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Abstract
Macrophages are cells with remarkable plasticity. They integrate signals from their microen-

vironment leading to context-dependent polarization into classically (M1) or alternatively

(M2) activated macrophages, representing two extremes of a broad spectrum of divergent

phenotypes. Thereby, macrophages deliver protective and pro-regenerative signals

towards injured tissue but, depending on the eliciting damage, may also be responsible for

the generation and aggravation of tissue injury. Although incompletely understood, there is

emerging evidence that macrophage polarization is critical for these antagonistic roles. To

identify activation-specific expression patterns of chemokines and cytokines that may con-

fer these distinct effects a systems biology approach was applied. A comprehensive litera-

ture-based Boolean model was developed to describe the M1 (LPS-activated) and M2

(IL-4/13-activated) polarization types. The model was validated using high-throughput tran-

script expression data from murine bone marrow derived macrophages. By dynamic model-

ing of gene expression, the chronology of pathway activation and autocrine signaling was

estimated. Our results provide a deepened understanding of the physiological balance lead-

ing to M1/M2 activation, indicating the relevance of co-regulatory signals at the level of Akt1

or Akt2 that may be important for directing macrophage polarization.

Author Summary

Macrophages are essential cells of the immune system and indispensable for a defense
against bacterial infection. They reside as resting, immune modulatory cells in several tis-
sues of the human body where they continuously sense inputs from their local environ-
ment. They react to stimuli such as toxins, injury or bacterial products in a process
termed macrophage activation or polarization. For example, the bacterial component
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lipopolysaccharide induces so-called classical activation of macrophages into the M1 phe-
notype that secretes a number of inflammatory cytokines and chemokines leading to
killing of bacteria and resolution of inflammation. Another prominent phenotype of mac-
rophages is the M2 polarization state that is associated with wound healing and tissue
regeneration. Unbalanced activation of macrophages is implicated in a number of diseases.
An improved knowledge and extensive characterization of these macrophages as well as
the factors determining their phenotypes will improve the understanding of the role of
macrophages in disease progression.

Introduction
A large part of macrophage populations originate from monocytes released from the bone mar-
row that upon injury or inflammation migrate into several tissues of the body such as lung,
liver, spleen, lymph node, bone or the central nervous system [1, 2]. As it harbors the body’s
largest pool of sessile tissue macrophages the liver owns a distinguished role within the macro-
phage system. Lineage tracing experiments [3, 4] suggest that under homeostatic conditions
macrophages recruited from circulating monocytes are of minor importance for maintenance
of the population of tissue resident liver macrophages (also termed as Kupffer cells). These
cells have janitorial and immune regulatory functions but play a subordinate role for induction
and regulation of inflammatory reactions evoked by tissue injury. The latter is mainly adopted
by macrophages recruited to the liver from circulating monocytes. They play a critical role for
the generation and control of inflammatory reactions that either cause and aggravate tissue
injury or mediate processes required for tissue repair [3], which are also the basis for the
unique capability of the liver to regenerate [5].

These diverging functions of macrophages, being either responsible for induction and
aggravation of tissue injury or for induction and maintenance of repair processes, are attrib-
uted to the fact that macrophages exhibit a remarkable plasticity and can embrace a large
spectrum of different activations states and functions. They can be activated by a variety of
external stimuli including microbial products, nucleotide derivatives, growth factors, gluco-
corticoids as well as cytokines and change their physiology in response to these environmen-
tal factors [6]. Macrophages are classified into classically activated macrophages (M1) or
alternatively activated macrophages (M2) [7] representing the two poles of a continuous
spectrum of polarization states [8]. In accordance with experimental guidelines that have
been published recently, the M1 polarization of macrophages can be triggered by stimulation
with lipopolysaccharide (LPS) and/or IFNγ [6]. These cells exhibit microbicidal or tumorici-
dal activity, and secrete high amounts of pro-inflammatory cytokines and upregulate the
surface marker CD69. Contrariwise, M2 polarization of macrophages can be induced by
stimulation with the two interleukins (IL) IL-4 and IL-13. Among others, these cells are char-
acterized by enhanced expression of the mannose receptor (CD206) and by increased argi-
nase activity [1, 9, 10].

The toll-like receptor 4 (TLR4) pathway in M1 macrophages that is induced in response
to LPS stimulation is quite well characterized [11, 12]. It primarily leads to activation of the
transcription factors NF-κB and interferon regulatory factor 3 (IRF3) [11] which in turn are
involved in the regulation of gene expression including that of interferons [13], pro-inflamma-
tory cytokines such as IL-1β, IL-6 and TNFα [14, 15] and chemokines [16]. Other key proteins
that regulate amount and duration of transcript expression during an inflammatory response
towards bacterial or viral infections are the p38 mitogen-activated protein kinase (p38MAPK) as
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well as the p38MAPK-activated protein kinases MK2 and MK3 [15, 17–22]. For a functional
inflammatory response, LPS needs to successively trigger autocrine and paracrine signaling
events that are critical for regulation of the initiation, the propagation and, finally, also the res-
olution of an inflammatory response. A cytokine which is critically involved in the resolution
of an inflammatory response and controlled via such autocrine cycles is the anti-inflammatory
cytokine IL-10. Lack of this cytokine or specific deletion of its major effector protein, the tran-
scription factor (TF) signal transducer and activator of transcription (STAT)3 in macrophages
[15, 23–25], results in an overwhelming and deleterious inflammatory response towards patho-
gens or pathogen stimuli such as LPS. The expression of this cytokine and subsequent activa-
tion of STAT3 requires the auto- and/or paracrine activation of the type I interferon receptor
(IFNAR) via LPS-induced release of type I interferons (IFN) such as IFNβ. Activation of
IFNAR has been demonstrated to be a prerequisite for LPS-inducible expression of interleukin
10 (IL-10) and subsequent activation of STAT3 [15, 17, 26]. The molecular mechanisms
involved in the induction of alternatively activated M2 macrophages by IL-4 and IL-13 are less
well characterized. Identification of the mannose receptor as a marker protein for alternative
activation of macrophages was first proposed by Stein et al. [9]. Apart from this receptor, argi-
nase 1 (Arg1), the chitinase-like molecules Ym1 and Ym2, as well as Fizz1 [27] have been iden-
tified as genes characterizing the M2 phenotype. M2 macrophages are generally involved in
homeostasis, wound healing and tissue repair [28], but are also implicated in pathological pro-
cesses like asthma and allergy [29]. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway
is activated both after stimulation with LPS [30–32] and IL-4/13 [33]. Knockout studies dem-
onstrated an important role of the two isoforms Akt1 and Akt2 in macrophage polarization
[34, 35].

To illustrate the relevance of macrophage polarization, the liver may be a good example as it
clearly is central for the control of the systemic acute phase response. The maintenance of a
critical balance of pro-survival and pro-apoptotic as well as pro- and anti-inflammatory signals
in the liver is essential as dysregulation can have detrimental effects and might lead to organ
damage [36]. Risk factors such as alcohol abuse, intake of drugs or toxins, obesity, and chronic
HBV/HCV infection can disturb this balance and might develop into chronic hepatitis leading
to liver fibrosis and, in the final stage, liver cirrhosis and organ failure [37]. All these conditions
involve chronic activation of inflammation and, as a result of ongoing inflammation, impaired
wound healing. In this context, the activation of inflammatory pathways in the liver and the
release of cytokines from inflammatory cell populations, including macrophages, and their
implications on hepatocytes are of particular importance [38, 39]. For example, the cytokines
IL-1β and TNFα not only promote inflammation, but also influence cell death signaling in
hepatocytes [40, 41]. Depending on the eliciting damage, most of the cytokines and pathways
involved exhibit dual functions. For instance, NF-κB has been identified as a pathway, which
mediates effects important for hepatocyte survival, but has been also identified as a signaling
intermediate that propagates liver damage upon ischemia-reperfusion (I/R) injury [38]. Like-
wise, chemokines, such as Cxcl2 have controversial functions in the regulation of liver regener-
ation. It supports liver regeneration after partial hepatectomy, whereas it impairs recovery
from I/R injury [42, 43]. Similarly, macrophage activation into the various phenotypes mediate
heterogeneous effects. Overwhelming M1 activation can induce sepsis, predispose surrounding
tissue for neoplastic transformation as well as promote insulin resistance and type 2 diabetes.
Whereas excessive M2 activation can induce liver fibrosis during chronic infection and aggra-
vate allergic responses [1]. A systematic understanding and description of the influences lead-
ing to activation of macrophages into the various phenotypes as well as the corresponding
cytokine pattern is of particular importance for understanding the role of macrophages in
health and disease.
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In this work, we present a large-scale Boolean model that describes the major signaling
pathways in M1 (LPS-activated) and M2 (IL-4/13-activated) primary murine bone marrow
derived macrophages (BMDMs) as well as a dynamic model of the gene expression module.
The initial literature-based network structure is adapted using high-throughput gene expres-
sion data from primary murine BMDMs in which, according to recent suggestions, M1 polari-
zation was induced by treatment with LPS whereas M2 polarization was triggered by exposure
towards IL-4 and IL-13. In addition, the dynamics of mRNA expression are investigated in
more detail using an ordinary differential equation-based model to disentangle the chronology
of direct signaling events and autocrine feedback loops. By estimating the time frame of tran-
scription factor activity, the model structure is further refined, for example IL-10 appears to be
upregulated before the transcription factor Stat3 is activated, suggesting that Stat3 may not be
essentially required for LPS-inducible expression of IL-10. Investigation of secreted cytokines
and autocrine feedback loops results in the last model refinement, that is the major pro-inflam-
matory cytokines inducing the acute phase response in hepatocytes, the interleukins IL-1β and
IL-6 as well as TNFα [15, 36], exert no or minor autocrine effects on macrophages regarding
the gene expression profile.

