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Abstract

The “Continuous Delivery” (CD) approach promises to significantly reduce the time-to-
market of new features in a software development project, enabling faster feedback for
the developers and in effect higher customer satisfaction. The key of implementing CD
is automating the delivery process, which involves building, testing, and deploying the
application to the target platform. With an increasing application size, the delivery process
becomes more complex and is likely to fail at various points. A failure can interrupt
the development process and should consequently be prevented whenever possible. The
“Business Process Model and Notation” (BPMN) specifies approaches to introduce reliability
increasing structures in a business process, which prevent failures or compensate their effects
during process execution. The goal of this master’s thesis is to support the design of resilient
CD processes by bringing concepts from BPMN to the CD domain. A graphical representation
of a CD pipeline can make complex processes more manageable by abstracting relevant
structures. Particularly the compensation concept in BPMN is a promising way of abstracting
complicated parts of a CD pipeline. In order to create compatibility between BPMN and the
CD domain, the “Domain Specific Language” (DSL) StalkCD has been invented. It stores
the CD process of a Jenkinsfile and combines it with information that is relevant when
generating a BPMNmodel. Transformations from Jenkinsfiles via StalkCD to BPMN and back
have been developed, enabling to depict Jenkinsfiles using BPMN. Evaluation results show
that the support of the provided implementations for the declarative syntax of Jenkinsfiles
is good. Jenkinsfiles that have been translated to BPMN models can be visualized and
edited comprehensively, however, the graphical user support is still improvable. Because of
the lack of sufficiently complex real-world-examples, this thesis could not prove that there
actually result resilience benefits from using BPMN as abstraction layer when designing
CD pipelines.
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Kurzfassung

Das Konzept „Continuous Delivery“ (CD) verspricht signifikant kürzere Entwicklungszeiten
neuer Funktionen in einem Software-Entwicklungsprojekt. Dies ermöglicht schnellere Rück-
meldungen an Entwickler und letztlich auch höhere Kundenzufriedenheit. Der Schlüssel zur
Umsetzung von CD ist die Automatisierung des Auslieferungsprozesses, welcher aus dem
Bauen, Testen und Installieren der Anwendung besteht. Mit zunehmender Anwendungs-
größe steigt auch die Komplexität des Auslieferungsprozesses und es entstehen an vielen
Stellen Fehlerquellen. Da ein Fehlschlag der automatischen Auslieferung den Entwicklungs-
fluss unterbricht, ist es sinnvoll, Fehler zu verhindern, wo immer es möglich ist. „Business
Process Model and Notation“ (BPMN) enthält Konzepte, um Zuverlässigkeits-Konstrukte in
Prozesse zu integrieren, welche Fehler verhindern oder deren Folgen während der Prozes-
sausführung kompensieren. Das Ziel dieser Masterarbeit ist die Unterstützung der Entwick-
lung von resilienten Auslieferungsprozessen durch die Verwendung von BPMN-Konzepten
in der CD-Domäne. Solche Prozesse sollen in der Lage sein, sich ohne menschliches Zutun
von Fehlern zu erholen. Eine grafische Repräsentation einer CD-Pipeline kann komplexe
Prozesse handhabbarer machen, indem sie relevante Strukturen abstrahiert. Besonders
das „Compensation“-Konzept in BPMN ist ein vielversprechender Weg, um komplizierte
Teile eines Auslieferungsprozesses zu abstrahieren. Um Kompatibilität zwischen BPMN und
der CD-Domäne herzustellen, wurde die „Domänen-Spezifische Sprache“ (DSL) StalkCD
entwickelt. Sie speichert den CD-Prozess einer Jenkinsfile und zusätzlich Informationen, die
zur Visualisierung eines daraus generierten BPMN-Modells relevant sind. Es wurden Trans-
formationen von Jenkinsfiles über StalkCD zu BPMN und umgekehrt entwickelt, welche es
ermöglichen, eine Jenkinsfile in BPMN darzustellen. Evaluierungen haben gezeigt, dass
die entwickelte Implementierung eine gute Abdeckung von Jenkinsfile-Sprachelementen
aufweist. In BPMN überführte Jenkinsfiles lassen sich außerdem vollständig darstellen und
bearbeiten, jedoch ist die grafische Benutzerunterstützung noch ausbaufähig. In dieser
Arbeit konnte nicht bewiesen werden, dass der Einsatz von BPMN als Abstraktionsschicht
beim Entwickeln von Auslieferungsprozessen diesen tatsächlich zu höherer Resilienz verhilft,
da entsprechend komplexe praktische Beispiele fehlten.
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1 Introduc on

As an introduction to the topic of this master’s thesis, this chapter defines the research
context and states the problems it is addressing. Furthermore, it outlines the chosen solution
approach and the used methodology for evaluating it. The chapter will be concluded by an
outline of the document structure.

1.1 Research Context & Problem Statement

Each software development project eventually reaches the point in time, where the product
is to be delivered to the customer. The day of going live is often perceived as the day of
truth, where all mistakes of the involved developers from the past days, weeks or months
come to light. When searching for the causes of problems, mutual accusations between
teams are not uncommon, according to Humble and Farley [HF10]. They point out, that
especially the development and operations teams often have conflicting interests and lack
communication.

The “Development and Operations” (DevOps) movement [EGHS16; Hüt12; SNP15] aims
to bring together these two parties by establishing the requirements for an effective collabo-
ration between them. A critical prerequisite to reaching the goal of aligning the interests
of development and operations is automation [Hüt12]. It enables to reliably repeat and
measure tasks, which has numerous benefits for the software development process: By
repeatedly executing and testing the delivery process, the risk of each single delivery is
minimized. This allows to release more often, generating feedback for new features more
quickly. Furthermore, by measuring and monitoring the delivery and operation of an appli-
cation, the sources of errors can be detected quickly and precisely, thus the responsibilities
are clear and conflicts are avoided.

The “Continuous Delivery” (CD) approach is an important part of the DevOps movement.
In the past decade, it has increasingly gained importance as it is being widely adopted in
industry [HF10; SBZ17]. It can be seen as an extension to the already widely practiced
“Continuous Integration” (CI) approach. CD can help to significantly decrease the time to
market of new software-features by shortening release cycles from several months or even
years down to few weeks or even days [Che15]. Consequently, customers can benefit earlier
from the developers’ work and provide them with feedback. This allows incomplete or
irrelevant requirements to be detected soon so that the development effort can be focused
on the relevant tasks. Therefore, more frequent releases improve the product’s quality,
create higher value, and increase customer satisfaction [Che15].
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1 Introduc on

As applications grow, the complexity of their CD pipelines increases, which makes it chal-
lenging to maintain reliable deliveries. The CD process can fail at various points, in some
instances for trivial reasons, which requires the valuable work of a developer to inspect
and fix the delivery process. Laukkanen et al. [LIL17] conducted a systematic literature
review on problems that challenge many organizations when adopting CD. They found
that the development flow gets broken by failed builds, preventing developers from doing
value-adding activities. Thus, a CD process should be designed to fail as seldom as possi-
ble. Ideally, it should be resilient, i. e., recover from failures without manual intervention,
wherever possible.

A promising way to reduce the complexity of a CD pipeline and at the same time make it
more resilient is to use “Business Process Model and Notation” (BPMN) as an abstraction
layer for designing the delivery process. The notation not only offers proven approaches to
visualize processes of any kind, but also defines concepts to ensure their operability.

The goal of this master’s thesis is to provide an approach to use BPMN for the definition of
CD pipelines. Transformations have to be developed, capable of converting a BPMN model
into the “CD Pipeline Definition Language” (PDL) of a CD tool. This enables to execute
CD pipelines defined in BPMN using existing CD tools. Additionally, in order to increase the
practical applicability of the implemented approach, transformations from PDLs to BPMN
are developed, enabling to depict existing CD pipelines using BPMN. The following research
questions define the main focus of this master’s thesis:

RQ 1: What features do CD tools provide to ensure operability of the CD process?
The first research question aims to investigate the current state of existing CD im-
plementations, regarding their features to ensure the operability of CD pipelines.
Analyzing existing CD tools for their capabilities of recovering from failures enables
comparing the results of the thesis with existing approaches.

RQ 2: What BPMN features can be used to increase the resilience of CD pipelines?
BPMN has concepts that can help designing robust business processes. A goal of
this master’s thesis is to investigate if these concepts can be used in the domain of
continuous delivery. Concrete concepts and implementations should be developed
to transform relevant BPMN structures to CD pipelines that can be executed using
existing CD tools.

RQ 3: What feature coverage does the transformation from Jenkinsfiles to StalkCD
provide?
An important aspect of the transformations from PDLs to BPMN is comprehensiveness.
An ideal implementation would be capable of processing any language construct that
the concerned CD tool allows. The goal of RQ 3 is to evaluate the practical usefulness
of the provided implementation by measuring its feature coverage.

RQ 4: What are the resilience benefits of the chosen approach?
Finally, it is of special interest to investigate if the mainmotivation of this master’s thesis
has been solved. The evaluation should show whether the use of the implemented
transformations results in actual benefits to the resilience of a CD pipeline.

2



1.2 Approach & Evalua on Methodology

1.2 Approach & Evalua on Methodology

As part of the contributions of this master’s thesis and to answer RQ 1, the CD pipeline syntax
of Jenkins as a representative of popular CD tools has been analyzed. The result of this
analysis is a meta-model of the Jenkinsfile syntax, which can be found in Chapter 4. Based
on this meta-model, the “Domain Specific Language” (DSL) StalkCD has been introduced.
Its language design can be found in Chapter 5. It is supposed to serve as an intermediate
representation of a CD pipeline to create a compatibility layer between the CD domain and
BPMN. StalkCD supports all relevant features from the CD domain and additionally extends
the CD components by properties that facilitate depicting them in BPMN.

Figure 1.1 shows the main contributions of this master’s thesis and their corresponding
chapters or sections. The connecting arrows represent transformations, described in detail
in Chapter 6. Transformation 1 enables to translate the CD pipeline inside a Jenkinsfile
to the StalkCD DSL. This makes it possible to apply the approaches of this master’s thesis
to existing pipeline definitions. Transformation 2 brings a StalkCD pipeline back into
the Jenkinsfile syntax, which allows to execute the CD process using Jenkins. These two
transformations could be exchanged or extended to support other CD tools as well.

BPMNCD DSL
write

StalkCD
parse generate

translateChapter 5Chapter 4

Section 6.1

Section 6.2

(Jenkinsfile)

Chapter 2

1

2

Section 6.3

Section 6.4

3

4

Figure 1.1: Overview of the contributions of this master's thesis

A StalkCD pipeline can be depicted in a BPMN model using transformation 3 . For details
on the mapping of CD features to BPMN elements and how layout information is assigned
to the generated BPMN elements, see Section 6.3. The created BPMN model in XML format
can be displayed and modified in a BPMN-editor, such as the Camunda Modeler1. After
having made changes, transformation 4 allows to translate the pipeline back into the
StalkCD language, as described in Section 6.4.

For evaluating transformations 1 and 2 from Jenkinsfiles to StalkCD and back, an empirical
study has been conducted, as described in Section 7.2. The results reveal that the coverage
of Jenkinsfile features is sufficient to correctly process 70 % of sample Jenkinsfiles, collected
from publicly available GitHub repositories. This is a good result when taking into account
that numerous sample files contain syntax errors or violate the principle of declarative
programming.

1The Camunda BPMN / DMN Process Modeler – https://camunda.com/download/modeler/
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1 Introduc on

Transformations 3 and 4 were evaluated using the Camunda Modeler as BPMN tool.
Investigations show that all relevant properties of the modeled CD process can be reached
using the controls provided by the editor. However, the accessibility still is improvable, since
not all relevant data is visible in the BPMN model and has to be searched at a rather hidden
place in the properties panel.

In order to evaluate the resilience benefits, the CD process of the Kieker monitoring frame-
work2 has been investigated for common causes of failure. The results show that almost none
of the evaluated failures could have been prevented by introducing compensation structures
in the pipeline. Consequently, the developed approach brings no resilience benefits in the
case of Kieker.

2Kieker – http://kieker-monitoring.net/
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1.3 Outline

1.3 Outline

The remainder of this master’s thesis is structured as follows:

Chapter 2 – Founda ons introduces the fundamental concepts that are required in order
to understand the contents of subsequent chapters. It outlines the main goals of
the DevOps movement and presents the continuous delivery approach as part of it.
Jenkins is introduced as popular tool, used in connection with CD. In addition, the
chapter explains the term resilience and how it can be measured. Also the concept of
BPM is introduced, as well as the related notation BPMN. Finally, the parser generator
tool ANTLR and the concepts it is based on are explained.

Chapter 3 – Related Work outlines the findings of Willig when bringing BPMN to the CD do-
main in his master’s thesis. Furthermore, two approaches of introducing DSLs for
describing CD pipelines are presented.

Chapter 4 – Analysis of the Jenkinsfile Meta-Model conducts a detailed analysis of the tex-
tual representation of a CD pipeline for Jenkins, the Jenkinsfile. It defines a meta-
model for the Jenkinsfile DSL, containing all relevant language elements, and explains
their structure and semantics.

Chapter 5 – StalkCD presents the domain specific language that has been developed based
on the Jenkinsfile meta-model. All language elements and their purpose are explained
here.

Chapter 6 – Transforma ons presents the developed transformations from Jenkinsfiles to
StalkCD and back, as well as from StalkCD to BPMN and back.

Chapter 7 – Evalua on defines an evaluation approach to find answers to the remaining
research questions. It present experiment setups and the implementation strategy, as
well as the evaluation results.

Chapter 8 – Conclusions and Future Work recaptures the results of this master’s thesis and
discusses them. Furthermore, it lists connection points that can be addressed by future
research.
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2 Founda ons

This master’s thesis brings together various fields in the domain of software engineering and
business processes. The following sections convey basic knowledge on terms, techniques,
and tools that are required to understand the remainder of the thesis. Sections 2.1 to 2.3
cover the field of continuous software delivery and Sections 2.4 and 2.5 introduce the
basics of business processes. The aspect of resilience, which is aimed to be improved by
bringing together both fields is defined in Section 2.6. Besides from conceptual foundations,
Section 2.7 provides technical knowledge on parsing structured data, which is important in
order to understand later implementation chapters.

2.1 DevOps

Humble and Farley [HF10] state that collaboration between different teams of an organiza-
tion is one of the main challenges when it comes to delivering software. They found that
many projects use a siloed approach, where developing, testing, and deploying software is
strictly separated, leading to communication issues and unclear responsibilities. In their
opinion, this problem can be solved by following the principles of the “Development and
Operations” (DevOps) movement. Everyone should be involved in the delivery process to
increase its transparency and clearness.

Hüttermann [Hüt12] defines DevOps as a modern way of bringing together development
and operations to assure serving a customer fast and reliably, while delivering high-quality
products. The approach involves various aspects, such as improving communication, au-
tomating, and measuring the delivery process. Additionally, Ebert et al. [EGHS16] highlight
that also monitoring the running application is an important part in the movement. The
central goal is to align the incentives of the different teams, collaborating on development,
delivery, and operation of software.

One key requirement to successfully move to DevOps is automation [EGHS16]. It is vital to
make deliveries fast and reliable, as manual steps often are time-consuming and error-prone.
This includes finding the right tools for building, deploying, and operating an application.
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2.2 Con nuous Delivery

In the past decade, the approach named “Continuous Delivery” (CD) has increasingly
gained attention as it is being widely adopted in industry [HF10; SBZ17]. It can be seen as
element of the DevOps movement and extension to the already widely practiced “Continuous
Integration” (CI) approach . The frequent integration of software in development aims to
reduce the risk of incompatibilities at the time of its release [FF06]. Usually, each developer
integrates his work at least once per day, which triggers an automated test. If it fails, the
developer can quickly fix compatibility issues, if needed in collaboration with other team
members.

CD promises to significantly decrease the time to market of new software-features by
shortening release cycles from several months or even years down to few weeks or even
days [Che15]. Consequently, customers can benefit earlier from the developers’ work
and provide them with feedback. This allows incomplete or irrelevant requirements to
be detected soon so that the development effort can be focused on the relevant tasks.
Therefore, more frequent releases improve the product’s quality, create higher value, and in
consequence increase customer satisfaction [Che15].

2.2.1 The deployment pipeline

The central element of the CD approach is the CD pipeline. According to Humble and
Farley [HF10, p. 103ff.], it consists of stages, transforming source code into a deliverable
product and finally deploy it to a production environment. In general, there are four
stages, as depicted in Figure 2.1. Depending on the individual requirements of a software
development process, the actual number of stages in a deployment pipeline and their order
can vary.

The commit stage assures that the code has no obvious defects by running unit tests and
calculating code metrics. The fully automated acceptance test stage covers the functional
and non-functional level of testing, making sure that all user requirements are fulfilled. The
manually performed user acceptance testing stage assures that the software is usable and
valuable. During the manual tests, defects not found by automated tests can be detected.
The capacity testing stage is generally independent of the user acceptance testing stage and
can be executed in parallel. Here, the software is assessed according to non-functional
requirements, e. g., performance and memory usage.

Only if the software has passed all previous stages, it is automatically released. It has to
be distinguished between continuous delivery and continuous deployment [SBZ17]. In
case of continuous delivery, it is ensured that the software that passed the testing stages is
at a production-ready state by installing it to a production-like environment. Continuous
deployment goes one step further and deploys the software to the production or customer
environment. Which of both approaches is more relevant to an actual software development
process depends on the type of software being developed. If there will be many installations
that are not directly accessible, the continuous delivery approach can be preferable. If there
is only one installation on a server, automating the deployment process makes sense.
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Commit stage
Compile
Unit test
Analysis

Build installers

Acceptance
test stage

Increasing confidence in production readiness

User 
acceptance 

testing

Capacity 
testing

Production

Environment becomes more production-like

Faster feedback

Figure 2.1: General CD pipeline [HF10]

2.2.2 Infrastructure as Code

An important prerequisite of CD is a high degree of automation. To achieve this goal, it
is common that everything required to execute an application in a testing or production
environment exist as code, also referred to as “Infrastructure as Code” (IaC) [Hüt12]. This
includes a list of required software packages that are part of the operating system together
with their configuration files, technical users, network settings and so on. One benefit of
having all the infrastructure as code is the possibility to set up a new production environment
from scratch without having to manually configure the system.

Modern CD tools apply this concept by relying on a configuration file located in the “Version
Control System” (VCS). This also makes it possible to determine time and author of any
change to the specification of the production environment and to introduce reviews and
approvals. This is important in order to prevent common mistakes, e. g., random pack-
age upgrades, which would create an undefined, error-prone state of the system [HF10,
p. 283ff.].

2.3 Jenkins

Many existing software tools support the development of CD pipelines. In their master’s
thesis, Bergsteinsdóttir and Edholm [BE18] conducted a case study to identify popular tool
chains used in the industry for implementing CD. They found that Jenkins1 is considered to
be the de facto industry standard when it comes to continuous integration and delivery.

1Jenkins CI – https://jenkins.io
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The authors of Jenkins claim that their product is “the leading open-source automation
server”. Indeed, it is often mentioned in literature and referred to as de facto standard
for continuous integration and delivery tools [BE18; Beh12]. The application written in
Java is especially popular because of over a thousand plug-ins making it highly flexible
to fit in almost every use case. Some of its benefits are an easy installation and intuitive
usage, extensibility through a REST interface, compatibility to virtually any programming
language, the possibility to distribute it, its highly active and professional community and
that it is open-source and free of charge [Beh12].

When Jenkins is freshly installed, it only supports a basic set of features like pulling source
code from a repository, building it, visualizing build results and sending notifications to
developers on build events. These features can be used to continuously test and integrate a
software project, but are not sufficient to implement continuous delivery. The Pipeline plug-
in (ID: workflow-aggregator) adds features to Jenkins allowing to automate the delivery
process of an application. At the time of this thesis, the most recent version of the plug-in is
2.6. All following explanations refer to this version.

