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Abstract

To ensure adequate performance of a system, performance regressions have to be
detected early in the software development process. Before a new software version
is released, load tests should be applied on the system. In the context of continuous
software engineering, it is crucial to keep delivery pipelines as short-running as possible
in order to release software changes frequently. Since load tests typically take longer
than functional tests, it is not possible to test for every possible workload scenario every
time before a change is committed. It would be better to focus only on those load
scenarios that are relevant for a given context, that consists, for example, of marketing
campaigns, sports events, weather, etc.

The goal of this work is to automatically generate load tests that test for the relevant
load scenarios in the future. Thereby, we aim at reducing the resource usage and the
test execution time. We develop a context description language to express contexts
that can occur in the future. Our approach takes as input a context description and
recorded request logs from the production system. It then uses the WESSBAS approach
to calculate historical workload data from the recorded request logs. Based on the
historical workload data and the passed context description, our approach then forecasts
the future workload. The forecasted workload is processed and relevant load scenarios
are identified that will occur in the future. Our approach then uses the WESSBAS
approach again to automatically generate load tests that test for the identified load
scenarios.

We evaluated our approach with a real-world data set, that contains recorded requests
from the Student Information System (SIS) of the Charles University in Prague. The
evaluation shows that contexts help to reduce the testing effort and to focus only on
the relevant workload scenarios. However, the evaluation also shows that our approach
has limitations regarding the accuracy of the forecasted workload. Load tests, that
are generated from inaccurately forecasted workload, do not test for the relevant load
scenarios.
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Kurzfassung

Zur Sicherstellung geforderter Performance eines session-basierten Systems müssen
Performanz-Regressionen im Softwareentwicklungsprozess frühzeitig erkannt wer-
den. Vor der Veröffentlichung einer Softwareversion sollten Lasttests auf das System
angewendet werden. Im Rahmen von Continuous Software Engineering ist es wichtig,
sicherzustellen, dass die Delivery Pipelines möglichst kurzlaufend gehalten werden, um
Softwareänderungen häufig veröffentlichen zu können. Da Lasttests typischerweise
mehr Zeit in Anspruch nehmen als funktionale Tests, ist es nicht möglich vor jedem
bevorstehenden Commit einer Änderung jedes mögliche Lastszenario zu testen. Es wäre
besser sich nur auf die Lastszenarien zu fokussieren, die relevant für einen gegebenen
Kontext sind. Kontexte sind beispielsweise Marketing-Kampagnen, Sportereignisse,
Wetter etc.

Das Ziel dieser Arbeit ist das automatische Generieren von Lasttests, die für relevante
Lastszenarien in der Zukunft testen. Dabei ist es unser Ziel, die Testausführungszeit
und die Ressourcennutzung zu reduzieren. Wir entwickeln eine Kontextbeschrei-
bungssprache, um Kontexte, die in der Zukunft auftreten könnten, zu beschreiben.
Unser Ansatz nimmt als Eingaben eine Kontextbeschreibung und Request Logs entge-
gen. Request Logs enthalten aufgezeichnete Anfragen an das Produktionssystem. Unser
Ansatz benutzt daraufhin den WESSBAS-Ansatz, um aus den Request Logs die historische
Last zu berechnen. Basierend auf der historischen Last und einer Kontextbeschreibung
wird dann die zukünftliche Last vorhergesagt. Die vorhergesagte Last wird verarbeitet
und es werden relevante Lastszenarien erkannt, die in der Zukunft auftreten werden.
Unser Ansatz benutzt daraufhin den WESSBAS-Ansatz erneut, um automatisch Lasttests
zu generien, welche für die erkannten Lastszenarien testen.

Wir haben unseren Ansatz mit einem Datensatz aus der echten Welt evaluiert. Dieser
enthält aufgezeichnete Anfragen an das Student Information System (SIS) der Karls-
Universität in Prag. Die Evaluation zeigt, dass Kontexte dabei helfen den Testaufwand zu
reduzieren. Weiterhin helfen Kontexte dabei, sich nur auf die relevanten Lastszenarien
zu fokussieren. Die Evaluation zeigt aber auch, dass unser Ansatz in seinem jetzigen
Zustand keine genauen Lastvorhersagen tätigen kann. Lasttests, die aus ungenau
vorhergesagter Last generiert werden, testen nicht für die relevanten Lastszenarien.
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Chapter 1

Introduction

This thesis presents an approach for the generation of context-aware load tests, that only
test for the relevant workload. In the scope of this thesis, a context is an environmental
property with an influence on the workload in a session-based system. Such contexts
are, e.g., events like marketing campaigns, but also time series like a temperature curve.
Our approach forecasts the future workload based on a context. From the forecasted
workload, we then extract the load tests.

