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Abstract

Knowledge bases are an important resource for question answering systems and search
engines but often suffer from incompleteness. This work considers the problem of knowledge
base completion (KBC). In the context of natural language processing, knowledge bases
comprise facts that can be formalized as triples of the form (entity 1, relation, entity 2).
A common approach for the KBC problem is to learn representations for entities and
relations that allow for generalizing existing connections in the knowledge base to predict
the correctness of a triple that is not in the knowledge base.

In this work, I propose the context path model, which is based on this approach. In contrast
to existing KBC models, it also provides explanations for predictions. For this purpose, it
uses paths that capture the context of a given triple. The context path model can be applied
on top of several existing KBC models. In a manual evaluation, I observe that most of the
paths the model uses as explanation are meaningful and provide evidence for assessing the
correctness of triples. I also show in an experiment that the performance of the context
path model on a standard KBC task is close to a state of the art model.

Kurzfassung

Wissensbasen sind eine wichtige Ressource für Frage-Antwort-Systeme und Suchmaschinen.
Oft sind Wissensbasen jedoch unvollständig. Diese Arbeit beschäftigt sich mit dem Problem
der Vervollständigung von Wissensbasen. Im Kontext der maschinellen Sprachverarbeitung
bestehen Wissensbasen aus Fakten, die als Tripel der Form (Entität 1, Relation, Entität 2)
dargestellt werden können. Ein häufiger Ansatz für die Vervollständigung von Wissensbasen
ist, Repräsentationen für Entitäten und Relationen zu lernen, die es erlauben, bestehende
Zusammenhänge in einer Wissensbasis zu erfassen und zu generalisieren, um damit die
Korrektheit von Tripeln vorherzusagen, die nicht in der Wissensbasis vorkommen.

In dieser Arbeit stelle ich das context path model vor, welches auf diesem Ansatz basiert.
Im Gegensatz zu bisherigen Modellen generiert es auch Erklärungen für Vorhersagen. Für
die Erklärungen werden Pfade genutzt, die den Kontext des betrachteten Tripels erfassen.
Das vorgeschlagene Modell kann auf mehrere bestehende Modelle zur Vervollständigung
von Wissensbasen angewandt werden. Die manuelle Auswertung von Erklärungen zeigt,
dass das context path model zum Großteil sinnvolle Pfade ausgibt, die Hinweise über die
Korrektheit des betrachteten Tripels geben. In einem Experiment zeige ich außerdem, dass
das context path model die Genauigkeit eines aktuellen Modells bei der Vorhersage von
neuen Fakten fast erreicht.
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1 Introduction

The task of knowledge base completion (KBC) became an active field of natural language
processing (NLP) research in the last years.

In this work, the term knowledge base refers to a structured representation of knowledge
in form of entities and their respective relationships. Knowledge bases such as Freebase
[BEP+08], Wikidata [VK14] or Yago [SKW07] for example comprise facts about persons
like their family relations and their occupation or facts about places like the region or
country they are located in.

Knowledge bases are applied, for example, in Google search to understand search queries
more deeply, to present fact boxes that might already answer a query and to provide
explorative search suggestions [SVT+12]. Another common application of knowledge
bases is question answering systems. Such systems aim to answer natural language
questions using facts of knowledge bases [BCFL13; BWU14].

Knowledge base completion denotes the prediction of new facts that are not present in a
given knowledge base. This task is motivated by knowledge bases that are collaboratively
built and therefore tend to be incomplete. Min et al. show that in Freebase 93.8% of
persons have no place of birth assigned and for 78.5% of persons, the nationality is missing
[MGW+13].

In NLP, knowledge bases are often formalized as a directed graph with labeled edges, here
called knowledge graph.1 A knowledge graph GKB consisting of n facts is defined as a set
of edges where each edge is denoted as a triple t of the form (e1,r, e2) with entities e1 and
e2 and relation r:

GKB = {ti}ni=1 (1.1)

1In the context of NLP research, the term knowledge graph is used with different interpretations. Like Guu
et al. [GML15], I use the term knowledge graph when referring to the mathematical representation of a
knowledge base as graph.
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1 Introduction

This definition identifies an edge not only by the entities e1 and e2 it connects, but also
by its label r . This allows two entities to be connected by several edges when these edges
represent different relations. It is also possible that an entity is connected to several entities
over the same relation. This is necessary to represent, for instance, a person having several
children.

The task of KBC can then be formalized as assessing the correctness of a triple t that is not
an element of the given knowledge graph.

A common approach for KBC is to learn representations for the entities and relations that
allow for generalizing existing connections in the knowledge base to predict new facts. A
simple example for this is facts about family relations like the parents and grandparents
of a given person. In this example a KBC model should capture the relationship that
grandparents are the parents of the parents. Using this learned relationship the model
could predict a missing fact about the grandparents for a certain person if both facts about
the parents and their respective parents are given. While the missing fact can be strictly
concluded in this example, KBC models are also interested in finding less strict but very
likely connections in knowledge bases.

With the popularity and success of complex statistical models in the last years, the
explainability of predictions performed by artificial intelligence systems suffered [Hol18].
This has led to growing interest in explainable artificial intelligence. The predictions of
automatic methods typically do not provide absolute certainty. Applied to KBC, predictions
for missing facts often have to be verified by humans before they can be added to the
knowledge base. Not just providing a confidence score for the correctness of a triple
but also paths that lead to the prediction can help the reviewer in his own assessment.
When applied to a question answering system, these explanations can provide additional
information the user might also be interested in like the exact city of birth and not only the
country of birth.

In this thesis, I propose a new KBC model, the context path model (CPM). For estimating
the correctness of a triple, the CPM explicitly models the paths that capture the context of
the triple. More concretely, the CPM aims to find paths that can provide evidence for or
against the correctness of the triple. Those paths can then be used as explanation for the
prediction.

Formally, I define a path of length k as a sequence of the form (e1,r1, ...,rk, e2). A path
could for example start with an entity representing a person, go over the edges city of birth
and contained by and end in an entity representing a country. This path states the country
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the person was born in. Such a path might give a hint for a fact about the nationality
relation of this person. This motivates a core element of my approach, namely to model
the relevance of paths for facts about a certain relation.

While it is natural to use paths known to be correct to find evidence for the correctness of
a triple, refuting a triple may require also taking into account potentially incorrect paths
that are not present in the knowledge graph. Transferred to the example from above, this
means that knowing that a person is not born in a town of a certain country makes it less
likely that the person has nationality of that country. Due to the incompleteness assumption
of knowledge bases, paths are not necessarily incorrect if they cannot be found in the
knowledge graph. For that reason, the second core element of the context path model deals
with scoring the correctness of paths.

In order to compute the correctness score for a given triple, the context path model combines
the relevance scores and correctness scores for paths that capture the context of the triple
in the knowledge graph.

I conduct experiments on a knowledge graph extracted from Freebase. The experiments
show that most of the paths the model uses as explanation are meaningful and provide
evidence for assessing the correctness of triples. The performance of the context path
model on a standard KBC task is close to a state of the art model.

My thesis is structured as follows: In Chapter 2, I give a brief introduction to the machine
learning concepts that I use in my work. Then I describe more detailed how representation
learning can be applied to KBC and I discuss several existing KBC models. In Chapter
3, I define the context path model. The experiments in Chapter 4 aim to evaluate the
meaningfulness of explanations and the performance of the CPM on the KBC task. Chapter
5 concludes my work and names future research directions.
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2 Background

2.1 Machine Learning for KBC

As described in Chapter 1, the task of knowledge base completion can be formalized as
predicting the correctness of a triple t. This can be done by learning a real valued function
score(t) that outputs high values for correct and low values for incorrect triples. The term
learning refers to parameters Θ of score(t) which determine the semantics of score(t).
The parameters Θ are typically real valued and can have the form of vectors or matrices,
for example.

To specify the goal of learning formally, an objective J(Θ) is defined, which measures how
well score(t) fulfills the intended prediction task on a given data set. Often it is formulated
as loss function which takes small values if predictions are correct.

The parameters Θ are learned based on a training data set which provides examples for
correct and incorrect triples. The process of learning uses optimization techniques that
minimize the loss function with respect to the parameters Θ.

Very commonly, optimizers are gradient based. For a given training data set, they take
steps in the direction of the negative gradient to update the parameters Θ to Θ′ in order to
minimize J(Θ). In its most basic form, this method is called gradient decent and can be
described formally as follows:

Θ
′ = Θ − γ∇J(Θ) (2.1)

The step size γ is also referred to as learning rate. Gradient based optimizers require J(Θ)
to be differentiable. At the beginning of the training, the parametersΘ need to be initialized.
For example, they can be drawn from a continuous probability distribution. [WFH11]

While the parameters Θ are optimized by the described method, the learning rate and the
choice of parameter initialization are not part of the objective. Such parameters are called
hyperparameters.
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2 Background

The main goal when selecting hyperparameters is to obtain a model that generalizes the
training data and can then be applied to unseen examples. In order to evaluate the capability
of the model to generalize, a validation data set can be used. This data set and the training
data set have to be disjoint. To finally evaluate the performance of a model, a test data set
is used which again contains different data points than the training and validation sets.

