

p, k̄, v, and w. For an admissible solution, we require stationarity of the Lagrangian with respect to
Θ, i.e., vanishing first-order variations.

The strong form of the first-order optimality conditions for (6.6) is given by the following
system of equations:

tumor, state equation

δαLMP = 0 : Btc(¨,t) ´ ∇ ¨ k∇c(¨,t) ´ R(c(¨,t), ρ) = 0 in U,(6.7a)

δα(1)LMP = 0 : c(¨,0) ´ Φp = 0 in Ω.(6.7b)

tumor, adjoint equation

δc(¨,t)LMP = 0 : ´Btα ´ ∇ ¨ k∇α ´ Bc(¨,t)R
‹(c(¨,t), ρ)α = 0 in Ū,(6.7c)

δc(¨,1)LMP = 0 : c(1,¨)
P ´ c(¨,1) ´ ξm(0,0)

A ´ α(1) = 0 in Ω.(6.7d)
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registration, state equation

δλLMP = 0 : Btm
(t,¨)
P +∇m(t,¨)

P v = 0 in U,(6.7e)

δλ(0)LMP = 0 : m(0,¨)
P ´ mD = 0 in Ω,(6.7f)

δλcLMP = 0 : Btc
(t,¨)
P +∇c(t,¨)P ¨ v = 0 in U,(6.7g)

δλc(0)LMP = 0 : c(0,¨)
P ´ cD = 0 in Ω,(6.7h)

δνLMP = 0 : ∇ ¨ v ´ w = 0 in U.(6.7i)

registration, adjoint equation

δ
m(t,¨)

P
LMP = 0 : ´Btλm ´ ∇ ¨ (λm b v) = 0 in Ū,(6.7j)

δ
m(1,¨)

P
LMP = 0 : m(0,1)

A ´ m(1,¨)
P ´ λm(1) = 0 in Ω,(6.7k)

δ
c(t,¨)P

LMP = 0 : ´Btλc ´ ∇ ¨ (λcv) = 0 in Ū,(6.7l)

δ
c(1,¨)

P
LMP = 0 : c(¨,1) ´ c(1,¨)

P ´ λc(1) = 0 in Ω.(6.7m)

coupling, state equation

δ
m(0,1)

A
LMP = 0 : m(0,0)

A (1 ´ c(¨,1)) ´ m(0,1)
A = 0 in Ω.(6.7n)

coupling, adjoint equation

δ
m(0,1)

A
LMP = 0 : m(1,¨)

P ´ m(0,1)
A ´ ξ = 0 in Ω.(6.7o)

tumor, inversion equation

δpLMP = 0 : gp := βpδpSp [p] ´ ΦTα(0) = 0 in Ω,(6.7p)

δk̄LMP = 0 : gk :=
ż 1

0

ż

Ω
m(0,0)

A

(
(∇c(¨,t))T∇α

)
dx dt = 0 in Ω,(6.7q)

registration, inversion equation

δvLMP = 0 : βvδvSv [v] +K[

ż 1

0
(∇m(t,¨)

P )Tλm +∇c(t,¨)P λc dt] = 0 in Ω.(6.7r)

Note that (∇m)Tλ =
ř3

i λi(B1mi, B2mi, B3mi)
T and that we have not given an equation for w. As

described in §5.3.3 we obtain a pseudo-differential operator K in (6.7r) from elminating w in (6.4h)
from the set of optimality conditions. For ∇ ¨ v = w = 0, we obtain the Leary projection operator
K[u] := u +∇ ∇´1∇ ¨ u; for a non-zero w, the projection operator becomes slightly more involved;
details are given in §5.3.3 and [Man15; Man16a]. The gradients δpSp [p] and δvSv [v] of the reg-
ularization functionals (6.5) in the inversion equations (6.7p) and (6.7r), respectively, are given by

δpS2
p [p] = W‹W p and δvSv [v] =

∇

v(6.8a)

Notice, that for W = Φ we obtain the gradient on the L2-regularization of the initial condition and
that the L1-regularization operator S1

p [p] is not differentiable, and thus not given here; the strategy
how to solve the L1-regularized inverse tumor problem is detailed in §6.3.3.

Summarizing, the first order optimality system (6.7) comprises a set of coupled, non-linear
PDEs. The system portrays high complexity and is challenging to solve as it features ill-conditioning,
indefiniteness along with a very large number of unknowns; it contains 11 fields in addition to the
tumor initial condition parameters p. Given the input data mD, cD, m(0,0)

A of our joint registration
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and biophysical inversion scheme, the task is to solve the first-order optimality PDEs for the state,
adjoint and inversion variables. Falling back on our sub-component solvers and the therein employed
methods, we follow a reduced-space approach [Noc06; Bor12], which assumes the state and adjoint
equations to be solved exactly; elimination of the latter then yields the reduced system with reduced-
gradient g = (gv, gp, gk)

T of the objective function. For details, we refer to §5.3.3 and §6.4, as well as
the above references. At a stationary point, the reduced-gradient g vanishes. An iterative gradient-
descent or Newton-type solution requires evaluations of the reduced-gradient to compute updates
on the inversion variables p, k̄, and v, respectively. However, we opt for a simpler and modular
Picard-iteration, which by exploiting the sub-component (reduced-Newton-)solvers resembles a
block-Newton-type iteration. To monitor convergence of this scheme, the reduced-gradient for (6.7)
is evaluated and involves the following steps7:

(i) Solve the forward problems for tumor progression and registration (6.4b)–(6.4i) for the state
fields c(¨,t), m(0,1)

A , c(t,¨)P , m(t,¨)
P .

(ii) Compute the data mismatch, or coupling adjoint variable ξ from equation (6.7o).

(iii) Solve the adjoint tumor equations (6.7c) and (6.7d) for α(t).

(iv) Solve the adjoint registration equations (6.7j)–(6.7m) for λm(t) and λc(t).

(v) Evaluate the gradients using the inversion equations (6.7p), (6.7q) and (6.7r) at p, k̄ and v:

gp = βpδpSp(p) ´ ΦTα(0) gk :=
ż 1

0

ż

Ω
m(0,0)

A

(
(∇c(¨,t))T∇α

)
dx dt(6.9a)

gv = βvδvSv(v) +K[

ż 1

0
(∇mP)

Tλm +∇cP λc dt].(6.9b)

Before we explain our Picard-type coupling scheme in §6.3, we present a second formulation for
the application problem, with potentially better clinical relevance for the biophysical parameter
estimation.

6.2 The Moving Atlas Coupled Multi-Component Problem

The above presented moving-patient formulation is prone to fall short in terms of reliability, clinical
applicability and practical relevance of the estimated biophysical tumor parameters if the brain
anatomy of the specific patient at hand differs greatly from the employed standard atlas brain; the
latter serves as a proxy to carry out the tumor progression simulations. As a result, the estimated
model parameters “live” in the standard brain anatomy and are, thus, possibly inadequate for the
considered patient. This particularly becomes emerging when considering model parameters that
cannot be simply advected to the opposing space such as, e.g., the characteristic diffusivity for white
matter and gray matter.

In order to tackle this problem, we introduce a second, slightly more advanced formulation for
the joint inversion, the so called moving-atlas formulation. As its name implies, the main difference
lies in the inversion of the registration direction, i.e., instead of translating the patient input data
to the atlas space, we warp the healthy atlas brain towards the patient space and thereby generate
an approximation for the healthy patient brain anatomy, the brain structure before occurrence of
cancerous invasion. As opposed to the previous scheme, this formulation leaves the input data

7Our Picard-iteration algorithm, presented in §6.3, naturally executes steps (i) through (iv) within one iteration. A reduced-
gradient evaluation for the coupled formulation thus only involves step (v), i.e., evaluation of equations (6.9)
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“untouched” and tries to generate preferably similar data (brain structure plus tumor) by growing a
synthetic tumor in the obtained healthy patient approximation. As the deformation map becomes
more accurate, the tumor progression simulation, and thereby, the model parameter estimation is
carried out in the patient space. As a result, the underlying brain structure defining the characteristics
of tumor progression is changed whenever the approximation to the healthy patient is improved,
i.e, the deformation map is refined. This results in repeatedly changing diffusion and reaction
coefficients throughout the simulation, inducing a tight intermeshing of the sub-component solvers.

Further, the inverse registration sub-problem that establishes the correspondences between atlas
and patient space via the velocity v is more involved for this scheme. In contrast to the moving-
patient formulation, we set the patient input data as reference image and choose the healthy atlas
image as template image that is to be aligned to the pathologic patient data. For this challenging
normal-to-abnormal registration problem of topologically different brains, a modified formulation for
the registration problem is derived from the optimality condition of the coupled problem formulation
in §6.2.1. It integrates information from the biophysics solver, to aid the process of identifying
meaningful correspondences. Further, in this formulation, the registration only acts on the brain
anatomy and, thus, cannot make up for a poor biophysical model or tumor reconstruction to
still obtain good data similarity. The formulation of the overall scheme, including the modified
registration formulation, respective Lagrangian and optimality system, is what we discuss next. A
schematic illustration of the moving-atlas scheme is given in Fig. 6.3 and the required algorithmic
steps and used sub-modules are described in detail in §6.3.2.

6.2.1 Formulation of The Coupled Problem

We present the moving-atlas as PDE-constrained optimization problem formulation, where we seek
for a stationary velocity field v(x) = (v1(x), v2(x), v3(x))T mapping between atlas and patient space,
a mass-source map w, controlling the registration induced volume change, and biophysical tumor
progression parameters p for the initial tumor concentration and location, along with characteristic
diffusivity scales k̄ = k f (kw, kg)T for white matter and gray matter, respectively, controlling the
cancerous cell invasion into healthy tissue. That is, we are interested in a minimizer (v, w, p, k̄), such
that the predicted data by our scheme becomes similar to the observed data in the following sense:

min
v,p,k̄,w

JMA
[
v, p, k̄, w

]
with(6.10a)

JMA
[
v, p, k̄, w

]
:= Dc

[
c(¨,1), cD

]
+Dm

[
m(1,0)

A (1 ´ c(¨,1)), mD

]
+ βpSp [p] + βvSv [v] + βwSw [w]

subject to

tum: Btc(¨,t) ´ ∇ ¨ k(m(1,0)
A )∇c(¨,t) ´ R(c(¨,t), ρ(m(1,0)

A )) = 0 in U,(6.10b)

Φ(m(1,0)
A )p = c(¨,0) in Ω,(6.10c)

reg: Btm
(t,0)
A +∇m(t,0)

A v = 0 in U,(6.10d)

mT = m(0,0)
A in Ω,(6.10e)

∇ ¨ v = w in U,(6.10f)

with periodic boundary conditions on BΩ. The objective functional JMA in (6.10a) consists of the
following building blocks:
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(i) the two L2-distance measures Dc[c(¨,1), cD] and Dm[m(1,0)
A (1 ´ c(¨,1)), mD] (see (6.3) for a defini-

tion) measuring the tumor cell distribution and brain region proximity of the reconstruction
data to the observed input data, where Dc measures the discrepancy between the simulated
tumor c(¨,1) (computed from (6.10b)–(6.10c) in the approximated patient space) and the input
tumor data cD, Dm measures the discrepancy between probability maps of the patient brain
regions (input) and the warped-to-patient healthy atlas probability maps (computed accord-
ing to (6.10d)–(6.10f)); to account for the topological differences, the simulated pathology is
embedded into the advected healthy atlas probability maps for the registration misfit, which
can be seen as a “masking” of the tumor region from the registration (i.e., for this scheme, the
registration does not alter the tumor concentration nor the discrepancy measure Dc),

(ii) the same regularization operators S1
p(p) or S2

p(p), respectively, for p, Sv(v) for v, and Dw(w)

for w as given in the moving patient formulation §6.1.1 and balanced with the regularization
weights β j ą 0, j P tv, w, pu.

For the registration, we use the probability maps for the healthy atlas brain tissue regions as
template image mT := m(0,0)

A and register them towards the probability maps of the pathologic
patient brain tissue regions, i.e., mR := mD. Note, that the tumor concentration is not registered in
this formulation, but is only used to “mask” the tumor region from the registration to allow for a
meaningful deformation map for the normal-to-abnormal registration task. Details for the modified
registration problem are given in §6.3.2. Furthermore, reaction and diffusion coefficient k(m(1,0)

A ) and

ρ(m(0,0)
A ), respectively, depend on the approximation of the healthy patient brain anatomy, which is

used for tumor progression simulations. The scheme gradually improves this approximation and,
thus, also alters the reaction and diffusion coefficients.

6.2.2 Optimality Conditions

As before, we consider the unconstrained optimization problem defined by the minimization
of the Lagrangian functional, which arises from the constrained optimization problem (6.10) by
incorporation of the forward problem equations (constraints) (6.10b)–(6.10f) as inner products with
the respective Lagrange multiplier fields, or adjoint variables of all state variables occurring in the
forward problem equations.

The Lagrangian functional for the moving-atlas formulation reads

LMA [Θ] = Dc

[
c(¨,1), cD

]
+Dm

[
m(1,0)

A (1 ´ c(¨,1)), mD

]
+ βpSp [p] + βvSv [v] + βwSw [w]

+

ż 1

0
xα, Btc(¨,1) ´ ∇ ¨ k(m(1,0)

A )∇c(¨,1)) ´ R(c(¨,1), ρ(m(1,0)
A ))yL2(Ω) dt

+ xα(0), (c(¨,0) ´ Φp)yL2(Ω) +

ż 1

0
xν,∇ ¨ v ´ wyL2(Ω) dt

+

ż 1

0
xλ, Btm

(t,0)
A +∇m(t,0)

A vyL2(Ω)3 dt + xλ(0), m(0,0)
A ´ mTyL2(Ω)3

(6.11)

with the argument vector field Θ = (c(¨,1), m(t,0)
A , m(1,0)

A , α, λ, ν, p, k̄, v, w) composed of the state fields

c(¨,1), m(t,0)
A , and m(1,0)

A , the adjoint fields α, λ and ν, and the inversion fields p, k̄, v, and w.

As a necessary condition for a minimum, we require stationarity of the Lagrangian LMA with
respect to Θ; stipulating vanishing first-order variations, we can derive the strong form of the
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first-order optimality conditions for (6.11), given as the following KKT system:

tumor, state equation

δαLMA = 0 : Btc(¨,t) ´ ∇ ¨ k(m(1,0)
A )∇c(¨,t) ´ R(c(¨,t), ρ(m(1,0)

A )) = 0 in U,(6.12a)

δα(1)LMA = 0 : c(¨,0) ´ Φp = 0 in Ω,(6.12b)

tumor, adjoint equation

δc(¨,t)LMA = 0 : ´Btα ´ ∇ ¨ k(m(1,0)
A )∇α + Bc(¨,t)R

‹(c(¨,t), ρ(m(1,0)
A ))α = 0 in Ū,(6.12c)

δc(¨,1)LMA = 0 : cD ´ c(¨,1) + (m(1,0)
A )T(m(1,0)

A (1 ´ c(¨,1)) ´ mD) ´ α(1) = 0 in Ω.(6.12d)

registration, state equation

δλLMA = 0 : Btm
(t,0)
A +∇m(t,0)

A v = 0 in Ū,(6.12e)

δλ(1)LMA = 0 : m(0,0)
A ´ mT = 0 in Ω,(6.12f)

δνLMA = 0 : ∇ ¨ v ´ w = 0 in U,(6.12g)

registration, adjoint equation

δ
m(t,0)

A
LMA = 0 : ´Btλ ´ ∇ ¨ (λ b v) = 0 in Ū,(6.12h)

δ
m(1,0)

A
LMA = 0 : (c(¨,1) ´ 1)(m(1,0)

A (1 ´ c(¨,1)) ´ mD) + B
m(1,0)

A
Φ(p)α(0)

´

ż 1

0
(∇c(¨,t))T∇α B

m(1,0)
A

k‹(m(1,0)
A ) + B

m(1,0)
A

R‹(c(¨,t), ρ(m(1,0)
A ))α dt ´ λ(1) = 0 in Ω,(6.12i)

tumor, inversion equation

δpLMA = 0 : gp := βpδpSp [p] ´ ΦTα(0) = 0 in Ω.(6.12j)

δkLMA = 0 : gk :=
ż 1

0

ż

Ω
m(1,0)

A

(
(∇c(¨,t))T∇α

)
dx dt = 0 in Ω,(6.12k)

registration, inversion equation

δvLMA = 0 : gv := βvδvSv [v] +K[

ż 1

0
(∇m(t,0)

A )Tλ dt] = 0 in Ω.(6.12l)

with adjoint variables α, λ, ν associated to the state variables c(¨,1), m(t,0)
A , and m(1,0)

A . As before, w
is eliminated which results in the pseudo-differential operator K in (6.12l). The gradients δpSp [p],
and δvSv [v] of the regularization functionals in (6.12j) and (6.12l), respectively, remain unchanged
compared to the moving-patient formulation and are given in (6.8a); additionally, we get the gradients
for the diffusion and reaction coefficients in (6.12i) with respect to m(1,0)

A which are given by

B
m(1,0)

A
k = k̄ = (kw, kg, 0) and B

m(1,0)
A

R = ρm(1,0)
A (1 ´ 2c(¨,1))(6.13a)

Analogously to the moving-patient scheme, we follow a reduced-space approach to solve the set
of coupled non-linear PDEs (6.12). A block-iterative scheme that solves for p‹, k̄‹ and v‹ such that
the reduced-gradient g = (gv, gp, gk)

T vanishes is presented in §6.3.2.

The reduced-gradient for the moving-atlas formulation can be evaluated as follows:

(i) Solve the registration forward equations (6.12e)–(6.12g) for the healthy patient approx. m(1,0)
A .

(ii) Update the diffusion and reaction coefficients k(m(1,0)
A ) and ρ(m(1,0)

A ), respectively as well as

Φ(m(1,0)
A ); then solve the tumor progression forward problem (6.12a)–(6.12b) for c(¨,t).
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(iii) Solve the adjoint tumor equations (6.12c)–(6.12d) for α(t).

(iv) compute the final condition (6.12i) for the registration using c(¨,t), α(t) and the gradients B
m(1,0)

A
k,

B
m(1,0)

A
R, and B

m(1,0)
A

Φ and solve the adjoint equation (6.12h) for λ(t).

(v) Evaluate the gradients using the inversion equations (6.12j), (6.12k) and (6.12l) at p, k̄ and v:

Summarizing, the moving-atlas formulation remedies two drawbacks of the moving-patient
scheme. It (i) solves for estimates of the biophysical parameters with respect to the patient space rather
then the atlas space, and (ii) it prohibits the registration from picking up the slack for the tumor solver
in fitting observed data to a possibly poor tumor reconstruction/poor model, resulting in an overall
small data mismatch. This, however, results in (mathematically) more intermeshed sub-component
solvers and further requires the derivation of a tailored formulation for the registration module to
fulfill the optimality conditions (6.12). Details on this as well as the employed decomposition of the
formulation into sub-components and consulted solver strategies are given in §6.3.2. In order to
exploit the full potential of the moving-atlas formulation, a sophisticated regularization scheme for
the tumor inversion, which enforces sparse initial conditions, becomes necessary; this is explained
further in §6.3.3.

6.3 Modular Iterative Solvers – Picard-Iterations

In this section, we present our iterative schemes to solve the formidable optimization systems (6.7)
and (6.12) of strongly coupled, non-linear partial differential equations for the moving-patient and
the moving-atlas formulation, respectively. Instead of solving the optimality systems using a gradient
descent or Newton scheme, we employ a modular Picard-iteration-type approach, which interleaves
separate sub-component solvers for tumor growth inversion and diffeomorphic registration models.
We solve both optimization problems by iteratively improving estimates on the registration velocity
v, the tumor parameters p for the parametrization of the tumor initial condition, and (if switched
on) the characteristic diffusivity scales k̄ = (kw, kg, 0) for white matter and gray matter, respectively.
This methodology allows for an easy, stable, modular and efficient way for numerical optimization
of (6.4) and (6.10), respectively, where the submodules can be exchanged as required; for instance
a more sophisticated tumor solver accounting for effects such as mitosis, apoptosis, chemotaxis,
and deformation of brain parenchyma (mass-effect) can be plugged in as replacement of our quite
simplistic model.

Our coupling schemes use sub-components for (i) tumor progression simulation, forward
in time, (ii) inverse tumor growth simulation (parameter estimation), (iii) image advection, and
(iv) solving for spatial correlations in the image registration problem. The respective iterative schemes
are confronted schematically in Fig. 6.3. The sub-component solvers have been discussed in §5.3
and [Man15; Man16a; Gho17c; Gho16a; Gho16b; Man16b; Man17a].

Both schemes share the start-up phase of selecting initial guesses for the inversion fields p P Rnp ,
k̄ P R3 and v P Rnˆ3, and selection of the Gaussian basis functions for the parametrization of
the tumor initial condition. Unless the schemes are run in warm-start-mode, we choose a zero
initial guess for p, k̄ and v, respectively8. To reduce runtime, we use the solution for p, k̄, and v
from the previous Picard-iteration as the initial guess for the current iteration. For the selection
of Gaussian basis functions dependent on the patient’s tumor concentration, two variants are
supported and detailed in §6.3.3. Note that for the current schemes the initial selection of Gaussian

8The warm-start-mode is used together with a multi-scale approach and explained in more detail in §6.3.3.
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FIGURE 6.3 Schematic view of the Picard-iterations for the two coupling-schemes. The moving-patient Picard-
iteration (left figure) grows a tumor in a healthy atlas brain and computes a velocity, which warps the patient data
towards the modified atlas brain along with the simulated pathology. For the tumor inversion, we use the patient-to-atlas
warped patient pathology as input data to estimate the biophysical parameters in the atlas space. This process is iterated,
resulting in a Picard block-Newton type iteration. For the moving atlas Picard-iteration (right figure), we advect
the atlas brain towards the patient and grow a tumor in the resulting approximation of the healthy brain geometry; the
simulated pathology is then used to aid the registration finding a velocity that establishes plausible correspondences for
this normal-to-abnormal problem of registering the healthy atlas to the patient brain. A modified registration formulation
is used here. The tumor inversion operates on the original patient data and seeks for biophysical parameters that live in
the (approximated) patient space. The process is iterated, gradually refining the velocity, biophysical parameters and the
healthy patient approximation. As a result, the tumor evolution properties (diffusion/reaction coefficient) of the tumor
solver change in every iteration. Images modified from [Hog08b].

basis functions remains unchanged throughout the Picard-iterations, i.e., neither re-selection nor
advection of the basis functions in case of updated tumor data (moving-patient) or changed simulation
geometry (moving-atlas), is considered. Furthermore, both schemes are embedded into a parameter-
continuation scheme for the regularization parameter βv of the registration sub-problem; starting
off with a large regularization weight, it is gradually reduced throughout the solution process
(we discuss this below in §6.3.3). On a limiting note, we do not have a proof for convergence of
our Picard-iteration coupling schemes to a minimizer of the respective fully-coupled optimization
formulations (6.4) and (6.10). However, thorough numerical analysis in Chapter 7 provides evidence
that the schemes effectively reduce the respective gradients g = (gv, gp, gk) of the fully-coupled
formulations. A rigorous proof of convergence remains subject to future work.

6.3.1 A Picard-Iteration Algorithm for the Moving Patient Scheme

The Picard-iteration algorithm for the moving-patient formulation explicitly iterates over the tumor
inversion variables p, k̄ and implicitly iterates over the registration velocity v. Given some (p, k̄)k,
the (k + 1)-th Picard-iteration is defined by the following sub-steps:

(1) Seed the atlas brain m(0,0)
A with the initial tumor Φpk and compute its temporal evolution as

c(¨,1) = T Ñ

m(0,0)
A

[(p, k̄)k], solving9 equations (6.7a)–(6.7b).

(2) Imprint the simulated tumor into the healthy atlas geometry to obtain a synthetic brain with
pathology at physical time tT = 1. We define the operator G[c(¨,1)] := (m(0,0)

A (1 ´ c(¨,1), c(¨,1)).

9This step is only required in the first Picard-iteration, if the scheme is run in warm-start mode (e.g., for grid-continuation,
see §6.3.3). Otherwise, we use initial guess p = 0 and for all subsequent iterations, the simulated tT = 1 tumor c(¨,1) is
already available as a side-product of the tumor inversion solve from the previous Picard-iteration. The step is stated
explicitly for clarity.
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(3) Register the input patient data mT := (mD, cD)
T to the generated synthetic brain with pathology

mR := (m(0,1)
A , c(¨,1))T via solving equations (6.7e)–(6.7m) and (6.7r). This yields the velocity

v = RÐ
MP [m

(0,1)
A , c(¨,1), mD, cD].

(4) Advect10 the input data for the patient pathology into the atlas space using the computed velocity
v; this gives us new input data for the tumor inversion via c(1,¨)

P = RÑ [v, cD].

(5) Use the updated tumor data c(1,¨)
P to improve estimates for p and k̄ via solving equations (6.7a)–(6.7d)

and (6.7p)–(6.7q); that is, solve the inverse tumor growth problem (p, k̄)k+1 = T Ð

m(0,0)
A

[c(1,¨)
P ].

(6) Check for convergence (see §6.3.3). If the convergence criteria are fulfilled, stop. If not, go back
to step 1 (i.e., continue iterating).

A schematic illustration of the scheme is given in Fig. 6.3. Summarized, the moving-patient coupling
scheme can be written as the following Picard-iteration:

(6.14) (p, k̄)k+1=T Ð

m(0,0)
A

˝ RÑ

[
RÐ

MP

[
G ˝ T Ñ

m(0,0)
A

[(p, k̄)k], mD, cD

]
, cD

]
Note, that steps (1) and (4) in the above Picard-iteration algorithm are obsolete, as the result of

the forward simulation is already given as side-product by the respective inverse problems. Thus,
assuming we are given (m(0,1)

A , c(¨,1)) after application of the geometrical coupling equation(6.7n), we
have to solve

(MP.1) the inverse registration problem RÐ
MP , defined as

RÐ
MP

$

&

%

minv,w JRMP [v, w] := Dc

[
c(¨,1), c(1,¨)

P

]
+Dm

[
m(0,1)

A , m(1,¨)
P

]
+ βvSv [v] + βwSw [w]

subject to the advection problem (6.7e)–(6.7i) for c(t,¨)P and m(t,¨)
P

(6.15)

and

(MP.2) the inverse tumor growth problem T Ð

m(0,0)
A

, defined as

T Ð

m(0,0)
A

$

&

%

minp,k̄ JT
m(0,0)

A

[p, k̄] := Dc

[
c(¨,1), c(1,¨)

P

]
+ βpSp [p]

subject to the tumor growth simulation (6.7a)–(6.7b) for c(¨,t) with c(¨,0) = Φpk

(6.16)

Upon iterative solution of these sub-problems and convergence of the iteration, we fulfill all first
order optimality conditions (6.7) for the moving-patient formulation, except from (6.7o) and (6.7d).
Here, we replace the final condition for the tumor adjoint equation (6.7d) by

c(1,¨)
P ´ c(¨,1) ´ α(1) = 0 in Ω,(6.17)

i.e., lacking the term ξm(0,0)
A originating from the simplified objective for T Ð

m(0,0)
A

which only considers

the tumor data misfit Dc and neglects the data misfit Dm for the brain tissue labels. Minimization of
the registration objective JT

m(0,0)
A

, however, eventually enforces m(0,1)
A « m(1,¨)

P and, thus, ξ « 0.

10Notice, that this data is already available as a side-product of the inverse registration process and is only explicitly stated
here for clarity. These steps involves no further computations.
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A Block-Newton Scheme. Alternatively we define the tumor inverse operator pT Ð

m(0,0)
A

, considering

the full data misfit Dc and Dm in the objective function as

pT Ð

m(0,0)
A

#

minp,k̄
pJTMP [p, k̄] := Dc

[
c(¨,1), c(1,¨)

P

]
+Dm

[
m(0,1)

A , m(1,¨)
P

]
+ βpSp [p]

subject to the tumor growth simulation (6.7a)–(6.7b) for c(¨,t) with c(¨,0) = Φpk
(6.18)

which, if plugged into the moving-patient Picard-iteration algorithm above, enhances it to a block-
Newton iterative solver for the optimality conditions (6.7). This modified Picard-iteration, fulfilling
all optimality conditions, is referred to as full-objective block-Newton scheme for the moving-patient
formulation.

6.3.2 A Picard-Iteration Algorithm for the Moving Atlas Scheme

In a similar way, the moving-atlas Picard-iteration coupling scheme iterates over the inversion
variables p, k̄, and v and performs the following sub-steps in the (k + 1)-th iteration, given previous
iterates (p, k̄, v)k:

(1) Compute an approximation to the healthy patient brain geometry by solving11 the advection
equation (6.12e)–(6.12g) for the healthy atlas geometry m(0,0)

A and the velocity vk as m(1,0)
A =

RÑ [v, m(0,0)
A ].

(2) Update the reaction and diffusion coefficients ρ(m(1,0)
A ) and k(m(1,0)

A ), respectively with the

approximation of the healthy patient brain geometry m(1,0)
A and seed the latter with the

initial tumor Φpk; simulate the tumor progression as c(¨,1) = T Ñ

m(1,0)
A

[(p, k̄)k], solving12 equa-

tions (6.12a)–(6.12b).

(3) Solve equations (6.12a)–(6.12d) and (6.12j)–(6.12k) for improved estimates on p and k̄ in patient
space, using the unmodified input data of the patient’s tumor cD; that is, solve the inverse tumor
growth problem (p, k̄)k+1 = T Ð

m(1,0)
A

[cD].

(4) Solve the normal-to-abnormal registration problem between the healthy atlas and pathologic
patient geometry, resulting in a warped-to-patient atlas geometry, the healthy patient. This
includes solving equations (6.12e)–(6.12i) and (6.12l), defining a modified registration operator
vk+1 = RÐ

MA [m(1,0)
A , mD, c(¨,1)].

(5) Check for convergence (see §6.3.3). If the convergence criteria are fulfilled, stop. If not, go back
to step 1 (i.e., continue iterating).

A schematic illustration of the scheme is given in Fig. 6.3. As before, the forward solves in step
(1) and (2) are implicitly included in steps (4) and (3), respectively, and are, thus, redundant; we
explicitly state them for clarity. In order to solve the optimality system (6.12) in a modular way,
consisting of the primary blocks tumor inversion and registration, we need to define the following
modified sub-component formulations: Given an approximation for the healthy patient (initially this
is the healthy atlas for v = 0), we solve

11This step is only required in the first Picard iteration, if the scheme is run in warm-start mode (e.g., for grid-continuation,
see §6.3.3). Otherwise, we either start with an initial guess v = 0, or the warped template (healthy patient approximation)
is already available as by-product of the inverse registration solve in step (4) from the previous Picard-iteration.

12This step is only required in the first Picard-iteration. For all subsequent iterations, the simulated tT = 1 tumor c(¨,1) is
already available as a side-product of the tumor inversion solve from the previous Picard-iteration. The step is stated
explicitly for clarity.
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(MA.1) the inverse tumor growth problem T Ð

m(1,0)
A

, defined as

T Ð

m(1,0)
A

$

&

%

minp,k̄ JT
m(1,0)

A

[p, k̄] := Dc

[
c(¨,1), cD

]
+ βpSp [p]

subject to the tumor growth simulation (6.12a)–(6.12b) for c(¨,1) with c(¨,0) = Φpk

(6.19)

and

(MA.2) the modified inverse registration problem RÐ
MA , defined as

RÐ
MA

$

’

’

&

’

’

%

minv,w JRMA [v, w] with

JRMA [v, w] := Dm

[
m(1,0)

A (1 ´ c(¨,1)), mD

]
+
ş

Ω qTm(1,0)
A dx + βvSv [v] + βwSw [w]

subject to the advection problem (6.12e)–(6.12g) for m(t,0)
A and mT := m(0,0)

A

(6.20)

where q = (q1, q2, q3)
T defined as

(6.21) q(x) =
ż 1

0
k((∇c(¨,1))T∇α) + ρc(¨,1)(1 ´ c(¨,1))α dt.

This formulation for the registration problem with the particular choice for the modified
objective function JRMA allows us to sub-divide the solution of (6.12) into the above defined
modular sub-component solvers while reproducing the first-order optimality conditions (6.12h)
and (6.12i) of the fully-coupled moving-atlas formulation. Note that the registration problem
RÐ

MA does not modify the tumor probability map c(¨,1) and, thus, doesn’t act on the data misfit
term Dc for the tumor. To account for the topological differences between the registered brains,
a frozen representation of the grown tumor from the previous iteration is used in the objective
function JRMA to “mask” this area from the registration.

After convergence of the outlined Picard-iteration algorithm, the solution fulfills all first-order
optimality conditions of (6.12) for the moving-atlas formulation, except for the final conditions of the
adjoint equations for tumor inversion and registration, i.e., equations (6.12d) and (6.12i), respectively.
For the latter, the variation of the Gaussian basis functions with respect to the changing healthy
patient geometry B

m(1,0)
A

Φ(m(1,0)
A )pα(0) is neglected and (6.12i) is replaced by

(c(¨,1) ´ 1)(m(1,0)
A (1 ´ c(¨,1)) ´ mD) ´

ż 1

0
k̄((∇c(¨,1))T∇α) + ρ̄c(¨,1)(1 ´ c(¨,1))α dt ´ λ(1) = 0 in Ω,

As for the moving-patient Picard-iteration, our tumor inversion problem only considers the data
misfit for the tumor probability maps Dc, which is reflected in the first-order optimality conditions
by neglecting the term (m(1,0)

A )T(m(1,0)
A (1 ´ c(¨,1)) ´ mD) in the final-condition for the adjoint solve,

i.e., equation (6.12d) is replaced by

cD ´ c(¨,1) ´ α(1) = 0 in Ω.

Upon convergence of the scheme, the neglected terms become very small, as the registration problem
minimizes the distance between (m(1,0)

A )T(m(1,0)
A (1 ´ c(¨,1)) and mD).
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A Block-Newton Scheme. In a same manner as before, the tumor adjoint final-condition (6.12d) in
the first-order optimality conditions of the moving-atlas scheme can be reproduced by introducing
the modified inverse tumor operator pT Ð

m(1,0)
A

, which adds the data misfit Dm of the brain tissue

probability maps to the objective function:

pT Ð

m(1,0)
A

#

minp,k̄
pJTMA [p, k̄] := Dc

[
c(¨,1), cD

]
+Dm

[
m(1,0)

A (1 ´ c(¨,1)), mD

]
+ βpSp [p]

subject to the tumor growth simulation (6.12a)–(6.12b) for c(¨,t) with c(¨,0) = Φpk
(6.22)

Replacing the earlier defined tumor inverse operator T Ð

m(1,0)
A

by the modified operator pT Ð

m(1,0)
A

in

the Picard-iteration algorithm, again yields a block-Newton iterative solver for the optimality
conditions (6.12); upon convergence, it fulfills all optimality conditions, except the neglecting of
the basis function variation with respect to m(1,0)

A . This scheme is referred to as full-objective
block-Newton scheme for the moving-atlas formulation.

6.3.3 Shared Ingredients of the Coupling Schemes

The challenging, highly non-linear, non-convex optimization problems and their presented respective
Picard iteration-type solution approaches require further concepts to foster the solution process. In
particular, we need to address (i) the non-linear and non-convex nature of the optimization problem,
(ii) the immense computational complexity and significant time-to-solution, and (iii) the balancing
of sub-solver accuracies to prevent over-solving and yet ensure an overall accurate precision. In
the sequel, we discuss strategies and concepts employed in SIBIA to deal with these issues. A
parameter-continuation scheme for the regularization parameters βv and βp as well as an F-cycle
grid-continuation scheme are used to convexify the problem, prevent convergence to non-optimal
local minima, find the suitable extent of regularization, and speedup the time to solution by providing
sophisticated initial guesses on problems with higher data fidelity. Furthermore, we discuss a set of
convergence criteria, which is designed and tuned to prevent over-solving. Taking steps towards a
fully automated brain tumor image analysis tool, we present strategies to automatically place the
Gaussian basis functions for the parametrization of the initial tumor condition, dependent on the
patient input data. Finally, we discuss a different regularization operator for the tumor inversion
solver, which enforces sparsity of the initial condition parametrization. This fixes the inversion
time horizon to the stage of a point-source tumor seed and allows for biophysically more meaningful
parameter estimates. In the following, we describe these approaches in more detail.

Parameter Continuation. The highly non-linear and non-convex nature of the considered
optimization problem poses challenges on the employed solvers. Due to prominent noise level,
non-convexity, and oscillations, the solvers (in particular the registration solver) are prone to fail
for uninformed initial guesses (typically far from the optimum). Further, the proper extent of
regularization, i.e., the balance of imposed regularity on the solution and data matching, varies for
specific instantiations of the problem and is a priori unknown. Thus, we embed the Picard-iteration
solution process into a parameter-continuation scheme for the regularization parameter βv for the
regularizer Sv[v] = 1/2}∇v}L2(Ω) of the registration velocity v. This scheme effectively addresses the
above mentioned issues, i.e., it (i) convexifies the optimization problem, (ii) stabilizes the solution
process and prevents it from getting trapped in local minima, (iii) reduces the time-to-solution, and
(iv) identifies an optimal regularization parameter β‹

v for the given data.

In more detail, starting with a highly regularized (nearly convex and easy to solve optimization
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problem), we solve a series of problems with gradually reduced regularization including more and
more data fidelity and details, while allowing for more complex solutions. The solutions from
previous solves are used as initial guesses for subsequent solves with smaller regularization parts.
This alleviates two problems: it (i) reduces the chance of getting trapped in local minima, introduced
by more data fidelity in the objective function, and it (ii) attenuates the indefiniteness of the Hessian
and fosters the solution of increasingly ill-conditioned operators13. Lastly, the optimal parameter β‹

v

to balance the data mismatch and regularization depends on the input images and is not known
a priori. We are interested in a solution with the lowest possible contribution from the regularizer
to still yield an optimization problem with an acceptable condition and a unique solution. We use
the parameter-continuation scheme to find that optimal weighting parameter β‹

v by monitoring the
determinant of the deformation gradient det(∇y) as follows: We specify a lower admissable bound
ε∇ on the deformation gradient14 and start the Picard iteration with β0

v = 1, i.e., a highly regularized
optimization problem with smooth solution, omitting any details. In every Picard-iteration k, the
candidate βk

v for the regularization parameter is reduced by one order of magnitude15, until the lower
bound for the determinant of the deformation gradient det(∇y) ă ε∇ is breached for a candidate βk

v.
In this case, the registration solver disregards the obtained solution and restarts the inversion process
with adapted regularization weight βk

v Ð βk´1
v ´ (βk´1

v ´βk
v)/2 and the solution from the previous

Picard-iteration as initial guess. This βv-backtracking algorithm is repeated until the lower bound on
the determinant of the deformation gradient is no longer violated. If during the registration solve no
violation of the lower bound criterion for the determinant of the deformation gradient was detected,
the current Picard-iteration is finalized and the solution scheme proceeds with the next iteration. A
pseudo code for the βv-continuation is given in Alg. 6.1.

Remark. For the moving-patient formulation, the described βv-continuation scheme is (besides
the aforementioned reasons) additionally required to prevent unwanted data-fitting and establish a
meaningful coupling between the sub-component solvers: In order to prevent the registration from
fitting the tumor input data to an initially poor tumor reconstruction/prediction of the biophysical
model, we wish to limit the registration induced deformations (registration velocity is almost zero,
i.e., the patient tumor is merely copied to the atlas space) by imposing a high regularization weight
βv « 1 in an early stage of the Picard-iteration solution process. As the estimation for the parameters
of the tumor progression models improves and the reconstruction becomes more accurate, we allow
for a more complex deformation by gradually reducing the regularization parameter βv.

Remark. Analogous to the βv-continuation scheme for the regularization operator of the
registration velocity v, a continuation scheme on the regularization parameter βp for the regularizer
on p of the tumor inversion solver, is conceivable. Numerical examination of different variants showed
dependence of the solution on the considered parameter-continuation scheme (i.e., βv-continuation
or combined βv-βp-continuation) and the step length for the reduction in between Picard-iterations.
We observe best overall results if only continuation on the registration regularization parameter βv is
performed.

13A direct solve of the marginally regularized optimization problem would not only result in a non-optimal solution due to
non-convexity of the objective, but is also most likely to diverge due to break down of the employed solvers in the face
of severe ill-conditioning and indefiniteness of involved operators

14The determinant of the deformation gradient det(∇y) is a measure for the local volume change induced by the trans-
formation, i.e., volume compression/expansion. A lower bound on this quantity controls the maximum allowed local
volume change.

