
Institute of Parallel and Distributed Systems

Department of Simulation of Large Systems

University of Stuttgart
Universitätsstraße 38

D-70569 Stuttgart

Course of Study: Informatik

Examiner: Prof. Dr. rer. nat. habil. Miriam Mehl
Supervisor: Dr.-Ing. Nehzat Emamy

Commenced: October 15, 2018
Completed: April 15, 2019

Bachelor-Thesis

Dynamic Mode Decomposition for
the Monodomain Equation in

Neuromuscular System

Moritz Widmayer

Acknowledgement

I’d like to thank Prof. Dr. Miriam Mehl for giving me the chance to carry out and
create my bachelor’s thesis at her department of the IPVS. Also, I’d like to thank
my supervisor Dr. Nehzat Emamy for the time and effort she put into supporting
me throughout the entire procedure of the thesis. I want to thank my family and
friends for pushing me to reach further, but also comforting me in bad times. Lastly,
I wish to thank Tabea Schoch for giving me more motivation than I ever had and a
reason to progress.

3

Abstract

In this thesis, the dynamic mode decomposition (DMD) was implemented and applied
to the resulting snapshots matrix of the monodomain equation in the neuromuscular
system. The Hodgkin-Huxley model was used to obtain the snapshots vl and the
DMD was implemented in C++ into the DiHu framework.

The goal of this work was to reduce the number of dimensions of the initial snapshot
data. For this, DMD calculates the Koopman operator R that should lead to the
next snapshots matrix,

V k
2 ≈ RV k−1

1 , where V k−1
1 =

[
v1 · · · vk−1

]
and V k

2 =
[
v2 · · · vk

]
From the eigenvalues of R, the growth rates and frequencies can be obtained, while
the DMD modes can be found in the eigenvectors.

For the used method of DMD, singular value decomposition (SVD) was required.
This was implemented with the subroutines by LAPACK. All other matrix operations
were also implemented with subroutines by either LAPACK or BLAS.

The results are promising as long as the snapshots contain higher numbers of
parameters and when there are more snapshots to apply DMD on. When there aren’t
very many parameters and snapshots, the error can rise too high to be useful data.
We also found that the variables ε1 and ε0, which play a significant role for the
dimension reduction, have to be chosen carefully.

5

Contents

1 Introduction 9

2 Theory 11
2.1 Dynamic mode decomposition . 11

2.2 Eigendecomposition . 12

2.3 Singular value decomposition . 12

3 Method 15
3.1 Dynamic mode decomposition . 15

3.1.1 Step 1: Reduction of the snapshots matrix 15

3.1.2 Step 2: Modified Koopman operator 16

3.1.3 Step 3: Eigendecomposition of the modified Koopman operator 16

3.1.4 Step 4: DMD modes and amplitudes of the snapshots matrix 18

3.1.5 Step 5: Spectral complexity 18

3.1.6 Step 6: Reconstruction and error computation 19

3.2 Implementation . 19

3.2.1 Singular value decomposition 19

3.2.2 Eigendecomposition . 20

3.2.3 Matrix multiplication . 22

3.2.4 Frobenius and max norm . 23

3.2.5 Matrix inversion . 24

3.2.6 Matrix left division . 25

3.2.7 Function getSpatComp() in dmd utility of opendihu . . 26

3.2.8 Function getReducedSnapshotsMatrix() in
dmd utility of opendihu 26

3.2.9 Function getKoopmanOperator() in dmd utility of
opendihu . 26

3.2.10 Function getDeltaOmega() in dmd utility of opendihu 27

3.2.11 Function getAmplitudes() in dmd utility of opendihu 27

3.2.12 Function getDmdModes() in dmd utility of opendihu . . 28

3.2.13 Function getSpecComp() in dmd utility of opendihu . . 29

3.2.14 Function getDmdModesGrowthRatesFrequencies() in
dmd utility of opendihu 29

3.2.15 Function reconstructSnapshots() in dmd utility of
opendihu . 30

7

Contents

3.2.16 Function resizeMatrix() in dmd utility of opendihu . 30
3.2.17 Function printMatrix() in dmd utility of opendihu . . 31
3.2.18 Function transposeMatrix() in dmd utility of opendihu 31
3.2.19 Function setZero() in dmd utility of opendihu 31
3.2.20 Function getMatrixPower() in dmd utility of opendihu 32
3.2.21 Function concatenateVector() in dmd utility of

opendihu . 32
3.2.22 Function sortMatrix() in dmd utility of opendihu . . . 32
3.2.23 Function contReconst() in dmd utility of opendihu . . 33

4 Analysis 35
4.1 Example snapshots matrix . 35
4.2 Testing . 38

4.2.1 Reduction of dimensions . 38
4.2.2 Errors . 39
4.2.3 Runtime . 40
4.2.4 Frequencies, growth rates and amplitudes 40

5 Outlook 43

8

1 Introduction

The connection between the central nervous system, which is located in the brain [1],
and the peripheral nervous system, which is composed of all other muscle related
cells, is called neuromuscular system [2]. Muscle cells are similar to neurons, as they
also propagate electrical action potentials on their cell membranes. They’re divided
into skeletal, cardiac and smooth muscle, where the former is the considered type for
this thesis. It consists of all muscle fiber, that bend and extend bones at joints. [3]

Since the structure of muscle is very complex, modelling the system, by describing
it as a composition of electrical elements, is raising a difficult problem. Here, the two
dominant models for describing the propagation of electrical action potentials can
be used: The bidomain model, which considers the muscle tissue as two continuous
domains [4], and the monodomain model, which acts as a less complex variant of the
bidomain model and only uses one continuous domain [5].

The Hodgkin-Huxley model, described by Hodgkin and Huxley in 1952, represents
the elements of a neuron as a composition of electrical parts. With a total of only
five parameters, its degree of freedom is comparatively small. [6]

Another model, developed by Shorten et al. in 2007, describes fatigue in skeletal
muscles, while distinguishing between fast and slow twitch muscle fibre types, since
fatigue occurs differently. Its number of parameters amounts to 44, so that there is a
much greater degree of freedom compared to the Hodgkin-Huxley model. [7]

Now, it may be desirable to apply model order reduction to these models, in order
to be able to simulate parts of the neuromuscular system efficiently. For this objective
dynamic dode decomposition (DMD) was implemented into the digital human (DiHu)
framework.

The DiHu project aims to develop realistic models of the human neuromuscular
system. For this, high-performance computing is being used to upgrade existing
models in order to realistically simulate skeletal muscles. [8]

9

2 Theory

2.1 Dynamic mode decomposition

The general idea of dynamic mode decomposition (DMD) is to reduce the dimensions
of spatial-temporal data by finding coherent structures [9]. For this purpose, each
snapshot vl at time tl will be decomposed into its amplitudes α, DMD modes u,
frequencies ω and growth rates δ with i denoting the imaginary unit [10].

vl =
k∑

m=1

αmume
(δm+iωm)(l−1)∆t (2.1)

First each snapshot of data vl gets stored column-wise in a snapshots matrix V .

V =
[
v1 · · · vk

]
(2.2)

For the first step, the snapshots matrix V is needed once without its last snapshot
vk and once without its first snapshot v1, which are denoted by V k−1

1 and V k
2 ,

respectively.

V k−1
1 =

[
v1 · · · vk−1

]
V k

2 =
[
v2 · · · vk

]
(2.3)

The Koopman operator R is considered such that when R is multiplied from the
left onto V k−1

1 it results in V k
2 . This means that R advances the snapshots matrix

V k−1
1 by one time step.