Results

Boolean model of classically and alternatively activated macrophages
For a first description of macrophage activation, we constructed a comprehensive large-scale
Boolean model including relevant signaling pathways activated in macrophages upon induc-
tion of M1 polarization by stimulation with LPS or induction of a M2 phenotype in response to
combined stimulation with IL-4 and IL-13 (S1 Fig). The model was based on extensive litera-
ture research and its first version contained 148 nodes and 176 interactions. Abbreviations of
the network nodes are explained in S1 and S2 Tables. The model was implemented using the
MATLAB Toolbox CellNetAnalyzer (CNA) [50]. It contains three input nodes (black), namely
LPS and the interleukins IL-4 and IL-13. Output of the model is the gene expression pattern
that results from the respective stimulation. A number of species (grey) have been demon-
strated to induce autocrine feedback loops after secretion by macrophages. Among many oth-
ers, this includes the cytokines IL-1β, IL-6, IL-10 and TNFα as well as the interferons IFNα,
IFNβ, and IFNγ [15, 54–56].

The following signaling events are reproduced by the Boolean model: (1) LPS stimulation
results in activation and formation of the TLR4 receptor complex containing TLR4, MD-2 and
CD14 as well as LPS and the lipopolysaccharide binding protein (LBP). The activated TLR4
receptor complex can signal via the MyD88-dependent signaling pathway resulting in early
activation of NF-κB and the mitogen-activated protein (MAP) kinases p38MAPK, JNK, and
ERK, as well as the MyD88-independent, TRAM-/TRIF-dependent signaling pathway account-
ing for late phase NF-κB activation and activation of the transcription factor IRF3 [11, 12].
Furthermore, the activated TLR4 complex leads to activation of the PI3K/Akt pathway [32]
and increased expression of the microRNA miRNA-155 enhancing NF-κB activity [34, 35].
The transcription factors NF-κB and IRF3 mediate expression of a number of genes associated
with the classical M1 phenotype of macrophages. After secretion, some of these proteins induce
autocrine signaling: (1.1) IL-1β binds to the IL-1R and its downstream signaling pathway
shares similarity with TLR4-mediated signaling. Thus IL-1β also results in activation of NF-κB
and the MAP kinases [54]. (1.2) Binding of TNFα to the TNFR1 results in assembly of the
receptor complex 1 including TRADD, TRAF2 and Rip1. This activates the kinase TAK1 lead-
ing to activation of NF-κB and the MAP kinases similar to TLR4 signaling [54]. (1.3) IL-6 sig-
nals through its receptor consisting of the ligand binding domain gp80 and the signaling
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subunit gp130 that subsequently gets phosphorylated by the associated Janus kinase 1 (Jak1)
leading to recruitment and activation of the TF Stat3 [57]. Activation of STAT3 is inhibited by
suppressor of cytokine signaling (SOCS) 3 a member of a family of endogenous feedback inhib-
itors of STAT signaling, which can be induced by STAT family members themselves but also
by other pathways, including the p38MAPK/MK2 pathway [58, 59]. (1.4) The type II interferon
IFNγ binds to its receptor IFNGR resulting in activation of the TF Stat1 via Jak1 or Jak2 [56].
(1.5) The type I interferons signal via the IFNAR leading to activation of the Stat transcription
factors Stat1 and Stat3 followed by expression of respective target genes [55]. (1.6) One of the
target genes upregulated upon activation of IFNAR1 is IL-10 that also acts in an autocrine feed-
back loop via the IL-10R mediating late and sustained activation of Stat3 that, in contrast to the
activation of STAT3 by other cytokines, is resistant to the action of SOCS3 [60], and important
for the resolution phase of the inflammatory response [15].

(2) Stimulation with IL-4 and IL-13 results in activation of various receptor complexes.
Both cytokines share a common receptor subunit, the IL-4Rα chain, which can either engage
with the common γ chain (IL-2Rγ) upon IL-4 binding or with the IL-13Rα1 chain upon IL-13
binding [33]. IL-13 can also bind to the IL-13Rα2 whose cytoplasmic domains do not contain
any Jak/Stat binding sequences [61] and thus is likely to act as a decoy receptor congruently
with the phenotype of IL-13Rα2-deficient mice being consistent with enhanced IL-13 respon-
siveness [62]. IL-4/IL-13 signaling results 1 (Arg1) and mannose receptor type 1 (Mrc1) [27,
63]. In addition, binding of IL-4 to IL-4Rα leads to activation of the PI3K/Akt pathway [64]
resulting in decreased expression of the microRNA miRNA-155 and increased expression of
the M2 marker gene Arg1 [34, 35].

The PI3K pathway and the two isoforms Akt1 and Akt2 differentially influence macro-
phage polarization [34, 35]. Arranz et al. [34] demonstrated that Akt1 KO gives rise to an M1
phenotype whereas Akt2 KO induces M2 polarization accompanied by high levels of Arg1.
Furthermore, they showed that downregulation of the microRNA miRNA-155 in Akt2 KO
macrophages leads to elevated levels of the CCAAT/enhancer binding protein beta (C/EBPβ)
and enhanced binding to the Arg1 promotor while Stat6 phosphorylation remains unaffected.
In contrast, Akt1 KO leads to elevated levels of miRNA-155 which contributes to NF-κB activ-
ity and M1 polarization [35]. However, both isoforms, Akt1 and Akt2, are concurrently acti-
vated in the WT after LPS as well as IL-4/13 stimulation and differentially influence miRNA-
155 expression. For correct polarization of macrophages, i. e. induction of the M1 phenotype
after LPS stimulation and induction of the M2 phenotype following IL-4/13 stimulation, the
introduction of an additional signal into the model was necessary. This coregulating signal is
induced by the activated TLR4 receptor complex and acts on the level of Akt activation or
downstream signaling. Otherwise, the positive influence of Akt2 on miRNA-155 expression
overcomes the inhibitory influence mediated by Akt1 leading to induction of the M1 pheno-
type even after IL-4/13 stimulation (S2 Fig). Indeed, we observed increased expression of
miRNA-155 after 6 h treatment of BMDMs with LPS and decreased expression after 6 h IL-4/
IL-13 stimulation (S3 Fig).