In this chapter, we want to clarify, why such an approach is meaningful. We start with a
short motivation in Section 1.1. In Section 1.2, we list the goals of this thesis. A short
overview of the approach is presented in Section 1.3. The last part of this chapter is the
document structure in Section 1.4.

1.1. Motivation

In continuous software engineering [Bos16], it is crucial to keep the delivery pipeline
[HF10] as short-running as possible to enable high delivery frequencies. For this reason,
the classic long-running load testing approach [JH15] is hard to be executed. Load tests
take more time than functional tests and therefore, it is not possible to execute one or
more load tests that test for every possible load scenario whenever a new version of the
system or some of its components are released. Big companies like Amazon are releasing
hundreds of new versions of their systems every day [Joh13]. It would be better to
focus only on the load scenarios relevant for a given context, for example, marketing
campaigns, sports events, weather, etc. This can result in reduced test execution time
and resource usage.

The NovaTec Consulting GmbH and the University of Stuttgart (Reliable Software Sys-
tems Group) launched the collaborative research project ContinuITy [SAH18], that is an
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1. Introduction

approach for automated load testing and which will be embedded into the continuous
delivery process. ContinuITy aims to automatically generate load tests, that are repre-
sentative for the usage profiles, with the help of continuously collected measurements
[CGD18] or recorded request logs from the production system. One important goal of
the project is to reduce the test execution time and resource usage by generating only
load tests that are relevant for a given context. Until now, ContinuITy does not consider
contexts when generating load tests.

This thesis is part of the ContinuITy approach and targets the load test generation
process. The main goal is to output load tests that only test for the relevant workload.
For this purpose, we will consider contexts. ContinuITy is able to output load tests with
the help of recorded request logs from the production system. The outcome of this thesis
will be an approach that works as follows. We process request logs and calculate the past
workload the system experienced out of these logs. Afterwards, we forecast the future
workload based on the past workload and a given context. The forecasted workload is
representative for the real workload the system will experience in the future. From the
forecasted workload, we then can generate context-aware load tests, that only test for
the workload that will occur in the future.

As described above, our approach aims to forecast future workload based on a context,
and then to generate load tests from the forecasted workload. Two main characteristics
of workload are the workload intensity and user behavior. The intensity describes how
many concurrent users access the system, and the user behavior is how they navigate
through the application. To the best of our knowledge, no approach exists that forecasts
both of these characteristics, and especially not based on a context. Existing works
forecast only the workload intensity [HHKA14; RDG11]. In this thesis, we build an
approach that forecasts both of these characteristics based on contexts.

1.2. Goals

In this section, we list the goals of this thesis.

Development of a description language for contexts: The first goal is to develop a
description language to express contexts. The language can be used to pass a description
of future contexts, that will occur in the time range a user wants to load test for, to our
approach, which then will be considered for workload forecasts. A user should be able
to express different kinds of contexts with the language. For this purpose, we research
what kind of contexts exist, and consider them in the design of the language.

2



1.3. Overview of the Approach

Find a suitable workload representation: The second goal is to find a workload
representation, which considers the two main characteristics of workload, that are the
workload intensity and the user behavior, and which can be used to forecast the future
workload. Furthermore, it should be able to extract load tests from the forecasted
workload.

Forecast the future workload accurately: One further goal of this thesis is to forecast
the future workload a system will experience with high accuracy. Otherwise, when we
extract load tests from the forecasted workload, they will not test for the real workload.
To increase the forecast accuracy, we also consider expected occurring contexts in the
future.

Extract relevant load tests from the forecasted workload: We only want to extract
load tests from the forecasted workload that simulate load scenarios that really occur
in the future. Also, a user of our approach might want to test only for particular load
scenarios. Our approach should return load tests, that simulate the requested load
scenarios. The testing effort (resource usage and test execution time) of the execution
of such a load test should not exceed the effort that is really required to simulate the
load scenario in the future.

Implementation of the approach: This thesis is part of the ContinuITy approach.
Hence, another goal is to extend the ContinuITy approach and to embed our approach
into it.

Evaluation of the approach: We want to investigate, whether our approach is able to
forecast the future workload with high accuracy, and whether the extracted load tests
test only for the relevant workload. The goal is to design experiments whose results can
precisely answer the research questions (RQs) of the evaluation.