2.2 Related Work

Recent years have shown that very often models based on learned distributed representations
outperform conventional models, which are partially based on rules.1 This can be observed
in many areas of artificial intelligence like object recognition, speech recognition, machine
translation or sentiment analysis [BCV13]. As the context path model also uses learned
distributed representations, I give an introduction to a common form of representation
learning for knowledge graphs in NLP.

Due to its graph structure, it is obvious to represent a knowledge graph by the entities and
relations it comprises. More concretely, an entity e and a relation r can be represented by
vectors e ∈ Rd and r ∈ Rd . Vectors inRd are commonly used for distributed representations.
A vector representation is called distributed when the characteristics of an entity (or a
relation) are represented by patterns over several elements of the vector, while at the same
time an element of the vector is involved in representing several entities (or relations)
[HMR86].

In order to learn meaningful distributed representations, an objective has to be defined,
which measures how well the intended meaning is captured by the representations. Formally,
I denote the set of all representations for entities and relations as Θ. Then the objective can
be defined as a function JG : Θ→ R for a given knowledge graph G. Representations which
accurately capture their intended meaning are assigned small values by JG [BCV13].

I now have a look at how an objective function for knowledge graph representations can be
defined. In order to do that, I first consider the structural properties of knowledge graphs.

In knowledge graphs, relationships between concrete entities like persons or places are
modeled as labeled edges. Abstract concepts like the property of being human are modeled
in the same way, by defining a new entity for the property human. This means that all
information of a knowledge base is captured in the graph structure, whereas isolated entities

1I discuss a rule-based KBC approach by Galárraga et al. [GTHS13] later in this section.

12



2.2 Related Work

or relations comprise no information about their semantics. In other words, the semantics
of an entity is completely defined by its relationships with other entities and the semantics
of a relation is defined by the entities it connects. Therefore, meaningful representations
of entities and relations need to be based on their context. This context is not symmetric
because the edges of a knowledge graph are directed. More concretely, a labeled directed
edge (e1,r, e2) can be seen as mapping e1 to e2 by applying the relation r . This suggests an
objective function that uses r to transform e1 into a representation that is similar to e2.

Below I give an example for an objective function JG that implements this idea by using
translations in vector space. This objective originates from a KBC model called TransE
proposed by Bordes et al. [BUG+13].

JG(Θ) =
∑

(e1,r, e2) ∈G

∑
(e1 ′,r, e2 ′) ∈G′

[
1 + ‖e1 + r − e2‖

2
2 − ‖e

′
1 + r − e′2‖

2
2
]
+
. (2.2)

where [x]+ denotes the positive part of x and

G′ = (G′1 ∪ G′2) \ G

G′1 =
⋃
r∈R

{(e1
′, r, e2) | ∃e ∈ E : (e1

′, r, e) ∈ G ∧ ∃e1 ∈ E : (e1, r, e2) ∈ G}

G′2 =
⋃
r∈R

{(e1, r, e2
′) | ∃e ∈ E : (e, r, e2

′) ∈ G ∧ ∃e2 ∈ E : (e1, r, e2) ∈ G}.

(2.3)

R is defined as the set of all relations and E is defined as the set of all entities in the
knowledge graph G.

Intuitively, this objective function reduces the distance between e1 + r and e2 if (e1, r, e2)

is a correct triple and increases it otherwise. The objective function aims at achieving
a margin of at least 1 between distances for correct and distances for corrupted triples.
Corrupted triples are generated by replacing either e1 or e2 of a given triple such that
the resulting triple is not part of the given knowledge graph. By the definition of G′,
the replacing entity matches the type of its position. This encourages JG to produce
representations that can capture more fine grained semantics of entities and relations.

In the example given in Chapter 1, the country of birth can be found by following a path
which first leads to the city of birth and then to the country this city is located in. The
two relations city of birth and contained by could be merged into one relation country of
birth. The path (e1, city of birth, contained by, e2) would then have the same semantics
as the triple (e1, country of birth, e2). This example motivates the idea of representing
a sequence of relations (r1, ...,rk) of a path (e1, r1, ...,rk, e2) in the same vector space as
relations by composing the relation representations r1, ..., r k into one vector r p. This
extends the definition of TransE from edges to paths.
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2 Background

Guu et al. [GML15] show how this idea can be applied to the objective JG from Equation
2.2. Instead of directly using the edges of the knowledge graph G, they perform random
walks of length k on G in order to generate paths. Let P be a set of paths of the form
(e1,r1, ...,rk, e2), then the objective JG can be generalized to paths by defining:

JP(Θ) =
∑
p∈P

∑
p′∈P′

[
1 + ‖e1 + r p − e2‖

2
2 − ‖e

′
1 + r p − e′2‖

2
2
]
+

(2.4)

where the representation for the composition of the relations r1, ...,rk is defined as:

r p = r1 + ... + r k . (2.5)

P′ is the set of paths that have either e1 or e2 corrupted.

P′ =
⋃
p∈P

(N1(p) ∪ N2(p))

N1(p) = {(e1
′, r1, ...,rk, e2) | ∃e ∈ E : (e1

′, r, e) ∈ G ∧ e1
′ < C1(r1, ...,rk, e2)}

N2(p) = {(e1, r1, ...,rk, e2
′) | ∃e ∈ E : (e, r, e2

′) ∈ G ∧ e2
′ < C2(e1,r1, ...,rk)}.

(2.6)

To ensure that these corrupted paths actually do not occur in the knowledge graph, the sets
of correct path endings C1 for the left entity and C2 for the right entity have to be defined:

C1(r1, ...,rk, e2) =


{e1 | (e1,r1, e2) ∈ G} if k = 1,

{e1 | ∃e ∈ C1(r2, ...,rk, e2) : (e1,r1, e) ∈ G} if k > 1.

C2(e1,r1, ...,rk) =


{e2 | (e1,rk, e2) ∈ G} if k = 1,

{e2 | ∃e ∈ C2(e1,r1, ...,rk−1) : (e,rk, e2) ∈ G} if k > 1.

(2.7)

This definition encourages that representations are learned which give e1 + r1 + ... + r k
the semantics of the set of entities C2(e1,r1, ...,rk) that are reached when traversing the
knowledge graph over the edges r1, ...,rk , starting from e1. Calculating the distance
‖e1 + r1 + ... + r k − e2‖

2
2 can then be interpreted as a continuous generalization of the

membership test e2
?
∈ C2(e1,r1, ...,rk) in the sense that for a small distance it is more likely

that e2 ∈ C2(e1,r1, ...,rk) holds than for a large distance.

This results in the following instantiation of the function score(p), which I abstractly
describe in Section 2.1 for triples that are now generalized to paths p = (e1, r1, ...,rk, e2).

scoreTransE (p) = ‖e1 + r1 + ... + r k − e2‖
2
2 (2.8)

Vectors are not the only possibility for representing relations. The Bilinear model from
Nickel et al. [NTK11] uses matrices W r ∈ R

d×d to represent relations. I directly show the
generalization of the Bilinear model to estimating the correctness of paths by score(p):

scoreBilinear(p) = eᵀ1W r1 ...W rk e2 (2.9)
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2.2 Related Work

Guu et al. give an intuitive motivation for multiplying matrices that represent relations
in order to model paths by interpreting them as low-dimensional adjacency matrices for
relations. A vector for the entity e can be seen as low-dimensional representation of an
indicator vector that has a 1 in the entry corresponding to entity e and is otherwise 0.
Using this intuition, scoreBilinear(p) can be interpreted as counting the number of paths
that connect e1 and e2 by traversing the relations r1, ...,rk . Consequently, high values of
scoreBilinear(p) represent that it is more likely that p is a correct path. Except for this
difference in sign, an objective for scoreBilinear(p) can be defined similarly to the objective
for TransE.

Restricting the matrices W r to be diagonal results in the Bilinear-diag model proposed by
Yang et al. [YYH+14]. As a special case of the Bilinear model, it also supports estimating
the correctness of paths. Bilinear-diag can also be seen as a variant of TransE which uses
multiplication instead of addition to let entity and relation representations interact.

Due to matrix multiplication being non-commutative, the Bilinear model can capture the
order of relations in a path, which is not the case for TransE and Bilinear-diag.

While the authors of those models report improvements over the state of the art KBC
performance, such results are highly dependent on the used data sets. This can be seen in
the experiments from Guu et al., who compare the three mentioned models on two data
sets. Kadlec et al. [KBK17] show that the choice of hyperparameters has a very strong
impact on the performance of KBC models and that even a simple model like Bilinear-diag
can outperform a wide range of KBC models when good hyperparameters are chosen.