15In our numerical analysis, we found that reducing the regularization weight by 10 in between parameter-continuation
steps yields robust results while allowing for an acceptable time-to-solution.
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1 func picard-mp(v0, p0, k̄0, β0
v, βlov , ε∇, jfinal)

2 repeat
3 c(¨,1) = T Ñ

m(0,0)
A

[pk, k̄k] ù (6.7a)–(6.7b)

4 m(0,1)
A = m(0,0)

A (1 ´ c(¨,1)) ù (6.4i)

5 for ι = 1, . . . , 5 do
6 vk+1 = RÐ

MP [m
(0,1)
A , c(¨,1), mD, cD, βk

v]

7 if det(∇y) ă ε∇ then
8 break
9 βk

v = βk´1
v ´ (βk´1

v ´βk
v)/2

10 stop = true

11 c(1,¨)
P = RÑ [v, cD] ù (6.4f)–(6.4g)

12 pk+1, k̄k+1 = T Ð

m(0,0)
A

[c(1,¨)
P ] ù (6.16)

13 if stop or βk
v ď βlov then

14 jfinal = jfinal ´ 1

15 else
16 βk+1

v = βk
v/10

17 k = k + 1

18 until jfinal ă 0

1 func picard-ma(v0, p0, k̄0, β0
v, βlov , ε∇, jfinal)

2 repeat
3 m(1,0)

A = RÑ [v, m(0,0)
A ] ù (6.12e)–(6.12g)

4 update ρ(m(1,0)
A ) and k(m(1,0)

A )

5 c(¨,1) = T Ñ

m(1,0)
A

[pk, k̄k] ù (6.12a)–(6.12b)

6 pk+1, k̄k+1 = T Ð

m(1,0)
A

[cD] ù (6.19)

7 for ι = 1, . . . , 5 do
8 vk+1 = RÐ

MA [m
(1,0)
A , mD, c(¨,1), βk

v]

9 if det(∇y) ă ε∇ then
10 break
11 βk

v = βk´1
v ´ (βk´1

v ´βk
v)/2

12 stop = true

13 if stop or βk
v ď βlov then

14 jfinal = jfinal ´ 1

15 else
16 βk+1

v = βk
v/10

17 k = k + 1

18 until jfinal ă 0

ALGORITHM 6.1 Pseudo-code for the moving-patient (left) and moving-atlas (right) Picard-iteration algorithm with
embedded βv-continuation scheme. The regularization weight is reduced by a factor of 10 in every Picard-iteration. The
optimal regularization parameter β‹

v is found via a backtracking strategy based on the lower bound ε∇.

Warm-Starts and Grid-Continuation. For both Picard-iterations, SIBIA supports a warm-start
mechanism which is useful for an F-cycle type multi-scale grid-continuation approach, as known
from full approximation schemes (FAS). Starting on a very coarse spatial grid, we solve a series of
optimization problems with gradually refined spatial resolution, allowing for the representation of
more and more details in the input images along with more accurate and complex parameter estima-
tions. I.e., we consider a sequence of initially convex but increasingly oscillatory approximations
of the objective function, which are minimized over a sequence of increasingly finer discretizations
of state, adjoint, and parameter spaces. The solutions for the inversion variables vk, pk and k̄k from
previous coarse-grid solves are prolongated16 to the refined mesh and used as initial guess for the
inversion solvers. Similar to the parameter-continuation scheme for the regularization weight, this
multi-scale approach convexifies the optimization problem by gradually including more details
and image features, once the parameter estimates approaches the solution17. This further aids to
prevent sub-optimal local minima solutions and provides good initial guesses for high accuracy
solves to keep the Newton-type methods within the basin of attraction of the global minimum and
the regime of fast convergence. On the other hand, it drastically reduces the time-to-solution due to
a significantly reduced number of unknowns on coarser grids. Both properties are of great value
for the coupled solution schemes and are an important ingredient to tackle the large-scale, highly
non-linear and non-convex problems.

16Note that only the velocity vector field v needs to be prolongated from a coarse grid representation to the refined grid.
We do this with high-order interpolation schemes (order three or higher). Due to the parametrization of the initial
condition, the tumor parameters do not need to be prolongated in between grids, unless the Gaussian basis functions
remain unchanged; the obtained parameter solution vector p from a coarser grid is copied as is to the finer grid.

17Sharp resolution of features, interfaces and reconstructions may hinder the optimization process in an early stage, causing
it to get trapped in a local minimum, which might be far from the global minimum.



6.3 MODULAR ITERATIVE SOLVERS – PICARD-ITERATIONS 171

1 func grid-continuation((β0
v,`)

fine
`=0 , (βlov,` )

fine
`=0 , jfinal)

2 v0
0 = 0, p0

0 = 0, k̄0
0 = 0

3 for ` = 0, . . . , fine do
4 prolongate v0

` = Pvk
`´1, p0

` = pk
`´1, k̄0

` = k̄k
`´1

5 picard-<ma/mp>(v0
` , p0

` , k̄0
` , β0

v,`, βlov,` , ε∇, jfinal)

ALGORITHM 6.2 Pseudo-code for the grid-continuation scheme for the coupled Picard-iteration solution process.
Grid- and parameter-continuation are intermeshed such that increasingly oscillatory optimization problems are solved with
educated initial guesses for the inversion variables obtained from prolongated coarse-grid/high-regularization solves.

The grid-continuation scheme needs to be intertwined with the parameter-continuation for
the regularization weight such that high regularization weights correspond to coarse spatial grid
resolutions. With this approach, we effectively tackle the problem of over-solving in an early stage of
the coupled solution scheme, as the limited solution accuracy due to initially high regularization
weights does not justify full resolution solves. Hence, we invest less work in a solution stage
where details and features are intentionally omitted to convexify the optimization process. For
the combination of grid- and parameter-continuation, different stepping schemes, i.e., different
combinations of regularization parameter βv and corresponding spatial grid resolution are possible.
The accuracy of the final result slightly depends on the choice of the stepping scheme, but remains
robust if we avoid solving coarse spatial resolutions with a regularization parameter that is too small.
Generally speaking, we start with a high regularization weight β0

v = 1 to solve the optimization
discretized on the coarsest grid (e.g., n = 323) and follow the Picard-iteration scheme with embedded
parameter-continuation until the prescribed βlo

v for the current spatial resolution is reached. The
resulting velocity is then prolongated to a finer resolution v0

` = Pvk
`´1 and together with the tumor

parameters p0
` = pk

`´1, k̄0
` = k̄k

`´1 is used to warm-start the coupled solver on a finer discretization

level `. The initial regularization weight β0
v,` on this grid is chosen as the final weight βlo

v,`´1 obtained
after convergence of the Picard-iteration (specified minimum regularization weight for this level
reached) on the previous grid. Alg. 6.2 shows pseudo-code for a solution scheme combining grid-
and parameter-continuation. A typical scheme for instance reads

level 0 n = 323 β0
v = 1E0 βlo

v = 1E´1
level 1 n = 643 β0

v = 1E´1 βlo
v = 1E´2

level 2 n = 1283 β0
v = 1E´2 βlo

v = 1E´4
level 3 n = 2563 β0

v = 1E´4 βlo
v = 1E´4

Convergence Criteria. The Picard iteration-type solution schemes given in Alg. 6.1 and presented
in detail in §6.3.1-§6.3.2 consist of various sub-solver modules. To obtain a prescribed overall accuracy,
the respective sub-solver accuracies and stopping conditions need to be carefully tuned and geared
to each other. Neither sub-optimal precision of the solution due to insufficiently accurate sub-results
(accuracy bottleneck) nor over-solving, i.e., continuing to reduce the residual for a solver if the error
is already in the noise level of the overall solution process, is desirable. The oppositional objectives
of high overall solution accuracy and short time-to-solution need to be balanced. We summarize
the set of stopping conditions for various components and sub-solvers employed within SIBIA. The
actually utilized convergence criteria, i.e., the imposed tolerances, are given in Chapter 7 for the
respective numerical experiments.

Picard-Iteration. We finalize the Picard-iteration scheme for our coupled solvers if either the
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registration regularization parameter reaches its prescribed minimum18 βv ď βlo
v in the parameter-

continuation scheme or if the candidate βk
v results in a violation of the user defined tolerance ε∇

for the determinant of the deformation gradient, i.e., det(∇y) ď ε∇ is breached. After termination
of the parameter-continuation scheme, we perform jfinal post-convergence iterations, keeping the
regularization weights and grid resolution fixed. Our numerical analysis showed that for real brain
MR imaging data19, the objective function value does not decrease significantly if more than one
final iteration is performed. In this stage we typically reached the noise level20., primarily introduced
by an order O(1E´2) error caused by solving the advection equation, cf. §7.2. We therefore fix the
number of final iterations to one for most experiments; compare also Alg. 6.1.

Optimizer – Quasi-Newton and Newton-Krylov. We use inexact Newton-type methods to solve the
set of first order optimality conditions for the registration and tumor inversion, respectively. Two
different sets of convergence criteria for the Newton-type optimization iteration are used within
SIBIA, both addressing the reduced gradient g j defined in (6.9) after Newton-iteration j. The (C1)
stopping conditions

(C1.i) }g j}2 ă opttol}g0}2,

(C1.ii) }g j}2 ă 1E´10,

(C1.iii) j ą maxitN

with (C1.i) _ (C1.ii) _ (C1.iii) terminate the iteration if the relative gradient norm }g j}rel :=
}g j}2/}g0}2 drops below a user specified tolerance opttol. The (C2) stopping conditions

(C2.i) J[xj´1] ´ J[xj] ă opttol(1 + J[x0]),

(C2.ii) }xj´1 ´ xj}2 ă
a

opttol(1 + }x0}2),

(C2.iii) }g j}2 ă
3
a

opttol(1 + J[x0]),

(C2.iv) }g j}2 ă 1E´10,

(C2.v) }g j}2 ă κ}g0}2,

(C2.vi) j ą maxitN

with t(C2.i) ^ (C2.ii) ^ (C2.iii)u _ (C2.iv) _ t(C2.vi) ^ (C2.v)u are inspired by [Man15; Mod09] (for
a discussion see [Gil81], p. 305ff) and use a combination of the relative change of (i) the norm of
the gradient g j, (ii) the objective function J , and (iii) the inversion variable x P tv, (p, k̄)u ; all three
conditions must be fulfilled at the same time and are controlled by a single, user defined parameter
opttol ą 0. As a safeguard, iterations with either set of stopping conditions always terminate
in case the absolute norm of the gradient drops below 1E´10. Furthermore, to limit excessive
time-to-solution, to control the solvers’ inexactness, and to prevent stagnation, a maximum number
of allowed Newton iterations maxitN can be prescribed. For the (C2) set of stopping conditions, we
always enforce a relative gradient reduction of at least κ, 0.1 ď κ ă 1.

If Newton-Krylov is used for optimization, we solve the linearized, reduced space KKT system

18This is a lower bound which serves as safeguard against numerical instabilities that might occur if v becomes highly
irregular and is chosen based on numerical experience for a set of input images. For a discussion, see [Man17a]

19Real brain imaging data is typically non-smooth, detailed, and has high frequency features. Furthermore, the brain
geometry defines the diffusion coefficients and thus, complex brain structure hardens the diffusion solve due to sharp
coefficients and coefficient jumps. The expected accuracy for real data is therefore lower.

20For very smooth data we can show further convergence and reduction of the objective function value for an increasing
number of final iterations, see §7.4.2
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in each Newton-step inexactly based on an Eisenstat/Walker convergence criterion [Dem82; Eis96]
with a forcing sequence21 that yields super-linear or quadratic convergence22. Details on the inexact
Krylov solve and convergence criterion are given in §6.4. To prevent a prohibitively high number of
inner Krylov iterations, stagnation, or runtime limitation, the maximum number of allowed Krylov
iterations can be specified by maxitK.

The utilized set of stopping conditions used for the numerical results in Chapter 7 is indicated
therein; for almost all cases, we use the gradient reduction based convergence criterions (C1) with the
parameters opttolT , maxitN,T , maxitK,T for the tumor inversion, and the (C2) stopping conditions for
the registration controlled by the parameters opttolR, maxitN,R, maxitK,R. In our numerical studies,
we found that reducing the gradients for the tumor and registration solver by more than three and
two orders of magnitude, respectively does not improve the overall accuracy if real brain data is
considered, as we already reached the noise level23. The reference gradient g0 for both, registration
and tumor inversion solver, are computed with respect to a zero initial guess, i.e., g0 = gv(v = 0) and
g0 = gp(p = 0), respectively. We keep the reference gradients fixed throughout the Picard-iterations,
i.e., the requested accuracy for the sub-solvers does not increase as the solution process proceeds.

Data-driven Selection of Gaussian Basis Functions. For the biophysical tumor inversion solver,
the initial condition c(0) is parametrized by a linear combination of Gaussians ϕj represented by the
matrix Φ. In a discrete setting, the entries of Φ P Rn,np , n = n1n2n3, ni P N, are given by

(6.23) Φi,j = ϕj(xi)

for i = 1, 2, . . . , n and j = 1, . . . np, and xi P R3 denotes the i-th grid coordinate of a regular grid
of n points stored in lexicographical ordering, cf. §5.3.1. With this parametrization, we can encode
the initial conditions with a small number of parameters p P Rnp , and, in addition, it allows us to
effectively deal with multi-focal tumors. We set the Gaussians in CSF to zero to prevent a spurious
diffusion of cancerous cells into the area associated with CSF; that is, we define a filter mF(x) = 1 if
(mWM(x) ą 0.1 _ mGM(x) ą 0.1) ^ (mCSF(x) ă 0.8) and mF(x) = 0 otherwise, and compute

ϕj(x) = exp(´(σ}x ´ xj}2)
2)mF(x),

for all x P Ω. Here, σ ą 0 is the standard deviation and xj P R3 is the center of the j-th Gaussian
basis. In the following, we characterize Gaussians by the tuple (xi, σ), i.e., by their center xi and their
standard deviation σ.

We are interested in keeping the dimensionality np P N of the inversion variable p comparatively
small, which is why using a set of Gaussian basis functions that covers the entire simulation domain
is prohibitive. Yet, we opt for a fully automated and user friendly inversion process without
any necessity for manual tuning. We therefore place a set of Gaussians covering the area in the
brain which is afflicted by the tumor. We provide different strategies to select the number, spatial
positioning, and standard deviation σ of the basis functions, based on the probability map for
tumor cells for the given patient. Note that we place the basis functions, based on input tumor
data in the patient space, though we use them to simulate tumor growth in the atlas space for the
21The forcing sequence depends on the gradient norm and the termination of the inner Krylov solve is not based on a user

specified tolerance.
22To obtain quadratic convergence, the Hessian system needs to be solved more accurately. Our numerical experiments

showed that the overall time-to-solution reduces for a slightly worse super-linear convergence rate of the Newton solver,
which requires much less work in the inner Krylov iteration.

23The solution of the advection equation introduces an order O(1E´2) error for typically obtained registration velocities
and input images; see §7.2.
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moving-patient scheme.24 Furthermore, the initial spatial positioning of the Gaussians remains
unchanged throughout the coupled inversion process: Only for the moving-atlas scheme, we update
the above mentioned filtering of the basis functions, but not their spatial positioning. In the sequel,
we briefly discuss two available alternatives within SIBIA to automatically define the Gaussian basis
function based on given tumor data.

Tumor Diameter-Based Regular Grid Selection. Using this selection mode, the Gaussians are arranged
on a regular cubic grid with spacing δ in each coordinate direction, covering the area of the patient
tumor. To this end, we first compute the center of mass of the patient tumor, given by the probability
map cD as xCM =

ş

Ω cD(x)x/M dx with M =
ş

Ω cD(x) dx and the (approximation of the) diameter
dT := maxt}xi ´ xj | cD(xi, cD(xj) ą 0.5u. We then uniformly distribute a specified number of np

Gaussians within a cube d3
T around the center of mass xCM. The condition number κ(ΦTΦ) of the

matrix Φ affects the conditioning of the non-linear optimization for the tumor solver; we generate
Gaussian bases with condition numbers that are invariant with respect to the tumor size and shape.
The condition number of Φ depends on the number np of basis functions25, but is invariant with
respect to the tumor diameter dT if the relative overlap of the Gaussians is fixed. We therefore set
the spacing between Gaussian centers to δ = 1.5σ and choose σ = dT/1.5(t 3?npu´1) dependent on the
tumor expansion dT . Thus, the accuracy and degree of fidelity to represent initial conditions as a
superposition of Φ depends on the size and shape of the patient tumor in relation to the number np

of allowed Gaussians. As a result, the value for np to obtain sufficient interpolation accuracy for the
parametrization needs to be chosen manually in a pre-processing step. An exemplarily illustration
for this method is given in Fig. 6.4.

Tumor Shape- and Intensity-Based Adaptive Selection. Starting from an equally scattered candidate set

Bδ =
!

(xi, σ) | x = (δ/2 + 2πij/δ)3
j=1, ij P t1, . . . , 2π/δu

)

of possible Gaussian basis function locations in the entire simulation domain, this approach adaptively
selects those basis functions for which the amount of tumor cells (volume fraction) within the standard
deviation ball Bσ(xi) around the candidate location xi exceeds a prescribed threshold τV . In other
words, for all candidates (xi, σ) P Bδ, we compute the volume fraction of tumor cells within the
standard deviation σ, and activate or select the candidate, if

ş

Bσ(xi)
cD(x) dx

ş

Bσ(xi)
1 dx

ą τV

Otherwise, the candidate function is discarded. This results in a set Φ of np basis functions,
resembling the shape of the tumor input data. The number np of basis functions can be controlled
by (i) requiring a higher volume fraction τV of tumor cells within Bσ(xi), (ii) varying the standard
deviation σ of the Gaussians, and by (iii) varying the spacing δ = ιhx, ι = 1, 2, . . . in multiples of the
grid resolution hx. The latter significantly influences the condition number of Φ and is therefore
typically fixed to δ = σ or δ = 2σ. If the number of selected basis functions exceeds a pre-defined
upper bound np ą nhi

p , the process is restarted with a higher choice for the volume fraction threshold
τV or larger σ. An illustration is given in Fig. 6.4.

24Advecting Gaussian basis function to the atlas space would significantly complicate the formulation and the respective
Picard iteration-type solution scheme.

25For a standard deviation of σ = π/10 and spacing δ = 1.5σ, we exemplarily obtain condition numbers κ(Φ‹Φ) of 436, 4212,
and 12096 for np = 27, np = 125, and np = 343 basis functions, respectively.
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np = 125 Gaussians
Tumor Diameter-Based Regular Grid Selection
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σ = 2π/12
δ = 1.5σ

dT

•
xCM

(A.i)

np = 343 Gaussians
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(A.ii)

Tumor Shape- and Intensity-Based Adaptive Selection
σ = 2hx
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σ = 4hx
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(B.ii)

FIGURE 6.4 Illustration of the different Gaussian selection modes. (A.i) and (A.ii): diameter-based regular grid
selection. The Gaussian basis functions are placed as a regular grid around the center of mass of the tumor input
concentration. The size of the bounding-box is determined from the maximum diameter of connected tumor tissue; the
standard deviation σ of the Gaussians is chosen such that a prescribed number of np equally spaced Gaussian basis
functions cover the tumor region within the bounding-box (compare (A.i) with σ = 2π/12 for a diameter of dT = π and
np = 125 basis functions and (A.ii) with σ = 2π/18, dT = π and np = 343; the relative spacing is fixed to δ = 1.5σ).
(B.i) and (B.ii): shape- and intensity-based adaptive selection. Starting from a standard deviation σ = 2hx and
spacing of δ = σ, the entire domain is seeded with candidates (xi, σ) P Bδ for Gaussian basis functions (light gray shaded
circles). If for a candidate point xi the volume fraction for tumor cells within the σ-ball exceeds a specified threshold, i.e.,
ş

Bσ (xi )
cD(x) dx/

ş

Bσ (xi )
1 dx ą τV , the respective Gaussian is activated and added to Φ (light blue shaded circles); otherwise,

the candidate location is discarded. If the number of activated Gaussians exceeds a specified upper bound np ą nhi
p , the

process is restarted with a higher required volume fraction, or doubled standard deviation σ4h = 2σ2h and a new set of
candidate locations B2δ, figure (B.ii).

Both selection modes are implemented in parallel on distributed data. For the tumor shape-
and intensity-based adaptive selection, this involves communication with all neighboring processes
whose domain is overlapped by the standard deviation ball of a location xi owned by the local
processor.

A Sparsity Constraint for the Tumor Inversion. The tumor inversion problem is non-unique
in the sense that different combinations of (i) the initial condition for the tumor concentration,
(ii) the characteristic diffusivities for white and gray matter, i.e., kw and kg, respectively, (iii) the net
proliferation rate ρ, and (iv) the considered time horizon for tumor simulation may result in identical
simulated final state tumor cell distributions. For biophysical parameter estimation we therefore
need to fix some values and invert for a subset of the parameters only, as discussed earlier. Generally
speaking, when inverting for the initial condition of the tumor cell distribution, we are interested in
the initial condition which appears to be a point source, i.e., as sparse as possible, representing the
true initial cell mutation of a glial cell into a cancerous cell. With this condition, the time horizon for
the tumor evolution is automatically fixed, which eliminates a further degree of freedom. The L2

Thikonov-type regularization considered in the formulation of our inverse tumor problem in §5.3.1
alleviates bad conditioning, but does not result in sparse initial conditions; the solution process
arrives at a richer initial condition that does not reflect the time point of the initial cell mutation.

We therefore enhance the tumor inversion solver by a sparsity constraint to acquire the desired
effect. The sparsity constraint is implemented as a L1-regularization operator S1

p [p] = 1
2 }p}L1(Ω)

(see (6.5)) penalizing the number of non-zero entries in the coefficient vector p of the initial condition
parametrization Φp. This regularization operator is non-differentiable and cannot be solved with
our derivative-based Newton-type approaches. To solve the L1-regularized optimization problem,
we therefore employ the General Iterative Shrinkage Thresholding (GIST) [Gon13] algorithm, based
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on repeated solutions of a representative proximal operator problem:

pj+1 = P(pj, αj) with P(pj, αj) = arg min
p

1
2

}p ´ pj
sd}2

L2(Ω) + αj βp

2
}p}L1(Ω),(6.24a)

where pj
sd = pj ´ αj∇Dc(c(¨,1), cT) is the gradient-descent guess in the direction ∇Dc(c(¨,1), cT) with

step length αj. Depending on the formulation, the target tumor data is either the warped-to-atlas
patient data cT = c(1,¨)

P (moving patient formulation) or the original data cT = cD (moving atlas
formulation). For L1-regularization, the solution of the proximal operator problem can be computed
analytically:

P(pj, αj) = sign(pj
sd)max(0, |pj

sd| ´ αjβp)(6.24b)

We use Armijo line-search to determine the step length αj, using the following stopping criteria

|JT [pj+1] ´ JT [pj]| ă τJ(1 + JT [p0)](6.25a)

}pj+1 ´ pj}L8(Ω) ă
a

τJ(1 + }pj+1||L8(Ω))(6.25b)

where JT = JT
m(0,0)

A

for moving patient and JT = JT
m(1,0)

A

for moving atlas. τJ ą 0 is a user defined

tolerance.

To estimate a suitable value of the regularization weight βp, we employ a parameter-continuation
scheme. Starting with a large value for βp in the order of the initial gradient }∇Dc(c(¨,1), cT)}L8(Ω)

of the distance measure, we perform a binary search in subsequent GIST iterations based on the
Hoyer sparsity measure [Hur08], Hs(p) P [0, 1], defined as

(6.26) Hs(p) =
`(p) ´ }p}L1(Ω)/}p}L8(Ω)

`(p) ´ 1
,

where `(p) is the length of p. A high value of Hs(p) indicates a sparse parameter vector p; we use a
tolerance of 0.95 to classify sparse solutions. We reduce the regularization weight (bisection), while
the obtained solution is classified as sparse (Hs(p) ą 0.95) and restart the optimization with new
regularization weight using the previous solution as initial guess; in case of insufficient sparsity of
the solution, the regularization weight is increased.

Due to the slow convergence of these first order techniques (gradient-descent), we employ a
two step solution strategy: We first obtain a sparse initial guess pL1 for the tumor initial condition
by solving the L1-regularized optimization problem for a large regularization weight βp obtained
from the above described parameter-continuation scheme. A large regularization weight pronounces
the convex part of the objective functional and fosters fast convergence: The obtained solution is
not accurate with respect to intensity, i.e., the absolute coefficient values in the parameter vector
p. However, it effectively captures the sparsity (non-zero entries in p are penalized stronger using
L1-regularization). From the sparse coefficient vector pL1 , we identify the Gaussian basis functions
that are important for the reconstruction of the observed patient tumor. This information is used
to define a weighting matrix applied in a second weighted L2-regularization solve to improve the
accuracy of the solution (identify the exact values/intensities of the coefficient vector p). The
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modified L2-regularizer is given by an induced weighted L2-norm

(6.27) }p}W :=

( np
ÿ

i=1

wi ¨ p2
i

) 1
2

which penalizes entries in p that do not correspond to selected basis functions from the L1-step, i.e.,
(almost) zero entries in pL1 . The weights wi are given as

wi =

#

wlarge if |pL1,i| ă τS}pL1}L8(Ω)

wsmall else.

where τS is a user defined tolerance. This approach allows us to speed up convergence by relying on
second-order methods for the differentiable L2-regularized optimization problem, while retaining
the sparse nature of the initial condition. The enhancement of the tumor inversion solver by the
sparsity constraint including the modified solver for the non-differentiable L1-regularization is a
result of joint effort with Shashank Subramanian; a joint paper is in preparation.

6.4 Newton Methods for the Reduced Systems

In the previous section, we considered mechanisms and concepts required for steering, stabilizing
and automating the coupled Picard-iteration. We further described specific modifications or en-
hancements of sub-component solvers to facilitate the coupling. In the following we focus on the
sub-component systems and review reduced space methods, in particular reduced Newton methods,
in a generic formulation. Apart from accurate and meaningful results (whether biophysically diag-
nostic parameters or meaningful image registration mappings), the time-to-solution is extremely
critical for our application. Our methodology is intended to ultimately be used in clinical routine,
where compute power is limited and time is precious. Therefore, we have to further optimize solvers
and algorithms to reduce the response time of the simulation pipeline. The grid- and parameter-
continuation schemes presented in the previous section already help to reduce the time-to-solution
significantly, however, we are furthermore interested in investigating if approaches exploiting differ-
ent degrees of inexactness for Newton-type iterations further speed up the simulation. Specifically,
we examine the performance of quasi-Newton methods for the tumor inverse problems (6.16) and
(6.19).

A standard approach to cope with the system of coupled, non-linear PDEs that establishes the
optimality conditions of a PDE-constrained optimization problem is to employ a reduced space
method, resulting in a reduced system of only the dimensionality of the inversion variables. We
mentioned the basic concept of such a method, combined with a Gauß-Newton-Krylov solution
scheme, in §5.3.3. Here, we abstract from the given problem and describe the Newton method
for large-scale PDE constrained optimization in a more generic and detailed fashion in §6.4.1. We
describe general inexact Newton approaches for the reduced system in §6.4.2. In §6.4.5, we point out
how the Gauß-Newton-Krylov (GNK) approach can be effectively replaced by quasi-Newton type
solvers and analyze their computational complexity. Numerical experiments, that compare GNK
versus quasi-Newton methods based on their time-to-solution in relation to the quality of the final
solution, can be found in §7.4.5.
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6.4.1 Newton Methods for the Lagrangian Gradient

In the sequel, we abstract from specific optimization problems to a generic formulation and describe
the Newton method for the solution of the optimality system arising from stationarity of the
Lagrangian of a generic optimal control problem. Our description is based on [Pet11; Akc06].
Assume we are given the following abstract PDE constrained optimization problem

min
q

J (u, q) subject to c(u, q) = 0,(6.28)

where u are the state variables, q the decision variables, J is the objective function, and c are the
PDE constraints (state equations, or forward model). The constrained optimization problem (6.28)
can be translated into an unconstrained one by defining the Lagrangian function

(6.29) L = J (u, q) + λTc

which takes into account the constraints c via an inner product with the Lagrange multiplier λ.
The latter is also called adjoint variable. We require stationarity of the Lagrangian L with respect
to u, q and λ. Taking variations yields the (non-linear) system of first order optimality conditions
(KKT-system):

$

’

&

’

%

gu := δuL
gq := δqL
gλ := δλL

,

/

.

/

-

=

$

’

&

’

%

δuJ (u, q) + (δuc(u, q))Tλ)
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=
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&
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%

Ju + cT
u λ

Jq + cT
q λ

c

,

/

.

/

-

= 0.(6.30)

With, gu, gq and gλ we denote the first order variations or gradients of L with respect to u, q, and
λ, respectively. Ju and Jq are the variations of the objective function J and cu, cq are the gradients
of the state equations c with respect to u and λ, respectively. The optimality system (6.30) portrays
a set of coupled, non-linear PDEs and is typically characterized by ill-conditioning, indefiniteness,
and a large number of unknowns. The simplest strategy of using a globalized gradient-descent
approach fails in most practical applications due to its slow convergence properties. Thus, we
consider Newton-type methods that are characterized by their fast convergence, but require second
order variational-derivatives of the Lagrangian. Newton-type methods solve the Newton system

(6.31) Hx̂ = ´g

for increments x̂ = (û, q̂, λ̂)T and update the variables with (u, q, λ) := (u, q, λ) + α(û, q̂, λ̂). H is
the Hessian operator, i.e., second order variation δ2L of the Lagrangian and g = (gu, gq, gλ)

T is the
first order variation δL of the Lagrangian, i.e., the detailed system (6.31) reads δuδuL δuδqL δuδλL

δqδuL δqδqL δqδλL
δλδuL δλδqL δλδλL
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$

’

&

’

%

δuL
δqL
δλL

,
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/

-

.(6.32)

Replacing the abstract terms above by the respective discretized variations and functions, yields
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the following Newton scheme in block matrix notation Juu + cT
uuλ Juq + cT

uqλ cT
u

Jqu + cT
quλ Jqq + cT

qqλ cT
q

cu cq 0


$

’

&

’

%

û
q̂
λ̂

,

/

.

/

-

=

 Wuu Wuq UT

Wqu Wqq QT

U Q 0
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’
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û
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/

-
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’
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’

%
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gλ

,

/

.

/

-

(6.33)

We denote the discretized functions and operators in boldface notation, i.e., u, q, λ are the discretized
functions u, q and λ (likewise for the increments û, q̂, λ̂), and Jxy, cx, cxy, x, y P tu, qu denote the
discretized first and second order variational derivative operators of the objective function J and
the constraints c, respectively. For better readability we replace the components containing second
order variational-derivatives of the Lagrangian by Wuu, Wuq, Wqu, and Wqq and the Jaobians of the
state equations, with cu =: U, and cq =: Q, respectively. gu, gq, and gλ are the discrete gradients of
the Lagrangian.

This linear system is known as KKT system. Assuming the discretized state and adjoint fields to
be of dimensionality n with nq control parameters, i.e., u, λ P Rn, q P Rnq , the KKT coefficient matrix
H is of dimensionality (2n + nq) ˆ (2n + nq). For most realistic scenarios, n is extremely large as
state and adjoint fields represent 3D data, while nq either may be in the same order, or significantly
smaller if a good parametrization of the control space is applicable. In our case, nq is significantly
smaller than the problem dimensionality n for the tumor solver, while, for the registration solver
nq = 3n. Either way, direct solvers for the system (6.33) are ruled out and most iterative full space
solvers that simultaneously solve for incremental state, adjoint and control variables struggle with
the ill-conditioning, indefiniteness, and large scale of the KKT system. These difficulties motivate the
use of reduced space methods.

6.4.2 Reduced-Space Newton Methods

An excellent overview on reduced space methods for PDE constraint optimization can be found
in [Akc06; Akc02; Bir05a; Bir05b; Bir99; Pet11]. This class of solvers assumes the state and adjoint
equations to be solved exactly, i.e., it assumes the gradients gλ, and gu to be zero. Algorithmically,
this means we compute the gradient of the reduced system by first solving the state equation
c(u, q) = 0 for u, the adjoint Ju + cT

u λ = 0 for λ, and then evaluate the reduced gradient Jq + cT
q λ

for this λ. To solve the reduced gradient system with a Newton-type solver, a block-elimination
of the incremental state and adjoint variables û and λ̂ from (6.33) is performed, which yields the
reduced Hessian system

(6.34) H̄q̂ = ´gq

with coefficient matrix H̄ P Rnqˆnq . This can be solved for an update q̂ of the control variables q, re-
sulting in a reduced Newton (RN) method. Besides the (usually) significantly smaller dimensionality
of the reduced system, which potentially makes the use of direct solvers eligible, the state and adjoint
solvers are at the heart of this method, for which existing, efficient, and parallel PDE solvers can be
exploited. However, reduced space methods assume exact solves for the state and adjoint equation,
which might result in high computational costs and urges for good preconditioners of the respective
operators. While for steady-state problems, full space approaches generally outperform reduced
space methods; this is highly unclear for optimization problems that are governed by time-dependent
PDEs, such as those considered here. Experimental results show good convergence for reduced
space methods, even if the state and adjoint equations are not solved up to machine precision [Akc06;
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1 func [gqk
, qk, uk, λk] = reducedNewton(q0)

2 for k = 0, 1, . . . do
3 gqk

= evalgradRN(qk)

4 solve: H̄q̂k = ´gqk
for q̂k ù ‹ (6.31)

5 repeat
6 α = linesearch(qk, q̂k)
7 until linesearch successful
8 qk+1 = qk + αq̂k
9 if }gqk+1

} ă εopt}gq0
} then

10 break
ALGORITHM 6.3 Reduced Newton method. Algorithmic steps taken for the reduced Newton solver, globalized with
a non-specified linesearch method. The core step is the solution of the reduced Hessian system ‹; different derived
methods can be discriminated in terms of their respective solution strategy. The line-search routine guarantees global
convergence and the iteration terminates if the reduced gradient has been sufficiently decreased.

Akc02]. We solve

Uûk = ´Qq̂k ñ ûk = ´U´1Qq̂k := M̄uq̂k(6.35a)

UTλ̂k = ´(Wuuûk + Wuqq̂k) ñ λ̂k = ´U´T(Wuu M̄u + Wuq)q̂k := M̄λq̂k(6.35b)

derived from (6.33) for the incremental state and adjoint variables ûk and λ̂k. Notice that this uses
the fact that gu = gλ = 0 for the given iterates uk and λk. Inserting û and λ̂ from (6.35) into the
control variable equation block of (6.33) eliminates the first and third block of equations therein, i.e.,

Wqqq̂k = ´gqk
´ Wquûk ´ QTλ̂k

Wqqq̂k = ´gqk
´ Wqu M̄uq̂k ´ QT M̄λq̂k,(6.36)

and yields the reduced Hessian H̄ as the Schur-complement of the matrix Wqq; we state the reduced
Hessian matvec as

H̄q̂k := (Wqq + Wqu M̄u + QT M̄λ)q̂k.(6.37)

Inserting the definitions of Wqq, Wqu, M̄u, M̄λ, U, Q, Wuu, and Wuq yield the reduced Hessian in
more detail

H̄ = Wqq + Wqu M̄u + QT M̄λ

= Wqq ´ WquU´1Q + QTU´T(WuuU´1Q ´ Wuq)(6.38)

= Jqq + cT
qqλ ´ (Jqu + cT

quλ)c´1
u cq + cT

q c´T
u ((Juu + cT

uuλ)c´1
u cq ´ Juq + cT

uqλ).

The reduced space Newton algorithm to solve the non-linear optimality system (6.30) via the
linearization (6.33) and subsequent block-elimination for the reduced system (6.33) and (6.37) is
shown in Alg. 6.3. To guarantee global convergence, the method is globalized via a suitable line-
search method. Popular choices are Armijo-backtracking line-search [Noc06] or Moré-Thuente
line-search [Mor94; Noc06]. More details on the line-search methods are given later. Every Newton
iteration requires at least (an approximation to) the solution of the linear system (6.31), one evaluation
of the reduced gradient, and one objective function evaluation for the line-search. If the latter does
not succeed, multiple gradient and objective function evaluations might become necessary. The call
to evalgradRN involves two PDE solves – one for the state equation and one for the adjoint equation
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– corresponding to lines 3 and 1 in (6.30). The solution for the state equation solve can be stored to be
used for the objective function evaluation. The computation of the reduced gradient is summarized
in Alg. 6.4.

1 func [gqk
] = evalgradRN(qk)

2 solve: c(qk, uk) = 0 for uk ù (gλ = 0, state equation)
3 solve: c´1

u (qk, uk)
Tλk = ´Jqk ,uk

(uk) for λk ù (gc = 0, adjoint equation)
4 compute: gqk

= Jq(uk, λk) + cq(uk, qk)λk ù (gqk
, reduced gradient)

ALGORITHM 6.4 Reduced gradient evaluation routine. The core components are efficient solvers for state and
adjoint equations (lines 2 and 3) with high accuracy.

6.4.3 Inexact Reduced Newton Methods

Clearly, the solution of the reduced Hessian system is at the heart of the reduced Newton method.
Depending on the pursued strategy, different reduced Newton-type methods can be derived:

A) The classical reduced Newton method solves the Newton system

H̄kq̂k = ´gq(qk) exactly and sets qk+1 = qk + αq̂k.

The inversion of the Hessian matrix H̄k is usually obtained via direct solvers such as LU-
factorization. No approximations to H̄k are made, the matrix needs to be explicitly built and
stored. Usually, this method is not used due to the prohibitive computational complexity
necessary to solve for a search direction q̂ exactly. The optimal step length for the Newton
step is α = 1 if the Newton direction is solved exactly, i.e., H̄´1

k gq(qk) is computed exactly.

B) The family of reduced inexact Newton-type methods [Dem82] allows the Newton update to
be solved inexactly. In every inexact Newton step, we seek for a search direction q̂k and a
forcing term ηk P [0, 1), such that

(6.39) }gq(qk) + H̄kq̂k} ď ηk}gq(qk)} is fulfilled and set qk+1 = qk + αq̂k.

The forcing term ηk (relative error bound) needs to be picked prior to every iteration. Thereby,
ηk forces }gq(qk) + H̄kq̂k} to be small in a certain way (ηk = 0 enforces exactness and yields
Newton’s method). As a result, the forcing sequence tηku controls the methods’ convergence
properties and needs to be chosen carefully: while solving inexactly, we don’t want to loose
the rapid convergence properties of Newton’s method. Proof of guaranteed convergence
properties for specific choices of tηku can be found in [Dem82; Eis96].

Inequality (6.39) constitutes a quite generic discrimination of inexact Newton methods. In-
exactness of the solution, while still fulfilling (6.39), can be obtained in three different ways:
(1) The Newton system H̄kq̂k = ´gq(qk) can be solved inexactly in an iterative way, utilizing
exact Hessian information, or (2) it can be solved by inverting an approximation Mk « H̄k

to the Hessian matrix or directly computing an approximation M´1
k « H̄´1

k to the inverse
Hessian, or to ´H̄´1

k gq(qk). (3) Lastly, the most typical approach is to combine both forms of
inexactness, i.e., solving the system Mkq̂k = ´gq(qk) inexactly with Mk « H̄k. We consider
the following manifestations of inexact Newton-type methods:

B.1) The reduced Newton-Krylov method utilizes a matrix-free Krylov-subspace method to solve
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the reduced Hessian system inexactly in every Newton iteration, using exact Hessian infor-
mation, but only providing a function for the matrix-vector product H̄kgq(qk) instead of an
explicit representation of H̄k. Such matrix-free variants become inevitable in the face of large
scale applications, where neither building nor storing the reduced Hessian is feasible.

B.2.a) The reduced quasi-Newton method directly maintains an approximation M´1
k to the inverse

Hessian, which renders the subsequent solution of the linear system redundant. A Newton
update is then obtained from

qk+1 = qk ´ αM´1
k gq(qk)

with }I ´ M´1
k H̄k} ď ηmax ă 1 and similar reasoning as above. The quasi-Newton approxima-

tion does not discard all second-order variational-derivatives of the Lagrangian, but assumes
them to be constant. An initial guess for the inverse Hessian is iteratively improved by ob-
served gradient and iterate information. If enhanced with a line-search method satisfying the
Wolfe conditions, the resulting inverse Hessian approximation is positive definite [Noc06].

B.2.b) The reduced Gauß-Newton method approximates the reduced Hessian with Mk, solves

Mkq̂k = ´gq(qk) and sets qk+1 = qk + αq̂k

in every iteration, with the Gauß-Newton Hessian approximation, obtained by discarding
parts of the second-order variational-derivatives of the Lagrangian. The step size α is obtained
from a line-search technique. Mk must satisfy

}I ´ M´1
k H̄k} ď ηmax ă 1,

and with

}r} = }gq(qk) + H̄kq̂k} = }gq(qk) + H̄k[´M´1gq(qk)]}

ď }I ´ M´1
k H̄k}}gq(qk)} ď ηmax}gq(qk)}

equation (6.39) is fulfilled and convergence results for specified ηmax can be applied [Den68].
Computing a suitable approximation of the Hessian is favorable for two reasons: (i) Computing
the exact Hessian terms is usually computationally expensive, and (ii) in our context, the
reduced Hessian suffers from indefiniteness which poses a significant difficulty for most
solvers. The Gauß-Newton approximation addresses both issues by significantly reducing the
computational complexity, discarding second order derivative terms, and, thereby, constructing
a positive definite approximation. Furthermore, the optimal step length for the Gauß-Newton
step is close to 1 [Noc06]. Typically, the resulting system is solved via an inner Krylov iteration,
giving raise to

B.3) The Gauß-Newton-Krylov method, which combines inexactness in the Hessian with an inexact
iterative solution of the resulting linear system.

In the sequel, we consider the above described methods in more detail, and in particular, work
out strengths and weaknesses for the GNK method when compared to the quasi-Newton method. A
quantitative comparison for the tumor inversion problem is given in §7.4.5.
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6.4.4 The Reduced Newton-Krylov Method

The reduced Hessian involves the inverse state and adjoint operator, and thus is a dense matrix.
If the number of control variables nq is large, building and storing the matrix is intractable, and
solving (6.34) requires a matrix-free iterative Krylov-subspace solver (such as conjugate gradients
(CG)). Even if nq is small, an iterative method might be favorable as building H̄ requires at least nq

forward and adjoint solves, while an iterative method possibly converges in less than nq iterations.
Such solvers need the matrix-vector product (matvec) (6.37) of the reduced Hessian with a vector.
The involved algorithmic steps are given in Alg. 6.5.