1.3. Overview of the Approach

The workload a system experiences consists of the amount of concurrent users over
time (workload intensity) and the behavior of the users when navigating through
the application (user behavior). WESSBAS is already capable of extracting Markov
chains from a session log, which is a special representation of request logs containing
session identifiers. A session log consists of session entries, where one session entry

3



1. Introduction

holds information about one session. A session entry starts with a session identifier
followed by the sequence of requests made in that session. Each extracted Markov
chain represents a user group with particular user behavior. The calculation of the
Markov chains is based on clustering algorithms, where each session entry of a session
log is assigned to a cluster. We extend WESSBAS and the used clustering algorithms in
order to retain the information on which session entry was considered for which cluster.
I.e., after the chains are calculated, we have user groups with different user behavior
and the session entries assigned to the user groups. From the session entries, we can
calculate the workload intensity of each user group. The outcome of this algorithm
are discrete workload intensity values over time. Additionally, we build a context
description language (CDL) in order to pass context descriptions to our approach. Such
a context description consists of contextual data, that are events and measurements
impacting the workload an application experiences. Such events are, for example,
marketing campaigns, sports events, etc. Example measurements that have an impact
on the workload are, e.g., measured temperature values. From the contextual data,
we calculate regressors, that are understood by time series forecasters Telescope and
Prophet. They are able to include regressors in their prediction models and can consider
them for the forecasting. By passing the workload intensities and regressors to the
forecasters, we get as a result forecasted intensities for each user group. By processing
them, we update the occurrence probabilities of the Markov chains during the workload
generation. The processed intensities and updated occurrence probabilities are passed to
WESSBAS, which finally generates the load tests testing for the workload that is relevant
for a given context.

1.4. Document Structure

This thesis is structured as follows.

Chapter 2 – Foundations and State of the Art: In this chapter, we explain founda-
tions for this thesis. We introduce important terminology required for this thesis,
and introduce state of the art. State of the art comprises, i.a., existing tools that
are important for our approach.

Chapter 3 – Related Work Here, we introduce related work to our approach. Intro-
duced are works on test test case selection and prioritization, workload characteri-
zation, and workload forecasting.

Chapter 4 – Approach This chapter is the main part of this thesis. It describes in detail
our approach. An overview of our approach was presented in Section 1.3.

4



1.4. Document Structure

Chapter 5 – Implementation In this chapter, we present implementation details of our
approach. Especially, we explain how our approach is embedded into ContinuITy.

Chapter 6 – Evaluation Here, we evaluate our approach. We investigate the two main
parts of our approach, that are the workload forecasting, and the processing of the
forecasted workload.

Chapter 7 – Conclusion In this chapter, we summarize the outcomes of this thesis and
propose future work.

Chapter A – Appendices Here, we attach further outcomes of this thesis.

5





Chapter 2

Foundations and State of the Art

The introduction of this thesis clarified why it is meaningful to load test based on
contexts. The main goal is to focus only on the relevant workload and reduce the test
execution time and resource usage.

In this chapter, we present foundations and state of the art that are important for this
thesis. We first introduce important terms used throughout this document in Section 2.1.
Our approach will extend the ContinuITy approach, which is described in Section 2.2. In
Section 2.3, we present the WESSBAS approach that is able to automatically generate
load tests from request logs. Load tests typically are executed to investigate whether a
system can handle the future workload it will experience. We will forecast the future
workload based on the past experienced workload and a given context with the help
of time series forecasters. An introduction to time series forecasting is provided in
Section 2.4. We use a time series database (TSDB) to store intermediate results of parts
of our approach. An introduction to TSDBs is given in Section 2.5. To express contexts,
we build a description language. The syntax of the language is based on YAML, which
we shortly explain in Section 2.6.

2.1. Terminology and Definitions

In continuous delivery (CD) [HF10], the goal is to enable high delivery frequencies of
software versions. CD is a continuous process during the software life cycle and concen-
trates on changes on the software. Changes that were successfully tested automatically
during the test process go into the software release. The delivery pipeline has to be kept
as short-running as possible in order to enable high delivery frequencies. The context of
this work is load testing [JH15], which usually takes more time than functional tests
and therefore, it is not possible to execute a load test that tests for every possible load

7
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scenario when a new version of the system or some of its components is released. It
would be better to focus only on the load that is relevant for a given context. The major
goal of this work concentrates exactly on this aspect.