The main contribution of this work, generating explanations for predictions, is similar to
the task of finding logical rules in a knowledge base. In the literature these rules are often
formalized as horn rules. With a premise of length two and the conclusion (e1,r3, e3), a
horn rule can have the following form in the context of knowledge bases:

(e1,r1, e2) ∧ (e2,r2, e3) → (e1,r3, e3) (2.10)

Galárraga et al. [GTHS13] propose the system AMIE which mines such rules. Their
approach is to adapt association rule mining to incomplete knowledge bases by defining
new measures for support and confidence. Rules are assigned confidence values that state
how likely the conclusion of the rule is a correct triple. While this can be used to predict
new facts based on a single rule, there is no clear way of combining several rules that all
have the same triple as conclusion.
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2 Background

Furthermore, these rules only make a statement about triples that actually occur in the
conclusion of a rule. The mentioned KBC models that use a function of the form
score(e1,r, e2) can take arbitrary triples as input, provided that the involved entities and
relations occur somewhere in the training set.

The rules found by Galárraga et al. always have a positive conclusion and therefore cannot
provide evidence for refuting triples.

Yang et al. [YYH+14] first learn representations for relations with common KBC models
like TransE or Bilinear and then use these representations to mine horn rules. More
concretely, they use the similarity of the representations of the premise and the conclusion
to prune the search space of potential rules. The representation for the premise is obtained
similar to Guu et al. as the composition of relations that occur in the premise. The
conclusion is represented by the relation it contains (r3 in 2.10). Despite these rules
are extracted with the help of learned relation representations, they do not explain how
predictions are actually derived because models like TransE or Bilinear do not explicitly
use these rules.

Association rules in general are found by counting how often they apply in a given
knowledge base. This allows for assigning comprehensible confidence scores to rules.
These scores reveal which rules are strictly satisfied in the knowledge base and which rules
provide less certainty for predictions. On the other hand, these rules cannot capture the
characteristics of individual entities.

PTransE, proposed by Lin et al. [LLL+15] uses paths surrounding a triple and assigns them
relevance scores that determine the reliability of paths for estimating the correctness of the
given triple. The relevance scores in PTransE are not learned parameters. They instead use
a heuristic called path-constraint resource allocation, that is based on the sizes of entity
sets (similarly defined as C1 and C2 in 2.7) that can be reached by following the relations
in a path step by step. Lin et al. report improvements in the KBC task over the standard
TransE model. This supports the idea of modeling paths explicitly to capture the context of
a triple.
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3 Context Path Model

The context path model is based on the KBC formalization, namely to estimate the
correctness of a triple t = (e1,r, e2), as introduced in Chapter 1. The CPM uses paths that
capture the context of t to estimate the correctness of t and to provide explanations for its
predictions. I denote the set of paths that are used to capture the context of a triple t in the
knowledge graph as Pt or as context paths. Those paths do not necessarily have to occur in
the knowledge graph and can be potentially incorrect. In Section 3.1, I motivate the CPM
by giving examples how both correct and incorrect context paths can be used to assess the
correctness of triples. I then define the context path model in Section 3.2 and show how it
uses such paths to collect evidence for or against the correctness of triples. In Section 3.3,
I explain how context paths can be used for explaining predictions and in Section 3.4, I
describe how I generate context paths.

3.1 Motivation

Especially when dealing with real world knowledge, which comprises connections with
different degrees of certainty, probabilities are a suitable tool for describing connections
between triples and paths. For a triple t, I define the binary random variable Ct whose
value is 1 iff. t is a correct fact. Then the probability of t being a correct fact can be denoted
as P(Ct = 1) and the probability of t being incorrect as P(Ct = 0) = 1 − P(Ct = 1). In
the same way, the probability of a path p being correct can be defined. With P(Ct = Cp),
I denote the probability of t and p being both correct or both incorrect. I use the term
correctness when referring to the gold standard. In contrast to knowledge bases, the gold
standard misses no facts.

The following examples illustrate how paths can be used to predict new facts and to provide
explanations for the predictions.
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3 Context Path Model

1. I again consider the example from Chapter 1 with the triple t1 =

(e1, country of birth, e2) and the path p1 = (e1, city of birth, contained by, e2). The
correctness of p1 and t1 are logically equivalent. In terms of probabilities this means
that P(Ct = Cp) = 1 holds. The path p1 can be used as evidence for showing that t1
is correct and for showing its incorrectness.

2. The path p2 = (e1, nationality, e2) provides some evidence for the correctness of t1
though it is not logically equivalent to t1. The correctness of p2 only makes it more
likely that t1 is correct. Likewise, p2 being incorrect makes it more likely that t1 is
incorrect as well. Therefore P(Ct1 = Cp2) should still be high but smaller than one.
The path p2 can be used as evidence when assessing the correctness of t but it should
have less influence on the prediction than p1 from the first example.

3. There are also paths that provide no or almost no hints about the correctness of a triple.
An example for that is the path p3 = (e1, lived in country, neighboring country, e2).
This path has a weak connection with t1 in the sense that it is not unlikely to have
lived in a country that adjoins the country of birth. As countries very often have
several neighboring countries, t1 can hardly be used as evidence for or against the
correctness of t1. I expect the probability P(Ct1 = Cp3) to be small.

4. There are cases where the connection between a triple and a corresponding path is not
symmetric like in the examples above but rather describes a necessary or sufficient
condition. As an example, I consider the triple t2 = (e1, city of birth, e2) and the
path p3 = (e1, country of birth, contains, e2). This path is a necessary condition for
t2, although it is not sufficient for t2 because the person e1 might be born in a city
different from e2 but in the same country. The probability P(Ct2 = Cp3) could be
around 0.5. The path p3 cannot be used as evidence for the correctness of t2. Instead,
it can be used to collect evidence against the correctness of t2 if p3 is not correct.
Analogously, a path p that is a sufficient condition for a triple t can only be used to
collect evidence for the correctness of t but not against it. In this case, P(Ct = Cp)

can take the same values as P(Ct2 = Cp3).

I only consider positive connections between p and t in the sense that correctness of p can
only make the correctness of t more likely but p cannot provide evidence for t not being
correct. Analogously, p being incorrect can only provide evidence against the correctness
of t. For example the logical connection that a person being female implies she is not the
father of any other person cannot be captured in this form. Although, this connection can
also be formulated as a positive connection that it is a necessary condition for being a father
to be male.
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3.2 Definition of the Context Path Model

Ideally, an explainable KBC model should be able to determine the reliability of paths as
indicator for the correctness of a triple t. This means that the model has to differentiate
between equivalence, necessary conditions and sufficient conditions and between varying
degrees of certainty in order to appropriately use paths for reasoning and for explanations
in the way described above.

The idea of the context path model is to use P(Ct = Cp) to estimate the reliability with
which paths can give evidence for or against the correctness of triples. As shown in the last
example, P(Ct = Cp) does not differentiate sufficient and necessary conditions. Therefore,
it is not a perfect indicator for the reliability of paths. Thus, I use the term relevance to
describe the role of P(Ct = Cp) in the CPM more generally as an indicator for paths that
provide evidence for or against the correctness of t.

3.2 Definition of the Context Path Model

Given the context paths Pt for a triple t, the context path model estimates the correctness
of t given its context paths. I denote this estimation with score(t,Pt) and define it as
follows:

score(t,Pt) =
1

Z(t,Pt)

∑
p∈Pt

r(t, p) · score(p), (3.1)

Z(t,Pt) =
∑
p∈Pt

r(t, p). (3.2)

The probability of a path p being correct P(Cp = 1) is estimated with score(p). The term
r(t, p) estimates the probability P(Ct = Cp) or the relevance of p for t. I also denote r(t, p)
with relevance score. I call score(p) the correctness score of p and score(t,Pt) the context
score of t. Like its probabilistic counterpart P(Cp), the estimation score(p) is restricted
to lie in [0,1]. I only require r(t, p) to be non-negative. Despite estimating P(Ct = Cp), it
is not necessary for r(t, p) to lie in [0,1] because normalization is already applied with
Z(t,Pt). The property of score(p) being normalized carries over to score(t,Pt) which also
lies in [0,1].

On a technical level, this model has the following properties: Paths with high correctness
scores push score(t,Pt) towards 1 by increasing the nominator and the denominator by
the same amount. Paths with low correctness scores push score(t,Pt) towards 0 by only
increasing the normalization term in the denominator. The magnitude of both effects
depends on the respective relevance scores.
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Applied to the first example from Section 3.1, the path p1 = (e1, city of birth, contained by,
e2) should be assigned a high relevance score r(t1, p1) when it is used as context path for
the triple t1 = (e1, country of birth, e2). If p1 is correct, score(p1) should be close to 1
since it estimates P(Ct1 = 1). A high relevance score combined with a high correctness
scores pushes score(t1,Pt1) towards 1. If p1 is not correct, score(p1) should be close to
0. In this case a high relevance score is combined with a low correctness score which
pushes score(t1,Pt1) towards 0. Both effects match the intended meaning of score(t1,Pt1)

to represent the correctness of t1.