The plug-in’s central concept is the Jenkinsfile, a text file that defines a CD pipeline using
a DSL derived from the Groovy programming language2. There are two approaches of
describing CD pipelines3: It can be written using the scripted or declarative syntax.

A scripted pipeline is initiated by the node keyword followed by curly braces defining an
environment, as can seen in Listing 2.1. Inside of it, Groovy source code describes the
deployment process. It can use methods provided by the pipeline plug-in, most importantly
steps such as calls to shell scripts or programs, file operations, sending emails, and many
more. In the example, the docker statement is used to execute deployment steps inside a
docker container. The stage method, provided by the pipeline plug-in, enables to define
segments of the CD process that logically build upon each other. The simple sh step executes
shell commands in the environment of the docker container. Line 10 in the example listing
contains an if-statement that is used to conditionally execute steps. This highlights that a
scripted pipeline can access most features of the Groovy language. This freedom allows to
implement virtually any requirement of a CD process.

As of version 2.5, the pipeline plug-in additionally supports the declarative syntax, which is
particularly easy to understand. It builds upon pre-defined structures, following the principle
of declarative programming [Llo94]. This is useful in projects where it is important for
employees to be capable of easily modifying the deployment process without having to
learn a programming language. An example declarative pipeline implementing the same
functionality as the presented scripted pipeline (Listing 2.1) can be found in Listing 4.1
on page 31. A detailed analysis of the declarative syntax of Jenkinsfiles can be found in
Chapter 4.

2The Groovy programming language – http://groovy-lang.org
3Jenkins Pipeline Syntax – https://jenkins.io/doc/book/pipeline/syntax/
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Listing 2.1 An example scripted Jenkinsfile

1 node {
2 docker.image('node:7-alpine').inside {
3 stage('Build') {
4 sh 'npm install'
5 }
6 stage('Test') {
7 sh 'npm test'
8 }
9 stage('Deploy') {

10 if (currentBuild.result == null || currentBuild.result == 'SUCCESS') {
11 echo 'Deploying....'
12 }
13 }
14 }
15 }

2.4 Business Process Management

The term “Business Process Management” (BPM) [CT12; DLMR+18; JN14] has many
interpretations and definitions from people with different interests and points of view [JN14].
According to Dumas et al. [DLMR+18], it denotes the management of chains of events,
activities, and decisions, creating the value of an organization. As depicted in Figure 2.2,
a business process consists of events, activities and decision points [DLMR+18]. An event
is distinguished by having no duration. It can occur at any point of time and trigger the
execution of activities. An activity defines necessary steps that have to be executed in order
to achieve business goals. It is called task, when it is a single unit of work that cannot be
split into parts.

Based on the result of an activity, a decision point can define which activity has to follow
in the process. A typical business process also involves actors, e. g., human actors or
organizations. This can be both, organization’s staff, supplier or customers. Furthermore,
there are objects, that can be split into physical objects, such as equipment, material or
products, and information objects, i. e., digitally stored data. A business process delivers
outcomes, which can be positive and give value to, e. g., a customer. But a process can also
have (partial) outcomes that do not contribute to the value-add chain of the organization,
e. g., cancellations or goods return.

As BPM is very generic, it can be applied to various domains including the CD domain. The
software delivery process can be seen as business process, its stages as activities, the delivered
software package or a failure message is an outcome. When mapping deployment pipelines
to business processes, one can benefit from numerous existing solutions for modeling,
depicting, and analyzing them.
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Figure 2.2: Ingredients of a business process [DLMR+18]

2.5 Business Process Model and Nota on

The “Business Process Model and Notation” (BPMN) is a rich modeling language that has
become the de facto standard for modeling any kind of business process [Rec10]. It inherits
and combines elements from proven notations such as “XML Process Definition Language”
(XPDL) and “Unified Modeling Language” (UML) activity diagrams [DDO08]. BPMN
has been designed to be an expressive modeling language that is easily understandable
for both, business managers and staff, but also to contain enough details for a technical
operator [CT12]. After ten years of development and wide adoption in the industry, version
2.0 of the “Object Management Group” (OMG) standard has been released in 2011. Until
today, this is the most recent version of the standard.

2.5.1 BPMN Elements

The modeling language BPMN consists of numerous elements, each representing a compo-
nent of a business process [OMG11]. There is a very large variety of elements that can each
have a high degree of detail. On one hand, this richness allows to use BPMN in almost any
scenario. On the other hand, the complexity prevents a comprehensive implementation,
which also leads to the fact that available implementations differ in their support for BPMN
language features. In the following, some common BPMN elements are introduces, that are
likely to be supported by tools. The remainder of the master’s thesis will refer to only those
named elements.
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Processes

Most likely, the process is the most important concept in BPMN, also known as work-
flow [OMG11]. A BPMN process is a finite graph of flow elements, that describe a business
process. Each process begins with a start event (empty circle with single thin line) and
ends with an end event (empty circle with single thick line). In between, activities, other
events, gateways, and sub-processes can be placed. Sequence flows connect the elements in
the graph.

The example in Figure 2.3 shows a BPMN process, defining a procedure to handle book
requests in a library. When it is triggered, a book request is received. A service task gets the
current status of the requested book. Based on the result, a gateway decides whether the
customer can proceed to checkout or if the customer has to be informed that the desired
item is on loan. In this case, he can decide to put the book on hold, or to decline hold,
resulting in a cancellation of the book request. The process also defines time-based events
for automatically cancelling requests, if the customer does not reply.

Figure 2.3: An example BPMN process [OMG11]

Ac vi es

Activities represent the work steps that are part of the modeled process. The types of
activities available inside a process are tasks, sub-processes and call activities. In general,
an activity can have multiple incoming and outgoing sequence flows to other elements. This
makes it possible to realize uncontrolled sequence flows, where multiple paths trigger the
execution of an activity. However, in a regular scenario, it has exactly one incoming and
one outgoing sequence flow. For the implementation of decisions and parallelization, the
gateway element should be used.

Tasks are atomic pieces of work, that can not be split into more fine-grained activities. The
most important types of tasks are depicted in Figure 2.4. Simple tasks have no special
semantic and are meant for generic use. User tasks indicate that a human has to perform
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work as part of the process. Manual tasks can be used to model manual steps in a partially
automated application. A service task is any automated application, such as a database or
web-service. Script tasks contain code that is executed by a BPMN engine.

Simple Task User Task Manual Task Service Task Script Task

Figure 2.4: Some important types of tasks

Sub-processes are activities, serving as a container for further activities. This concept
can be used for grouping logically related pieces or work. As depicted in Figure 2.5, a
sub-process can be either collapsed or expanded. In its collapsed state, the containing tasks
and activities are not visible in the graphical representation, but can be extracted from the
underlying data structure.

Expanded Sub-Process

...
Collapsed Sub-

Process

Figure 2.5: The BPMN sub-process

Call activities are used to include reusable BPMN elements. Their graphical representation
is similar to the one of a collapsed sub-process, but differs in its border thickness, as seen in
Figure 2.6. Included elements have to be defined outside the process, they are referenced
from. Only processes and global tasks can be included by a call activity.

Call Activity

Figure 2.6: The BPMN call activity

Gateways

The sequence flow of a process can be controlled using gateways. A gateway has amechanism
to determine whether the sequence flow has to be split or merged and which of the different
paths have to be executed. In general, a gateway either controls diverging or converging
sequence flows, i. e., to define multiple branches in the process, one gateway is required to
split the execution into multiple sequence flows and another to merge the branches again.
There are several types of gateways. The most relevant ones are exclusive and parallel
gateways.
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Exclusive gateways are depicted as diamond shape, containing a bold “X”, as seen in
Figure 2.7. Alternatively, they can be drawn as empty diamond. An exclusive gateway
represents a decision in the process, resulting in alternative paths, of which only one can be
taken. Outgoing sequence flows are associated condition expressions, which determine if a
path can be taken, or not. If none of the conditions match, the optionally defined default
sequence flow is taken. If there is no default path and additionally no condition evaluates to
true, a runtime exception is thrown. The path to take is determined by iterating all outgoing
sequence flows in order. The first one with a matching condition is taken.

Case 1

Default

Case 2

Make Decision

Based on
decision

Figure 2.7: The BPMN exclusive gateway

Parallel gateways are drawn as diamond shape, containing a bold “+”, as can be seen
in Figure 2.8. A diverging parallel gateway indicates, that all outgoing sequence flows
are taken at the same time, which results in multiple branches, executed in parallel. A
converging parallel gateway synchronizes the incoming sequence flows and continues the
execution, when all branches are done.

Figure 2.8: The BPMN parallel gateway

Events

Events are visualized in BPMN as circles, containing the symbol that corresponds to their
event type. They can be used to show the occurrence of messages and exceptions that have
an impact on the process flow. Events can be handled by dedicated activities, i. e., a handler
event is triggered upon the occurrence of the concerned event.
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There are three main categories of events, namely start events, end events and intermediate
events. Start events indicate the beginning of a process as soon as they catch a trigger. End
events occur when a process is done and throw a result to their caller. They differ from start
events in their border, where a thick border indicates an end event. Intermediate events
may catch triggers or throw results based on their concrete type. They can occur in between
a start and end event during the execution of the process. In the following, only the event
types will be introduced that are relevant to this master’s thesis.

The error event handles exceptions that occur during the execution of the process. It is
an interrupting event, i. e., the execution of the process or activity in which it occurs, is
canceled and continued at the activity handling the exception. Figure 2.9 contains an
example, showing an intermediate boundary error event that is attached to an activity. The
error handler associated to is will be triggered, if an exception occurs during the execution
of the activity. The activity has a sequence flow to an error throw event. This propagates to
the caller of the process, which can handle the thrown exception.

Error Handler

Error Event
Throw Error

Figure 2.9: The BPMN error event

The conditional event is triggered upon the change of a specific variable in the scope of
the event. The variable it listens to is defined in the meta-data of the event. In Figure 2.10,
the conditional event is present as interrupting and non-interrupting boundary event and
as start event. The interrupting conditional boundary event gets triggered upon the first
change to the specified variable. In consequence, the execution of the activity it is attached
to, is canceled and continued with the handler activity. The non-interrupting conditional
boundary event is triggered every time, the observed variable changes. Since the execution
is not canceled, this can happen any number of times.

Handler Handler

Conditional Event
Conditional Event
(non-interrupting)

Figure 2.10: The BPMN conditional event
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Compensa on

The compensation concept in BPMN allows rolling back already successfully completed
activities in case of subsequent exceptions. An activity can have associated a compensation
handler that gets executed when the effects of the activity need to be rolled back. Figure 2.11
shows an example of a compensation scenario. The task “Perform Task” has a boundary
compensation event, which has attached the compensation handler “Roll Back”. If the
validation done by the task “Verify Correctness” fails, the compensation procedure is initiated
by the compensation end event. In consequence, all compensation handlers in scope
are triggered, which results in the case of the given example in rolling back the initially
performed task. If there were other tasks with compensation handlers in the same or a
higher-level process, these would be triggered as well.

Perform Task

Roll Back

Verify
Correctness

Correct?

Yes

No

Compensation
End Event

Figure 2.11: The BPMN compensation event

2.5.2 BPMN Engines

A BPMN process can either simply serve for documentation and visualization purposes, or
contain information detailed enough to be executable. In general, a BPMN process can be
executed using one of many available BPMN engines. However, the BPMN standard is highly
complex and allows individual implementations to make own decisions and assumptions at
many points. In addition, Geiger et al. [GHL+15] found that many implementations have
poor coverage of the BPMN standard and partially even lack support for basic language
elements. This limits the portability of BPMN processes and makes it necessary to carefully
select the engine that is used in a project. Executable process definitions can often only be
executed by one specific engine.

The Camunda Services GmbH4 is specialized in developing software solutions for modeling
and executing business processes. According to their official website, their tool stack is
used and trusted by numerous well-known companies, such as Allianz5, Deutsche Bahn
(German Rail)6 and Zalando7 to name some examples. Among their products, there is an

4Camunda BPM – https://camunda.com
5Allianz – german financial services – https://www.allianz.de/
6Deutsche Bahn – german rail – https://www.bahn.de/
7Zalando – https://www.zalando.com/
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open-source BPMN modeling tool, the Camunda Modeler8. The editor is both, easy to use
and powerful. It offers good support for the BPMN 2.0 standard and can export diagrams as
vector graphics, which in total makes it the ideal choice as editing and visualizing solution
for this master’s thesis.

Flowable9 is another popular BPMN engine, developed and published as open-source tool
by the Flowable AG. They also provide extensive enterprise solutions for process automation.
Flowable offers a web-based BPMN editor as well as an Eclipse plug-in. Activiti10 focuses
on the open-source community and aims to be a light-weight tool that is scalable and
cost-effective at the same time. Its cloud version uses the web-based bpmn.io editor, which
is also the foundation of the Camunda Modeler. Additionally, there is an Eclipse plug-in for
the process design.

There are numerous other BPMN engines, most of them open-source and Java-based.
Obviously, the technology of currently available tools is rather similar and their most
important difference is the support of BPMN constructs. Investigations have shown that the
Camunda Modeler offers a good BPMN support, which is why this master’s thesis focuses
on this tool.

2.5.3 BPMN XML files

A BPMN model can be interchanged using the “Extensible Markup Language” (XML) format,
defined in the official BPMN specification [OMG11]. An example file can be found in List-
ing 2.2. The corresponding graphical representation is depicted in Figure 6.30b on page 65.
The root element of a BPMN file has to be the <bpmn:definitions> element, containing all
elements of the modelled process. In the example, the definitions include one process, which
has a start- and end event, as well as a script task element and connecting sequence flows.
Furthermore, in a separate XML element, the layout information of the BPMN diagram are
stored: The node <bpmndi:BPMNDiagram> contains an entry for each BPMN element, defining
its visual bounds.

The BPMN specification allows the extension of a model by custom elements. The exam-
ple in Listing 2.2 contains a start event (lines 4-11), which has the extension element
camunda:properties, in this case provided by the Camunda editor. This allows to include
any information in a BPMN model, adapting it to individual use-cases, where the available
properties of existing BPMN elements are not sufficient.

8Camunda Modeler – https://camunda.com/products/modeler/
9flowable—Java Business Process Engines – https://www.flowable.org/

10Activiti – Open Source Business Automation – https://www.activiti.org/
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Listing 2.2 An example BPMN file containing a minimal process – “minimal-process.bpmn”

1 <?xml version="1.0" encoding="UTF-8"?>
2 <bpmn:definitions xmlns:bpmn="http://www.omg.org/spec/BPMN/20100524/MODEL"

↪→ xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
↪→ xmlns:di="http://www.omg.org/spec/DD/20100524/DI"
↪→ xmlns:dc="http://www.omg.org/spec/DD/20100524/DC" id="Definitions_1q01txf"
↪→ targetNamespace="http://bpmn.io/schema/bpmn" exporter="Camunda Modeler"
↪→ exporterVersion="2.0.3">

3 <bpmn:process id="Process_1" isExecutable="true">
4 <bpmn:startEvent id="StartEvent_1">
5 <bpmn:outgoing>SequenceFlow_0nlehpk</bpmn:outgoing>
6 </bpmn:startEvent>
7 <bpmn:endEvent id="EndEvent_0avv273">
8 <bpmn:incoming>SequenceFlow_0nlehpk</bpmn:incoming>
9 </bpmn:endEvent>

10 <bpmn:sequenceFlow id="SequenceFlow_0nlehpk" sourceRef="StartEvent_1"
↪→ targetRef="EndEvent_0avv273" />

11 </bpmn:process>
12 <bpmndi:BPMNDiagram id="BPMNDiagram_1">
13 <bpmndi:BPMNPlane id="BPMNPlane_1" bpmnElement="Process_1">
14 <bpmndi:BPMNShape id="_BPMNShape_StartEvent_2" bpmnElement="StartEvent_1">
15 <dc:Bounds x="173" y="102" width="36" height="36" />
16 </bpmndi:BPMNShape>
17 <bpmndi:BPMNShape id="EndEvent_0avv273_di" bpmnElement="EndEvent_0avv273">
18 <dc:Bounds x="259" y="102" width="36" height="36" />
19 </bpmndi:BPMNShape>
20 <bpmndi:BPMNEdge id="SequenceFlow_0nlehpk_di" bpmnElement="SequenceFlow_0nlehpk">
21 <di:waypoint x="209" y="120" />
22 <di:waypoint x="259" y="120" />
23 </bpmndi:BPMNEdge>
24 </bpmndi:BPMNPlane>
25 </bpmndi:BPMNDiagram>
26 </bpmn:definitions>

2.6 Resilience

There is a large variety of definitions and interpretations of the term resilience in literature.
It is being used in different domains with different meanings. In the following, its meaning in
the domain of CD will be explained, together with a consistent definition of the terminology
that will be used throughout this thesis.

Bishop et al. [BCFM11] identified the lack of a single, generally accepted understanding
of the term resilience and propose a security-related definition that is meant to make
future collaboration and communication consistent and unambiguous. They highlight the
importance of a consistent usage of terminology in general and that already slightly differing
interpretations can lead to misinterpretations of a work’s results.
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Bishop et al. deduce the term resilience from its meaning in natural language and transfer
it to the computer science domain. According to them, the non-technical definition of
resilience is either “resuming the original shape or position after being bent, compressed,
or stretched” or “rising readily again after being depressed; hence, cheerful, buoyant,
exuberant”. Following their explanations, this means for a resilient computer system that it
may suffer from capacity loss under stress or after an impact, but that it still has to provide
some essential functionality.

Most importantly, it has to be capable to recover or reconfigure itself to return to normal
operation after an impact [BCFM11]. Bishop et al. highlight, that this is not only valid for
the attributes performance and availability, but also for confidentiality and integrity. This in
particular is a challenging problem, since data that became public is not easily made private
again. For this reason, they believe that resilient computer systems will not be adopted in
near future with few possible exceptions.

Obviously, resilience is not easily measurable. There are different approaches to ensure a
system’s functionality despite failures or attacks. One could introduce redundancy or do
preparations in order to reduce the time to recover from failure. But which approach makes
a system more resilient? Musman and Agbolosu-Amison gave a definition of resilience,
enabling to objectively compare the resilience of systems in similar fields:

Resilience is:
The persistence under uncertainty of a system’s mission-oriented performance in
the face of some set of disturbances that are likely to occur given some specified
timeframe.

(Musman and Agbolosu-Amison [MA14])

This definition is a risk-oriented metric, focusing on the probability of undesirable events
during a given timeframe. The higher the probability of disturbances is, the more uncertain
the system’s performance becomes. In this case, the term performance does not necessarily
refer to processing a certain amount of work per specified time interval, but rather means
the system’s general contribution to achieving mission requirements, outcomes or objec-
tives. Here again, an important part of the definition is persistence, meaning not only the
maintenance of normal operation, but the recovery from a failure as well.

2.7 ANTLR

As mentioned before, a part of this master’s thesis is the transformation of Jenkinsfiles,
which requires an approach of parsing them. “ANother Tool for Language Recognition”
(ANTLR)11 is an open-source parser generator that can be used to parse, translate, process
or execute any kind of structured input data, such as text or binary files—in other words,
the utility simplifies the development of compilers, translating a source language into a
target language. It is being developed at the University of San Francisco since 1989. At the
time of this master’s thesis, its latest version available is 4.7.2.

11ANTLR – https://www.antlr.org/
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Figure 2.12: The stages of a compiler [ASU99]

In general, a compiler consists of six stages, as depicted in Figure 2.12 [ASU99]. The
first three stages represent the analysis phase, splitting the input into its components and
construct an internal representation. The remaining three stages form the synthesis phase,
constructing the target language. The purpose of ANTLR is performing the first two compiler
stages, the lexical and syntactical analysis of the source language. In the following, these
stages will be explained in more detail according to Aho et al. [ASU99]. All remaining
stages are not relevant to this master’s thesis.

2.7.1 The Lexical Analysis

The lexical analysis, also known as scanning, forms logical groups of input characters and
assigns symbols to them [ASU99]. It converts the input source code into a stream of tokens,
which is processed in the subsequent stages of the compilation process.