Extension of the logical formalism: timescale constants
In order to reproduce the sequential release of various factors by macrophages and following
induction of autocrine signaling loops, timescale constants are introduced to the Boolean
model [49]. A so called timescale constant τ can be assigned to all logical interactions as a
parameter that specifies when a distinct signaling event takes place. A lower timescale constant
indicates that the reaction becomes active earlier than an interaction with a higher timescale
constant.
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The model introduced here contains eight timescales τ = {0, 1, 2, 5, 7, 10, 12, 15} that are
used to separate distinct signaling events (Table 1). Early or direct signaling events can thereby
be distinguished from secondary signaling events resulting from autocrine signaling and
negative feedback loops when analyzing the Boolean model. All logical equations with their
assigned timescale constant are listed in S3 and S4 Tables. The housekeeping node, indicated
by green boxes in the model scheme (S1 Fig), represents constitutively expressed genes, such as
adaptor proteins and receptors that are already present in the unstimulated state of the cell.
Thus, these nodes are activated at the first timescale τ = 0. The MyD88-dependent signaling
events downstream of TLR4 leading to early NF-κB and MAP kinases activation as well as
the signaling events downstream of the other receptor complexes are assigned to the timescale
τ = 1. The MyD88-independent signaling pathway downstream of TLR4 accounting for late
phase NF-κB activation is triggered at timescale τ = 2. All transcriptional and translational
events take place at the timescale τ = 5 and τ = 7, respectively. In order to induce the autocrine
feedback, the interferons as well as IL-1β, IL-6, and TNFα first need to be secreted by macro-
phages. Thus, these proteins occur twice in the model, one being the newly synthesized, intra-
cellular protein at the bottom of the model scheme and one being the secreted protein at the
top of the scheme activating the receptor on the cell surface. This secretion step is assigned to
the timescale τ = 10. For synthesis and secretion of IL-10, first Stat3 needs to be activated by
secretion of type I interferons and activation of IFNAR. Hence, IL-10 secretion occurs on a
later timescale τ = 12. All inhibitory reactions are assigned to the last timescale τ = 15 to allow
discrimination of feedforward signaling events induced by stimulation of macrophages and
negative feedback loops for model analysis.

Model analysis and validation
For model validation, primary murine BMDMs are differentiated via macrophage colony stim-
ulating factor (M-CSF) stimulation according to experimental guidelines suggested recently for
the investigation of macrophage polarization [6]. LPS stimulation was used to induce M1
polarization whereas the M2 phenotype was triggered via stimulation with IL-4 and IL-13 for
0.5, 1, 2, 6 or 10 h. Prior to stimulation and after stimulation, macrophages were extensively
characterized using cytometric analysis for the expression of different surface markers includ-
ing CD14, F4/80, CD11b, CD68, CD69, CD86 and CD206 (S4 Fig). Quantitative, time-resolved
data on 48 transcript expression levels were generated using the high-throughput Taqman Flui-
digm Technology. Data were analyzed using multivariable regression [48], normalized to
untreated controls and results are displayed as a heat map in Fig 1. The mean expression values
with standard deviation, number of samples and p-values for regulation compared to untreated
controls as well as the official full name and gene ID as given in the NCBI gene database and
the Applied Biosystems assay number is presented in S1 Dataset.

Table 1. Timescales of the Booleanmodel.

timescale τ events

0 housekeeping

1 early TLR4 signaling (MyD88-dependent)

2 late TLR4 signaling (MyD88-independent)

5 transcription

7 translation

10 secretion of IL-1β, IL-6, TNFα, IFNα, IFNβ, IFNγ

12 secretion of IL-10

15 feedback inhibition

doi:10.1371/journal.pcbi.1005018.t001
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Among the 48 selected genes, we identified those clearly regulated above a threshold in
response to either LPS or IL-4/13 stimulation (S1 Protocol 1.2) resulting in 16 and 7 genes that
are regulated in M1 and M2 macrophages, respectively. In order to compare the Boolean
model with time resolved data, the model was analyzed by calculating the logical steady states
(LSS) [49] for a given input setting and timescale to study the resulting gene expression pattern
of M1 vs. M2 macrophages at different time points. For better comparability, the quantitative
data on mRNA expression were transformed into balanced ternary values that is 1/-1 if the
gene is significantly up/downregulated at least 2-fold and 0 otherwise. Boolean simulation
results and experimental data are compared in Fig 2. All pro-inflammatory chemokines and
cytokines that are classified as upregulated from the measurement data of M1 macrophages
(Fig 2A) are also upregulated in the Boolean model after LPS stimulation (Fig 2C). M2 macro-
phages, as already mentioned, are less well characterized compared to M1 macrophages. Thus,
only four Stat6 target genes that are supposed to be regulated upon stimulation with IL-4/13
are part of the Boolean model (Fig 2D). Generally, M2 macrophages show a diminished
response in the expression pattern of the analyzed genes compared to M1 macrophages (Fig 1),
but upregulation of these four genes is confirmed by the experimental data (Fig 2B).

However, there are some discrepancies between the measured and simulated expression pat-
terns of M1 and M2 macrophages: (1) the chemokine Ccl7 is not part of the first model version
but was shown to be upregulated in M1 and M2 macrophages (Fig 2A/2B) and co-expressed
with Ccl2 (Fig 3A). Thus, Ccl7 was included in the model as NF-κB and Stat6 target gene in
response to LPS and IL-4/13 stimulation, respectively. (2) The chemokine Cxcl5 was not upre-
gulated at 0.5 h after LPS stimulation in contrast to the other CXC-type chemokines (Fig 2A).
Furthermore, Cxcl-5 was not co-expressed with the other CXC-type chemokines such as

Fig 1. Inflammatory gene expression patterns of activated macrophages. Receptor and mediator transcript expression pattern of (A) M1
macrophages stimulated with LPS and (B) M2 macrophages stimulated with the interleukins IL-4 and IL-13 for 0.5, 1, 2, 6, and 10 measured using the
high-throughput Taqman Fluidigm system. Data is analyzed using multivariable statistics and normalized to untreated controls. Genes marked in red
and blue represent upregulated and downregulated genes, respectively (* p� 0.05, ** p� 0.01, *** p� 0.001). For mean expression values with
standard deviation, number of samples and p-values for regulation compared to untreated controls we refer to S1 Dataset.

doi:10.1371/journal.pcbi.1005018.g001
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Cxcl-2 (Fig 3B). Thus, Cxcl-5 as NF-κB target gene was removed from the model. (3) Similarly,
Osm was not significantly regulated after LPS treatment (Fig 2A) and not co-expressed with
typical NF-κB target genes such as TNFα (Fig 3C) and, therefore, was removed from the
model. (4) Also, regulation of the type I interferon IFNα was less clear. It was not ranked as sig-
nificantly upregulated (S1 Protocol 1.2) and was not clearly co-expressed with the other type I
interferon IFNβ (Fig 3D) as predicted by the Boolean model and thus was also not considered
in the model. (5) Likewise, IFNγ was not significantly expressed; values were close to or even
beyond detection limit in most of the measurements. Hence, IFNγmust be excluded from anal-
ysis and was removed from the Boolean model. Since IFNγ was not expressed upon LPS and
IL-4/13 stimulation, also IFNGR and downstream signaling events were removed. (6) The
Boolean model predicts that IL-10 and Socs3 expression occurs later compared to the pro-
inflammatory cytokines at τ = 10 (Fig 2C) since its expression requires secretion of type I inter-
ferons as well as activation of IFNAR. This is in contrast to the experimental results demon-
strating that IL-10 and Socs3 were both similarly upregulated already 0.5 h after LPS
stimulation comparable to the classical pro-inflammatory cytokines and such as TNFα (Fig
2A). Furthermore, IL-10 and Socs3 were shown to be co-expressed with TNFα (Fig 3F/3G).
Since the transcription factor for early upregulation of IL-10 and Socs3 is still unknown but
regulation of Socs3 expression via the p38MAPK/MK2 pathways has been shown [59, 65], early
upregulation of these genes was included in the model in response to MK2 activation.

Downregulation is not represented by the Boolean simulation results (Fig 2C/2D). Never-
theless, the dependency matrix which covers the functional relation of all pairs of species in the

Fig 2. Comparison of experimental data and Boolean simulation results. Experimental data of (A) M1 and (B) M2 macrophages stimulated for
0.5, 1, 2, 6, and 10 h with LPS and IL-4/13, respectively. Quantitative data on mRNA expression is transformed into balanced ternary values, that is
1/-1 if the gene is significantly up-/downregulated at least 2-fold and 0 otherwise. Logical steady states of the mRNA species of the Boolean model
for the input (C) LPS = 1, IL-4 = 0, IL-13 = 0 and (D) LPS = 0, IL-4 = 1, IL-13 = 1 for the time scales τ = {5, 7, 10, 12, 15}. The LSS for the timescales
τ = {0, 1, 2} is not displayed since the first transcriptional step occurs not until τ = 5.

doi:10.1371/journal.pcbi.1005018.g002
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Boolean model demonstrates an inhibitory influence of Akt1, which is the Akt isoform that
mediates the primary effects in M2 macrophages after IL-4/13 stimulation, on IL-1β and TNFα
expression (Fig 4, row 15, column 22–24). The influence of Akt1 on TNFα protein synthesis
(TNFa_syn) is ambivalent (Fig 4, row 15, column 25), since Akt1 positively influences NF-κB

Fig 3. Co-expressed genes in macrophages. The scatter plots (A)-(I) indicate co-expression of the respective two genes if the Pearson’s
correlation coefficient (CC) given is close to 1. For each gene, CT values minus mean expression value is shown.

doi:10.1371/journal.pcbi.1005018.g003
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activity and, thus, also favors expression of the phosphatase DUSP1, deactivation of p38 and
inhibition of TNFα protein synthesis via TTP. Only the relevant section of the dependency
matrix, that is the PI3K/Akt pathway, is presented for clarity.