1 func [H̄q̂`] = matvecRH(q̂`k, û`
k, λ̂`

k, qk, uk, λk)
2 solve: û`

k = M̄uq̂`k ù (incr. state) Ź (6.35a)
3 solve: λ̂`

k = M̄λq̂`k ù (incr. adjoint) Ź (6.35b)

4 compute: H̄q̂` = Wqqq̂`k + Wquû`
k + QT λ̂`

k ù (matvec) Ź (6.38)

ALGORITHM 6.5 Reduced Hessian Matvec Routine.

Solving the Newton system iteratively with a certain accuracy for the residual leads to inexactness
in the Newton direction, and, thus, may affect the convergence properties. Convergence of such
methods is controlled by the forcing sequence tηku, which is reflected in the termination criterion
for the inner Krylov solver. While reducing computational costs, we would like to preserve rapid
Newton-like convergence. Closely related to this is the issue of over-solving the Newton system: If
far away from a solution, solving the Newton system very accurately by imposing a high accuracy
on the approximation of the Newton step may lead to a significant disagreement of the gradient
gq(qk + q̂) and its local linear model gq(qk) + H̄(qk)q̂. Thus, over-solving results in little to no
reduction in the gradient and entails lavished costs. A less accurate approximation to the Newton
step in an early stage may be both cheaper and more effective. Thus we employ an Eistenstat-Walker
convergence criterion [Eis96; Noc06] for the inner Krylov solver

εEW,k = ηk}gqk
} with the forcing sequence ηk = max(1E´2, min(0.5,

b

}gqk
})),

choosing the imposed accuracy relative to the gradient norm. This choice for the forcing sequence
yields super-linear convergence. If ηk = max(1E´2, min(0.5, }gqk

})) is used, quadratic convergence
is expected. A profound convergence analysis and proofs of guaranteed convergence can be found
in [Dem82; Eis96; Den68].

Remark. Powerful preconditioners are absolutely inevitable and of great importance to efficiently
tackle the exceptionally hard problems and give raise to fast converging solvers. For the computation
of the Newton step using Newton-Krylov, for example, a sophisticated preconditioner has to be used
to alleviate poor conditioning of the Hessian matrix for the Krylov solve. Within this work, however,
we do not focus on design, implementation or comparison of such preconditioners. The utilized
methods are described very briefly in §5.3.3. More details are given in [Man15; Man16a].

The Reduced Gauß-Newton(-Krylov) Method. Amongst other possible approaches to ensure
positive definiteness of the Hessian, the Gauß-Newton addresses the issue by neglecting the second-
order variational derivatives of the Lagrangian. More precisely, it neglects all terms from the
reduced Hessian in (6.38) involving Wuq = Juq + cT

uqλ and Wqu = Jqu + cT
quλ, as the terms cT

uq,
cT

qu and cuu are second order derivatives and, thus, dropped by the Gauß-Newton strategy, and
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1 func [q̂k+1, rk] = krylovSolverRH(gqk
qk, uk, λk)

2 H̄0
q̂ = matvecRH(q̂0

k , û0
k , λ̂0

k , qk, uk, λk) ù (6.37)
3 for ` = 0, 1, . . . do
4 r` = ´gqk

´ H̄`
q̂

5 if }r`} ă εEW,k then
6 break
7 q̂`+1

k = KSP(H̄`
q̂, gqk

)

8 H̄`+1
q̂ = matvecRH(q̂`+1

k , û`+1
k , λ̂`+1

k , qk, uk, λk)

ALGORITHM 6.6 Krylov solver for the reduced Hessian system. Sketch of a matrix-free Krylov-subspace method
to solve (6.31), utilizing the matvecRH routine defined above. The KSP call is a placeholder to compute the iterate on the
control increment based on a Krylov method such as CG or GMRES. An Eisenstat-Walker convergence criterion [Eis96;
Noc06] with adaptive threshold εEW is utilized to prevent over-solving and foster the efficiency of the method.

Juq = Jqu = 0. Further, Wqq = Jqq + cT
qqλ and Wuu = Juu + cT

uuλ simplify26 to Ŵqq = Ĵqq and
Ŵuu = Ĵuu, respectively. Thereby it also reduces the computational costs for the Hessian matvec
considerably. The resulting Gauß-Newton reduced Hessian approximation reads

MGN = Ŵqq + QTU´TŴuuU´1Q(6.40a)

= Ĵqq + cT
q c´T

u Ĵuuc´1
u cq(6.40b)

Remark. For the tumor and image registration problem, we are given an objective function
of the form J[u, q] = 1/2}r(u)}2

2 + β/2}Lq}2
2 with linear operators r (point-wise mismatch) and L

(differential operator in regularization). Thus, we have Juq = Jqu = 0, Juu = (Bri/Buj)
T
i,j(Bri/Buj)i,j +

(B2ri/BujBuk)
T
i,j,k ¨ r = 0 since r is linear, and Jqq = β(BLi/Bqj)

T
i,j(BLi/Bqj)i,j + (B2Li/BqjBqk)

T
i,j,k ¨ r = 0, since

L is linear (i.e., no terms are neglected in Juu, Juq, Jqu and Jqq if applying Gauß-Newton to our
application problems).

Typically, the resulting Gauß-Newton system is then solved inexactly using a Krylov method as
in Alg. 6.6. This approach is known as Gauß-Newton-Krylov solver. A typical choice for the inner
Krylov solver is a PCG method [Noc06], p. 199, Alg. 5.3, which for every inner iteration requires
the Hessian response on a vector (matvec). The corresponding simplified Hessian matvec lacks the
terms involving Wuq and Wqu, but still requires one incremental state and one incremental adjoint
solve, which is a direct consequence of the block-elimination of the reduced space approach. This
can be seen from the operators U´1 and U´T in equation (6.40a), respectively. The computational
steps to compute the Gauß-Newton Hessian matvec thus involve: (i) to solve the incremental state
equation û`

k = M̄uq̂`
k (ii) then solve the incremental adjoint equation λ̂`

k = ´U´TWuuû`
k and finally

(iii) compute MGN q̂` = Wqqq̂`
k + QTλ̂`

k. Note that Wuq and Wqu are proportional to the adjoint since
Juq = Jqu = 0, thus, near a solution, where the adjoint variable is zero, we obtain near-quadratic
Newton convergence despite neglecting blocks in the Hessian.

6.4.5 The Reduced Quasi-Newton Method

The Gauß-Newton(-Krylov) method discussed in the previous section is very powerful and is the
de facto standard approach to solve large-scale, non-linear PDE-constrained optimization prob-
lems [Bir05a; Bir05b; Kno04]. The matrix-free nature of the Newton-Krylov approach effectively
tackles the memory problem when going to large-scale systems, and inexactness helps to reduce

26Note, that in case Jqq or Juu contain non-zero second order derivatives; these terms are also dropped for the GN approxi-
mation.
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computational cost. Yet, the latter remains to be the method’s main drawback: The significant com-
putational expense per Newton-iteration. For the problems considered here, the Hessian matrices
typically feature poor conditioning and the solution of the Newton system poses challenges for the
Krylov solvers. Despite only requiring inexact solves, most of the computational time is spent in the
Krylov-iterations. This motivates to examine solvers that avoid direct Hessian information and cope
without the expensive solve of the Hessian system for the Newton-step. Quasi-Newton describes
a family of methods that precisely achieve this by building an approximation M´1 to the inverse
Hessian matrix, requiring only gradient information. In Chapter 2 we have thoroughly discussed var-
ious quasi-Newton methods with different manifestations tailored to specific application problems,
analyzed their properties and presented information on an efficient implementation on distributed
data. In particular, §2.3 targets quasi-Newton methods for non-linear optimization. We encourage
the reader to recapitulate the findings from Chapter 2 before continue reading.

The algorithmic core of quasi-Newton results in cheap matvec operations to compute the
Newton-update, and renders a linear system solve redundant. In general, M´1 is only a rough
(low-rank) approximation to the true inverse Hessian matrix of the considered system. Compared
to the Newton-Krylov method, the computed Newton-step direction is of lower quality, which is
manifested in a slower, typically super-linear, convergence rate. Thus, condensed quasi-Newton
solvers usually require a much larger number of non-linear iterations than Newton-Krylov methods,
yet the computational cost per iteration is reduced significantly. The interesting question is, whether
the overall time-to-solution reduces by replacing the Hessian-based Newton-Krylov (precisely
GNK; Jacobian-based) with gradient-based quasi-Newton alternatives, and if the latter scales better
when going to large-scale problems (despite the increased number of iterations required). The
answer to this question depends on the characteristics and structure of the given problem, and the
employed quasi-Newton variants with their sophisticated modifications, tailored to overcome known
shortcomings. In [Sar13], quasi-Newton is effectively used to solve a large-scale PDE-constrained
optimization problem and is shown to outperform the alternative Newton-Krylov method both in
terms of memory usage and computational complexity for the considered problem. Obviously, for
the latter, the computational effort to solve the Hessian system increases drastically, when increasing
the number of unknowns (mesh-refinement); on the other hand, the plain vanilla27 quasi-Newton
method is known to suffer from a degradation of convergence speed, due to the discrepancy between
the low rank approximation of the inverse Hessian and the possibly increasing information content
in the true system Hessian (more resolved details; full rank). Mesh-independent convergence rates
for the BFGS quasi-Newton method can be shown for some unconstrained optimal control problems
if certain assumptions on the initial guess for the inverse Hessian are met [Kel87a].

In the following, we recapitulate the LBFGS method from §2.3 and compare it against the
established GNK method. Thereby, we analyze computational cost and point out main differences
between the methods. Furthermore, we resume the dominant factors that influence convergence and
give some specific suggestions for the initial guess of the inverse Hessian approximation for the here
considered tumor inversion problem. A quantitative comparison of quasi-Newton and GNK applied
to the tumor inversion problem with respect to the time-to-solution is given in §7.4.5.

The Limited-Memory BFGS Method. Let us shortly recapitulate the BFGS quasi-Newton method
from §2.3 and its extension to the limited memory LBFGS variant. For more details and a general
discourse on quasi-Newton methods, we refer to Chapter 2. Based on collected iterate- and gradient-
27By this we mean the application of a black-box and generic quasi-Newton method, which is not tailored to the specific

problem at hand. For L-BFGS for example, the number of vectors stored and used for the Hessian update as well as the
initial guess of the inverse Hessian approximation, drastically affect the convergence properties of the method.
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observations, quasi-Newton establishes an linear approximation of the inverse Hessian matrix
motivated by a locally quadratic approximation of the objective function and the reasoning

∆g(qk
k´1) = g(qk) ´ g(qk´1) « H(qk)∆xqk

k´1,

This leads to the multi-secant equation M´1V k = W k which is solved for the inverse Hessian
estimator M´1 with the matrices V k and W k as defined in (2.40) storing the modes of iterate- and
gradient-observation differences. To obtain uniqueness of the estimator, we impose minimization
in the weighted Frobenius norm. Also, we require symmetry of the inverse Hessian estimation.
Summarizing, the BFGS estimator is the matrix M´1 which solves the following optimization
problem [Noc06]

minM´1

›

›

›
M´1 ´ M´1

prev

›

›

›

2

W
subject to M´1vk = wk and M´T = M´1(6.41)

and reads
(6.42)

(BFGS) M´1, k+1 =
(

I ´ ρkwkvT
k

)
M´1, k

(
I ´ ρkvkwT

k

)
+ ρkwkwT

k = UT
k M´1, kUk + ρkwkwT

k ,

where ρk := (vT
k wk)

´1, Uk = (I ´ ρkvkwT
k ) and M´1, k is the inverse Hessian approximation from

the previous quasi-Newton iteration which serves as initial guess for the approximation of the
current iteration. When going to large-scale, storing the matrix M´1 becomes infeasible and limited
memory algorithms with implicit matrix representation are required. The limited memory BFGS
(LBFGS) alternative, known as one of the most efficient quasi-Newton methods [Noc06; Den77; Gil89]
remedies this problem by keeping a sliding window of only a small number of µ previous difference
vectors in memory. The inverse Hessian estimator is represented implicitly. For details, we refer the
reader to §2.3. An efficient recursive formulation of the LBFGS update is given in equation (2.51)
and can be computed from a two-loop recursion in O(4µnq) operations, compare Alg. 2.4. Due to
the limited memory strategy, the initial guess M´1

prev for the inverse Hessian approximation can be
chosen independently in every iteration.

Convergence & Dominant Factors. In order to tailor the LBFGS method to the considered inverse
tumor problem, we need to understand the most dominant factors affecting its converges properties.
In Chapter 2, §2.3 we discussed the role of (i) the number µ of stored vectors used for the limited
memory update, and discussed (ii) different choices for the initial guess for the inverse Hessian
approximation.

Summarizing the discourse in §2.3.1, we can typically improve convergence by increasing
the number µ of stored vectors, which in turn increases the computational cost per iteration. For
successive rank-1 updates linearly dependent vectors are not a problem, however, wrong or con-
tradicting information can slow down convergence and the parameter µ remains to be problem
dependent. Within the context of our joint registration and biophysical inversion approach and
its Picard-iteration-type solution scheme, an interesting question is, if reuse of vectors obtained
from sub-component solves of previous Picard-iterations is beneficial. If the true Hessian of the
optimization problem does not change significantly throughout Picard-iterations, this approach
might be worthwhile. We examine the performance of this recycling strategy by numerical analysis
in §7.4.5.

The choice for the initial guess M´1
prev of the inverse Hessian approximation critically affects

the method’s robustness and convergence properties; in fact, it is the most dominant factor. A
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good initial guess balances approximation quality and computational effort. In §2.3.1, Chapter 2 we
classify numerous strategies into

A. Generic but uninformed approaches.

B. Tailored approaches that incorporate complimentary a priori knowledge about the problem.

C. Generic approaches that incorporate knowledge about the problem in an automated or implicit way.

In addition to the generic strategies discussed in §2.3.1, we now give some specific manifestations for
the choice of M´1

prev, which are categorized under item B:
B.1 Use informed approximation of Hessian Mk

prev = Z and solve Mk
prev∆xk = r for ∆xk in

line 6 of Alg. 2.4. This approach involves the solution of a linear system of equations per iteration.
For a moderately changing Hessian, the initial Guess may be factorized in an offline phase and then
applied at (nearly) no cost. For our tumor inversion problem, we propose the following tailored
choices, considering the L2-regularization model S2

p in (6.5) with W = Φ; the basic idea is given in
the generic notation, introduced in §6.4.1:

(i) use Mk
prev = Ĵqq

here
= βpΦTΦ and solve Mk

prev∆xk = gk by PCG iterations. For the preconditioner,
we use a LU-decomposition of βpΦTΦ computed in an initialization phase.

(ii) use Mk
prev = Ĵqq ´ ZTZ here

= βpΦTΦ ´ ZTZ and solve Mk
prev∆xk = gk by PCG iterations. Z is a

low rank approximation of the missing part of the GN approximation (6.40b) of the reduced
Hessian, i.e.,

(6.43)
(

cT
q c´T

u ( Ĵuu)
T/2
) (

Ĵuu)
1/2c´1

u cq

:=Z

)
here
= ΦTU´T U´1Φ

:=Z
= ΦT α̂(0),

where U´T and U´1 represent the solution of the adjoint and forward equations, respectively.
We can e.g., obtain Z from sampling x = (U´1Φ)q̃ for a small number of random vectors q̃
and add the term ZTZ = RTQTQR = RT R obtained by QR-decomposition of Z to the initial
guess for the Hessian. Within our Picard-iteration scheme, for example, we can sample and
decompose Z after the first Picard-iteration using GNK for the tumor inversion to construct the
initial guess H0

k . Then use LBFGS with H0
k for all subsequent inverse tumor solves.

Lastly, the employed line-search method matters. Since quasi-Newton methods establish the
Hessian approximation based on observations throughout the iterations, sub-optimal step-directions
stemming from insufficient line-search conditions can cause problems. Once added, wrong infor-
mation gets corrected slowly. Therefore, for our LBFGS algorithm, we employ the Moré-Thuente
line-search method, which satisfies the Wolfe conditions (2.50) but requires an additional gradient
evaluation in every trial step. For the GNK solver, the less expensive Armijo line-search method
suffices.

Quasi-Newton for the Tumor Inversion. Generally speaking, for quasi-Newton methods to work
adequately, we either (i) require the system matrix (Hessian) to encode low or limited information
content, i.e., to be of either low dimension or low rank, such that it can effectively be represented by
a low rank approximation, or (ii) we need an excellent initial guess for the inverse Hessian, which
already captures big parts of the information encoded in the true Hessian. The latter typically is
a difficult problem and involves a linear system solve28 itself, or is aggravated by the fact that in
general even for low rank or sparse Hessian matrices, the inverse is a dense matrix. Under these

28To invert a “constant” or invariant part of the Hessian to be used as an initial guess for the quasi-Newton approximation.
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TABLE 6.1 Comparison of computational effort of quasi-Newton versus Gauß-Newton-Krylov solver.

Quasi-Newton #state #adjoint Gauß-Newton-Krylov #state #adjoint

C
O

ST
PE

R
IT

ER
A

TI
O

N grad. eval. 1 1 1 1
obj. eval. 0 0 0 0
line-search rˆ (wolfe-ls) r r rˆ (armijo-ls) r 0
Newton step q̂k = ´M´1gk 0 0 mˆ Krylov matvec m m

G
EN

-
ER

A
L

cost line-search obj. eval. + grad. eval. obj. eval.
performance dependent on init. guess M´1

prev dependent on Krylov forcing seq.
convergence typically super-linear typically near-quadratic

considerations, quasi-Newton does not seem to be a promising alternative for GNK to solve the
registration problem. Here, the system matrix is of dimensionality 3n ˆ 3n, n = n1 ˆ n2 ˆ n3 and due
to the nature of the problem we can not hope for an inverse Hessian matrix that can be adequately
approximated by a low-rank matrix. For the inverse tumor problem on the other hand, we are given
a low-dimensional29 Hessian H P Rnqˆnq and a low-rank quasi-Newton approximation is promising
to yield Newton step directions, resulting in an acceptable convergence rate. In the following, we
only consider GNK and quasi-Newton for the tumor inversion problem.

Gauß-Newton-Krylov vs. Quasi-Newton. We summarize the most important differences and give
a very rough comparison of the methods’ computational effort in terms of number of required PDE
solves (state equation and adjoint equation) per Newton-iteration in Tab. 6.1. Per non-linear iteration,
the Gauß-Newton-Krylov solver requires the evaluation of the objective function Jk := J[qk], the
evaluation of the reduced gradient gk := g(qk), and the solution of the Hessian system Hq̂ = ´gk
for q̂, requiring m ă nq inner Krylov iterations. The evaluation of the objective function requires the
solution of the state equation. Typically, we need to evaluate the objective function and the gradient
for the current iterate qk; together, this requires to solve the state and adjoint equations, i.e., two
PDE solves. If the step size does not satisfy the Armijo line-search conditions, we need additional
evaluations of the objective function, i.e., additional solves of the state equation. Each Krylov iteration,
i.e., each Hessian matvec, requires two PDE solves; one for the incremental state equation and one
for the incremental adjoint equation. Assuming m Krylov iterations and r line-search steps, the cost
of a single Gauß-Newton-Krylov iteration can be estimated by costGNK = 2(m + 1) + r PDE solves.
As mentioned above, the quasi-Newton method only requires gradient information and forgoes
the inner Krylov solve. For the line-search, however, Armijo is not sufficient and the stricter Wolfe-
conditions need to be fulfilled; the latter require gradient information at line-search test probes.
Summarized, this results in costQN = 2(r + 1) PDE solves per quasi-Newton iteration. Obviously,
these cost are a function of the number of required inner Krylov-solves and line-search probes. For
the overall cost, the usually larger number of iterations for quasi-Newton methods needs to be taken
into consideration: while with GNK we typically obtain near-quadratic convergence, super-linear
convergence rates are observed for most problems solved with quasi-Newton methods.

Also noteworthy is a further difference of the methods which lies in the nature of the Hessian
approximation: Both methods employ inexactness in approximating the Hessian, either by the
Gauß-Newton approximation or by an updated approximation of the inverse Hessian. The former
discards all second order derivative information from the Hessian (Jacobian based), while the
latter only assumes them to be constant. Thus, theoretically, quasi-Newton has the potential to
compute a more accurate approximation of the Hessian than GNK, given enough linear independent
observations for the Hessian update. Note, however, that quasi-Newton needs to also approximate

29This is a direct result of our parametrization c(¨,0) = Φp for the tumor initial condition.
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the first order derivative terms from the Hessian, which are represented exactly in the Gauß-Newton
approximation.
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7 Evaluation of Coupling Schemes and
Advanced Methods

This chapter contains an extensive study and numerical analysis of our methodology. We target
different objectives for evaluation, the most prominent of which are

• validity of our scheme, i.e., convergence analysis and plausibility considerations for synthetic
test cases where the ground truth is known a priori;1

• performance of our scheme with respect to good data similarity, good overlap measures, and
meaningful deformation maps for biophysics-aided. normal-to-abnormal registration for
synthetic cases and real patient data, see §7.2 (primarily moving-patient formulation);

• performance and quality of biophysical inversion of our scheme as a proof of concept, primar-
ily focusing on methodological aspects using synthetic cases, see §7.3 (primarily moving-atlas
formulation);

• efficiency, i.e., overall time-to-solution, speedups obtained through various modifications
(see §7.4 and §7.4.5) and parallel scalability (see §5.3.4).

The chapter is organized as follows. An overview of the general setting, including a description
of the considered test cases, the utilized imaging data, parameters, and solver settings as well as
definitions of monitored performance measures is given in §7.1. In §7.2, we study the eligibility of
our joint inversion scheme for the task of registering a normal brain to a brain with abnormalities (i.e.,
a pathology). Here, we mainly focus on the moving-patient formulation and investigate the solution
scheme’s reconstruction quality and convergence for synthetic cases and real patient imaging data.

§7.3 targets the task of biophysical model calibration. In other words, the estimation of certain
parameters of the biophysical model used to describe tumor progression in the human brain.
For the reasons given in the preliminary remarks of Chapter 6, we mainly focus on the moving-
atlas formulation due to its improved qualification for biophysical analysis. As mentioned above
(cf. §5.3.1), our utilized tumor model is a very simplistic reaction-diffusion process and is purely
phenomenological; it describes at best a crude approximation of the underlying process and the
observed cancer progression. The results are therefore to be seen as preliminary, and they primarily
serve as a proof of concept for the proposed solution strategy. Thus, in great part, we rely on synthetic
cases (i.e., assume knowledge of the true model for the underlying biophysical process) where the
ground truth for model parameters and healthy patient brain is known. Finally, in §7.4 we analyze
advanced methods to improve the solution process with respect to time-to-solution and quality of

1Note that we do not validate the correctness of our biophysical model or the plausibility of obtained biophysical parameters
by our joint inversion scheme against real data. We run experiments for real data, however, we have no knowledge about
any ground truth parameters for these data sets.
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the obtained solution. In particular, we investigate the eligibility of advanced quasi-Newton methods
for this kind of non-linear optimization problem, and, thereby link to the first part of this thesis.

7.1 General Setup of Biophysics-Based Image Analysis Test Cases

We evaluate, study, and test our methodologies with respect to convergence, performance, validity,
and reconstruction quality for synthetically generated and clinical test cases. Both are based on real
MR neuro-imaging data, i.e., we consider realistic brain geometries. In the sequel, we summarize the
overall setup introducing the test cases in brief; we give more details and specific purposes for each
experiment when presenting the results.

7.1.1 Test Cases

We consider two classes of test cases. To assess the quality and validity of our methodology as well
as convergence of our Picard-iteration solution schemes to a known ground truth, we use synthetic
test cases, based on real, normal brain data. For the generation of these test cases, we use our tumor
model to artificially grow a target tumor for which we know the correct model and ground truth
parameters. We either grow the artificial tumor in the atlas space and obtain the patient data via
application of a known deformation map (ATAV), or we directly grow the pathology in the patient
space (ATRV). For these cases, we either partially or fully know the ground truth for the coupled
optimization problem (up to discretization errors). The second class of test cases uses actual clinical
imaging data obtained from the study in [Goo13; Bak15], where we test our methodology for real
patient data (RTRV).

In a little more detail, the considered test cases are:

Test Case ATAV

Analytic tumor and analytic velocity (ATAV) test case (fully synthetic; true tumor parameters and
velocity are known, p = p‹

A, v = ´v‹); canonical synthetic test case for the moving-patient formulation
with full knowledge of tumor parameters and deformation velocity; see also §7.2.2.

Purpose. Proof of concept. In particular, we test the numerical accuracy of our scheme, identify lower
bounds on the expected inversion accuracy (i.e., identify the accuracy we can ideally expect which is
bound by the error introduced in image advection, and study the convergence of our solver. We judge the
result of our joint inversion approach against the known (by construction) ground truth values.

Setup. ATAV is based on real brain geometries, but uses the registration advection and forward
tumor solver to synthetically generate a pathological patient image. In particular, we use a resolution of
ni = 128, choose p = p‹

A, which defines c(¨,0) = c(¨,0)
‹
, and grow a tumor in the healthy atlas geometry,

resulting in c(¨,1)
‹
. We choose v = v‹, from registration of the atlas brain to a second tumor-free brain

(offline, in a pre-processing step using βv-continuation with βlo,‹
v = 1E´4) and generate a pathological

patient brain by advection of the atlas brain with incorporated grown tumor with the negative velocity
v‹. This gives the synthetic patient target data mD, cD for our joint inversion. An illustration is given
in Fig. 7.1.



7.1 GENERAL SETUP OF BIOPHYSICS-BASED IMAGE ANALYSIS TEST CASES 193

Test Case ATRV

Analytic tumor and real velocity (ATRV) test case (true tumor model and parameters known; real brain
images of two different individuals, p = p‹

P, v = N/A); canonical synthetic test case for moving-atlas
with full knowledge of tumor parameters and healthy patient; see also §7.3.2.

Purpose. For the moving-patient formulation, we test our algorithm in the context of multi-subject
registration for real brain data of two different individuals. Most importantly, however, we evaluate the
performance and quality of our biophysical inversion in conjunction with the moving-atlas formulation.
For this test case, the true tumor parameters are known in the patient space and we have access to the
healthy patient geometry.

Setup. The patient data is no longer generated from the atlas image. We use an image of a different
individual instead. Accordingly, we no longer know the ground truth velocity field. We consider a
resolution of ni = 128, choose p = p‹

P, which defines c(¨,0) = c(¨,0)
‹

(in the patient space), and grow an
artificial tumor cD in a segmented, real patient brain mD. An illustration is given in Fig. 7.1.

Test Case RTRV

Real tumor and real velocity (RTRV) test case (ground truth inaccessible, p = N/A, v = N/A); see
also §7.2.4.

Purpose. We test our approach, i.e., moving-patient and moving-atlas formulation on the real data
of patients diagnosed with glioma tumors and study the registration quality for a variety of parameter
choices for the tumor growth model. Knowledge of neither the healthy patient geometry, nor any of the
biophysical model parameters, i.e., tumor growth rate or time horizon, is accessible. Furthermore, our
biophysical tumor progression model is, at best, a crude approximation of the actual dynamics.

Setup. This test scenario consists of real patient brains with real tumors for which we do not know
any parameters.
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FIGURE 7.1 Illustration of ATAV and ATRV test cases. Left: Fully synthetic analytic tumor / analytic velocity
(ATAV) test case. Shown are the probability maps for white matter (WM), gray matter (GM), cerebrospinal fluid (CSF)
with a synthetically grown tumor (TU) for an atlas brain (ID 0013Y02). The target patient data is generated from advection
of these maps with a ground truth velocity v‹ (obtained from pre-registration of the healthy brains ID 0013Y02 and ID
0014Y02). The ground truth tumor parameters p‹ “live” in the atlas space. Right: Semi-synthetic analytic tumor / real
velocity (ATRV) test case. Real brain data ID 0013Y02 and ID 0014Y02 is considered for atlas and patient geometry,
respectively; the registration velocity between the two individuals is unknown. The target patient data is constructed by
growing an artificial tumor with parameters p‹ in the patient space.
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7.1.2 Data

For the generation of most of our synthetic test cases, we use (real) normal2 brain imaging data
obtained at the Perelman School of Medicine at the University of Pennsylvania. We also consider real
clinical imaging data of glioma patients presented in the study in [Goo13; Bak15]. We use the output
data available after the first iteration of GLISTR [Goo11; Goo13; Bak15], translating MR imaging data
into probability maps for the brain tissue regions. We consider six data-sets from this repository
(patient IDs: AAMH, AAAN, AAAC, AAMP, AAQD and AAWI). The original data-sets have more
labels than we use in our Picard iterations. In particular, they contain background (BG), white matter
(WM), gray matter (GM), cerebellum (CB), cerebrospinal fluid (CSF), ventricles (VE), edema (ED),
enhancing tumor (ENH), and necrotic tumor (NEC). We construct the labels (WM), (GM), (CSF), (BG)
and (TU) by integrating (i) (CB) into (BG), (ii) (VE) into (CSF), and (iii) (ENH), (NEC) and (ED) into
(TU).

We wish to have partition of unity property across all probability maps for each x in Ω, i.e., all
labels have to sum up to one

@x P Ω : c(¨,1)(x) +
4
ÿ

i=1

m(¨,1)
i (x) !

= 1

The background (BG) probability map mBG is introduced for technical reasons; it is not used within
our formulation and is not considered for the registration problem. Glial matter is integrated in BG.

7.1.3 Common Parameters

We give an overview of the specific model and numerical parameters for the different test cases
in Tab. 7.2. A more detailed listing of the parameters and test case series is given when presenting the
results. For all conducted experiments, we fixed certain parameters3 to choices found by numerical
analysis of the methodology; these common parameters are listed in Tab. 7.1. We briefly discuss
some of the more involved choices:

TABLE 7.1 Common parameters used in all test cases: opttolR, opttolT are the convergence tolerances for registration
and tumor inversion; βp is the regularization parameter for the tumor inversion; Sv [v] is the regularization operator for

the image registration (with H1-semi norm); β0
v and βlo

v are the initial and final values for the β-continuation scheme as
described in §6.3.3 applied in image registration, determined based on which values have been shown to yield best results in
numerical tests for the RTRV test problem; ε∇ is the bound on the variation of the deformation gradient det(∇y) used in
the continuation scheme.

opttolR opttolT βp Sv [v] β0
v βlo

v ε∇

1E´3 1E´3 2.50E´4 }∇v}L2(Ω) 1 1E´4 1E´3

For all experiments we use the (C1) stopping conditions defined in §6.3.3 (based on relative
change of gradient) for the tumor inversion and the (C2) stopping conditions (based on relative
change of gradient, objective function value and iterate difference) for the registration sub-problem,
respectively. Throughout all experiments, we demand optimization tolerances of opttolR = opttolT =

1E´3 for registration and tumor inversion, respectively (note that, in combination with the applied
stopping conditions, this results in a required relative gradient of 1E´3 for the tumor inversion,
but a gradient reduction of only about two orders of magnitude for the registration). Due to high

2That is, healthy brain imaging data without a pathology.
3If any of these parameters is changed for a specific experiment, this is clearly indicated.
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TABLE 7.2 Summary of the parameters for the generation of the synthetic test cases and the inversion. We report
values for the following parameters: ni, i = 1, 2, 3 denotes the grid size used for the discretization of the problem; ρw and
ρg are the characteristic reaction factors for white and gray matter, ρ f is the overall reaction scaling factor; kw and kg are
the characteristic diffusion parameters for white and gray matter, k f the overall scaling parameter for the isotropic part of
the inhomogeneous diffusion coefficient for net migration of cancerous cells into surrounding tissue; np is the number of
Gaussian for the parametrization of the tumor initial condition, σ is the standard deviation of the associated Gaussian basis
functions, δ denotes the spacing in between centers of adjacent Gaussians; Sp [p] specifies the employed regularizer on p
for the tumor inversion solver; and maxiti = (maxiti,N , maxiti,K) denotes the maximum number of Newton iterations and
Krylov iterations (for the KKT system) for the tumor inversion (i = T) and registration (i = R), respectively,

ATAV ATRV RTRV

ni 128 {128,256} 256

ρw 1 1 1
ρg 0 0 0.2
ρ f t5, 10, 15u t5, 10, 15, 20u t0, 5, 10, 15u

kw t0, 1u 1 1
kg 0 0 0.1
k f t0, 1E´2, 1E´1u t5E´1–1E´3u t0, 1E´2u

np t8, 125u t125, npu t125, 343, npu

σ tπ/10, π/15u tπ/15, π/128, autou π/128, autou

δ 1.5 ¨ σ t1.5 ¨ σ, 2 ¨ σu t1.5 ¨ σ, 2 ¨ σu

Sp [p] }Φp}L2(Ω) }p}Li (Ω) , i = 1, 2 }p}Li (Ω) , i = 1, 2

maxitT (50, 100) (50, 100) (30, 30)
maxitR (50, 80) (50, 80) (10, 20)

upper bounds on the allowed number of Newton (and Krylov) iterations (cf. Tab. 7.2), we always
reach these tolerances for our synthetic test cases (ATAV/ATRV). For the real data test cases (RTRV),
however, the number of allowed Newton (and Krylov) iterations is strictly limited to bound the
overall time-to-solution and the tolerances may not be reached on rare occasions. Numerical analysis
for these real patient data sets show, that investing more compute time, i.e., further reducing the
gradient, does not result in an improved overall accuracy. The obtained accuracy with limited solver
iterations is in the order of what can be expected for standalone real patient data based image
registration.

The regularization parameter βp for the inverse tumor problem has been determined experimen-
tally from an L-curve study for a synthetic test case, using np = 125 Gaussian basis functions and
an image resolution of n = 1283. Notice that we use a constant relation σ/δ = 1.5 for the spacing of
the Gaussian basis functions, which leads to an invariant condition number. We observed that for
variations of the image resolution n and the number of basis functions np, the tumor inversion is not
very sensitive4 with respect to the regularization parameter βp, i.e., smaller values for βp did not fur-
ther reduce the tumor mismatch. Consequently, unless stated otherwise, we fix the parameter βp for
all experiments. Likewise, the lower bound βlo

v for the regularization parameter βv in combination
with the employed H1-semi norm regularizer of the deformation velocity has been determined based
on extensive numerical analysis for different synthetic and real brain data sets [Man16a; Man17a].
Furthermore, we designed the β-continuation scheme (cf §6.3.3) experimentally and found that
reducing the regularization weight by a factor of 10 in every Picard-iteration is sufficient5.

As described in §6.3.3 SIBIA provides different modes to automatically initialize a set of Gaussian
basis functions for the parametrization of the tumor initial condition, based on the patient specific
input data. We use both approaches for our real patient data (RTRV) and synthetic data (cases
ATAV/ATRV); for the latter, we also use a set of a priori chosen, manually placed Gaussians to
facilitate the analysis of our methodology and convergence towards ground truth solutions. In any

4This holds true within a certain regime 1E´2 ď βp ď 1E´5 of the regularization parameter. Note that, this insensitivity is
fostered by the fact that we control the conditioning of Φ for our basis function selection modes, described in §6.3.3.

5Using a smaller reduction or more Picard-iterations per fixed regularization weight did not improve the overall result.
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case, the choice for np depends on the appearance of the patient’s tumor, i.e., its size and shape. For
the manually placed Gaussians, this number is chosen a priori on a case-by-case basis, such that the
pathological domain is covered sufficiently; we consider choices np P t23 = 8, 53 = 125, 73 = 343u;
automatic selection typically results in a number of 83 ď np ď 203.

7.1.4 Performance Measures

For the numerical analysis and benchmarking of our joint registration and tumor inversion frame-
work, we wish to examine different measures and ratings to analyze, study, and compare the different
problem formulations, solver strategies, and numerics. In particular, we want to assess

(i) the convergence towards solutions with low mismatch both in the brain geometry m (quantified
by µB,L2 , see (7.1a)) and the tumor c (quantified by µT,L2 , see (7.1a));

(ii) the quality of the reconstruction of the healthy brain geometry, quantified by µB0,L2 , see (7.1a);

(iii) the quality of visual reconstruction of brain region labels in terms of overlay measures, i.e.,
DICEB, DICET , and DICEB0 (see (7.1b) quantifying the overlay of patient brain, pathology, and
healthy patient brain6 with its respective reconstruction;

(iv) the quality of biophysical parameter estimation, i.e., the distance ec0,L2 between the reconstructed
tumor initial condition and a known ground truth (see (7.1d)), and the proximity of the diffusion
coefficient to a known ground truth (for synthetic cases only);

(v) the reduction of the gradient of the coupled formulation }g}rel (see (7.1c));

(vi) the time-to-solution Ttot and elapsed wall-time during a Picard-iteration Tit, registration solve
Treg

inv , and tumor inversion Ttu
inv.

The definition and computation of these quantities is detailed below. We report all performance
measures in patient space, i.e., with respect to the patient anatomy and not the atlas anatomy, since
the patient space is the relevant space from an applications point of view.7 For the moving-atlas
formulation, tumor simulation and parameter estimates are employed in an approximation of the
healthy patient space, thus all occurring objects naturally “live” in the patient space. For the moving
patient formulation, tumor simulation is carried out in the atlas space and pathology, brain geometry
and reconstructed initial condition need to be warped to the patient space to quantify their proximity
to the patient data. This is achieved by applying the inverse deformation map from atlas space to
patient space, which for velocity based registration translates to advection with the negative velocity
´v.

The relative mismatch/residual between patient anatomy and reconstructed anatomy, between
the reconstructed healthy patient anatomy and the ground truth, and between patient tumor and
simulated tumor in the patient domain are defined as:

µB,L2 :=
}m(1,1)

A ´ mD}L2(Ω)3

}m(0,0)
A ´ mD}L2(Ω)3

, µB0,L2 :=
}m(1,0)

A ´ m‹
P}L2(Ω)3

}m(0,0)
A ´ m‹

p}L2(Ω)3

, µT,L2 :=
}c(1,1)

A ´ cD}L2(Ω)3

}cD}L2(Ω)3
.(7.1a)

As mentioned above, we monitor consistent distance measures in the patient space to assess the recon-
struction quality for the schemes, although the data misfit terms Dc[c(¨,1), c(1,¨)

P ] + Dm[m(0,1)
A , m(1,¨)

P ]

6This measure is only accessible for data that includes the healthy brain imaging data before occurrence of cancerous tissue
or synthetic test cases where a ground truth for the healthy patient brain geometry is known.

7If we perform cohort studies, this is different (see [Goo13] for an example).



7.1 GENERAL SETUP OF BIOPHYSICS-BASED IMAGE ANALYSIS TEST CASES 197

and Dc[c(¨,1), cD] + Dm[m(1,0)
A (1 ´ c(¨,1)), mD] in (6.4a) and (6.10a) differ for both formulations. Con-

sequently, for the moving-patient formulation, the healthy patient brain needs to be generated8

explicitly by advection with ´v.

To assess visual similarity of data and reconstruction based on the cardinality | ¨ | of a set
and a selection function H(u) := tui ě 0.5u with threshold 0.5, we calculate Dice coefficients for
the individual label maps associated with the probability maps for ` P tWM, GM, CSFu and their
average across labels for the patient and the atlas anatomy, i.e.,

DICE`,B := 2
|H(m(1,1)

A,` ) X H(mD,`)|

|H(m(1,1)
A,` )| + |H(mD,`)|

, DICEB =
3
ÿ

`=1

DICE`,B/3;(7.1b)

In the same manner, we compute Dice coefficient values for the healthy patient geometry, denoted
by DICEB0 , and for the probability maps of the tumor, denoted by DICET . Both, Dice and mismatch

metrics, m(1,1)
A , m(1,0)

A , and c(1,1)
A are calculated from m(0,1)

A , m(0,0)
A , and c(¨,1) via advection with

negative velocity ´v for the moving patient formulation. Furthermore, we monitor the relative
change of the gradient for the coupled problem formulations moving-patient and moving-atlas to
check for convergence of the respective (block-Newton-type) Picard-iteration solution schemes:

(7.1c) }g}rel := }gk}L2(Ω)/}g0}L2(Ω).

Here, gk is the gradient of the coupled optimization problem (6.4), or (6.10) after the kth Picard-
iteration and g0 the reference gradient with respect to the initial guess. To quantify the quality of
the estimated biophysical parameters, we consider the relative L2-error for the initial condition with
respect to a known ground truth

(7.1d) ec0,L2 := }Φp‹ ´ c(1,0)}L2(Ω)/}Φp‹}L2(Ω).

The initial condition c(1,0) = Φp for the moving-atlas formulation naturally “lives” in the patient
space and is calculated via advection with velocity ´v from Φp for the moving-patient formulation.
The ground truth tumor seed Φp‹ is only known for synthetic cases.

7.1.5 Hardware and Setup

All numerical results were obtained from the described cases, executed on the Tier-1 supercomputer
HazelHen at the High Performance Computing Center HLRS in Stuttgart (www.hlrs.de), a Cray
XC40 system with a peak performance of 7.42 Petaflops comprising 7, 712 nodes with Xeon E5-2680
v3 processors and 24 cores on two sockets and 128 GB memory per node. The nodes are connected
via an Aries interconnect. SIBIA is written in C++ and uses MPI for parallelism. It is compiled using
the Intel 17 compiler. We use PETSc’s implementations for linear algebra operations and PETC’s TAO
package for the non-linear optimization [Bal16a; Mun15], AccFFT for Fourier transforms [Gho16a;
Gho17b], and PnetCDF for I/O [Uni]. If not stated otherwise, we use 3 nodes with 64 MPI tasks for
data sizes of ni = 128, i = 0, 1, 2, and 11 nodes and 256 MPI tasks for resolutions ni = 256, i = 0, 1, 2.