The component of the compiler responsible for performing the lexical analysis is called
scanner or lexer. It recognizes symbols in the input source code based on patterns, defining
the sequence of characters that has to be assigned a specific symbol. For the definition of
patterns, regular expressions are ideally-suited. For instance, given the rules in Figure 2.13,
the input text in Figure 2.14 gets assigned the depicted symbols. The set of rules forms a
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2 Founda ons

IDENTIFIER → [a-zA-Z]+

NUMBER → [0-9]+

ASSIGN → ':' '='

PLUS → '+'

TIMES → '*'

Figure 2.13: Example lexer rules

position := initial + rate * 60

Figure 2.14: An example input with assigned tokens

grammar, describing the language elements that can be detected by the lexer. The order of
rules is relevant, as the first matching one determines the symbol that is assigned to the
concerned sequence of input characters.

The lexer is the first component of a compiler that reads the source code. This makes it
well-suited for the task of cleaning the input from irrelevant information. For this reason,
one of its tasks is removing whitespace and tab characters, line breaks, and comments. This
step is important, because the implementation of the syntactical analysis and other stages
would be significantly more complex, if they had to deal with characters, only existing to
increase readability.

2.7.2 The Syntax Analysis

The syntactical analysis is done by the parser component of the compiler [ASU99]. It uses
rules to build a parser tree from the symbol stream it gets from the lexer. The rules generally
are given as context-free grammar, which precisely describes the input language and its
allowed constructs. Each rule defines the structure of a language element, consisting of
other parser rules (non-terminals) or lexer symbols (terminals). One rule has to be defined
as start symbol, which is used as root for the parsing process.

Figure 2.15 shows an example parser grammar, which recognizes simple arithmetic expres-
sions, such as the one given in the example before (see Figure 2.14). The assignment rule
is defined as start symbol. When parsing the token stream that results from performing
a lexical analysis on the given example input expression, the parser would construct the
syntax tree given in Figure 2.16.
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assignment → IDENTIFIER ASSIGN expression

expression → expression op expression

expression → IDENTIFIER

expression → NUMBER

op → TIMES

op → PLUS

Figure 2.15: Example parser grammar

assignment

Input Text

position := initial + rate * 60

position
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:=

expression op expression

PLUS

+initial

IDENTIFIER

expression op expression

TIMES

*rate

IDENTIFIER

60

IDENTIFIER

Lexer
(Token Stream)

Figure 2.16: The syntax tree, resulting from parsing the given input string

2.7.3 The ANTLR Grammar File

ANTLR is configured by a file with the extension .g4, containing the grammar of the language
to parse [Par13]. The file has to start with the keyword grammar, followed by the name of
the grammar. Below this initial line, grammar rules can be defined, where the name of a
rule determines its type. If it starts with a small letter, it is interpreted as parser rule. If
its first letter is a capital letter, it is a lexer rule. While the order of rules generally is not
important, by convention, parser rules should be placed at the top of the file, followed by
lexer rules. As explained above, lexer rules are sensitive to their order among each other.
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In ANTLR, the name of a rule has to be unique, i. e., it is not possible to define alternatives
by defining the concerned rule multiple times. Instead, the vertical pipe character has to
be used to indicate alternatives (see lines 5 and 6 in Listing 2.3). Static terminals, such as
explicit characters and strings have to be surrounded by single quotation marks (see line
12). Sequences of multiple characters can be written as continuous string, i. e., 'e' 'n' 'd'

and 'end' are equivalent. Each rule definition must end with a semicolon.

Fragment rules can be used to increase the readability of lexer rules. They can be included
in other rules and will never produce symbols themselves. Fragment rules are initiated by
the keyword fragment and the rule name (see line 11 in Listing 2.3). By convention, they
should be named according to the CamelCase naming convention.

The partial example grammar in Listing 2.3 recognizes assignments as given in examples
above. Its start symbol is the parser rule assignment, which matches an IDENTIFIER, followed
by an ASSIGN symbol and an expression. The first two components are lexer rules, recognizing
a specific sequence of characters. In the case of the IDENTIFIER rule, any coherent sequence
of small or capital letters gets assigned the according token. The ASSIGN rule only matches a
single equals sign. If multiple subsequent equals signs would occur in the input string, each
single one of them would get an ASSIGN token.

The expression rule is a recursive parser rule, recognizing either an IDENTIFIER, a NUMBER or
two nested expression, divided by an operator op. The NUMBER lexer rule matches a coherent
sequence of digits, defined in a fragment rule Digit. The fragment itself never leads to the
assignment of a token to a matching input string, i. e., single digits as recognized by the
Digit rule do not get assigned a token. This means that a fragment rule cannot be used in a
parser rule directly and has to be included in a lexer rule.

Listing 2.3 An example ANTLR file – “example-grammar.g4”

1 grammar ExampleGrammar;
2
3 // Parser Rules
4 assignment: IDENTIFIER ASSIGN expression ;
5 expression: expression op expression | IDENTIFIER | NUMBER ;
6 op: TIMES | PLUS ;
7
8 // Lexer Rules
9 IDENTIFIER: [a-zA-Z]+ ;

10 NUMBER: Digit+ ;
11 fragment Digit: [0-9] ;
12 ASSIGN: '=' ;
13 // ...
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3 Related Work

In order to show the relevance of this master’s thesis’ topic, this chapter presents previously
published scientific work that brings BPMN to the CD domain or develops a DSL for CD
processes. Furthermore, connecting factors in existing work are presented, on which this
master’s thesis can build upon.

3.1 BPMN in the CD Domain

In his master’s thesis, Willig [Wil18] determined that state-of-the-art CD systems have
deficits when it comes to defining CD pipelines. He explains that PDLs often use declarative
concepts which restricts their functional abilities to the implementation of the underlying
system. As a result, those languages tend to lack expressiveness since the CD system has
to support all of their features. According to Willig, in some cases, this is compensated
by allowing imperative languages inside declarative constructs making the CD pipeline
definitions unclear and hard to maintain. He claims that especially YAML-based PDLs lead
to unclear results, because of poor support for structure and modularisation elements.

Furthermore, he found that it is hard to map conditional flows to the PDLs of current CD
systems. He explains that as a result, many projects have to use multiple CD pipelines in
order to cope with all circumstances. However, these pipelines share common fragments
that have to be synchronized upon changes which is error-prone and expensive.

He figured out that BPMN fulfills all necessary requirements to be used as modeling language
for CD pipelines. He maps BPMN elements to the CD process domain to point out which
subset of the notation is suitable for a graphical representation of CD processes. Based on
these results, he extends the software delivery system JARVIS [Dör18] to support BPMN.

3.2 Android Con nuous Delivery DSL Engine

Some authors have found out that the design of CD pipelines is a time-consuming activity
and that developing an abstraction layer to simplify this task can help organizations adopting
CD. For instance, Fischer [Fis18] developed a DSL engine in his master’s thesis, which aims
to support the design of CD pipelines for Android applications. He found, that implementing
CD for mobile platforms bears challenges, making it interesting focusing on this domain.
According to his thesis, some challenges that distinguish the development of conventional
desktop or web applications from mobile ones are: There is a high diversity of operating
systems and device specifications, making it impossible to perform comprehensive tests.
This increases the risk of a release since the probability for the new version not to work on a
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Listing 3.1 Sample Android CD DSL script [Fis18]

1 .repo("https://github.com/M-Fischer/android-playground.git")
2
3 .buildServer("serverUser", "serverPassword")
4 .signing("keystorePw", "keyPw")
5 .ftpCredentials("ftpUser", "ftpPw")
6
7 .pipeline("My Android Pipeline")
8 .stage(COMMIT_STAGE).
9 .step(COMPILE_RELEASE)

10 .step(UNIT_TEST)
11 .step(LINT)
12 .stage(ACCEPTANCE_TEST_STAGE, Trigger.AUTOMATIC)
13 .parallel()
14 .seqStage(PERFORMANCE_TESTING_STAGE, Trigger.AUTOMATIC)
15 .eventCount(1500)
16 .seqStage(CUSTOM_DEPLOYMENT_STAGE, Trigger.AUTOMATIC)
17 .location("localhost")
18 .stage(TESTING_AS_A_SERVICE_STAGE, Trigger.MANUAL)
19 .endParallel()
20 .stage(ALPHA_RELEASE_STAGE, Trigger.AUTOMATIC)
21 .stage(BETA_RELEASE_STAGE, Trigger.MANUAL)
22 .stage(PRODUCTION_STAGE, Trigger.TIMETRIGGER, 7, DAYS)
23
24 .generate()

specific type of device is not negligible. Additionally, publishing a new version of an app to
the store takes time because it has to be reviewed by the app store vendor. This also restricts
the frequency of publishing new versions and prevents to do incremental releases.

Fischer determined that for these reasons, the development of CD infrastructures requires
much time and know-how and keeps developers from performing their main activities. To
simplify the creation process of CD infrastructures, he developed a DSL engine. It provides
a Java API that can be used by Android developers to describe their individual CD process
in so-called DSL scripts. An example script can be found in Listing 3.1. The Android CD
DSL Engine generates XML files out of such a script to configure Jenkins which executes the
designed CD process.

The meta-model of the Android CD DSL, depicted in Figure 3.1, sticks closely to the definition
of CD pipelines by Humble and Farley [HF10]. Fischer aimed to keep it generic enough
not to be limited to the Android domain, however the implementation is highly specific,
which prevents to use it for different kinds of applications without making fundamental
changes. The meta-model consists of stages that are arranged in sequential or parallel order.
A stage can only be executed if all predecessors have been successfully completed. Parallel
stages can be executed in arbitrary order. A stage can be triggered (a) automatically when
all previous ones are completed, (b) manually upon decision of a developer, (c) periodically,
e. g., every night, or (d) by commits in the VCS.
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3.2 Android Con nuous Delivery DSL Engine

Figure 3.1: Semantic model of the Android CD DSL [Fis18]

The DSL is based on the assumption that all Android app development processes use the same
technical steps for deploying the application, e. g., Gradle1 has emerged as the standard build
system. For this reason, there is no possibility to adapt the technical implementation of the
steps inside a CD stage. The developer can choose from a built-in set of stages and configure
them with few parameters, e. g., the address of the Git repository and credentials for the
build server to use. However, he cannot add custom steps or modify the implementation of
existing ones. Additionally, the DSL does not include features for error handling or roll-back
after failures. Hence, it would be necessary to write additional code in order to improve the
fault tolerance of the CD process.

1https://gradle.org/
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Figure 3.2: DevOps Slang—structure of a Devopsfile [WBL14]

Since the current implementation of the DSL is very limited to the Android domain, it
cannot be used as generic basis for further research. However, the semantic model of
Fischer (see Figure 3.1) can serve as a first starting point for the development of a generic
metamodel for the CD domain.

3.3 DevOps Slang

Wettinger et al. [WBL14] determined that state-of-the-art solutions for automating CDs
processes have one major problem: they are not usable as a holistic approach to collabo-
rate on automating deployment and operation of applications, independently of specific
providers or tools: On one hand, there are existing approaches to automate the infrastruc-
ture of applications that are often bound to specific providers or tools, e. g., Amazon AWS2.
Some solutions support the definition of higher levels of applications, but here, additional
imperative logic is required, making it hard to get a high-level view on the deployment
process. On the other hand, there are UML deployment diagrams, which are well-suited for
collaboration and communication, but are not executable. They found that there are no
solutions to bridge this DevOps gap that exists between the low-level implementation of a
DevOps process and its high-level description.

Wettinger et al. tackle the DevOps gap by inventing a DSL called DevOpsSlang. It enables
the definition of DevOps processes on a high level, while containing enough information
to be executable. The central goal of DevOpsSlang is to enable and support an efficient
collaboration between developers and operations staff. As depicted in Figure 3.2, it consists
of JSON3-based text files, called Devopsfiles, that contain the operations of the DevOps

2https://aws.amazon.com
3https://www.json.org/
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Listing 3.2 An example Devopsfile

1 "deploy": {
2 "actions": {
3 "deploy-mongodb": {
4 "runner": "chef-solo-runner",
5 "config": {
6 "files": { "mongodb.tgz": "http://.../mongodb.tgz" },
7 "runlist": [ "recipe[mongodb::default]" ]
8 }
9 }

10 },
11 "postoptest": {
12 "runner": "command-runner",
13 "config": {
14 "command": "export RESCODE=$(curl -sL -w \"%{http_code}\\n\" \"http://localhost

:3000\" -o /dev/null) && [[ \"$RESCODE\" == \"200\" ]] && true || false"
15 }
16 }
17 }

process to automate. Each operation can contain actions that define the steps necessary to
deploy and operate the application. Actions can depend on each other defining an order
in which the execution has to take place. An action is performed by one specific runner
on one specific host. The action can choose from a pool of runners that have individual
implementations to perform a dedicated type of task. For example, one runner can be
designed to execute Ruby scripts, another may run a console command on the destination
host. To retain a high level of abstraction of Devopsfiles, the implementation of runners
can be highly application-specific. This allows hiding the complexity of the process while
remaining flexible enough to easily change the overall behavior of the DevOps process.

Listing 3.2 shows an example Devopsfile containing the operation “deploy”, which has set
the “postoptest” attribute. It demonstrates how a successful execution of an operation can
be validated using a shell command. In the example, the web server running on the local
port 3000 is being queried. If the resulting code equals 200, meaning that the server is up
and responding, the postoptest action succeeds. If the result code differs, the test fails.
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4 Analysis of the Jenkinsfile Meta-Model

To bring BPMN to the CD domain, first of all it is necessary to precisely understand and
define popular concepts in the field of continuous delivery. In Section 2.2, CD has already
been introduced based on the definitions by Humble and Farley [HF10], which represent
the foundation of any CD implementation. This chapter will go into detail by analyzing the
concepts of a specific CD implementation and also answer RQ 1.

Jenkins and its numerous plug-ins are being actively developed by contributors from various
fields which makes the tool highly flexible and suitable for most projects. But this also
makes it a good choice as a starting point for further development in the CD domain. The
following will present an analysis the DSL of Jenkinsfiles to find out about the concepts of
the implementation of CD in Jenkins.

Listing 4.1 An example declarative Jenkinsfile

1 pipeline {
2 agent {
3 docker { image 'node:8-alpine' }
4 }
5
6 stages {
7 stage('Build') {
8 steps {
9 sh 'npm install'

10 }
11 }
12 stage('Test') {
13 steps {
14 sh 'npm test'
15 }
16 }
17 stage('Deploy') {
18 when {
19 expression {
20 currentBuild.result == null || currentBuild.result == 'SUCCESS'
21 }
22 }
23 steps {
24 echo 'Deploying...'
25 }
26 }
27 }
28 }
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Figure 4.1: Meta-model of declarative Jenkinsfile

In Section 2.3, the two languages a Jenkinsfile can be written in are introduced. As the
scripted variant at its core is an imperative programming language, it is not well-suited
to be transformed to different languages. In contrast, the number of possible constructs
allowed in the declarative syntax is much lower, making it relatively easy to understand
the semantics and to transfer the implemented functionality to different languages. For
this reason, this master’s thesis will focus on the declarative pipeline syntax of Jenkinsfiles.
Based on our findings, the scripted syntax is considered to be out-dated and has no meaning
for this master’s thesis. An example of a declarative Jenkinsfile is given in Listing 4.1.
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4.2 Post Steps

Figure 4.1 shows the meta-model of the declarative syntax of Jenkinsfiles. It has been
developed based on the official documentation of Jenkinsfiles1. Some properties, such
as the name of stages, have been omitted in the figure for the sake of simplicity. In the
following, the entities of the meta-model will be explained from top to bottom, in order to
get a detailed understanding of the essential parts of a Jenkinsfile.

4.1 The Pipeline Sec on

Each declarative Jenkinsfile has to contain exactly one pipeline element (line 1 in the
example). A pipeline must have an agent and can define triggers, options, parameters, tools
and environment variables. The agent section determines the environment in which the CD
pipeline is to be executed. A common example is a docker image, in which Jenkins should
start the CD process (line 3 in the example). A trigger can be either a time-schedule which
periodically initiates the pipeline process or it can specify a list of jobs and a threshold to
re-trigger the pipeline if any listed job completes at least with a certain status. This allows to
automate building a software that is split into multiple repositories. In the options section,
pipeline-specific parameters can be defined, such as a number of retry or a timeout period.
Particularly the retry option is a good way to avoid temporary failures, e. g., communication
errors, ensuring operability of the CD pipeline. The parameters directive can be used
to define values that a user has to provide when triggering the pipeline. These can be
used in steps during the execution. Using the tools section, Jenkins can be instructed to
automatically install maven, jdk or gradle within the agent before launching the pipeline.
This option is only usable, if there has been defined an agent other than none. Within the
environment section, variables can be specified, that are available to steps within scope,
i. e., variables of a stage will not affect steps defined on upper levels.

4.2 Post Steps

The post section can contain conditionally executed steps. The available conditions are:

always Regardless of the completion status
changed If the completion status differs from the previous run

fixed If the completion status changed from unstable or failed to successful
regression If the completion status is not successful, but was so before

aborted If the pipeline has been manually aborted
failure If the completion status is failed
success If the completion status is success

unstable If the completion status is unstable
unsuccessful If the completion status differs from success

cleanup Always, but after any other step in the post section

1Pipeline Syntax – https://jenkins.io/doc/book/pipeline/syntax/
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Listing 4.2 An example of a post section in a Jenkinsfile.

1 pipeline {
2 agent any
3 stages { ... }
4 post {
5 always {
6 echo 'Pipeline finished'
7 sh './clean-tests.sh'
8 }
9 regression {

10 sh './regression.sh'
11 }
12 }
13 }

Listing 4.2 shows an example pipeline containing a simple post section. Its stages are
omitted for the sake of simplicity. The steps inside the always section are executed regardless
of the completion status of the stages in the pipeline. This for instance allows to perform
cleanup steps or to collect statistical data. Conditionally executed steps such as these
are a limited approach to ensure the operability of the CD pipeline. Upon a failure, post
steps could ensure that subsequent stages are able to operate and modify the completion
status so that Jenkins does not abort the execution. In theory it is also possible to control
the sequence flow and to retry the failed stage. However this would require to exit the
declarative Jenkinsfile syntax and implement the functionality using Groovy code. Since
this would violate the principle of declarative programming, this method is not desirable.

4.3 Stages

The stages section inside a pipeline has to contain at least one stage. All stages here are
executed sequentially. As soon as the first stage returns a non-successful completion status,
the pipeline itself fails. A stage can overwrite the sections agent, environment and tools. If
they were set in parent stages or in the pipeline section, those previous definitions will be
replaced for this stage and any nested ones.

A stage has to contain either one stages section itself, one parallel section or one steps

section. A stages section contains nested stages, as does the parallel section. The difference
between both is that the stages inside a parallel section can be executed at the same time.
The overall result of in parallel executed stages is determined, when all of them have
terminated. This behavior can be altered by setting the failFast attribute in the stage
containing the parallel section. It will let the stage fail as soon as the first nested one
returns a non-successful completion status. Remaining stages that are still running, will be
aborted immediately. There are two important restrictions when using the parallel section:
1. Nested stages cannot contain further parallel sections and 2. stages containing parallel
steps cannot contain an agent or tools section. These are usable again in nested stages
containing steps.
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In addition, one post section can be appended, similarly to the one available in the pipeline
section. Furthermore, a stage can specify an input section which allows manual intervention
before the execution of the stage. Here, the developer of the pipeline can request additional
information or decisions from the user. The execution will be paused until the requested
information is entered in the user interface of Jenkins.