Load testing is an important approach to test the performance of a system. Perfor-
mance is described as the runtime efficiency (including throughput, response times
and availability) of an application and how fast the application operates [TTP06]. A
system under test (SUT) in a testing environment is exposed to concurrent synthetic
requests via defined interfaces. The properties of these requests are representative for
the usage profile [Mus93] of the real operational environment. A usage profile consists
for example of the load intensity, the user behavior, and input data [MA02].

In this work, we focus on session-based application systems [KRM06]. A session consists
of a sequence of requests performed by a single user. Some of the requests depend on
the results of earlier requests in the session. Systems of this class are session-based.
With load testing, many concurrent synthetic requests are sent to these systems in order
to observe their behaviors under high load.

The workload, a session-based system is experiencing, is characterized by inter-session
and intra-session metrics [GSML06]. Inter-session metrics include the number of sessions
per user and the number of active sessions over time (also called workload intensity).
In contrast, intra-session metrics characterize single sessions. The metrics are session
length, number of requests per session, and think times between requests. The sequence
of requests a user performs within a session defines his user behavior [GSML06].

An appropriate approach to model the user behavior are Markov chains [LT03]. A
Markov chain is a stochastic process. An example Markov chain is shown in Figure 2.1.
In this example, the Markov chain transitions with a probability of 0.7 from the Start
state to State A, and with a probability of 0.3 to the state B. From both State A and State
B the chain then transitions with 1.0 probability to the end state. Markov chains are
well suited to specify how users navigate through a web application [LT03]. Workload
models exist that use Markov chains to model the user behavior [MAFM99; VHS+18].

State B 

Start state

State A 

End state

0.7

0.3

1.0

1.0

Figure 2.1.: Example Markov chain
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A workload model represents the usage profile of an application system and is the result
of the workload characterization (also referred to as workload specification) process
[MA02]. The workload characterization process analyzes user interaction characteristics
(i.e., intra-session and inter-session metrics) with an application and then outputs a
workload model from these characteristics [CS93]. Systems, like WESSBAS [VHS+18],
exist which automatically generate load tests from workload model instances.

2.2. ContinuITy

ContinuITy is a research project, which deals with automated performance testing in
continuous software development. It uses continuously measured data from production
in form of traces [JSB97] (recorded by APM tools, like Kieker [HH19] or inspectIT
[NTC19]), or in form of request logs (recorded from, e.g., Web servers) to provide
efficient load testing. For this purpose, load tests are extracted automatically from these
data. The tests are defined through a description language. The goal of ContinuITy is to
be embedded into a continuous delivery process and to reduce the usage of resources
and test execution time by choosing only relevant load tests to execute [SAH18].

One major goal of the ContinuITy project is to automatically extract relevant load tests
for a given context. This will be put into effect by this thesis. Our approach will be
embedded into ContinuITy.

ContinuITy utilizes the WESSBAS approach [VHS+18] to automatically generate load
tests. It is explained in the following.

2.3. WESSBAS

WESSBAS [VHS+18] is an approach for the automatic extraction and transformation
of workload specifications for load testing of session-based systems. The WESSBAS
approach comprises three main parts:

• Layered modeling of workload specifications of session-based systems with a
domain-specific language (DSL)

• Extracting instances of this DSL automatically from session logs of production
systems
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• Transforming the DSL instances into workload specifications executable by load
generation tools, like Apache JMeter [AJ19]. Load generation tools use the speci-
fications to generate synthetic workload to the SUT by issuing a set of customer
requests.

WESSBAS DSL instances are workload models. The workload model specifies the
following attributes:

• An application model that specifies allowed sequences of requests (sequences of
service invocations)

• A set of behavior models each representing a Markov chain. States of the Markov
chain are services. Edges are transition probabilities. The behavior models also in-
clude a think time distribution. This means there is a wait time between subsequent
requests chosen accordingly to the think time distribution.

• A behavior mix that assigns each behavior model a probability for its occurrence
during workload generation

• A workload intensity that specifies the amount of concurrent users (sessions)
during workload generation execution

A session log can be obtained from request logs that contain session identifiers and
timestamps for each request. The session information can be extracted from the SUT.
WESSBAS takes as an input a session log and outputs a WESSBAS DSL instance. The
DSL instance can then be transformed into a JMeter load test. For this thesis, we use
WESSBAS for the calculation of the past workload and for the load test generation, since
it is already included in ContinuITy. For this purpose, we make use of its components,
that are:

• Behavior model extractor: Calculates the behavior models and the Behavior Mix
from a session log.