V k
2 ≈ RV k−1

1 (2.4)

Since there is no solution of the system when k − 1 is greater than the number of
rows, an approximation might only be reached. On the other hand when k− 1 is less
than the number of rows, there can exist multiple solutions for R.

Now eigendecomposition is applied to R yielding the eigenvalues λ in the diagonal
of Λ and eigenvectors q in the columns of Q,

RQ = QΛ. (2.5)

As the final step of the DMD method, the oscillations and growth rates will be
found from the eigenvalues while the DMD modes and amplitudes will be computed
from the eigenvectors.

11

2 Theory

2.2 Eigendecomposition

Evidently, computing the eigenvalues and eigenvectors is very significant for the DMD.
The eigendecomposition is used to factorize a given matrix A into its eigenvalues
λ and eigenvectors q, which are stored in the diagonal of Λ and column-wise in Q,
respectively [11],

AQ = QΛ
⇔ A = QΛQ−1.

(2.6)

2.3 Singular value decomposition

One very important tool used in the DMD approach is the singular value decomposi-
tion (SVD). Its objective is to decompose a given rectangular matrix Vj×k into its
left-singular vectors Uj×j , singular values Σn×n and right-singular vectors

(
T−1

)
j×k,

where n = min (j, k).

V
SVD
= UΣT−1

U and T−1 are unitary matrices. Therefore to compute their inverse they merely
have to be conjugate transposed, denoted by ∗,

U−1 = U∗
(
T−1

)∗
= (T ∗)∗ = T. (2.7)

Further, Σ is a diagonal matrix. So the inverse is easily calculated by taking the
reciprocal of each singular value.

Σ−1 =

σ1 0 · · · · · · 0

0 σ2
. . .

...
...

. . .
. . .

. . .
...

...
. . . σn−1 0

0 · · · · · · 0 σn

−1

=

1
σ1

0 · · · · · · 0

0 1
σ2

. . .
...

...
. . .

. . .
. . .

...
...

. . . 1
σn−1

0

0 · · · · · · 0 1
σn

(2.8)

SVD will be used for a first reduction step in the applied DMD method as well as
to compute the pseudoinverses, which will be required to invert non-square matrices
in multiple steps. The calculation of the pseudoinverse V + of V works by inverting
every matrix that results from SVD and reversing the order of the multiplication
[12],

V + = V Σ−1U∗. (2.9)

The truncated SVD, which only calculates the first n column vectors of U , diagonal
entries of Σ and row vectors of V ∗, will be used.

12

2.3 Singular value decomposition

0 0

0 0

0 0

V = U Σ V ∗

j × k j × n n× n n× k

(2.10)

13

3 Method

Once the shapshots matrix Vj×k is obtained, the DMD method can be applied. The
algorithm described in [10] is used.

3.1 Dynamic mode decomposition

The first step of the applied DMD method in [10] aims to reduce the snapshots
matrix V by means of the spatial complexity kspat to a reduced snapshots matrix T̂ .

3.1.1 Step 1: Reduction of the snapshots matrix

The idea of this reduction step is to find the dominant structures via SVD and continue
with only the most dominant ones. Therefore SVD will be initially performed on
V , which yields the left-singular vectors Uj×n, the singular values Σn×n and the
right-singular vectors (T−1)n×k, where n = min(j, k).

V
SVD
= UΣT−1 (3.1)

Now the spatial complexity kspat will be computed which will determine the number
of dimensions that will be used in the following steps.

kspat = n−max
{
m
∣∣∣ ‖[σ1···σn−m]T‖2
‖[σ1···σn]T‖2

> ε1

}
= n−max

{
m

∣∣∣∣ √σ2
1+···+σ2

n−m√
σ2
1+···+σ2

n

> ε1

} (3.2)

This simply evaluates the number of singular values that can be omitted while the
length of their vector is still at least ε1 of the length of the vector of all singular
values. Consequently only the first kspat columns of U , diagonal entries of Σ and rows
of T−1 will continued to be used whereby the reduced snapshots matrix T̂kspat×k can
now be created.

T̂ = ΣT ∗ (3.3)

15

3 Method

3.1.2 Step 2: Modified Koopman operator

Now that the least significant spatial dimensions have been omitted, the modified
Koopman operator R̂kspat×kspat can be computed. For this the reduced snapshots

matrix T̂ will be used twice, once without the last reduced snapshot t̂k and once
without the first reduced snapshot t̂1, i.e. T̂ k−1

1 and T̂ k2 , respectively. This leads to
the following system of linear equations that has to be solved.

R̂T̂ k−1
1 = T̂ k2

⇔ R̂ = T̂ k2

(
T̂ k−1

1

)−1 (3.4)

Since T̂ k−1
1 isn’t necessarily square the pseudoinverse has to be used. To compute

this, SVD is applied to T̂ k−1
1 which can then be used to solve for the Koopman

operator R̂.

T̂ k−1
1

SVD
= Û1Σ̂Û∗2

⇔ T̂ k2

(
Û1Σ̂Û∗2

)+
= R̂

⇔ T̂ k2 Û2Σ̂−1Û∗1 = R̂

(3.5)

3.1.3 Step 3: Eigendecomposition of the modified Koopman operator

To produce the frequencies, growth rates, DMD modes and amplitudes the eigen-
values and eigenvectors of the modified Koopman operator R̂ are required. Thereby
eigendecomposition has to be applied and yields the eigenvalues λm in the diagonal
of Λkspat×kspat and eigenvectors qm as column vectors in Qkspat×kspat .

R̂ = QΛQ−1 (3.6)

DMD modes of the reduced snapshots

Since this is the eigendecomposition of the modified Koopman operator, the eigen-
vectors qm are equal to the DMD modes of the reduced snapshots matrix T̂ , denoted
as

ûm = qm. (3.7)

16

3.1 Dynamic mode decomposition

Growth rates and frequencies

The eigenvalues now contain the frequencies ωm and the growth rates δm. Since they

will be raised later to be in the exponent with base e, simply the natural logarithm

has to be calculated of each eigenvalue λm.

δm + iωm = lnλm
∆t

⇒

{
δm = Re

(
lnλm

∆t

)
ωm = Im

(
lnλm

∆t

) (3.8)

Amplitudes of the reduced snapshots

Now the amplitudes of the reduced snapshots matrix T̂ , denoted as a, can be
computed by first rewriting the original sum formula as follows.

t̂j =
k∑

m=1

amqmλ
j−1
m (3.9)

To continue the calculations the matrix form of the previous equation will be used
where the reduced snapshots t̂j will be stacked on top of another in bK and the
amplitudes am will be contained in aK , where K = kspat · k.

b =

t̂1
t̂2
...

t̂k−1

t̂k

 and a =

a1

a2
...

akspat−1

akspat

 ⇒ b = aQΛj−1 (3.10)

Furthermore QΛj−1 will be put together in MK×kspat .

M =

QΛ0

QΛ1

...
QΛj−2

QΛj−1

⇒Ma = t̂j (3.11)

17

3 Method

In order to solve this system of linear equations, SVD will be used once again to
compute the pseudoinverse of M .