4.4 Condi onal Execu on of Stages

The when section can contain nested conditional steps that are executed based on the result
of the stage it is contained in. The following set of conditions can be used:

branch Only execute the stage if building specific branches
buildingTag Only execute the stage if a specific tag is associated to the

respective commit
changelog Only execute the stage if the commit message matches a given

pattern
changeset Only execute the stage if the specified files have been changed

changeRequest Only execute the stage if it has been triggered by a change
request (aka pull request)

environment Only execute the stage if a specified environment variable
has a given value

equals Only execute the stage if a variable has a specified value
expression Only execute the stage if a given Groovy expression evaluates

to true

triggeredBy Ony execute the stage if has been initiated by a given trigger

The expression condition allows implementing decisions using any Groovy expression. This
can be useful if the available functionality does not suffice to implement the desired behavior.
Expressions can be combined using the keywords not, allOf and anyOf. An example for the
use of the when section can be found in Listing 4.3. It shows the stage “Demo Stage: When”,
which is only executed if the branch master is currently being built and additionally if
either the environment variable HOSTNAME has the value “prod3” or the environment variable
PRODUCTION is set to “YES”.
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Listing 4.3 Example of a when section in a Jenkinsfile.

1 pipeline {
2 agent any
3 stages {
4 stage('Demo Stage: When') {
5 when {
6 allOf {
7 branch 'master'
8 anyOf {
9 environment name: 'HOSTNAME', value: 'prod3'

10 environment name: 'PRODUCTION', value: 'YES'
11 }
12 }
13 }
14 steps { ... }
15 }
16 }
17 }

Command Description Example
sh Execute a shell command sh 'echo \'Test\''

echo Print a message echo 'Test'

dir Change the current directory dir '/home/me'

deleteDir Recursively delete a directory deleteDir '/tmp/build'

script Execute Groovy code script { def x }

error Throw en exception error 'Something happened.'

mail Send an email mail to:'some@one.com', subject:'A Mail!'

sleep Pauses the execution sleep 5

Table 4.3: Basic Jenkinsfile steps using a simplified syntax

4.5 Steps

The most fundamental concept in both, the declarative and scripted syntax are steps.
Jenkins’ pipeline plug-in has a large set of build-in steps that can be used out-of-the-box.
Some examples are given in Table 4.3. Additionally, a large number of highly specific steps
are provided by plug-ins that can easily be integrated into Jenkins, e. g., for performing
tasks with the AWS2 or the Telegram Bot API3.

2Amazon Web Services – https://aws.amazon.com
3Telegram Bot API – https://core.telegram.org/bots/api
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4.5 Steps

4.5.1 Steps are Func on Calls

Basically, a step can be seen as the call to a pre-defined function. Most steps allow using
the simplified method call syntax of the Groovy language. This syntax does not require
parentheses as long as at least one parameter is passed to the method. A method can be
called without passing parameters by appending an opening and closing parenthesis to the
method identifier. When passing multiple parameters, these have to be named, as seen
in Listing 4.4. The parameters, represented by key-value-pairs, have to be separated by
commas. Appending a trailing comma after the last parameter is allowed. To increase the
readability, a step definition can span multiple lines.

Listing 4.4 Multi-line step definition in a Jenkinsfile using the simplified syntax

1 mail to: 'some@one.com',
2 subject: "Failed Pipeline: ${currentBuild.fullDisplayName}",
3 body: """
4 Hi Someone,
5
6 Something is wrong with ${env.BUILD_URL}!
7 """

Some steps, however, do not define a symbol that allows using the simplified syntax. These
have to be included in the pipeline using the general build step. It uses a Java-style method
call syntax with parentheses, as demonstrated in Listing 4.5. The example shows the
instantiation of a step for capturing code coverage reports4. The parameter $class defines
the name of the plug-in class to use for building the step. All remaining parameters are
specific to the step and can be found in the individual documentation.

Listing 4.5 The general build step

1 step([
2 $class: 'CloverPublisher',
3 cloverReportDir: env.WORKSPACE + '/build/reports/clover',
4 cloverReportFileName: 'clover.xml',
5 healthyTarget: [
6 methodCoverage: 70,
7 conditionalCoverage: 80,
8 statementCoverage: 80,
9 ],

10 ])

4Clover Plugin – https://wiki.jenkins.io/display/JENKINS/Clover+Plugin
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Listing 4.6 The script environment in a Jenkinsfile

1 script {
2 def branches = ['master', 'dev-1', 'dev-2']
3 for (i = 0; i < branches.count(), i++) {
4 println "Testing branch ${branches[i]}"
5 }
6 }

4.5.2 String Values

Most parameter values are provided as strings, which are opened and closed by single or
double quotation marks. Quotation marks can be used inside a string by escaping them
with a backwards slash. Double quotation marks allow to output variables within the string
using a dollar sign followed by an environment, opened and closed by curly braces (see
Listing 4.4, lines 2 and 6). This is not allowed inside a string using single quotation marks.

A regular string cannot span multiple lines. In Groovy, multi-line strings are surrounded
by three single or double quotation marks (see Listing 4.4, lines 3-7). Here, too, double
quotation marks allow outputting variables.

Additionally, it is possible to concatenate strings using a plus sign. A string can also be
concatenated with variables, numbers, and the results of function calls.

4.5.3 Groovy Scripts

Despite the large variety of available step implementations, some requirements may only
be solved by individual implementations. For this purpose, the script environment can
be used as a step inside a Jenkinsfile. A script can contain any valid Groovy program as
demonstrated in Listing 4.6.
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4.6 Resilience Features

The given analysis of the declarative Jenkinsfile syntax gives answers to RQ 1: a pipeline or
stage can have assigned options, including a number of retry, telling Jenkins to repeat the
concerned element for a given number of times. Using this option, it is possible to handle
temporary failures. For instance, if a link in the network connection fails but recovers a few
moments later, it is not necessary to trigger a failure of the pipeline. Repeating the failed
action after a short waiting time is sufficient.

Another approach of ensuring the operability of the CD pipeline is using conditionally
executed stages. Alternative paths can be defined that compensate failures of each other.
For example, multiple deployment stages could be configured for using different registry
servers. If the regular deployment stage fails, an alternative stage can try pushing the
application to a fallback registry.

Conditionally executed post steps are not usable for ensuring operability without restriction.
It is possible to control the sequence flow in order to retry a stage or to trigger another
one upon a failure, but this would require to violate the principle of declarative program-
ming. Thus, post steps can perform clean-up actions upon a failure but are not capable of
implementing more complex decisions regarding the sequence flow.
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To achieve the goal of transforming BPMN to a PDL of a CD tool and vice versa, both fields
have to be made compatible to each other. Obviously, BPMN is more generic and by far
richer than any PDL, which are designed for one specific task, namely automating software
delivery processes. Therefore, it is necessary to select a subset of BPMN that fits the concepts
of the CD domain. Not all elements of the notation have equivalent features in CD tools
and a feature from a CD tool can be formulated in BPMN by using various elements. This
chapter will present a solution of bringing together the two domains by providing a reusable
DSL that is helpful when implementing transformations from BPMN to PDLs and vice versa,
as explained in Section 1.2.

A new DSL StalkCD has been developed with the purpose of bridging the functional gap
between BPMN and the CD domain. It should be generic enough to be modeled using
BPMN without being too restrictive. At the same time, it should be capable of representing
a Jenkinsfile without information loss.

StalkCD is based on YAML [BEI05], a popular, easy-to-read markup language that is well-
suited to serve as a data store in conformance with the concept of “Infrastructure as Code”
(IaC). The language has been developed based on the concepts found in the Jenkinsfile
(see Chapter 4). However, it is less restrictive to be easily transformable to BPMN, which
makes it necessary to validate an instance of it before it can be transformed back to a
Jenkinsfile. But since BPMN is richer than Jenkinsfiles, a validation of BPMN models as
source for Jenkinsfiles is necessary anyway, hence this does not introduce much additional
complexity.

5.1 Rela on to Jenkins Pipelines

Most concepts found in a Jenkinsfile can be found in StalkCD, too. The only conceptual
difference from the Jenkinsfile DSL is the design of parallel stages. Instead of using a
dedicated section for the parallel execution of stages, in StalkCD, a stage can have the
attribute parallel to indicate that the contained stages are to be executed in parallel. This
simplifies the meta-model and also the transformation to BPMN.

The information contained in many Jenkinsfile sections is atomic in terms of the StalkCD
DSL, i. e., it is not necessary to parse the instructions found there in order to transform
them to StalkCD. For example, triggers have no dedicated corresponding data structure in
StalkCD and are stored as an array of strings. Equally, there are numerous other entities
in StalkCD, distinguishable by their data type string[]. The array of strings contains the
unmodified instructions from the Jenkinsfile.
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Stage

1

1

1

1

agent
: AgentOption[]

1

1

1

1

1

1

1

1

1

0..1

1

0..1

1

0..1

1

0..10..10..1 1

1..*

1

1..*

StalkCD

Stages

0..10..1

0..10..1

triggers
: string[]

0..10..1

0..10..1

1

0..1

1

0..1

Pipeline

1

1..*

1

1..*

0..10..1

when
: string[]0..10..1

0..10..1

Steps

0..10..1

definitions
: string[]

0..10..1

tools
: string[]

environment
: EnvironmentSection[]

post
: PostSection[]

options
: string[]

parameters
: string[]

input
: string[]

Step
+ label: string
+ command: string

Step
+ label: string
+ command: string

0..10..1

1

0..1

1

0..1

+ parallel: boolean
+ failFast: boolean

Figure 5.1: The meta-model of the StalkCD DSL

Obviously, the central CD elements such as the various sections, stages or steps, have
corresponding structures in StalkCD. These are explained in more detail in the remainder
of this chapter.

5.2 Language Design

In Figure 5.1, the meta-model of the StalkCD DSL can be found. Its entities and their
purpose will be explained in the following.
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5.2.1 Pipeline Defini ons

Each StalkCD file has to contain exactly one pipeline. An example is given in Listing 5.1.
Note that in YAML, quotation marks are escaped by duplicating them. A pipeline has the
atomic sections definitions, triggers, parameters, options and tools, each implemented as array
of strings as explained above. The items of the definitions section contain Groovy definitions
that can be used in the steps of the pipeline. In the Jenkinsfile, they have to be placed in
front of the actual pipeline definition. All remaining atomic sections retain the semantics of
their equivalent Jenkinsfile elements (see Chapter 4). The remaining non-atomic sections,
having dedicated structures in StalkCD, are described in the following.

Listing 5.1 An example StalkCD file

1 definitions:
2 - def exampleFunction() { return "Example" }

3 - def exampleProperty = true
4 agent:
5 - name: docker

6 options:
7 - name: image

8 value: '''openjdk:8-jdk-alpine'''

9 tools:
10 - maven 'apache-maven-3.0.1'

11 environment:
12 - name: XL_DEPLOY_CREDENTIALS

13 value: credentials("xld-credentials")

14 - name: XL_DEPLOY_USERNAME

15 value: '"${env.XL_DEPLOY_CREDENTIALS_USR}"'

16 options:
17 - 'timeout(time: 30, unit: "MINUTES")'

18 parameters:
19 - 'string(name: "Name", description: "What is your name?")'

20 triggers:
21 - pollSCM('H */4 * * 1-5')
22 stages:
23 - name: Build

24 when: branch 'master'

25 steps:
26 - label: echo

27 command: echo "Build step."

28 post:
29 always:
30 - label: Remove test output

31 command: deleteDir '/tmp/test'
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5.2.2 Agent Sec on

The environment in which a pipeline or stage has to be executed can be specified in their
corresponding agent sections. In StalkCD, such a section is designed as array of AgentOption
elements (see Figure 5.2). A concrete option can either be an AgentValue having the string
properties name and value. Or it can implement the class AgentSection containing nested
values in the options array. This allows modeling both, simple values such as any or none,
and complex structures as seen in Figure 5.1 (lines 4 to 8).

<abstract>

AgentOption

+ name: string

AgentValue
+ value?: string

AgentSection
1

1..*

options

1

1..*

options<section>

agent

1

1..*

1

1..*

Figure 5.2: Class diagram of the agent section in StalkCD

5.2.3 Environment Sec on

The environment section contains an array of assignments to variables that are made
available to the programs called by steps in the concerned pipeline or stage. An assignment
consists of a variable name and a value, as seen in Figure 5.1 (lines 11 to 15). The value of
an assignment contains an expression that is evaluated by Jenkins during the execution of
the pipeline. This means that constant string values have to be surrounded by quotation
marks. Note that the YAML notation requires quotation marks itself if a value contains such
characters. This might make it necessary to escape them, e. g., the value 'some string value'

would be represented in YAML as '''some string value'''.

5.2.4 Post Sec on

The post section contains steps that are conditionally executed based on the result of the
concerned pipeline or stage. For each post condition available in the Jenkinsfile, it has an
array of steps (see below), as depicted in Figure 5.3.

5.2.5 Step

The StalkCD step is a wrapper around a Jenkinsfile step, i. e., the complete Jenkinsfile
expression is contained in the equivalent StalkCD file without modifications. This preserves
the core features of Jenkins and makes them usable in StalkCD without the need for parsing
and translating step instructions. In addition, a StalkCD step can contain further information
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+ always?: Step[]
+ changed?: Step[]
+ fixed?: Step[]
+ regression?: Step[]
+ aborted?: Step[]
+ failure?: Step[]
+ success?: Step[]
+ unstable?: Step[]
+ unsuccessful?: Step[]
+ cleanup?: Step[]

<section>

post

Figure 5.3: Class diagram of the post section in StalkCD

that is helpful when depicting it in a BPMN model. The name property (see Figure 5.1)
contains a summary of the step’s purpose that can be displayed more space-efficiently than
the original expression.
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Based on the analysis of the Jenkinsfile syntax in Chapter 4 and the corresponding definition
of the StalkCD DSL in Chapter 5, this chapter presents transformations from Jenkinsfile to
StalkCD, as well as the reverse direction. Furthermore, it describes an approach of mapping
a StalkCD pipeline to a BPMN model, which also results in an answer to RQ 2. Moreover, it
shows how to convert a BPMN model back into a StalkCD pipeline. Figure 6.1 highlights
that the transformations developed in this master’s thesis enable a bi-directional conversion
from Jenkinsfiles to BPMN and back. The software containing the implementation of all
presented transformations is written in the TypeScript programming language and can
be found in the supplementary material of this master’s thesis [Kab19]. Its concepts are
explained in the following sections.

6.1 Jenkinsfile to StalkCD

In order to transform a Jenkinsfile into a StalkCD file, it is necessary to process its content
and to build corresponding data structures enabling to recognize and translate its language
elements. Here, parsing Jenkinsfiles and understanding their semantics is the main challenge
that has to be met. Literature review has returned no existing solutions for transforming
Jenkinsfiles to another format or to process their contents. Additionally, even though
Jenkins is open-source, its code is not reusable for the purposes of this master’s thesis: The
functionality of the pipeline plug-in is distributed across several repositories and there is no
generic processor providing an API or other possibilities to transform a Jenkinsfile into a
structured model.

Transformation
Software

BPMNJenkinsfile
write

StalkCD
Data Model

parse generate

translate

StalkCD 
File

Figure 6.1: An overview over the implemented transformations
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In this master’s thesis, a text-parsing approach has been chosen to read and transform
Jenkinsfiles. Based on Chapter 4, a context-free grammar has been developed that describes
the exact structure of a Jenkinsfile and enables parsing and processing it. The grammar is
written for ANTLR v4 [Par13], a popular open-source parser generator that helps reading
and translating text files. With help of the antlr4ts utility1, TypeScript code is generated
out of the grammar, which can be used according to the visitor design pattern to process
the elements that have been recognized. More precisely, the ANTLR parser is given a visitor
object which has methods for possible components of the parsed data, defined as parser
rules by the ANTLR grammar. For each matching rule, the parser calls the corresponding
method on the visitor object, so that this can process the found element.

In the developed generator for transforming Jenkinsfiles to StalkCD files, the visitor object
passed to the ANTLR parser is a StalkCD builder. It accepts Jenkinsfile elements and creates
corresponding StalkCD objects. For instance, if the parser detects a stage section in the
processed Jenkinsfile, it calls the corresponding method of the StalkCD builder. This creates
a stage object with the given properties and appends it to the list of stages of the previously
found pipeline section.

As soon as the parser has finished processing the input Jenkinsfile, the built data structure
can be serialized. This is done by passing the cleaned data object built by the StalkCD
builder to the library “js-yaml”2. The resulting string can be saved to a text file. The YAML
library also serves as parser for the saved file, i. e., serializing and de-serializing StalkCD
files is trivial in terms of the implemented transformation.

The grammar that serves as source for the generated Jenkinsfile parser consists of rules,
defining the components of the input files to read. The capitalization of a rule name
determines its type: If it starts with a small letter, then it is a parser rule. All rules starting
with a capital letter are read as lexer rules. By convention, all parser rules of the developed
grammar solely use small letters and an underscore as word delimiter, e. g., groovy_definition.
Lexer rules are named using only capital letters, e. g., STRING_LITERAL. Fragment rules are
named according to the CamelCase naming convention, e. g., StringLiteralSingle. Such
fragments can be included in lexer rules, but are never counted as tokens themselves, i. e.,
their only purpose is to simplify the grammar, increasing its readability. The following
subsections will present the rules of the developed grammar.

6.1.1 Sec on: Pipeline

The first element inside a Jenkinsfile is the pipeline section. Consequently, the entry point of
the grammar is the pipeline rule, depicted in Figure 6.2. It starts with an arbitrary number
of Groovy definitions or a title, followed by the pipeline keyword and opening and closing
curly braces. The braces can contain various sections, defining the properties of the pipeline.
The implementation of the components this parser rule consists of, will be presented in the
following.

1antlr4ts - TypeScript/JavaScript target for ANTLR 4 – https://github.com/tunnelvisionlabs/antlr4ts
2JS-YAML - YAML 1.2 parser / writer for JavaScript – https://www.npmjs.com/package/js-yaml
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groovy_definition

JENKINSFILE_DECLARATIVE

PIPELINE LBRACE environment

agent

tools

pipeline_options

parameters

triggers

stages

post

RBRACE

Figure 6.2: The pipeline rule as railroad diagram

Groovy defini ons

Groovy definitions can be library imports, function specifications or variable declarations.
Steps inside the pipeline can use these definitions in order to reduce their complexity by
reusing functionality. The groovy_definition rule (see Figure 6.3) aims to exactly persist the
sequence of characters, forming a Groovy definition. The use of lexer rules for detecting
Groovy statements makes it possible to precisely store and reproduce the found statements,
without loosing information about whitespace or other elements that are consumed by
the lexer. This does not enable processing or executing the individual components of the
statements, however this is not a requirement of the developed transformation. Basic support
of Groovy definitions is sufficient to transform a Jenkinsfile to StalkCD, hence implementing
a comprehensive parser for the Groovy language would not create additional value.

DEF_LITERAL

LIBRARY_LITERAL

Figure 6.3: The groovy_definition rule as railroad diagram

A detectable Groovy definition has to consist of either a DEF_LITERAL or a LIBRARY_LITERAL. A
DEF_LITERAL (see Figure 6.4) has to start with the word “def”, followed by whitespace and
an identifier, represented by the fragment rule DefLiteralId. This identifier can be followed
by an equals sign, indicating that the definition is a variable declaration. If an opening
parenthesis is next to the identifier, a method declaration is found. Parameter definitions
(fragment DefLiteralParam) may be inside the found parentheses, which is implemented
in the grammar as sequence of any characters except a closing parenthesis. If a closing
parenthesis is part of a parameter definition, the grammar rule is likely to fail, i. e., this case
is not supported. Jenkinsfiles using such constructs will not be read correctly.
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(a) Lexer Rule: DEF_LITERAL
'def' [ \t] DefLiteralId DefLiteralParam

'=' [ \t]

DefLiteralVal

(b) Fragment Rule: DefLiteralId

Letter LetterOrDigit [ \t]

(c) Fragment Rule: DefLiteralParam

'(' not [)] ')' [ \t]

(d) Fragment Rule: DefLiteralVal

ScriptBlock

STRING_LITERAL

BOOL_LITERAL

NULL_LITERAL

DECIMAL_LITERAL

FLOAT_LITERAL

BINARY_LITERAL

Letter LetterOrDigit

Figure 6.4: The DEF_LITERAL lexer rule as railroad diagram

The LIBRARY_LITERAL rule (see Figure 6.5) matches Groovy library imports in the parsed
Jenkinsfile. They have to start with the string “@Library” followed by parentheses containing
a string literal (see Section 6.1.13) that specifies the name of the imported library. The
statement can be followed by whitespace and an underscore character. This indicates the
import of all modules inside the specified library.