• Workload model generator: Builds the application model and generates a workload
model instance. For this purpose, it takes as input the behavior models, the
Behavior Mix, and a workload intensity, that is calculated from the session log. It
is the average amount of concurrent sessions contained in the log.

• Test plan generator: Converts the workload model instance into a load test.

The behavior model extractor will be used to calculate the past workload. The other
components will be used to automatically generate the load tests.
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2.4. Time Series Forecasting

An important part of this thesis is to predict the future workload a system will expe-
rience. Forecasters already exist that are capable of forecasting time series data. Our
approach will build upon existing solutions. The most important requirement we have
on the forecaster is the option to include contextual data in forecasts. Two open-source
forecasters being able to consider contextual data are Telescope and Prophet, presented
in Section 2.4.1 and Section 2.4.2, respectively. Contextual data has to be passed in
form of regressors to the tools in order to be understood by the tools. Later, when we
build our approach, we will convert contextual data into such regressors. We compare
both tools in Section 2.4.3.

2.4.1. Telescope

Telescope [ZBH+17] is a hybrid forecaster that makes use of several forecasting methods.
The used methods are XGBoost [CG16], ARIMA, and artificial neural network (ANN)
[HK+07]. The main goal of the Telescope approach is to achieve a more robust forecast-
ing result, i.e., to reduce the variance in the forecasting result, by combining the benefits
of the different forecasting methods. As shown in Figure 2.2, the forecasting is done in
several steps. First, the frequency of the time series is estimated. Outliers and anomalies
are then removed from the time series with the help of the estimated frequency. The
revised time series is then decomposed into the components season, trend and remainder.
The splitting is normally based on additive decomposition (additive model). Multiplica-
tive decomposition is only applied if there is an increase of the seasonal pattern as
the trend increases, and vice versa. In the next step, season and trend are separately
forecasted. The forecasting of the season is simply done by continuing the seasonality,
whereas the trend is forecasted by applying the ARIMA forecasting method. The revised
time series is also used for learning and creating categorical information. The time series
is cutted into single periods. k-means clustering algorithm [Har75] is then used for the
clustering of these periods into two classes (represented by centroids). ANN is applied
on both classes to forecast the clusters. The last step of the Telescope approach is the
remainder forecast and composition of forecasting results. For this purpose, the machine
learning algorithm XGBoost is applied [ZBH+17]. It learns the dependencies between
the forecasts by passing the trend, season, and cluster forecasts as covariates to it and,
finally, combines the forecasts of the components [Züf17]. Regressors can be passed to
Telescope, that are then considered in the forecasting model (additive or multiplicative)
as another component.

Telescope is an open-source tool [Uni18].
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Figure 2.2.: Telescope steps [ZBH+17]

2.4.2. Prophet

Prophet [TL18] is a time series forecasting tool developed by the Facebook research
group. Prophet does not aim to completely automate the forecasting, but to include
configurable parameters that can be easily adjusted by non-experts in order to cover
reliable forecasting results for a wide variety of business use-cases [fac17]. However,
compared to other forecasting methods, it still produces accurate forecasts with default
settings. Prophet’s additive forecasting model handles common features of business
time series and consists of three main components: trend, seasonality and holidays.
Equation (2.1) shows the additive model as equation:

(2.1) y(t) = g(t) + s(t) + h(t) + ϵt

where

• g(t) is the trend function modeling non-periodic changes in the time series values
(curve trend)

• s(t) is the seasonality function modeling periodic changes in the time series values
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• h(t) is the holidays function representing effects of holidays which can occur at
irregular point of times

• ϵt is the error term describing idiosyncratic changes which are not accommodated
by the model [TL18]

For the trend component, Prophet also provides uncertainty intervals. For the seasonality
function, Prophet calculates a yearly seasonal component using Fourier series, and a
weekly seasonal component using dummy variables. Holidays are passed as a list to the
approach by users. Additionally, users are able to add extra linear regressors to the time
series. An extra regressor can also be another time series [fac19].

Prophet is available in R and Python and is open-source. Installation details are provided
in the Prophet quick start documentation [fac19].

2.4.3. Comparison of Telescope and Prophet

In Table 2.1, Telescope and Prophet are compared against each other. Both tools are
available in R [The19b]. Additionally, Prophet is available in Python [Pyt19]. The
forecasting models are similar. The difference is in the third main component of the
models. In Telescope, it is noise, whereas in Prophet it is holidays. Both tools can
consider regressors as another component of the model. In contrast to Telescope,
Prophet considers uncertainty intervals in its models, and forecasted values can be
negative.