The third example from Section 3.1 features the path p3 = (e1, lived in country,
neighboring country, e2), which has a low relevance for t1 and should be assigned a
low relevance score r(t1, p3). Since correctness scores are restricted to lie in [0,1], the
effect of score(p3) on score(t1,Pt1) is small, independently of score(p3) being high or low.
This properly models that the correctness of p3 provides no evidence for the correctness of
t1.

3.2.1 Estimating the correctness of context paths

A model for score(p) must have the following properties: It needs to be able to model
paths and its output has to lie in [0,1]. The first property applies to all composable KBC
models like TransE [BUG+13], Bilinear [NTK11] and Bilinear-diag [YYH+14]. I show in
the following how the output of distance-based models can be mapped to [0,1] to make
them suitable for the CPM.

I choose the TransE Model [BUG+13] as basis for assessing the correctness of context
paths. Bordes et al. use the distance ‖e1 + r − e2‖

2
2 directly as a measure for the correctness

of a triple (e1,r, e2). This is possible due to the max-margin objective (Equation 2.2) which
encourages correct triples to be assigned a distance that is at least by the margin 1 smaller
than distances of incorrect triples. While distances can take any non-negative values, the
context path model expects the correctness scores to lie in [0,1]. I use the logistic sigmoid
function σ to map the TransE scores to the interval [0,1] and add a path-specific bias
bᵀ1 r p (b1 ∈ R

d) that can adapt varying distance scales between paths to the nonlinearity
of the sigmoid. I define the correctness score for a path p = (e1, r1, ...,rk, e2), using the
compositional representation r p = r1 + ... + r k , as follows:

score(p) = σ(−‖e1 + r p − e2‖
2
2 + bᵀ1 r p) (3.3)

with the logistic sigmoid function σ:

σ(x) =
1

1 + e−x . (3.4)
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When score(p) is used in the context path model, it is only calculated for paths that cannot
be found in the knowledge graph. Paths p that occur in the training knowledge graph are
directly assigned score(p) = 1.

3.2.2 Estimating the relevance of context paths

For estimating the relevance of context paths p = (e1,r1, ...,rk, e2) for a triple t, the CPM
represents the path as sequence of relations r1, ...,rk . By using only these relations, the
meaning of the path is abstracted from the actual participating entities e1 and e2. This
makes it possible to generalize the question of which path is relevant for a triple to finding
connections between the relation of a given triple and relation sequences of paths.

Even when considering paths of length 2 or 3, the number of combinations of relations and
relation sequences can be high, for paths of length k, it is bounded by |R|k+1. Using one
parameter per combination to learn r(t, p) would not only significantly increase the number
of parameters, but also suffer from sparsity of certain combinations.

I propose a simple model for learning r(t, p), that uses the compositional representation
of relation sequences. The model learns a vector c r ∈ Rd for each relation r in order to
recognize patterns in the compositional path representation r p (defined in Equation 2.5)
that indicate how relevant the path p is for the relation r. As relevance scores have to be
non-negative, the exponential function is applied.

r(t, p) = exp(cᵀr r p + bᵀ2 r). (3.5)

The bias term bᵀ2 r with b2 ∈ R
d creates additional degrees of freedom to adapt to the

nonlinearity of the exponential function and to the relation specific scaling of cᵀr r p.

In contrast to learning one parameter per combination, this model can use the distributed
representations for paths and relations to generalize from common path-relation combina-
tions to more sparse combinations or to combinations that do not appear in the training set.
This relevance model only adds d · (|R| + 1) parameters to the d · |R| + d · |E | parameters
of TransE.

3.2.3 Training

Since r(t, p) estimates P(Ct = Cp) and score(p) estimates P(Cp = 1), they should be learned
separately, each with an objective that encourages them to estimate their probabilistic
counterpart. Learning both r(t, p) and score(p) jointly would lead to score(p) being
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influenced by the relevance of p. Then score(p) would not estimate P(Cp = 1) anymore.
Though, it is important that score(p) actually estimates P(Cp = 1) because only then the
path correctness scores are interpretable by users when considering paths as explanation
for predictions. Consequently, I split the training process into two phases to first learn the
parameters of score(p) and then the parameters of r(t, p).

Learning score(p)

Following Guu et al., I first train score(p) on the edges of the knowledge graph GKB before
training it on longer paths. This allows the model to build up paths from meaningful edges.
Capturing the semantics of paths accurately is crucial for generating explanations because
this makes it more likely that the semantics captured by the model correspond to what
users understand when considering the paths. Instead of generating completely random
paths by traversing G, I only sample paths that fulfill the criteria described in Section 3.4.2.
This focuses the training on relation sequences that are actually used by the context path
model.

TransE is often trained using a max-margin objective [BUG+13; GML15; YYH+14].
However, I use the cross-entropy loss, which fits well to the sigmoid function that outputs
scores in [0,1]. These scores can be interpreted as probabilities. The same holds for the
correct labels. They take either the value 1 or 0, but are implicitly represented by the sets of
correct paths P, consisting of paths with label 1, and the set of incorrect paths P′ with label
0. The cross-entropy measures the similarity of the probability distribution generated by
score(p) and the probability distribution of the labels. This leads to the objective Js(Θs)

for score(p):

Js(Θs) =
1
|P |

∑
p∈P

−log(score(p)) +
1
|P′|

∑
p′∈P′
−log(1 − score(p′)). (3.6)

I define P = GKB for the single edge training and P = P̂ for the subsequent path training.
Informally, P̂ is the set of all correct context paths in GKB. Formally, it is defined using the
sets P̂t , which I define in Equation 3.13.

P̂ =
⋃

t∈GKB

P̂t (3.7)

P′ is defined as in Equation 2.6. Js is minimized by updating the following parameters:

Θs = {r | r ∈ R} ∪ {e | e ∈ E} ∪ {b1}. (3.8)

This encourages score(p) to represent the semantics of paths. The intuition I give for the
max-margin loss of Equation 2.4 directly transfers to the cross-entropy loss Js(Θs).
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Learning r(t, p)

The relevance scores for paths are learned by minimizing the following cross-entropy loss
Jr(Θr):

Jr(Θr) =
1
|G |

∑
t∈G

−log(score(t,Pt)) +
1
|G′|

∑
t ′∈G′
−log(1 − score(t′,Pt ′)). (3.9)

G and G′ are defined as in Equation 2.3. Only the parameters for the relevance scores are
updated:

Θr = {c r | r ∈ R} ∪ {b2}. (3.10)

This cross-entropy loss aims to assign correct triples a context score of 1 and incorrect
triples a context score of 0. At the same time, score(p) is already trained to estimate
P(Cp = 1). Thus, Jr(Θr) encourages r(t, p) to estimate P(Ct = Cp).

3.3 Generating Explanations for Predictions

The context path model is able to produce explanations for its predictions by listing the
context paths that have the highest relevance scores for a triple t.

The relevance scores can be normalized to sum up to 1. This does not change the model
since it performs the same normalization internally with the term Z(t,Pt) as defined
in Equation 3.2. A normalized relevance score represents the percentage to which the
correctness score of the corresponding context path contributes to the output score(t,Pt).
This means that the paths with the highest relevance scores have the most impact on the
prediction.

The cross-entropy loss aims to assign correct triples a context score of 1 and incorrect
triples a context score of 0. The model is unsure about the correctness of triples if it outputs
0.5. A context path with a correctness score larger than 0.5 pushes the output towards 1. I
denote those paths as pro paths, because when they are assigned a high relevance score,
their role can be interpreted as collecting evidence for the correctness of t. Analogously, I
denote context paths with correctness scores smaller than 0.5 as con paths.

In contrast to the approach from Yang et al. [YYH+14], which extracts interpretable
rules using the learned representations for relations, the context paths are actually used
for the prediction and therefore can better explain how the model actually computed the
prediction.
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3.4 Generating Context Paths

In large, dense knowledge graphs, the number of paths that can be walked starting from a
given entity grows exponentially in the path length. This makes the training computationally
very intensive while many of those paths are not informative. In this section, I give several
criteria for selecting paths in order to keep the computations tractable by directing them to
the most promising paths. Before doing that, I present a modification to the knowledge
graph that increases the number of paths even more, but also adds potentially relevant
paths.

3.4.1 Inverse relations

I again consider the example t = (e1, country of birth, e2). In contrast to the previous
examples, it might be the case that instead of the relation contained by, now the relation
contains provides the connection between the country of birth and the city of birth. In this
case the path (e1, city of birth, contained by, e2) does not exist. To incorporate a path with
the same semantic, the relation contains has to be inverted. Then the previous path can
be expressed as (e1, city of birth, contains−1, e2). More general, let GKB be the knowledge
graph as defined in Equation 1.1, then the graph G, which is used for generating context
paths, is obtained by adding inverse relations as follows:

G = GKB ∪ {(e2,−r, e1) | (e1,r, e2) ∈ GKB}. (3.11)

3.4.2 Path selection criteria

Closed paths

The first path selection criterion aims for finding paths that can support the correctness of
a triple t = (e1,r, e2). Naturally, paths that connect the entities of a triple express some
connection between them. Restricting paths to start with e1 and end with e2 - to be closed
paths - makes it more likely that the connection they describe is related to the triple t and
might provide evidence for the correctness of t. This can be seen in the previous examples
regarding the relation country of birth, since all of them satisfy the criterion.
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Paths of limited length

The second criterion is the limitation of path lengths to k ≤ 3. This effectively reduces
the number of potential paths, since the number of paths grows exponentially in the path
length. Although, there is also an intuitive motivation regarding the potential relevance of
long paths. While for example two friends tend to have several similarities like interests,
place of residence etc., the set of similarities can significantly decrease when considering
the friend of the friend. When applying this observation several times, it is obvious that the
connection between two entities over very long paths becomes more and more blurred.