'@Library(' STRING_LITERAL ')' [ \t] '_'

Figure 6.5: The LIBRARY_LITERAL lexer rule as railroad diagram
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Jenkinsfile Title

Investigations have shown that many Jenkinsfiles start with the line “Jenkinsfile (Declarative
Pipeline)”. This title is not a valid part of the Jenkinsfile and obviously originates from a
mistake by the developers of the pipelines when copying examples from the official web
site of Jenkins. Because this mistake can be found in numerous files, the transformation is
designed to ignore it. For this reason, the lexer rule JENKINSFILE_DECLARATIVE (see Figure 6.6)
matches the concerned line of text.

'Jenkinsfile (Declarative Pipeline)'

Figure 6.6: The JENKINSFILE_DECLARATIVE lexer rule as railroad diagram

6.1.2 Sec on: Stages

The stages section inside the pipeline or a stage contains a sequence of stages. As depicted
in Figure 6.7, the corresponding parser rule expects either the keyword “stages” or “parallel”
followed by curly braces. Inside the braces, stage definitions have to be placed, which are
explained in more detail in Section 6.1.3.

(a) Parser Rule: stages

STAGES

PARALLEL

LBRACE stage_definition RBRACE

(b) Lexer Rule: STAGES

'stages'

(c) Lexer Rule: PARALLEL

'parallel'

Figure 6.7: The stages parser rule as railroad diagram

6.1.3 Sec on: Stage

A stage can have a name inside parentheses after the initial keyword “stage”, as seen in
Figure 6.8. The corresponding parser rule stage_name is an alias for STRING_LITERAL, which is
explained in more detail in Section 6.1.13. By using a dedicated rule for matching the name
of the stage, a Jenkinsfile visitor can distinguish between the string literal specifying the
stage name and such string literals located elsewhere in the stage definition. Inside of curly
braces, all relevant properties can be specified using appropriate sections and statements.
The relevant rules will be presented in later sections.
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(a) Parser Rule: stage_definition

STAGE LPAREN stage_name RPAREN LBRACE environment

input

tools

agent

when

stages

steps

post

fail_fast

RBRACE

(b) Parser Rule: stage_name

STRING_LITERAL

(c) Lexer Rule: STAGE

'stage'

Figure 6.8: The stage_definition parser rule as railroad diagram

A special statement, only available inside of a stage, is the failFast attribute. It tells Jenkins
not to wait for the result of concurrent stages as soon as one in parallel executed one failed.
The parser rule fail_fast (see Figure 6.9) matches the keyword “failFast” and expects a
subsequent boolean expression. The lexer rule FAIL_FAST accepts the keyword with and
without the capital letter “F”.

(a) Parser Rule: fail_fast

FAIL_FAST BOOL_LITERAL

(b) Lexer Rule: FAIL_FAST

'failFast'

'failfast'

Figure 6.9: The fail_fast parser rule as railroad diagram

6.1.4 Sec on: Steps

The steps section contains any number of step definitions, each performing an action. The
steps parser rule, shown in Figure 6.10, matches the keyword “steps” followed by curly
braces containing steps (see Section 6.1.5).
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(a) Parser Rule: steps

STEPS LBRACE step RBRACE

(b) Lexer Rule: STEPS

'steps'

Figure 6.10: The steps parser rule as railroad diagram

6.1.5 Step Defini ons

The syntax of a step definition in general equals the simplified method call syntax of Groovy.
For this reason, the method call rule, described in Section 6.1.11 is used in the step rule
shown in Figure 6.11.

script

method_call

Figure 6.11: The step parser rule as railroad diagram

Additionally, a step can be a Groovy script, which is recognized by the script rule, depicted in
Figure 6.12. It matches the token produced by the lexer rule SCRIPT_LITERAL. The recognition
of scripts is fully implemented using lexer rules in order to preserve whitespace characters
and other structures that are removed during the lexical analysis. A script step has to be
initiated by the keyword “script”, followed by a script block.

(a) Parser Rule: script

SCRIPT_LITERAL

(b) Lexer Rule: SCRIPT_LITERAL

'script' ScriptBlock

(c) Fragment Rule: ScriptBlock

[ \t\r\n\u000C] '{' ScriptBlock

not [{}]

'}'

Figure 6.12: The script parser rule as railroad diagram

The ScriptBlock fragment matches a sequence of any characters surrounded by curly braces.
The initial expression [ \t\r\n\u000C] allows whitespace characters to be placed in front
of the opening brace of the code block. The code block itself either has to consist of any
characters except for opening and closing curly braces, or of other nested script blocks, i. e.,
the number of opening and closing curly braces inside the script has to be even. This enables
recognizing functions, if-statements and other Groovy constructs that are surrounded by
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curly braces. However, this method might lead to problems, if a single curly brace without
closing counterpart is contained in the script, e. g., as part of a string or comment. In such
a case, the designed lexer would not recognize the code block correctly. This drawback is
accepted at this point, as the only solution would be the development of a comprehensive
Groovy parser, which is not in scope of this master’s thesis.

6.1.6 Sec on: Environment

The environment rule (see Figure 6.13) reads the environment settings of a pipeline or stage.
It is initiated by the keyword “environment” and opening and closing curly braces. These
contain any number of assignments.

(a) Parser Rule: environment

ENVIRONMENT LBRACE assignment RBRACE

(b) Lexer Rule: ENVIRONMENT

'environment'

Figure 6.13: The environment parser rule as railroad diagram

The assignment rule (see Figure 6.14) consists of a key (rule assignment_key), the assign sign
“=” and an expression. The assignment_key rule is an alias for the identifier rule which is
explained in Section 6.1.12. The implementation of the expression rule can be found in
Section 6.1.10.

(a) Parser Rule: assignment

assignment_key ASSIGN expression

(b) Parser Rule: assignment_key

identifier

(c) Lexer Rule: ASSIGN

'='

Figure 6.14: The assignment parser rule as railroad diagram

6.1.7 Sec on: Agent

The agent of the pipeline or a stage can be defined by either one word, e. g., “any” or by
using a section containing more settings, as seen in the example in Listing 6.1. An agent
section is matched by the parser rule agent_section (see Figure 6.15). It either consists of
method calls or a named section of method calls, where the section name defines the type of
agent to use, e. g., “docker”. The concept of method calls can be used at this place because
of the syntactical equality of the agent options and the simplified method call syntax of
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Listing 6.1 Example agent sections

1 // Simple agent specification
2 agent any
3
4 // Only method calls
5 agent {
6 docker 'python:3.5.1'
7 }
8
9 // Named section

10 agent {
11 docker {
12 image 'python:3.5.1'
13 }
14 }

Groovy (see Section 6.1.11). The rule agent_type is an alias for the identifier rule (see
Section 6.1.12). By introducing a dedicated rule for matching the agent type, a Jenkinsfile
visitor can determine if an identifier is part of a method call or specifies the agent type.

(a) Parser Rule: agent

AGENT agent_section

agent_type

(b) Parser Rule: agent_section

LBRACE agent_type LBRACE method_call RBRACE

method_call

RBRACE

(c) Lexer Rule: AGENT

'agent'

Figure 6.15: The agent parser rule as railroad diagram

6.1.8 Sec ons: Tools, Op ons, Parameters, Triggers

The sections tools, options, parameters and triggers in a Jenkinsfile pipeline have equivalent
syntactical layouts. They are initiated by their corresponding keyword, followed by curly
braces containing method calls. Hence, their grammar rules are almost equivalent and only
differ in the initial keyword. As representative of the mentioned sections, the tools parser
rule is depicted in Figure 6.16.
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TOOLS LBRACE method_call RBRACE

Figure 6.16: The tools parser rule as railroad diagram

6.1.9 Sec on: Post

The post section contains steps that are conditionally executed based on the result of the
stage or pipeline they are assigned to. The parser rule post matches the keyword “post” and
a subsequent section containing post conditions, as seen in Figure 6.17. The post_condition

rule expects an identifier (see Section 6.1.12), followed by curly braces containing steps
(see Section 6.1.5).

(a) Parser Rule: post

POST LBRACE post_condition RBRACE

(b) Parser Rule: post_condition

identifier LBRACE step RBRACE

(c) Lexer Rule: POST

'post'

Figure 6.17: The post parser rule as railroad diagram

6.1.10 Expressions

The expression is a core element of any programming language. It can be a static value, such
as a number or text. It can be the assignment to a variable that consists of nested expressions
defining target and value. An expression can be the call to a function, a condition query, the
increment of a variable and so on. In order to cover all possible constructs, the grammar
rule accepting expressions has to be comparatively complex.

A comprehensive ANTLR grammar for Groovy expressions can be found in the official
source code repository of the programming language3. However, this grammar heavily
relies on Java extensions, which are included in the grammar files. Using rules out of it
in the developed grammar would require to add a large amount of code, which would
unnecessarily increase its complexity. The solution depicted in Figure 6.18 has been derived
from the expression grammar rule for the Java programming language4, which is by far

3Apache Groovy – https://git-wip-us.apache.org/repos/asf?p=groovy.git;a=tree;f=src/antlr
4https://github.com/antlr/grammars-v4/blob/ce7cd542c77add5fd0949f36a250d35b14e61ac9/java/JavaParser.

g4#L468
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Listing 6.2 Example of an expression list in a Jenkinsfile

1 step([
2 $class: 'CloverPublisher',
3 cloverReportDir: env.WORKSPACE + '/build/reports/clover',
4 healthyTarget: [
5 methodCoverage: 70,
6 ],
7 ])

less complex. This is possible, because Groovy is based on Java and is executed in the “Java
Virtual Machine (JVM). Most constructs allowed in Java are possible in Groovy as well. It is
acceptable if some Groovy expressions cannot be recognized by the Jenkinsfile parser.

The expression parser rule depicted in Figure 6.18 matches expressions allowed inside a
Jenkinsfile. An important component is the primary rule, as seen in Figure 6.19. It enables
parenthesizing expression parts to form logical groups. Furthermore, it matches literals
and identifiers, which are essential elements of any Jenkinsfile. For instance, a static string
value as argument of a method call is resolved as expression, primary, and finally as string
literal.

The expression rule allows some constructs that are not permitted by the Java syntax: An
expression can start with a square bracket to begin a list of expressions, delimited by commas
(see rule in Figure 6.20 and corresponding example in Listing 6.2). This enables recognizing
Groovy map literals5. Furthermore, the rule allows to provide key-value-pairs, separated by
colons, as also seen in Listing 6.2, which may be part of a map literal. Literals and identifiers
are introduced in Section 6.1.13 and Section 6.1.12, respectively.

The implementation of expression lists might allow constructs that would not be accepted
by the Groovy compiler, because it allows expressions of different types to be part of the
same expression list. For instance, the expression list [a: 'A', x++] would be recognized by
the presented grammar rule, but is no valid Groovy code. However, since the purpose of the
transformation is persisting existing functionality and not syntax validation or execution, a
permissive parser is acceptable.

Note, that method calls as part of an expression have to use the Java-style syntax. The
simplified syntax of Groovy is not permitted here, because it would lead to ambiguities. The
remaining alternative constructs in the depicted expression rule are also available in Java
and will not be explained in detail here.

6.1.11 Method Calls

The method call is a fundamental concept inside a Jenkinsfile. Steps and the properties
of most sections are in general specified using the simplified method call syntax of the
Groovy programming language. Some examples of method calls are given in Listing 6.3.

5The Groovy Map literal – http://groovy-lang.org/groovy-dev-kit.html#_map_literals
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primary

expression '.' identifier

method_call_java

expression '[' expression ']'

'[' expression_list ']'

identifier ':' expression

method_call_java

expression '++'

'--'

'+'

'-'

'++'

'--'

expression

'~'

'!'

expression

expression '*'

'/'

'%'

expression

expression '+'

'-'

expression

expression '<='

'>='

'>'

'<'

expression

expression '=='

'!='

'==~'

expression

expression '&' expression

expression '^' expression

expression '|' expression

expression '&&' expression

expression '||' expression

expression '?' expression ':' expression

<assoc=right> expression '='

'+='

'-='

'*='

'/='

'&='

'|='

'^='

'>>='

'>>>='

'<<='

'%='

expression

Figure 6.18: The expression parser rule as railroad diagram
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'(' expression ')'

literal

identifier

Figure 6.19: The primary parser rule as railroad diagram

expression COMMA expression COMMA

Figure 6.20: The expression_list parser rule as railroad diagram

Example 1 shows the most primitive type of method calls, only having one parameter
without parentheses. Example 2 contains a simplified method call with multiple named
parameters. In Example 3, a more complex method call with parentheses is presented.
Finally, Example 4 shows a method environment, containing further nested method calls.
All these structures have to be supported by the developed grammar rule.

Figure 6.21 shows the parser rule method_call, which defines the basic structure of a method
call. It can have the simplified or Java-style syntax or it can be a method environment.
Optionally, it can be terminated with a semicolon.

The parser rules for detecting the simple and Java-style syntax of method calls are depicted
in Figure 6.22. Both start with an identifier, specifying the name of the called method.
The rule method_call_simple accepts an immediately following list of method arguments

Listing 6.3 Example method calls in a Jenkinsfile

1 // Example 1: Simple step
2 echo 'Hello World!'
3
4 // Example 2: Named parameters
5 mail to: 'some@one.com' subject: 'Hello World!'
6
7 // Example 3: Extended Java-style method call
8 // with optional trailing semicolon
9 step([$class: 'TestingClass', param: 'Value']);

10
11 // Example 4: Method environment
12 withCredentials([
13 usernamePassword(
14 credentialsId: "docker",
15 usernameVariable: "USER",
16 passwordVariable: "PASS"
17 )
18 ]) {
19 sh 'docker login -u $USER -p $PASS'
20 }
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method_call_simple

method_call_java

method_environment

';'

Figure 6.21: The method_call parser rule as railroad diagram

(divided by whitespace characters, which have been removed during the lexical analysis).
The method_call_java rule expects the list of arguments to be surrounded by parentheses.
Only the Java style allows to call a method without passing an argument.

(a) Parser Rule: method_call_simple

identifier method_arg_list

(b) Parser Rule: method_call_java

identifier LPAREN method_arg_list RPAREN

Figure 6.22: The parser rules for the different method call styles as railroad diagrams

A list of method arguments (see rule method_arg_list in Figure 6.23) has entries divided by
commas and optionally is ended by a comma. Method arguments are recognized by the
parser rule method_arg, which expects either an expression representing the argument value
(see 6.1.10) or a named argument consisting of a method_arg_key (alias for identifier), a
colon and an expression.

(a) Parser Rule: method_arg_list

method_arg COMMA method_arg COMMA

(b) Parser Rule: method_arg

method_arg_key COLON expression

expression

(c) Parser Rule: method_arg_key

identifier

Figure 6.23: The method_arg_list parser rules as railroad diagram

Figure 6.24 shows an example syntax tree, which results when parsing the given input
string using the previously presented grammar rules. In this specific example, the grammar
detects a Java-style method call with one argument. The argument is recognized by the
expression rule as expression list surrounded by square brackets. The list consists of two
key-value-pairs representing named arguments.
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method_call

method_call_java

identifier LPAREN method_arg_list RPAREN

STEP

step

( )method_arg

expression

[ ]expression_list

expression

expression

expression ,

identifier : expressionidentifier :

IDENTIFIER

$class

primary

literal

STRING_LITERAL

'TestingClass'

IDENTIFIER

param

primary

literal

STRING_LITERAL

'Value'

Input Text

step([$class: 'TestingClass', param: 'Value'])

Figure 6.24: An example syntax tree demonstrating the functionality of the grammar

Besides from simple and Java-style method calls, the method_call rule also recognizes method
environments. The method_environment parser rule, depicted in Figure 6.25, matches a Java-
style method call, followed by curly braces. These define an environment containing steps,
which can make use of the preparations of the initial method call. An example for a method
environment can be found in Listing 6.3 on page 59. Here, the “withCredentials” method
loads credential data that can be used by steps inside the method environment.

method_call_java LBRACE step RBRACE

Figure 6.25: The method_environment parser rule as railroad diagram

6.1.12 Iden fiers

An identifier is the name of a variable, function or field and may consist of small and
capital characters, underscores, and digits. Additionally, in Jenkinsfile, some identifiers
may start with a dollar sign. In most programming languages, identifiers are not allowed to
equal language specific keywords. This however is possible in Jenkinsfiles, which makes it
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necessary to implement the identifier rule using a parser rule. The lexer cannot determine if
a found keyword is part of an expression and has to be assigned the identifier token. For this
reason, the identifier parser rule matches the IDENTIFIER token and all available keywords,
such as PIPELINE, STAGES, STAGE, ENVIRONMENT and so on. For a comprehensive listing of allowed
keywords, see Appendix A on page 93.

6.1.13 Literals

String values, numbers, and similar expressions inside a Jenkinsfile, which are static and
defined by the developer, are also known as literals. There are several types of literals, as
seen in Figure 6.26. Most grammar rules for the detection of literals equal the definitions in
the ANTLR grammar for Java6, except for the string and regex literals.

DECIMAL_LITERAL

FLOAT_LITERAL

STRING_LITERAL

BOOL_LITERAL

NULL_LITERAL

REGEXP_LITERAL

Figure 6.26: The literal parser rule as railroad diagram

In Groovy, string literals started with double quotation marks enable outputting variables
using an escape sequence, e. g., "Name: ${name}", whereas this is not permitted inside single
quotation mark string literals. Additionally, it is possible to define multi-line strings using
three quotation marks as starting and ending sequence. This is valid for both, single and
double quotation marks. The grammar rules recognizing string literals in Jenkinsfiles are
depicted in Figure 6.27. The rules StringLiteralSingle and StringLiteralDouble recognize
sequences of any characters except for the quotation mark they were initiated with and line
feed characters. To enable including quotation marks in the string literal, that normally
would terminate it, the lexer rules also match escape sequences, defined in the fragment
rule EscapeSequence, which has been taken from the Java ANTLR grammar as well (see
Appendix A on page 93).

Furthermore, the Groovy syntax specification allows literals for regular expressions. They
are started and ended with a forward slash and contain a sequence of any character, except
for forward slashes and line feeds. The grammar rule recognizing regular expressions is
depicted in Figure 6.28. Escaped forward slashes are matched by the included fragment
rule EscapeSequence.

6https://github.com/antlr/grammars-v4/blob/9931f78ad75b4d0fbbba65c77d5981edb01b7f44/java/JavaLexer.
g4#L85
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(a) Rule: STRING_LITERAL

StringLiteralMultilineDouble

StringLiteralMultilineSingle

StringLiteralDouble

StringLiteralSingle

(b) Rule: StringLiteralSingle

'\'' not ['\\\r\n\u000C]

EscapeSequence

'\''

(c) Rule: StringLiteralDouble

'"' not ["\\\r\n\u000C]

EscapeSequence

'"'

(d) Rule: StringLiteralMultilineSingle

'\'\'\'' any char '\'\'\''

(e) Rule: StringLiteralMultilineDouble

'"""' any char '"""'

Figure 6.27: The STRING_LITERAL lexer rule as railroad diagram

'/' not [/\\\r\n\u000C]

EscapeSequence

'/'

Figure 6.28: The REGEXP_LIERAL lexer rule as railroad diagram

6.2 StalkCD to Jenkinsfile

In order to transform a StalkCD file into a Jenkinsfile, the first step is to load the source
file into the developed transformation software. As mentioned in Section 6.1 on page 48,
parsing a StalkCD file is trivial, as the library “js-yaml” does the job of translating a StalkCD
file written in YAML into data objects. The objects have the structure of the input YAML file
and can be directly used in within the software.
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SegmentSegment

+ constructor(keyword: string)

-depth: number

+ add(keyword: string): Segment
- constructor(keyword: string, parent: Segment)

+ addParam(param: string): Segment
+ addParamEscape(param: string): Segment
+ toString(): string
+ getIndentation(depthIncrement: number = 0): string

0..1parent

0..*

children

0..1parent

0..*

children

Figure 6.29: The Segment class as part of the Jenkinsfile builder

Writing a Jenkinsfile is comparatively trivial as well, since all data objects can simply be
iterated and converted to their string representation. The developed Jenkinsfile writer takes
a StalkCD pipeline object as input and passes all relevant properties to a Jenkinsfile segment
builder, depicted as class diagram in Figure 6.29. If an element has child elements, these
are added to its corresponding segment object. More precisely, the writer creates one root
segment with the keyword “pipeline”. All properties of the given StalkCD pipeline are added
to the segment using its method add(). Some of the properties have nested components
themselves, e. g., a stages section has stages. These, again, are added to the corresponding
segment and so on.