Telescope Prophet

Available in R Available in R and Python
Model consists of three main components:

1. trend

2. seasonality

3. noise (remainder)

Model consists of three main components:

1. trend

2. seasonality

3. holidays

Regressors can be included in forecasts Regressors can be included in forecasts
Does not consider uncertainty intervals Considers uncertainty intervals
Forecasted values cannot be negative Forecasted values can be negative

Table 2.1.: Comparison between Telescope and Prophet
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2.5. Time Series Database

We use a time series database (TSDB) to store forecasted workload data and contextual
data. Our approach then can access the data on demand. A TSDB is a database (DB)
built specifically to operate on time series data [Mit10]. Such data are time-ordered
measurements or events, which are timestamped [Inf19d]. A TSDB provides typical DB
operations like create, update, read and delete, and also mathematical operations to
analyze and to aggregate time series data [Inf19c]. As TSDB we use InfluxDB [Inf19b].

InfluxDB is designed to store large amounts of timestamped data. Its query language
is similar to SQL [DD98]. A DB table in InfluxDB is called measurement. A row in the
measurement is called a data point. It consists of a timestamp and a single collection
of fields. A field is a key-value pair, where the field key is the name of a column
in the measurement, and the field value is a measured value. field values with the
same field key are stored into the same column. Since a data point can consist of more
than one field, it can hold more than one measured value associated with the same
timestamp. Timestamps are stored in a column named time, which is the primary key,
i.e., in one measurement two data points cannot have the same timestamp. To retrieve
all data points from a measurement, we can run the following query:

SELECT * FROM <name of measurement>

where <name of measurement> is the name of the measurement we want to retrieve
the data from. To insert a data point with one field into a measurement, we can run the
following query:

INSERT <name of measurement> <field key>=<field value> <timestamp>

where <name of measurement> is the name of the measurement we want to insert the
data point into, <field key> is the name of the column the actual value will be stored
into, <field value> is the actual value, and <timestamp> is the associated timestamp
with the data point. When no measurement named with <name of measurement>
exists, this query will first create a new measurement, and then insert the data point
to it. For further information on InfluxDB and its query language see the InfluxDB
documentation [Inf19c].
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2.6. YAML

In order to include contexts in workload forecasts, a user has to pass a context description
to our approach. The syntax of such a context description is based on YAML [19b]. YAML
stands for “YAML Ain’t Markup Language” and is a human-readable data serialization
language. It is a superset of JSON [19a]. Here, we introduce constructs of the language
we will make use of for our context description language (CDL). They can be seen in the
YAML document shown in Listing 2.1. # initiates a single-line comment. A dictionary
lists key: value mappings and is equivalent to an object in object-oriented languages
like Java [Ora19]. Dictionaries can be nested. A list is a collection of ordered values. A
dictionary can be nested into a list, and vice versa. Document structure is represented
through indentation [Bla19; Bre19].

Listing 2.1 YAML document
# root object of the document is a dictionary

# a key-value pair

key: value

# a nested dictionary

nested_dictionary:

key: value

key_2: value_2

# a list of elements

list:

- element1

- element2

- ...

# a dictionary as a list element

another_list:

- key: value

key_2: value_2
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Chapter 3

Related Work

Related work can be found in the field of test case selection and prioritization, workload
characterization, and workload forecasting. Test case selection and prioritization is
related to our work, since our main goal is to generate few relevant load tests by means
of a context description. Related works from this area are described in Section 3.1. Based
on historical workload data, we will forecast the future workload. For this purpose,
historical workload data has to be represented conveniently. Hence, we deal also
with workload characterization and possible representations of the workload. Related
works on workload characterization are described in Section 3.2. The last related field
discussed in this section is workload forecasting. In this work, we forecast the future
workload based on historical workload data and contextual data, like measurements
and events, and extract the load tests from the forecasted workload. Related works from
this area are listed in Section 3.3.

3.1. Test Case Selection and Prioritization

The following works aim to reduce the amount of tests applied to an SUT. The first
two works focus on the selection of relevant functional tests, that are used to find bugs
in a new software version. The third work uses regression test selection in order to
select relevant performance unit tests for the detection of performance changes between
software versions.

Spieker et al. [SGMM17] present a method called RETECS for the automatic selection
and prioritization of test cases in continuous integration, where test cases should be
performed every time when committing new code. For this purpose, the method uses
reinforcement learning in order to select the best suited test cases for effectively finding
bugs in the new code. With the help of a reward function, the method learns to prioritize
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error-prone test cases higher than successful test cases. In contrast to this work, we do
not aim to find bugs in code with functional tests. Instead, we want to execute load
tests on the SUT. One more difference is that our approach does not use reinforcement
learning and information from the development (code changes) for the selection of
relevant load tests, but historical workload data and contextual data, like measurements
and events, i.e., we use information from the production environment for the load test
selection.