Trivial paths

The third criterion seeks to filter out trivial paths. For the path length k = 2, I denote
paths as trivial if they contain a relation that is close to the identity relation. An example
could be the relation near by. The path (e1, country of birth, near by, Switzerland) might
be assigned a high correctness score by the context path model, while the correct fact is
(e1, country of birth, Italy). It is obvious that nearby countries have similar representations
and are harder to distinguish by the model. As I show in Section 3.2.2, the context path
model estimates the relevance of a path based on the composition of the relations it contains.
Since the composition of country of birth and near by is still close to country of birth,
the path might also be assigned a high relevance. In summary, paths of length two that
comprise a relation close to the identity, might be seen as relevant by the model while
introducing additional noise.

For the path length k = 2, I denote paths as trivial if they comprise
two successive, mutually inverse relations which mostly cancel out each other.
Examples for trivial paths are (e1, country of birth, contains, contains−1, e2) and
(e1, country of birth, contains, contained by, e2). They rather add noise than providing
evidence for the relation country of birth. While the former path can easily recognized as
trivial by its structure, the latter is harder to detect without additional information about the
semantics of contains and contained by.

In order to implement a filter that detects trivial paths reliably, I first define the left domain
D1(r) and the right domain D2(r) of a relation r:

D1(r) = {e1 | ∃e2 ∈ E : (e1,r, e2) ∈ G},

D2(r) = {e2 | ∃e1 ∈ E : (e1,r, e2) ∈ G}.
(3.12)

A path (e1,r1, ...,rk, e2) is defined as non-trivial if e1 occurs only in D1(r1) and e2 occurs
only in D2(rk) and if e1 and e2 do not occur in any of the other domains of r2, ...,rk−1.
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In trivial paths of length 2, the identity relation either maps e1 to e1 or e2 to e2. The
same holds for two successive, mutually inverse relations in trivial paths of length 3. This
property is used when identifying trivial paths by analyzing their relation domains.

The exclusion of trivial paths can be too strict in some cases. An example can be the context
path p = (e1, mother of , mother of , e2) for the triple t = (e1, grandmother of , e2). The
path p is excluded if the mother of e2 herself participates in the relation grandmother of
either as grandmother or as grandchild because all paths over grandmothers or grandchildren
are excluded. Despite that, the remaining paths still capture a wide range of connections.

The paths P̂t , which are found by the methods presented so far, can be summarized
formally:

P̂t =

3⋃
k=1
{(e1,r1, ...,rk, e2) | e2 ∈ C2(e1,r1, ...,rk)

∧ e1, e2 < D2(r1) ∪ D1(rk) ∪

k−1⋃
i=2
(D1(ri) ∪ D2(ri)).

(3.13)

The first line implements the closed path criterion and the second line excludes trivial
paths.

Potentially incorrect paths

The paths described so far can only be used by the CPM to find evidence for the correctness
of a triple. All those paths are found by performing walks on the knowledge graph and
therefore must be correct. This is because KBC only assumes an incomplete knowledge
graph, while existing edges are considered correct. The context path model uses incorrect
paths as evidence for incorrect triples. With incorrect paths I denote correctly absent
paths.

Typically a knowledge graph has significantly less edges than its corresponding complete
graph, a graph in which all entities are pairwise connected by all relations. This means
that there are even more potentially incorrect paths than correct paths. Of course, many of
those incorrect paths are nonsensical and not relevant for t. I propose a selection criterion
for potentially incorrect but relevant paths P̃t that is based on the set of correct paths P̂t . It
is formally defined as:

P̃t =

3⋃
k=1
{(e1,r1, ...,rk, e2) | ∃ê1, ê2 : t̂ = (ê1,r, ê2) ∧ t̂ ∈ G ∧ (ê1,r1, ...,rk, ê2) ∈ P̂t̂

∧ (C2(e1,r1, ...,rk) , ∅ ∨ C2(r1, ...,rk, e2) , ∅)}.

(3.14)
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Intuitively, this criterion selects paths that comprise sequences of relations which are
already considered potentially relevant by the criteria for P̂t . In other words, the paths in P̃t

provide negative examples for the paths in P̂t . This enables the model to find connections
between the correctness of paths and the correctness of a given triple. Additionally, paths
in P̃t are required to be constructed by actual walks on the knowledge graph. The only
potentially incorrect part in those paths is either e1 or e2. This assures that paths in P̃t

represent the context of t, despite being potentially incorrect.

Applying all criteria together, I define the context paths Pt for a given triple t by:

Pt = P̂t ∪ P̃t . (3.15)
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4 Experiments

For my experiments, I use a data set called FB15K, which is extracted from the Freebase
knowledge base by Bordes et al. [BUG+13]. I summarize the background and the main
characteristics of FB15K in Section 4.1.

It is common to evaluate the KBC task using ranking metrics. I introduce two ranking
metrics that I use in my experiments in Section 4.2.

In Section 4.3, I analyze how meaningful the explanations produced by the CPM are. I
consider two aspects that make explanations meaningful. First, the semantics of paths as
captured by the model should be close to their semantics as perceived by users. I cover
this aspect by evaluating how accurate the model for score(p) predicts the correctness
of paths. For this purpose, I use the ranking metrics introduced in Section 4.2. The
second aspect of meaningful explanations concerns the relevance scores. The examples
in Section 3.1 already provide an intuitive idea that meaningful paths should be reliable
as indicator for the correctness of a triple. I specify this aspect more concretely in 4.3.2.
This aspect cannot be evaluated automatically because there is no data set available that
provides information about the reliability of paths. Thus, I manually annotate a sample
of prediction explanations. To make the annotation more comprehensible, I explain the
annotation scheme in 4.3.3 by giving annotation examples. The hyperparameters used for
the experiments are stated in Section 4.5.

In Section 4.4, I evaluate how accurate the CPM predicts missing facts by applying the
ranking metrics of Section 4.2. The baseline in this evaluation setting is the TransE Model.
It can be seen as a special case of the CPM when all context paths except for the triple
itself are assigned the relevance score 0. I compare the baseline with two variants of the
CPM: The first variant uses the context paths Pt as defined in Equation 3.15. In the second
variant, I exclude t from Pt in order to examine to which degree the correctness of triples
can be predicted just by considering their context. This variant is referred to as exclusive
context path model (ECPM).
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4.1 Data Set

Freebase [BEP+08] comprises general human knowledge. It has been built collabora-
tively to support a broad range of topics. In 2010, it was bought by Google.1 Now it
is integrated into the Google Knowledge Graph.2 The public version of Freebase has
been shut down in 2016, but a dump of the data set is still publicly available.3 The last
version of Freebase consists of 1.9 billion triples. Freebase triples have the same form
(e1,r, e2) as introduced in Chapter 1. A Freebase relation r has the following internal
structure: domain/type/attribute. Domains provide a coarse classification of entities, for
example into people, location or music. Types refine these classes. For the domain music,
possible types are artist or album. Entities can be part of several domains and types
at the same time. The attribute stands for the relationship between e1 and e2 [Cha18].
For example, the triple (e1, music/album/genre, e2) describes the fact that e1 is a music
album of the genre e2. There are also facts with composite relations in FB15K. They
have the form (e1, domain1/type1/attribute1./domain2/type2/attribute2, e2). Here,
the entity e1 has type1 and e2 has type2. The second part of the composite rela-
tion specifies the role of e2 more concretely. An example is the triple (San Francisco,
/travel/travel_destination/how_to_get_here./travel/transportation/mode_of_transportation,
Air travel).

The data set FB15K is the subset of the Freebase triples that fulfill the following constraints:
The entities e1 and e2 and the relation r of a triple must each have at least 100 mentions in
Freebase. Additionally, the entities have to be present in the Wikilinks database.4 For ob-
viously inverse relations like /people/person/nationality and /people/person/nationality−1,
Bordes et al. filter out one of them. On top of that, I remove 14 relations with the domains
dataworld and commons, because they contain rather technical meta information than real
world knowledge. The statistics of the resulting data set and its split into training, validation
and test data are given in Table 4.1.