8Computing the healthy patient geometry for the moving-patient formulation is no longer possible once mass effect, i.e.,
deformation of brain parenchyma by the tumor evolution, is included into the model.

www.hlrs.de
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7.2 Evaluation of Normal-to-Abnormal Registration Performance
and the Moving-Patient Iteration

In this section, we focus on the task of registering healthy (normal) brains to subjects with pathologies
(abnormalities) and evaluate the applicability and aptitude of our joint registration and biophysical
inversion approach. We are mainly interested in the quality of the normal/abnormal inter-subject
registration, i.e., visual similarity and overlap measures of the deformed template image and the
observed data, as well as good-natured9 and plausible inter-subject mappings. We thus mainly focus
on the moving-patient formulation (§6.1) and report numerical results for synthetic cases and actual
clinical data of glioma patients.

7.2.1 Baseline: Registration vs. Joint Inversion

Before immersing into the numerical analysis of our scheme, we’d like to draw a baseline for
normal-to-abnormal registration by considering the registration-only performance (i.e., standalone
registration without biophysical enhancement/aid) for a representative subset of our considered test
cases. For comparison, we anticipate the results for our joint inversion scheme from the following
sections.

Purpose. As mentioned before, normal-to-abnormal registration poses significant challenges on the
registration due to topological differences between the registered objects. Enhancing the registration
formulation by a model that describes the dynamics of pathology evolution has the potential to aid
the registration process considerably and foster biophysically meaningful deformation mappings. We
want to study the extent to which the coupling of biophysical inversion with registration enhances
the registration quality compared to the results obtained from standalone registration.

Setup. For this experiment, we consider an instantiation of the semi-synthetic ATRV test case
(§7.2.3 and §7.3.2) with a synthetically grown tumor using our forward model and two of the clinical
real patient imaging data sets (RTRV; §7.2.4, ID’s AAAN/AAMH). For a description of the considered
cases, we refer to §7.1.1. For the registration-only experiments, we employ the same continuation
scheme on the regularization parameter βv as we use for our joint inversion scheme (see §6.3.3) and
apply the same settings, solver tolerances, and allowed number of Newton and Krylov iterations as
in the respective joint inversion runs using SIBIA (i.e., we invest the same effort on the registration
side).

Results. We report quantitative results for 3 different cases of plain-vanilla registration with
parameter-continuation of a healthy atlas brain to an abnormal brain in Fig. 7.2. The performance
for the biophysically enhanced registration, i.e., the joint inversion moving-patient Picard iteration
solution scheme, is given in Tab. 7.3. For the latter, we additionally report results for different
dimensionalities of the basis for the parametrization of the tumor initial condition and different
solver alternatives (i.e., also the moving-atlas Picard iteration solution scheme, investigated in §7.3).
Qualitative results are given in Fig. 7.3.

Observations.
From Fig. 7.2, we observe that the plain-vanilla registration yields registration results of rather

poor quality in the vicinity of the pathology for all three considered test cases. In five consecutive
registration solves, the initial L2-data-misfit is reduced by 37% ´ 63%, which corresponds to a final

9We use the deviation of the determinant of the deformation gradient det(∇y) from 1 as an indicator or measure for
good-natured mappings (that is, volume compression or expansion should be moderate to small).
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ATRV-CM3 RTRV-AAAN RTRV-AAMH

It βv µB,L2 DICEB µB,L2 DICEB µB,L2 DICEB

initial – 1.00 5.45E´1 1.00 4.37E´1 1.00 4.36E´1
1 1 9.81E´1 5.50E´1 9.23E´1 4.80E´1 9.29E´1 4.75E´1
2 1E´1 9.34E´1 5.68E´1 7.24E´1 6.08E´1 7.59E´1 5.79E´1
3 1E´2 8.62E´1 6.06E´1 5.05E´1 7.57E´1 5.75E´1 7.03E´1
4 1E´3 7.66E´1 6.58E´1 4.09E´1 8.22E´1 4.97E´1 7.58E´1
5 1E´4 6.33E´1 7.17E´1 3.77E´1 8.42E´1 4.72E´1 7.73E´1

1 2 3 4 5 6 7
iterations βv-continuation

0

2

4

6

8

10

de
t(
∇y

)

sibia (MP)

reg-only

FIGURE 7.2 Plain vanilla normal-to-abnormal registration. The table shows numerical results for normal-to-abnormal
image registration using only the registration sub-component solver (see §5.3.2) without biophysical enhancement for
synthetic (ATRV) and real data (RTRV) test cases. For the registration, we use the same parameter continuation scheme
for βv as used for our joint inversion approach: Beginning with βv = 1, we repeatedly solve the registration problem
while reducing the regularization weight by a factor of 10 until the lower bound of 1E´4 is reached. We use the same
tolerances and upper bounds for the Newton and Krylov iterations as for the respective joint inversion experiment, i.e., we
use opttolR = 1E´3, maxitN,R = 50, and maxitK,R = 80 for the synthetic test case ATRV-CM3 and opttolR = 1E´2,
maxitN,R = 10, and maxitK,R = 10 for the real data test cases RTRV-AAAN and RTRV-AAMH, respectively. For
every test case, we report the average mismatch for the probability maps for the brain tissue labels µB,L2 and the mean
Dice coefficient for brain tissue DICEB for the initial configuration and after every iteration of the continuation scheme.
The figure shows the deviation of the determinant of the deformation gradient det(∇y) from one for the plain-vanilla
registration solve (blue) and the joint inversion scheme (red) for the AAAN data set. This is a measure for the volume
change induced by the registration; a value smaller than 1 indicates local compression, a value larger than 1 local expansion
of tissue. The horizontal black bars indicate minimum, average and maximum of det(∇y(x)) over all x P Ω, colored bars
indicate the standard deviation; the evolution of the maximum value is emphasized with additional dashed lines.

TABLE 7.3 Comparison: Quantitative results for joint registration and biophysical inversion. Numerical results
for our joint inversion approach (moving-patient; §6.1) for synthetic (ATRV) and real data (RTRV) test cases. The two
last rows show the joint inversion result after the last iteration of the Picard scheme of data sets AAAN and AAMH for
adaptive selection of Gaussian basis functions; here, we additionally report results for the moving-atlas formulation §6.2.
We use the same tolerances and iteration limits as in Fig. 7.2. For every test case, we report the average mismatch for
the probability maps for the brain tissue labels µB,L2 and the mean Dice coefficient for brain tissue DICEB for the initial
configuration and after every iteration of the continuation scheme.

ATRV-CM3 RTRV-AAAN RTRV-AAMH

βv µB,L2 DICEB µT,L2 DICET µB,L2 DICEB µT,L2 DICET µB,L2 DICEB µT,L2 DICET

initial 1.00 5.45E´1 1.00 0.00 1.00 4.37E´1 1.00 0.00 1.00 4.36E´1 1.00 0.00
1 9.23E´1 5.74E´1 1.00 0.00 9.55E´1 4.63E´1 1.00 0.00 9.59E´1 4.62E´1 1.00 0.00
1E´1 7.33E´1 6.85E´1 1.66E´1 8.81E´1 7.82E´1 5.61E´1 5.16E´1 6.94E´1 7.42E´1 5.60E´1 3.90E´1 8.43E´1
1E´2 4.90E´1 8.12E´1 1.36E´1 9.06E´1 5.28E´1 7.23E´1 4.50E´1 8.06E´1 5.05E´1 7.01E´1 3.13E´1 9.03E´1
1E´3 3.78E´1 8.69E´1 1.36E´1 9.14E´1 4.06E´1 8.01E´1 4.07E´1 8.69E´1 3.91E´1 7.66E´1 2.52E´1 9.39E´1
1E´4 3.71E´1 8.73E´1 1.35E´1 9.16E´1 3.72E´1 8.23E´1 3.90E´1 8.82E´1 3.60E´1 7.84E´1 2.20E´1 9.51E´1
1E´4 3.71E´1 8.73E´1 1.35E´1 9.16E´1 3.54E´1 8.35E´1 3.77E´1 8.91E´1 3.45E´1 7.92E´1 1.95E´1 9.57E´1

moving-patient, L2-reg. (tumor), Φ-adaptive, σ = 2π/128 3.43E´1 8.37E´1 1.04E´1 9.72E´1 3.37E´1 7.94E´1 8.65E´2 9.78E´1

moving-atlas, L2-reg. (tumor), Φ-adaptive, σ = 2π/128 3.11E´1 8.59E´1 2.36E´1 9.09E´1 3.07E´1 8.14E´1 1.03E´1 9.69E´1
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FIGURE 7.3 Comparison: Qualitative results for plain-vanilla registration and the biophysically enhanced registration
approach solved by the moving-patient Picard iteration scheme (§6.3.1) for the RTRV (ID’s AAMH/AAAN) test case. We
show simulation results for the per iteration detailed experiments for the registration-only experiments in Fig. 7.2 (second
line) and the joint registration and biophysical inversion experiments in Tab. 7.3 (third line). The first line shows the
configuration for the healthy atlas brain; the last line shows the configuration for the patient (target data).
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Dice score of 7.17E´1 for the semi-synthetic case (ATRV-CM3) and Dice scores of 8.42E´1 and
7.73E´1 for the real patient data sets AAAN and AAMH, respectively. From visual inspection of the
qualitative registration results in Fig. 7.3, we observe that (as expected) the registration fails in the
area of the pathology and in its vicinity; further away from the abnormality, the similarity/overlay
of the deformed healthy brain and the abnormal brain for the plain-vanilla registration solve is
acceptable and quite similar to the quality obtained with our joint inversion approach. The area
occupied by the pathology and its immediate vicinity, however, is the region we are most interested
in, if we consider segmentation or surgical planning (automated labeling) as target applications.
The registration results obtained from the plain-vanilla registration are not meaningful in this area
and the registration quality is not sufficient (tumor tissue is, in large parts, replaced by gray matter,
which can be arbitrarily wrong). Furthermore, numerical artifacts can be identified in the images
for the deformed template, indicating numerical problems due to the topological differences of the
registered subjects and the ill-posedness of the resulting problem. This is reassured by monitoring
the determinant of the deformation gradient det(∇y). The plot in Fig. 7.2 illustrates the deviation of
det(∇y) from one for the plain-vanilla registration and our joint inversion scheme for the AAAN
data set. det(∇y) varies greatly for the sole-registration solve, indicating a pronounced expansion of
tissue; this behavior is rather non-physical. On the contrary, the joint registration and biophysical
inversion approach developed within this thesis exhibits excellent normal-to-abnormal registration
quality for the same cases. In particular, registration quality is still excellent in the area occupied by
the pathology (cf. Fig. 7.3) As can be seen from Tab. 7.3, for the semi-synthetic case (ATRV-CM3), we
reduce the initial L2-data-misfit by 63% and improve the image overlay from an initial Dice score of
5.45E´1 to a Dice score of 8.73E´1 after biophysics-aided registration. Similar quality is obtained
for the clinical data sets of real glioma patients: For the multi-focal AAAN case, we observe an error
reduction of 65% and an increase in Dice score from initially 4.36E´1 to 8.35E´1; very similar results
are obtained for the AAMH data set. Using the coupled approach, we further obtain a reconstruction
of the tumor itself; this information is inaccessible by the plain-vanilla registration. We want to
emphasize that the visual reconstruction of the tumor is excellent, yielding very high Dice scores of
9.16E´1 for ATRV-CM3 and 8.91E´1 and 9.57E´1 for ID’s AAAN and AAMH, respectively.

As we will see in §7.2.4, the reconstruction quality of the pathology for our joint inversion scheme
depends on the number np and the placement of the Gaussian basis functions that parametrized the
tumor initial condition. Using the adaptive selection mode of Gaussian basis functions (described
in §6.3.3), the tumor reconstruction quality can be further improved to an overlay quantified by
Dice scores of 9.72E´1 and 9.78E´1 for patient ID’s AAAN and AAMH which corresponds to a
reduction of the L2-data-misfit of more than 90% with respect to the initial configuration. The
improved reconstruction of the tumor area only slightly affects the registration quality in terms of
data-misfit/overlay of the surrounding healthy brain tissue. Using the moving-atlas formulation we
can further improve the registration quality for the healthy brain tissue.

Conclusion Plain-vanilla registration exhibits severe difficulties in registering normal brains to brains
with abnormalities (such as, e.g., a grown tumor) due to topological differences. While registration quality
is acceptable or even good far away from the pathology, the obtained result is not meaningful, misleading,
and impractical in the vicinity of the abnormality. Using our joint registration and biophysical inversion
approach, which augments the registration formulation by further biophysical models/constraints that capture
the underlying dynamics of abnormality evolution, improves the obtained normal-to-abnormal registration
quality considerably. The deformations in the region around the pathology remain especially meaningful.
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We arrive at improved Dice scores between 8.73E´1 and 8.14E´1 for synthetic and real data in what is an
extremely challenging problem featuring multi-focal tumors and highly complex pathologies. Furthermore, our
scheme provides a reconstruction of the observed pathology as obtained from forward simulations using the
calibrated biophysical model. We conclude that our moving-patient Picard iteration solution scheme for the
joint inversion for brain tumor biophysical model parameters and registration velocity is a very powerful tool
for inter-subject normal-to-abnormal registration, such as used in automated segmentation tools.

7.2.2 Test Case ATAV: Analytic Tumor and Analytic Velocity

Purpose. The here considered experiments serve as a proof of concept. We examine the
moving-patient Picard iteration solution scheme with respect to its normal-to-abnormal registration
performance, quality of data reconstruction (similarity), and convergence of the methodology to a
known ground truth. We further analyze the sensitivity of our approach with respect to perturbations
in the model and model parameters (i.e., reaction-diffusion (ATAV-DIF) vs. reaction-only (ATAV-
REAC), and different model parameters for the inversion).

Setup. A general description of this fully synthetic setting is given in §7.1.1; we complete the
description with some specific information. The center of mass for the synthetic tumor is set to
(x1, x2, x3) = 2π ¨ (0.285, 0.36, 0.5). As initial condition for the artificial tumor generation, we enable
two of the Gaussians at the center of the grid of Gaussians. Whereas we disable diffusion (k f = 0)
in ATAV-REAC, we use the full tumor model, including diffusion (k f ‰ 0) for ATAV-DIF. The
same growth rates ρw, ρg with scaling ρ f are used for growing the tumor and for the inversion
to reconstruct the initial condition. In ATAV-DIF, we use values for the reaction and diffusion
coefficients for the inversion in the Picard iterations, that are either the same or differ from those
used for the generation of the tumor. See §7.1.3 and Tab. 7.2 for further details on the parameters.

Results. As a baseline, we report results for the sole registration of healthy anatomy (i.e.,
neglecting the tumor forward solve to generate the data) in Tab. 7.4. In addition to that, we quantify
the numerical error of our scheme for solving the transport equations. This is done by solving the
forward problem twice, once with the original and once with the negative velocity. The associated
error is given by

(7.2)
}c(¨,1)

‹
εadv := ´RÑ(´v‹,RÑ(v‹, c(¨,1)

‹
))}2

}c(¨,1)‹
}2

= 9.37E´2

Results for the inversion using a reaction-only tumor model (ATAV-REAC) are presented in Fig. 7.5
and assess the reconstruction quality (Dice and residuals) with respect to the iteration index. We
also report the error between the ground truth cA(0)‹ = Φp‹ and v‹ and the estimated iterates, as
well as the relative norm of the gradient of the fully coupled problem in (6.4).

For inversion with non-zero diffusion (ATAV-DIF), quantitative results are shown in Tab. 7.6 In
addition to reconstruction quality and gradient reduction, we list the runtime for the Picard scheme
per iteration and the percentage spent in each individual solver (tumor and registration), respectively.
Note that tumor and registration runtimes do not add up to 100% as further parts of the code (such
as the calculation of the reduced gradient and the steering of the Picard iteration) are not included in
the measurements.

Observations. The most important observations are (i) that the reconstructed data (tumor and
registered anatomy) is in excellent agreement with the patient data, and (ii) we are able to reduce
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TABLE 7.4 Results for the analytic tumor / analytic velocity (ATAV) test case. We report registration-only results
between healthy atlas and (advection generated) healthy patient. The table shows values for the relative mismatch for the
geometry (µB,L2 ) and the associated Dice coefficient DICEB as well as the relative `2-error for the reconstruction of the
velocity field ev,L2 with respect to the ground truth v‹.

maxitR µB,L2 DICEB ev,L2

(50, 80) 1.78E´1 9.37E´1 3.59E´1
(10, 20) 1.68E´1 9.36E´1 3.14E´1

TABLE 7.5 Quantitative results for the analytic tumor / analytic velocity reaction-only (ATAV-REAC) test
case; ground truth: (ρ f = 15, ρw = 1, ρg = 0, k f = 0, p = p‹, v = ´v‹). We report the average mismatch for the
probability maps for the brain tissue labels µB,L2 and the tumor µT,L2 , the mean Dice coefficient for brain tissue DICEB

and tumor DICET . The reconstruction quality is given in terms of convergence of vk and ck
A(0) towards the ground truth

v‹ and c‹
A(0) (ev,L2 and ec0,L2 ). We can not expect this error to go to zero for several reasons. First, we loose information

when we construct the test case (zero gradients in the intensity of the image). Second, our numerical solver introduces
errors (in particular, the solver for the transport equations). We, in addition, report the change in update in the velocity
v across successive iterations δv = }vk ´ vk´1}/}vk´1}. Finally, we also list the relative norm of the gradient for the
coupled problem in (6.4) (}g}rel).

iteration βv µB,L2 DICEB µT,L2 DICET ev,L2 δv ec0,L2 }g}rel

initial – 1.00 7.10E´1 1.00 0.00 1.00 – 1.00 1.00
1 1 9.37E´1 7.27E´1 1.00 0.00 9.60E´1 – 2.54E´1 9.98E´1
2 1E´1 6.30E´1 8.01E´1 2.26E´1 8.63E´1 8.50E´1 9.77E´1 2.05E´1 5.91E´2
3 1E´2 3.67E´1 8.88E´1 1.47E´1 9.19E´1 6.31E´1 9.33E´1 1.65E´1 3.07E´2
4 1E´3 1.71E´1 9.40E´1 7.91E´2 9.66E´1 3.35E´1 6.62E´1 1.40E´1 1.95E´2
5 1E´4 1.57E´1 9.47E´1 6.55E´2 9.74E´1 3.59E´1 3.65E´1 1.36E´1 1.32E´2
6 1E´4 1.57E´1 9.47E´1 6.39E´2 9.73E´1 3.59E´1 1.45E´5 1.33E´1 1.21E´2
7 1E´4 1.57E´1 9.47E´1 6.29E´2 9.73E´1 3.59E´1 1.45E´5 – 1.21E´2
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FIGURE 7.4 Qualitative results for the analytic tumor / analytic velocity (ATAV) test case. The figure shows
probability maps for the labels of the healthy atlas brain and the patient brain with a tumor generated from a tumor grown
in the atlas and known atlas to patient advection velocity (see text for details; axial-slice 64 of a 3D volume). We show the
initial configuration for the problem (top row; iteration k = 1), the final configuration after joint registration and tumor
inversion (middle row; iteration k = 7; the atlas image probability maps are transported to the patient space), and the target
patient data (reference image; bottom row). Each row contains (from left to right) the probability maps for WM, GM, CSF,
and TU, the residual differences (if available) between the probability maps, and a hard segmentation based on the given
probabilities for the individual tissue classes.
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TABLE 7.6 Results for the analytic tumor / analytic velocity with non-zero diffusion (ATAV-DIF) test case;
ground truth: (ρ f = 10, ρw = 1, ρg = 0, k f = 1.00E´2, kw = 1, kg = 0, p = p‹, v = ´v‹). We show values for
the (summed) norm of the residual between the respective probability maps for the different brain tissue classes µB,L2 and
tumor µT,L2 in patient space, the mean Dice coefficient for brain tissue DICEB and tumor DICET , respectively, as well
as the relative norm of the gradient }g}rel for the global coupled problem (6.4). We report results for different values of
ρ f P t5, 10, 15u used in the inversion (ρ f = 10 is the ground truth). We list the time spent per iteration (in seconds; top
run) or in total (in seconds; bottom runs) for the entire Picard inversion and the amount of that time spent in the tumor
inversion and image registration (in percent (top run), in seconds (bottom runs)). Note that the latter sums up to less than
100% as we do not explicitly measure time spent in additional coupling functionality and forward solvers. These runs are
performed using 64 MPI tasks on three nodes of HazelHen (see §7.1.5 for details). The top block shows the inversion with
respect to the Picard iteration index for the correct parameters (ground truth) for ρ f and k f . The four rows on the bottom
show the final result for our Picard scheme for different parameter and model combinations.

iterations βv µB,L2 DICEB µT,L2 DICET }g}rel Tit [s] Ttu
inv [%] Treg

inv [%]

initial – 1.00 7.14E´1 1.00 0.00 1.00 – – –
1 1 9.32E´1 7.32E´1 1.00 0.00 9.94E´1 2.11E+3 99.7 0.2
2 1E´1 6.52E´1 8.01E´1 2.08E´1 8.56E´1 7.45E´2 2.88E+2 96.0 2.1
3 1E´2 3.79E´1 8.88E´1 1.47E´1 9.12E´1 3.87E´2 3.94E+2 91.8 6.9
4 1E´3 1.75E´1 9.39E´1 8.08E´2 9.63E´1 2.45E´2 3.98E+2 72.7 26.1
5 1E´4 1.60E´1 9.48E´1 5.93E´2 9.78E´1 1.77E´2 2.00E+2 35.4 62.1
6 1E´4 1.60E´1 9.48E´1 5.77E´2 9.77E´1 1.72E´2 1.34E+2 46.6 49.6
7 1E´4 1.60E´1 9.47E´1 5.63E´2 9.76E´1 1.73E´2 7.10E+1 0.0 93.0

ρ f k f µB,L2 DICEB µT,L2 DICET }g}rel Ttot [s] Ttu
inv [s] Treg

inv [s]

ρ f = 5 k‹
f = 1E´2 1.61E´1 9.46E´1 6.48E´2 9.67E´1 2.21E´2 4.37E+3 3.95E+3 3.97E+2

ρ‹
f = 10 k‹

f = 1E´2 1.60E´1 9.47E´1 5.63E´2 9.76E´1 1.73E´2 3.60E+3 3.17E+3 4.01E+2
ρ f = 15 k‹

f = 1E´2 1.61E´1 9.48E´1 6.39E´2 9.72E´1 1.41E´2 3.96E+3 3.53E+3 4.00E+2
ρ f = 10 k f = 0 1.60E´1 9.48E´1 5.95E´2 9.71E´1 1.74E´2 4.25E+2 2.25E+1 4.01E+2

the reduced gradient (6.9) by two orders of magnitude in 7 iterations of our Picard scheme for the
reaction-only as well as the reaction-diffusion experiments.

The numerical error for the advection in (7.2) is 9.37E´2. We can see in Tab. 7.5 that the relative
mismatch for the anatomy obtained for our iterative Picard scheme is in the order of the advection
error for the forward image registration problem. Furthermore, the reconstruction of c(¨,0)

‹
and

c(¨,1)
‹

seems to be bounded by this error. In fact, due to the advection error that leads to a mismatch
in this order in the atlas domain, this is the best we can expect without over-fitting the data. Similar
observations can be made if we compare the inversion results with the results obtained for the
registration of healthy brains (neglecting the tumor simulations) reported in Tab. 7.4. Hence, the
quality of tumor reconstruction is comparable to the quality of pure image registration between
the healthy geometries. This is an excellent result that clearly demonstrates the potential of our
approach. The obtained Dice coefficient for the brain anatomy is in the order of what we see for
the sole registration of healthy anatomies.10 Note that the mismatch between the true velocity v‹

and the recovered velocity vk reported for ATAV-REAC is due to the fact that image registration is
an inherently ill-posed problem: the velocity can only be reconstructed exactly in image areas with
non-zero gradients and if there are only non-zero intensity differences between the images to be
registered in areas that do correspond to one another11. In addition, we ask for the reconstruction of
a vector field from scalar data.

The Dice coefficient for the brain anatomy increases from 7.10E´1 to 9.47E´1 in ATAV-REAC,
where we obtain a final Dice coefficient of 9.73E´1 for the tumor. These are results of excellent
quality for normal-to-abnormal registration, the main objective of the here evaluated moving-patient

10In fact, it is even slightly better for the reaction-only experiments (ATAV-REAC). This slight increase might be a conse-
quence of numerical inaccuracies in our scheme, and discrepancies in the number of Newton-steps and Krylov iterations
taken.

11As in any formulation based on an L2-distance functional, it is the mismatch between the reference and template image
and the gradient of the deformed template image that drive the optimization (see (5.26f)).



7.2 NORMAL-TO-ABNORMAL PERFORMANCE AND MOVING-PATIENT 205

joint inversion scheme. The results for the reaction-diffusion experiments (ATAV-DIF) show that for
the moving-patient scheme and the used regularizers, the specifically employed tumor model does
not have a significant impact on the quality of the inversion (Dice and mismatch); the registration
solver compensates for smaller variations in the tumor model.

We can furthermore see that we can significantly reduce the norm of the reduced gradient (6.9) to
1.21E´2. We can also see that once we have reached the target regularization parameter βv = 1E´4,
we do not make any more progress. The update for the velocity tends to zero, the changes in
the reduced gradient are small, and the error measures (residual and Dice) do not longer change
significantly.

For ATAV-DIF, we see that we obtain a slightly better mismatch (5.63E´2) and Dice coefficient
(9.76E´1) for the tumor probability map if we use the correct ρ f . However, for the employed
moving-patient scheme, the mismatch results for moderately wrong tumor parameters are quite
indistinguishable. Even if switching off the diffusion operator (bottom line in Tab. 7.6), we do
not observe a significant deterioration of the obtained proximity of the model prediction to the
observed data. This underpins the hypothesis that for the moving-patient scheme we obtain
excellent agreement between patient data and atlas data (i.e., normal-to-abnormal registration quality)
irrespective of the model choice; the registration eventually compensates insufficient proximity of
the tumor growth simulation to the observed data. This can be explained by the parametrization of
the initial condition in conjunction with the employed Φ-weighted L2-regularization of p. We can
reconstruct complex tumor shapes even with a simple model. Overall, this indicates that using a
reaction-only model might be sufficient for pure diffeomorphic image registration with the objective
to obtain good normal-to-abnormal registration quality. A comparison of the total runtime for the
last row in Tab. 7.6 to the total runtimes attained when enabling diffusion shows that we can save
a factor of 10 in runtime by disabling diffusion. Another interesting behavior within our scheme
is that, during the first few iterations, most time is spent in the tumor inversion, whereas as we
reduce βv, the registration does most of the work. This is to be expected, since the runtime of our
scheme (more precisely, the condition number of the Hessian) for diffeomorphic registration, is not
independent of βv [Man15; Man17b].

Conclusion We conclude that our Picard scheme is efficient and converges to a valid (local) minimum in
the search space (we reduce the relative global gradient, the distance measure, and significantly increase the
Dice coefficient). We obtain an excellent agreement between the data (patient tumor and geometry) and the
predicted state (transported atlas geometry and predicted tumor) with a final Dice coefficient of 9.47E´1 and
9.73E´1 for the labels of the anatomy and tumor for reaction-only (ATAV-REAC) tumor-growth model and
similar values for the reaction-diffusion (ATAV-DIF) case.

The integration of a diffusion model into our inversion is very costly, at least for our current implemen-
tation. Designing a more efficient forward solver for the diffusion operator requires more work. We could
demonstrate that our parametrization of the initial condition allows us to generate high-fidelity registration
results, especially for the healthy anatomy, irrespective of the model that has been used to generate the data.
These are clearly preliminary results, but they provide some evidence that reaction-only models might be
sufficient for pure normal-to-abnormal image registration (something that is certainly not the case if we target
parameter identification and patient specific tumor growth prediction [Hog08a] to aid clinical decision making;
this requires more complex, high-fidelity models. The objective of tumor parameter estimation is targeted
in §7.3 for the biophysically more meaningful moving-atlas formulation).

We can also observe that there are subtle differences in the reconstruction quality of the tumor if we use
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the ‘’correct‘’ growth rate for the inversion for ATAV-DIF; these differences are more pronounced if we restrict
the initial condition to a point source (see analysis and discussion in §7.3). Overall, we conclude that we
(i) can neglect the diffusion model in the context of diffeomorphic registration and compensate the resulting
loss in accuracy by a higher-dimensional Gaussian basis, (ii) might be able to identify appropriate growth rates
if we run multiple inversions for different parameters with a sparsity constraint for the Gaussian basis (i.e.,
limiting the initial condition to a point source).

7.2.3 Test Case ATRV: Analytic Tumor and Real Velocity

Purpose. We test our algorithm in the context of multi-subject registration for real brain data of
two different individuals. We furthermore test the capabilities of our framework for the registration
of an atlas to a patient’s image that contains a multifocal tumor.

Setup. The patient data is no longer generated from the atlas image. We use an image of
a different individual instead. Accordingly, we no longer know the ground truth velocity field;
see also §7.1.1 for a more detailed description. For the specific experiments considered here, we
(i) choose the same initial condition parameters, i.e., location and p‹, as in the previous ATAV case,
but also (ii) consider multifocal tumors, i.e., tumors consisting of several separate components. For
the latter, we choose the seed randomly, which in turn means that we have to choose the Gaussian
basis functions adaptively in order to be able to recover all abnormal areas in the patient’s image.
We arrange the Gaussian basis functions as a regular grid around the center of mass of the tumor
and choose their standard deviation σ automatically based on the tumor’s bounding box and the
prescribed number np of Gaussians; see §6.3.3. This is an extremely important step to make our
solver applicable to real patient data, something we will explore in the next section. The initial
conditions are generated using random tumor seeds activating a maximum of 3 Gaussians in the
x3 = height/2´plane. This creates a multifocal template tumor cD. We solve the forward problem
with diffusion disabled, i.e., reaction-only. We employ the tumor parameters used to generate this
artificial tumor also in our inversion. To account for the possibility of tumor growth at far apart
locations in the brain, we use a larger number of parameters np = 343, (see Tab. 7.2).

Results. We report qualitative and quantitative simulation results for the monofocal reaction-only
case in Fig. 7.5. A summary of the experiments for the multifocal tumor cases (two runs) is given
in Fig. 7.6.

Observations. The most important observations are that (i) we achieve an excellent registration
quality with a Dice score of 9.34E´1 and 9.46E´1 for the hard segmentations of the anatomy and
the tumor, respectively, and that (ii) our scheme seems to be still converging to a (local) minimum of
the joint tumor inversion-registration problem in this more realistic test case scenario.

Overall, the results slightly deteriorate compared to the former test cases. We achieve a relative
mismatch and Dice score for the anatomy that is about O(1E´1) and O(1E´2) worse, respectively,
than in the former experiments. The reduction of the gradient of the coupled optimization problem
of about two orders is comparable to the former test cases. Interestingly, there is a stronger imbalance
between the time spent in the registration and the tumor inversion; the registration takes up more
than 90% of the runtime already in the second iteration. This indicates that running our solver
on real inter-subject problems at a higher resolution significantly increases the complexity of the
registration problem.
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iterations βv µB,L2 DICEB µT,L2 DICET }g}rel Tit [s] Ttu
inv [%] Treg

inv [%]

initial – 1.00 5.43E´1 1.00 0.00 1.00
1 1 9.35E´1 5.84E´1 1.00 0.00 9.98E´1 6.03E+1 46.3 47.3
2 1E´1 7.12E´1 7.06E´1 2.48E´1 8.53E´1 8.47E´2 5.93E+1 6.8 92.5
3 1E´2 4.48E´1 8.38E´1 1.90E´1 9.11E´1 3.33E´2 1.51E+3 0.3 99.7
4 1E´3 2.96E´1 9.02E´1 1.54E´1 9.39E´1 1.36E´2 1.92E+3 0.1 99.8
5 1E´4 2.66E´1 9.13E´1 1.45E´1 9.48E´1 1.02E´2 4.31E+2 0.3 99.6
6 1E´4 2.66E´1 9.13E´1 1.44E´1 9.47E´1 1.27E´2 1.55E+2 0.8 98.9
7 1E´4 2.66E´1 9.13E´1 1.43E´1 9.46E´1 1.24E´2 1.51E+2 0.0 99.7

final 1E´4 2.66E´1 9.13E´1 1.43E´1 9.46E´1 1.24E´2 4.29E+3 4.11E+1 4.25E+3

FIGURE 7.5 Results for the analytic tumor with real velocity (ATRV) test case, ground truth: (ρ f = 15, ρw = 1,
ρg = 0, k f = 0, p = p‹ (in patient domain); v N/A). The figure shows probability maps for the labels of the healthy atlas
brain (top row) and the patient brain (with a synthetically generated tumor; bottom row). The patient’s tumor is generated
by solving the forward problem in the healthy patient data set with an initial condition parametrized by p‹. We show axial
slice 128. We report the (summed) mismatch for the brain tissue probability maps (µB,L2 ) and the tumor probability map
(µT,L2 ) in patient space, the mean Dice coefficient for the hard segmentation corresponding to the brain tissue (DICEB) and
the tumor DICET , respectively, as well as the relative norm of the gradient for the coupled problem (6.4) (}g}rel). We also
show the run time per iteration in seconds (Tit), and the percentages (Ttu

inv) and (Treg
inv ) of this runtime spent in the tumor

solver and the image registration solver, respectively. Note that the latter sums up to less than 100% as we do not explicitly
measure time spent in additional coupling functionality and in the forward solvers. The last row shows the final values for
mismatch and Dice as well as (accumulated) absolute run times for the sub-components in seconds.

From the multifocal tumor cases, we observe that our moving-patient Picard iteration scheme
with the adaptive parametrization of the initial condition is effective when it comes to the registration
of a tumor-free atlas with a patient image that contains a multifocal tumor. We achieve almost the
same Dice coefficient (up to between O(1E´2) and O(1E´3)) for the hard segmentations associated
with the probability maps for the tumor and brain anatomy. In particular, we can increase the Dice
coefficient from 5.29E´1 to 9.12E´1 for run #1 and from 5.36E´1 to 9.08E´1 for run #2, respectively
(see Fig. 7.6). The Dice coefficients for the tumor are 9.49E´1 and 9.52E´1. These values are
comparable to what we achieved for ATRV. Moreover, we achieve a similar reduction of the relative
norm of the coupled reduced gradient of about two orders of magnitude. We can also see that the
overall runtime for the tumor inversion increases as we increase the number np of parameters, from
4.11E+1 seconds to 3.09E+2 or 1.17E+2 seconds (total tumor inversion runtimes in Fig. 7.6 and
Fig. 7.5). However, this increase in runtime does not have a significant effect on the overall runtime
of the total Picard scheme (O(5E+3) seconds), which is dominated by the registration.
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Run #1 Run #2

k = 1 k = 7 patient k = 1 k = 7 patient

run # βv µB,L2 DICEB µT,L2 DICET }g}rel Ttot [s] Ttu
inv [s] Treg

inv [s]

#1 initial – 1.00 5.29E´1 1.00 0.00 1.00 – – –
final 1E´4 2.64E´1 9.12E´1 1.43E´1 9.49E´1 1.75E´2 3.29E+3 3.09E+2 2.99E+3

#2 initial – 1.00 5.36E´1 1.00 0.00 1.00 – – –
final 1E´4 2.64E´1 9.08E´1 1.46E´1 9.52E´1 1.40E´2 4.91E+3 1.17E+2 4.81E+3

FIGURE 7.6 Results for the analytic multi-focal tumor with real velocity (ATRV-MF) test case (two runs),
ground truth: (ρ f = 15, ρw = 1, ρg = 0, k f = 0, p = p‹ (in patient domain), v N/A). We display the healthy atlas brain
(k = 1), the reconstruction with tumor in patient space after the last Picard iteration (k = 7), and the given segmented
patient image with tumors (axial-slice 128; top block). We report the (summed) mismatch for the brain tissue probability
maps (µB,L2 ) and the tumor probability map (µT,L2 ) in patient space, the mean Dice coefficient for the hard segmentation
corresponding to the brain tissue (DICEB) and the tumor DICET , respectively, as well as the relative norm of the gradient
for the coupled problem (6.4) (}g}rel). We also show the run time until convergence of the Picard scheme in seconds (Ttot),
and the (over all iterations accumulated) time (Ttu

inv) and (Treg
inv ) spent in the tumor solver and the image registration solver,

respectively. Note that the latter sums up to less than the reported total runtime as we do not explicitly measure time spent
in additional coupling functionality as well as in the forward solvers.

Conclusion We conclude that we can still achieve an excellent registration quality with a Dice score of
9.34E´1 and 9.46E´1 for the hard segmentations for the anatomy and the tumor, respectively, if we perform
our joint inversion moving-patient scheme on real brains of different individuals representing a normal-to-
abnormal registration scenario for the healthy atlas and pathologic patient. We can furthermore effectively
deal with multifocal tumors, obtaining similar registration and reconstruction quality at only slightly higher
computational cost (due to an increased number of Gaussian basis functions in the parametrization of the
initial conditions).

7.2.4 Test Case RTRV: Real Tumor and Real Velocity

Purpose. We test our approach on real data of patients diagnosed with glioma tumors and study
the registration quality for a variety of parameter choices for the tumor growth model. The real data
featuring large inter-subject anatomical variability poses significant challenges on the registration
solver, and also the simplistic tumor model represents, in the best case, a rough description of the
underlying tumor growth dynamics.

Setup. This test scenario consists of real patient brains with real tumors for which parameters
are unknown. The patient data sets are the first proposal for a patient segmentation produced in
the first iteration of GLISTR [Goo13]. We provide additional details in §7.1.1 and §7.1.2. Real data
requires to identify the support of the domain spanned by the Gaussian basis functions for the tumor
initial condition parametrization automatically. We consider the two automatic data-driven selection
modes for the Gaussian basis function described in §6.3.3. For the tumor diameter (bounding-box)
based selection mode, we define a spacing of δ = 1.5σ and choose the standard deviation σ for
every unseen patient such that np = 343 basis functions are placed uniformly within the determined
bounding box of the tumor. For the tumor shape- and intensity-based adaptive selection mode, we
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set δ = 2σ with σ = 2π/128 and require a volume fraction of 0.99 of the σ-ball of each candidate
Gaussian to be occupied by tumor cells in order to get selected. In contrast to the synthetic test cases
ATAV and ATRV, we allow the tumor to also grow in gray matter instead of in white matter only, but
with a 10 times smaller characteristic diffusivity, and a reaction parameter that is five times smaller
than in white matter (see Tab. 7.2 for details). We use a variety of models and parameter settings in
our Picard scheme for the two patients AAMH and AAAN to not only assess the performance of
our method, but also to study its sensitivity towards parameter changes and model complexity. We
vary the reaction parameter ρ f between 0 and 15 and choose the diffusion coefficient k f either as 0 or
1.00E´2. To foster a short time-to-solution, we set tighter maxit bounds on the employed Newton
and Krylov solver, i.e., maxitR = (10, 20) and maxitT = (30, 30) for registration and tumor inversion,
respectively. See §7.1.3 for additional details on the setup of the test case and the parameters.

Results. Fig. 7.7 – Fig. 7.9 show the healthy atlas (k = 1) in the top row and the corresponding
patient image with tumor in the bottom row for axial, sagittal, and coronal orientations. The hard
segmentations for the results computed with the proposed approach are shown in the middle row
using the same orientations. In Tab. 7.7, we summarize the results for all patient data sets. We report
the initial and final values for the mismatch and Dice coefficients associated with the probability
maps for the tumor and the brain anatomy, as well as the relative norm of the gradient of the coupled
problem in (6.4) for both data-driven selection modes of the Gaussian basis functions, described
in §6.3.3. We also report timings for the entire inversion. Fig. 7.11 shows more detailed images of the
probability maps for the patient AAMH (complex and large tumor). Results for varying reaction
and diffusion model parameters for AAMH and AAAN are listed in Tab. 7.8. We furthermore
study the impact of the number and placement of the Gaussian basis functions (as determined
by the two available data-driven selection modes) on the reconstruction quality, convergence and
runtime in Tab. 7.9 for the two data sets AAAN and AAMH. Note that all parameter choices refer
to the model used for tumor reconstruction in the moving-patient Picard scheme. The true growth
parameters of the tumors are unknown.