Dynamic modeling of the gene expression module
For a better understanding of the underlying dynamics of the system, particularly to investigate
the time course of IL-10 and Socs3 upregulation that is differentially reflected by the Boolean
model and the measurement data, the gene expression module is modeled dynamically using a
system of ordinary differential equations (ODEs). To reduce complexity, the signaling paths
are neglected and only mRNA expression as well as transcription factor activity as input u(t) of
the system was modeled as explained in [52]. Briefly, information from the Boolean model
regarding activated transcription factors and target genes of the respective pathways as well as
the chronology of events is translated into five different input functions for the ODE model
representing (u1) genes that are directly regulated via NF-κB upon LPS stimulation, (u2) genes
that are regulated via NF-κB and secondary by the TFs Stat1 and Stat3 via autocrine feedback
loops, (u3) genes, that are solely regulated via Stat TFs in response to LPS treatment, (u4) genes
that are Stat6-dependently upregulated in response to IL-4/13 stimulation and (u5) genes that

Fig 4. Dependency of IL-1β and TNFα expression on the PI3K/Akt pathway. The dependency matrix was
calculated for the latest timescale (τ = 15). Each element Dij of the matrix indicates the influence of species i
on species j: black: no influence, yellow: ambivalent factor (both positive and negative paths connecting i with
j), dark green/red: total activator/inhibitor (only positive/negative paths connecting i with j), light green/red:
non-total activator/inhibitor (positive/negative paths connecting i with j, but at least one species is part of a
negative feedback loop).

doi:10.1371/journal.pcbi.1005018.g004
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are repressed upon IL-4/13 stimulation. Expression of mRNA is given by

dXðtÞ
dt

¼ kb þ ks � uðtÞ � kd � XðtÞ ð1Þ

where X denotes the relative mRNA concentration, u(t) the input function representing tran-
scription factor activity (TFA) and kb, ks and kd the basal synthesis, induced synthesis and deg-
radation rate constant, respectively. At t = 0, the system is at steady state, it is u(0) = 0 and,
thus, scaling reduces the number of parameters by one per gene (S1 Protocol 2.1). If a gene is
regulated in response to LPS as well as IL-4/13 stimulation, individual synthesis rates due to
regulation by distinct transcription factors but identic degradation rates are assumed. Thus, the
overall model contains 23 ODEs and 47 parameters, whereof eight are the time points deter-
mining TFA and 39 are synthesis and degradation rate constants. All model equations and
parameter values can be found in S1 Protocol. The ODE model was implemented using the
MATLAB Toolbox PottersWheel [51].

Accordance of simulation results of the dynamic model and experimental data on transcript
expression levels of murine BMDMs is shown in Fig 5 supporting our assumptions regarding
transcriptional regulation of inflammatory mediators (1)–(6) mentioned above. Besides, one
additional modification is implemented: (7) the IL-1 receptor antagonist (IL-1rn) was regu-
lated similar to Ccl5 (Fig 1), that is both genes are slightly upregulated at 0.5 h after LPS stimu-
lation but expression was increased at later time points. In contrast, the initial Boolean model
predicted that IL-1rn is a NF-κB target gene such as IL-1β and thus upregulated only early
after LPS stimulation. In fact, data analysis revealed that IL-1rn is co-expressed with Ccl-5 (Fig
3H) rather than with IL-1β (Fig 3I). Thus, IL-1rn was also included as Stat target gene similar
to Ccl-5 in both the Boolean and the ODE model (u2).

Identifiability of parameters was analyzed by investigating the profile likelihood using Pot-
tersWheel [53] and 68% confidence intervals were calculated (S1 Protocol 2.3). From the 47
parameters of the ODE model, 33 are identifiable and 14 parameters are practically non-identi-
fiable (S5 Fig). But in most instances, the unidentifiability is caused by the quite low parameter
values, for example eight non-identifiable parameters are degradation rate constants of rela-
tively stable mRNAs that are not significantly degraded during the observed time frame. Thus,
although there is some uncertainty in parameter values, variations of these parameters only has
negligible influence on the model trajectories. Hence, the model is well suited to describe the
important dynamics of mRNA regulation of the selected genes in M1 and M2 macrophages.
Furthermore, it allows prediction of the time frame of TFA as described in [52]. Upon LPS
stimulation, p65 is predicted to be active from 23 min to 46 min and Stat3 shortly afterwards
from 47 min to 9.9 h. Following IL-4/13 stimulation, Stat6 is predicted to be active from 5 min
to 47 min and transcriptional repression is predicted to be mediated from 30 min to 1.3 h after
treatment. Transcription factor activity is confirmed by immunoblotting (Figs 6, 7 and 8).

Secretion of cytokines and chemokines
Upregulation of selected mediators secreted by macrophages was also confirmed on the protein
level. Murine BMDMs were stimulated with LPS and IL-4/13 for 0.5, 1, 2, 6, 10 and 24 h and
protein levels were quantified via Luminex Technology. Protein secretion of differentiated
macrophages was also investigated. Macrophages were differentiated for eight days and then
1 x 106 cells were subcultivated in 6 well plates, as usual. Supernatant from those cells was col-
lected after 3 h of cultivation and analyzed via Luminex Technology. Differentiated macro-
phages constitutively secrete low amounts of the chemokines Ccl2, Ccl3, Ccl4, Cxcl1, and
Cxl2 as well as TNFα (Fig 9). Significant increase of quantified cytokines and chemokines is
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Fig 5. Simulation results of the ODEmodel describing mRNA expression in LPS- and IL-4/13-stimulated macrophages. Best fit of mRNA
expression in LPS-stimulated M1 and IL-4/13-stimulated M2 macrophages is displayed as dark red line with the measurement points displayed as
blue diamonds. The input functions u are displayed in the first column in dark blue and represent the regulation motifs: (u1) regulated by NF-κB, (u2)
regulated by NF-κB and Stat3, (u3) regulated by Stat3, (u4) positively regulated after IL-4/13 stimulation by Stat6, and (u5) negatively regulated in
response to IL-4/13. Bounds of the profile likelihood-based 68% confidence intervals are displayed in bright blue and red for input functions and
mRNA expression, respectively.

doi:10.1371/journal.pcbi.1005018.g005

Characterization of Activated Macrophages

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005018 July 27, 2016 12 / 28



detectable after 1 to 6 h after LPS stimulation (Fig 10A). Especially the chemokines are secreted
in high concentration after LPS treatment: Ccl3, Ccl4, Cxcl1, and Cxcl2 are secreted after 1 h.
Their concentration in the supernatant of cells reach 38.9, 35.1, 14.2 and 66.4 ng/ml after 24 h
stimulation, respectively. The chemokines Ccl2 and Ccl5 increase after 6 h LPS stimulation
and reach 3.5 and 9.4 ng/ml after 24 h. Significant increase of IL-6 is quantified after 2 h stimu-
lation and 182.4 ng/ml are detectable after 24 h. TNFα increases after 1 h LPS stimulation and
reaches 2.5 ng/ml after 24 h, whereas IL-10 reaches 0.45 ng/ml. IL-1β is secreted in lower con-
centration, 43.4 pg/ml are detectable after 24 h of LPS treatment. After IL-4/13 stimulation, the
secretion of chemokines is only slightly increased compared to the unstimulated macrophages
(Fig 10B). Interestingly, the cytokines IL-1β, IL-2, IL-10, and TNFα are not detectable in the
supernatant of IL-4/13 stimulated macrophages. Secretion of Cxcl2 and IL-6 is transiently
increasing. For specific concentrations we refer to S2 Dataset.