The sizes of samples from P̂, which is defined in Equation 3.7, for training and evaluating
the path correctness scores are also listed in Table 4.1. For generating the path test sets, the
set Pt is computed for test triples t. From this set, only those paths are used that comprise

1https://googleblog.blogspot.com/2010/07/deeper-understanding-with-metaweb.html
2https://blog.google/products/search/introducing-knowledge-graph-things-not/
3https://groups.google.com/d/msg/freebase-discuss/WEnyO8f7xOQ/RY1gjmkNBQAJ
4https://code.google.com/archive/p/wiki-links/downloads
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Size
Entities 14,916

Relations 1,331

Triples
Train 470,972
Valid 48,804
Test 57,613

Paths of length 2
Train 3,426,314
Test 82,641

Paths of length 3
Train 3,602,001
Test 202,235

Context paths
per triple (avg)

length 1 3.4
length 2 20.7
length 3 430.3

Table 4.1: Statistics of the used data sets. The number of context paths in Pt is averaged
over triples in the training set. The triple t itself is also counted as context path.

at least one edge of the test set. This ensures that only paths are tested that do not occur in
the path training set. Additionally, Table 4.1 lists the average number of context paths per
triple.

4.2 Ranking Metrics for KBC

In the following, I explain how correctness scores for paths p can be evaluated. Since paths
of length 1 are the same as triples, the explanations can be directly transferred to them.

It is common to evaluate the KBC task using ranking metrics. [BUG+13; GML15; LLL+15;
YYH+14]. This can be done by listing a correct path together with all corresponding paths
that have one entity corrupted and sorting them in descending order by their correctness
scores. One reason for using ranking metrics is that the KBC task is asymmetric in the sense
that there are many negative samples for one correct path. Finding few positive examples
in a large set of negative examples is a typical setting for ranking problems. Furthermore,
many common KBC models do not provide correctness scores that are normalized to lie in
[0,1]. In these cases, the prediction for a single path cannot be directly used to classify it
as correct or incorrect. Despite this does not apply to the context path model, I stick with
the ranking evaluation to make the results more comparable.
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I use the same ranking metrics as Guu et al., hits at 10 and mean quantile. For both metrics,
I use Rp = {p} ∪ N1(p) or Rp = {p} ∪ N2(p) as the set of paths that are ranked when
evaluating the predictions for e1 or e2 for a test path p. The sets of corrupted paths N1(p)
and N2(p) are defined in Equation 2.6. When generating the sets N1(p) and N2(p), all
triples from the training, validation and test data sets are used. This prevents correct paths
of the training or validation set from ending up in the set of corrupted test paths.

The ranking metric hits at 10 is defined as the percentage of correct paths that are ranked
within the top 10 paths of their respective sets Rp.

Mean quantile computes the average fraction of incorrect triples that are ranked after the
correct triple, or formally:

mean quantile =
1
|P |

∑
p∈P

|{p′ ∈ N(p) | score(p′) < score(p)}|
|N(p)|

(4.1)

where N(p) can be either the set of paths N1(p) with e1 corrupted or N2(p) with e2

corrupted. Mean quantile accounts for varying sizes of N(p). This is not the case for hits
at 10, which tends to output higher values for smaller sizes of P′. For |N(p)| ≤ 9, the hits
at 10 metric always outputs 1, independently from the prediction. I average the results for
predicting e1 and e2.

4.3 Evaluation of Explanations

4.3.1 Prediction of context paths

When displaying paths as explanation to a user, it is important that the semantics of paths
are captured correctly by the model. I evaluate the correctness scores for paths using
ranking metrics. In Table 4.2, I compare the ranking evaluation of the TransE model for
single edge training and for path training by calculating the relative improvement of path
training over single edge training.

Similarly too Guu et al., I observe that training on paths improves the prediction of paths
significantly. On paths of length 3, the model trained on paths improves over the single
edge model by 10.4 % in hits at 10 and by 4.0 % in mean quantile. For paths of length 2
the improvements are smaller but still significant. The performance on predicting edges
suffers from path training. This is in contrast to what Guu et al. report. They show that path
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Test path Single edge training Path training %path-improvement
length Hits at 10 MQ Hits at 10 MQ Hits at 10 MQ

1 92.8 97.7 90.5 97.6 - 2.5 - 0.1
2 86.2 95.7 91.7 98.3 6.4 2.7
3 74.2 91.8 81.9 95.5 10.4 4.0

Table 4.2: Path ranking evaluation different path lengths using models trained on edges and
on paths. %path-improvement is the relative improvement of the path trained
model compared to the model trained on single edges.

training improves the performance on edges as well. This difference may be specific to the
used data sets.5 Despite the inferior performance on single edges, I use the path trained
model for the CPM to make explanations that comprise longer paths more meaningful.

Interestingly, the path trained model performs slightly better on paths of length 2 than on
edges. Note that due to the context path selection criteria, the size of the test set for paths
of length 2 is considerably smaller than that for paths of length 3. This makes the results
for paths of length 2 less resilient. The performance of the path trained model drops by
only 2 % when predicting on paths of length 3 compared to the single edge prediction.
This suggests that one can trust correctness scores for paths of different lengths to a similar
degree when considering the explanations of the CPM.

Keep in mind that the model for score(p) is only used in the CPM when paths are not
present in the training knowledge graph. Paths that occur in the training knowledge graph
are directly assigned a correctness score of 1 and can be trusted under the assumption that
the knowledge graph contains only correct edges.

4.3.2 Reliability of context paths

As already stated in Section 3.1, the relevance of paths does not differentiate between
necessary and sufficient conditions. It only measures the probability that the correctness of
a path and a triple matches. Despite that, I evaluate the CPM using the notion of reliability,
which makes the distinction between necessary and sufficient conditions. This gives a more
detailed view on how a model with the limited expressiveness of relevance treats sufficient
and necessary conditions.

5A test on the Freebase subset used by Guu et al. yields results consistent to what they report.
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I now explain more concretely what makes a path a reliable indicator depending on whether
it is used as evidence for the correctness of t or against the correctness of t.

1. Paths as evidence for the correctness of t: In the strict logical sense, a path is
reliable for showing that a triple t is correct if it is logically equivalent to t or if it is a
sufficient condition for t. The examples in Section 3.1 show that many connections
in the real world cannot be captured by plain logical rules. Therefore I give a
probabilistic formulation of the same criterion: A path has a high reliability for t
if its correctness makes the correctness of t significantly more likely. It is hard to
define and to quantify objectively what significant means when considering real
world facts. When explaining the annotations scheme, I give several examples in
order to give an intuition for my understanding of significance.

2. Paths as evidence against the correctness of t: In the logical sense, a path is
reliable for showing that a triple t is incorrect if it is logically equivalent to t or if
it is a necessary condition for t. In the probabilistic formulation, a path has a high
reliability for t if its incorrectness makes it significantly more likely that t is incorrect.

3. The paths that do not fulfill any of those criteria have low or no reliability.

4.3.3 Annotation scheme

The formulations of reliability directly lead to the annotation scheme presented in Figure
4.1.

Paths are classified in 0 a) if they fulfill the logical formulations of point 1 and point 2 in
the section above. Paths that are not in 0 a) but fulfill the logical formulation of point 1
are classified as 1 a). In the same way are paths that are not in 0 a) but fulfill the logical
formulation of point 2 classified as 2 a).

The classes with b) are the probabilistic counterparts of the classes with a):

Paths are classified in 0 b) if they are not in 0 a) and if they fulfill both probabilistic
formulations of point 1 and 2. I denote those paths as almost equivalent to t. Paths are
classified in 1 b) if they are not in 0 b) or 1 a) and if they fulfill the probabilistic formulations
of point 1. I denote those paths with almost sufficient. Paths are in class 2 b) if they are not
in 0 b) or 2 a) and if they fulfill the probabilistic formulation of point 2. I call those paths
almost necessary.

The point 3 of the previous section directly corresponds to class 3).
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Figure 4.1: Annotation scheme for the reliability of paths.

4.3.4 Annotation examples

In order to make the annotation more comprehensible, I give examples for each annotation
class. As these examples are actually generated by the CPM, they also give an impression
how meaningful and understandable explanations based on paths can be.

Unlike my previous notation for paths as (e1,r1, ...,rk, e2), I now also insert the entities a
path contains or state it if there are no entities in the training knowledge base that connect
the relations of the path.

0 a) p and t are equivalent

Common examples for this class are paths of length 1 that consist of a redundant Freebase
relation:
Correct triple t:
(Jon Favreau filmography, /people/person/profession, Film director)
Context path p:
(Jon Favreau filmography, /people/profession/people_with_this_profession−1, Film director)
I also classify the following, more complex example as equivalence:
Correct triple t:
(Football, /sports/sport/leagues, Confederation of African Football)
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Context path p:
(Football, /sports/sport/teams, Zimbabwe national football team,
/sports/sports_league/teams./sports/sports_league_participation/team−1,

Confederation of African Football)

A league is a football league if it comprises football teams and if a team plays in a football
league, it is a football team.