Observations. The most important observation is that we obtain very good registration results—
qualitatively and quantitatively—in what is an extremely challenging normal-to-abnormal registration
problem. From visual inspection of the data alone (Fig. 7.7 through Fig. 7.9) we can immediately
see that there are significant anatomical differences between the atlas image, the patient images,
and across patients. The tumors vary significantly in shape and size. Also, the actual clinical data
has sharper edges than the brain data used for our synthetic cases. Overall, this poses considerable
challenges to our framework. Notice also, that our biophysical model for tumor evolution is over-
simplified and features various shortcomings. The results reported in Fig. 7.7 through Fig. 7.9 and in
Fig. 7.11 clearly demonstrate that the deformed atlases are in very good agreement with the patient
data for all six subjects. We reach Dice coefficients between 7.87E´1 to 8.44E´1 and 8.74E´1 to
9.75E´1 for the probability maps associated with the anatomy and the tumor if the diameter-based
Φ-selection mode is employed with a total number of np=343 Gaussians. These results are slightly
worse than those obtained for the artificially grown tumors in the former sections, but still are
competitive. We also note that the initial Dice coefficients for the anatomy range between 2.92E´1
and 4.74E´1 for these data, which is drastically worse than what we have seen in our synthetic
test cases. Increasing the number of Gaussian basis functions and allowing for tumor-shape-driven
placement of the latter has the potential to significantly improve the visual tumor reconstruction12;

12Note, that this improved reconstruction is due to a better representation of the initial condition, i.e., better interpola-
tion of the observation, and not due to more accurate biophysical model parameters. Here we are mainly interested
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FIGURE 7.7 Tumor and brain labels for the real tumor / real velocity (RTRV) test case; ground truth: (ρ N/A,
k N/A, p N/A, v N/A); patients AAMH, AAAN. We set the parameters for the tumor solver to ρ f = 15, k f = 0
(reaction-only). We use np = 343 Gaussians for the inversion. The top row shows the original atlas image. The bottom
row shows the patient image. The row in the middle shows the solution for our coupled scheme.
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FIGURE 7.8 Tumor and brain geometry for the real tumor / real velocity (RTRV) test case; ground truth: (ρ N/A,
k N/A, p N/A, v N/A); patients AAAC, AAMP. We set the parameters for the tumor solver to ρ f = 15, k f = 0
(reaction-only). We use np = 343 Gaussians for the inversion. The top row shows the original atlas image. The bottom
row shows the patient image. The row in the middle shows the solution for our coupled scheme.



7.2 NORMAL-TO-ABNORMAL PERFORMANCE AND MOVING-PATIENT 211

AAQD

axial slice 136

k
=

1

Atlas Configuration in Patient Space
coronal slice 108 sagittal slice 156

k
=

7
re
fe
re
n
ce

axial slice 136

Patient Configuration
coronal slice 108 sagittal slice 156

AAWI

axial slice 132

k
=

1

Atlas Configuration in Patient Space
coronal slice 140 sagittal slice 140

k
=

7
re
fe
re
n
ce

axial slice 132

Patient Configuration
coronal slice 140 sagittal slice 140

FIGURE 7.9 Tumor and brain geometry for the real tumor / real velocity (RTRV) test case; ground truth: (ρ
N/A, k N/A, p N/A, v N/A); patients AAQD, AAWI. We set the parameters for the tumor solver to ρ f = 15, k f = 0
(reaction-only). We use np = 343 Gaussians for the inversion. The top row shows the original atlas image. The bottom
row shows the patient image. The row in the middle shows the solution for our coupled scheme.

TABLE 7.7 Summary of results for the real tumor / real velocity (RTRV) test case, ground truth: (ρ N/A, k N/A,
p N/A, v N/A); based on real clinical data (taken from [Goo13]). We set the tumor parameters to ρ f = 15, k f = 0
(reaction-only). We consider two automatic data-driven approaches (see §6.3.3) for the selection of the Gaussian basis
functions, (i) the diameter-based, regular grid selection mode (bbox) with np = 343 and δ = 1.5σ, and (ii) the tumor
shape- and intensity-driven, adaptive selection mode (adptv.) with σ = 2π/128, δ = 2σ and a required tumor volume
fraction of 0.1. We report the (summed) mismatch for the brain tissue probability maps (µB,L2 ) and tumor probability map
(µT,L2 ) in patient space, the mean Dice coefficient for the hard segmentation corresponding to the brain tissue (DICEB)
and the tumor (DICET), respectively, as well as the relative norm of the gradient for the coupled problem (6.4) (}g}rel).
We also report the total run time in seconds (Ttot), and the run time of the individual components of our Picard scheme,
respectively (also in seconds; tumor solver: Ttu

inv; image registration: Treg
inv ). Note that the latter sums up to less than the

reported total run time as we do not explicitly measure time spent in additional coupling functionality and forward solvers.
We execute our code in parallel on 11 nodes using 256 MPI tasks on HazelHen.

Patient Φ-mode np βv µB,L2 DICEB µT,L2 DICET }g}rel Ttot [s] Ttu
inv [s] Treg

inv [s]

A
A

M
H initial 1 1.00 4.36E´1 1.00 0.00 1.00 – – –

final bbox 343 1E´4 3.45E´1 7.92E´1 1.95E´1 9.57E´1 3.92E´2 6.28E+2 1.95E+2 4.35E+2
final adptv. 2407 1E´4 3.37E´1 7.94E´1 8.65E´2 9.78E´1 2.16E´2 1.38E+3 9.71E+2 3.34E+2

A
A

A
N initial 1 1.00 4.37E´1 1.00 0.00 1.00 – – –

final bbox 343 1E´4 3.54E´1 8.35E´1 3.77E´1 8.91E´1 1.06E´1 6.34E+2 2.15E+2 4.17E+2
final adptv. 1412 1E´4 3.43E´1 8.37E´1 1.04E´1 9.72E´1 2.86E´2 1.01E+3 6.04E+2 3.39E+2

A
A

A
C initial 1 1.00 4.82E´1 1.00 0.00 1.00 – – –

final bbox 343 1E´4 3.36E´1 8.44E´1 2.45E´1 9.55E´1 4.38E´2 4.92E+2 1.59E+2 3.32E+2
final adptv. 1297 1E´4 3.25E´1 8.45E´1 9.49E´2 9.74E´1 2.55E´2 1.48E+3 9.12E+2 3.39E+2

A
A

M
P initial 1 1.00 4.74E´1 1.00 0.00 1.00 – – –

final bbox 343 1E´4 3.32E´1 8.05E´1 1.34E´1 9.75E´1 3.31E´2 6.48E+2 2.36E+2 4.13E+2
final adptv. 1000 1E´4 3.28E´1 8.07E´1 7.87E´2 9.85E´1 1.74E´2 6.70E+2 2.99E+2 3.40E+2

A
A

Q
D initial 1.00 1.00 2.92E´1 1.00 0.00 1.00 – – –

final bbox 343 1E´4 3.24E´1 8.06E´1 2.55E´1 9.31E´1 9.88E´2 1.10E+3 2.19E+2 8.81E+2
final adptv. 1448 1E´4 3.10E´1 8.09E´1 1.11E´1 9.72E´1 2.48E´2 1.61E+3 8.84E+2 5.30E+2

A
A

W
I initial 1 1.00 4.53E´1 1.00 0.00 1.00 – – –
final bbox 343 1E´4 3.45E´1 7.87E´1 3.92E´1 8.74E´1 5.26E´2 6.84E+2 2.92E+2 3.90E+2
final adptv. 2609 1E´4 3.21E´1 7.93E´1 1.12E´1 9.72E´1 2.54E´2 1.95E+3 1.54E+3 3.38E+2
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FIGURE 7.10 Qualitative results for the real tumor / real velocity (RTRV) test case, ground truth: (ρ N/A, k N/A,
p N/A, v N/A); AAAN patient. The figure shows probability maps for the labels of the healthy atlas brain (k = 1; top row)
and the AAAN patient (target) brain probability maps with tumor (bottom row) along with the reconstructed probability
maps throughout the Picard iterations (k = 1, 3, 5, 7) (axial-slice 132).

TABLE 7.8 Results for the AAAN and the AAMH patient real tumor / real velocity (RTRV) test case, ground
truth: (ρ N/A, k N/A, p N/A, v N/A) using real clinical input data. We investigate the reconstruction quality with
varying model parameters ρ f P t0, 5, 10, 15u and k f P t0, 1E´2u. We consider the tumor diameter-based Gaussian
selection mode with np = 343 basis functions and a spacing of δ = 1.5σ. The table shows the (summed) mismatch for the
brain tissue probability maps (µB,L2 ) and tumor probability map (µT,L2 ) in patient space, the mean Dice coefficient for the
hard segmentation corresponding to the brain tissue (DICEB) and the tumor (DICET), respectively, for different values
of the reaction scaling parameter ρ f and of the diffusion coefficient scaling parameter k f , as well as the relative norm of
the gradient for the coupled problem (6.4) (}g}rel). We also report the total run time in seconds (Ttot) and the run time
of the individual components of our Picard scheme, respectively (also in seconds; tumor solver: Ttu

inv; image registration:
Treg

inv ). Note that the latter sum up to less than the reported total run time as we do not explicitly measure time spent in
additional coupling functionality and forward solvers. We execute our code in parallel on on 11 nodes using 256 MPI tasks
on HazelHen.

ρ f k f np µB,L2 DICEB µT,L2 DICET }g}rel Ttot [s] Ttu
inv [s] Treg

inv [s]

ID
A

A
A

N

initial config. 1.00 4.37E´1 1.00 0.00 1.00 – – –
0 0 343 3.42E´1 8.39E´1 2.56E´1 9.36E´1 2.19E´1 6.58E+2 2.02E+2 4.23E+2

15 0 343 3.54E´1 8.35E´1 3.77E´1 8.91E´1 1.06E´1 6.34E+2 2.15E+2 4.17E+2
5 1E´2 343 3.50E´1 8.35E´1 3.17E´1 9.06E´1 1.79E´1 1.82E+4 1.77E+4 3.33E+2

10 1E´2 343 3.52E´1 8.35E´1 3.60E´1 8.85E´1 1.41E´1 1.88E+4 1.82E+4 3.41E+2
15 1E´2 343 3.55E´1 8.34E´1 3.98E´1 8.62E´1 1.13E´1 1.85E+4 1.80E+4 3.28E+2

ID
A

A
M

H

initial config. 1.00 4.36E´1 1.00 0.00 1.00 – – –
0 0 343 3.40E´1 7.92E´1 1.47E´1 9.69E´1 1.19E´1 6.09E+2 2.13E+2 3.63E+2

15 0 343 3.45E´1 7.92E´1 1.95E´1 9.57E´1 3.92E´2 6.28E+2 1.95E+2 4.35E+2
5 1E´2 343 3.44E´1 7.92E´1 1.88E´1 9.64E´1 7.68E´2 1.23E+4 1.18E+4 3.41E+2

10 1E´2 343 3.46E´1 7.92E´1 2.07E´1 9.62E´1 5.16E´2 1.33E+4 1.28E+4 3.44E+2
15 1E´2 343 3.48E´1 7.93E´1 2.35E´1 9.59E´1 3.47E´2 1.18E+4 1.13E+4 3.63E+2
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iterations βv µB,L2 DICEB µT,L2 DICET }g}rel Tit [s] Ttu
inv [%] Treg

inv [%]

initial – 1.00 4.36E´1 1.00 0.00 1.00 – – –
1 1 9.59E´1 4.62E´1 1.00 0.00 9.99E´1 9.80E+1 74.6 15.0
2 1E´1 7.42E´1 5.60E´1 3.90E´1 8.43E´1 9.06E´2 4.55E+1 51.2 47.7
3 1E´2 5.05E´1 7.01E´1 3.13E´1 9.03E´1 4.61E´2 9.59E+1 25.8 73.7
4 1E´3 3.91E´1 7.66E´1 2.52E´1 9.39E´1 3.69E´2 1.18E+2 21.5 78.0
5 1E´4 3.60E´1 7.84E´1 2.20E´1 9.51E´1 3.62E´2 1.15E+2 21.2 78.3
6 1E´4 3.51E´1 7.89E´1 2.05E´1 9.55E´1 3.84E´2 8.99E+1 27.0 72.4
7 1E´4 3.45E´1 7.92E´1 1.95E´1 9.57E´1 3.92E´2 6.63E+1 0.0 99.3

final 1E´4 3.45E´1 7.92E´1 1.95E´1 9.57E´1 3.92E´2 6.28E+2 1.95E+2 4.20E+2

FIGURE 7.11 Results for the real tumor / real velocity (RTRV) test case, ground truth: (ρ N/A, k N/A, p N/A, v
N/A); AAMH patient. We consider the tumor diameter-based Gaussian selection mode with np = 343 basis functions and
a spacing of δ = 1.5σ. The figure shows probability maps for the labels of the healthy atlas brain (k = 1; top row) and the
AAMH patient (target) brain probability maps with tumor (bottom row) along with the reconstructed probability maps,
i.e., the final result of our inversion algorithm (k = 7; middle row) (axial-slice 120). In the table, we report the (summed)
mismatch for the brain tissue probability maps (µB,L2 ) and tumor probability map (µT,L2 ) in patient space, the mean Dice
coefficient for the hard segmentation corresponding to the brain tissue (DICEB) and the tumor DICET , respectively, as
well as the relative norm of the gradient for the coupled problem (6.4) (}g}rel). We also report the run time per iteration in
seconds (Tit), and the percentages (Ttu

inv) and (Treg
inv ) of this runtime spent in the tumor solver and the image registration

solver, respectively. Note that the latter sums up to less than 100% as we do not explicitly measure time spent in additional
coupling functionality and in the forward solvers. The last row shows the final state and summed absolute timings for the
respective solvers in seconds.

we observe excellent Dice scores between 9.72E´1 and 9.85E´1 for the 6 considered data sets. The
runtimes are comparable to our former experiment. We again achieve a reduction of the relative
norm of the gradient for the coupled problem in (6.4) of about two orders of magnitude (slightly less
than what we saw before).

The results of our study with varying tumor model parameters presented in Tab. 7.8 show
that there are slight variances in the results depending on the parameter choices, but the Picard
iteration scheme is successful in all cases. Furthermore, from the experiments studying the different
selection modes for the Gaussian basis functions in Tab. 7.9, where the number and positioning of
the basis functions is varied, we see, that the tumor shape- and intensity-based selection mode with
more and sharper Gaussians yields better results in terms of L2-data-misfit and Dice coefficients
of the tumor reconstruction. The reaction-only runs show a slightly better reconstruction than the
reaction-diffusion experiments. Both observations can be explained by the impact of the interpolation

in the normal-to-abnormal registration quality. For more biophysically meaningful results and patient specific tumor
simulations, we focus on the moving-atlas scheme, studied in §7.3
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TABLE 7.9 Results for the AAAN and the AAMH patient real tumor / real velocity (RTRV) test case, ground
truth: (ρ N/A, k N/A, p N/A, v N/A); using real clinical input data. We study the registration and reconstruction quality
of our joint approach, depending on the fidelity of the parametrization, i.e., the number and placing of the Gaussian basis
functions for reaction-only (REAC) and the reaction-diffusion (DIF) tumor model. In particular, we consider two automatic
data-driven approaches (see §6.3.3): (i) the diameter-based, regular grid selection mode (bbox) with np = 343 and
δ = 1.5σ, and (ii) the tumor shape- and intensity-driven, adaptive selection mode (adptv.) with σ = 2π/128, δ = 2σ and a
required tumor volume fraction τV . The table shows the (summed) mismatch for the brain tissue probability maps (µB,L2 )
and tumor probability map (µT,L2 ) in patient space, the mean Dice coefficient for the hard segmentation corresponding to
the brain tissue (DICEB) and the tumor (DICET), respectively, for different values of the reaction scaling parameter ρ f
and of the diffusion coefficient scaling parameter k f , as well as the relative norm of the gradient for the coupled problem
(6.4) (}g}rel). We also report the total run time in seconds (Ttot) and the run time of the individual components of our
Picard scheme (also in seconds; tumor solver: Ttu

inv; image registration: Treg
inv ). Note that the latter sums up to less than the

reported total run time as we do not explicitly measure time spent in additional coupling functionality and forward solvers.
We execute our code in parallel on on 11 nodes using 256 MPI tasks on HazelHen.

k f Φ-mode σ τV np µB,L2 DICEB µT,L2 DICET }g}rel Ttot [s] Ttu
inv [s] Treg

inv [s]

ID
A

A
A

N

initial config. 1.00 4.36E´1 1.00 0.00 1.00 – – –

R
EA

C

0 bbox 2π/16 – 125 3.67E´1 8.30E´1 5.71E´1 3.44E´1 1.28E´1 4.67E+2 8.38E+1 3.57E+2
0 bbox 2π/24 – 343 3.54E´1 8.35E´1 3.77E´1 8.91E´1 1.06E´1 6.34E+2 2.15E+2 4.17E+2
0 adptv. 2π/32 0.0 321 3.44E´1 8.37E´1 1.55E´1 9.53E´1 3.69E´2 5.56E+2 1.91E+2 3.53E+2
0 adptv. 2π/64 0.1 485 3.44E´1 8.37E´1 1.31E´1 9.64E´1 2.96E´2 6.52E+2 2.96E+2 3.39E+2
0 adptv. 2π/128 0.1 1412 3.43E´1 8.37E´1 1.04E´1 9.72E´1 2.86E´2 1.01E+3 6.04E+2 3.39E+2
0 adptv. 2π/256 0.9 6267 3.43E´1 8.37E´1 9.99E´2 9.79E´1 2.28E´2 1.35E+3 8.28E+2 3.38E+2

D
IF

1E´2 bbox 2π/24 – 343 3.55E´1 8.34E´1 3.98E´1 8.62E´1 1.13E´1 1.85E+4 1.80E+4 3.28E+2
1E´2 adptv. 2π/32 0.0 321 3.44E´1 8.37E´1 1.83E´1 9.41E´1 3.39E´2 1.16E+4 1.11E+4 3.52E+2
1E´2 adptv. 2π/64 0.1 485 3.44E´1 8.37E´1 1.61E´1 9.47E´1 2.60E´2 1.17E+4 1.12E+4 3.58E+2
1E´2 adptv. 2π/128 0.1 1412 3.42E´1 8.38E´1 1.45E´1 9.59E´1 2.33E´2 1.10E+4 1.05E+4 3.56E+2
1E´2 adptv. 2π/256 0.9 6267 3.43E´1 8.37E´1 1.36E´1 9.65E´1 1.96E´2 1.02E+4 9.54E+3 3.39E+2

ID
A

A
M

H

initial config. 1.00 4.37E´1 1.00 0.00 1.00 – – –

R
EA

C

0 bbox 2π/16 – 125 3.50E´1 7.91E´1 2.36E´1 9.53E´1 4.83E´2 4.47E+2 7.20E+1 3.48E+2
0 bbox 2π/24 – 343 3.45E´1 7.92E´1 1.95E´1 9.57E´1 3.92E´2 6.28E+2 1.95E+2 4.35E+2
0 adptv. 2π/32 0.0 416 3.37E´1 7.94E´1 1.09E´1 9.74E´1 2.10E´2 5.57E+2 2.00E+2 3.41E+2
0 adptv. 2π/64 0.1 765 3.36E´1 7.94E´1 9.86E´2 9.76E´1 1.98E´2 7.55E+2 3.86E+2 3.44E+2
0 adptv. 2π/128 0.1 2407 3.37E´1 7.94E´1 8.65E´2 9.78E´1 2.16E´2 1.38E+3 9.71E+2 3.34E+2

D
IF

1E´2 bbox 2π/24 – 343 3.48E´1 7.93E´1 2.35E´1 9.59E´1 3.47E´2 1.18E+4 1.13E+4 3.63E+2
1E´2 adptv. 2π/32 0.0 416 3.41E´1 7.94E´1 1.50E´1 9.76E´1 1.61E´2 1.38E+4 1.31E+4 4.02E+2
1E´2 adptv. 2π/64 0.1 765 3.41E´1 7.93E´1 1.44E´1 9.76E´1 1.54E´2 1.62E+4 1.55E+4 4.23E+2
1E´2 adptv. 2π/128 0.1 2407 3.41E´1 7.94E´1 1.37E´1 9.78E´1 1.65E´2 1.25E+4 1.18E+4 4.38E+2

error when trying to represent the observed target tumor by the initial condition as a superposition
of Gaussian basis functions. On the one hand, the interpolation error is drastically reduced if more
and sharper basis functions are used; on the other hand, switching off diffusion (and driving ρ to
zero) in some sense resembles direct interpolation of the target tumor. If a sparsity constraint for the
tumor inversion is employed, this is no longer valid as rich initial conditions (such as interpolations
of the target tumor) are ruled out. We consider this for the moving-atlas scheme in §7.3 where we
put emphasis on the biophysical model inversion. With a view of normal-to-abnormal registration
as a target application, however, interpolation is a valid, cheap and efficient alternative. We note
that the registration quality for the brain tissue labels WM, GM and CSF is only slightly influenced
by the reconstruction quality of the tumor; for all settings in Tab. 7.9, we arrive at very similar Dice
scores between 8.30E´1 and 8.38E´1 for AAAN and 7.91E´1 and 7.93E´1 for AAMH for the brain
tissue labels, while the tumor reconstruction quality varies greatly (from Dice scores of 3.44E´1
to 9.79E´1 for AAAN and Dice scores from 9.53E´1 to 9.78E´1 for AAMH). As expected, in the
reaction-only case, the runtime for the tumor inversion solver increases with increasing np (and
increasing dimensionality of the Hessian system); for the reaction-diffusion run, the solution of
the diffusion operator still dominates the cost and the larger system has no negative effect on the
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AAAC

axial slice 132 coronal slice 130 sagittal slice 136

AAAN

axial slice 130 coronal slice 170 sagittal slice 160

AAMH

axial slice 120 coronal slice 124 sagittal slice 80

AAQD

axial slice 136 coronal slice 108 sagittal slice 156

FIGURE 7.12 Illustration of patient data. The figure shows two-dimensional slices and three-dimensional volume
rendering of the segmented GLISTR patient data for ID’s AAAC, AAAN, AAMH and AAQD.

runtime13.

Conclusion We have tested the moving-patient formulation on real data that pose significant challenges due
to large inter-subject anatomical variability and a strong variation in the appearance of the tumor, in shape,
size, location and growth behavior. For most cases, we use a very simple model that only accounts for logistic
growth. This, in combination with a flexible, high-dimensional parametrization of the initial condition allows
us to overcome these challenges. Furthermore, the reconstruction results for the AAAN patient data show that
we can reconstruct multifocal tumors with comparable quality and computational costs.

We achieve extremely promising normal-to-abnormal registration accuracies with a Dice score of up
to 8.44E´1 and 9.85E´1 for the label maps associated with the probability maps of the brain anatomy and
the tumor in what is an extremely challenging problem. Increasing the number of Gaussian basis functions
and choosing their location adaptively, depending on shape and intensity of the tumor, has the potential to
significantly reduce the final L2-data-misfit and to increase the Dice coefficient for the tumor reconstruction.

13The number of inner Krylov iterations is limited to 30.
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The quality of the tumor model, however, has only a moderate to small influence on the normal-to-abnormal
registration quality of the surrounding tissue labels; the sole existence of a tumor reconstruction module which
is coupled to the registration is, however, inevitable (cf. §7.2.1).

For a large number of Gaussians with relatively small standard deviation, the interpolation quality
increases and we arrive at rich initial conditions that are far from being biophysically meaningful. A sparsity
constraint for the inversion remedies this problem; this is discussed in §7.3.

Conclusion: Normal-to-Abnormal Registration

We have presented a new method for the registration of images of patients diagnosed with mono- or
multi-focal brain tumors to a common reference atlas. We simultaneously invert for a parametrization of
the initial condition for the tumor model and a smooth velocity field to capture the inter-subject variability
of brain anatomy. Application scenarios are biophysical model calibration and normal-to-abnormal image
registration. Within this section, we focused on the latter and analyzed our moving-patient Picard
iteration solution scheme, described in §6.1 and §6.3 for synthetic cases and actual clinical imaging data
of real tumors. Here is what we have learned from our experiments on synthetic and real data:

(i) Despite the fact that our Picard iteration scheme neglects coupling terms that appear in the
moving-patient formulation of the coupled optimization problem, we could experimentally show
that it efficiently reduces the coupled gradient. A convergence proof of the Picard scheme to a local
minimum is beyond the scope of this thesis and remains the subject of future work.

(ii) We could demonstrate that our parametrization of the initial condition (for a sufficient number
and density of Gaussian basis functions) allows us to generate high-fidelity normal-to-abnormal
registrations irrespective of the complexity of the data or the model used for the tumor simulations.

(iii) Overall, our numerical study, which includes real brain images with real tumors, shows that
we can achieve high-fidelity results for the normal-to-abnormal registration application scenario
with an overall low mismatch and high Dice scores (average Dice over all tissue labels), ranging
from 7.94E´1 to 8.45E´1 for real clinical cases. In particular, plain-vanilla registration without
biophysical augmentation fails in the vicinity of and the area occupied by the pathology for the
presented normal-to-abnormal registration problems. For the simulated and observed tumor,
we achieve extremely high similarity of around 98% overlap for real complex-shaped tumors if
sufficiently many Gaussian basis functions are used.

(iv) In studies with various models from a pure interpolation with the basis functions that parametrize
the initial condition (zero reaction and diffusion coefficient) over a reaction-only, to a full reaction-
diffusion model, we could show in our synthetic cases, that we get the highest accuracy in tumor
reconstruction, if we use the correct model. This indicates that our framework could eventually
serve as a powerful tool for model selection. To obtain biophysically meaningful results from the
joint inversion approach or identification of the “correct” tumor growth parameters, however, we
require further enhancements such as a sparsity constraint for the tumor inversion solver (to fix the
time horizon of the inversion process to the point of initial cell mutation from healthy to cancerous)
and employ the improved moving-atlas formulation from §6.2 with its respective Picard solution
scheme; see §6.3. This is what we investigate in the next section.
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7.3 Evaluation of Biophysical Parameter Estimation Performance

In the previous section, we analyzed the quality and suitability of SIBIA (moving-patient formulation)
for normal/abnormal inter-subject registration. In other words, emphasis was put on the visual
similarity and overlap measures of the deformed template image and the observed data, rather then
on the reconstruction of meaningful biophysical model parameters. This is what we investigate in
this section. In §6.2, we presented a second formulation of the coupled problem which we denote as
moving-atlas formulation. By construction, it remedies essential shortcomings of the moving-patient
formulation when applied for model calibration purposes. As a proof of concept, we evaluate the
moving-atlas Picard iteration scheme for synthetic tumors in real brain geometries with known
ground truth, and compare the results to the moving-patient solution. Generally speaking, the
tumor inversion problem has a non-unique solution. That means, different combinations of initial
condition, reaction coefficient and characteristic diffusivity may predict the same final tumor state.
In combining both schemes with a sparsity constraint, implemented as L1-regularization, we intent
to alleviate this problem by enforcing sparse initial conditions. We compare this feature to the
previously used L2-regularization.

The task of our numerical experiments is to assess (i) the convergence towards solutions with
low mismatch both in the brain geometry m and the tumor c for both coupled formulations – the
moving patient and the moving atlas; (ii) the reconstruction quality for the healthy patient brain –
the latter is a direct output of the moving atlas formulation and can be generated by advecting the
healthy atlas with the computed registration velocity v in the moving patient formulation14; (iii) the
quality of inversion for the biophysical parameters, i.e., tumor growth initial conditions and diffusion
coefficient.

7.3.1 Baseline: Tumor Standalone vs. Joint Inversion

In analogy to the previous section, we draw a baseline for the biophysical inversion by considering
the tumor inversion solver as standalone, that means without coupling to inter-subject registration.

Purpose. Biophysical model estimation is a time dependent problem, and requires at least two
snapshots in time. In practice, such data are typically not available, in particular imaging data of the
healthy patient brain are in general not accessible. Our methodology artificially creates a second
snapshot in time by integrating inter-subject registration. In this experiment, we address the loss in
reconstruction quality if the inter-subject registration component is neglected.

Setup. We consider two instantiations of the synthetic test cases with artificial tumor and real
velocity (ATRV) as described in §7.1.1. The two cases differ in the position of the tumor seed; a listing
is given in Tab. 7.11. For this experiment, we consider the parameter setting #1 from Tab. 7.11 for
both ATRV-C1 and ATRV-C2, respectively. The target data are generated from a forward simulation
with ρ = 15 and k f = 1E´1 from an initial condition with two Gaussians enabled, i.e., p62 = p122 = 1
(ATRV-C1), and p62 = p122 = 2.8 (ATRV-C2). Tumor growth is enabled only in white matter. All
remaining solver settings are given in §7.1.1. For the tumor standalone solution, the inversion is
carried out assuming a statistical atlas brain geometry as healthy patient brain. No inter-subject
registration is applied. We invert for the tumor initial condition and the characteristic diffusivity k f

of white matter.

14Note that it is impossible to generate an estimate for a healthy patient from the moving patient formulation once we
include the mass effect, i.e., brain tissue deformation as a result of tumor growth in our model.
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TABLE 7.10 Baseline for the single-snapshot tumor inversion problem. Comparison of the standalone tumor inversion
solver and the joint inversion approaches developed in this work. We consider two different instantiations of the ATRV
test case (ATRV-C1 and ATRV-C2, each with parameter setup #1 from Tab. 7.11). The moving-atlas strategy explicitly
generates an approximation to the healthy patient geometry, which is typically unknown in practice. We report the
L2-mismatch and the Dice overlap measure between the predicted/reconstructed tumor and the target data. Furthermore,
we report the L2-error ec0,L2 for the reconstruction of the initial condition with respect to the ground truth initial condition,
and the estimated characteristic diffusivity k f .

ATRV-C1 ATRV-C2

Solver µT,L2 DICET ec0,L2 k f µT,L2 DICET ec0,L2 k f

Tumor (standalone) L2 2.01E´1 8.52E´1 1.36 1.04E´1 2.48E´1 7.45E´1 8.07E´1 8.48E´2
Moving-Atlas L2 6.58E´2 9.52E´1 3.17E´1 8.91E´2 7.40E´2 8.74E´1 4.44E´1 7.87E´2
Moving-Patient L2 1.35E´1 9.24E´1 1.15 8.95E´2 1.69E´1 8.17E´1 7.45E´1 5.27E´2

Tumor (standalone) L1wL2 2.90E´1 7.92E´1 4.25E´1 1.15E´1 2.93E´1 5.54E´1 4.08E´1 1.48E´1
Moving-Atlas L1wL2 6.49E´2 9.50E´1 7.13E´2 9.05E´2 6.11E´2 9.45E´1 1.19E´1 9.23E´2
Moving-Patient L1wL2 1.44E´1 9.25E´1 3.25E´1 9.22E´2 1.90E´1 7.96E´1 4.70E´1 8.86E´2

Results. We report metrics for the quality of reconstruction in Tab. 7.10; For the tumor standalone
solver, the moving-patient solver and the moving-atlas solver, we compare the data-mismatch µT,L2

and Dice coefficient DICET between the predicted/reconstructed tumor and the target data as well
as the L2-error ec0,L2 of the reconstructed initial condition c(¨,0) with respect to the ground truth c(¨,0)

‹

and the reconstructed characteristic diffusivity k f .

Observations. For all configurations, the tumor standalone solver results in a significantly lower
reconstruction quality then our joint inversion approach. This is due to the error introduced by
inversion in the “wrong healthy brain geometry”. The moving-atlas solution outperforms the other
strategies by far, both in terms of data-misfit and Dice coefficient, as well as in reconstructing the true
initial condition. The difference in the estimation of the characteristic diffusivity in white matter k f is
not significant. For ATRV-C2, we observe a slightly better estimation of the characteristic diffusivity
k f if we use the more sophisticated moving-atlas strategy with sparsity constraint (L1wL2).

Conclusion The coupling of the tumor inversion solver to inter-subject registration is inevitable to obtain
meaningful results and useful parameter estimates from single-snapshot inversion. The error introduced when
neglecting the registration depends on the discrepancy of the atlas and patient geometry and can be arbitrarily
large.

7.3.2 Test Case ATRV: Analytic Tumor and Real Velocity

The experiments conducted here serve as a proof of concept. We examine the moving-atlas Picard
iteration solution scheme with an emphasis on model inversion and parameter estimation and
address the scheme’s eligibility to recover meaningful biophysical characteristics. Since, for actual
clinical imaging data, the true biophysical parameters (and also the type of tumor progression
model) are unknown, we solely consider synthetically grown tumors (using our reaction-diffusion
tumor-growth model), but use real (healthy) brain imaging data to carry out the tumor progression
simulations. We enhance the tumor inversion solver with a sparsity constraint to favor solution with
sparse initial condition, i.e., a tumor initial condition which is closer (in time) to the actual tumor
genesis.

Purpose. In §6.2, we developed and motivated the moving-atlas formulation to overcome significant
shortcomings of the moving-patient formulation in terms of meaningful biophysical parameter
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TABLE 7.11 ATRV test case variations. Parameter choices for the analytic tumor with real velocity and diffusion
(ATRV) test case; ground truth: (ρ f = 15, ρw = 1, ρg = 0, k f = 1.00E´1, kw = 1, kg = 0, p = p‹ (in patient domain),
v N/A). For the initial condition parametrization, we use a regular grid of np = 125 Gaussian basis functions with
standard deviation σ as outlined below, and a spacing of δ = 1.5 σ. The grid is centered around the positions xC1 and xC2 ,
respectively. For parameter setting #1 for ATRV-C1, we set p62 = p122 = 1, and p62 = p122 = 2.8 for all other parameter
settings (cf. Fig. 7.13 and Fig. 7.15 for the location of tumor seed). The parameter setups differ in the time horizon T for
the tumor evolution.

ATRV-C1 xC1 = 2π/128(39, 63, 64) ATRV-C2 xC2 = 2π/128(61, 89, 64)

setting initial condition tumor growth initial condition tumor growth

#1 σ = 2π/30 T = 0.16, ρ f = 15, k f = 0.1 σ = 2π/64 T = 0.16, ρ = 15, k = 0.1
#2 σ = 2π/64 T = 0.32, ρ f = 15, k f = 0.1 σ = 2π/64 T = 0.32, ρ = 15, k = 0.1
#3 σ = 2π/64 T = 0.44, ρ f = 15, k f = 0.1

estimation. Following theoretical arguments, the moving-atlas solution strategy is expected to
result in an improved approximation of the (initially unknown) healthy patient brain anatomy,
and, thus, allows for more meaningful reconstruction of biophysical tumor-growth characteristics.
For synthetic test cases with known biophysical model parameters, we examine and compare the
solution of the advanced moving-atlas strategy to the solution obtained from the moving-patient
scheme. Furthermore, we study the effect of a sparsity constraint added to both schemes to favor
solutions closer to the actual tumor genesis. We are primarily interested in the quality of the healthy
patient approximation (measured by the L2-mismatch µB0,L2 and Dice score DICEB0), the quality of
the reconstruction of the shape and sparsity of the ground truth tumor initial condition (measured
by the L2-error ec0,L2 and visual inspection of simulation data), and the quality of the resulting
prediction of the grown tumor (measured by the L2-mismatch µT,L2 and Dice score DICET). We
assess convergence by monitoring the norm of the reduced gradient of the coupled formulation and
report runtimes to address the efficiency of the scheme.

Setup. A general description of this synthetic tumor / real velocity (ATRV) test case is given
in §7.1.1; we complete the description with some specific information. Note that only the tumor
parameters are known for this example, whereas the registration velocity between healthy atlas and
patient brain is unknown. We consider two different tumor locations ATRV-C1 and ATRV-C2 and
varying time horizons for the tumor progression simulation. An overview is given in Tab. 7.11. For
ATRV-C1 we also employ different fidelities of the parametrization of the tumor initial condition: For
the parameter setting #1, we use a set of Gaussian basis functions with standard deviation σ = 2π/30

and p62 = p122 = 1, whereas, for settings #2 and #3, we use smaller Gaussians with σ = 2π/64 and
p62 = p122 = 2.8. The target data are generated from a tumor forward simulation in the patient
domain with cell proliferation rate ρ f = 15 and characteristic diffusivity of k f = 1E´1 in white
matter. All remaining solver settings are given in §7.1.3 and Tab. 7.2.

We conduct experiments for the moving-atlas and the moving-patient Picard iteration scheme.
Both solution schemes are enhanced with a sparsity constraint for the tumor inversion. To this end,
we first solve the tumor inversion problem employing a L1-regularization to define the sparsity
pattern of the initial condition, followed by an inversion with weighted L2-regularization (short
L1wL2). We compare these results to the L2-regularized joint inversion. The inversion is done either
for p and v only, or for p, v, and the diffusion parameter k f .

Results. For ATRV-C1, we report the L2-mismatch and Dice overlay coefficients for the recon-
struction of the (pathologic) brain anatomy (µB,L2 and DICEB), the healthy patient anatomy (µB0,L2

and DICEB0), and the reconstructed (grown) tumor (µT,L2 and DICET) for every Picard iteration of
the moving-atlas solution strategy in Tab. 7.12. Furthermore, we monitor the L2-error ec0,L2 for the
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TABLE 7.12 Quantitative results for the analytic tumor with real velocity and diffusion (ATRV-C1 #1) test
case with parameter setting #1 from Tab. 7.11; ground truth: (ρ f = 15, ρw = 1, ρg = 0, k f = 1.00E´1, kw = 1,
kg = 0, p = p‹ (in patient domain), v N/A). For the inversion, we employ the moving-atlas Picard iteration scheme
with L1wL2 sparsity constraint and use the correct values ρ f = 15 and k f = 1E´1 for the characteristic proliferation rate
and diffusivity in white matter. We report the average mismatch for the probability maps for the pathologic brain tissue
labels µB,L2 , the healthy brain tissue labels µB0,L2 and the tumor µT,L2 , the mean Dice coefficient for brain tissue DICEB,
healthy patient brain tissue DICEB0 and tumor DICET . Furthermore, we measure the L2-error ec0,L2 of the reconstructed
tumor initial condition to the ground truth, and the relative norm }g}rel of the reduced gradient of the coupled formulation.
Timings are given for parallel execution using 64 MPI tasks on three nodes of HazelHen (see §7.1.5 for details). The last
row shows the final values for mismatch and Dice as well as (accumulated) absolute run times for the sub-components in
seconds.