M+ SVD
= (UrΣrV

∗
r)+

= VrΣ
−1
r U∗r

⇒ a = VrΣ
−1
r U∗r t̂j

(3.12)

3.1.4 Step 4: DMD modes and amplitudes of the snapshots matrix

DMD modes

Now the amplitudes a will be used to scale the eigenvectors in Q to the appropriate
length so that they will yield the DMD modes ukspat×k.

um = amqm (3.13)

Amplitudes

Finally to compute the amplitudes αkspat the left-singular vectors U , the DMD modes
u from the previous step and the number of rows j of the initial snapshots Matrix V
will be used as follows.

αm =
‖Uum‖2√

j
(3.14)

3.1.5 Step 5: Spectral complexity

Now, to further reduce the number of DMD modes and their belonging growth
rates, frequencies and amplitudes, the spectral complexity will be calculated which is
dependant on ε0 that can be set manually. For this calculation, the DMD modes have
to be ordered by the values of their amplitudes in decreasing order, i.e. αl > αl+1.
Next, simply the greatest value for m will be chosen as spectral complexity kspec so
that the ratio between αm and α1 is greater than the selected ε0.

kspec = max

{
m

∣∣∣∣ αmα1
> ε0

}
(3.15)

For the reduction, only the kspec greatest amplitudes and their corresponding DMD
modes, growth rates and frequencies will be continued to be used while the remaining
ones will be omitted.

18

3.2 Implementation

3.1.6 Step 6: Reconstruction and error computation

To produce the reconstructed snapshots matrix Vreconst, the reconstructed reduced
snapshots matrix T̂reconst has to be obtained first.

Reconstructed reduced snapshots matrix

For this the formula will be used to compute the reduced snapshots t̂reconst so that
the matrix will be assembled column-wise.(

t̂reconst

)
m

= ue(δ+iω)(tm−t0) (3.16)

Reconstructed snapshots matrix

Finally the reconstructed snapshots matrix Vreconst will be computed by reversing
the very first step of the DMD (3.1), where SVD was applied to decompose the
snapshots matrix V into its left-singular vectors U and the reduced snapshots matrix
T̂ , composed of the singular values Σ and right-singular vectors T .

Vreconst = UT̂reconst (3.17)

3.2 Implementation

The implementation is a part of the opendihu [13] C++ code. For the operations
involving matrices and vectors LAPACK (Linear Algebra Package) and BLAS (Basic
Linear Algebra Subroutines) were used. It’s important to note that LAPACK works
with matrices as single dimensional arrays, double[], in case of real entries and
double Complex[] for complex ones.

3.2.1 Singular value decomposition

LAPACK subroutines dgesvd() and zgesvd()

The subroutines dgesvd() for real and zgesvd() for complex double precision
matrices by LAPACK were used for the implementation of SVD. The very first
parameter matrix layout takes the matrix order which is LAPACK COL MAJOR
in this case. By setting both the jobu and jobvt parameters to ’s’, the truncated
SVD is used. The two next parameters m and n take the number of rows and columns
of the input matrix a, which is the next parameter. lda is the leading dimension of a,
for this implementation this equals m. s and u are the matrices for the singular values
and the left-singular vectors, respectively. Since LAPACK only returns the singular
values in s, it only has a dimension of (min(m,n)), while u is (m,min(m,n))

19

3 Method

int LAPACKE_dgesvd(int matrix_layout, char jobu, char
jobvt, int m, int n, double a[], int lda, double s[],
double u[], int ldu, double vt[], int ldvt, double
superb[])

int LAPACKE_zgesvd(int matrix_layout, char jobu, char
jobvt,int m, int n, double _Complex a[], int lda, double
_Complex s[], double _Complex u[], int ldu, double
_Complex vt[], int ldvt, double superb[])

because of the ’s’ in the jobu parameter and therefore ldu is equal to m. Lastly
vt will contain the right-singular vectors stored row-wise and has (min(m,n),n)
dimensions from which follows that ldvt has to be equal to (min(m,n)). [14] [15]

Function getSVD() in svd utility of opendihu

void getSVD(double input[], int rows, int cols, double
leftSingVec[], double sigma[], double rightSingVecT[])

Our final implementation of the SVD, which wraps the LAPACK SVD, now
only takes six parameters: the input, dimensions rows and cols, and resulting
matrices of the SVD leftSingVec, sigma and rightSingVecT. After calling
the subroutine of LAPACK, sigma still has to be filled with the singular values on
its diagonal which is performed by two nested for loops. [16]

3.2.2 Eigendecomposition

LAPACK subroutine dgeev()

int LAPACKE_dgeev(int matrix_layout, char jobvl, char
jobvr, int n, double a[], int lda, double wr[], double
wi[], double vl[], int ldvl, double vr[], int ldvr)

For the eigendecomposition, our third step of the DMD method, only the subroutine
dgeev(), which takes real double precision arrays has to used, since there are no
complex matrices up to this step. First the parameter matrix layout has to be
set to LAPACK COL MAJOR. The two next parameters jobvl and jobvr are to

20

3.2 Implementation

determine whether the left and/or right eigenvectors are to be computed, which,
since only the right eigenvectors are required, have to be set to ’N’ and ’V’
respectively. The following parameter n stands for the order of the array a which is
the next parameter and the input matrix that is to be eigendecomposed. The leading
dimension of a, lda, will simply be the same as its order n. wr and wi are the
eigenvalues as double[] split into their respective real and imaginary parts. The
next two parameters vl and ldvl can be set to anything valid because they won’t
be referenced since the left eigenvectors are not required. Lastly vr will contain the
right eigenvectors as double[] with the leading dimension ldvr which, again, will
be equal to n, the order of the initial matrix.

The eigenvalues of a real matrix will be either real or complex conjugate pairs.
Further, for each real eigenvalue there will be a real eigenvector and for each complex
conjugate pair of eigenvalues there will be a complex conjugate pair of eigenvectors.
This property is used by LAPACK. The subroutine computes for each eigenvalue its
real and imaginary part, hence the two double[] wr and wi are required. But for
each complex conjugate pair of eigenvalues it will only calculate the eigenvector of the
first eigenvalue. This is so that vl only requires the dimensions (order,order)
by storing the real parts of the eigenvector in the column of the first eigenvalue and
the imaginary parts in the following column of the second eigenvalue of the complex
conjugate pair. [17]

Function getEigen() in dmd utility of opendihu

void getEigen(double input[], int order, double _Complex
eigenvalues[], double _Complex eigenvectors[])

This implementation takes the real matrix as input and its order and stores its
eigenvalues and eigenvectors as double Complex[]. To achieve this, the
eigenvalues and eigenvectors have to be correctly extracted after the call of dgeev().
[16]

21

3 Method

3.2.3 Matrix multiplication

BLAS subroutine dgemm()

void cblas_dgemm(enum CBLAS_ORDER order, enum
CBLAS_TRANSPOSE transA, enum CBLAS_TRANSPOSE transB, int
m, int n, int k, double alpha, double a[], int lda,
double b[], int ldb, double beta, double c[], int ldc)

For matrix multiplication of matrices with only real entries the subroutine dgemm()
by BLAS is used. The first three parameters order, transA and transB are data
types specifically used by BLAS for setting the order of the used matrices, as well
as for specifying transpose options. For the implementation CblasColMajor and
CblasNoTrans have to be set here, respectively. The integers m, n, and k are the
dimensions of the multiplied matrices, where m is the number rows of a, n is the
number of columns of b, and k is the number of columns of a and therefore also
the number of rows of b. alpha is a scalar for the multiplication, so setting it to
1 renders it inactive. The array a is the left matrix of the multiplication with lda
leading dimensions, meaning it has to be set equal to m. Correspondingly b is the
right matrix and has ldb leading dimensions, hence it’s k. beta is a scalar for an
additional constant, which is not intended and set to 0. The result of the matrix
multiplication will be stored in c, which has leading dimensions ldc, which again
should be equal to m. [18]

Here it should be added that an analogous subroutine zgemm() for matrices with
complex entries does in fact exist [19]. Unfortunately though using it was unsuccessful,
because the implementation of BLAS in opendihu does not, unlike its implementation
of LAPACK, use the double Complex data type for complex numbers. Instead it
uses, just like dgemm(), standard double numbers.