0 b) p and t are almost equivalent

Correct triple t:
(Naval Postgraduate School, /location/location/containedby, United States of America)
Context path p:
(Naval Postgraduate School, /organization/organization/headquarters./location/mailing_address/
state_province_region, California, government/political_district/representatives./government/
government_position_held/office_holder Richard Nixon, /people/person/nationality,
United States of America)

When a school is located in a region that has a (political) representative who has nationality
of a certain state, it is significantly more likely that the school is located in this state. There
is no guarantee that this holds since not all political positions require the nationality of the
respective state. In the other direction this holds as well: Knowing that a school is located
in a certain state makes it very likely that the region of the school is represented by a person
having the nationality of the state.

1 a) p is sufficient for t

Correct triple:
(Alto saxophone, /music/instrument/instrumentalists, John Coltrane)
Context path p:
(Alto saxophone, /music/group_member/instruments_played−1, John Coltrane)

This class very rarely occurs in the annotation set and is often close to the equivalence
class. In this example it is sufficient to play an instrument in a group to be called an
instrumentalist of this instrument. It is not an equivalence since there are instruments that
are not necessarily played in a group.
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1 b) p is almost sufficient for t

Correct triple:
(Feroz Khan, /people/person/languages, Hindi Language)
Context path p:
(Feroz Khan, /people/person/nationality, India
/language/human_language/countries_spoken_in−1, Hindi Language)

It is very likely to speak the language that is spoken in the state of the own nationality. It
is not a guarantee because states might have several official languages. For example, the
English language shows that p is not necessary for t.

2 a) p is necessary for t

Triple t with e1 corrupted:
(New York Film Critics Circle Award for Best Actor,
/award/award_category/nominees./award/award_nomination/award_nominee, Miranda Richardson)
Context path p:
(New York Film Critics Circle Award for Best Actor,
/award/award_category/nominees./award/award_nomination/nominated_for,
{Cast Away, There Will Be Blood}, /film/film_job/films_with_this_crew_job./film/film_crew_gig/film−1,

Miranda Richardson)

It is necessary to have a job in the film business to be nominated for a film award.

2 b) p is almost necessary for t

Triple t with e2 corrupted:
(Tsui Hark, /people/person/place_of_birth, Exeter)
Context path p:
(Tsui Hark, /people/person/places_lived./people/place_lived/location, Hong Kong
is not the same as Exeter)

While having lived in a certain location does not imply to be born there, the other direction
holds very likely. Examples where one might be born at a place without having lived there
might be families living in smaller towns without a hospital. Here, the place of birth could
be a larger city with a hospital in the region.
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3) p has low or no reliability

Triple with e2 corrupted:
(Feroz Khan, /people/person/languages, Japanese Language)
Context path p:
(Feroz Khan, /people/person/places_lived./people/place_lived/location, Mumbai
has no connection over /location/location/adjoin_s./location/adjoining_relationship/adjoins−1

to Asia /language/human_language/region−1, Japanese Language)

In contrast to the last example, this context path is annotated as not reliable, because there
are too many adjoint states with different languages.

This is another example for a not reliable context path:
Triple with e2 corrupted:
(Judy Davis, /people/person/place_of_birth, Nottingham)
Context path p:
(Judy Davis, /education/educational_institution/students_graduates./education/education/student−1,

National Institute of Dramatic Art is not the same as University of Nottingham
/organization/organization/headquarters./location/mailing_address/citytown, Nottingham)

It is not uncommon to graduate at an educational institution in the same place where one is
born. Despite that, the educational institution still provides not enough evidence for the
place of birth, especially for larger institutions like universities where many students are
even international.

Remarks

When the relevance scores of the CPM do not correspond to the annotation, it does
not necessarily mean that the CPM is not capable of capturing the respective logical or
probabilistic connection. It might be also due to an unequal distribution of facts in Freebase
which does not accurately represent the real world. Having mostly American actors in the
knowledge base could for example lead to false conclusions like being an actor implies the
American nationality. In the example for 1 a), I do not consider whether solo instruments
actually occur in Freebase. If Freebase only contains instruments that are typically played
in groups, this example could be annotated as equivalence.
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4.3.5 Path reliability evaluation metric

Unlike the annotation, the relevance scores of the CPM are not discrete but continuous.
This should be taken into account when analyzing the annotation results. I now consider a
context path that is annotated as not relevant. If it receives a high relevance score, it should
be penalized more by the evaluation metric than if it receives a low relevance score by
the CPM. This can be transferred to the other annotation classes as well. As described in
Section 4.3.3, the relevance scores of paths should depend on whether they act as pro or as
con paths. I only define the evaluation metric for pro paths since the definitions translate
directly to con paths.

I denote the set of context paths classified as pro paths for a triple t as Pt,pro and the subset
of paths in Pt,pro that are annotated with class a as Pt,pro,a.

Furthermore, I denote the fraction of relevance scores associated with a subset of context
paths P1 in the set of context paths P2 as relevance fraction of P1 in P2, or formally as
RFt(P1,P2):

RFt(P1,P2) =

∑
p1∈P1 r(t, p1)∑
p2∈P2 r(t, p2)

(4.2)

Now, I can define the relevance fraction of paths annotated with a in pro paths as
RFt(Pt,pro,a,Pt,pro).

Simply averaging RFt(Pt,pro,a,Pt,pro) over all triples in the test knowledge graph GTest

would produce a flawed metric. To show that, I first consider the relevance fraction of pro
paths in Pt or RFt(Pt,pro,Pt).

Triples with low values for RFt(Pt,pro,Pt) would have the same impact on the averaged
value of RFt(Pt,pro,a,Pt,pro) as triples with high values for RFt(Pt,pro,Pt). This contradicts
the requirement mentioned above that the metric should be sensible to the absolute
relevance scores of paths. I fix this issue by weighting the values of RFt(Pt,pro,a,Pt,pro)

with RFt(Pt,pro,Pt) and normalizing the output with the total relevance associated with pro
paths in the test set. This leads to the weighted relevance fraction of annotation a in pro
paths W RFpro(a):

W RFpro(a) =
1∑

t∈GTest
RFt(Pt,pro,Pt)

∑
t∈GTest

RFt(Pt,pro,Pt)RFt(Pt,pro,a,Pt,pro). (4.3)

For the set of annotation classes A, it holds that∑
a∈A

W RFpro(a) = 1 (4.4)
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This means that W RFpro(a) is normalized and its output lies in [0,1].

I now define the metric W RFMpro which combines WRF values and the criteria for
meaningful explanations given in Section 4.3.2:

W RFMpro =
∑

a∈{0a,1a}

W RFpro(a) (4.5)

To also take into account the annotations of type b), I define a weak variant of W RFMpro:

W RFM (weak)
pro = W RFMpro +

∑
a∈{0b,1b}

W RFpro(a) (4.6)

A perfect model should be able to achieve values close to 1 in the weak variant.6

4.3.6 Experimental setup

As manually annotating explanations for predictions is time consuming, only a small subset
of triples from the test set can be evaluated. I generate the set used for the annotation by
the following procedure: First, I manually select a set of 24 relations that cover topics that
require not too much expert knowledge when deciding over the relevance of paths for triples.
This test set does not contain the relations I use for validation. I list the selected relations
in the Appendix A. For each selected relation, I randomly sample two facts from the test
set. In order to obtain negative samples, I randomly corrupt e1 or e2 in each sampled fact.
This results in 96 triples in total. The selected relations make up for 13.2 % of the facts in
the test set. The selected relations include both infrequent relations that occur only two
times in the test set and frequent relations that occur up to 1451 times in the test set.

When considering the relevance of context paths for a triple t, it is trivial to assign the path
p = t a high relevance score. The triple t itself if less interesting for the explainability of
the model since it only reveals how the underlying KBC model, TransE in my case, scores
the correctness of t. To focus the evaluation on more interesting paths, I use the setting of
the exclusive context path model (ECPM). There might be triples for which no relevant
context paths exist. I account for that by including only those triples into to the evaluation
that have at least 10 % of the total relevance scores assigned to paths other than t (in the

6A perfect model does not need to achieve the value 1 exactly. For example, necessary paths can also
provide some evidence for the correctness of triples, which is omitted in the annotation scheme.
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4.3 Evaluation of Explanations

Path length 1 2 3
Avg. number of paths 1.34 0.41 1.00

Table 4.3: Average number of paths per triple that are displayed and used for annotation.

non-exclusive setting). This aims to detect those cases in which the context path model is
not able to capture any relevant context paths. This excludes 17 out of 96 triples from the
evaluation. The relations of the excluded triples are listed in Appendix B.

Typically, there are only few paths per triple t that constitute the majority of the sum of
relevance scores assigned to context paths of t. I make use of this by annotating only paths
that are assigned at least 5 % of the total relevance. In practice, this means that on average
80 % of the total amount of relevance scores per triple is displayed and annotated. Table
4.3 lists the resulting numbers of paths per triple that are displayed and annotated.

4.3.7 Path reliability results

In Figure 4.2, I show the results of the path reliability evaluation. Considering the average
WRFM values of pro paths and con paths, one can conclude that 77 % of the relevance
scores associated with displayed paths is considered reliable by the logical formulation and
81 % is considered reliable when following the probabilistic formulation. Note that paths
that are not considered reliable can as well be helpful for users when deciding whether to
trust the prediction of the model.