Further adaptions of the network topology of activated macrophages were performed after
analysis of protein data: (8) Stimulation with LPS leads to IκBα phosphorylation (serine resi-
dues 32 and 36) and, subsequently, to the degradation of IκBα (Fig 7). Furthemore, LPS

Fig 6. Transcription factor activity in macrophages under M1 (+LPS) or M2 (+IL-4/IL-13) stimulating conditions. Primary murine BMDMs
were stimulated with (A) LPS (50 ng/ml) or (B) IL-4/IL-13 (25 ng/ml each) for the times indicated and whole cellular protein extracts were prepared.
30 μg of protein/lane were subjected to immunoblot analysis using antibodies specific for (A) STAT3-Tyr705, STAT3, p65-Ser536, p65, p38-Thr180/
Tyr182, p38 or for (B) STAT6-Tyr641, STAT6, p65-Ser536, p65, p38-Thr180/Tyr182, p38 and GAPDH for loading control. Representative data for at
least three independent experiments are shown.

doi:10.1371/journal.pcbi.1005018.g006

Fig 7. LPS dependent IκBα serine phosphorylation and degradation. Primary murine BMDMs were
stimulated with LPS (50 ng/ml) for the times indicated. Whole cellular extracts were prepared. IκBα serine
phosphorylation and IκBα protein expression was analyzed byWestern Blot (60 μg of protein/lane). GAPDH
served as loading control. Representative data for two independent experiments are shown.

doi:10.1371/journal.pcbi.1005018.g007
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stimulation induces phosphorylation of p65 on serine 536, promoting the transactivation by
NF-κB (p65/p50) [66, 67]. This only occurs in the first hour following LPS stimulation, as esti-
mated using the dynamic model of mRNA expression (Fig 5) and confirmed via immunoblot-
ting (Figs 6A and 7). On the other hand, first significant increase of the cytokines in the
supernatant of cells was detectable only after one hour LPS stimulation (Fig 10A). Thus, no
effect of these cytokines on NF-κB transactivating activity is visible and, thus, the autocrine
feedback loops of IL-1β and TNFα are removed from the Boolean model. (9) Similarly, when
IL-6 is secreted about 2 h after LPS stimulation, Stat3 is already activated (Figs 6A and 8) and
Socs3 is highly upregulated on the mRNA (Figs 1 and 5) and also on the protein level (Fig 8)
inhibiting Stat phosphorylation at IL-6R and IFNAR. Only IL-10 is able to mediate late and
sustained Stat3 activation, since the IL-10R is insensitive to Socs3 [60]. The autocrine feedback
loop of IL-6 resulting in Stat3 activation is therefore removed from the model.

Fig 8. Jak/STAT signaling in response to LPS and IL-4/IL-13 stimulation. Primary murine BMDMs were
stimulated with LPS (50 ng/ml) or IL-4/IL-13 (25 ng/ml each) for the times indicated and whole cellular protein
extracts were prepared. 30 μg of protein/lane were subjected to immunoblot analysis using antibodies
specific for STAT3-Tyr705, STAT3, SOCS3 and GAPDH. Representative data for at least three independent
experiments are shown.

doi:10.1371/journal.pcbi.1005018.g008

Fig 9. Proteins secreted by differentiated macrophages. Supernatant frommacrophages (1 x 106 cells)
after 3 h subcultivation in 6 well plates was analyzed via Luminex Technology. Mean levels and individual
data points (n = 2) are shown.

doi:10.1371/journal.pcbi.1005018.g009
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Model refinement
The combination of modeling and experimental analysis of the inflammatory genes expressed
in activated macrophages resulted in the refined version of the Boolean model as presented in
Fig 11. The assumptions mentioned in the previous section (1)–(9) are implemented in the
refined version of the Boolean model that is now specifically adapted to our experimental sys-
tem of primary murine BMDMs. Compared to the first literature-based version (S1 Fig), 13
interactions were modified, 33 were deleted and 9 interactions were newly introduced to the
Boolean model. Accordingly, 22 species were deleted from the first model, 6 species were
added and 12 were modified in the final model version. The final model contains 132 nodes
and 152 interactions. All abbreviations and description of network nodes as well as the logic
equations are given in S1 and S3 Tables. Modified entries are indicated and the deleted nodes
and interactions are listed in S2 and S4 Tables. The model now contains two autocrine feedback
loops mediated by secreted IFNβ and IL-10 indicated by grey boxes.

Discussion
In this study, we present a comprehensive characterization of M1 (LPS-activated) and M2
(IL-4/13-activated) macrophages and their specific cytokine and chemokines expression pro-
file. We combined current knowledge about macrophages across several cell types and species
in the first version of the Boolean model. Based on established procedures [6, 7, 44, 68, 69], a
protocol for the generation of primary murine BMDMs and their activation into well charac-
terized M1(LPS) and M2(IL-4/13)-type macrophages was generated. Furthermore, the Boolean

Fig 10. Protein secretion pattern of activatedmacrophages. Supernatant frommacrophages ((1 x 106 cells) treated with
(A) LPS or (B) IL-4/13 analyzed via Luminex Technology at the indicated time points. For specific concentrations as well as
standard deviation, number of samples and p-values for secretion compared to untreated controls we refer to S2 Dataset.

doi:10.1371/journal.pcbi.1005018.g010
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model was validated and refined with expression data of cytokines and chemokines on the
mRNA and partially also on the protein level.

The simulation results of the first Boolean model were compared to mRNA data of BMDMs
resulting in elimination of some genes that were not significantly regulated, such as the type II
interferon IFNγ whose expression is already controversially reported in literature. Originally, it
was assumed that IFNγ production is restricted to activated T cells and natural killer cells, but
it has been shown that murine BMDMs secrete large amounts of IFNγ in response to IL-12 and
IL-18 stimulation [70]. Another group showed production of IFNγmRNA and protein in
murine macrophages in response to LPS stimulation without detectable amounts of secreted
protein [71]. Recently, it has been shown that murine peritoneal macrophages produce moder-
ate amounts of IFNγ in response to LPS stimulation [72]. However, for our system of murine
BMDMs, IFNγ was neither detectable on the mRNA nor the protein level in response to stimu-
lation with LPS and IL-4/13. Also, the type I interferon IFNα was removed since it was not

Fig 11. Refined version of the Booleanmodel of M1 andM2macrophage activation. This model describing macrophage activation into the M1 and
M2 phenotype is specifically adapted to measurement data from our experimental system of primary murine BMDMs. Inputs of the system are LPS, IL-4
and IL-13 depicted in black. The model is displayed as logical interaction hypergraph containing 132 nodes and 152 interactions. Black arrows and red
lines denote activating and inhibiting interactions, respectively. Logical AND connections are expressed using blue dots, and OR connections by yellow
diamonds. The housekeeping node is depicted by green rectangles indicating all species that are already present in the unstimulated state of the cell.
Grey-shaded species denote cytokines that are secreted by the cells and are able to mediate autocrine feedback.

doi:10.1371/journal.pcbi.1005018.g011
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clearly upregulated in murine BMDMs in contrast to IFNβ indicating that IFNβ is one of the
principal type I interferons triggering IL-10 dependent sustained activation of STAT3 in
response to LPS via an autocrine or paracrine feedback loop.

Expression of interferons after TLR4 activation is regulated by two TFs, NF-κB and IRF3,
the first is activated via the early MyD88-dependent pathway and the latter via the delayed
MyD88-independent pathway [11]. These two signaling pathways were hence modeled on two
separate time scales in the Boolean model. However, no difference in onset of transcription was
visible when examining the mRNA data, probably because the measurement time points were
too sparse and at the first time point of 0.5 h already both TFs were activated. Furthermore,
there is evidence that although IRF3 is activated later than NF-κB, both TFs translocate to the
nucleus together to activate transcription [73]. Thus, there is no need to include IRF3 and dis-
tinct regulation of IFNβmRNA in the dynamic model of mRNA expression and we focused on
NF-κB as major transcription factor directly activated in LPS-stimulated macrophages. After
analyzing the time course of mRNA regulation in macrophages in more detail using the ODE
model of gene expression, we found that the IL-1 receptor antagonist IL-1rn is not only regu-
lated by NF-κB but also at later time points possibly via the Stat TFs. IL-1rn was already
described as a Stat6 target gene [16]. Besides, it was shown that inhibition of NF-κB via adeno-
viral transfection of IκBα decreases expression of IL-1rn only marginally [74] and that IL-1rn
is an IL-10 inducible gene [75]. Also IL-10 and Socs3 turned out to be regulated earlier before
its cognate TF Stat3 is activated as shown by the dynamic ODE model and confirmed by
immunoblot analysis (Figs 6A and 8). Regulation of IL-10 expression is diversely reported in
literature. Some state that expression of IL-10 is NF-κB independent [74, 76]. Saraiva et al.
showed that a NF-κB p65/RelA site was activated in the IL-10 promotor after stimulation of
primary mouse BMDMs through pattern recognition receptors [77]. Also Staples and col-
leagues demonstrated that IL-10 regulates IL-10 expression itself by an autocrine feedback loop
via the TF Stat3, but the initial IL-10 expression following LPS stimulation is Stat3-indepen-
dent [78]. So there is a high probability that NF-κB is involved in initial regulation of IL-10
expression, but also the MAP kinases p38MAPK and ERK as well as the p38MAPK downstream
effector kinase MAPK activated protein kinase 2 (MK2) were shown to play a role [17, 79, 80].