Function getMatrixMult() in dmd utility of opendihu

For the final implementation of the matrix multiplication with real matrices, only
the subroutine dgemm() was used as described above. Three other versions are
also used, where none uses any BLAS subroutine but were only realized by for
loops. One for when all three involved matrices, i.e. both inputs and the output,
are complex, one for when the left matrix is real while the right and the product
matrices are complex, and the last for when the two input matrices are both double
Complex arrays with negligibly small complex parts, so that only the real parts

should be used, hence the resulting matrix is real. [16]

22

3.2 Implementation

void getMatrixMult(double inputA[], double inputB[],
double output[], int rowsA, int colsA_rowsB, int colsB)

void getMatrixMult(double _Complex inputA[], double
_Complex inputB[], double _Complex output[], int rowsA,
int colsA_rowsB, int colsB)

void getMatrixMult(double inputA[], double _Complex
inputB[], double _Complex output[], int rowsA, int
colsA_rowsB, int colsB)

void getMatrixMult(double _Complex inputA[], double
_Complex inputB[], double output[], int rowsA, int
colsA_rowsB, int colsB)

3.2.4 Frobenius and max norm

LAPACK subroutines dlange() and zlange()

double LAPACKE_dlange(int matrix_layout, char norm, int m,
int n, double a[], int lda)

double LAPACKE_zlange(int matrix_layout, char norm, int m,
int n, double _Complex a[], int lda)

For the norm of a matrix, LAPACK provides the subroutines dlange() and
zlange(), again for real and complex matrices, respectively. Once again,
matrix layout has to be set to LAPACK COL MAJOR. The character norm
specifies the used norm, where ’f’ corresponds to the Frobenius norm, while ’i’
sets the max norm. m and n are the dimensions of the input matrix a, which has
lda leading dimensions, meaning equal to m. [20] [21]

23

3 Method

Functions getNorm(), getRangedNorm() and getInfNorm() in
dmd utility of opendihu

double getNorm(double input[], int rows, int cols)

double getNorm(double _Complex input[], int order)

double getRangedNorm(double input[], int order, int range)

double getInfNorm(double input[], int rows, int cols)

The two functions getNorm() compute the Frobenius norm and merely imple-
ment the subroutines dlange() and zlange(), respectively, where norm is set
to ’f’. Next, getRangedNorm() also computes the Frobenius norm but only
of the first order entries of a square diagonal matrix with order dimensions.
Lastly, getInfNorm() implements dlange() with char set to ’i’ and therefore
computes the max norm of input. [16]

3.2.5 Matrix inversion

LAPACK subroutine dgetri()

int LAPACKE_dgetri(int matrix_layout, int n, double a[],
int lda, int ipiv[])

For matrix inversion the LAPACK subroutine dgetri() is used. Its first parameter
matrix layout sets the order of the matrix that is to be inverted, whereby it’s
set to LAPACK COL MAJOR. The subroutine inverts the square real matrix a of size
n with lda leading dimensions. The integer array ipiv of size n is for the pivot
indices, where ipiv[i] = i + 1. [22]

24

3.2 Implementation

Function getMatrixInverse()in dmd utility of opendihu

void getMatrixInverse(double a[], int order)

In the implementation of dgetri() the subroutine is called with a as input
matrix and order as n and lda. [16]

3.2.6 Matrix left division

LAPACK subroutine zgesv()

int LAPACKE_zgesv(int matrix_layout, int n, int nrhs,
double _Complex a[], int lda, int ipiv[], double
_Complex b[], int ldb)

The subroutine zgesv() performs the matrix left division a\b = X with complex
matrices, where b equals X after the computation. matrix layout is to be set to
LAPACK COL MAJOR. The integers n, lda and ldb all have to equal the number of
rows or columns of a which is also the number of rows of b. nrhs is equal to the
number of columns of b. The pivot indices ipiv simply have to be an integer array
of size n where ipiv[i] = i + 1. [23]

Function getMatrixLeftDivision() in dmd utility of opendihu

void getMatrixLeftDivision(double inputA[], double
_Complex inputB_output[], int n, int nrhs)

The function getMatrixLeftDivision() takes the real input matrix inputA
as double array and the complex input matrix inputB as double Complex
array. It then solves the system of linear equations inputA ·X = inputB output
and stores X in inputB output. [16]

25

3 Method

3.2.7 Function getSpatComp() in dmd utility of opendihu

int getSpatComp(double input[], int rows, int cols, double
leftSingVec[], double sigma[], double rightSingVec[],
double epsilon)

This function first computes the SVD of the real matrix input, so that

input
SVD
= leftSingVec · singVal · rightSingVec, utilizing the function

getSVD() in svd utility. Next, the spatial complexity spatComp will be
calculated by using the functions getNorm and getRangedNorm() with
singVal and epsilon. Lastly the integer spatComp gets returned. [16]

3.2.8 Function getReducedSnapshotsMatrix() in dmd utility of
opendihu

void getReducedSnapshotsMatrix(double sigma[], double
rightSingVec[], double hatT[], int min, int cols, int
spatComp)

To compute the reduced snapshots matrix, this function first cuts off the rows and
columns of sigma and the rows of rightSingVec that lie outside of the previously
calculated spatial complexity spatComp. This is done by utilizing the function
resizeMatrix() and yields sigmaResized and rightSingVecResized, re-
spectively. To produce the reduced snapshots matrix hatT, the two reduced matrices
will be multiplied, using getMatrixMult(). [16]

3.2.9 Function getKoopmanOperator() in dmd utility of opendihu

void getKoopmanOperator(double input[], double output[],
int rows, int cols)

For the Koopman operator, a series of functions is used. First, the real ma-
trix input gets its last column cut off, using resizeMatrix() with cols − 2
as parameter value of lastCol. This yields the array withoutLast, on which
now SVD is performed in order to compute its pseudoinverse, utilizing getSVD()

26

3.2 Implementation

from svd utility and resulting in leftSingVec, singVal and rightSingVec.
Next, the array withoutFirst, which will contain input without its first column,
will be produced, again with the help of resizeMatrix(), with 1 as the value of
its parameter firstCol. The next steps will compute the Koopman operator

output = withoutFirst · rightSingVec−1

· singVal−1 · leftSingVec−1. (3.18)

For the inverse of rightSingVec and leftSingVec, the transpose is used, as they
are unitary matrices, meaning that transposeMatrix() is the function utilized
here. For the inverse of singVal the function getMatrixInverse() is used. The
remaining multiplications are realized by using getMatrixMult(). [16]

3.2.10 Function getDeltaOmega() in dmd utility of opendihu

void getDeltaOmega(double _Complex eigenvalues[], double
growthRates[], double frequencies[], int size, double
deltat)

This function computes the growth rates and frequencies of the complex matrix
eigenvalues. The implementation simply iterates over all entries of
eigenvalues, computing the natural logarithm with clog() and storing the real
and imaginary part divided by deltat in growthRates and frequencies,
respectively. [16]

3.2.11 Function getAmplitudes() in dmd utility of opendihu

void getAmplitudes(double snapshots[], double _Complex
eigenvalues[], double _Complex eigenvectors[], int rows,
int cols, double _Complex amplitudes[])

This function first creates the doube Complex[] mmrows×rows, sets all en-
tries equal to zero, by using setZero(), and stores the entries of eigenvalues
in its diagonal. Furthermore, four additional double Complex[] are declared:
mmm(rows·cols)×rows, bbrows·cols, mmPowerrows×rows and mmmMxMrows×rows. Next,
a for loop is used to iterate over the number of columns. In each iteration k, the
matrix mm will be raised to the k-th power, utilizing getMatrixPower(), and

27

3 Method

the result gets stored in mmPower. Then, the eigenvectors will be multiplied
with mmPower by using getMatrixMult(), resulting in mmmMxM. The entries of
mmmMxM will now be transferred to mmm, so that for each iteration, mmm gets filled
with a rows× rows sized matrix, starting at the top. The vector bb will also be
filled by transferring the columns of snapshots.