The majority of relevance scores is assigned to paths that are equivalent with the predicted
triple. This is expected since the CPM is only capable of modeling equivalence connections.
Due to this symmetric property of the CPM, it is also not surprising that the results for pro
paths and con paths are very similar and that the distribution of relevance scores does not
differ significantly between pro paths and con paths.

I also state the absolute numbers of annotations in Figure 4.2 to indicate that these results
are, especially for classes other than 0 a), limited in their resilience.

41



4 Experiments

sufficient

lo
gi
ca
l

pr
ob
ab
le

equivalent necessary

1 a)

1 b) 0 b)

3)

2 b)

0 a) 2 a)

WRFpro

WRFpro

WRFpro:

WRFpro

WRFpro

WRFpro

WRFpro

count

count

count:

count

count

count

count

0.05 0.74 0.05

0.010.010.02

0.12

4 45 10

243

19

sufficient

lo
gi
ca
l

pr
ob
ab
le

equivalent necessary

1 a)

1 b) 0 b)

3)

2 b)

0 a) 2 a)

WRFcon

WRFcon

WRFcon:

WRFcon

WRFcon

WRFcon

WRFcon

count

count

count:

count

count

count

count

0.04 0.71 0.04

0.020.030.01

0.14

4 53 9

382

28

Pro paths Con paths

WRFMpro= 0.79

WRFMpro = 0.82(weak)

WRFMavg= 0.77

WRFMavg = 0.81(weak)

WRFMcon= 0.75

WRFMcon = 0.80(weak)

Figure 4.2: Results of the context path reliability evaluation. W RF values and the absolute
numbers of annotations are listed. Cells that are considered by W RFM are
marked using a grey background. The cells that are only considered by
W RFM (weak) are marked with a light grey background. The average of the
WRFM of pro paths and con paths is also given.

4.3.8 Similar paths

On the one hand, the CPM is able to find paths that are semantically similar to a given
triple and use them as evidence for or against the correctness of the triple. On the other
hand, when using paths as explanation, the user might not want to read many similar paths.
This can be a problem especially for knowledge bases that already have many similar or
redundant relations.

For the relation /sports/sports_team/roster./american_football/football_roster_position/position,
the CPM assigns the following relation sequences relevance scores of at least 85% compared
to the relevance score for the relation itself. They are all very similar or equivalent.

p1 = /american_football/football_team/current_roster./american_football/
football_roster_position/position

p2 = /american_football/football_team/current_roster./american_football/
football_roster_position/player, /sports/pro_athlete/teams./
american_football/football_roster_position/position
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p3 = /american_football/football_team/current_roster./sports/
sports_team_roster/player, /sports/pro_athlete/teams./american_football/
football_roster_position/position

p4 = /american_football/football_player/current_team./american_football/−1

football_roster_position/team, /sports/pro_athlete/teams./american_football/
football_roster_position/position

p5 = /sports/pro_athlete/teams./american_football/football_roster_position/team−1,

/sports/pro_athlete/teams./american_football/football_roster_position/position

4.4 Evaluation of Fact Prediction

The results of the ranking evaluation for predicting the correctness score of triples are
presented in Table 4.4. The initial observation, especially in terms of the hits at 10 metric,
is that the CPM does not reach the same ranking performance as TransE. When considering
the mean quantile metric, the CPM only has a 0.8 % weaker performance than TransE.

An obvious reason is that the hyperparameters for the CPM are chosen to optimize both
for high performance on the KBC task and for providing meaningful explanations. I give
more details on that in Section 4.5. Despite that, one cannot directly follow that there has
to be a tradeoff between a more interpretable model and a higher performance because the
CPM is a more complex optimization problem than the TransE model. This difference in
performance could therefore also be a question of hyperparameter tuning. Another reason
for the difference in performance could also be that the CPM uses a TransE model that is
trained on paths for scoring the correctness of paths. The path training already reduces
the hits at 10 value by 2.5 % compared to the TransE model that is trained only on single
edges. As I also mention in Section 4.3.1, this might be specific the FB15K data set. To
answer those open questions, more extensive experiments with several data sets would be
required.

Considering the ECPM7, it is remarkable that the performance in ranking is only reduced
by 7.1 % in hits at 10 and by 1.7 % in mean quantile when ignoring the representation of a
triple t completely while predicting its correctness. This indicates that a large amount of

7All tested triples have at least one context path other than t itself. In 0.002 % of the neg samples, there is
no context path. I then use the triple itself to estimate the correctness of the negative sample because
excluding it would make the ranking problem easier.
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TransE
TransE
(path)

TransE (path)
%red CPM

CPM
%red ECPM

ECPM
%red

Hits at 10 92.8 90.5 2.5 89.0 4.1 86.2 7.1
Mean quantile 97.7 97.6 0.1 96.9 0.8 96.0 1.7

Table 4.4: Results of the ranking evaluation for predicting the correctness of triples.
TransE (path) is the TransE model trained on paths. X %red is the reduction in
performance of model X compared to the TransE model trained on single edges.
For efficiency, the CPM and ECPM are evaluated on a random sample of the
test set of relative size 25 %.

the expressiveness of TransE can actually be replicated by just considering the context of t
and not t itself. This amount of expressiveness is also what can be made interpretable to a
user by displaying the context paths.

4.5 Hyperparameters

For the validation of the explanations, I use a set of 10 relations that are different from the
relations used in the final experiment. Besides the criteria for meaningful explanations
given in Section 4.3.2, I also consider the number of paths with high relevance scores for
selecting hyperparameters. This ensures that the CPM not only uses the triple itself as
context path since this would be equivalent to the plain TransE model. In order to force the
model to take into account not just the relation of the triple itself or very similar relations, I
use random samples of context paths of relative size 50 % during training. This is also
called dropout and encourages the model to not just memorize the training data but to
generalize it.

I use the gradient based optimizer Adam [KB15] for minimizing both objectives. The
following hyperparameters are selected based on the performance on the validation set.
For learning score(p), I choose the learning rate 0.0001 and for learning r(t, p), I choose
0.001, both selected from [0.001,0.0005,0.0001]. I use mini-batches (subsets of the whole
data set used for one optimization step) of size 300 when learning score(p) and of size
30 when learning r(t, p). All parameters are initialized using a normal distribution with
variance 0.1. I do not constrain the parameters to be normalized during training.
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5 Conclusion

This work considers the problem of knowledge base completion (KBC). A common
approach for the KBC problem is to learn representations for entities and relations that
allow for generalizing existing connections in the knowledge base to predict the correctness
of a triple that is not in the knowledge base.

In this work, I propose the context path model, which is based on this approach. In
contrast to existing KBC models, it also provides explanations for predictions. For this
purpose, it uses paths that capture the context of a given triple. The proposed model can be
used on top of several state of the art KBC models. I demonstrate this using the TransE
model [BUG+13]. In a manual evaluation, I observe that most of the paths the model
uses as explanation are meaningful and provide evidence for assessing the correctness of
triples. I also show in an experiment that the performance of the context path model on a
standard KBC task is close to TransE. The experiments also reveal that a large part of the
expressiveness of TransE can be replicated without representing a given triple directly by
only considering paths that capture the context the triple. This shows the potential of using
paths as explanations for KBC predictions.

Future research could include extending the model to capture more complex connections
between paths and relations like necessary and sufficient conditions. To provide a more
resilient evaluation of the explanations, a larger data set could be annotated. Further-
more, methods for reducing redundant or very similar paths in explanations could be
investigated.
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A Manually selected relations used for
the annotation

/location/location/containedby
/food/diet/followers
/organization/organization/geographic_scope
/business/business_operation/assets./measurement_unit/dated_money_value/currenc
/time/time_zone/locations_in_this_time_zon
/music/genre/artists
people/person/place_of_birth
/sports/sport/leagues
/award/award_category/nominees./award/award_nomination/award_nominee
/people/person/gender
/soccer/football_player/current_team./sports/sports_team_roster/position
/education/field_of_study/subdiscipline_of
/medicine/disease/causes
/travel/travel_destination/how_to_get_here./travel/transportation/mode_of_transportation
/people/person/parents
/people/person/children
/people/person/languages
/people/person/profession
/music/instrument/instrumentalists
/film/film/genre
/location/location/people_born_here
location/country/currency_used
/geography/island_group/islands_in_group
/award/award_winning_work/awards_won./award/award_honor/award_winner
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B Excluded relations

These relations have corresponding facts that are excluded from the annotation because of
their lack of context paths with high relevance scores. The numbers in parentheses state
how many facts with the respective relation are excluded.

/music/genre/artists (4)
/time/tim_zone/locations_in_this_time_zone (3)
/people/person/profession (2)
/people/person/languages (2)
/people/person/gender (4)
/travel/travel_destination/how_to_get_here./travel/transportation/mode_of_transportation (2)
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