The segment class allows to add parameters to the keyword, which can be used to build a
method call that uses the simplified method call syntax of Groovy. When calling the method
addParam(), the segment’s keyword is appended by a space and the passed parameter. The
method addParamEscape() additionally surrounds the given value with quotation marks and
replaces such quotation marks inside the value by escape sequences, if applicable.

When all information of the StalkCD pipeline has been processed, the root segment is
transformed to its textual representation by calling toString(). The result starts with its
keyword and is appended by opening and closing curly braces. These braces are filled
with the string representation of all child segments, each on a separate line. During
their transformation to string, the child segments themselves add curly braces to their
keyword if their children property has entries. If a segment has no children, then its string
representation only contains its keyword.

Each segment has the property depth, which is the by one increased corresponding value of
the parent segment. This property enables prepending indentation to the resulting string
representation.
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6.3 StalkCD to BPMN

To transform a StalkCD file into a BPMN model, matching BPMN constructs have to be
defined that can be used to model StalkCD features. The goal is to use BPMN as graphical
representation of a StalkCD file. The resulting BPMN model is not required to be executable
by a general-purpose BPMN engine, which in principle makes it possible to use the full
feature set of BPMN without the restrictions of a concrete implementation. However, since
BPMN editors also often only support a subset of BPMN features, the constructs have to
be selected such that they are compatible with an editor. For this master’s thesis, the
open-source Camunda Modeler7 has been selected as editor. The chosen transformation
only produces elements that can be visualized by this tool.

The following sections will present the developed transformation from StalkCD to BPMN.
For all StalkCD features, matching BPMN constructs will be selected that can serve as
representation in a BPMN model.

6.3.1 Pipeline

A StalkCD pipeline serves as section for stages and can have several properties. The BPMN
process is ideally-suited to represent a pipeline in a BPMN model. It can contain sub-
processes and other structures, representing its stages and properties. Figure 6.30 shows a
minimal StalkCD pipeline and the corresponding BPMN model. It only consists of a start
and end event, because the pipeline does not have any stages. The XML representation
of this pipeline is shown in Listing 6.4. Initial comments, XML namespace definitions and
layout information are excluded from the listing. The subsequent sections will show how
the properties of a pipeline can be included in the BPMN process.

1 stages: { }

(a) The StalkCD example (b) The resulting BPMN model

Figure 6.30: Mapping a pipeline to the BPMN process

6.3.2 Stage

A stage is a sequence of steps or further nested stages, which perform a logically separated
piece of work. In BPMN, sub-processes provide a distinction between different sub-sets of
activities, which makes them the logical choice for modeling a stage. For each stage in the
transformed pipeline, a sub-process is created during the transformation. An example can
be found in Figure 6.31, where a pipeline containing the stage “Build-Stage” is transformed
into a sub-process. The sequence flow of the pipeline is directed top-to-bottom for space

7The Camunda BPMN / DMN Process Modeler – https://camunda.com/download/modeler/
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Listing 6.4 The XML representation of the example pipeline in BPMN

1 <bpmn:definitions>
2 <bpmn:process id="Process_0000001" isExecutable="true">
3 <bpmn:startEvent id="StartEvent_0000002">
4 <bpmn:outgoing>SequenceFlow_0000004</bpmn:outgoing>
5 </bpmn:startEvent>
6 <bpmn:endEvent id="EndEvent_0000003">
7 <bpmn:incoming>SequenceFlow_0000004</bpmn:incoming>
8 </bpmn:endEvent>
9 <bpmn:sequenceFlow id="SequenceFlow_0000004" sourceRef="StartEvent_0000002"

↪→ targetRef="EndEvent_0000003" />
10 </bpmn:process>
11 </bpmn:definitions>

efficiency reasons. In a regular BPMN model, it would be directed left-to-right. The sub-
process has dedicated start- and end events, surrounding the sequence flow of the stage,
which in this case consists of one step. The properties of a stage will be discussed in later
sections.

1 - stages:
2 - name: Build-Stage

3 steps:
4 - label: mvn build

5 command: sh 'mvn build'

(a) The StalkCD example

Build-Stage

mvn build

(b) The resulting BPMN model

Figure 6.31: Mapping a stage to the BPMN sub-process

6.3.3 Step

The most primitive construct in StalkCD is the step. It represents an atomic piece of work
that is part of a CD process. The equivalent BPMN feature is the task. Particularly the script
task is well-suited to represent a CD step, as it can contain unstructured source code. When
transforming a BPMN model to StalkCD and into a Jenkinsfile, the exact content of a script
is preserved. This allows using the core features from Jenkins directly in BPMN.
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In the graphical representation of BPMN, the source code of a script task is not visible,
because it obviously would quickly lead to visual clutter. Instead, the code is only contained
in the XML file and can be displayed by an editor, for instance, in a properties panel. The
purpose of a StalkCD step can be summarized in its label property, which is used as name
for the BPMN task. This name is visible in the BPMN model. Figure 6.32 shows an example
StalkCD step and its corresponding BPMN representation. The model as XML code can be
found in Listing 6.5.

1 - label: Run NPM Test

2 command: sh 'npm test'

(a) The StalkCD example

Run NPM Test

(b) The resulting BPMN model

Figure 6.32: Using BPMN tasks to model StalkCD steps

Listing 6.5 The XML representation of the example step in BPMN

1 <bpmn:scriptTask id="ScriptTask_0000001" name="Run NPM Test" scriptFormat="jenkins">
2 <bpmn:script>sh 'npm test'</bpmn:script>
3 </bpmn:scriptTask>

6.3.4 Agent

The agent settings of a pipeline or stage can be configured in a BPMN model using extension
elements in the start event of the respective BPMN process or sub-process. The implemented
transformation uses the properties extension element, defined by the Camunda Modeler.
It is necessary to convert the agent settings from StalkCD into key-value pairs, which can
be inserted in the properties list of the extension element. For each leaf node in the agent
options hierarchy, a property key is constructed by concatenating “agent” with the names
of all nodes in its path, separated by dots. For instance, an the agent option with the
path docker > image and the value 'sample.agent' would be converted into the key-value-pair
agent.docker.image: 'sample.agent'.

An example of agent settings in a BPMN model can be seen in Listing 6.6. It shows the
start event of a stage of the Kieker CD pipeline. The docker image, its label and additional
docker arguments are specified in multiple property nodes. Also note, that variables can be
used as value of a property, which makes it necessary to surround static string values by
quotation marks.

6.3.5 Condi onal Stages

The execution of a stage can be bound to when conditions. Only if the given condition
evaluates to true, the execution of the stage is initiated, else it is skipped. In BPMN,
exclusive gateways are well-suited to model this behavior. Figure 6.33 shows a conditional
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Listing 6.6 The XML representation of agent settings

1 <bpmn:startEvent id="StartEvent_0000005">
2 <bpmn:extensionElements>
3 <camunda:properties>
4 <camunda:property name="agent.docker.image"

↪→ value="'kieker/kieker-build:openjdk8'"/>
5 <camunda:property name="agent.docker.args" value="env.DOCKER_ARGS"/>
6 <camunda:property name="agent.docker.label" value="'kieker-slave-docker'"/>
7 </camunda:properties>
8 </bpmn:extensionElements>
9 <bpmn:outgoing>SequenceFlow_0000007</bpmn:outgoing>

10 </bpmn:startEvent>

stage, which is only executed if the master branch of the VCS is the origin of the CD process.
The stage’s steps are not contained in the example for the sake of simplicity. The process
starts with an exclusive gateway, which only routes the execution to the sequence flow
leading to the conditional stage, if the condition “branch 'master'” evaluates to true. Else,
the default sequence flow is taken, which results in skipping the conditional stage. In the
figure, the stage “Conditional Branch” is depicted as collapsed sub-process. It is followed by
a converging exclusive gateway, joining both execution branches. Subsequent stages would
be placed after this gateway.

1 # Stage:
2 name: Conditional Branch

3 when: branch 'master'

4 steps:
5 - ...

(a) The StalkCD example

Conditional
Branch

branch 'master'

(b) The resulting BPMN model

Figure 6.33: Modeling a conditional stage using exclusive gateways in BPMN

6.3.6 Post Steps

Post steps are executed based on the result of a stage or the pipeline. The conditions available
in a post section of StalkCD could be mapped to BPMN using gateways. However, this would
create inconsistencies with the BPMN specification. There are conditions like always and
failure that are executed when an exception occurs. In BPMN, the regular sequence flow is
left when an error occurs during the execution of a step. An exception handler is invoked to
perform activities that handle the exception. This especially makes implementing the always

condition problematic: Steps that are to be executed without regard of the according stage
would have to be appended to both, the regular sequence flow and the exceptional flow.
This would introduce extra complexity in the model which is not desirable.

68



6.3 StalkCD to BPMN

For this reason, it is preferable to find a simpler approach. The BPMN specification provides
various boundary events that could serve as starting point for a sequence of conditional
steps. The obvious choice is to use the conditional event. It is triggered, when a variable
in scope is changed to a value that matches the specified condition. In the case of the
interrupting conditional event, which is depicted as a circle with a continuous, double line,
the execution of the activity or sub-process, where the variable change occurred, is aborted.
Instead, the sequence flow following the conditional event is initiated. If there are multiple
interrupting conditional events, only one of them can be triggered. This conflicts with the
semantic of post conditions, since it is possible that multiple conditions are met after the
execution of the stage. For instance, upon a failure of a stage, not only its “failed” post steps
are executed, but also the ones labeled with the “always” and “cleanup”. For this reason,
the interrupting conditional event cannot be used for representing post steps in a BPMN
model.

Instead, the non-interrupting conditional event has to be used. Its specification intends
the regular sequence flow to continue when the event is triggered. This allows to trigger
multiple boundary events during the execution of the concerned activity or sub-process.
Figure 6.34 shows an example of a stage, having conditional post steps with the condition
“always”. In the equivalent BPMN diagram, the sub-process representing the stage, has a
conditional boundary event with the condition expression “always”. The event is followed
by a task, representing the step in the stage’s post section.

1 stages:
2 - name: Unit Tests

3 steps:
4 - label: Test

5 command: npm test

6 post:
7 always:
8 - label: Clean Up

9 command: ssh registry.local

↪→ rm -f /opt/next-version

(a) The StalkCD example

Unit Tests

Test

Clean Up

always

(b) The resulting BPMN model

Figure 6.34: Modeling conditional post steps using conditional events in BPMN

When depicting the post steps with the condition “failed” in BPMN, intuition would imply
using the error boundary event. However, here again, this event is interrupting and would
prevent other boundary events to be triggered. In fact, the Jenkinsfile specification does not
allow for constructs that would imply an interruption of the regular execution of a stage,
preventing post steps with conditions such as “always” or “cleanup” to be executed. Only the
scripted Jenkinsfile syntax would allow to define try-catch-blocks, having an interrupting
semantic.
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Listing 6.7 The XML representation of a conditional event in BPMN

1 <bpmn:subProcess id="SubProcess_1" name="Unit Tests">
2 <bpmn:startEvent id="StartEvent_2">
3 <bpmn:outgoing>SequenceFlow_3</bpmn:outgoing>
4 </bpmn:startEvent>
5 <bpmn:sequenceFlow id="SequenceFlow_3" sourceRef="StartEvent_2" targetRef="Task_6" />
6 <bpmn:endEvent id="EndEvent_4">
7 <bpmn:incoming>SequenceFlow_5</bpmn:incoming>
8 </bpmn:endEvent>
9 <bpmn:sequenceFlow id="SequenceFlow_5" sourceRef="Task_6" targetRef="EndEvent_4" />

10 <bpmn:scriptTask id="Task_6" name="Test">
11 <bpmn:incoming>SequenceFlow_3</bpmn:incoming>
12 <bpmn:outgoing>SequenceFlow_5</bpmn:outgoing>
13 <bpmn:script>npm test</bpmn:script>
14 </bpmn:scriptTask>
15 </bpmn:subProcess>
16 <bpmn:sequenceFlow id="SequenceFlow_7" sourceRef="BoundaryEvent_10" targetRef="Task_8" />
17 <bpmn:scriptTask id="Task_8" name="Clean Up">
18 <bpmn:incoming>SequenceFlow_7</bpmn:incoming>
19 <bpmn:outgoing>SequenceFlow_10</bpmn:outgoing>
20 <bpmn:script>ssh registry.local rm -f /opt/next-version</bpmn:script>
21 </bpmn:scriptTask>
22 <bpmn:endEvent id="EndEvent_9">
23 <bpmn:incoming>SequenceFlow_10</bpmn:incoming>
24 </bpmn:endEvent>
25 <bpmn:sequenceFlow id="SequenceFlow_10" sourceRef="Task_8" targetRef="EndEvent_9" />
26 <bpmn:boundaryEvent id="BoundaryEvent_11" name="always" cancelActivity="false"

↪→ attachedToRef="SubProcess_1">
27 <bpmn:outgoing>SequenceFlow_7</bpmn:outgoing>
28 <bpmn:conditionalEventDefinition id="ConditionalEventDefinition_12">
29 <bpmn:condition xsi:type="bpmn:tFormalExpression">always</bpmn:condition>
30 </bpmn:conditionalEventDefinition>
31 </bpmn:boundaryEvent>

6.3.7 Layou ng

Up to this point, the generated BPMN model only consists of the logical elements, defining
the components of a process, such as sub-processes, script tasks, sequence flows and events.
However, they have no graphical information, determining where and with what size each
element has to be drawn when depicting the BPMN process. In order to generate such data,
the general-purpose graph layout library “dagre”8 is used.

The process of generating layout information consists of three main stages. In stage one,
the BPMN model is converted into a generic graph data structure, which is extended by
layout information by the mentioned JavaScript library. In stage two, the generated layout

8dagre – Graph layout for JavaScript – https://www.npmjs.com/package/dagre
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information have to be modified, in order to implement specific features of BPMN, which
have not been regarded by the dagre library. Finally, stage three applies the graphical
information to the given BPMN model.

Stage 1: Genera ng Layout Informa on

The “dagre” library expects a simple graph as input, consisting of nodes and edges. Edges in
BPMN are sequence flows, connecting two elements, which is trivial to map to the generic
graph data structure. Nodes can have width and height properties, defining the specific
dimensions of the node. The dimensions of the individual elements have been taken from
the Camunda Modeler, since the model should be visualized using this tool. Thus, all events,
gateways, and tasks have fixed sizes that are the same for all models. The Camunda Editor
does not even offer a feature to resize these elements, hence it is safe to assume static
sizes.

The size of sub-processes, however, depends on the elements it contains. Since the used
library does not support nested nodes, this problem has been solved using a recursive
approach. When the layout generator finds a sub-process, it initiates a new layout calculation
process. When this recursive function call is done, the dimensions of the resulting sub-graph
are copied to the node representing the concerned sub-process.

Boundary events are inserted in the generic graph data structure as normal nodes, having
an edge to the sub-process they are attached to. This representation is only temporary and
will be corrected in Stage 2. When a layout generation process is done creating the graph
data structure, it calls the dagre library, which creates layout information for all nodes and
edges.

Stage 2: Fix BPMN-Specific Features

The recursive approach makes it necessary to fix all coordinates of the nodes inside a
sub-process. Both, the x and y coordinates of each node and edge have to be added by the
corresponding offset, resulting from the position of the sub-graph in the overall graph. The
offset has to be calculated by adding up the offsets of all parent graphs.

Furthermore, boundary events have to be moved to the boundary of the sub-process they are
attached to. This is done by limiting the x and y coordinates of the event to the boundary
coordinates of the sub-process. This also requires adjusting the coordinates of the outgoing
edge from the event to the subsequent task. The edge between the sub-process and the
boundary event is irrelevant and will not be considered in Stage 3.

Stage 3: Apply Layout

Now that the layout information in the graph data structure is complete, it can be applied
to the BPMN XML representation. The data structure of the BPMN process is extended
by a “BPMNDiagram” element, containing “BPMNShape” nodes for all BPMN elements
and “BPMNEdge” nodes for all sequence flows. When inserting the position and dimension
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information into these elements, the x and y coordinates of all elements are swapped to
create a left-to-right directed layout, instead of the top-to-bottom directed output from the
dagre library. An example for a BPMN diagram with layout information in XML format can
be found in Listing 2.2 on page 19.

6.4 BPMN to StalkCD

The first step when converting a BPMNfile into a StalkCD pipeline is parsing the source BPMN
file, given in XML format. The utility “xml2js”9 performs this step and returns an iterable
data structure, containing all information from the XML document. The transformation of
the source data structure into StalkCD pipeline is done by iterating over all elements in the
BPMN process, following the sequence flow. Figure 6.35 shows a UML class diagram of the
ProcessTranslator class. It has to be initiated with a StalkCD pipeline builder, which is used
to construct the pipeline.

The translation process is started by calling the method translate with the source BPMN
process as parameter. The method performs a depth-first search on the given graph, while
using the property nextElementsStack as list of elements that are yet to be processed. If the
current BPMN element has no outgoing sequence flow, then the end of a branch is detected
and the next element from the nextElementsStack is processed next. If the stack is empty
upon the end of a branch, then the end of the BPMN process has been reached.

When the method finds a sub-process, the PipelineBuilder is instructed to create a new stage
in the StalkCD data model. Script tasks are inserted as steps in the active stage. Gateways
are expected to be followed by sub-processes, indicating conditional or parallel stages.
Conditional boundary events attached to a sub-process are identified as post conditions.
Their condition is extracted from the expression property of the BPMN event. When the
translation process is done, the StalkCD file can be generated using the utility “js-yaml”, as
already described in Section 6.1.

9xml2js – https://www.npmjs.com/package/xml2js
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ProcessTranslatorProcessTranslator

+ constructor(builder: PipelineBuilder)

- dictionary: Map<string, BpmnElement>

+ translate(src: Process): Pipeline
- processSequenceFlow(flow: SequenceFlow): BpmnElement | undefined
- processSubProcess(proc: Process): void

- extractAgentSection(src: BpmnElement): IAgentOption[] | undefined

- processScriptTask(task: ScriptTask): void

- sequenceFlows: Map<string, SequenceFlow>
- nextElementsStack: BpmnElement[]
- processedSequenceFlows: Map<string, boolean>

- boundaryEvents: Map<string, BoundaryEvent>

- gatewayStack: GatewayStatus[]

- processGateway(gateway: Gateway): BpmnElement | undefined
- processBoundaryEvent(proc: Process): void
- processConditionalEvent(event: ConditionalEvent): void

Figure 6.35: The class BpmnParser as class diagram
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The evaluation investigates the concepts and implementations developed in this master’s
thesis. It starts by explaining the main goals of the evaluation. Next steps will be the
definition of experiments to find answers to the research questions and to present and
discuss their results. The chapter is concluded by an analysis of the threats to the validity
of the conducted experiments. This section will outline possible sources of error and list
assumptions and limitations of the chosen method of evaluation.

7.1 Evalua on Goals

In order to find answers to the remaining research questions defined in Section 1.1, ap-
propriate evaluation methods have to be found. RQ 1 and RQ 2 have been answered in
the previous chapters. RQ 3 aims to investigate the feature coverage of the implemented
transformation from Jenkinsfiles to StalkCD. In Section 7.2, a method of measuring this
coverage is given. RQ 4 covers the main motivation of this master’s thesis by raising the
questions concerning the resilience benefits, the given solutions provide. This aspect is
handled in Section 7.3.