Now, getSVD() from svd utility is applied to mmm, yielding
ur(rows·cols)×rows, sigmarrows×rows, and vrTransposedrows×rows. The
amplitudes a of the reduced snapshots matrix can now be calculated,

a = vr · sigmar\(ur−1 · bb). (3.19)

Here, transposeMatrix() is used on ur and vrTransposed to produce their
respective inverse, getMatrixMult() for the multiplications, and
getMatrixLeftDivision() for the backslash-division. [16]

3.2.12 Function getDmdModes() in dmd utility of opendihu

void getDmdModes(double _Complex dmdModes[], double
_Complex a[], double _Complex eigenvectors[], int rows,
int cols, double leftSingVec[], double
leftSingVecReduced[], double amplitudes[])

This function first computes the dmdModescols×cols by scaling the
eigenvectors by the value of the respective amplitude of the reduced snapshots
matrix in a. Since the left singular vectors of the very first SVD weren’t reduced to
the spatial complexity, yet, this has to be done next, in order to calculate the final
amplitudes, by using resizeMatrix(), yielding leftSingVecReduced. Now, a
for loop iterates over all columns of the dmdModes. In each iteration the
corresponding column is extracted into uColm by using resizeMatrix() and
then multiplied by leftSingVecReduced, using getMatrixMult() to yield
aca. The corresponding amplitude will be computed by taking the Frobenius norm
of aca, utilizing getNorm(), and dividing it by the square root of rows. [16]

28

3.2 Implementation

3.2.13 Function getSpecComp() in dmd utility of opendihu

int getSpecComp(double _Complex dmdModes[], double
growthRates[], double frequencies[], double
amplitudes[], int order, double epsilon0)

The first step of getSpecComp() is to sort the dmdModes by the value of their
amplitudes. To do this, they first have to be transposed, using
transposeMatrix() and yielding dmdModesT, in order to have the modes
row-wise instead of column-wise. Next the growthRates, frequencies, and
amplitudes are concatenated to dmdModesT, utilizing the function
concatenateVector() and resulting in uuorder×(order+3). Now the sorting will
be processed by the function sortMatrix(), where the result gets stored in uu1.
This matrix gets transposed with transposeMatrix(), so that the now sorted
dmdModes can be extracted, by using resizeMatrix(). Furthermore, the
corresponding growthRates, frequencies and amplitudes get extracted in a
similar way but by using a simple for loop to iterate over their entries. Lastly, the
spectral complexity specComp will be computed, by iterating over the entries of
amplitudes and using epsilon0, and then returned. [16]

3.2.14 Function getDmdModesGrowthRatesFrequencies() in
dmd utility of opendihu

void getDmdModesGrowthRatesFrequencies(double _Complex
dmdModes[], double growthRates[], double frequencies[],
double _Complex dmdModesReduced[], double
growthRatesReduced[], double frequenciesReduced[], int
rows, int cols, int compSpec)

After computing the spectral complexity, the dmdModes, growthRates, and
frequencies have to be reduced to match specComp. For the dmdModes, this is
realized by using resizeMatrix(), while the growthRates and frequencies
get reduced by iterating over their first specComp entries and only storing these in
their respective reduced variant. [16]

29

3 Method

3.2.15 Function reconstructSnapshots() in dmd utility of
opendihu

void reconstructSnapshots(double _Complex dmdModes[],
double growthRates[], double frequencies[], double
leftSingVec[], double snapshotsReconst[], int rows, int
cols, int specComp, int spatComp, double deltat)

To reconstruct the snapshots, the reduced snapshots have to be reconstructed first.
This will be done column by column, so that hatTreconst will be composed of the
current hatTreconstCol for each iteration. The function contReconst() is used
here cols times, to compute each column of the reconstructed reduced snapshots
matrix hatTreconst. Finally, getMatrixMult() is used one last time to reverse
the first SVD and compute the reconstructed snapshots matrix snapshotsReconst.
[16]

3.2.16 Function resizeMatrix() in dmd utility of opendihu

void resizeMatrix(double input[], double output[], int
oldRows, int newRows, int firstCol, int lastCol)

void resizeMatrix(double _Complex input[], double _Complex
output[], int oldRows, int newRows, int firstCol, int
lastCol)

These functions take real or complex matrix as input and store the resized version
in output. The original number of rows oldRows has to be specified, as well as
the desired number of rows newRows. Every row after the first newRows will be
omitted. For the columns, the first and last column are selected, starting the index
at 0. [16]

30

3.2 Implementation

3.2.17 Function printMatrix() in dmd utility of opendihu

void printMatrix(std::string name, double input[], int
rows, int cols)

void printMatrix(std::string name, double _Complex
input[], int rows, int cols)

These were mainly used for debugging purposes, as they simply print out the
entries of the matrix inputrows×cols, as well as its name. [16]

3.2.18 Function transposeMatrix() in dmd utility of opendihu

void transposeMatrix(double input[], double output[], int
rows, int cols)

void transposeMatrix(double _Complex input[], double
_Complex output[], int rows, int cols)

These functions take a real or complex matrix inputrows×cols and store its
transpose or conjugate transpose in outputcols×rows. [16]

3.2.19 Function setZero() in dmd utility of opendihu

void setZero(double input[], int rows, int cols)

void setZero(double _Complex input[], int rows, int cols)

These iterate over the entire real or complex matrix inputrows×cols and set every
entry equal to zero. [16]

31

3 Method

3.2.20 Function getMatrixPower() in dmd utility of opendihu

getMatrixPower(double _Complex input[], double _Complex
output[], int order, int exponent)

This function takes a complex square diagonal matrix inputorder×order and raises
that to the specified power exponent. The result is then stored in output. [16]

3.2.21 Function concatenateVector() in dmd utility of opendihu

concatenateVector(double _Complex inputA[], double
inputB[], double _Complex output[], int rows, int cols)

To concatenate a real vector inputBrows onto a complex matrix inputArows×cols,
this function simply first transfers inputA into the first cols columns of the complex
matrix outputrows×cols+1 and then appends the vector inputB into the last column.
[16]

3.2.22 Function sortMatrix() in dmd utility of opendihu

sortMatrix(double _Complex input[], double _Complex
output[], int rows, int cols)