The final modification was removing the autocrine feedback loops of IL-1β, TNFα and IL-6.
Since these cytokines are the major ones inducing the acute phase response in hepatocytes [15,
36], it is plausible that they primarily act on surrounding cell types such as hepatocytes and to
a negligible amount back on the macrophages. This is supported by the dynamical model of
mRNA expression. Although there are some uncertainties in the parameters, the model is well
suited to determine the important dynamics of mRNA regulation as well as the time of tran-
scription factor activity which was confirmed by immunoblot analysis (Figs 6 and 8). Only 14
of 47 parameters are practically non-identifiable. Thereof, eight parameters are mRNA degra-
dation rate constants of IL-1β, IL-1rn, Socs1 and the CCL-type chemokines whose lower
bounds are non-identifiable implying that mRNAs are relatively stable and not necessarily
degraded over the observed time span of 10 h. Similarly, the lower bounds of the two synthesis
rate constants of Ccl3 and Cxcl3 following IL-4/13 stimulation are non-identifiable. Although,
by analyzing the measurement data these genes were determined to be downregulated it is also
possible that they are non-regulated after stimulation with IL-4/13. The last four practically
non-identifiable parameters are those determining transcription factor activity. More precisely,
the lower bounds of the parameters describing the time point of Stat3 activation in LPS-stimu-
lated macrophages and the time point for Stat6 activation as well as the time point for begin-
ning of negative regulation following IL-4/13 stimulation are non-identifiable. This indicates
that regulation in response to IL-4/13 is relatively quickly due to the very short signaling paths.
For LPS-stimulated macrophages, this indicates that activity of NF-κB and Stat3 is possibly
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slightly overlapping. Furthermore, the upper bound of the parameter for the time point of
Stat3 deactivation is non-identifiable indicating that Stat3 could be active longer than the
observed time frame of 10 h after LPS stimulation.

In this study, we choose the phenotype of M1 or classically activated macrophages on the
one side and alternatively activated or M2 macrophages on the other side for comparative
analysis, since these two represent the initially described and most prominent phenotypes [7].
The M1 and M2 terminology originated from the correlating concept of the TH1 and TH2
dichotomy. Later, the concept of M1/M2 macrophage activation was extended as it became
clear that activated macrophages are highly heterogeneous [8]. A concept has been evolved
describing many shades of macrophage activation with the three main phenotypes, namely
classically activated macrophages, wound-healing macrophages, and regulatory macrophages
with mixed phenotypes in between, for example tumor-associated macrophages [1]. In a
recent proposal, this concept has been refined and a nomenclature has been suggested that is
linked to the activation standards [6]. Compared to this classification, the M2 macrophages
activated by IL-4 and IL-13 as described in this study would be termed as M(IL-4/IL-13). As
mentioned, classically activated M1(LPS) and wound-healing M2(IL-4/IL-13) macrophages
represent two major phenotypes that are involved in a number of diseases that mainly result
from a disturbed balance of macrophage activation with lacking restoration of homeostasis
after injury. Thus, systematic characterization of the distinct macrophage phenotypes as well
as the corresponding cytokine and chemokine expression patterns as represented by the final,
refined version of the Boolean model is particularly important for improving the current
understanding of macrophage activation and their roles in health and disease. In this context,
the model provided suggests that miRNA-155 represents a critical molecule that determines
how activation of Akt by the different stimuli is involved in the determination of the activa-
tion type of macrophages. We observed differential regulation of miRNA-155 expression fol-
lowing stimulation with either LPS or IL-4 and IL-13 which is in line with recent concepts
demonstrating that the PI3K/Akt pathway plays a critical role in the control of macrophage
plasticity with the two Akt isoforms Akt1 and Akt2 being important regulators of M2 and M1
differentiation, respectively [34, 35]. Among others this may involve Akt1 dependent phos-
phorylation of the downstream kinase GSK3β at serine 9, which inhibits GSK3β activity [81]
thereby interfering with activation of p65/p50 NF-κB dimers by enhancing formation of the
inhibitory p50/p50 NF-κB dimer [82]. Moreover, isolated activation of Akt1 in Akt2 deficient
macrophages prevents expression of miRNA-155 resulting in an increased availability of
CEBP/β that in turn mediates expression of target genes such as Arginase1, IL-10 and YM1.
On the other hand isolated activation of Akt2 in Akt1 deficient macrophages leads to an
enhanced activation of p65/p50 NF-κB dimers and subsequent upregulation of p65/p50
dependent gene expression [35]. In line with this study, we showed increased expression of
miRNA-155 after LPS stimulation which induces M1 polarization and NF-κB-dependent
upregulation of inflammatory mediators. Accordingly, stimulation with IL-4 and IL-13 led to
decreased levels of miRNA-155. Notably, although they share with PI3K the same upstream
activator, Akt1- and Akt2-driven pathways have distinct regulatory functions with respect to
macrophages polarization. This makes it likely that the decision in which direction the polari-
zation is driven is mediated by PI3K-independent co-regulatory signals which are integrated
either at the level of the two Akt isoforms Akt1 or Akt2 or at the level of their downstream sig-
naling. Everts et al. [83] recently described a similar role of TBK1 in the context of dendritic
cell activation. They identified the kinase TBK1 downstream of the activated TLR4 receptor
complex as most important kinase mediating Akt phosphorylation after LPS stimulation. The
crosstalk of LPS and PI3K/Akt signaling in the context of macrophage activation needs fur-
ther investigation.
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Materials and Methods

Animals and ethic statement
8–12 weeks old male C57BL/6J mice were used for the generation of BMDMs. All animal appli-
cations were reviewed and approved by the appropriate authorities and were performed in
accordance with the German animal protection law (Landesamt für Natur, Umwelt und Ver-
braucherschutz Nordrhein-Westfalen, Recklinghausen. Animals were handled and housed
according to specific pathogen free (SPF) conditions in the local breeding facility (ZETT, Zentrale
Einrichtung für Tierforschung und Tierschutzaufgaben, Heinrich-Heine-University Düsseldorf).

Preparation and cultivation of primary murine bone marrow derived
macrophages (BMDMs)
Macrophages derived from bone marrow cultures were obtained according to the method of
Meerpohl et al. [44] with some modifications. In brief, both femurs and tibiae of male, 8–12
weeks old C57BL/6J mice were removed and dissected free of adherent tissue. Intact bones
were kept in sterile phosphate buffered saline (PBS; Biochrom, Berlin, Germany). Before start-
ing bone marrow preparation, bones were left in 70% [v/v] ethanol for 3–5 minutes, washed
with PBS and transferred into washing medium (DMEM 1000 mg/ml Glucose; Biochrom, Ber-
lin, Germany supplemented with 1% [v/v] Penicillin/Streptomycin; PAN Biotech, Aidenbach,
Germany). After cutting off the ends of the bones, the bone marrow was flushed out by irriga-
tion with washing medium using syringe and needle (23G x 1“). A single cell suspension was
obtained by pipetting cells vigorously followed by centrifugation (1200 rpm, 4°C, 10 minutes,
low acceleration/ deceleration). Cells were resuspended in culture medium (DMEM 1000 mg/
ml Glucose, 1% [v/v] Penicillin/Streptomycin, 10% [v/v] fetal calf serum) without murine mac-
rophage colony stimulating factor (M-CSF). The viable cell counts were performed in a hemo-
cytometer using trypan blue solution. The cell viability was at least about 95–97% and 54 x 106