Aside from finding answers to these research questions, an additional goal of this chapter
is evaluating the practicability of depicting Jenkinsfiles in BPMN diagrams. Section 7.4
demonstrates that it is possible to comprehensively visualize and edit generated BPMN
diagrams.

7.2 Jenkinsfile Language Coverage

To answer RQ 3, the transformation from Jenkinsfile to StalkCD has to be investigated.
Ideally, a formal analysis should prove that all features that are available in a Jenkinsfile
are supported by the transformation. However, there is no comprehensive specification
of Jenkinsfile features because there is a large amount of plug-ins that can be used. For
this reason, a good approach to quantify the language coverage metric is conducting an
empirical analysis. It consists of collecting sample data and analyzing the transformation
for each sample. The exact procedure is described in the following.
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7.2.1 Data Gathering

In preparation for the analysis, sample Jenkinsfiles have been collected. The GitHub REST
API with its code search endpoint served as data source here. Since many Jenkinsfiles are
using the scripted syntax, a simple search for all files with the name “Jenkinsfile” would
return many unusable results. The fact that each declarative pipeline starts with a pipeline
element, containing a mandatory agent section can be used to generate better search
results.

Accordingly, the search term “pipeline agent filename:Jenkinsfile in:file” has been used
to get a list of Jenkinsfiles contained in any publicly accessible GitHub repository, which
returned more than 60,000 entries. However, the GitHub API does not offer more than
approx. 1,000 search results, which is why the used sample set is limited to a total amount
of 1,134 files. The files used as input for the evaluation can be found in the supplementary
material of this master’s thesis [Kab19].

Due to the primitive search method, there are still some false positives among the results.
Hence, in a next step, the list of files to use for the analysis has to be filtered in two
stages. First, a file is considered to represent a declarative pipeline, if it contains a line that
only consists of the word “pipeline”, an opening curly brace and, if applicable, whitespace
characters. Second, all files that contain multiple instances of a pipeline start element are
excluded from the final data set. By applying this method of filtering, 107 Jenkinsfiles were
removed from the set of samples.

7.2.2 Experiment Setup

In order to validate the correctness of the transformation from Jenkinsfiles to StalkCD
and back, each sample Jenkinsfile J is transformed to a StalkCD file. This result is then
transformed back to a Jenkinsfile J ′. The transformation is complete for J, if J ≡ J ′. A high
percentage of correctly transformed samples proves a high coverage of language features of
Jenkinsfiles.

J ′ can differ in certain aspects from J while having the same functional semantic. Such
differences can be single-line and multi-line comments, whitespace (e. g., indentation and
blank lines) as well as trailing semicolons and commas. This freedom makes it necessary to
normalize both, J and J ′ to make them comparable.

Normaliza on

A comprehensive normalization, preserving all functional semantics of a Jenkinsfile would
require a complex grammar implemented by a lexer and parser. However, this grammar
itself could introduce faults into the normalization result, hiding errors in the evaluated
transformation. For this reason, the procedure used here is chosen to be as simple as
possible. Some degree of information loss, e. g., a missing whitespace character is acceptable
because the main evaluation goal is to validate the support of all high-level constructs of
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the transformation. The normalization is implemented as sequence of replacement rules
based on regular expressions. The procedure consists of the following steps, executed
sequentially:

1. Indentation:
Remove whitespace characters at the beginning of all lines.
/^\s+/gm ⇒ ''

2. Head comment:
The file might start with a head comment, specifying the interpreter to use when
executing it. It is not relevant and removed during the transformation, hence it has to
be removed during normalization, too.
/^#.*\$/gm ⇒ ''

3. Single-line comment:
A line comment is introduced with two slash characters. This, though, is not valid if
they are located inside a string literal. The following regular expression only considers
single-line strings. If a multi-line string contains two adjacent slash characters, they
are recognized as comment, which is not desirable, but not solvable using simple
regular expressions.
/^(([^'"\r\n]|"[^"]*"|'[^']*')*?)\/\/.*?$/gm ⇒ '$1'

4. Multi-line comment:
Multi-line comments are surrounded by /* and */. This, again, is only valid, if the
start or end sequence does not occur inside a string literal. Additionally, the end
sequence could have been already removed, if it is preceded by a single line comment.
These issues, too, would only be solvable using a more complex lexer.
/^(([^'"\r\n]|"[^"]*"|'[^']*')*?)\/\*(.|\n)*?\*\//gm ⇒ '$1'

5. Copy & paste mistakes:
Some Jenkinsfiles begin with the line “Jenkinsfile (Declarative Pipeline)”. This is
no valid language element of a Jenkinsfile and has no effect to the execution of the
defined pipeline. The reason, why this line is present in many files is probably that
the authors copied an example pipeline from the official Jenkins web site, where
every code example has a title equal to the line. Since this mistake can be found in
numerous repositories, the transformation is designed to ignore it and hence, the
normalization has to remove it, too.
/^\s*Jenkinsfile \(Declarative Pipeline\)/ ⇒ ''

6. Semicolons:
During the transformation, multiple statements on one line, divided by semicolons are
expanded so that each statement is on its own line. For this reason, semicolons that
are not part of a string literal have to be removed during the normalization process.
/(([^'"\r\n]|"[^"]*"|'[^']*')*?);\s*/g ⇒ '$1\n'

7. Spaces before and after brackets:
As preparation for the removal of trailing commas, space characters before and after
brackets have to be eliminated.
/\s*([,()\[\]])\s*/g ⇒ '$1'
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8. Quotation marks around the stage name:
The name of a stage can be wrapped by either single or double quotation marks. In
order to eliminate any differences here, double quotation marks are replaced by single
ones.
/stage\("([^"]*)"\)/g ⇒ 'stage(\'$1\')'

9. Trailing commas:
Commas, ending a list of arguments are allowed in a Jenkinsfile, but not generated
during the transformation from StalkCD to Jenkinsfile.
/,([)\]}])/g ⇒ '$1'

10. Whitespace
Whitespace characters, including line breaks, are ignored when comparing two Jenk-
insfiles. It is assumed that bugs in relation with missing spaces are detected using a
manual test procedure.
/\s/g ⇒ ''

1 #!/usr/bin/env groovy
2
3 // Comments should be eliminated
4 pipeline {
5 agent { node { label 'aws' } }
6
7 /* This block will disapear
8 environment { any="example" }
9 // Including this comment

10 */
11
12 stages {
13 stage('Test Stage') {
14 steps {
15 sh 'echo "This is an example! //

↪→ This is no comment!"'
16 }
17 }
18 }
19 }

(a) Before normalization

1 pipeline{agent{node{label'aws'}}stages{
↪→ stage('TestStage'){steps{sh'echo'
↪→ Thisisanexample!//Thisisnocomment!
↪→ ''}}}}

(b) After normalization

Figure 7.1: Normalization example of a Jenkinsfile

Figure 7.1 shows an example of the normalization of a Jenkinsfile. Note, that all comments
are removed during normalization while similar expressions like URLs inside strings are
preserved. The resulting string does not contain any whitespace characters anymore, i. e.,
it consists of only one line. Furthermore, it is not executable anymore because of missing
spaces. However, all instructions, blocks, and the order of all elements are preserved.
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Failure Classifica on

If a (normalized) sample file that passed the transformation process differs from its (nor-
malized) original version, a transformation failure has occurred. To find the reason for
this failure, a failure classification is being performed. In preparation of the classification,
the difference between the original sample file and the transformation result has to be
calculated.

This task is done with help of the jsdiff utility, found in the npm package manager1. The
method JsDiff.diffWords is called with the contents of the original sample file and the
resulting file after transformation, both normalized using the previously presented procedure.
The utility returns an array, containing the differences between both files, divided in added
and removed passages. Added parts are not interesting for the classification, since their
origin is in general an unsupported construct, not present any more in the transformation
result.

Each sequence that has been removed during the transformation is tested for certain
properties to determine the failure class of the analyzed sample file. The failure classes
together with their condition and explanations can be found in Table 7.1. A removed passage
is tested for the listed conditions in the given order. The class of the first matching condition
is assigned to the passage. A file is classified by all failure classes of its passages. The class
unknown is only assigned if no passage has a concrete classification.

7.2.3 Results & Discussion

After applying the filter rules, 1,027 Jenkinsfiles remain as input for the evaluation. 717
of these files (70%) could be successfully transformed to StalkCD and back to Jenkinsfile
without information loss, i. e., the normalized resulting Jenkinsfile equals the normalized
original one. This also means that 310 samples (30%) could not be transformed back to
their original semantic, which indicates that they use constructs that are not supported by
the transformation. All transformation results are available in the supplementary material
of this master’s thesis [Kab19].

Figure 7.2 shows a classification of the transformation errors. A large portion (90 samples)
of all failures could not be classified. Reasons for this are, among others, syntax errors
in the sample Jenkinsfile, multiple sections of the same type overriding previous ones,
e. g., multiple agent sections inside the pipeline block, non-ascii quotation marks, extra
brackets, empty sections or complex Groovy code at the top of the file. Hence, the majority
of transformation failures are caused by mistakes by the developers of the Jenkinsfiles or
because of an extensive use of the Groovy language, which intentionally is unsupported by
the transformation (see Section 6.1).

However, some failure classes indicate lacking support of some features available in the
Jenkinsfile: 22 sample files contain environments that could not be transformed, e. g., the
aws section which is specific for Amazon Web Services steps or the rarely used lockThenSteps

1https://www.npmjs.com/package/diff
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section. Further elements that were not processed by the transformation are complex
steps (39 occurrences), such as the parallel step, wrapping multiple sections of nested steps
and expression environment within other aggregation sections such as the anyOf and allOf
environments.
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Figure 7.2: Failure classification of the evaluated Jenkinsfiles

7.3 Resilience Benefits

One focus of this master’s thesis was creating resilience benefits for CD pipelines by using
BPMN as an abstraction layer. This is evaluated in the following at the example of the
Kieker monitoring framework2. Its source code can be found on GitHub3. We chose this
project because it uses the declarative Jenkinsfile syntax for the definition of its CD process
and because the build results are publicly accessible4. Kieker uses Jenkins to automate its
continuous delivery process. The Jenkinsfile is written in the declarative pipeline syntax,
which is a requirement to be transformed to BPMN by the previously introduced approach.
In order to find problems in the delivery process, which would benefit from resilience
increasing measures, the messages in pipeline failures for the master branch are analyzed.

At the time of the evaluation, the most current build ID is #273. The total amount of build
results that are accessible through the web-interface of Jenkins is 144. Of these builds, 78
(54 %) completed successful, 12 (8 %) were canceled and 54 (38 %) failed. A review of
the console output of the failed builds showed, that 29 (54 %) of the failures were caused
by configuration mistakes, as seen in Figure 7.3. 19 failures (35 %) could be classified as
permanent I/O errors, such as no more free space on the disk. Only 8 (15 %) failures were
caused by temporary failures, such as connection problems or disk write failures. These
could have been avoided by simply repeating the failing stage. Two error logs did not
contain enough information to give answers about the cause of failure.

2Kieker – http://kieker-monitoring.net/
3Kieker (source code) – https://github.com/kieker-monitoring/kieker
4Jenkins instance of the Kieker monitoring framework – https://build.se.informatik.uni-kiel.de/jenkins/

job/kieker-monitoring/
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Figure 7.3: Failure classification of the Kieker CD pipeline

The results show that 89 % of the evaluated failures could not possibly have been avoided
automatically. They were caused by human mistakes or required human intervention. The
greatest part of the remaining failures could have been avoided by simply setting the retry

option in the Jenkinsfile, telling Jenkins to re-trigger the delivery process upon a failure for
the given amount of times. Thus, in the case of the Kieker CD pipeline, introducing BPMN
as abstraction layer only has the advantage of visualizing the delivery process. This can
help, finding mistakes in the process design, but brings no resilience advantages.

7.4 BPMNVisualiza on

Visualization is an essential purpose of BPMN. It helps the user to understand and adapt a
process in a comfortable way. For this reason, this section will evaluate, if BPMN models
generated by the developed transformations can be visualized comprehensively. Further-
more, it will check, if it is possible to read and write all relevant properties using a BPMN
editor.

Figure 7.4 shows the Camunda Modeler after manually designing a BPMN process. In the
top part of the window, a standard toolbar enables performing file operations and visually
arranging selected elements. The left part of the editor window contains a toolbox with
tools for navigation, selection, and re-arrangement. Furthermore, it enables creating the
major types of BPMN elements. When selecting an existing element, its precise type can
be chosen, as demonstrated in Figure 7.5 at the case of a boundary event. The displayed
options vary depending on the selected BPMN element. On the right, there is the properties
panel, providing access to meta-data of the selected element, which is not visible in their
graphical representation.

In order to access agent settings, options, and other properties of BPMN elements that are
stored in extension elements, the tab “Extensions” in the properties panel has to be used.
Here, all defined key-value-pairs of the currently selected graph node are visible and can
be modified, as seen in Figure 7.6. Note, that the values entered here are copied without
modifications into a StalkCD- and Jenkinsfile. This allows to access variables in the scope
of the Jenkins pipeline plug-in, but also requires to surround string literals with quotation
marks.
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Figure 7.4: The Camunda Modeler

Figure 7.5: The type selection menu of the Camunda Modeler
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Failure Class Condition
complex step Passage starts with “parallel(” or “wrapCommands(”.

Complex steps are not supported by the transformation. An example
for a complex step is the parallel step, containing multiple subsections
having further nested steps (not to be confused with the parallel section
inside a stage).

misplaced section Passage starts with a well-known section name (e. g., agent, op-
tions, steps) and an opening culy brace.
The support of some common sections of a Jenkinsfile are known to
be supported by the transformation. If one of them is missing in the
transformation output, it is assumed to be misplaced or a duplicate.

pipeline properties Passage starts with “properties(”.
Properties that are specified as prefix to the pipeline section are unsup-
ported.

script Passage starts with “script{”.
Sections are unsupported inside aggregation environments, such as anyOf
or allOf.

expression Passage starts with “expression{”.
Sections are unsupported inside aggregation environments, such as anyOf
or allOf.

groovy definitions Passage starts with one of “def”, “import” or “@Library” or is
located at the beginning of the sample file.
Not all Groovy expressions can be parsed by the used grammar.

scripted pipeline Passage starts with “node”.
Some files contain both, declarative and scripted pipeline definitions.
These cannot be parsed.

unsupported envi-
ronment

Passage starts with an identifier followed by “{”.
Not all environments that can be used in a Jenkinsfile are supported by
the transformation.

unknown All remaining passages, removed during the transformation that
can not be classified by one of the rules above.

Table 7.1: Failure classes and their conditions

Figure 7.6: Agent settings in the properties panel of the Camunda Modeler
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Figure 7.7: The Kieker Jenkinsfile depicted as BPMN diagram in the Camunda Modeler

Figure 7.7 shows a part of the Jenkinsfile of Kieker5, as it is being generated by the developed
transformations from Jenkinsfile via StalkCD to BPMN. It is striking that the layout differs
from the manually generated model in Figure 7.4, as sequence flows often do not have right
angled direction changes. This is caused by the specific implementation of the used layout
algorithm, but in most cases does not affect the model’s readability.

However, the position of conditional post steps, depicted as boundary events and script
tasks, often is not ideal. The missing support of the layout algorithm for structured nodes
containing sub-graphs in some cases leads to large distances between a sub-process and the
tasks of its boundary events. The reason for this is that the chosen layout library manages
layers of nodes regardless of their size. Only one node per branch is allowed to be located
on a layer, where the largest node defines the size of the layer.

In the example of the Kieker CD pipeline, depicted in Figure 7.7, the original position of the
boundary event “cleanup” in the left of the figure is on the same level as the sub-process
“Master Secific Stages”. The following script task “deleteDir” is placed on the next available
level, together with the end event of the process. When the transformation algorithm moves
the boundary event to the outline of the corresponding sub-process, the original place
remains empty, which in case of the example significantly increases the distance between
the boundary event and the following task. The same behavior can also be seen at the

5Kieker monitoring framework – http://kieker-monitoring.net/
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boundary events inside the sub-process “Master Specific Stages”. In these cases, however,
the resulting additional distance is smaller because the largest element in the concerned
graph level is a parallel gateway node.

The visualization of the Kieker pipeline also shows that BPMN models representing CD
pipelines quickly get very large and hard to overview. The “minimap” in the top right corner
of Figure 7.7 reveals that the visible part of the opened model is very small. Even though
the features for navigating provided by the Camunda Modeler are very useful, knowing the
exact position in the pipeline can be challenging with increasing size.

At large, the features provided by the Camunda Modeler suffice to display all BPMN elements
that are required when depicting a CD pipeline. Special extension properties are accessible
in the properties panel, which allows the user to read and write such information, but
still leaves room for improvement, as their existence is not visible in the displayed BPMN
model.

7.5 Threats to Validity

The analysis of the transformation from Jenkinsfiles to StalkCD in Section 7.2 relies upon
a data set that has been collected from GitHub repositories. The chosen approach has
some restrictions, which potentially threaten the external validity of the evaluation results.
Firstly, the extent of the source data set of Jenkinsfiles is limited by the maximum number of
search results that are provided by the GitHub API. In consequence, it cannot be guaranteed
that the evaluated Jenkinsfiles provide a good coverage of the available language features.
However, as the search results are not ordered by repository name but by relevance, it can
be assumed that they contain all kinds of projects, from small to large.

Secondly, due to the fact that only publicly accessible repositories can be searched using the
GitHub API, software projects that potentially would be of special value to the evaluation
are excluded from the sample data set. The larger an application is, the higher its business
value and the lower the probability that the manufacturer publishes its source code. But
particularly large applications require complex CD pipelines, using a large set of the CD
tool’s features.

Finally, the presented normalization approach could hide errors in the tested transformation.
Missing spaces and wrong quotation marks or escape sequences inside strings may not be
detected when comparing the transformation result with the original Jenkinsfile. However,
this does not affect the fulfillment of the main requirement for the evaluation. The general
file structure with all important elements is preserved, which allows to detect missing or
additional elements like steps or stages, as well as their position and order.
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8 Conclusions and Future Work

In this master’s thesis, an approach of bringing BPMN to the CD domain has been presented.
Section 8.1 summarizes the contributions of the thesis. In Section 8.2, the results are
discussed and put into relation to the expected outcomes. Finally, Section 8.3 names points
of connection that can be addressed by future work.

8.1 Summary

Chapter 1 showed the importance of resilient CD processes and named BPMN as possible
means to reduce the frequency of CD pipeline failures. The notation specifies constructs that
can make processes more reliable or compensate the effects of failures. As a preparation
for the use of BPMN as modeling language for CD processes, a meta-model of the DSL of
Jenkinsfiles has been developed in Chapter 4.

StalkCD as Technology Bridge

This created the foundation for the development of the DSL StalkCD, specified in Chapter 5.
It aims to bridge the functional gap between the CD domain and BPMN. StalkCD supports
all relevant features from the Jenkinsfile DSL as representative of popular PDLs. By adding
more properties to existing language elements or by introducing new ones, support for
more CD tools can be added easily. This makes the language a generic, extensible modeling
language for CD processes.

Additionally, the DSL can serve as a data store in accordance with the concept of IaC. In
contrast to BPMN, it does not contain visual position data, which could lead to unnecessary
commits in the VCS. The available information is sufficient to generate a graphical BPMN
model, enabling to benefit from the capabilities of BPMN. At the same time, a StalkCD
pipeline can be easily converted into a Jenkinsfile for execution.