Srivastava and Thiagarajan [ST02] present their test prioritization system Echelon in
order to select appropriate functional tests for the detection of bugs in the SUT. It
prioritizes a given set of tests by means of the changes that where made to the program.
Echelon compares two versions of the code in order to find the differences between them.
After that, it uses a heuristic to prioritize and select the tests that cover the changes
in the new version. The similarity to our approach is the goal to apply only relevant
tests to the SUT. The differences to our approach are again the focus on functional tests
instead of load tests and that the authors select the tests based on code changes. We
use information from the production environment (measurements/events) to select load
tests.

Reichelt and Kühne [RK18] present a method called Performance Analysis of Software
Systems (PeASS) for detecting performance changes in software repositories. It builds up
a knowledge base of changes that have an impact on performance through the analysis
of the version history of a repository. The analysis is done by using the system’s unit tests.
PeASS uses a method that identifies performance changes between these unit tests by
measurement and statistical analysis. In order to reduce the measurement time, PeASS
uses regression test selection in order to select the unit tests with potentially changed
performance for every software version. The difference to our approach is the selection
of performance unit tests instead of load tests. Furthermore, in contrast to this approach,
we will predict the future workload a system will experience.

3.2. Workload Characterization

As mentioned in Chapter 2, the workload of session-based systems is characterized
by intra-session and inter-session metrics. Beside other metrics, especially the user
behavior (sequence of requests a user performs) is characterized by the intra-session
metrics. On the other hand, the inter-session metrics especially comprise the workload
intensity (number of active sessions over time). The outcome of the specification of
these metrics is the workload model. In our approach, we forecast the future workload
based on historical workload data. Somehow, we have to represent the workload from
the past. For this purpose, we have to consider variations of the user behavior and
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the workload intensity over time. In the following, we present works that deal with
workload modeling and workload representation. We first will look into raw workload
data representations, which include all required workload information. In the second
part, workload models are presented, that are extracted from raw workload data and
which represent a high-level view of the workload.

3.2.1. Raw Workload Data Representations

When monitoring session-based systems, monitoring facilities can produce different
log formats. To be independent from specific monitoring solutions, the works from
Menascé et al. [MAFM99], Vögele et al. [VHS+18], and Krishnamurthy, Rolia, and
Majumdar [KRM06] first extract a preprocessed consistent log format from raw HTTP
server (request) logs, that contain all required session information in order to later
generate a workload model. Besides, it is easier to further process these logs than the
raw request logs (i.e., for clustering algorithms used for the generation of the workload
model), since they list all user sessions (one session containing all performed requests
in this session) consecutively. Menascé et al. [MAFM99] and Vögele et al. [VHS+18]
call the preprocessed logs session logs, whereas Krishnamurthy, Rolia, and Majumdar
[KRM06] call them a trace of sessionlets. The raw request logs and the preprocessed logs
were considered as possible workload representations for this thesis, as they include all
required workload information (comprising performed requests to services with session
identifiers and timestamps of the requests).

3.2.2. Workload Models

Kistowski, Herbst, and Kounev [KHK14] introduce the LIMBO toolkit for the instantiation
of load intensity models. LIMBO is based on two metamodels that allow to describe
dynamic and variable load intensity profiles and workload scenarios over time. The
metamodels do also consider seasonal patterns, trends, bursts, and noise parts. Their
evaluation shows that both metamodels are able to capture real-world load profiles
with acceptable accuracy. The approach does not consider the user behavior, which is
required in our representation of the workload.

To model the user behavior, Markov chains are one possible representation. Li and
Tian [LT03] show that the web usage can be accurately modeled through them. In
order to test whether the memoryless property (transition from one state to another
only depends on the current state) of Markov chains conforms to actual web link usage
frequencies, their approach applies a small set of tests on their university’s web site, that
can be easily extracted from web server logs by gathering the web link usage frequencies
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from them. Their evaluation compares history-dependent and history-independent state
transition probabilities. Their results show that the memoryless property of Markov
chains conforms to the actual usage frequencies and, therefore, they are an accurate
model for the web usage.