± 3.8 cells/mouse (mean ± SEM) were isolated. Cells were seeded in three vented cell culture
flasks (75 cm2) for overnight incubation at humidified atmosphere (37°C, 5% CO2). Adherent
cells (e.g. stromal fibroblasts) will settle out. The next day, the non-adherent cells were har-
vested for further cultivation by performing centrifugation. Cells were resuspended in culture
medium, supplemented with 10 ng/ml M-CSF (Peprotech, Rocky Hill, USA). Again, trypan
blue exclusion was performed and total cell amount was calculated: 37 x 106 ± 2.0 cells/mouse
(mean ± SEM). Cells were seeded for proliferation and macrophage differentiation in five cell
culture dishes with 15 cm diameter and 20 ml medium (+M-CSF) each [45]. 10 ml of medium
supplemented with M-CSF was added on day 3, 6 and 7 (no aspiration of media). After 8 days
of cultivation, adherent cells were harvested by gentle trypsinisation: Cells were washed twice
with prewarmed PBS and treated with 3 ml trypsin/EDTA (PAN Biotech, Aidenbach, Ger-
many) for approximately 5–10 minutes. Cells were centrifuged and after evaluation of the total
cell yield (39 x 106 ± 2.7 cells/mouse (mean ± SEM)), they were adjusted in M-CSF containing
culture medium: 3 x 106 cells/3 ml/6 well plate cavity for RNA isolation and 1 x 106 cells/2 ml/6
well plate cavity for supernatant collection. Medium was changed to FCS free culture medium
6 hours before performing the experiments. Cells were stimulated with 50 ng/ml LPS or 25 ng/
ml IL-4/ IL-13, respectively. RNA was isolated or cell supernatant was collected after 0.5, 1, 2, 6
and 10 hours of stimulation.

RNA isolation, cDNA synthesis and qRT-PCR
Total RNA was isolated using the RNeasy Miniprep Kit (Qiagen, Hilden) according to manu-
facturer’s instructions. Assessment of RNA integrity and quantity was performed by using
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Agilent Technology (Agilent 2100 Bioanalyzer, Waldbronn, Germany). 600 ng total RNA was
reverse transcribed to cDNA with TaqMan Reverse Transcription Reagents (Applera GmbH,
Darmstadt, Germany). For qRT-PCR we used the Fluidigm’s BioMark HD high-throughput
quantitative chip platform (Fluidigm Corporation, San Francisco, CA, USA) with pre-designed
gene expression assays from Applied Biosystems according to the manufacturer’s instructions
[46]. All TaqMan assays are listed in S1 Dataset.

miRNA isolation and qRT-PCR
For analysis of miRNA expression cells were grown in 6 well plates and treated with 50 ng/ml
LPS, with 25 ng/ml IL-4/IL-13 each or left untreated. Total cellular RNA including miRNA was
isolated using the miRNeasy Miniprep Kit from Qiagen (Hilden, Germany) according to the
manufacturer’s instructions. 100 ng of total RNA was reverse transcribed with miScript II
Reverse Transcription Kit (Qiagen, Germany) using the HiFlex buffer for transcription of mature
and precursor miRNA as well as ncRNA and mRNA. cDNAwas diluted 1:5, and 2 μl of the
diluted cDNAwas added as template to a final volume of 25 μl including 1 x QuantiTect SYBR
Green PCRmaster mix according to the manufacturer’s instructions (Qiagen, Germany). The
following primers were used for real time PCR: mouse miRNA-155 (sense, 5’-TTA ATG CTA
ATT GTG ATA GGGGT-3’; antisense, miScript universal primer) and the mouse U6 snRNA
(sense, 5’-CGC TTC GGC AGC ACA TAT AC-3’; antisense, 5’-AAA TAT GGA ACG CTT
CAC GA-3’). Except the universal primer, which was fromQiagen, Germany, all oligonucleotides
were purchased from Eurofins MWGOperon (Ebersberg, Germany). No-template and no-
reverse-transcriptase controls were used to control specificity of RT-PCR. Semi-quantitative PCR
results were obtained using the ddCTmethod. Expression values of the miRNA were normalized
to the expression levels of the control gene U6 snRNA and referred to untreated controls. Data
from four independent experiments are presented as mean ± standard error of the mean (SEM).

Antibodies, reagents, cell culture materials
Antibodies for cytometric analysis were purchased from ebioscience: CD14 (#12-0141-81),
CD11b (#12-0112-81), F4/80 (#17-4801-80) from BD Pharmingen: CD69 (# 553237), CD86
(558703) from Dianova: CD68 (#MA1-82739) and AbD Serotec: CD206 (#MCA2235FB). For
exclusion of background fluorescence, cells were stained with the respective isotype control
antibodies in parallel: Rat IgG2b K Isotype Control PE, Armenian Hamster IgG Isotype Con-
trol PE, Rat IgG2b K Isotype Control APC, Rat IgG2a K Isotype Control FITC (ebioscience).
Anti-p65-Ser536, anti-STAT3-Tyr705, anti-p38-Thr180/Tyr182, anti-p38, anti-IκBα-Ser32/36,
anti-IκBα and anti-STAT6-Tyr641 antibodies used for Western Bot analysis were obtained
from Cell Signaling Technology (Berverly, MA, USA). Anti-STAT3, anti-p65 and anti-STAT6
antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA), the anti-
body against SOCS3 was obtained from IBL (Minneapolis, MN, USA) and against GAPDH
from Biodesign (Saco, ME, USA). Cell culture reagents as Dulbecco’s modified Eagle medium
(DMEM) were purchased from Biochrom (Berlin, Germany), FCS (Cat.: 10099141, Lot:
769367) was obtained from Invitrogen (Karlsruhe, Germany), Penicillin G/ Streptomycin and
Trypsin/ EDTA-Solution were from Cytogen (Wetzlar, Germany). Recombinant murine
M-CSF, IL-4 and IL-13 were obtained from Peprotech (Rocky Hill, NJ, USA). LPS from E. coli
(#L3012) was purchased from Sigma-Aldrich (München, Germany).

Protein isolation and western immunoblotting
The protocol for total protein isolation, Western Immunoblotting and signal detection has
been described previously [47]. Equal amounts of protein were subjected to SDS/PAGE. The
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electrophoretically separated proteins were transferred to polyvinylidene difluoride (PVDF)
membranes by the semidry Western blotting method. The immunoblots were developed with
the enhanced chemiluminescence system (Amersham Biosciences, MA, USA) following the
manufacturer’s instructions.

Quantitative cytokine measurement
At the end of the experimental treatment, cell culture supernatant was collected under sterile
conditions followed by centrifugation (20 minutes, 4°C, 5.500 rpm). Aliquots were pre-cooled
at -20°C and stored in -80°C until quantitative mediator measurement. Analysis of cytokine
concentration in supernatants was performed by using Luminex Technology (Austin, TX,
USA) and the MCYTOMAG-70K Mouse Cytokine/Chemokine Magnetic Bead Panel from
Millipore (Billerica, MA, USA) according to manufacturer’s instruction. Cell culture media
and untreated control samples were used for background normalization.

Cytometric analysis
Maturation of macrophages and characterization of macrophage polarization was assessed by
using fluorescence-activated cell sorting (FACS) and was performed using the FACS Canto II
(BD Biosciences, Heidelberg, Germany). Briefly, after differentiation, cells grown in 6 well cavi-
ties were harvested by trypsinization (3 minutes, 37°C). Reaction was stopped by adding 1 ml
FACS buffer (PBS w/o Ca2+/Mg2+, 2% FCS, 2 mM EDTA, 0.1% NaN3). After centrifugation,
fixation and permeabilization was performed using the Leucoperm Reagent Kit (AbD Serotec,
Kidlington, UK) followed by antibody treatment according to manufacturer’s instructions.
Each experiment was performed in at least three independent cell preparations using the same
experimental conditions. Data analysis was performed with FlowJo Software, version 7.6.5
(Ashland, OR, USA).

Statistical analysis
Values are expressed as means ± standard deviation, where indicated. Fluidigm data was ana-
lyzed using LEMming, a multivariable statistics approach [48] and normalized to untreated
controls. Outlier were discarded as explained in S1 Protocol 1.1. Differential expression was
assessed using the two-sample Student’s t-tests. All computations were conducted using RStu-
dio Version 0.98.1091 and MATLAB R2014a.