This function first makes a copy of the complex matrix inputrows×cols,
inputCopy, so that the original matrix won’t be overwritten. It then proceeds to
sort the matrix by the real part of the values, where all values should be greater or
equal to 0, of its last column by performing selection sort. This is achieved by first
iterating over all entries of said column and finding the greatestValue, so that
its row’s index can be stored in greatestRow. Next, it iterates over every entry of
this row and transfers its contents into the next vacant row of output. After this,
the value of the last entry of that row will be set equal to -1, so that it is now
among the lowest values. [16]

32

3.2 Implementation

3.2.23 Function contReconst() in dmd utility of opendihu

void contReconst(double t, double t0, double _Complex
dmdModes[], double growthRates[], double frequencies[],
int rows, int cols, double output[])

This function is used to reconstruct the single columns of the reduced snapshots
matrix and stores the result in outputrows. It first declares the complex vector
vvcols and sets every entry equal to 0, by using setZero(). Next, it computes
each entry m of vv, by calculating

vvm = e(growthRatesm+i·frequenciesm)(t−t0), (3.20)

where the natural exponential function is realized by utilizing cexp(). Afterwards,
the final values of output get calculated by performing matrix multiplication on
the dmdModesrows×cols and vv, using getMatrixMult(). [16]

33

4 Analysis

4.1 Example snapshots matrix

Following is the detailed applied DMD method on a comparatively small snapshots
matrix,

V =

8.79 9.93 9.83 5.45 3.16
6.11 6.91 5.04 −0.27 7.98
−9.15 −7.93 4.86 4.85 3.01

9.57 1.64 8.83 0.74 5.80
−3.49 4.02 9.80 10.00 4.27

9.84 0.15 −8.99 −6.02 −5.31

 , (4.1)

with j = 6 rows and k = 5 columns, which are the parameters and snapshots,
respectively.

The first step computes the singular value decomposition of the snapshots matrix V ,
which yields the left-singular vectors U , the singular values Σ and the right-singular
vectors T−1, as shown in equation 3.1,

U =

−0.591142 0.263168 0.3554300 0.314264 0.229938

−0.397567 0.243799 −0.2223900 −0.753466 −0.363590

−0.033479 −0.600273 −0.4508390 0.233450 −0.305476

−0.429707 0.236167 −0.6858630 0.331860 0.164928

−0.469748 −0.350891 0.3874450 0.158736 −0.518257

0.293359 0.576262 −0.0208529 0.379078 −0.652552

Σ =

27.4687

22.6432

8.55839

5.98572
2.0149

T−1 =

−0.251383 −0.396846 −0.692151 −0.366170 −0.4076350

0.814837 0.358662 −0.248888 −0.368594 −0.0979626

−0.260619 0.700768 −0.220811 0.385938 −0.4932500

0.396724 −0.450711 0.251321 0.434249 −0.6226840
−0.218028 0.140210 0.589119 −0.626528 −0.4395520

 .
(4.2)

35

4 Analysis

Next, the spatial complexity kspat is computed, equation 3.2, with the chosen
ε1 = e−2 ≈ 0.135335 and results for this example in kspat = 4. This means, that now
only the first 4 columns of U , entries of Σ and rows of T−1, which are all highlighted
in the respective matrices, will be used in the remaining procedures.

The reduced snapshots matrix from equation 3.3 is calculated by multiplying the
reduced singular values with the reduced right-singular values, T̂ = ΣT ∗,

T̂ =

−6.90517 −10.90080 −19.01250 −10.05820 −11.19720
18.45050 8.12124 −5.63562 −8.34613 −2.21818
−2.23047 5.99745 −1.88979 3.30301 −4.22143

2.37468 −2.69783 1.50434 2.59929 −3.72721

 . (4.3)

After this, the modified Koopman operator R̂ will be computed as shown in equation
3.5 and results in

R̂ =

0.75011 −0.408482 −1.57524 −0.715062

0.452508 0.390752 0.204795 1.89209
−0.156436 0.188596 −1.00869 −0.342071
−0.170374 −0.0870758 −0.641562 −1.55755

 (4.4)

The eigendecomposition in equation 3.6 now yields for the eigenvalues Λ and eigen-
vectors Q of R̂

Λ=

−1.96024

0.57413 + 0.287924i
0.57413− 0.287924i

−0.613397

 ,

Q=

−0.304603 0.7633660 0.7633660 −0.481405

0.598140 0.4965710−0.4006190i 0.4965710+0.4006190i −0.563874
−0.394273 −0.0106582−0.0550223i −0.0106582+0.0550223i −0.482279
−0.627689 −0.0723216+0.0426929i −0.0723216−0.0426929i 0.466586

 .
(4.5)

Now, the growth rates δ and frequencies ω get computed as shown in equation 3.8,
where ∆t = 0.1 and yield respectively

δ =

6.73068
−4.42729
−4.42729
−4.88743

 , ω =

31.4159
4.64844
−4.64844

31.4159

 . (4.6)

36

4.1 Example snapshots matrix

The amplitudes of the reduced snapshots matrix are being calculated in equation
3.12 and result for this example in

a =

0.578684
−0.811451+31.627i
−0.811451−31.627i
11.404200

 . (4.7)

In equation 3.13 the DMD modes are computed, where this example yields

u =

−0.591142 −0.469748 −0.600273 0.355430
−0.397567 0.293359 0.236167 −0.222390
−0.033479 0.263168 −0.350891 −0.450839
−0.429707 0.243799 0.576262 −0.685863

 (4.8)

Now, the amplitudes of the snapshots matrix V can be calculated with equation 3.14,
where this α is already sorted.

α =

12.915900
12.915900
4.655740
0.236247

 (4.9)

The spectral complexity kspec can now easily be computed as shown in equation
3.15, where ε0 = e−1 ≈ 0.367879 and results in kspec = 2. This means that only the
first 2 growth rates, frequencies, amplitudes and DMD modes are being used for the
reconstruction step.

For the reconstruction of the reduced snapshots matrix T̂ , the calculation in
equation 3.16 is used and results in

T̂reconst =

−1.23887 −14.613900 −16.269500 −12.65300 −7.8173600
24.53490 4.855280 −4.546130 −7.223060 −6.4185600
3.49768 2.176520 1.056330 0.315071 −0.0739792
−2.58312 −0.145952 0.898012 1.091360 0.8827110

 .
(4.10)

This leads to the reconstruction of the snapshots matrix V in equation 3.17, where

Vreconst =

7.62054 10.64440 9.07888 6.03382 3.183130
7.64256 6.61967 4.44834 2.37707 0.894444

−16.86610 −3.44057 3.00701 4.87215 4.354020
3.07051 5.88514 5.49100 3.87733 2.187000
−7.08200 5.98131 9.78959 8.77355 6.035860
12.72300 −1.58993 −7.07418 −7.46711 −5.655900

 . (4.11)

37

4 Analysis

Evidently, this result varies relatively much from the original snapshots matrix V ,
which will also be seen in the errors. For these, the equations 4.13 and 4.14 were
used for the root-mean-square error and the max error, respectively.

ERMS = 0.450876 EMax = 0.560655 (4.12)

Reasons for these errors can be speculated to be connected to the snapshots matrix,
which first of all doesn’t provide a lot of snapshots. Furthermore, the data isn’t
actually realistic, since each snapshot is completely independent from each other,
because it only consists of random numbers. The choice of ε1 and ε0 also played a
role. They weren’t set to be very small so that the DMD will actually reduce the
dimensions but that comes, especially with this snapshot data, with the price of
quite big errors.