It βv µB,L2 DICEB µB0,L2 DICEB0 µT,L2 DICET }g}rel ec0,L2 Tit [s] Ttu
inv [%] Treg

inv [%]

1 1 1.00 5.45E´1 6.77E´1 5.51E´1 1.00 0.00 1.00 1.00 5.64E+2 58.9 1.7
2 1E´1 8.79E´1 5.80E´1 6.07E´1 5.93E´1 2.90E´1 7.92E´1 2.04E´2 4.25E´1 9.45E+2 35.5 2.5
3 1E´2 6.54E´1 7.29E´1 4.51E´1 7.38E´1 2.04E´1 8.24E´1 1.45E´2 3.51E´1 8.44E+2 24.0 10.0
4 1E´3 4.06E´1 8.66E´1 2.80E´1 8.72E´1 1.16E´1 8.80E´1 1.36E´2 2.08E´1 1.63E+3 14.4 53.2
5 1E´4 2.62E´1 9.32E´1 1.81E´1 9.37E´1 7.57E´2 9.48E´1 7.01E´3 9.55E´2 8.46E+2 26.2 10.9
6 1E´4 2.36E´1 9.42E´1 1.64E´1 9.46E´1 6.74E´2 9.51E´1 4.91E´2 5.75E´2 8.58E+2 30.4 7.3

7 1E´4 2.33E´1 9.43E´1 1.62E´1 9.47E´1 6.49E´2 9.50E´1 4.15E´2 7.13E´2 5.69E+3 1.59E+3 1.14E+3

TABLE 7.13 Quantitative results for the analytic tumor with real velocity and diffusion (ATRV-C1 #1) and
(ATRV-C2 #1) test case with centers xC1 and xC2 , and parameter setting #1 from Tab. 7.11, respectively; ground truth:
(ρ f = 15, ρw = 1, ρg = 0, k f = 1.00E´1, kw = 1, kg = 0, p = p‹ (in patient domain), v N/A). We compare the
moving-atlas Picard iteration scheme (MA) equipped with a sparsity constraint (L1wL2 solver) for the tumor initial
condition to the previously analyzed moving-patient Picard iteration scheme (MP). Furthermore, we study the effect of
the sparsity constraint compared to the original L2-regularization. We either invert for the registration velocity v and
tumor initial condition parametrization p only, or additionally invert for the characteristic diffusivity k f (infiltration rate
of malignant cells into surrounding healthy tissue) in white matter. In the first case, k f is set to the true value k f = 1E´1.
We always use the correct proliferation rate ρ f = 15. We report the average mismatch for the probability maps for the
pathologic brain tissue labels µB,L2 , the healthy brain tissue labels µB0,L2 and the tumor µT,L2 , the mean Dice coefficient
for brain tissue DICEB, for the healthy patient brain tissue DICEB0 and for the tumor DICET . Furthermore, we measure
the L2-error ec0,L2 of the reconstructed tumor initial condition to the ground truth, and the relative norm }g}rel of the
reduced gradient of the coupled formulation. Timings are given for parallel execution using 64 MPI tasks on three nodes of
HazelHen (see §7.1.5 for details).

solver inv-k f µB,L2 DICEB µB0,L2 DICEB0 µT,L2 DICET }g}rel ec0,L2 Tit [s] Ttu
inv [s] Treg

inv [s]

A
TR

V
-C

1
(#

1) M
P

L2 – 3.72E´1 8.73E´1 2.56E´1 8.79E´1 1.38E´1 9.14E´1 4.84E´2 1.74 4.46E+3 3.61E+3 7.40E+2
L2 8.63E´2 3.71E´1 8.73E´1 2.56E´1 8.79E´1 1.35E´1 9.24E´1 4.74E´2 1.15 2.26E+3 1.47E+3 7.10E+2
L1wL2 – 3.72E´1 8.72E´1 2.56E´1 8.79E´1 1.45E´1 9.21E´1 4.72E´2 3.23E´1 5.85E+3 2.27E+3 7.46E+2
L1wL2 9.22E´2 3.72E´1 8.72E´1 2.56E´1 8.79E´1 1.44E´1 9.25E´1 4.84E´2 3.25E´1 5.72E+3 1.99E+3 7.88E+2

M
A

L2 – 2.31E´1 9.43E´1 1.60E´1 9.48E´1 6.95E´2 9.47E´1 3.55E´2 2.73E´1 4.72E+3 2.93E+3 1.75E+3
L2 8.80E´2 2.35E´1 9.43E´1 1.62E´1 9.47E´1 6.58E´2 9.52E´1 4.24E´2 3.17E´1 3.97E+3 3.00E+3 9.34E+2
L1wL2 – 2.35E´1 9.43E´1 1.62E´1 9.48E´1 6.77E´2 9.56E´1 4.22E´2 8.02E´2 5.71E+3 1.65E+3 8.97E+2
L1wL2 9.05E´2 2.33E´1 9.43E´1 1.62E´1 9.47E´1 6.49E´2 9.50E´1 4.15E´2 7.13E´2 5.69E+3 1.59E+3 1.14E+3

A
TR

V
-C

2
(#

1) M
P

L2 – 3.76E´1 8.79E´1 2.55E´1 8.80E´1 1.93E´1 6.28E´1 4.84E´2 6.82E´1 9.36E+3 8.49E+3 7.55E+2
L2 5.27E´2 3.76E´1 8.79E´1 2.55E´1 8.80E´1 1.69E´1 8.17E´1 4.66E´2 7.45E´1 3.62E+3 2.81E+3 7.20E+2
L1wL2 – 3.76E´1 8.80E´1 2.55E´1 8.80E´1 1.93E´1 8.34E´1 4.82E´2 4.24E´1 5.31E+3 3.33E+3 7.48E+2
L1wL2 8.86E´2 3.76E´1 8.79E´1 2.55E´1 8.80E´1 1.90E´1 7.96E´1 4.76E´2 4.70E´1 6.05E+3 2.50E+3 7.49E+2

M
A

L2 – 2.36E´1 9.48E´1 1.60E´1 9.48E´1 8.76E´2 6.74E´1 4.15E´2 7.30E´1 1.35E+4 1.22E+4 1.30E+3
L2 7.69E´2 2.40E´1 9.46E´1 1.62E´1 9.47E´1 7.40E´2 8.74E´1 4.95E´2 4.44E´1 5.41E+3 3.98E+3 1.39E+3
L1wL2 – 2.37E´1 9.48E´1 1.60E´1 9.48E´1 6.07E´2 9.70E´1 4.18E´2 6.33E´2 7.89E+3 4.40E+3 9.26E+2
L1wL2 9.23E´2 2.39E´1 9.47E´1 1.62E´1 9.47E´1 6.11E´2 9.45E´1 3.86E´2 1.19E´1 7.12E+3 2.68E+3 1.29E+3
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Moving-Atlas L1wL2 Moving-Atlas L2

Moving-Patient L1wL2 Moving-Patient L2

(#2: T = 0.32, ρ = 15, k f = 0.1, σ = 2π/64)
ATRV-C1: Target Data and Ground Truth

Moving-Atlas L1wL2 Moving-Atlas L2

Moving-Patient L1wL2 Moving-Patient L2

(#1: T = 0.16, ρ = 15, k f = 0.1, σ = 2π/30)
ATRV-C1: Target Data and Ground Truth

FIGURE 7.13 Qualitative results for the analytic tumor with real velocity and diffusion (ATRV-C1) test case
with parameter setting #1 from Tab. 7.11 (left), and parameter setting #2 from Tab. 7.11 (right). The image shows the
reconstructed grown tumor and tumor initial condition for the moving-atlas and moving-patient solution scheme using L2
and L1wL2 regularization, respectively, for parameter settings #1 and #2 from Tab. 7.11, featuring different time horizons
and sparsity of the initial condition. Illustrated are parts of the (approximated) patient brain geometry with the respective
reconstructed tumor initial condition (magenta wireframe/volume) as compared to the ground truth initial condition
(cyan volume). The grown tumor is indicated as white wireframe (3D cut image), and as blue semi-transparent volume
compared to the target data given as red wireframe (close-up image). The top row shows the test case target data and initial
condition ground truth for each set of parameters. The light blue/white area indicates the ventricles with CSF. We have two
observations: (i) Enforcing the sparsity constraint employing the L1wL2 regularization yields sparse initial conditions
for both MA and MP that match with the ground truth, while L2 regularization results in rich initial conditions; (ii)
the MP results show non-smooth tumor- and initial condition-shapes that originate from the registration and advection,
and furthermore yield less accurate target data reconstruction (compare blue semi-transparent volume overlaid with red
wireframe).
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TABLE 7.14 Quantitative results for the analytic tumor with real velocity and diffusion (ATRV-C1 #1) and
(ATRV-C2 #1) test case with centers xC1 and xC2 , and parameter setting #1 from Tab. 7.11, respectively; ground truth:
(ρ f = 15, ρw = 1, ρg = 0, k f = 1.00E´1, kw = 1, kg = 0, p = p‹ (in patient domain), v N/A). We analyze the
sensitivity of the joint inversion with respect to perturbations in the characteristic diffusivity k f . We compare results
for the moving-atlas (MA) and moving-patient (MP) Picard iteration scheme with sparsity constraint (L1wL2) for
different choices of k f ; bold numbers correspond to inversion with the ground truth value for k f . We always use the
correct proliferation rate ρ f = 15. We report the average mismatch for the probability maps for the pathologic brain
tissue labels µB,L2 , the healthy brain tissue labels µB0,L2 and the tumor µT,L2 , the mean Dice coefficient for brain tissue
DICEB, for the healthy patient brain tissue DICEB0 and for the tumor DICET (in cases without Dice score for the tumor
reconstruction, the tumor probability map has values below 0.5 everywhere). Furthermore, we measure the L2-error ec0,L2

of the reconstructed tumor initial condition to the ground truth, and the relative norm }g}rel of the reduced gradient of the
coupled formulation.

k f µB,L2 DICEB µB0,L2 DICEB0 µT,L2 DICET }g}rel ec0,L2

A
TR

V
-C

1
(#

1) M
P

5E´1 3.80E´1 8.62E´1 2.58E´1 8.79E´1 3.96E´1 – 4.89E´2 4.99E´1
3E´1 3.76E´1 8.64E´1 2.57E´1 8.79E´1 2.88E´1 7.76E´1 1.75E´2 8.68E´1
1E´1 3.72E´1 8.72E´1 2.56E´1 8.79E´1 1.45E´1 9.21E´1 4.72E´2 3.23E´1
1E´3 3.73E´1 8.75E´1 2.59E´1 8.73E´1 2.49E´1 8.75E´1 4.90E´2 5.39E´1

M
A

5E´1 2.40E´1 9.46E´1 1.62E´1 9.47E´1 5.65E´1 – 3.86E´2 1.37
3E´1 2.40E´1 9.37E´1 1.63E´1 9.48E´1 2.86E´1 3.66E´1 2.64E´2 9.41E´1
1E´1 2.35E´1 9.43E´1 1.62E´1 9.48E´1 6.77E´2 9.56E´1 4.22E´2 8.02E´2
1E´3 2.37E´1 9.48E´1 1.61E´1 9.48E´1 5.40E´1 – 4.06E´2 7.04E´1

A
TR

V
-C

2
(#

1) M
P

3E´1 3.76E´1 8.79E´1 2.55E´1 8.80E´1 3.66E´1 – 4.78E´2 4.96E´1
2E´1 3.76E´1 8.79E´1 2.55E´1 8.80E´1 2.64E´1 – 4.84E´2 5.25E´1
1E´1 3.76E´1 8.80E´1 2.55E´1 8.80E´1 1.93E´1 8.34E´1 4.82E´2 4.24E´1
1E´2 3.82E´1 8.75E´1 2.59E´1 8.75E´1 2.57E´1 6.86E´1 1.41E´2 6.94E´1

M
A

3E´1 2.41E´1 9.46E´1 1.63E´1 9.47E´1 4.20E´1 – 3.72E´2 5.99E´1
2E´1 2.40E´1 9.46E´1 1.62E´1 9.47E´1 2.54E´1 – 3.94E´2 7.96E´1
1E´1 2.37E´1 9.48E´1 1.60E´1 9.48E´1 6.07E´2 9.70E´1 4.18E´2 6.33E´2
1E´2 2.40E´1 9.46E´1 1.62E´1 9.47E´1 3.39E´1 6.21E´1 3.88E´2 6.78E´1

reconstructed tumor initial condition with respect to the ground truth and the relative norm }g}rel of
the reduced gradient of the coupled formulation (6.10).

For both test case variants (ATRV-C1 and ATRV-C2), we compare results obtained using the
moving-atlas strategy to the results for the moving-patient solution scheme. Furthermore, we study
the effect of the sparsity constraint for the tumor initial condition (L1wL2 solver) compared to the
original L2-regularization. In this experiment, we either invert for the registration velocity v and
tumor initial condition parametrization p only, or additionally invert for the characteristic diffusivity
k f (infiltration rate of malignant cells into surrounding healthy tissue) in white matter. In the first
case, k f is set to the true value of k f = 1E´1. We always use the correct proliferation rate ρ = 15
and report timings with regards to parallel execution using 64 cores on three nodes of HazelHen.
Qualitative results of the reconstructed tumor initial condition and the grown tumor compared to
the target data and ground truth initial condition are given in Fig. 7.13 (for ATRV-C1) and Fig. 7.15
for (ATRV-C2). Fig. 7.13 furthermore illustrates and compares the reconstruction performance for the
moving-atlas L1wL2 and MA-L2 solver, and the moving-patient L1wL2 and MP-L2 solver, respectively,
for two different variations of ATRV-C1 (featuring different tumor-growth time horizons and different
sparsities of the ground truth initial condition). A similar, comparison is drawn in Fig. 7.15 for
ATRV-C2. We exemplarily show qualitative results for a longer time horizon of tumor evolution for
the ATRV-C1 test case (with a very sparse initial condition) in Fig. 7.14.

We also study the sensitivity of the moving-atlas and moving-patient solution strategy with
respect to perturbations in the tumor model parameters. In Tab. 7.14, we vary the value of the char-
acteristic diffusivity in white matter from the ground truth and monitor the obtained reconstruction
performance for both joint inversion strategies. For all runs, we employ a sparsity constraint for the
tumor initial condition, i.e., we use the solvers moving-atlas-L1wL2 and moving-patient-L1wL2.
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(#3: T = 0.44, ρ = 15, k f = 0.1, σ = 2π/64)
ATRV-C1: Target Data and Ground Truth

Moving-Atlas L1wL2 Moving-Atlas L2 Moving-Patient L1wL2 Moving-Patient L2

FIGURE 7.14 Qualitative results for the analytic tumor with real velocity and diffusion (ATRV-C1 #3) test
case with parameter setting #3 from Tab. 7.11. The image shows the reconstructed grown tumor and the tumor initial
condition for the moving-atlas and moving-patient solution scheme using L2 and L1wL2 regularization, respectively.
The images show parts of the (approximated) patient brain geometry and illustrate the respective reconstructed tumor
initial condition (magenta wireframe/volume) as compared to the ground truth initial condition (cyan volume). The grown
tumor is indicated as white wireframe (bottom row), and as blue semi-transparent volume compared to the target data
given as red wireframe (top row). The light blue/white area indicates the ventricles with CSF. The first row shows the test
case target data and tumor initial condition ground truth. We have two observations: (i) Enforcing the sparsity constraint
employing the L1wL2 regularization yields sparse initial conditions for both MA and MP that match with the ground
truth, while L2 regularization results in rich initial conditions; (ii) the MP results show non-smooth tumor- and initial
condition-shapes that originate from the registration and advection, poor reconstruction of the grown tumor, and the MP
L1wL2 reconstruction yields a wrong position of the initial condition.

Observations. Reviewing the performance and reconstruction quality measures in Tab. 7.12 for
the solution of the ATRV-C1 test case using the moving-atlas Picard iteration solution scheme with
sparsity constraint for the tumor initial condition (L1wL2 solver), we observe excellent target data and
ground truth reconstruction quality. In particular, the L2-mismatch for the brain anatomy is reduced
by 77% (compared to the initial error), and for the tumor reconstruction, we reach a reduction of
93% with respect to the initial error. The results furthermore attest a very good approximation of
the healthy patient anatomy by the moving-atlas inversion scheme, improving the initial Dice score
from 5.51E´1 to an excellent agreement of 9.47E´1. The direct approximation of the healthy patient
anatomy is a new feature introduced by employing the moving-atlas strategy; the previously studied
moving-patient formulation only indirectly allows for an approximation of the healthy patient by
advection of the healthy atlas brain. Using the moving-atlas strategy in conjunction with the L1wL2

sparsity constraint for the tumor inversion solver, we are able to very accurately recover the initial
condition used to generate the target data of the synthetic test case (with an error of 7%). An
important fact to note is, that the reduced gradient for the coupled formulation decays over the
course of the joint inversion, which indicates convergence to a local minimum.
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Moving-Atlas L1wL2 Moving-Atlas L2

Moving-Patient L1wL2 Moving-Patient L2

(#2: T = 0.32, ρ = 15, k f = 0.1, σ = 2π/64)
ATRV-C2: Target Data and Ground Truth

Moving-Atlas L1wL2 Moving-Atlas L2

Moving-Patient L1wL2 Moving-Patient L2

(#1: T = 0.16, ρ = 15, k f = 0.1, σ = 2π/64)
ATRV-C2: Target Data and Ground Truth

FIGURE 7.15 Qualitative results for the analytic tumor with real velocity and diffusion (ATRV-C2) test case
with parameter setting #1 from Tab. 7.11 (left image), and parameter setting #2 from Tab. 7.11 (right image). The image
shows the reconstructed grown tumor and the tumor initial condition for the moving-atlas and moving-patient solution
scheme using L2 and L1wL2 regularization, featuring different time horizons for the tumor evolution. Illustrated are
parts of the (approximated) patient brain geometry with the respective reconstructed tumor initial condition (magenta
wireframe/volume) as compared to the ground truth initial condition (cyan volume). The grown tumor is indicated as white
wireframe (bottom images), and as blue semi-transparent volume compared to the target data given as red wireframe (top
images). The first row shows the test case target data and initial condition ground truth for each set of parameters.
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Moving-Atlas versus Moving-Patient. The moving-atlas Picard iteration solution strategy outperforms
the moving-patient counterpart in various ways. For both considered test case variations in Tab. 7.13,
the L2-mismatch between the target and the reconstructed probability maps for the brain tissue labels
as well as the L2-error of the reconstruction of the target tumor are reduced significantly compared
to the moving-patient results. For the moving-patient scheme, the overlap of the tissue labels of the
target brain and reconstruction after joint inversion translates to a Dice score of 8.72E´1 compared
to a Dice score of 9.43E´1 for the moving-atlas scheme. A similar improvement can be observed
for the approximation of the probability maps for the healthy patient anatomy: The moving-patient
inversion scheme results in an L2-error of 25.6% (relative to the initial mismatch between atlas and
ground truth healthy patient) and a Dice score of 8.79E´1 as opposed to a relative L2-error of only
16.2% with Dice score of 9.47E´1 for the moving-atlas inversion. These results and the improved
anatomy reconstruction are characteristic for the moving-atlas strategy; we observe similar trends for
various solver and parameter configurations (compare also Tab. 7.14 with inversion under perturbed
or wrong tumor model parameters).

Regardless of the employed regularization, the moving-atlas scheme furthermore results in
improved reconstruction quality of the predicted grown tumor state and higher similarity to the
target data. For ATRV-C1, the moving-atlas scheme results in a relative error of 6.4% compared
to a relative error of 14.4% for the moving-patient solution of the same case. The numbers for
ATRV-C2 are very similar with 6.0% relative error versus 19.0% relative error. A non-negligible fact
is also that the predicted tumor is grown “naturally” (using the employed progression model) in the
(approximated) patient brain anatomy when considering the moving-atlas scheme. As opposed to
this, the reconstructed probability map for the tumor as obtained from the moving-patient solution
scheme is substantially modified and deformed by the registration to ensure a good data-similarity.
As a result, the tumor shape is non-smooth and the reconstruction may fall short to realistically
represent the cell distribution of cancerous cells15. This can be seen from visual inspection of the
simulation data in Figs. 7.13, 7.14 and 7.15.

The primary objective for the derivation of the moving-atlas scheme was to allow for a more
informative inversion for biophysical model parameters. We primarily consider the estimation
of the tumor initial condition, but also invert for the characteristic diffusivity k f in white matter.
The relative errors16 ec0,L2 (cf. (7.1d)) for the inversion of the ground truth tumor initial condition
in Tab. 7.13 obtained for each scheme clearly attest the moving-atlas scheme to be more reliable and
sound in recovering “biophysically meaningful”17 results. Only considering the results obtained with
enforced sparsity constraint (L1wL2 solver) from Tab. 7.13, we observe excellent reconstruction of the
true initial condition with a relative error of only 7.1% (for ATRV-C1) and 6.3% (for ATRV-C2) using
the moving-atlas scheme, as opposed to an error of 32.5% (for ATRV-C1) and 42.4% (for ATRV-C2),
respectively, when using the moving-patient scheme instead. We explain the improved inversion
properties of the moving-atlas scheme by its general idea to seek for a good approximation of the

15We do not claim that the currently employed moving-atlas strategy allows for such a realistic representation of the tumor
cell distribution. However, if used with a more realistic tumor progression model, the moving-atlas strategy is clearly
more promising than the moving-patient alternative.

16Note, that for the moving-atlas scheme, the reconstructed initial condition naturally “lives” in the patient space; for the
moving-patient solution strategy, we invert for the tumor initial condition in the atlas space. For a fair comparison,
the reconstructed initial condition for the moving-patient scheme is advected to the patient space before computing the
relative error to the ground truth.

17Our analysis assumes that we do not have an error in the type of model which describes the tumor progression. In other
words, we assume that tumor-growth is perfectly described by a reaction-diffusion model, which is quite certainly not
true. When we say “biophysically meaningful” this is to be seen under the aforementioned assumption. To allow for a
comparison of the solution strategies and as a proof of concept for our solution methodology, it is reasonable and valid
to make such an assumption.
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healthy patient brain anatomy first, and, thus, to carry out the inversion in the “correct” space. For
the moving-patient scheme, the inversion in the “wrong” atlas space has the potential to induce
large errors for the estimation of biophysical parameters, as the inter-subject deformation map
(registration velocity) can aid matching the pathologic brains. In particular, there is no implication
that this deformation map produces reasonable results when applied to the tumor initial condition
(or other quantities that describe the time point of tumor genesis). This point is supported by visual
inspection of our simulation results for longer time horizons. We observe unnaturally deformed
shapes of the initial condition, and specifically in Fig. 7.14, the moving-patient solution recovers a
wrong position of the tumor initial condition. A wrong position, wrong shape, or wrong sparsity
of the initial condition can, in a second step, also cause a wrong estimation of the characteristic
proliferation rate or tumor cell infiltration rate. For our experiments, the difference for the estimation
of the characteristic diffusivity k f is, however, not significant; both schemes yield comparable results.
We assume that this is caused by the diffusion part of the gradient initially being steep but then
flattening out compared to the part for the initial condition parametrization. The theoretical and
numerical analysis of this effect is ongoing work.

On the other hand, if we do not invert for the characteristic diffusivity k f but perturb its value
from the ground truth for the inversion for the initial condition, we again observe improved qualities
of the moving-atlas scheme over the moving-patient solution: From Tab. 7.14 we see, that the
moving-atlas solution clearly detects wrong values for the diffusivity k f by presenting a very poor
similarity of target data and the predicted tumor in this case and a high µT,L2 tumor mismatch
discrepancy. The moving-patient strategy does not show a comparable indication. In particular, the
latter almost becomes oblivious of wrong model parameters if the fidelity of the parametrization
for the tumor initial condition is increased (a larger number np of Gaussians with smaller standard
deviation σ result in a reduced interpolation error). We have seen this in §7.2, e.g., in Tab. 7.6.

Lastly, we note that, with respect to time-to-solution and efficiency, both solution schemes are
very comparable.

Sparsity Constraint (L2 vs. L1wL2). We analyze the effect and the performance of the sparsity
constraint for the tumor initial condition quantitatively in Tab. 7.13 and qualitatively in Figs. 7.13,
7.14, and 7.15. For both solution strategies, moving-atlas and moving-patient, we only achieve sparse
initial conditions if the combination of L1-regularization followed by a weighted L2-regularization
for the tumor inversion is used. Specifically for the moving-atlas scheme, this combination allows to
very accurately reconstruct the true tumor initial condition used for the generation of the synthetic
target data. This is not the case if we use the L2-regularization for the tumor inversion. From visual
inspection of our simulation results (Figs. 7.13, 7.14, and 7.15), we observe the reconstruction of too
rich initial conditions for the inversion with an L2-regularization functional.
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Conclusion: Biophysical Parameter Estimation

We have analyzed and improved a more sophisticated formulation of the considered coupled multi-
component problem using our derived Picard iteration type solution algorithm (see §6.3). For this
so called moving-atlas scheme (see §6.2), we directly seek for an approximation of the healthy patient
brain anatomy. This results in several improved properties with respect to the estimation of meaningful
biophysical parameters, as compared to the previously studied moving-patient scheme (see §6.1). The
conducted experiments are to be seen as a proof of concept and are clearly preliminary, yet indicate a very
promising step towards a powerful model calibration and patient specific tumor analysis tool. Here is
what we have learned from our experiments on synthetic and real data:

(i) Our results show that the moving-atlas solution scheme clearly outperforms the moving-patient
scheme (for the considered test cases) in terms of reconstruction quality for the brain anatomy, the
healthy patient brain, the grown tumor, and most importantly for the reconstruction of the true
initial condition used to generate the synthetic target tumor.

(ii) In particular, using the moving-atlas scheme, we were able to improve the Dice score for the
brain anatomy from 8.72E´1 for the moving-patient strategy to 9.43E´1; the Dice score for the
approximation of the healthy patient brain anatomy from 8.79E´1 for moving-patient to 9.47E´1;
and the dice coefficient for the tumor reconstruction from 8.34E´1 for moving-patient to 9.70E´1.

(iii) The moving-atlas solution scheme in combination with a sparsity constraint for the tumor initial
condition is capable of reconstructing the true tumor initial condition used for the generation of
the synthetic target data with very high accuracy. We observe an excellent reconstruction of the
true initial condition with a relative error of only 7.1% (for ATRV-C1) and 6.3% (for ATRV-C2)
(compared to 32.3% and 42.4% for the moving-patient scheme) using the more sophisticated
moving-atlas scheme. We further conclude, that the implementation of a sparsity constraint for the
initial condition is essential if targeting biophysical parameter estimation from patient MRI. The
previously used L2-regularization results in rich initial conditions.

(iv) The reconstruction result obtained from the moving-atlas scheme appears to be more “natural”
as the inversion is carried out in the “correct” brain anatomy of the (healthy) patient, and the
registration does not act on the tumor probability map (as is the case for the moving-patient
strategy).

(v) Lastly, the moving-atlas solution scheme has a higher capability of detecting wrong model parame-
ters (such as cell proliferation rate and cell migration rate of brain tissue) than the moving-patient
counterpart.
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7.4 Evaluation of Advanced Methods to Improve Performance and
Runtime

This section studies various advanced methods for our joint inversion approach with the primary
focus to either speedup the time-to-solution and increase performance of the scheme, or facilitate
analysis and foster a better understanding of the scheme. With respect to the latter, we investigate
the behavior of a corrected Picard formulation in §7.4.1, resembling a block-Newton iteration for the
coupled formulation and target convergence of our scheme and the effect of different parameter-
continuation schemes on the final solution in §7.4.2. In the remainder, we evaluate methods that ought
to reduce the required time-to-solution of our method. In particular, we look at grid-continuation (a
multilevel scheme) in §7.4.4 and replace the Gauß-Newton-Krylov for the tumor inversion solver by
a LBFGS quasi-Newton alternative §7.4.5.

7.4.1 Block-Newton-Type Iterations – Corrected Objective

Recall that our Picard iteration solution schemes neglect parts of the fully coupled problem formu-
lations in §6.4 (moving-patient) and §6.10 (moving-atlas). In particular, all numerical experiments
considered so far use the simplified-objective formulation (6.16) and (6.19), considering only the
data-misfit for the tumor probability map in the tumor inversion sub-problem. In this section, we
study the corrected full-objective formulations (6.18) and (6.22) for the tumor inversion sub-problem
and examine the impact on efficiency/convergence of the scheme and and quality of the respective
solution.

Purpose. We study the performance of the full-objective block-Newton scheme for a series of
different test cases, including synthetic and real patient data. In particular, we are interested in
the reconstruction quality for probability maps of brain tissue labels and pathology, as well as
convergence of the scheme and its overall runtime compared to the simpler scheme employed in
large parts of this thesis, which only uses the misfit for the pathology reconstruction in the objective
for the tumor inversion. We consider the block-Newton scheme for the moving-patient formulation
and the moving-atlas formulation and in conjunction with different regularization schemes for the
tumor inversion solver.

Setup. The full-objective block-Newton scheme uses the same mismatch terms in the objective
function for both sub-solvers, registration and tumor inversion. As a result, the tumor inversion
also sees the data-misfit for the probability maps of the healthy brain tissue labels and the latter
occurs in the final condition of the tumor adjoint problem. We consider three different test cases:
The synthetic cases ATAV and ATRV and the real data RTRV cases. The setup of the cases and
solver settings remains unchanged from §7.1.1. We consider ATAV and RTRV for the moving-patient
formulation and employ the moving-atlas Picard iteration scheme for ATRV experiments. For the
latter, we also use the tumor inversion with sparsity constraint, i.e., an L1-regularized inversion to
extract the sparsity of the initial condition, followed by a weighted L2-regularized tumor inversion,
penalizing entries in p that have not been selected in the L1-regularized inversion.

Results. We report quantitative results for synthetic cases (ATAV, ATRV) and clinical data of actual
glioma patients (RTRV) in Tab. 7.15. We compare the full-objective block-Newton scheme to the
simplified-objective scheme for the moving-patient and moving-atlas formulation applied to series of
different test cases, respectively.
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TABLE 7.15 Results for the full-objective block-Newton scheme. We compare the full-objective block-Newton scheme
to the simplified-objective solution scheme for various cases. We consider the moving-patient and moving-atlas formulation,
as well as different regularization schemes for the tumor inversion to employ a sparsity constraint on the initial condition.
We report the average mismatch for the probability maps for the brain tissue labels µB,L2 and the tumor µT,L2 , the mean
Dice coefficient for brain tissue DICEB and tumor DICET , respectively. Timings for the overall time-to-solution, tumor
inversion, and registration solve are given in seconds with respect to execution on 3 nodes/64 MPI tasks for the n = 1283

resolution ATAV and ATRV cases, and execution on 11 nodes/256 MPI tasks for the n = 2563 resolution RTRV cases.

Objective Scheme µB,L2 DICEB µT,L2 DICET }g}rel Tit [s] Ttu
inv [s] Treg

inv [s]

A
TA

V

R
EA

C #1 simple MP-L2 1.57E´1 9.31E´1 6.29E´2 9.73E´1 1.21E´2 4.45E+2 2.99E+1 4.13E+2
#2 full MP-L2 1.66E´1 9.29E´1 1.08E´1 9.56E´1 8.23E´4 6.31E+2 9.39 6.16E+2

R
TR

V A
A

A
N #3 simple MP-L2 3.54E´1 8.74E´1 3.77E´1 8.91E´1 1.06E´1 6.34E+2 2.15E+2 4.17E+2

#4 full MP-L2 3.54E´1 8.75E´1 3.71E´1 9.13E´1 5.82E´3 6.38E+2 2.42E+2 3.61E+2

A
A

M
H #5 simple MP-L2 3.45E´1 8.43E´1 1.95E´1 9.57E´1 3.92E´2 6.28E+2 1.95E+2 4.35E+2

#6 full MP-L2 3.47E´1 8.43E´1 1.99E´1 9.64E´1 2.98E´3 5.54E+2 1.45E+2 3.73E+2

A
TR

V

L 2

#7 simple MA-L2 2.62E´1 9.29E´1 5.32E´2 9.65E´1 4.66E´2 1.00E+4 8.99E+3 1.00E+3
#8 full MA-L2 2.62E´1 9.31E´1 1.35E´1 7.77E´1 8.53E´3 4.77E+3 3.74E+3 1.00E+3

L 1
w

L 2 #9 simple MA-L1wL2 2.63E´1 9.29E´1 5.15E´2 9.67E´1 4.82E´2 5.29E+3 4.25E+3 1.01E+3
#10 full MA-L1wL2 2.67E´1 9.32E´1 3.42E´1 1.69E´1 4.58E´3 1.38E+4 1.27E+4 1.07E+3

Observations. Qualitative and quantitative results for both schemes, the full-objective block-
Newton scheme and the simplified-objective scheme, are similar, yet there are differences. While
the final data-misfit for the brain tissue label probability maps is almost the same for all cases, we
observe a tendency of less accurate tumor reconstruction results for the full-objective block-Newton
scheme. For the ATAV test case, we see a final L2-error for the tumor reconstruction of 6.29E´2 and
1.08E´1 (runs #1 and #2) for the simplified- and full-objective scheme, respectively. Similarly, for
ATRV employing the moving-atlas Picard iteration, we observe final L2-errors 5.32E´2 and 1.35E´1
(runs #7 and #8) for the tumor reconstruction, driven by the respective objective functions. The
lower accuracy of tumor reconstruction for the block-Newton scheme can be explained by a smaller
weighting of the tumor reconstruction misfit in the tumor inversion objective since L2-errors for
white matter, gray matter and CSF attenuate its driving force. Introducing appropriate weighting
for the respective labels in the data-misfit term might be necessary. For the clinical data sets (RTRV;
runs #3–#6), where we do not solve very accurately but allow only a maximum number of 30 Krylov
and Newton iterations, we observe almost identical reconstruction accuracy for both schemes. The
relative gradient norm of the reduced gradient for the respective coupled formulation is significantly
smaller for the block-Newton scheme.

When analyzing the block-Newton scheme in more detail, we observe line-search issues for
the tumor inversion solver (using the full-objective). In particular in conjunction with the sparsity
constraint,18 this causes the solver to break and we observe a drastic deterioration of reconstruction
performance (3.42E´1 relative error of tumor reconstruction compared to 5.15E´2 relative error for
the simplified-objective scheme; runs #9 and #10). Using the full-objective, the brain tissue data-misfit
occurs in the final condition for the tumor adjoint equation. Line-search problems may arise due
to significantly modified data by the registration, however, a more in-depth analysis is required to
understand and remedy this problem.

With respect to runtime, the tumor inversion (and, as a result, the overall coupled inversion
scheme) seems to be slightly faster for the block-Newton variation, with exception of the cases where
an excessive number of line-search attempts slow down the tumor inversion solver. These results are,

18A constraint to enforce sparse initial conditions. To this end, we perform a tumor inversion with L1-regularization to get
the correct sparsity pattern, which is followed by a weighted L2-regularization step, penalizing support of basis functions
that have not been selected in the first run.
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however, not significant.

Conclusion Qualitative and quantitative results for the full-objective block-Newton scheme (see (6.18) for
the moving-patient formulation and (6.22) for the moving-atlas formulation) are similar to the Picard scheme
using a simplified tumor objective, which omits data-misfit for healthy brain tissue. Due to less emphasis on
the tumor misfit term in the full-objective scheme, however, we observe a tendency for lower quality of the
tumor reconstruction when compared to the simplified-objective scheme. The block-Newton scheme exhibits
unresolved line-search issues at more frequent intervals, which is why we focus on the simplified-objective
scheme. The runtime differences are insignificant with a marginal advantage for the block-Newton scheme.

7.4.2 Different Parameter-Continuation Schemes

As described in §6.3.3, we use parameter-continuation schemes to convexify the solution process and
foster convergence to a global minimum. For the moving-patient Picard scheme continuation on the
regularization weight for the registration problem is also a methodological requirement.

Purpose. We study the effect of different parameter-continuation schemes. In particular, we
also examine parameter continuation on βp (tumor regularization) and test different reduction-
stepping/interlacing of the βv- and βp-continuation. Interesting questions to raise are (i) whether
the final solution is independent of the continuation scheme, and (ii) if an additional continuation on
βp is beneficial (in terms of accuracy or runtime).

Setup. We consider the fully analytical test case ATAV, as described in §7.1.1 and §7.2.2 with a
reaction-diffusion tumor model (ρ = 10, k f = 1E´2, kw = 1, kg = 0, i.e., growth in white matter
only). With the exception of the settings for the parameter-continuation scheme (detailed below), we
apply the same solver settings such as tolerances, number of iterations and regularization terms as
in the above referenced description.

Results. Results for four different combinations of parameter continuation schemes are given
in Fig. 7.16. The figure indicates the reduction-stepping of βv and βp for the different schemes on the
right and shows the (summed) L2-error for the reconstruction of the probability maps of the brain
tissue labels (left) and pathology (middle) plotted over the value of βv in the continuation scheme.
The black dots indicate Picard iterations. The table provides quantitative results for the presented
schemes.

Observations. The most important observation is that the joint inversion result depends on
the employed continuation-scheme. For different βp-continuation schemes (tumor regularization)
we obtain fairly different L2-error values, ranging from 1.66E´1 to 1.89E´1 relative error for brain
tissue labels and from 1.08E´1 to 1.71E´1 relative error for the tumor reconstruction. We observe
best results for a constant and small tumor regularization weight, i.e., without βp-continuation
and high fidelity tumor reconstruction from the very beginning of the Picard scheme. The overall
reconstruction quality of the joint inversion decreases if we apply various βp-continuation schemes
and we do not observe a significant reduction in runtime.

In particular, the results from scheme IV in Fig. 7.16 exhibit a fundamental problem of the
moving-patient formulation if used for biophysical inversion with the ultimate goal of employing
patient specific tumor progression simulations: If the tumor inversion continues to yield a poor
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Scheme itsibia βv βp µB,L2 DICEB µT,L2 DICET }g}rel

init – – 6.79E´1 1.00 0.00 1.00
Scheme I 7 1—1E´4 1E´4 1.66E´1 9.48E´1 1.08E´1 9.56E´1 8.23E´4
Scheme II 7 1—1E´4 1E+1—1E´3 1.71E´1 9.48E´1 1.22E´1 9.58E´1 8.51E´4
Scheme III 7 1—1E´4 1E+1—1E´1 1.84E´1 9.44E´1 1.62E´1 9.47E´1 8.75E´4
Scheme IV 12 1—1E´4 1—1E´2 1.89E´1 9.42E´1 1.71E´1 9.44E´1 1.82E´3
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FIGURE 7.16 Parameter-continuation schemes for analytic tumor / analytic velocity with non-zero diffusion
(ATAV-DIF) test case; ground truth: (ρ f = 10, ρw = 1, ρg = 0, k f = 1.00E´2, kw = 1, kg = 0, p = p‹, v = ´v‹).
We report L2-error for probability maps of brain tissue labels and tumor for different interlacing of βv- and βp-parameter
continuation. The parameter stepping for βv and βp for every Picard iteration of the respective schemes is outlined on the
right. Annotations in the L2-error plots indicate values of the tumor regularization parameter βv; values for βv are given
(every value corresponds to a Picard iteration in the solution scheme). The table shows L2-error and Dice coefficients for
the final iteration of each scheme for the probability maps of brain tumor tissue labels and tumor, respectively, as well as the
relative norm of the coupled gradient (6.9).

reconstruction19 of the target pathology until the registration regularization is sufficiently small, the
registration fits the tumor target data20 to the poor reconstruction. This process is irreversible. Even
if the biophysical model eventually becomes detailed/sophisticated/complex enough to perfectly
reconstruct the pathology, the input data is already adjusted and the scheme converges to a non-
optimal or wrong solution.

Conclusion From this experiment, we conclude, that performing an additional parameter-continuation
on the tumor regularization weight βp is not beneficial. The solution of the joint inversion scheme depends
on the employed (interlaced) continuation scheme and the reduction stepping for the regularization weights.
In particular, for the moving-patient scheme, we observe that it is dangerous to maintain a rough/poor
reconstruction of the pathology until the regularization weight for the registration hits regimes that allow for
complex deformations (significant velocities v ‰ 1).

7.4.3 Convergence of the Picard Iteration

Whereas we mainly present final results after convergence in §7.2 and §7.3, we examine the conver-
gence behavior of our Picard iteration itself in this section. In particular, we are interested if the
scheme keeps converging for smooth enough input data, or if it gets trapped in local minima.

Purpose. We study and verify the convergence of our scheme (moving-patient formulation). In
particular, we investigate the dependence (of the convergence) of our scheme on the mesh size, i.e.,
the number of spatial unknowns n (reflected in unknowns for the velocity v P R3n), and the number
of Gaussians np (reflected in unknowns for the tumor solver in p P Rnp for the parametrization

19Here the poor reconstruction is due to a too large regularization parameter. In reality, a poor or too simplistic model is,
however, a more realistic cause for poor reconstruction.

20Notice, that in the moving-patient formulation, the tumor inversion target data is the warped-to-atlas patient pathology.
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of c(¨,0)). For smooth enough data21, Newton’s method features “ideal” convergence properties
in the sense that, near a solution it converges quadratically and maintains this convergence rate
independently of the mesh (number of unknowns) [Hin09b]. We want to investigate our scheme
towards these properties.

Furthermore, in a first proof-of-concept experiment, we investigate a new solution strategy
based on inexact solves for each sub-problem. This means, we only perform a small number of
Newton iterations per sub-component and alternate frequently between the two (detailed below).
This emphasizes the coupling and possibly reduces oscillations. In particular, we want to study the
effects of this alternative solution strategy on the convergence properties.

Setup. We consider a fully synthetic, smooth test case using sinusoidal functions for white matter
and gray matter, defining the artificial brain. We use white matter for the atlas configuration as
mWM := 1/2cos(x1)sin(x2) + 1/2 and gray matter as mGM := 1 ´ mWM; CSF is set to zero. Based
on a smooth, sinusoidal velocity v‹(x) = (v‹

1(x), v‹
2(x), v‹

3(x))T with v‹
1(x) = sin(x3)cos(x2)sin(x2),

v‹
2(x) = sin(x3)cos(x3)sin(x3), and v‹

3(x) = sin(x2)cos(x1)sin(x1), we generate a patient configura-
tion analogously to the ATAV test case by growing an artificial tumor in the atlas configuration and
advecting the resulting abnormal brain with v‹ to the patient space.

We use the full-objective variant (6.18), which results in a block-Newton (or block-Gauß-Seidel)
scheme for the modular Picard-type solution of the coupled problem. With regards the numerical
solution, we consider two different strategies.

(a) A block-iterative Gauß-Seidel-type solution based on exact sub-component solves. This strat-
egy reflects the solution method for most of the experiments conducted within this work.
However, different from all other test cases and Tab. 7.2, we set the tolerance for the relative
gradient in the registration22 and in the tumor inversion solver to opttolR = opttolT = 1E´7 and
allow maxitR = (100, 100) and maxitT = (100, 100) Newton and Krylov iterations, respectively.
We enforce very accurate solutions (exact solves) to prevent the coupled solver from possible
issues originating from early termination in the sub-components.

(b) An iterative solution based on inexact sub-component solves. This strategy follows an opposite
approach: Instead of solving each sub-component “exactly” for the given input, we ask for fairly
inexact sub-component solutions, but increase the frequency of alternating optimization in each
direction. To achieve an overall acceptable accuracy, we significantly increase the number of sub-
component calls (i.e., Picard iterations). In contrast to approach (a), this strategy might be helpful
in order to prevent the solution process from descending in sub-optimal steps that emphasize
the optimization of one components more than the other. This can hinder convergence due to
significant oscillations, or lead to a local minimum. This short investigation is a proof-of-concept.

Concretely, in every Picard iteration, we perform two Newton iterations for the registration
and tumor inversion solver, respectively. To compensate for the inexact solution, we perform
a total of 10 Picard iterations before the regularization weight for the registration is reduced
(as opposed to one iteration for scheme (a)). That means, within the parameter-continuation
scheme, we perform a total of 20 Newton iterations per sub-component solver and regularization
weight βv. This is comparable to the number of Newton iterations performed for the above exact
block-Newton scheme for a fixed regularization weight.

21all problem features need to be fully resolved already on the coarsest mesh
22the gradient-based convergence criterion (C1) is used instead of the (C2) criterion used in all the other test cases (cf. §6.3.3)



7.4 EVALUATION ADVANCED METHODS 233

TABLE 7.16 Results for the sinusoidal analytic tumor / analytic velocity (SIN) test case; ground truth: (ρ f = 15,
ρw = 1, ρg = 0, k f = 0, p = p‹, v = ´v‹). We report convergence of the Picard iteration scheme for the SIN test
case for three runs with increasingly refined mesh. We increase the number of inversion variables by a factor of eight
for both the registration and the tumor inversion solver; we increase the spatial resolution starting from Ni = 64 points
per dimension, to Ni = 128 and Ni = 256, and, accordingly, we choose the number np of tumor parameters to be 8, 64,
and 512 respectively. After termination of the parameter-continuation scheme for the regularization parameter of the
registration, we perform an additional number of 20 Picard iterations. We report the relative objective function value
}J }rel and the relative gradient norm }g}rel of the coupled problem in (6.4) for every iteration. Additionally, the relative
norm of the update ec0,L2,re` and ev,L2,re` of the inversion variables p and v respectively is given for every iteration. Results
previously published in [Sch].