Boolean modeling
The Boolean model is presented as logical interaction hypergraph (LIH) as introduced by
Klamt et al. [49], that is two or more species participate in one interaction. Each species is
defined by a logical, binary state variable, that is 0/1 for inactive/active state or absent/present.
The model was implemented using the MATLAB Toolbox CellNetAnalyzer (CNA) [50]. Logi-
cal AND connections are represented by blue dots in the LIH, OR connections by yellow
and inhibiting interactions are indicated by red lines. A so called timescale constant τ [49] is
assigned to each logical interaction indicating when a reaction becomes active, whereat reac-
tions with lower timescale constants become active earlier than interactions with higher time-
scale constants. Abbreviations and descriptions of species are given in S1 and S2 Tables, logical
equations can be found in S3 and S4 Tables. S1 Model contains all necessary files for starting
the Boolean model of macrophage activation with the CellNetAnalyzer.
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Boolean model analysis: calculation of logical steady states (LSS)
The input/output behavior of the Boolean model is analyzed by calculating the LSS for a given
input setting, that is LPS = 1, IL-4 = 0, IL-13 = 0 for M1 macrophages and LPS = 0, IL-4 = 1,
IL-13 = 1 for M2 macrophages. During LSS analysis, the signal is propagated from the fixed
inputs along the logical hyperarcs as far as uniquely feasible till the system reaches a LSS, that is
the state of each species is consistent with its assigned Boolean function. Assignment of time
scales does not modify the manner of LSS calculation rather than altering the analyzed Boolean
network by extracting smaller subnetworks. Calculating a LSS for a time scale τ = t computes
the LSS for a subnetwork containing all interactions with a time scale constant τ� t whereas
interactions with a time scale constant τ> t are not included in the analysis [49].

Dynamic modeling
The gene expression model is based on ordinary differential equations (ODEs) and mass action
kinetics. It was implemented using the MATLAB Toolbox PottersWheel [51] and comprises 23
species and 47 parameters. The model setup is explained in [52], a short summary is given
in S1 Protocol as well as a list of model equations and parameter values. The ODE system is
numerically integrated using the Sundials solver CVODES and parameter values were esti-
mated by least squares fitting. Identifiability of parameters was analyzed by estimating the pro-
file likelihood as explained in [53].

Supporting Information
S1 Fig. First version of the Boolean model describing macrophage activation. Literature-
based Boolean model describing the response of macrophages to the inputs LPS, IL-4 and
IL-13 depicted in black representing the phenotype of classically activated (LPS-stimulated,
M1 phenotype) as well as alternatively activated (IL-4/13 stimulated, M2 phenotype) macro-
phages. The model is displayed as logical interaction hypergraph containing 148 nodes and
176 interactions. Black arrows and red lines denote activating and inhibiting interactions,
respectively. Logical AND connections are expressed using blue dots and OR connections by
yellow diamonds. The housekeeping node is depicted by green rectangles indicating all species
that are already present in the unstimulated state of the cell. Grey-shaded species denote cyto-
kines that are secreted by the cell and are able to mediate autocrine feedback.
(TIFF)

S2 Fig. Influence of Akt1 and Akt2 on macrophage polarization in the Boolean model. The
first version of the Boolean model predicted (A) M1 polarization after LPS stimulation and (B)
also M1 polarization after IL-4 stimulation. In order to restore correct M2 polarization after
IL-4 stimulation an additional coregulating signal is necessary that is induced by the activated
TLR4 receptor complex and, together with Akt1, enhances miRNA-155 expression. In the cor-
rected version of the Boolean model (C) M1 polarization is induced by LPS and (D) M2 polari-
zation is induced by IL-4, as expected.
(TIF)

S3 Fig. LPS and IL-4/IL-13 dependent expression of miRNA-155. Primary murine BMDMs
were incubated with 50 ng/ml LPS or with 25 ng/ml of IL-4/IL-13 each. Following, the expres-
sion of miRNA-155 was determined as described in the Materials and Methods section at
the indicated time points. Data were analysed using the ddCT method and mRNA levels are
depicted as fold of untreated controls. Data are presented as mean ± SEM (n = 4). Significances
are indicated by � for p� 0.05, �� for p� 0.01 and ��� for p� 0.001.
(TIF)
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S4 Fig. Macrophage marker expression determined by flow cytometry analysis.Macro-
phages were treated with LPS (50 ng/ml) or IL-4/ IL-13 (25 ng/ml each) as indicated and cells
were subjected to FACS analysis, as described in Materials and Methods. (A) CD14, F4/80,
CD68 and CD11b expression, (B) CD69 and CD86 expression and (C) CD206 expression after
one day of cultivation. Arithmetic means of histogram GeoMean (fold of control) ± SEM of at
least three independent experiments are shown.
(TIF)

S5 Fig. Profile likelihood versus all parameters of the ODE model of mRNA expression.
Profile likelihood is displayed by blue lines, estimated parameter values are indicated by green
circles. The threshold for 68% confidence intervals is depicted as red line. Parameter values
on the base 10 logarithmic x-axis are displayed in orders of magnitude. The χ2PL value is
calculated by the sum of mean square errors. For calculation of each profile likelihood, the
respective parameter value is decreased and increased based on the estimated optimal value
in various steps whereas all other parameter values are again optimized by weighted least-
square minimization. If the profile likelihood crosses the threshold line, the parameter is
considered as identifiable. Otherwise, the upper or lower bound of the parameter remains
unidentifiable.
(TIF)

S1 Table. Nodes of the Boolean model of macrophage activation.Notation of all species of
the Boolean model (Fig 11) with their official full name and gene ID according to the NCBI
gene data base or description. An asterisk (�) in the last column indicates nodes that are newly
added after comparison of experimental data and simulation results of the first version of the
Boolean model (S1 Fig). A hash (#) indicates a modified node; the corresponding species in S2
Table is also marked with a hash.
(PDF)

S2 Table. Deleted or modified nodes. List of all species that were part of the first literature-
based version of the Boolean model (S1 Fig) but were modified or deleted after comparison
with experimental data and thus do not occur in the final model version (S1 Table). A hash (#)
indicates a modified node; the corresponding species in S1 Table is also marked with a hash.
(PDF)

S3 Table. Interaction equations of the Boolean model of macrophage activation. List of all
logical equations of the Boolean model (Fig 11) in the notation of the CellNetAnalyzer with
their assigned timescale constant τ, a short description and reference. An asterisk (�) in the last
column indicates equations that are newly added after comparison of experimental data and
simulation results of the first version of the Boolean model (S1 Fig). A hash (#) indicates a
modified equation; the corresponding interaction equation in S4 Table is also marked with a
hash.
(PDF)

S4 Table. Deleted or modified interaction equations. List of all logical equations that were
part of the first literature-based version of the Boolean model (S1 Fig) but were modified or
deleted after comparison with experimental data and thus do not occur in the final model ver-
sion (S3 Table). A hash (#) indicates a modified equation; the corresponding interaction in S3
Table is also marked with a hash.
(PDF)

S1 Protocol. The file contains more detailed information on data analysis and modeling.
(PDF)
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S2 Protocol. Boolean model of macrophage activation. The file contains the refined Boolean
model of macrophage activation implemented with CellNetAnalyzer [50]. CNA is freely avail-
able for academic use. Software and online manual can be downloaded from http://www.mpi-
magdeburg.mpg.de/projects/cna/cna.html. After starting CNA, a new signal-flow project has
to be created using the provided folder ‘MacrophageActivation’. Textboxes are optimized for
width 0.007, height 0.015, and font size 8.
(ZIP)

S1 Dataset. Transcript expression data of activated macrophages.Mean expression values of
measured mRNAs from primary murine BMDMs stimulated with LPS or IL-4/13 for 0.5, 1, 2,
6 and 10 h normalized on untreated controls with standard deviation, number of samples and
p-values for regulation compared to untreated controls as well as the official full name and
gene ID as given in the NCBI gene database and the Applied Biosystems assay number.
(XLSX)

S2 Dataset. Protein secretion data of macrophages.Mean expression values of measured pro-
teins in the supernatant of primary murine BMDMs after differentiation and stimulation with
LPS or IL-4/13 for 0, 0.5, 1, 2, 6, 10 and 24 h with standard deviation, number of samples and
p-values for secretion compared to untreated controls (t = 0).
(XLSX)
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