4.2 Testing

For the testing of the final implementation of the dynamic mode decomposition, a
snapshots matrix was created with the MATLAB program monodomain 1D Order1.
This matrix has a total of 68 grid points and 600 snapshots, with time step width
∆t = 0.01s.

4.2.1 Reduction of dimensions

Different combinations of values for ε0 and ε1 were chosen. First, the significance
of the reduction in dimensions is measured by choosing 0 for ε0 when testing kspat

and choosing 0 for ε1 when testing kspec. Since the calculation step for the spatial
complexity is only dependant on ε1, the value of ε0 does not matter. For the spectral
complexity it is different, since it can always only be at most equal to the spatial
complexity, thus setting ε1 = 0 leaves all 68 dimensions for the spectral complexity.
The respective significant ε will then be increased, first to e−15 and then in each step
multiplied by e, i.e. the next step is e−14 and so on, up to e−1. The results for the
spatial complexity can be seen in table 4.1; the results for the spectral complexity
are depicted in table 4.2.

Now, the reduction in dimensions, which is depicted by the reduction of the
respective k, can be seen in relation to their respective ε. For the changes in ε1, the
spatial complexity kspat already more than halves, i.e. it goes from being 68 initially
to only 31, by setting ε1 = e−15 ≈ 3.05902× 10−1. Comparable results are achieved
with the varying of ε0 and reduction of kspec only between ε0 = e−6 ≈ 2.47875× 10−3

and ε0 = e−5 ≈ 6.73795× 10−3, where kspec = 37 and kspec = 21, respectively. This
suggests that the value of ε1 can be kept very small, while the value of ε0, in order
for it to achieve a significant reduction, should be chosen to be greater.

38

4.2 Testing

Table 4.1: ε0 = 0 to show the effect of ε1
ε1 kspat

0 68
e−15 ≈ 3.059 02× 10−7 31
e−14 ≈ 8.315 29× 10−7 30
e−13 ≈ 2.260 33× 10−6 27
e−12 ≈ 6.144 21× 10−6 23
e−11 ≈ 1.670 17× 10−5 21
e−10 ≈ 4.539 99× 10−5 17
e−9 ≈ 1.2341 × 10−4 13
e−8 ≈ 3.354 63× 10−4 12
e−7 ≈ 9.118 82× 10−4 10
e−6 ≈ 2.478 75× 10−3 9
e−5 ≈ 6.737 95× 10−3 9
e−4 ≈ 1.831 56× 10−2 8
e−3 ≈ 4.978 71× 10−2 6
e−2 ≈ 1.353 35× 10−1 3
e−1 ≈ 3.678 79× 10−1 2

Table 4.2: ε1 = 0 to show the effect of ε0
ε0 kspec

0 68
e−15 ≈ 3.059 02× 10−7 64
e−14 ≈ 8.315 29× 10−7 64
e−13 ≈ 2.260 33× 10−6 64
e−12 ≈ 6.144 21× 10−6 64
e−11 ≈ 1.670 17× 10−5 64
e−10 ≈ 4.539 99× 10−5 64
e−9 ≈ 1.2341 × 10−4 64
e−8 ≈ 3.354 63× 10−4 56
e−7 ≈ 9.118 82× 10−4 51
e−6 ≈ 2.478 75× 10−3 37
e−5 ≈ 6.737 95× 10−3 21
e−4 ≈ 1.831 56× 10−2 9
e−3 ≈ 4.978 71× 10−2 7
e−2 ≈ 1.353 35× 10−1 2
e−1 ≈ 3.678 79× 10−1 2

4.2.2 Errors

Next, the errors were measured. For this, every combination of the values for ε1 and
ε0 from tables 4.1 and 4.2 were tested. The results for the root-mean-square error
ERMS can be seen in figure 4.1, where ε1 is located on the x-axis and the error value
on the y-axis, while the different values for ε0 are shown as different graphs. To
calculate ERMS, the Frobenius norm of the difference of the original snapshots matrix
V and the reconstructed snapshots matrix Vreconst is divided by the Frobenius norm
of just the original snapshots matrix V ,

ERMS =
‖V − Vreconst‖2

‖V ‖2
. (4.13)

The maximal error EMax was also computed and is shown in figure 4.2, again with
the value of ε1 on the x-axis, the value of EMax on the y-axis and the values for
ε0 as the graphs. The calculation of the maximal error is similar to the one of the
root-mean-square error, but instead of the Frobenius norm, the max norm is used,

EMax =
‖V − Vreconst‖∞

‖V ‖∞
. (4.14)

In both figures it can be observed that by choosing ε1 ≥ e−4 ≈ 1.83156× 10−2, the
value of ε0 doesn’t make a difference. This shows that ε1 should be at most e−5,

39

4 Analysis

10 6 10 5 10 4 10 3 10 2 10 1

1

10 1

100
ro

ot
-m

ea
n-

sq
ua

re
 e

rro
r 0 = 0

0 = e 15

0 = e 14

0 = e 13

0 = e 12

0 = e 11

0 = e 10

0 = e 9

0 = e 8

0 = e 7

0 = e 6

0 = e 5

0 = e 4

0 = e 3

0 = e 2

0 = e 1

Figure 4.1: The root-mean-square error ERMS of the DMD implementation.

which is further supported by the jump of the errors from e−4 to e−5. These results
suggest that good values to start further testing of the DMD might be ε1 = e−5

and ε0 = e−3 and decreasing their values evenly, since it can be seen that by just
decreasing ε1 for example, the error might do unexpected jumps upwards.

4.2.3 Runtime

For measuring the runtime of the DMD implementation the same values for ε1 and
ε0 as above have been chosen. The results are shown in figure 4.3, where, as before,
ε1 is located on the x-axis, the y-axis is for the runtime in seconds and the graphs
are for the different values of ε0. As was expected, the runtime is anti-proportional to
both, ε1 and ε0. There are no significant jumps other than small outliers that might
be attributed to other reasons, such as unfortunate CPU scheduling.

4.2.4 Frequencies, growth rates and amplitudes

For the plots of the amplitudes α in figure 4.5 and the growth rates δ in figure 4.4 with
their respective frequencies ω, both, ε0 and ε1, were chosen to be e−15 ≈ 3.05902×10−7.
This way, there is only limited reduction in dimensions, so that there are enough
modes show the scattering.

40

4.2 Testing

10 6 10 5 10 4 10 3 10 2 10 1

1

10 1

100

m
ax

im
al

 e
rro

r

0 = 0
0 = e 15

0 = e 14

0 = e 13

0 = e 12

0 = e 11

0 = e 10

0 = e 9

0 = e 8

0 = e 7

0 = e 6

0 = e 5

0 = e 4

0 = e 3

0 = e 2

0 = e 1

Figure 4.2: The maximal error EMax of the DMD implementation.

10 6 10 5 10 4 10 3 10 2 10 1

1

10 1

100

tim
e

in
 s

0 = 0
0 = e 15

0 = e 14

0 = e 13

0 = e 12

0 = e 11

0 = e 10

0 = e 9

0 = e 8

0 = e 7

0 = e 6

0 = e 5

0 = e 4

0 = e 3

0 = e 2

0 = e 1

Figure 4.3: The runtime of the DMD implementation in seconds.

41

4 Analysis

20 10 0 10 20
frequencies

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

gr
ow

th
 ra

te
s

Figure 4.4: The growth rates δ in relation to their frequencies ω.

20 10 0 10 20
frequencies

0

5

10

15

20

25

30

35

am
pl

itu
de

s

Figure 4.5: The amplitudes α in relation to their frequencies ω.