Ni = 64, np = 8 Ni = 128, np = 64 Ni = 256, np = 512

It βv }J }rel }g}rel ec0,L2,re` ev,L2,re` }J }rel }g}rel ec0,L2,re` ev,L2,re` }J }rel }g}rel ec0,L2,re` ev,L2,re`

init – 1.00 1.00 – – 1.00 1.00 – – 1.00 1.00 – –
1 1 6.67E´1 9.42E´3 – – 6.73E´1 2.48E´3 – – 6.67E´1 8.76E´4 – –
2 1E´1 5.84E´1 5.37E´4 – – 5.88E´1 2.27E´4 – – 5.84E´1 7.58E´5 – –
3 1E´2 3.08E´1 2.42E´4 8.08E´3 1.01E+1 3.08E´1 1.88E´4 2.66E´2 6.02 3.08E´1 6.97E´5 2.28E´2 4.97
4 1E´2 3.03E´1 1.77E´4 2.48E´3 1.51 3.04E´1 1.01E´4 2.35E´2 2.48 3.03E´1 4.37E´5 2.55E´2 2.94
5 1E´2 3.02E´1 1.44E´4 1.34E´3 2.60E´2 3.03E´1 6.20E´5 7.16E´3 1.33E´1 3.02E´1 2.62E´5 1.00E´2 1.48E´1
6 1E´2 3.01E´1 1.18E´4 8.72E´4 1.43E´2 3.02E´1 4.66E´5 2.51E´3 7.70E´2 3.01E´1 1.81E´5 3.61E´3 9.79E´2
7 1E´2 3.01E´1 9.64E´5 5.61E´4 7.25E´3 3.02E´1 3.78E´5 1.29E´3 4.61E´2 3.01E´1 1.41E´5 1.63E´3 6.43E´2
8 1E´2 3.00E´1 7.91E´5 3.62E´4 4.37E´3 3.02E´1 3.12E´5 8.04E´4 2.70E´2 3.00E´1 1.15E´5 9.29E´4 3.96E´2
9 1E´2 3.00E´1 6.50E´5 2.38E´4 3.30E´3 3.02E´1 2.59E´5 5.29E´4 1.61E´2 3.00E´1 9.51E´6 5.89E´4 2.48E´2

10 1E´2 3.00E´1 5.35E´5 1.57E´4 2.71E´3 3.02E´1 2.15E´5 3.54E´4 9.98E´3 3.00E´1 7.89E´6 3.89E´4 1.58E´2
11 1E´2 3.00E´1 4.40E´5 1.05E´4 2.31E´3 3.02E´1 1.79E´5 2.39E´4 6.42E´3 3.00E´1 6.56E´6 2.62E´4 1.02E´2
12 1E´2 3.00E´1 3.63E´5 6.99E´5 1.90E´3 3.02E´1 1.49E´5 1.63E´4 4.22E´3 3.00E´1 5.47E´6 1.78E´4 6.75E´3
13 1E´2 3.00E´1 2.99E´5 4.69E´5 1.58E´3 3.02E´1 1.24E´5 1.12E´4 2.09E´3 3.00E´1 4.55E´6 1.21E´4 4.54E´3
14 1E´2 3.00E´1 2.46E´5 3.16E´5 1.30E´3 3.02E´1 1.04E´5 7.63E´5 3.09E´3 3.00E´1 3.80E´6 8.33E´5 3.10E´3
15 1E´2 3.00E´1 2.03E´5 2.13E´5 1.07E´3 3.02E´1 8.64E´6 5.26E´5 1.35E´3 3.00E´1 3.17E´6 5.74E´5 2.19E´3
16 1E´2 3.00E´1 1.67E´5 1.44E´5 8.85E´4 3.02E´1 7.21E´6 3.63E´5 1.71E´3 3.00E´1 2.64E´6 3.96E´5 1.60E´3
17 1E´2 3.00E´1 1.38E´5 9.73E´6 7.29E´4 3.02E´1 6.05E´6 2.51E´5 9.31E´4 3.00E´1 2.21E´6 2.74E´5 1.20E´3
18 1E´2 3.00E´1 1.14E´5 6.59E´6 6.01E´4 3.02E´1 5.08E´6 1.59E´5 7.94E´4 3.00E´1 1.86E´6 1.89E´5 8.04E´4
19 1E´2 3.00E´1 9.37E´6 4.47E´6 4.95E´4 3.02E´1 4.30E´6 1.12E´5 6.62E´4 3.00E´1 1.57E´6 1.16E´5 6.50E´4
20 1E´2 3.00E´1 7.73E´6 3.03E´6 4.08E´4 3.02E´1 3.64E´6 7.61E´6 5.22E´4 3.00E´1 1.34E´6 8.04E´6 5.29E´4
21 1E´2 3.00E´1 6.37E´6 2.06E´6 3.36E´4 3.02E´1 3.09E´6 5.23E´6 4.27E´4 3.00E´1 1.14E´6 5.69E´6 4.42E´4
22 1E´2 3.00E´1 5.26E´6 1.40E´6 2.77E´4 3.02E´1 2.62E´6 3.71E´6 3.59E´4 3.00E´1 9.63E´7 4.08E´6 3.74E´4
23 1E´2 3.00E´1 4.35E´6 6.45E´7 2.29E´4 3.02E´1 2.23E´6 1.91E´6 3.05E´4 3.00E´1 8.17E´7 2.10E´6 3.17E´4

For both solution strategies, we use the following, common setting. The target value for the
regularization parameter βv in the continuation scheme is set to 1E´2. This choice differs from the
real brain cases and from Tab. 7.1. The higher regularization for v is justified due to few geometric
structures in the smooth SIN test case input data. For the mesh-independence study, we consider
three mesh resolutions in which we increase the resolution for both v and p by a factor of eight. In
space, we use 64, 128, and 256 unknowns per dimension. For the parametrization of the tumor initial
condition we employ a Gaussian grid of size 8, 64, and 512, respectively. For the latter, we use a
spacing of δ = 2σ.

Results. We report results for the convergence of the full-objective moving-patient Picard scheme
in Tab. 7.16 and Fig. 7.17. We monitor the relative (to the initial value) reduction in the objective
function value }J }rel, and the trend of the relative (to the initial value) reduced gradient }g}rel of the
coupled problem formulation (6.4). We furthermore report the relative norm ec0,L2,re` and ev,L2,re`,
respectively of the update for the inversion variables. In Fig. 7.17 we compare the trend of }g}rel

for the three different mesh resolutions. In particular, we also compare the convergence properties
and gradient trends for the exact block-Newton scheme (a) with the solution strategy based on
inexact solves (b). We report the convergence histories for the registration and tumor inversion
sub-component solvers, respectively for both solution strategies in Fig. 7.18.

Observations. The most important observation from Tab. 7.16 and Fig. 7.17 is that our method is
mesh-independent. For example, we observe that for all resolutions the inversion variables p and v
have essentially converged after seven iterations in Tab. 7.16. For the block-Newton Picard iteration
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FIGURE 7.17 Sinusoidal test case. We report the trend of the reduced gradient of the coupled problem formulation (6.4)
as observed for the solution of the sinusoidal analytic tumor / analytic velocity (SIN) test case, using the (i) exact
block-Newton Picard iteration (left), and the (ii) Picard iteration based on inexact solves (right), for three different mesh
sizes. For the block-Newton scheme, exact numbers are reported in Tab. 7.16. The tree different curves correspond to the
three different spatial resolutions for the velocity and tumor parameters. We use n P t643, 1283, 2563u points per dimension
for the velocity and analogously np P t8, 64, 512u. For both solution strategies, 20 Picard iterations are preformed after
termination of the parameter-continuation scheme for the regularization parameter of the registration solver.
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FIGURE 7.18 Sinusoidal test case. We report the trend of the (relative) reduced gradients and (relative) objective
function values of the sub-component solvers – tumor inversion (top) and registration (bottom) – as a function of Newton
iterations for the coupled moving-patient Picard solution of the sinusoidal analytic tumor / analytic velocity (SIN)
test case. We employ the (i) exact block-Newton Picard iteration (left), and the (ii) Picard iteration based on inexact solves
(right). The black dots indicate Picard iterations; the large jumps in the block on the right hand side reflect the reduction of
the regularization weight for the registration within the parameter-continuation scheme. We report results for the coarsest
mesh using a spatial resolution of n = 643 and np = 8 Gaussian basis functions. The trends for the meshes are very
similar. For both solution strategies, 20 Picard iterations are preformed after termination of the parameter-continuation
scheme for the regularization parameter of the registration solver.
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scheme with exact sub-component solves, we observe rapid convergence until a relative gradient
reduction of approximately five orders of magnitude, and convergence does not slow down if the
number of unknowns is increased, as would be the case for a steepest descent method. After this
point, convergence slows down, yet does not stagnate. A Newton method would maintain rapid
convergence. Note, however, that for the second order Newton convergence rate the discretized
gradient and the discretized objective function need to be consistent. Due to our optimize-then-
discretize approach and the semi-Lagrangian time stepping for the pure advection steps, this is not
the case.

A second important observation is, that the alternative solution strategy based on inexact solves
is capable of reducing the reduced-gradient of the coupled scheme even further than the block-
Newton based on exact solves, and, in particular, reduces oscillations. This can be observed from
inspection of Fig. 7.18: The mutually induced jumps in the gradient norms of the sub-component
solvers after every Picard iteration (black dots) are much less pronounced for the inexact scheme
on the right than for the exact scheme on the left. We explain this feature by the stronger coupling
of the sub-components, and more frequent exchange of information. Note also, that for the given
setting, both solution strategies perform the same number of Newton iterations.

Conclusion We conclude that our modular Picard iteration scheme features mesh-independent linear
convergence. Although it does not perform as well as Newton’s method, we observe rapid convergence
rates until we reach gradient values that are significantly lower then what is required and feasible (due to
discretization and modeling errors) in real clinical cases.

Furthermore, the preliminary convergence considerations for the solution strategy based on inexact
sub-component solutions seem to be very promising and worth further investigation. In particular, it reduces
the mutually influenced oscillations in the gradients of the sub-components after every Picard iteration
significantly compared to the block-Newton Picard iteration with an “exact” or more accurate solution of the
sub-components.

7.4.4 Grid-Continuation

Using grid-continuation as described in §6.3.3, we start our optimization with a very coarse spatial
resolution and refine this gradually until we reach the target resolution.

Purpose. We study the grid-continuation scheme with respect to (i) its convexifying properties
and quality of the obtained final result, and (ii) the reduction in runtime observed when applying
the scheme as opposed the full-resolution Picard-scheme . In particular, we want to find out if the
grid-continuation scheme is able to retain full-resolution quality of the final solution, and, what the
influence of the particular instantiation of the scheme on the obtained solution is.

Setup. We consider three different schemes, outlined in Tab. 7.17. We present results for the RTRV
test case using actual clinical data; details are given in §7.1.1. We use the same tolerances, solver
settings and regularization schemes as in §7.2.4 on all levels. We re-sample a hierarchy of different
(increasingly coarse) image resolutions from the full-resolution representation (n = 2563) of the
observation patient data and the atlas brain. Starting from a coarse spatial representation (n = 643) of
the data, we consecutively solve registration and tumor inversion on increasingly refined resolutions.
The respective solvers are warm-started with solutions Pv`´1 and p`´1 from the previous level
(where P is a prolongation operator). We consider two alternatives, (i) warm-start only for the
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TABLE 7.17 Grid-continuation schemes. We consider three different schemes, intertwining grid-continuation and
parameter-constinuation. Scheme 1 and Scheme 2 only differ in the number jfinal of Picard iterations on the finest
resolution with smallest regularization parameter.

grid-cont-I grid-cont-II grid-cont-III

Level n β0
v βlo

v βp jfinal β0
v βlo

v βp jfinal β0
v βlo

v βp jfinal

L1 643 1 1E´2 2.50E´3 0 1 1E´2 2.50E´3 0 1 1E´1 2.50E´3 0
L2 1283 1E´2 1E´4 2.50E´4 0 1E´2 1E´4 2.50E´4 0 1E´1 1E´3 2.50E´4 0
L3 2563 1E´4 1E´4 2.50E´5 1 1E´4 1E´4 2.50E´5 3 1E´3 1E´4 2.50E´5 1

registration velocity v,23 and (ii) warm-start for both inversion variables, i.e., use v`´1 and p`´1 from
the previous level . We use bi-cubic interpolation for the prolongation P of v`´1 to the finer level.
For this experiment we only consider the tumor diameter-based, regular-grid selection mode (bbox
mode) for the Gaussian basis functions. The adaptive approach is also conceivable. However, in
order to allow for warm-starts of the tumor inversion solver using solutions p`´1 from coarser levels,
the same set of basis functions needs to be selected for all levels.

The different spatial resolutions allow for different degrees of parallelization. We execute the
moving-patient Picard iteration scheme separately24 on each level, steered by the input parameters
β0

v and βlo
v for the embedded parameter-continuation scheme (see §6.3.3). To ensure the inherently

sequential character of the Picard iteration algorithm, dependencies between the separate execution
runs are defined. This approach allows us to exploit the full degree of parallelism on each spatial
level without having idling processes. More precisely, for the presented experiments we use three
levels n P t644, 1283, 2563u and solve the coupled Picard iteration scheme using 16 MPI tasks (one
node) for level one with resolution n`1 = 643, 64 MPI tasks (on three nodes) for level 2 (n`2 = 1283),
and 256 MPI tasks (on 11 nodes) for the original resolution n`3 = 2563 (level 3).

Results. We present quantitative results for the grid-continuation scheme on real data (RTRV test
case, patient ID’s AAMH, AAAC) in Tab. 7.18 and Tab. 7.19 and compare them to the full-resolution
scheme with respect to runtime and quality of the registration and tumor reconstruction. We analyze
runtime and quality of the final solution for different continuation schemes from Tab. 7.17 in Tab. 7.19.
Qualitative results for the multi-level solution of the two considered patient ID’s are given in Fig. 7.19.

Observations. Comparing full-resolution scheme results and grid-continuation scheme-I
(see Tab. 7.17) for patient ID AAMH (Tab. 7.19), we observe a significant speedup of a factor
of 5 for the overall consumed cpu-h (i.e., elapsed wall-time times number of occupied MPI tasks),
subdivided into a factor of 10.4 speedup for the tumor solver and a factor of 2.5 speedup for the
registration solver, resulting from warm-starts for the respective solvers using the solutions p`´1 and
Pv`´1 from the previous level. The obtained registration and reconstruction quality of the target data
is slightly worse for the multi-level scheme; we observe a relative L2-error of 3.82E´1 for the data
mismatch of the brain tissue labels compared to an error of 3.45E´1 for the full-resolution scheme.
The quality of the tumor reconstruction is very similar with relative L2-error values of 2.09E´1
and 1.95E´1 for the grid-continuation and full-resolution scheme, respectively. The slightly worse
similarity of the probability maps for the brain tissue labels is due to the fact that we only perform
one registration solve on the finest level with the original target data resolution; differences are
manifested by details hidden on coarser representations of the target data. From Tab. 7.19 we observe,
that the data-similarity is further improved if more registration solves are performed on the finest

23In this case, tumor inversion is solved in an initialization phase to obtain an initial guess for p
24For each level, a different job is submitted, exploiting the maximal degree of parallelism on the respective level. Depen-

dencies between jobs are defined to ensure the inherently sequential character of the algorithm.
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TABLE 7.18 Grid-continuation. Results for the real tumor / real velocity (RTRV) test case, patient ID AAMH,
ground truth: (ρ N/A, k N/A, p N/A, v N/A); using real clinical input data. We report quantitative results per Picard
iteration for the grid-continuation scheme I outlined in Tab. 7.17 using v- and p-warm-start mode and compare it to the
full-resolution scheme solution. The table shows the (summed) L2-mismatch of brain tissue labels µB,L2 and tumor µT,L2

and the mean Dice coefficient for brain tissue DICEB and tumor DICET . Timings for the Picard iteration scheme Ttot, the
tumor inversion Ttu

inv and the registration Treg
inv (given in seconds and cpu-h) are with respect to parallel execution on 11

nodes using 256 MPI tasks on the finest level with n`3 = 2563, 3 nodes using 64 MPI tasks on level 2 with n`2 = 1283,
and 1 node using 16 MPI ranks on the coarsest level with n`1

= 643.

grid-cont-I v-/p-warm-start full-resolution

itsibia βv µB,L2 DICEB µT,L2 DICET Tit [s] Itr. βv µB,L2 µT,L2 Tit [s]

Le
ve

l1

init – 1.00 5.73E´1 1.00 0.00 – init – 5.75E´1 1.00 –
1 1 9.37E´1 5.87E´1 1.00 0.00 1.59E+1 1 1 9.59E´1 1.00 9.80E+1
2 1E´1 7.12E´1 6.53E´1 3.78E´1 8.46E´1 6.33 2 1E´1 7.42E´1 3.90E´1 4.55E+1
3 1E´2 5.23E´1 7.43E´1 3.13E´1 9.07E´1 8.22 3 1E´2 5.05E´1 3.13E´1 9.59E+1
4 1E´2 5.13E´1 7.47E´1 3.03E´1 9.10E´1 2.85 4 1E´3 3.91E´1 2.52E´1 1.18E+2

Le
ve

l2

init – 1.00 5.77E´1 4.64E´1 0.00 – 5 1E´4 3.60E´1 2.20E´1 1.15E+2
1 1E´2 4.80E´1 7.76E´1 3.12E´1 9.04E´1 2.56E+1 6 1E´4 3.51E´1 2.05E´1 8.99E+1
2 1E´3 4.09E´1 8.10E´1 2.54E´1 9.35E´1 2.27E+1 7 1E´4 3.45E´1 1.95E´1 6.63E+1
3 1E´4 3.86E´1 8.20E´1 2.32E´1 9.44E´1 2.21E+1
4 1E´4 3.78E´1 8.24E´1 2.22E´1 9.47E´1 8.06

Le
ve

l3 init – 1.00 5.75E´1 5.15E´1 0.00 –
1 1E´4 4.06E´1 8.15E´1 2.25E´1 9.42E´1 7.11E+1
2 1E´4 3.82E´1 8.26E´1 2.09E´1 9.48E´1 3.42E+1

TOTAL 1E´4 3.82E´1 8.26E´1 2.09E´1 9.48E´1 5.42E+2 TOTAL 1E´4 3.45E´1 1.95E´1 2.68E+3

Tit [cpu-h] Ttu
inv [cpu-h] Treg

inv [cpu-h] Tit [cpu-h] Ttu
inv [cpu-h] Treg

inv [cpu-h]

Acc. time in cpu-h 5.42E+2 1.72E+2 3.35E+2 2.68E+3 1.79E+3 8.32E+2

TABLE 7.19 Quantitative results for grid-continuation. Results for the AAAC and the AAMH patient real tu-
mor / real velocity (RTRV) test case, ground truth: (ρ N/A, k N/A, p N/A, v N/A); using real clinical input data.
We compare different grid-continuation schemes (cf. Tab. 7.17 with v-warm-start and v-/p-warm-start) against the full-
resolution result with respect to runtime (for the entire Picard iteration Ttot, the tumor inversion Ttu

inv, and the registration
Treg

inv , respectively; in cpu-h, i.e., elapsed wall-time in [h] multiplied by the number of occupied MPI tasks, accumulated
over all levels) and reconstruction quality µB,L2 and µT,L2 as the L2-mismatch for the probability maps of brain tissue
labels and tumor, respectively. Timings are with respect to parallel execution on 11 nodes using 256 MPI tasks on the
finest level with n`3 = 2563, 3 nodes using 64 MPI tasks on level 2 with n`2 = 1283, and 1 node using 16 MPI ranks on
the coarsest level with n`1

= 643. We give the speedup of the grid-continuation schemes with respect to the full-resolution
execution of the coupled Picard scheme Stot, the tumor inversion Stu, and the registration solve Sreg.

Scheme warm-start µB,L2 µT,L2 Ttot [cpu-h] Ttu
inv [cpu-h] Treg

inv [cpu-h] Stot Stu Sreg

A
A

A
C

#1 full-resolution – 3.36E´1 2.45E´1 2.10E+3 1.38E+3 6.79E+2 1.00 ˆ 1.00 ˆ 1.00 ˆ

#2 grid-cont-I v 3.87E´1 3.08E´1 7.64E+2 3.48E+2 3.79E+2 2.75 ˆ 3.95 ˆ 1.79 ˆ

#3 grid-cont-I v/p 3.80E´1 2.73E´1 4.98E+2 1.34E+2 3.29E+2 4.22 ˆ 10.30 ˆ 2.06 ˆ

#4 grid-cont-II v/p 3.60E´1 2.53E´1 1.15E+3 4.60E+2 6.47E+2 1.83 ˆ 3.00 ˆ 1.05 ˆ

#5 grid-cont-III v/p 3.70E´1 2.58E´1 9.86E+2 3.46E+2 5.99E+2 2.13 ˆ 3.98 ˆ 1.13 ˆ

A
A

M
H #6 full-resolution – 3.45E´1 1.95E´1 2.68E+3 1.79E+3 8.32E+2 1.00 ˆ 1.00 ˆ 1.00 ˆ

#7 grid-cont-I v 3.91E´1 2.19E´1 9.02E+2 5.64E+2 3.02E+2 2.97 ˆ 3.18 ˆ 2.75 ˆ

#8 grid-cont-I v/p 3.82E´1 2.09E´1 5.42E+2 1.72E+2 3.35E+2 4.94 ˆ 10.39 ˆ 2.48 ˆ
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FIGURE 7.19 Qualitative results for grid-continuation (scheme I) with warm-starts for p and v for the real
tumor / real velocity (RTRV) test case, ground truth: (ρ N/A, k N/A, p N/A, v N/A); patient ID’s AAMH and AAAC.
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level (compare run #2, grid-cont-I with run #3, grid-cont-II for AAAC patient). Performing additional
3 registration solves on full-resolution (scheme-II, Tab. 7.17) yields comparable data similarity, with a
resulting speedup factor of roughly 2 (compared to 4.2 for scheme-I). Further, using solutions from
coarser levels as initial guess for both, v and p not only speeds up the overall runtime by a factor of 2
compared to only using warm-starts for the registration velocity v, but also improves the accuracy of
the final solution (compare runs #2 and #3, and runs #7 and #8, respectively). Looking at runs #5, #4
and #3, we observe that using different continuation schemes, i.e., different interlacing/stepping of
grid- and parameter-continuation affects the quality of the final result. The variations are, however,
marginally.

Conclusion From these experiments, we conclude that interlacing grid-continuation with parameter-
continuation has the potential to significantly speedup the overall time to solution: We achieve speedup factors
of 4.94 and 4.22 for ID AAMH and AAAC, respectively. The scheme converges to a similar solution as the
full-resolution scheme, exhibiting slightly worse data similarity for the registration result. Performing more
expensive full-resolution Picard iterations (registration solves) improves the reconstruction quality as details
and image features might be hidden on coarser resolutions.

Generally speaking, runtime and solution quality depend on the employed grid-continuation scheme
and its interlacing with the parameter-continuation scheme. For our experiments, we obtain relatively small
variations/discrepancies in the final solution and speedup factors between 2 and 5 when compared to the
full-resolution scheme. Visual inspection of qualitative results in Fig. 7.19 reassures overall good registration
and pathology reconstruction quality. Determination of an optimal and robust scheme requires more thorough
numerical analysis and application to further individual (real data) cases.

7.4.5 Performance of Biophysical Inversion Solver: Gauß-Newton versus
Quasi-Newton

In this section we study the potential of quasi-Newton LBFGS as described in §6.4.5 as a faster
alternative for Gauß-Newton-Krylov for various settings: (i) stand-alone tumor inversion solver,
(ii) joint inversion approach for synthetic tumors (ATAV), and (iii) joint inversion approach for real
clinical imaging data of glioma patients. The low dimensionality of the Hessian matrix motivates
to use quasi-Newton methods over Gauß-Newton-Krylov methods, which have significantly less
computational cost per iteration and, thus, might outperform GNK despite the slower convergence.
Critical for quasi-Newton (esp. LBFGS) is a low-rank property of the system Hessian as well as a
good initial guess for the approximation of the inverse Hessian.

Performance of Quasi-Newton LBFGS method for Standalone Tumor Solver.

Purpose. We investigate whether quasi-Newton is able to outperform GNK in terms of overall
runtime, despite excellent convergence properties of the latter for the considered problem (conver-
gence within 6 iterations). Further, we study the LBFGS performance and convergence properties
for our specific tumor problem; in particular, we wish to investigate (i) the influence of the number
µ of used difference vectors for the LBFGS update, and (ii) the effect of different choices for the
initial guess of the inverse Hessian approximation, in particular the generic, built-in PETSc/TAO
approaches, compare §2.3.1.

Setup. We consider a purely synthetic test case for the tumor inversion sub-component. We
assume the true healthy patient to be given, i.e., no registration is involved. The target tumor is
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TABLE 7.20 Performance of LBFGS(m) vs. Gauß-Newton-Krylov for a synthetic stand-alone tumor problem
for different numbers of stored vectors µ P t6, 10, 14, 18, 22, 26, 30u for the limited-memory BFGS update. We use
PETSc/TAO’s Broyden scaling of the identity matrix as an initial guess for the inverse Hessian approximation. An
additional scalar re-scaling is performed, using up to r P t5, 10, 15, 30u difference vectors to solve for the scaling weight ω
in a least-squares sense.

Method r itN J }gp}rel µT,L2 Ttu
inv [s] Stu

GNK 6 8.80E´2 8.33E´4 1.31E´2 4.50E+1 1.00ˆ

LBFGS(6) 5 41 7.90E´2 9.67E´4 1.06E´2 4.78E+1 0.94ˆ

LBFGS(10) 5 35 7.85E´2 9.75E´4 1.05E´2 4.09E+1 1.01ˆ

LBFGS(14) 5 36 7.33E´2 6.71E´4 8.63E´3 4.08E+1 1.10ˆ

LBFGS(18) 5 32 7.95E´2 8.85E´4 1.08E´2 3.70E+1 1.22ˆ

LBFGS(22) 5 31 7.75E´2 9.06E´4 1.01E´2 3.61E+1 1.25ˆ

LBFGS(26) 5 28 8.11E´2 9.22E´4 1.12E´2 3.26E+1 1.38 ˆ

LBFGS(30) 5 28 8.10E´2 8.98E´4 1.12E´2 3.26E+1 1.37ˆ

LBFGS(30) 10 34 8.51E´2 9.42E´4 1.24E´2 3.99E+1 1.12ˆ

LBFGS(30) 15 39 7.75E´2 7.56E´4 1.01E´2 4.54E+1 0.99ˆ

LBFGS(30) 30 50 7.55E´2 8.43E´4 9.48E´3 5.81E+1 0.77ˆ

artificially grown in the healthy patient geometry, using our reaction-diffusion model with the
parameters ρ f = 10, ρw = 1, ρg = 0, k f = 1.00E´2, kw = 1, kg = 0, np = 125, p = p‹ with p‹

62 = 0.9
and p‹

61 = 0.2, v = 0 σ = 2π/10, δ = 1.5σ. We use GNK and LBFGS to solve the non-linear system
without bounding the maximum number of Newton and Krylov iterations. We use PETSc/Tao’s
built-in Broyden scaling with applied re-scaling for the initial inverse Hessian approximation, using
up to 5 vectors in the multi-secant equation to compute the Broyden factors and the re-scaling factor,
respectively. In addition, we examine the influence of the number of vectors r used in the re-scaling
for the Broyden scaling approach in three runs with higher r P t10, 15, 30u.

Results. Numerical results for solving a fully synthetic, tumor only inverse problem using
Gauß-Newton-Krylov and LBFGS quasi-Newton variants to solve the resulting non-linear optimality
system are given in Tab. 7.20.

Observation. For the considered problem, the GNK solver shows excellent convergence, reducing
the gradient by three orders of magnitude within 6 non-linear iterations. Despite requiring a much
larger number of iterations, the LBFGS quasi-Newton solver achieves a comparable or even reduced
runtime (speedup by a factor of roughly 1.4). The performance of the quasi-Newton method, however,
strongly depends on the number of stored vectors utilized in the LBFGS Hessian update formula—a
problem dependent tuning parameter. We have studied this effect for similar methods in the context
of transient FSI simulations in part I of this thesis. Unlike for the transient case considered there,
the optimal number of stored vectors here is solely determined by the increasing memory footprint
and computational cost to compute the update. The method’s convergence rate does not deteriorate
if more vectors are stored as for the given optimization problem (tumor standalone) there is no
outdated or contradicting information.

We furthermore studied different choices for the initial guess of the inverse Hessian, as described
in §2.3.1 in Chapter 2 and §6.4.5 in Chapter 6. We briefly summarize our findings. The simplest
approach of using either Mk

prev = γI for the Hessian or M´1, k
prev = γI with γ = 1 for the inverse

Hessian initial guess results in line-search failure and divergence after the first Newton-iteration.
Solving a multi-secant least-squares problem (2.48) for a scaling parameter γ significantly improves
the quality of the initial guess and the LBFGS solver converges for the considered test problem. Using
PETSc/Tao’s built-in Broyden diagonal scaling of the identity further improved the convergence
properties and showed best overall performance. Tab. 7.20 shows numerical results obtained using
the Broyden diagonal scaling method with an additional re-scaling with the parameter ω, obtained
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from solving (2.49) using up to r difference vectors in the least-squares system; small numbers for
r showed superior performance. Lastly, using M´1, k

prev = βpΦTΦ as initial guess for the Hessian25,
i.e., incorporating complementary a priori information of the problem, and solve Mk

prevq̂k = gk by
PCG iterations also resulted in divergence due to line-search failure. From this we conclude, that
using the constant part of the Hessian only, is not sufficient. Using a low-rank approximation of the
non-constant part of the Hessian by sampling from U´1Φ as described in (6.43) is likely to resolve
these issues and improve convergence; however, this is computationally more expensive and still
involves the solution of a linear system (i.e., the method’s complexity per iteration becomes similar
to using GNK).

Conclusion From this first simplistic experiment we conclude, that, if done right, the quasi-Newton LBFGS
method has the potential to outperform the established, rapidly converging GNK solver in terms of overall
runtime and computational cost. The number of used columns in the LBFGS update and the initial guess
for the inverse Hessian are the most dominating convergence influencing factors. For the considered PDE
constrained optimization problem, it is beneficial to store as many vectors as tenable with respect to memory
consumption and computational cost per LBFGS update.26 A good choice is the number of maximally allowed
Newton iterations.

Further, a good initial guess for the inverse Hessian is crucial and appropriate scaling is necessary for
convergence. TAO’s diagonal Broyden scaling with additional scalar re-scaling outperforms all other considered
variants including approximations of the Hessian that incorporate a priori problem specific information. In
particular using a small number of r ď 5 difference vectors in the least squares-system to compute the Broyden
factors and re-scaling parameter ω performs best. Replacing the GNK solver by the LBFGS quasi-Newton
method for the considered problem yields only very insignificant speedups. For this fully synthetic toy problem
GNK features excellent near-quadratic convergence; for more complicated cases, actual clinical data and the
joint registration and biophysical inversion, the convergence rate for GNK drops. 27Under these considerations,
the above LBFGS results are quite promising and the method is potentially more robust with respect to issues
arising from more complicated use cases, in particular in the context of our joint inversion scheme. This is
what we consider next.

Performance of Quasi-Newton LBFGS for Joint Inversion using Synthetic Test Cases.

Purpose. Low rank approximability of the system Hessian as well as effective initial guesses are
highly problem dependent. We study the suitability of quasi-Newton LBFGS for solving the tumor
inversion problem for a synthetically grown target tumor using our model. Our main objective is
the reduction of the overall time-to-solution for our joint inversion scheme. We study the influence
of the number µ of used vectors in the LBFGS update and different approximations for the initial
guess of the inverse Hessian. Preliminary tests with standalone tumor inversion and analysis of the
Hessian matrix for perturbed observation data and initial guess p0 indicate that the Hessian changes
moderately with these perturbations and information from inverse Hessian approximation from
previous Picard iterations might be beneficial. Thus, in particular, we consider recycling of difference

25Note that βpΦTΦ represents the invariant part of the Hessian if the regularizer }Φp}L2(Ω) is employed. The full Hessian
reads H = βpΦTΦ ´ ΦTα(0), i.e., the missing part ΦTα(0) is dominated by the solution of the adjoint final-value problem
and depends on the data.

26In particular, filtering techniques that maintain good conditioning of the least-squares system are not necessary
27This is caused by the appearance of non-physical negative values in the probability map for tumor cell distribution

throughout the inversion process. The reason for this is the parametrization of the initial condition as superposition
of Gaussian basis functions. Clipping of these values leads to a discrepancy between Hessian, gradient and objective
function and is reflected in a degradation of the convergence speed for the Gauß-Newton-Krylov solver.
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vectors from tumor inversion solves in previous Picard iterations (with varying target data), i.e.,
retaining vectors from converged solves from previous Picard iterations. We analyze convergence,
cost, runtime and robustness of the methods.

Setup. For all conducted experiments, we use the moving-patient Picard iteration scheme described
in §6.3. We furthermore use the fully synthetic (analytic tumor / analytic velocity (ATAV)) test case
based on real brain geometries as described in §7.1.1. We use a resolution of ni = 128, and ground
truth parameters ρ f = 10, ρw = 1, ρg = 0, k f = 1.00E´2, kw = 1, kg = 0, np = 125, p = p‹

with p‹
62 = 0.9 and p‹

61 = 0.3, v = ´v‹, σ = 2π/10, δ = 1.5σ. For the non-linear solvers, we limit
the number of Newton- and Krylov-iterations to maxitR = (50, 80) for the registration solver and
maxitT = (50, 100) for the tumor inversion solver, respectively.

We consider the limited-memory BFGS (LBFGS) method for the tumor inversion solver and
compare it against the Gauß-Newton-Krylov method. In particular, for LBFGS we investigate different
numbers µ P t10, 30, 50, 70, 100u of stored vectors and either (i) gather vectors only within each tumor
inversion solve and reset the memory after convergence, referred to as LBFGS(maxitT,N ,µ, ls-type),
or (ii) retain (up to µ) stored vectors from previous tumor inversion solves across Picard iterations.
The latter is denoted as LBFGS-r(maxitT,N , m, ls-type). For quasi-Newton methods, Armijo line-
search which guarantees sufficient decrease in the objective function is in general not sufficient;
our numerical experiments confirm this. We therefore use a more expensive Moré-Thuente (mt)
line-search method enforcing the Wolfe conditions. We use PETSc/TAO’s built-in diagonal Broyden
scaling of the identity matrix with an additional scalar re-scaling for the initial guess of the inverse
Hessian, i.e., we use M´1

prev = ωγI. We use up to 5 vectors in the leas-squares system to compute the
scaling factors. For details, see §2.3.1 and [Ben03]. We run our experiments on 64 MPI ranks on 3
nodes of HazelHen using an Intel compiled petsc-3.9.0 build.28

Results. We report results for the joint inversion using a limited-memory BFGS quasi-Newton
solver for the tumor inversion in Tab. 7.21. Convergence histories for GNK and LBFGS are given
in Fig. 7.21 in terms of gradient- and objective function value reduction plotted over wall clock time
and the number of Newton interactions. Picard iterations of the joint solution scheme are indicated
by black dots. Fig. 7.21 shows a similar plot of convergence histories for different number of stored
vectors µ for the LBFGS update. We present more detailed monitoring of the tumor inversion solver
such as required Newton iterations per inversion solve as well as gradient reduction, number of
state and adjoint solves and the elapsed runtime across all Picard iterations for various settings
in Tab. 7.22.

Observations. We focus on studying two factors that greatly influence the method’s convergence
properties: the number µ of vectors used for the LBFGS update, and if recycling of vectors for solves
in Picard iterations k ě 2 from previous tumor inversion solves is beneficial. The latter can be seen
as an informed initial guess of the inverse Hessian. Consequently, we consider an LBFGS recycle
(LBFGS-r) alternative, retaining µ ´ jk ě 0 difference vectors from previous Picard iterations (jk ě 0
number of Newton-iterations for current solve). As can be seen from runs #2, #6 and #7, the recycle
option reduces the accumulated time spent in the tumor inversion solver by about a factor of 2 ´ 3
for solving the ATAV test case with our joint inversion scheme. Comparing LBFGS runs with reset
and recycle strategy (runs #2 and #6), we observe a similar number of Newton iterations, however,

28The LBFGS recycle option has been added to PETSc/TAO with the help of Alp Dehner and is available in petsc-3.9.0.
As of today there is no Cray optimized build available for this version of PETSc, which is why the absolute timings in
this section are considerably higher than for the other experiments (where we used the Cray optimized petsc-3.7.6.2
build).
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TABLE 7.21 Performance of Gauß-Newton-Krylov and quasi-Newton for the tumor inversion solver for analytic
tumor / analytic velocity with non-zero diffusion (ATAV-DIF) test case; ground truth: (ρ f = 10, ρw = 1, ρg = 0,
k f = 1.00E´2, kw = 1, kg = 0, p = p‹, v = ´v‹). We report the final data L2-mismatch after the joint inversion
(moving-patient) for brain tissue labels µB,L2 and tumor probability maps µT,L2 as well as the (summed) number of Newton
iterations itN , the (summed) number of state and adjoint evaluations,and the (summed) timings for the joint inversion
Ttot, tumor inversion Ttu

inv, and registration Treg
inv , respectively in seconds. We give the speedup of the execution of tumor

inversion Stu and overall time-to-solution Stot with respect to the Gauß-Newton-Krylov method. For Gauß-Newton-Krylov,
we limit the number of Newton and Krylov iterations to maxitN,T = 50 and maxitK,T = 100, respectively, and use the
cheaper Armijo line-search method. For LBFGS we investigate different numbers µ P t10, 30, 50, 70, 100u of stored vectors
and either (i) gather vectors only within each tumor inversion solve and reset the memory after convergence, or (ii)
retain (up to µ) stored vectors from previous tumor inversion solves across Picard iterations. The latter is denoted as
LBFGS-r(50,µ,ls). We further use a (more expensive) Moré-Thuente (mt) line-search method enforcing the Wolfe conditions
as required for quasi-Newton methods. For the initial inverse Hessian approximation, we use PETSc/TAO’s built-in
Broyden scaling of the identity matrix using up to 5 vectors to compute the diagonal scaling factors, along with a re-scaling
also using up to 5 vectors; for details see §2.3.1 and [Ben03].

Method(maxitN , H, ls) µB,L2 µT,L2 itN #state #adj Ttot [s] Ttu
inv [s] Treg

inv [s] Stu Stot

#1 GNK(50, 100, armijo) 1.61E´1 7.01E´2 39 2077 1703 1.86E+4 1.79E+4 5.44E+2 1.00ˆ (1.00)ˆ

#2 LBFGS(50, 50, mt) 1.59E´1 5.71E´2 125 205 205 1.73E+3 1.22E+3 4.56E+2 14.72ˆ (10.73)ˆ
#3 LBFGS(50, 50, armijo) 1.59E´1 5.71E´2 128 435 138 2.00E+3 1.50E+3 4.46E+2 11.95ˆ (9.27)ˆ

#4 LBFGS-r(50, 10, mt) 1.58E´1 5.55E´2 142 306 306 2.19E+3 1.69E+3 4.43E+2 10.62ˆ (8.50)ˆ
#5 LBFGS-r(50, 30, mt) 1.59E´1 5.58E´2 132 243 243 1.89E+3 1.38E+3 4.54E+2 9.46ˆ (9.82)ˆ
#6 LBFGS-r(50, 50, mt) 1.58E´1 5.61E´2 129 144 144 1.20E+3 6.98E+2 4.40E+2 25.68ˆ (15.55)ˆ
#7 LBFGS-r(50, 70, mt) 1.59E´1 5.66E´2 85 108 108 1.13E+3 6.17E+2 4.52E+2 29.03ˆ (16.50)ˆ
#8 LBFGS-r(50, 100, mt) 1.59E´1 5.51E´2 129 198 198 1.67E+3 1.19E+3 4.22E+2 15.12ˆ (11.16)ˆ
#9 LBFGS-r(50, 50, armijo) 1.59E´1 5.57E´2 124 437 134 3.05E+3 2.48E+3 4.94E+2 7.22ˆ (6.10)ˆ

TABLE 7.22 Analysis of computational cost and convergence for Gauß-Newton-Krylov and quasi-Newton for the
tumor inversion solver for analytic tumor / analytic velocity with non-zero diffusion (ATAV-DIF) test case. We
consider the same test case setting and a subset of the solver variations from Tab. 7.21; for more details, see above. We
report the objective function value and relative gradient for the tumor inversion sub-problem for every Picard iteration of
the joint inversion scheme. Furthermore, the number of Newton iterations, the number of objective function and gradient
evaluations and the number of state and adjoint solves is given, along with the reason for termination of the sub-component
optimization in every Picard iteration.

itsibia itN JT }gp}rel #state #adj Ttu
inv term. itN JT }gp}rel #state #adj Ttu

inv term.

GNK(50, 50, armijo) reference initial 1.63E+3 1

1 27 1.53E+2 9.97E´4 1572 1540 1.37E+4 conv.
2 4 9.86E+1 2.17E´3 115 46 9.65E+2 ls failed
3 4 3.58E+1 3.62E´3 124 51 1.07E+3 ls failed
4 2 1.06E+1 4.20E´3 97 29 8.01E+2 ls failed
5 2 6.86 3.41E´3 96 29 8.26E+2 ls failed
6 0 6.84 3.41E´3 73 8 5.19E+2 ls failed

LBFGS(50, 50, mt) reset mode LBFGS-r(50, 50, mt) recycle mode

1 51 1.60E+2 1.53E´3 53 53 2.84E+2 maxit 51 1.60E+2 1.53E´3 53 53 2.86E+2 maxit
2 14 1.03E+2 3.38E´3 67 67 3.77E+2 ls failed 23 1.02E+2 9.80E´4 29 29 1.63E+2 conv.
3 26 3.65E+1 7.75E´4 38 38 2.19E+2 conv. 14 3.531 9.31E´4 18 18 1.01E+2 conv.
4 23 7.55 9.59E´4 28 28 1.63E+2 conv. 10 7.15 8.46E´4 15 15 8.48E+1 conv.
5 10 4.00 9.04E´4 15 15 9.07E+1 conv. 7 3.51 8.16E´4 9 9 5.28E+1 conv.
6 1 3.99 6.25E´4 4 4 2.52E+1 conv. 1 3.49 6.23E´4 2 2 1.25E+1 conv.