Bi-Direc onal Transforma ons

Chapter 6 defined approaches to transform Jenkinsfiles via StalkCD to BPMN and back.
Parsing Jenkinsfiles was a demanding task since there is no re-usable approach for parsing
and processing them. An ANTLR grammar has been developed, which recognizes the
language constructs of a Jenkinsfile and allowed to implement a translator without much
effort. As it is highly re-usable, the grammar could support future projects in parsing and
processing declarative Jenkinsfiles.
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For the transformation from StalkCD to BPMN, the features of StalkCD were mapped to
compatible BPMN elements, defining an approach to depict a CD pipeline in BPMN. The
transformations from BPMN to StalkCD and from StalkCD to Jenkinsfiles were comparatively
trivial and did not require complex implementations.

At large, the provided solutions allow even existing CD pipelines to take advantage from
BPMN as powerful modeling notation. The two-way transformation from Jenkinsfiles to
BPMN and back enables converting virtually any given Jenkinsfile into a graphical BPMN
model. After having done modifications to the graphical representation, the CD pipeline
can be translated into StalkCD in order to be kept in a VCS for collaboration. When the
pipeline is to be executed, it can be simply transformed into a Jenkinsfile.

Evalua on Strategy and Results

The main task of Chapter 7 was the evaluation of the quality of the implemented transfor-
mations. A set of sample Jenkinsfiles has been acquired from the GitHub API, which was
transformed to StalkCD and back to the Jenkinsfile DSL. Source and result have been nor-
malized in order to make them comparable. The results showed that 70 % of the input files
could be translated to StalkCD and back without losing information. Many transformation
failures were caused by bad sample files, containing syntax errors or violating the concept
of declarative programming by extensively using the Groovy programming language.

Further evaluation showed that failures of the CD pipeline of the Kieker monitoring frame-
work often are caused by permanent errors, that cannot be resolved automatically. A small
minority of the evaluated failures could have been resolved by repeating the process. Thus,
introducing BPMN as abstraction layer would bring no resilience benefits in case of Kieker.

8.2 Discussion

During this master’s thesis, numerous decisions have been made that impact the chosen
approaches and the results. In the following, these decisions will be recapitulated.

StalkCD

The decision to develop a DSL for bridging the functional gap between the CD domain and
BPMN originally was based on the goal of supporting multiple CD tools. The implemented
transformations only support Jenkinsfiles as target PDL, but since other tools such as
Travis CI1 or GoCD2 also use the concept of stages and steps, the effort for extending the
transformations to support them can be expected to be manageable.

1Travis CI – https://travis-ci.com/
2GoCD – https://www.gocd.org/

88

https://travis-ci.com/
https://www.gocd.org/


8.2 Discussion

Additionally, StalkCD helps minimizing the data that has to be managed in a VCS. Using
a BPMN XML file as single data store would also mean that layout information has to be
kept under version control. Every position change of a BPMN element would require a
new commit in the VCS, which obviously is not desirable. With StalkCD as intermediate
abstraction layer, only information that cannot be automatically generated into a BPMN
model is included in the data store. For instance, the summary of a step that is displayed in
the graphical representation of the BPMN model is contained in the StalkCD file. At large,
StalkCD as extension to the PDLs of CD tools helps storing information that is relevant when
depicting them using BPMN.

Jenkins as CD Tool

The complex DSL of Jenkinsfiles and the lack of an existing solution for automatically
processing them required an extensive implementation for parsing and translating them to
StalkCD. Other CD tools use YAML-based files that would have been comparatively trivial
to read and process. Even though this prevented more detailed work on increasing the
resilience of CD pipelines, this contribution of the thesis is still valuable, as literature shows
that Jenkins even today is a popular CD tool with a high relevance [BE18].

Transforma on of Jenkinsfiles to StalkCD

The design of an ANTLR grammar has significantly simplified the implementation of the
transformation from Jenkinsfiles to StalkCD. The generated parser and its interface according
to the visitor design pattern is re-usable and not limited to the generation of StalkCD files.
In principle, it can be used for further applications, such as tools for validating or visualizing
Jenkinsfiles.

The implemented transformation has a good coverage of Jenkinsfile features. However, not
all sample files could be parsed, which is caused by the permissiveness of the Jenkinsfile
syntax. The possibility to use the Groovy programming language inside a declarative
Jenkinsfile makes it hard to develop comprehensive solutions.

Transforma on of BPMN to StalkCD

A BPMN model can contain countless structures that cannot be processed by the developed
transformation. This is in the nature of BPMN, as the notation is designed to be as flexible
as possible to be capable of representing virtually any kind of process. For this reason, the
provided implementation intentionally only allows constructs that would also result when
transforming StalkCD to BPMN. Any other structures are ignored or lead to failures in the
transformation process or the resulting StalkCD pipeline. However, this issue can be avoided
by improving the graphical support of the user.
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8 Conclusions and Future Work

Resilience

The evaluation of resilience benefits only considers the Kieker monitoring framework, a
research-driven application of medium size and complexity. Its delivery process involves
a single call to a script, which uploads the built artifacts to a registry. A more complex
application, e. g., depending on server clusters for database, logging, and so on, would
require a more complex delivery process, having numerous potential points of failure. Here,
it could be interesting to investigate the introduction of compensation actions, for instance
to recover from failures during the testing stage, preventing the pipeline to fail for trivial
reasons.

However, such an example application was not available for this master’s thesis. The reasons
for this are two-fold: on one hand, investigations have shown that large software systems
often depend on the scripted Jenkinsfile syntax. On the other hand, complex software can
be found mainly in enterprise projects, which often are not publicly accessible. This lack
of real-world examples hinders the evaluation whether there actually is the need for the
introduction of an additional layer of abstraction to CD processes.

Additionally, Jenkins itself already provides some basic features to ensure operability of a
CD pipeline. However, complex decisions regarding the sequence flow of stages are not
implementable without violating the principle of declarative programming. We conclude,
that the use of BPMN as an abstraction layer for Jenkinsfiles does not lead to an increased
resilience. But without the restrictions of the declarative Jenkinsfile syntax, more complex
decisions could be implemented, ensuring the operability of the CD process.

8.3 Future Work

Various results of this master’s thesis can serve as points of connection, where future research
can start at. These points are listed in the following.

Be er support of CD tools: The implementation provided in this thesis only supports Jenk-
ins as source CD tool. The support of more tools can bring additional opportunities to
demonstrate the benefits of bringing BPMN to the CD domain, as it would increase
the number of analyzable CD pipelines. Tools like Travis CI3 or Gitlab4 are promising
examples, because they use the YAML format as data store.

Improved BPMN layout genera on: The BPMN layout generation approach in some cases
produces unclear results. The handling of boundary events and sub-graphs can be
improved in order to optimize the space usage and to prevent clutter and overlapping
elements.

3Travis CI – https://travis-ci.com/
4Gitlab – https://about.gitlab.com/
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8.3 Future Work

Be er BPMN tooling: The Camunda Modeler, which was used as editing solution in the
thesis, does not provide solutions to depict CD related properties in the graphical
model. An extension to the editor could not only increase the amount of visible
information, but also simplify the development process of a CD process in BPMN. By
defining re-usable snippets and restrictions, the user can be supported.

Split StalkCD pipelines: With increasing complexity of the delivery process, corresponding
BPMN model increases significantly in size. The example of the Kieker Jenkinsfile
depicted as BPMN process demonstrates that keeping an overview and navigating in
a model can be challenging. A possible solution to this problem can be splitting up a
StalkCD pipeline into re-usable parts. Smaller BPMN models can be easier managed
and modified and support collaboration.

Sta cal analysis of BPMN: Van der Aalst [Van98] presents an approach of mapping BPMN
to Petri nets. According to him, many analysis techniques exist for the domain of
Petri nets, which could also be helpful in the CD domain: in combination with the
approach of mapping CD pipelines to BPMN that has been developed in this master’s
thesis, problems of a delivery process in development could be detected already at
design-time.
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A Jenkinsfile Parser Grammar

1 grammar jenkinsfile;
2
3 /**
4 Parser
5 */
6
7 pipeline :
8 (
9 groovy_definition

10 |
11 JENKINSFILE_DECLARATIVE
12 )*
13 PIPELINE
14 LBRACE
15 (
16 environment
17 |
18 agent
19 |
20 tools
21 |
22 pipeline_options
23 |
24 parameters
25 |
26 triggers
27 |
28 stages
29 |
30 post
31 )*
32 RBRACE
33 ;
34
35 groovy_definition :
36 DEF_LITERAL
37 |
38 LIBRARY_LITERAL
39 ;
40
41 environment :
42 ENVIRONMENT
43 LBRACE
44 assignment*
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45 RBRACE
46 ;
47
48 parameters :
49 PARAMETERS
50 LBRACE
51 method_call*
52 RBRACE
53 ;
54
55 agent :
56 AGENT
57 (
58 agent_section
59 |
60 agent_type
61 )
62 ;
63
64 agent_section :
65 LBRACE
66 (
67 agent_type
68 (
69 LBRACE
70 method_call*
71 RBRACE
72 )?
73 |
74 method_call*
75 )
76 RBRACE
77 ;
78
79 agent_type : identifier ;
80
81 tools :
82 TOOLS
83 LBRACE
84 method_call*
85 RBRACE
86 ;
87
88 pipeline_options :
89 OPTIONS
90 LBRACE
91 method_call*
92 RBRACE
93 ;
94
95 triggers :
96 TRIGGERS
97 LBRACE
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98 method_call*
99 RBRACE

100 ;
101
102 stages :
103 (
104 STAGES
105 |
106 PARALLEL
107 )
108 LBRACE
109 stage_definition*
110 RBRACE
111 ;
112
113 stage_definition :
114 STAGE
115 (
116 LPAREN
117 stage_name?
118 RPAREN
119 )?
120 LBRACE
121 (
122 environment
123 |
124 input
125 |
126 tools
127 |
128 agent
129 |
130 when
131 |
132 stages
133 |
134 steps
135 |
136 post
137 |
138 fail_fast
139 )*
140 RBRACE
141 ;
142
143 stage_name :
144 STRING_LITERAL
145 ;
146
147 fail_fast :
148 FAIL_FAST
149 BOOL_LITERAL
150 ;
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151
152 steps :
153 STEPS
154 LBRACE
155 step*
156 RBRACE
157 ;
158
159 step :
160 script
161 |
162 method_call
163 ;
164
165 script :
166 SCRIPT_LITERAL
167 ;
168
169 input :
170 INPUT
171 LBRACE
172 (
173 method_call
174 )*
175 RBRACE
176 ;
177
178 when :
179 WHEN
180 LBRACE
181 (
182 method_call
183 |
184 when_aggregation
185 |
186 when_expression
187 )*
188 RBRACE
189 ;
190
191 when_aggregation :
192 when_aggregation_type
193 LBRACE
194 (
195 method_call
196 |
197 when_aggregation
198 |
199 when_expression
200 )*
201 RBRACE
202 ;
203
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204 when_aggregation_type :
205 ALLOF
206 |
207 ANYOF
208 |
209 NOT
210 ;
211
212 when_expression :
213 EXPRESSION
214 LBRACE
215 expression
216 RBRACE
217 ;
218
219 post :
220 POST
221 LBRACE
222 post_condition*
223 RBRACE
224 ;
225
226 post_condition :
227 identifier
228 LBRACE
229 step*
230 RBRACE
231 ;
232
233 assignment :
234 assignment_key
235 ASSIGN
236 expression
237 ;
238
239 assignment_key :
240 identifier
241 ;
242
243 method_call :
244 (
245 method_call_simple
246 |
247 method_call_java
248 |
249 method_environment
250 )
251 ';'?
252 ;
253
254 method_environment :
255 method_call_java
256 LBRACE
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257 step*
258 RBRACE
259 ;
260
261 method_call_simple :
262 identifier
263 method_arg_list
264 ;
265
266 method_call_java :
267 identifier
268 LPAREN
269 (
270 method_arg_list
271 )?
272 RPAREN
273 ;
274
275
276 method_arg_list :
277 method_arg
278 (
279 COMMA
280 method_arg
281 )*
282 COMMA?
283 ;
284
285 method_arg :
286 method_arg_key
287 COLON
288 expression
289 |
290 expression
291 ;
292
293 method_arg_key : identifier ;
294
295
296 expression : primary
297 | expression bop='.'
298 (
299 identifier
300 | method_call_java
301 )
302 | expression '[' expression ']'
303 | prefix='[' expression_list? postfix=']'
304 | identifier bop=':' expression
305 | method_call_java
306 | expression postfix=('++' | '--')
307 | prefix=('+'|'-'|'++'|'--') expression
308 | prefix=('~'|'!') expression
309 | expression bop=('*'|'/'|'%') expression
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310 | expression bop=('+'|'-') expression
311 | expression bop=('<=' | '>=' | '>' | '<') expression
312 | expression bop=('==' | '!=' | '==~') expression
313 | expression bop='&' expression
314 | expression bop='^' expression
315 | expression bop='|' expression
316 | expression bop='&&' expression
317 | expression bop='||' expression
318 | expression bop='?' expression ':' expression
319 | <assoc=right> expression
320 bop=('=' | '+=' | '-=' | '*=' | '/=' | '&=' | '|=' | '^=' |

↪→ '>>=' | '>>>=' | '<<=' | '%=')
321 expression
322 ;
323
324 expression_list : expression
325 (
326 COMMA
327 expression
328 )*
329 COMMA?
330 ;
331
332 primary : '(' expression ')'
333 | literal
334 | identifier
335 ;
336
337 literal : DECIMAL_LITERAL
338 | FLOAT_LITERAL
339 | STRING_LITERAL
340 | BOOL_LITERAL
341 | NULL_LITERAL
342 | REGEXP_LITERAL
343 ;
344
345 identifier : IDENTIFIER
346 | PIPELINE
347 | STAGES
348 | PARALLEL
349 | STAGE
350 | STEPS
351 | ENVIRONMENT
352 | INPUT
353 | TOOLS
354 | PARAMETERS
355 | OPTIONS
356 | TRIGGERS
357 | AGENT
358 | POST
359 | WHEN
360 | ANYOF
361 | ALLOF
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362 | EXPRESSION
363 | FAIL_FAST
364 | NOT
365 ;
366
367 /**
368 Lexer
369 */
370
371 // Literals
372
373 DECIMAL_LITERAL: ('0' | [1-9] (Digits? | '_'+ Digits)) [lL]?;
374 HEX_LITERAL: '0' [xX] [0-9a-fA-F] ([0-9a-fA-F_]* [0-9a-fA-F])? [lL]?;
375 OCT_LITERAL: '0' '_'* [0-7] ([0-7_]* [0-7])? [lL]?;
376 BINARY_LITERAL: '0' [bB] [01] ([01_]* [01])? [lL]?;
377
378 FLOAT_LITERAL: (Digits '.' Digits? | '.' Digits) ExponentPart? [fFdD]?
379 | Digits (ExponentPart [fFdD]? | [fFdD])
380 ;
381
382 HEX_FLOAT_LITERAL: '0' [xX] (HexDigits '.'? | HexDigits? '.' HexDigits) [pP] [+-]?

↪→ Digits [fFdD]?;
383
384 BOOL_LITERAL: 'true'
385 | 'false'
386 ;
387
388 NULL_LITERAL: 'null'
389 ;
390
391 STRING_LITERAL: (
392 StringLiteralMultilineDouble
393 | StringLiteralMultilineSingle
394 | StringLiteralDouble
395 | StringLiteralSingle
396 ) ;
397 fragment StringLiteralMultilineDouble: '"""' .*? '"""';
398 fragment StringLiteralMultilineSingle: '\'\'\'' .*? '\'\'\'';
399 fragment StringLiteralDouble: '"' (~["\\\r\n\u000C] | EscapeSequence)* '"';
400 fragment StringLiteralSingle: '\'' (~['\\\r\n\u000C] | EscapeSequence)* '\'';
401
402 // Keywords
403 PIPELINE : 'pipeline';
404 STAGES : 'stages';
405 PARALLEL : 'parallel';
406 STAGE : 'stage';
407 STEPS : 'steps';
408 ENVIRONMENT : 'environment';
409 INPUT : 'input';
410 TOOLS : 'tools';
411 PARAMETERS : 'parameters';
412 OPTIONS : 'options';
413 TRIGGERS : 'triggers';
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414 AGENT : 'agent';
415 POST : 'post';
416 WHEN : 'when';
417 ANYOF : 'anyOf' | 'anyof';
418 ALLOF : 'allOf' | 'allof';
419 NOT : 'not';
420 EXPRESSION : 'expression';
421 FAIL_FAST : 'failFast' | 'failfast';
422
423 // Literals
424 SCRIPT_LITERAL :
425 'script'
426 ScriptBlock
427 ;
428
429 DEF_LITERAL :
430 'def' [ \t]+
431 DefLiteralId
432 (
433 DefLiteralParam
434 |
435 '=' [ \t]*
436 )
437 DefLiteralVal
438 ;
439
440 fragment DefLiteralId :
441 Letter
442 LetterOrDigit*
443 [ \t]*
444 ;
445
446 fragment DefLiteralParam:
447 '('
448 ~[)]*
449 ')'
450 [ \t]*
451 ;
452
453 fragment DefLiteralVal :
454 (
455 ScriptBlock
456 |
457 STRING_LITERAL
458 |
459 BOOL_LITERAL
460 |
461 NULL_LITERAL
462 |
463 DECIMAL_LITERAL
464 |
465 FLOAT_LITERAL
466 |
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467 BINARY_LITERAL
468 |
469 Letter
470 LetterOrDigit*
471 )
472 ;
473
474 JENKINSFILE_DECLARATIVE :
475 'Jenkinsfile (Declarative Pipeline)'
476 ;
477
478 LIBRARY_LITERAL :
479 '@Library('
480 STRING_LITERAL
481 ')'
482 (
483 [ \t]+
484 '_'
485 )?
486 ;
487
488 IMPORT_LITERAL :
489 'import'
490 [ \t]
491 (
492 Letter
493 LetterOrDigit
494 |
495 '.'
496 |
497 '*'
498 )+
499 ;
500
501 fragment ScriptBlock :
502 [ \t\r\n\u000C]*
503 '{'
504 (
505 ScriptBlock
506 |
507 ~[{}]
508 )*
509 '}'
510 ;
511
512 // Separators
513 LPAREN: '(';
514 RPAREN: ')';
515 LBRACE: '{';
516 RBRACE: '}';
517 LBRACK: '[';
518 RBRACK: ']';
519 COLON: ':';
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520 COMMA: ',';
521 DOT: '.';
522 EQUALS: '==';
523
524 // Operators
525 ASSIGN: '=';
526
527 // Whitespace and comments
528 MULTI_COMMENT: '/*' .*? '*/' -> skip;
529 WS: [ \t\r\n\u000C]+ -> skip;
530 LINE_COMMENT1: '#' ~[\r\n\u000C]* -> channel(HIDDEN);
531 LINE_COMMENT2: '//' ~[\r\n\u000C]* -> channel(HIDDEN);
532
533 // Identifiers
534 REGEXP_LITERAL: '/' (~[/\\\r\n\u000C] | EscapeSequence)* '/';
535 IDENTIFIER: '$'? Letter LetterOrDigit*;
536
537 // Fragment rules
538 fragment ExponentPart
539 : [eE] [+-]? Digits
540 ;
541 fragment EscapeSequence
542 : '\\' [btnfr"'\\]
543 | '\\' ([0-3]? [0-7])? [0-7]
544 | '\\' 'u'+ HexDigit HexDigit HexDigit HexDigit
545 ;
546 fragment HexDigits
547 : HexDigit ((HexDigit | '_')* HexDigit)?
548 ;
549 fragment HexDigit
550 : [0-9a-fA-F]
551 ;
552 fragment Digits
553 : [0-9] ([0-9_]* [0-9])?
554 ;
555 fragment LetterOrDigit
556 : Letter
557 | [0-9]
558 ;
559 fragment Letter
560 : [a-zA-Z$_] // these are the "java letters" below 0x7F
561 | ~[\u0000-\u007F\uD800-\uDBFF] // covers all characters above 0x7F which are not a

↪→ surrogate
562 | [\uD800-\uDBFF] [\uDC00-\uDFFF] // covers UTF-16 surrogate pairs encodings for

↪→ U+10000 to U+10FFFF
563 ;
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