42

5 Outlook

The tests show promising results for further pursuing the DMD approach for model
order reduction of monodomain equation models. More investigation has to be
done with different models and parameter values, in order to draw a more definite
conclusion.

The next steps could involve increasing the performance of the DMD implemen-
tation. For this, parallelization with ScaLAPACK [24] could be used, so that all
the subroutines, currently only implemented with LAPACK, could be made more
efficient. Especially for the computational excessive procedures, such as singular value
decomposition, matrix multiplication and eigendecomposition, this might achieve a
substantial performance gain. In order to take full advantage of the parallelization
capabilities of ScaLAPACK, matrix multiplication with complex numbers should
also be implemented to use the subroutine zgemm() by LAPACK. Another, less
meaningful optimization may include a better sorting algorithm for the reduction
step of the spectral complexity. Here, much better sorting algorithms exist, that
unfortunately couldn’t be implemented, yet.

With these optimizations in mind, a final big step forward should consist of
implementing the DMD-d algorithm. Whereas this thesis only considered the standard
DMD, also written as DMD-1 to signify the one-dimensional DMD, there exists the
higher order dynamic mode decomposition (HODMD), denoted as DMD-d, where d
equals to the order of the HODMD. For this, the higher order Koopman assumption
is applied, so that not only one time step will be used for the computation of the
Koopman operator, as in the DMD-1 algorithm, but d time steps [25]. To implement
this, the C++ code can be extended to also implement HODMD, since the entire
algorithm has been made modular, so that the single steps of the DMD should be
expandable to fit DMD-d.

43

Bibliography

[1] Monica Aleman, Yvette S Nout-Lomas, and Stephen M Reed. “Disorders of
the Neurologic System”. In: Equnie Internal Medicine. Vol. 4. Elsevier, 2018.

[2] Neil J Smelser, Paul B Baltes, et al. “Neuromuscular System”. In: International
encyclopedia of the social & behavioral sciences. Vol. 11. Elsevier Amsterdam,
2001.

[3] James Keener and James Sneyd. “Muscle”. In: Mathematical Physiology: II:
Systems Physiology. New York, NY: Springer New York, 2009, pp. 717–772.

[4] Craig S Henriquez. “Simulating the electrical behavior of cardiac tissue using
the bidomain model.” In: Critical reviews in biomedical engineering 21.1 (1993),
pp. 1–77.

[5] Birgit Stender. “Parametrization of activation based cardiac electrophysiol-
ogy models using bidomain model simulations”. In: Current Directions in
Biomedical Engineering 2.1 (2016), pp. 611–615.

[6] Alan L Hodgkin and Andrew F Huxley. “A quantitative description of mem-
brane current and its application to conduction and excitation in nerve”. In:
The Journal of physiology 117.4 (1952), pp. 500–544.

[7] Paul R Shorten et al. “A mathematical model of fatigue in skeletal muscle
force contraction”. In: Journal of muscle research and cell motility 28.6 (2007),
pp. 293–313.

[8] Oliver Röhrle. DiHu. 2016. url: https://ipvs.informatik.uni-stut
tgart.de/SGS/digital_human/ (visited on 04/03/2019).

[9] Peter J Schmid. “Dynamic mode decomposition of numerical and experimental
data”. In: Journal of fluid mechanics 656 (2010), pp. 5–28.

[10] Soledad Le Clainche and José M Vega. “Higher order dynamic mode decompo-
sition”. In: SIAM Journal on Applied Dynamical Systems 16.2 (2017), pp. 882–
925.

[11] James Weldon Demmel. “Computing stable eigendecompositions of matrices”.
In: Linear Algebra and its Applications 79 (1986), pp. 163–193.

[12] Gene Golub and William Kahan. “Calculating the singular values and pseudo-
inverse of a matrix”. In: Journal of the Society for Industrial and Applied
Mathematics, Series B: Numerical Analysis 2.2 (1965), pp. 205–224.

45

Bibliography

[13] Benjamin Maier. opendihu. 2017. url: https://github.com/maierbn/
opendihu (visited on 04/03/2019).

[14] Netlib. dgesvd. url: http://www.netlib.org/lapack/explore-htm
l/d1/d7e/group__double_g_esing_ga84fdf22a62b12ff364621e
4713ce02f2.html (visited on 04/03/2019).

[15] Netlib. zgesvd. url: http://www.netlib.org/lapack/explore-html/
d3/da8/group__complex16_g_esing_gad6f0c85f3cca2968e1ef
901d2b6014ee.html (visited on 04/06/2019).

[16] Moritz Widmayer. dmd utility.cpp. 2019. url: https://github.com/
maierbn/opendihu/blob/develop_DMD/core/src/utility/dmd_
utility.cpp (visited on 04/06/2019).

[17] Netlib. dgeev. url: http : / / www . netlib . org / lapack / explore -
html/d9/d8e/group__double_g_eeigen_ga66e19253344358f5dee
1e60502b9e96f.html#ga66e19253344358f5dee1e60502b9e96f (vis-
ited on 04/06/2019).

[18] Netlib. dgemm. url: http://www.netlib.org/lapack/explore-
html/d1/d54/group__double__blas__level3_gaeda3cbd99c8fb
834a60a6412878226e1.html (visited on 04/06/2019).

[19] Netlib. zgemm. url: http://www.netlib.org/lapack/explore-
html/dc/d17/group__complex16__blas__level3_ga4ef748ade
85e685b8b2241a7c56dd21c.html (visited on 04/06/2019).

[20] Netlib. dlange. url: http://www.netlib.org/lapack/explore-
html / de / d39 / group _ _double _ g _ eauxiliary _ gaefa80dbd8cd
1732740478618b8b622a1.html (visited on 04/06/2019).

[21] Netlib. zlange. url: http://www.netlib.org/lapack/explore-html/
d0/d9e/group__complex16_g_eauxiliary_ga7908bb12a6f02dbfa
4d5a92a27c0e9b7.html (visited on 04/06/2019).

[22] Netlib. dgetri. url: http://www.netlib.org/lapack/explore-html/
dd/d9a/group__double_g_ecomputational_ga56d9c860ce4ce42d
ed7f914fdb0683ff.html (visited on 04/06/2019).

[23] Netlib. zgesv. url: http://www.netlib.org/lapack/explore-html/
d6/d10/group__complex16_g_esolve_ga531713dfc62bc5df387b
7bb486a9deeb.html (visited on 04/06/2019).

[24] Netlib. ScaLAPACK. 2017. url: http://www.netlib.org/scalapack/
(visited on 04/10/2019).

[25] Soledad Le Clainche and José M Vega. “Higher order dynamic mode decom-
position to identify and extrapolate flow patterns”. In: Physics of Fluids 29.8
(2017), p. 084102.

46

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich habe keine anderen
als die angegebenen Quellen benutzt und alle wörtlich oder sinngemäß aus anderen
Werken übernommene Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentlich Teile daraus waren bisher Gegenstand eines anderen Prüfungsverfahrens.
Ich habe diese Arbeit bisher weder teilweise noch vollständig veröffentlicht. Das
elektronische Exemplar stimmt mit allen eingereichten Exemplaren überein.

Datum und Unterschrift:

Declaration

I hereby declare that the work presented in this thesis is entirely my own. I did not
use any other sources and references than the listed ones. I have marked all direct or
indirect statements from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination procedure. I have
not published this work in whole or in part before. The electronic copy is consistent
with all submitted copies.

Date and Signature:

47