LBFGS(50, 50, armijo) reset mode LBFGS-r(50, 50, armijo) recycle mode

1 51 1.60E+2 1.53E´3 104 53 3.96E+2 maxit 51 1.60E+2 1.53E´3 104 53 3.97E+2 maxit
2 14 1.04E+2 1.88E´3 127 15 3.45E+2 ls failed 16 1.03E+2 1.75E´3 134 17 3.68E+2 ls failed
3 26 3.60E+1 8.85E´4 106 28 3.63E+2 conv. 30 3.53E+1 8.65E´4 122 32 4.26E+2 conv.
4 24 7.30 8.48E´4 56 26 2.44E+2 conv. 16 7.12 8.75E´4 45 18 1.87E+2 conv.
5 11 3.82 9.87E´4 29 13 1.31E+2 conv. 9 3.61 9.83E´4 27 11 1.18E+2 conv.
6 2 3.81 7.80E´4 13 3 4.85E+1 conv. 2 3.55 7.48E´4 5 3 2.73E+1 conv.
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FIGURE 7.20 Gauß-Newton-Krylov vs. Quasi-Newton results for analytic tumor / analytic velocity with non-
zero diffusion (ATAV) test case. Convergence histories and numerical properties for Gauß-Newton-Krylov solver compared
with limited memory BFGS (LBFGS) quasi-Newton Method (Armijo and Moré-Thuente line-search). The black labels
indicate completion of Picard iterations of the joint inversion scheme.

significantly less line-search attempts for the recycle version. This can be seen from the reduced
number of state and adjoint solves and is ultimately reflected in the runtime. The number µ of stored
vectors used for the LBFGS update has a great influence on the method’s performance, especially if
recycling is considered; see Fig. 7.21 for an illustration. For the problem at hand, we observe best
convergence for µ = 70 stored vectors, resulting in an accumulated number of 85 Newton iterations
across all Picard iterations and a roughly 3 times faster accumulated runtime for the tumor inversion
compared to using µ = 30 vectors in the LBFGS update29. When using the recycle variant of the
LBFGS method, the parameter µ of stored and used previously seen difference vectors becomes
a tuning parameter. While restricting µ to a small number results in too limited information to
build a sufficient approximation of the inverse Hessian matrix, allowing too many (and probably
outdated) vectors in the LBFGS update may as well deteriorate the method’s convergence rate (from
the first throughout the last Picard iteration, the Hessian of the tumor inversion optimality system
may change significantly due to modified observation data). The increased number of line-search
attempts for run #8 compared to run #7 indicates that the approximation of the inverse Hessian is
corrupted due to outdated secant-information from an early stage of the joint inversion process.

Following our predominating objective of runtime reduction, we reach a speedup of a factor of 29
for the accumulated time spent in the tumor inversion solver when comparing the best LBFGS variant
from run #7 with the joint inversion run using a Gauß-Newton-Krylov solver using an upper bound
of maxitT = (50, 100) for allowed Newton- and Krylov-iterations, respectively. The overall achieved
accuracy for the joint inversion process with respect to the L2-mismatch for brain tissue label and
tumor probability maps is in fact slightly better for the runs using LBFGS. Looking at Tab. 7.22, we
further observe, that for Picard iterations k ě 2 the tumor inversion using the quasi-Newton solver
converges up to the prescribed gradient reduction, whereas the Gauß-Newton-Krylov solver leads to
termination due to line-search failure in these cases.30 The best configuration for the quasi-Newton

29Note that storing only µ = 30 vectors with a maximum number of 50 of allowed Newton iterations hardly allows for
retaining old vectors from previous Picard iterations.

30Due to our parametrization as superposition of Gaussian basis functions and their filtering with the brain geometry, the
tumor inversion process may generate negative probability for tumor, or, probability larger than one. This behavior is not
physical, and thus corrected (i.e., the initial condition is clipped to have values between zero and one) in the diffusion
solver. As a result, gradient and objective function do no longer correlate exactly, and, the GNK solver my produce
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FIGURE 7.21 Convergence histories for LBFGS quasi-Newton Method for the analytic tumor / analytic velocity
with non-zero diffusion (ATAV) test case and varying number µ of retained difference vectors in the least-squares
system. The black labels indicate completion of Picard iterations of the joint inversion scheme.

approach only requires about twice the number of Newton iterations if compared to the GNK solver.
A comparison and illustration of the solver convergence histories is given in Fig. 7.20. Lastly, we
studied the effect of the line-search method on the quasi-Newton performance. Our numerical results
confirm that using an Armijo line-search, which only enforces a sufficient decrease in the objective
function, is not sufficient for quasi-Newton LBFGS. We see a drastic increase in line-search attempts
(significantly more state equation PDE solves than adjoint equation PDE solves) for the Armijo
line-search runs #3 (LBFGS(50) reset) and #9 (LBFGS(50) recycle); compare also Tab. 7.22. For these
runs, steps of poor quality are taken and automatically incorporated in the Hessian approximation;
the self-correction property of the BFGS update formula, as well as its preservation of positive
definiteness is no longer given. Frequent line-search failures, degradation of convergence speed and
a longer overall runtime are the consequence (compare Fig. 7.20).

Conclusion For the ATAV test case, the quasi-Newton LBFGS solver clearly outperforms Gauß-Newton-
Krylov despite its slower convergence rate, due to significantly lower computational cost per Newton update, if
employed for the tumor inversion solver within the joint inversion scheme. We gain remarkably speedups of
factors between 10 and 29 (given that enough vectors are used for the LBFGS update). Recycling difference
vectors from converged solves of previous Picard iterations additionally fosters convergence of the method, but
renders µ to be a tuning parameter. We observe a speedup factor of 3.

Overall, the results suggest that the system Hessian for this problem can be effectively represented by a
low-rank approximation. Thus, different strategies31 for retaining previous information and, in particular,
subspace tracking methods that maintain a low-rank approximation of the inverse Hessian by periodically
updating a truncated SVD in between Picard iterations, might be promising. A brief description of these
approaches is given in §6.4.5; their implementation and numerical analysis, however, remains subject to future
work. In a similar way it might be worthwhile to investigate whether a single rank-m update (m ď µ number
of collected vectors) has an advantage over performing m sequential rank-1 updates.

Performance of Quasi-Newton LBFGS for Joint Inversion using Clinical Data.

Purpose. Real patient clinical data poses significant challenges on the tumor inversion solver. In
contrast to the synthetic cases, our simplistic biophysical tumor growth model now is at best a crude
approximation of the observations. Furthermore, all model parameters are unknown and suggested

slightly worse search directions. This highly depends on the given case.
31For example using only the first 5 difference vectors of every Picard iteration.



246 CHAPTER 7: NUMERICAL ANALYSIS: SIBIA

TABLE 7.23 Performance of Gauß-Newton-Krylov and quasi-Newton for the tumor inversion solver for real tu-
mor / real velocity (RTRV) test case; ground truth (ρ N/A, k N/A, p N/A, v N/A); based on real clinical data (taken
from [Goo13]). We set the tumor parameters to ρ f = 15, and k f = 1E´2 (DIF) or k f = 0 (REAC), respectively for
reaction-diffusion and reaction-only tumor inversion runs. We report the final data L2-mismatch after the joint inversion
(moving-patient) for brain tissue labels µB,L2 and tumor probability maps µT,L2 as well as (summed) number of Newton
iterations itN , (summed) number of state and adjoint evaluations, as well as (summed) timings for the joint inversion Ttot,
tumor inversion Ttu

inv, and registration Treg
inv , respectively in seconds. We give the speedup of the execution of the overall

time-to-solution Stot with respect to the Gauß-Newton-Krylov method. For Gauß-Newton-Krylov, we limit the number
of Newton and Krylov iterations to maxitT = (30, 60) and use the cheaper armijo line-search method. For LBFGS we
investigate different numbers µ P t10, 30, 50, 70u of stored vectors and also retain (up to µ) stored vectors from previous
tumor inversion solves across Picard iterations (recycle mode). The latter is denoted as LBFGS-r(50,µ,ls). We further use a
Moré-Thuente (mt) line-search method enforcing the Wolfe conditions, as required for quasi-Newton methods. For the
initial inverse Hessian approximation, we use TAO’s built-in Broyden scaling of the identity matrix with an additional
re-scaling; for details see §6.4.5 and [Ben03].

Method(maxitN , H, ls) µB,L2 µT,L2 itN #state #adj Ttot [s] Ttu
inv [s] Treg

inv [s] Stot

A
A

A
N

D
IF

#10 GNK(30, 60, armijo) 3.51E´1 3.55E´1 123 1119 776 1.87E+4 1.81E+4 3.53E+2 1.00ˆ

#11 LBFGS-r(30, 10, mt) 3.46E´1 2.74E´1 59 238 238 5.26E+3 4.72E+3 3.51E+2 3.56ˆ

#12 LBFGS-r(30, 50, mt) 3.47E´1 2.83E´1 51 241 241 5.23E+3 4.71E+3 3.43E+2 3.56ˆ

R
EA

C #13 GNK(30, 60, armijo) 3.49E´1 3.20E´1 186 1442 1226 9.06E+2 5.44E+2 3.44E+2 1.00ˆ

#14 LBFGS-r(30, 10, mt) 3.49E´1 3.08E´1 53 225 225 4.20E+2 4.76E+1 3.56E+2 2.15ˆ

#15 LBFGS-r(30, 30, mt) 3.48E´1 3.01E´1 68 259 259 4.11E+2 5.84E+1 3.38E+2 2.20ˆ

A
A

M
H D

IF #16 GNK(30, 60, armijo) 3.47E´1 2.22E´1 49 1224 827 2.04E+4 1.98E+4 3.47E+2 1.00ˆ

#17 LBFGS-r(30, 30, mt) 3.45E´1 2.03E´1 47 284 284 6.28E+3 5.74E+3 3.52E+2 3.25ˆ

R
EA

C #18 GNK(30, 60, armijo) 3.40E´1 1.65E´1 177 1777 1565 1.10E+3 7.43E+2 3.37E+2 1.00ˆ

#19 LBFGS-r(30, 30, mt) 3.37E´1 1.44E´1 61 79 79 3.85E+2 2.13E+1 3.49E+2 2.85ˆ

values might be arbitrarily wrong. As a result, more stress is put on the tumor inversion solver. We
want to study the performance of the LBFGS solver for actual clinical data and compare against
experiments obtained using the GNK solver.

Setup. We consider actual clinical data, i.e., a real tumor / real velocity (RTRV) test case based
on real clinical data (taken from [Goo13]) as described in §7.1.1. We employ the moving-patient
formulation, set the tumor parameters to ρ f = 15, and k f = 1E´2 (DIF) or k f = 0 (REAC),
respectively for reaction-diffusion or reaction-only tumor inversion runs. We use a regular Gaussian
grid determined by uniformly distributing np = 343 basis functions within the radius of the
tumor. We limit the number of iterations to maxitR = (10, 20) Newton- and Krylov-iterations for
the registration, and maxitT = (30, 60) Newton- and Krylov-iterations for the tumor inversion,
respectively.

Results. We report numerical results comparing LBFGS quasi-Newton and GNK for the tumor
inversion component of our joint inversion scheme for actual clinical data for two patients in Tab. 7.23.

Observations. Similar to the ATAV case, we observe better performance, both in terms of final
L2-mismatch for the predicted tumor probability map as well as the overall time-to-solution, when
using the LBFGS solver as opposed to the GNK solver. For patient ID AAAN, GNK (run #12) requires
about 5ˆ more state equation solves and about 3ˆ more adjoint solves than the quasi-Newton LBFGS
solver (run #13), which results in a speedup of a factor 3.5 for the overall time-to-solution of the joint
inversion process. At the same time the final reconstruction error for LBFGS is much smaller (35%
relative error for GNK compared to 27% relative error for LBFGS). Very similar observations can
be made from the reaction-only run as well as for the second patient ID AAMH. For all conducted
experiments, we arrive at a notably smaller final data-mismatch (i.e., at an improved solution of the
coupled multi-component problem) while significantly reducing the time-to-solution for the joint
inversion process (speedup factors of 2 ´ ´4). For the reaction-only runs of patient ID AAMH (runs
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#21 ´ #22) the quasi-Newton alternative reduces the number of state and adjoint solves by a factor of
over 20, and, if only considering the accumulated time spent in the biophysical inversion step, this
translates to a speedup of a factor of 35. For reaction-only runs, however, the computational cost for
the tumor inversion is dominated by the registration and small fluctuations in the computational
cost of the latter possibly overshadow higher speedups for the overall runtime.

Conclusion Considering quasi-Newton LBFGS as alternative to GNK to solve the non-linear tumor inversion
problem yields excellent results for synthetic cases where the true model and true parameters are known, as well
as for actual clinical imaging data of glioblastoma patients, where our simplistic tumor growth model is at best
a crude approximation of the true underlying dynamics. Using LBFGS, we observe speedups of factors between
4 and 16 for the time-to-solution of the joint inversion process and in some cases much higher speedups for the
accumulated time spent in the tumor inversion solve. LBFGS converges to the prescribed relative gradient
tolerance more frequently than the GNK counterpart and less often terminates due to line-search failure. The
achieved overall accuracy of the final solution is typically higher when LBFGS is employed—for the real patient
cases this is more pronounced.
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Conclusion: Advanced Methods

We have investigated various methods that enhance our joint inversion scheme, increase its performance,
significantly reduce its required time-to-solution, or facilitate a better understanding and a deeper
analysis of the scheme. Here is what we have learned:

(i) We significantly reduce the time-to-solution for our scheme, using a grid-continuation (multi-level)
approach and replacing the GNK solver for the tumor inversion by an advanced quasi-Newton
LBFGS solver. We reach excellent speedups of up to a factor of 5 for grid-continuation and an
additional speedup factor of up to 16 for the overall time-to-solution of our inversion scheme (ATAV
test case), if replacing GNK by the cheaper LBFGS solver for the tumor sub-component. We
observe speedup factors of the tumor inversion solver alone of up to 30. For clinical patient data
quasi-Newton LBFGS still reduces the overall time-to-solution of the joint inversion by a factor of
4.a

(ii) The initial guess for the approximation of the inverse Hessian and the number of used vectors for
the LBFGS update are critical factors influencing the convergence of the LBFGS method. For the
initial Hessian approximation, we found a sophisticated Broyden scaling of the identity to perform
best. Convergence is improved if many vectors are used for the Hessian update. In particular, we
found that recycling vectors from previous inversion solves (with slightly modified input data)
has the potential to speedup the runtime by a factor of up to 3. In general, our experiments show
that quasi-Newton is a good alternative which outperforms GNK for our application problem
and solution scheme. The results further suggest, that the inverse Hessian may be efficiently
approximated by a low-rank representation and other strategies to retain Hessian information from
previous inversion solves, such as an updated SVD subspace tracking method, may be beneficial.

(iii) Enhancing the tumor inversion solver objective function by including the brain data-misfit to
resemble a block-Newton scheme of the coupled formulation did not show any advantage over the
simplified method employed in large parts in this chapter.

(iv) Lastly, convergence and final solution of our joint inversion scheme depend on the particular
parameter-continuation scheme employed for the regularization weights. Specifically, we found that
additional continuation on the tumor regularization weight βp is not recommendable and using an
optimal (small) regularization weight from the beginning of our joint inversion iteration yields best
results.

aNotice, that the smaller speedup factor is due to the limited number of Newton and Krylov iterations for the real
data test cases and occasionally occurring line search failures.
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8 Conclusion

Under the heading of numerical assessment and simulation of interacting multi-component
systems, we have targeted two distinct strongly coupled application problems:

I. Surface-coupled multi-physics simulation, in particular, fluid-structure interaction

II. Brain tumor biophysical parameter inversion coupled with medical image registration

Both problems feature strong mutual interactions, are inherently hard to solve and result in
formidable systems of coupled PDEs, requiring advanced and tailored solution approaches. In
this thesis, we developed highly efficient and accurate modular algorithms to tackle both problems.
Primary design goals included

• high accuracy to realistically capture coupled effects and phenomena and meet the applications’
requirements;

• high efficiency and parallel scalability to enable solving the challenging systems with ex-
tremely large data-sets and billions of unknowns in tolerable runtime, which is crucial in
particular in clinical settings, but also in engineering applications.

• robustness to cope with varying input data and problem settings;

• modularity to foster flexibility and adaptability to different problem settings, and reduce the
development time.

We focus on the development of solution methodologies that combine efficient sub-component
solvers in a modular way to solve the strongly coupled multi-component problems. In doing so, we
are the first to solve the joint registration and biophysical inversion problem by employing gradient
based optimization and we lift robustness and parallel scalability of quasi-Newton methods for
partitioned surface-coupled multi-physics simulations to a new level. Inexact-Newton and quasi-
Newton methods catch attention within this work as they are an essential ingredient for the solution
approaches of both application problems.

In what follows, we summarize the main contributions and conclusions obtained within this
work. We discuss the practical relevance of the developed methodologies and tools, address
limitations, and give recommendations for future work.

8.1 Part I. Partitioned Coupling of Multi-Physics Simulation

The first part targets general purpose black-box coupling functionalities and emphasizes on ad-
vanced quasi-Newton coupling schemes to establish surface-coupling for partitioned multi-physics
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simulations. Main challenges were to develop robust and scalable methods that cope with strong
instabilities and hidden solver internals by only requiring input/output relations of the solvers.
Quasi-Newton methods have been shown to effectively solve this task; their convergence, however, is
very sensitive to certain problem dependent parameters and parallel scalability is often limited. The
derivation of robust and efficient quasi-Newton alternatives that are feasible in a large-scale, parallel
setting, was a challenging task.

8.1.1 Contributions and Practical Relevance

Part I: Contributions

The most important contributions are:

• To obtain improved parallel efficiency, we switch from a serial Gauß-Seidel-type execution order to
a parallel Jacobi-type scheme [Lin15; Sch15].

• We developed coupling schemes for partitioned fluid-structure interaction simulations. In par-
ticular, we derived highly robust and efficient advanced quasi-Newton methods to accelerate the
non-linear fixed-point equation coupling. Based on previous work [Sch15], we propose two robust
and scalable new quasi-Newton methods: (i) a matrix-free Multi-Vector-Update (MV) restart
alternative (RS-SVD) based on a sophisticated subspace-tracking technique to retain information
across restart borders [Sch17], and (ii) a Least-Squares (LS) method with powerful filtering of
quasi-Newton input vectors. Both allow to effectively reuse information from previous time steps
in a robust way without parameter tuning, feature linear complexity in the number of unknowns
and a highly scalable parallelization up to 2, 048 tasks. We extensively evaluate the numerical
properties and convergence of the herein developed advanced quasi-Newton methods. We analyzed
the sensitivity of a large variety of quasi-Newton methods with respect to the amount of retained
information from the past, and the effect of stabilizing filtering techniques to eliminate linear
dependencies [Hae15].

• The discussed quasi-Newton coupling schemes have been realized on distributed memory and
integrated within the general purpose black-box coupling library preCICE [Bun16b; Sch17;
Bun16a].

In the following, we give more details and share the most crucial conclusions alongside with some
practical implications.

The commonly used Least-Squares (LS) method benefits greatly from explicit reuse of past
information in time-dependent simulations, and can be realized very efficiently in a matrix-free way.
The optimal amount of reused information, however, is highly problem dependent and requires
costly tuning. Its convergence properties furthermore sensitively depend on a powerful filtering
technique for input information to maintain stability. The MV method developed in [Sch15] alleviates
these drawbacks by implicit reuse of past information, but features quadratic storage and runtime
complexity. This renders the original method infeasible for large-scale simulations. Based on an
efficient (decomposed) representation of the inverse Jacobian in conjunction with periodic restarts,
we reduced the computational complexity from a quadratic to a linear one. To maintain the good
MV convergence properties, Jacobian information is retained across restarts via a sophisticated
SVD-based subspace tracking method (RS-SVD). The SVD updating step has cubic complexity in the
rank κ of the truncated SVD representation of the Jacobian and requires a rank substantially smaller
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than – and in particular independent of – the number of unknowns. We observed small ranks for
all conducted experiments, independent of the mesh-resolution. This results in mesh-independent
convergence and O(N) overall complexity and allows for large-scale simulations (where MV is not
feasible). We reported numerical results to compare different restart alternatives for the MV method
with respect to convergence speed and efficiency, and concluded that the RS-SVD method achieves
good MV convergence and outperforms all other approaches.

We conducted an extensive numerical analysis of LS(ξ) (with reuse of information from ξ

previous time steps) and the MV RS-SVD approach with respect to their convergence, their overall
efficiency, their dependency and sensitivity to an efficient filtering method as well as to their parallel
scalability and runtime. We observed that the MV RS-SVD method is highly robust without the
need for additional filtering or tuning of problem dependent parameters, and is powerful enough to
allow for small restart periods (memory efficiency). In terms of runtime and efficiency, we achieved
a reduction in runtime per iteration of 87% when using the RS-SVD method as opposed to the MV
method for the three-dimensional flexible tube FSI scenario with 9, 600 unknowns1. Due to the linear
complexity of RS-SVD and its excellent parallel efficiency, we can produce arbitrarily high speedups
by increasing the number of unknowns. By choosing a large reuse ξ Ñ 8 in conjunction with the QR2
filter method, we were able to showcase excellent robustness for the LS method. The large number
of vectors in the least-squares system (and triggered re-computations of the QR-decomposition),
however, drastically increases the computational complexity per iteration and renders the method
inferior to MV RS-SVD.

Practical Relevance. The general purpose coupling library preCICE in which we implemented
the new quasi-Newton methods is of great relevance in setting up parallel multi-physics simulations
with minimal development effort by re-using existing, highly sophisticated solvers. The software
is widely used and has a growing number of users. The terms generic and black-box are crucial
here. The coupling numerics are a main building block, and hidden solver internals of the black-box
approach render an efficient coupling challenging. The herein developed methods and advanced
features provide a powerful tool for generic black-box coupling. They have been implemented in
parallel, and allow for highly scalable, massively parallel execution. The developed methods within
this work enhance preCICE to establish a consistent coupled solution of even strongly interacting,
yet partitioned physical fields within a small number of coupling iterations. The excellent parallel
scalability of the coupling numerics allow to exploit the full parallel potential of sub-component
solvers.

One might argue that the costs for coupling numerics at a lower-dimensional surface are always
neglectable and not worth the effort invested in our work. This statement, however, is wrong for two
reasons: (i) The number of required coupling iterations is absolutely critical as every extra iteration
corresponds to solving a full implicit time step in the involved single-physics sub-components,
and trial-and-error parameter tuning is not an option. (ii) When going to large-scale simulations
and massively parallel execution (more than a few thousand cores), the time spent in the coupling
component is no longer neglectable (compared to the runtime of the single-physics solvers) [Uek16].
The linear complexity of the herein proposed methods and their good parallel scalability is therefore
essential for large-scale simulations.

1The original MV methods becomes infeasible beyond this point. For the MV RS-SVD method, we scaled up to 307, 200
interface unknowns for this scenario.
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8.1.2 Limitations and Recommendations for Future Work

Limitations. We have evaluated our methods and demonstrated their performance for a number
of challenging, strongly coupled FSI simulations that feature a lot of the typical characteristics
observed in partitioned multi-physics. Thereby, we observed some dependencies of our methods
on the utilized sub-solvers, e.g., the quality of the employed mesh-movement. Therefore, the
proposed methods need to be thoroughly evaluated in different settings, i.e., different multi-physics
applications and different employed sub-component solvers, in order to claim their excellent generic
performance. In particular, the RS-SVD method is only efficient if the problem can be effectively
approximated by a low rank model, and in particular the rank of the truncated SVD remains small
and mesh-independent. Although this holds true for the here considered FSI scenarios, this property
needs to be evaluated for a broader family of multi-physics problems.

Recommendations for Future Work. The above described limitations directly offer possibilities
for future research. Another very promising aspect is the investigation of a multi-level approach
in conjunction with the presented quasi-Newton methods. The manifold mapping method [Blo14a;
Blo15a; Blo14b] realizes such a multi-level concept by relying on solutions of a surrogate (coarse
model) of the high fidelity model to update the latter in a defect-correction manner. A manifold
mapping method which employs the herein developed advanced quasi-Newton methods as coarse
model solvers has been implemented within this work into preCICE with promising preliminary
results [Blo15b]. The investigation of different solver combinations, effects of reuse of past information
and filtering is very promising to further speedup the coupling numerics for partitioned multi-physics
simulations.

8.2 Part II. Coupling of Bio-Physical Brain-Tumor Models with
Medical Image Registration

The second part targets MR image analysis of glioblastoma multiforme pathologies and patient
specific simulation of brain tumor progression. We approach this highly involved and sophisticated
physiological phenomenon using a joint medical image registration and biophysical inversion strategy.
We focus on two main application goals, (i) biophysics aided normal-to-abnormal registration, and
(ii) parameter estimation and biophysical model calibration. Both target at facilitating diagnosis,
aiding and supporting surgical planning, and improving the efficacy of brain tumor therapy. Our
problem formulation results in a large-scale, highly non-linear and non-convex PDE-constrained
optimization problem, which we decomposed into two tightly coupled inverse problems. The
joint biophysical inversion and registration approach is novel. We simultaneously invert for a
parametrization of the initial condition for the tumor model and a smooth velocity field to capture
the inter-subject variability of brain anatomy. With this approach, we are the first to solve the inverse
tumor-growth problem based on a single patient snapshot with a gradient-based approach.
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8.2.1 Contributions and Practical Relevance

Part II: Contributions

The most important contributions are:

• We developed the SIBIA framework for integration of biophysical inversion and medical image
registration to be applied in brain tumor MR image analysis. It features reliable, highly efficient,
and highly scalable solvers to tackle the formidable coupled multi-component optimization problem
of joint tumor inversion and medical image registration. Such solvers can be used either to transfer
spatial (structural or functional) information from a statistical atlas brain to the specific patient
brain (where the grown tumor alters the brain topology), or for tumor-growth inversion for model
calibration based on a single snapshot in time. We are the first to solve this problem employing a
gradient based approach [Sch].

• We deduced two formulations for the coupled multi-component problem, focusing on the two
application goals – (i) the quality in normal-to-abnormal registration, and (ii) the biophysical
parameter inversion and model calibration for patient specific simulations and prediction.

• We derived a modular Picard iteration-type solution strategy for each formulation, based on
the two sub-components inverse tumor-growth simulation and image registration. We showed
(mesh-independent) convergence of both schemes by monitoring the reduced gradient of the
coupled problem formulations. The modular approach allows for great flexibility in the employed
biophysical model and registration approach, but also the concrete realization of the underlying
solvers.

• We demonstrated the validity and efficiency of our approach by thorough numerical analysis
on synthetic and actual clinical data sets. We compared both schemes with regards to quality and
suitability for normal-to-abnormal registration and the potential suitability for the reconstruction
of clinically relevant or diagnostically meaningful information.

• We optimize the parallel, distributed memory solvers and algorithms to achieve excellent parallel
scalability and significantly reduce the time-to-solution. Here, we reach a speedup factor of
10-20 for the time-to-solution by employing quasi-Newton methods and a multi-level strategy
with gradually improving coarse level solutions for the non-linear optimization.

In what follows, we go into more detail for some of the aforementioned points, outline the most
crucial conclusions, and discuss practical relevance.

Our work improves the approach in [Bak15; Kwo14; Hog08a; Goo13] in terms of formulation of
the problem, employed algorithms and solvers, scalability, and performance, and overcomes some of
the shortcomings of the existing approaches. We employ and design very efficient algorithms that
make use of gradient-based optimization and are scalable to hundreds of thousands of cores [Man16b;
Gho17c]. Globalized inexact Newton methods such as the Gauß-Newton-Krylov method and quasi-
Newton methods are a core ingredient of our solver. In particular, our methodology integrates one
of the most advanced state-of-the-art algorithms for constrained large deformation diffeomorphic
image registration [Man18a].

The formulation of the complex problem is not straightforward. We propose two formulations,
(i) the so-called moving-patient formulation intended for normal-to-abnormal registration, and
(ii) the so-called moving-atlas formulation, meant to improve the reconstruction of biophysical
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parameters and help to extract clinically meaningful information. A Newton-type monolithic solver
for the coupled formulation would have promised rapid convergence, but its development and
efficient realization is highly involved. To account for ever changing models for registration and
tumor progression and foster a short development time, we thus deduced modular Picard iteration-
type solution strategies and gain great flexibility by exploiting sophisticated sub-component solvers.
The solution of our application, however, requires a tight integration of both components, adaption of
solvers, and integration of tailored features. We enhanced the registration to integrated information
of the tumor solver within the solution process. To account for the non-linearity and non-convexity
of the problem, we integrated a parameter-continuation scheme for the regularization parameter of
the registration and a grid-continuation scheme into the Picard iteration-type methodology.

Our scheme is capable of automatically processing (segmented) actual clinical imaging data
of arbitrary mono- and multi-focal brain tumor malignancies without manual seeding. This is
enabled by a parametrization of the tumor initial condition and automatized, data-driven selection
of basis functions. This also drastically reduced the number of inversion variables. To improve
the reconstruction of clinically meaningful and relevant biophysical parameters, the moving-atlas
scheme is used in combination with a sparsity constraint (L1-regularization) for the unknown initial
condition of the tumor. By employing the sparsity constraint, the time horizon of the tumor growth
can be fixed to the time-point of initial cell mutation (tumor genesis).

By thorough numerical analysis, we demonstrated the quality, validity and efficiency of our
solution schemes. Empirically, we showed convergence of the reduced gradient of the respective
fully coupled formulation and, thus, convergence to a local minimum. We furthermore attested a
mesh-independent convergence rate of our scheme. We concluded that our moving-patient Picard
iteration solution scheme is a very powerful tool for inter-subject normal-to-abnormal registration
as used in automated segmentation tools. Our numerical study, which includes actual clinical
data with real tumors, showed that we can achieve high-fidelity results for the normal-to-abnormal
registration application scenario with an overall low mismatch and high Dice scores, ranging from
7.94E´1 to 8.45E´1 for real clinical cases. In particular, plain-vanilla registration without biophysical
augmentation failed in the vicinity of and the area occupied by the pathology for the presented
problems. For the simulated and observed tumor, we achieved extremely high similarity of around
98% overlap for real complex-shaped tumors if sufficiently many Gaussian basis functions are used.
The simplistic reaction-diffusion tumor-growth model is sufficient if we are primarily interested in
good visual reconstruction and data similarity. This is quite certainly not true if we target parameter
identification and patient specific tumor growth prediction to aid clinical decision making.

With a view towards diagnostic relevance, we analyzed the quality of the results obtained from
the moving-atlas formulation. This modified scheme clearly showed improvements in terms of
biophysical parameter estimation compared to the moving-patient scheme. For artificial test cases
where the ground truth is known2, we showcased improved reconstruction of the brain anatomy, and,
in particular, the anatomy of the (unknown) healthy patient brain. Most importantly, we observed
improved tumor reconstruction and the scheme exhibits convergence of the reconstructed initial
condition towards the actual ground truth initial condition. That means, that as opposed to the
moving-patient scheme, this improved formulation is capable of reconstructing the actual biophysical
parameters if the correct type of model (i.e., reaction-diffusion, etc.) is known. We want to emphasize
that these are preliminary results that serve as a proof-of-concept and by no means clinically relevant.
However, the results demonstrated the validity of our developed solution strategy. The integration

2By this we mean that no modeling error for the tumor growth simulation is present, i.e., in case tumor-growth was
accurately and truly described by a reaction-diffusion process
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of more complex tumor progression models contains great potential.
In clinical practice, high accuracy and time-to-solution are critical. We therefore opt for highly

efficient and scalable algorithms that allow for a short time-to-solution to process high resolution
data. We presented efficiency and scalability results for the registration solver and the tumor
inversion solver for up to 16 thousand cores and 200 billion unknowns (problem size 64 times larger
than state-of-the-art). For clinically relevant test cases, SIBIA is up to eight times faster than the
state-of-the-art. In an attempt to further reduce the time-to-solution, we replaced the GNK solver for
the tumor inversion by a quasi-Newton LBFGS alternative. Inspired by the findings for quasi-Newton
methods used to accelerate fixed-point iterations, we recycled information from previous Picard
iterations (i.e., previous tumor inversion solutions with slightly modified data)3. Together with a
grid-continuation multi-level approach, we reach speed-up factors of 10 ´ 20.

Practical Relevance. Implications for the practical relevance of the developed methodology emerge
from the stated contributions and limitations. For clarity, we repeat the most important points. The
developed joint inversion scheme is capable to automatically analyze mono- and multi-focal brain
tumor MR imaging data. The excellent performance for biophysically aided normal-to-abnormal
registration is valuable for automated segmentation and the mapping of structural and functional
information from expert-labeled atlas brains to specific patient brains. This finds application in
surgery planning. The capabilities for biophysical inversion are still limited and the employed model
is too simplistic to be clinically meaningful or predictive. However, SIBIA has been used in first
tests and cross-validation with clinical observations at the radiology institute of the University of
Pennsylvania. The methodology exhibits high potential if used with a more complex tumor model.
We solve the challenging problem on 128 cores in about an hour. The response time as well as the
required compute system is feasible for clinical application.

8.2.2 Limitations and Recommendations for Future Work

Limitations. First and foremost, we want to emphasize that within this work we developed
a new methodology for a previously unsolved problem. The results are clearly preliminary and
our methodology is not yet sophisticated enough to be predictive or applicable in clinical practice.
This work primarily has to be seen as a proof-of-concept and foundation towards a powerful tool
in computational oncology. In the sequel, we summarize the main limitations. (i) Our tumor
model is very simplistic and clearly not predictive. It does not model edema, necrosis, angiogenesis
and chemotaxis and is lacking a description of tumor mass-effect. This is an essential restriction
and primary cause for limited clinical relevance. More complex models that account for such
phenomena are expected to enhance our scheme to be predictive. (ii) Further, multimodal input
data from different MRI modalities cannot be processed as of now. The input is assumed to be a
set of probability distributions for each brain tissue and actual tumor concentration values. (iii) It
is (in general) not possible to simultaneously invert for the cell proliferation and net migration of
malignant cells into the surrounded healthy tissue. Nonetheless, for our methodologies we need
to somehow estimate the correct proliferation rate (reflected by the reaction coefficient ρ) of the
given tumor (while inverting for the net migration rate, reflected by the characteristic diffusivity
k f ). (iv) Lastly, we exclusively consider a deterministic problem formulation. In reality, however,
all quantities and models, i.e., the measurement of the observed data, the mathematical model for
the description of the underlying process, the model parameters, and the inversion algorithm itself

3This new recycle feature is implemented in the latest release of PETSc’s TAO package.
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are subject to uncertainties due to noise, modeling error or numerical errors. Thus, instead of point
estimates for our quantity of interest, confidence intervals are required, in order to allow for an
uncertainty quantification and propagation from the input to the quantity of interest.

With respect to our solution strategy and the employed Picard iteration-type scheme, we note that
we do not have a theoretical proof for the convergence of our Picard iteration-type solution scheme,
but provide empirical evidence for convergence. Our block-Newton scheme does not fully inherit
the Newton-like rapid quadratic convergence, however converges fast to the practically required
accuracy in a mesh-independent way. We have not compared our scheme to other approaches, e.g., a
monolithic Newton solver, as such solvers do not exist for our application problem. An inherent
problem in non-linear and non-convex optimization is, that we can only guarantee convergence to a
local minimum. However, we reduced the chance of getting trapped in local minima by applying of
parameter- and grid-continuation schemes.

Recommendations for Future Work. The above described limiting factors of our joint registration
and biophysical inversion approach directly suggest specific improvements and promising ideas for
future work. As motivated above, a more sophisticated tumor-growth model is absolutely critical.
In particular, the tumor-growth induced deformation of brain parenchyma (mass-effect) needs to
be addressed, alongside with a model to describe edema, necrosis, angiogenesis and chemotaxis.
Further, support for multimodal input data is recommended to maximize the amount of usable input
information. To account for uncertainties, our deterministic inversion approach can be combined
with statistical inference methods, such as Bayesian posterior sampling [Mar12; Pet14]. Our method
inverts for the initial condition of the tumor and the characteristic net migration of malignant
cells into surrounding healthy tissue. Simultaneously inverting for the proliferation rate results
in an ill-posed problem with non-unique solution. We propose a continuation scheme to recover
the correct proliferation rate ρ: Starting with ρ = 1, we perform a series of joint inversion runs,
successively doubling the proliferation rate ρ until the maximum value of the initial condition is less
than 14. Thereafter, a binary search is applied to find the value for ρ which results in the lowest
data-mismatch.

Furthermore, several directions for further investigation and room for improvement arise in terms
of our joint inversion solution strategy. To back up theory, a rigorous proof for convergence of our
Picard iteration-type solver to a solution of the coupled formulation is desirable. We discovered that,
instead of accurate sub-component solutions in every Picard iteration, inexact solutions potentially
improve convergence and yield an overall more efficient solver. In particular, “over-solving” the
current state in a sub-component or “over-fitting” could be avoided. Preliminary results show, that,
by performing only two Newton iterations per sub-component solver and Picard iteration, sub-
component gradient oscillations can be damped effectively and convergence is improved. A thorough
analysis of a scheme using inexactness in the sub-component solvers is highly recommended. Also
acceleration methods such as used in FSI (part I) used to speed-up the convergence of the Picard
scheme might be worthwhile to investigate. For the sake of comparison (of convergence and obtained
solution), a monolithic Newton solver which tackles the coupled formulation and the thereof resulting
optimality system of non-linear, strongly coupled PDEs at once, is of increased interest.

For the currently employed scheme, modification (advection, re-selection) of the Gaussian basis
functions for the tumor parametrization according to changed input data (for moving-patient) or
modified simulation geometry (for moving-atlas) should be considered. We effectively employed

4A too low value for the proliferation rate ρ causes the tumor inversion solver to create initial conditions with unreasonable
values that are much larger than 1.
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an LBFGS solver for the inverse tumor-growth problem, which recycles information from previous
inversions (of preceding Picard iterations) with slightly different data. We believe that the Hessian
matrix can be approximated by a low-rank matrix representation; an SVD subspace-tracking approach
as developed in Chapter 2 might be beneficial to further speed-up convergence.

8.3 Quasi-Newton Schemes for Fixed-Point Eq. and Optimization

In Chapter 2, we furthermore looked at different quasi-Newton methods applied in (i) accelerating
fixed-point iterations for surface coupling of partitioned multi-physics applications, and (ii) non-
linear, PDE-constrained optimization.

8.3.1 Contributions

Quasi-Newton: Contributions

The most important contribution is:

• We gave a lucid overview of, and compare the methodological components and characteristics of
quasi-Newton methods utilized for acceleration of non-linear fixed-point problems and in PDE-
constrained optimization. In our discussion, we aligned the notation from two different application
fields, relate the LBFGS method to the Multi-Vector Update (MV) method, and outlined their
commonalities and differences. This allows for the development of new methods and strategies
that allow both worlds to benefit from each other.

Quasi-Newton methods are of great importance in both accelerating non-linear fixed-point
iterations and non-linear optimization. Yet, both fields use fairly different formulations and method
names. We align the notation, analyze the methodological components and outline similarities
and differences. The LBFGS method can be seen as a symmetrized MV update, but instead of
performing one rank-k update, LBFGS performs k successive rank-1 updates. We showed that this
is not equivalent. This very fact also explains why LBFGS copes without the need of a stabilizing
filtering technique. Primary factors that influence convergence for LS and MV is the amount η of
retained previous information and the quality of the filtering technique. For LBFGS (when applied
to optimization problems), the initial inverse Hessian approximation is critical; while in the fixed-
point acceleration context, MV and LS work fine with a trivial initial guess for the inverse Jacobian
matrix (i.e., M´1 = 0), LBFGS for non-linear optimization fails unless a good initial guess can be
provided. Our work allows to easily access similarities and differences of established methods in the
respective fields and, in particular, lays the basis for strategies of how the different application fields
may benefit from each other. This is what we discuss next.

8.3.2 Resulting Ideas for Future Directions

Answering the question of how established quasi-Newton methods for fixed-point acceleration of
partitioned multi-physics application could benefit from the “optimization world”, the most obvious
point is the investigation of better initial guesses for the approximation of the inverse Jacobian.
Although methods like LS and MV work fine with a zero initial guess, considering some of the more
advanced techniques used for LBFGS in PDE-constrained optimization might entail a significant
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convergence improvement for the former, due to a better, informed initial guess. Problem dependent
as well as the generic Broyden-scaling approaches are worth further investigation.

On the other hand, LBFGS can be modified in several ways to potentially make better use of past
information. First, modifying the method to perform a single rank-k update rather than applying k
successive rank-1 updates, might improve the method’s robustness. We have learned that, in doing
so, the MV method achieves much better robustness. In this case, filtering might become necessary
to ensure linearly independence of information. Furthermore, if used in a data assimilation context
as given in part II of this thesis, LBFGS might benefit from different reuse strategies. In particular,
retaining information from previous (similar) optimization solutions can speed-up the convergence
and allow for informed, good initial inverse Hessian approximations. We verified this for the tumor
inversion problem. In this context, a subspace tracking method similar to the restart-strategy applied
for the MV RS-SVD method can help to retain the most important information across optimization
cycles (Picard iterations in the SIBIA context) in an implicit way.
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