Menascé et al. [MAFM99] introduce Customer Behavior Model Graphs (CBMGs) as
workload models, which describe the user behavior of customers of session-based systems
and navigational patterns. They are based on Markov chains and can be extracted from
HTTP server logs with the K-means clustering algorithm. The algorithm identifies similar
types of user groups in the logs. In addition to Markov chains, CBMGs include user think
times between state transitions.

Vögele et al. [VHS+18] introduce the WESSBAS approach for the automatic extraction
and transformation of workload specifications for load testing of session-based systems.
Their defined workload model specifies the attributes application model, behavior model,
behavior mix and workload intensity. The attributes are described in more detail in
Section 2.3. A user of WESSBAS has to set the workload intensity attribute manually.
Instances of the defined workload model are extracted from session logs.

Krishnamurthy, Rolia, and Majumdar [KRM06] define a workload model that specifies
attributes with statistical characterizations. The attributes are, for example, session
interarrival time distribution, think time distribution, and session length distribution.
The user behavior is modeled through sequences of requests users perform. An instance
of the workload model can be created through the extraction of a trace of sessionlets
(sequences of real-world user requests) from raw request logs and then passing the trace
to the workload model generation engine.

The workload model from Shams, Krishnamurthy, and Far [SKF06] is based on Extended
Finite State Machines (EFSMs). They describe valid sequences of user requests in a
session. Transitions from one state to another are labeled with Guards and Actions
(GaAs), which are predefined state variables. This is the difference to Markov chains,
where state transitions are labeled with probabilities. Further attributes that can be
specified in the workload model are think times, session length distributions, and a
workload mix.

Further works defining workload models are:

• Draheim et al. [DGH+06] and Lutteroth and Weber [LW08] present workload
models that are based on stochastic form-oriented analysis models. They can be
used to model realistic user behavior in order to achieve valid load testing results.

• Abbors et al. [AATP12] present a model-based performance testing tool that
uses probabilistic models which are based on probabilistic timed automata. The
models describe how different groups of users interact with the system and include
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statistical information like the distribution between different user actions and think
times. Using the models, the tool generates synthetic workload which is applied to
the system.

• Zhou, Zhou, and Li [ZZL14] present a generic context-based sequential action
model together with a workload parameter specification language to model the
workload a system experiences. The action model is used to describe users with
similar access patterns. The authors implemented a framework based on their
proposed model to generate synthetic workloads.

The above described works do not consider both, workload intensity and user behavior
variation over time. LIMBO [KHK14] can be used for modeling the workload intensity
variation over time, but does not consider the user behavior. Works in the area of user
behavior modeling do not consider time variations of the user behavior. However, both
of the required information (workload intensity and user behavior variation over time)
are included in raw request logs (and also in the preprocessed logs extracted from
raw request logs). The problem is, that forecasts and calculations (required for the
later processing of the forecasted workload) cannot be performed well on such data.
It is easier to perform calculations on, e.g., the workload intensity. In this thesis, we
represent the user behavior through Markov chains. Each Markov chain describes a
different user group accessing the application. For each of the user groups, we calculate
its past workload intensity. Based on the past workload intensities, we forecast the future
workload intensity of each user group and update the occurrence probability of each
Markov chain during workload generation. Summarized, our workload representation
consists of Markov chains, and the workload intensities of different user groups.

3.3. Workload Forecasting

In the following, two works are presented that deal with workload forecasting. The first
work forecasts the workload intensity by analyzing the development of the workload
over time. The second work uses model predictive techniques to forecast the future
workload in order to do a better capacity planning for cloud applications.

Herbst et al. [HHKA14] consider several workload forecasting techniques based on
time-series data for resource management and capacity planning. They classify them
regarding their computational overheads and investigate their benefits and drawbacks.
Furthermore, they introduce an approach for the selection of appropriate forecasting
techniques for a given context. The approach is based on a decision tree. The goal
of the approach is to provide reliable forecast results at runtime. Future workload is
forecasted by analyzing the development of the workload over time. However, only the
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workload intensity is forecasted. The user behavior is not considered. For our approach,
beside the workload intensity, we will also forecast the future user behavior. Another
difference to our approach is that Herbst et al. [HHKA14] do not extract load tests from
the forecasted workload.

Roy, Dubey, and Gokhale [RDG11] present a resource allocation algorithm based on
model predictive techniques to forecast the future workload a large-scale component-
based enterprise application will experience. The algorithm is used for resource autoscal-
ing in the cloud. The goals of the approach are to allocate and deallocate resources in a
way that satisfies the Quality of Service (QoS) an application expects from the cloud
provider and to keep operational costs low. The authors focus only on forecasting the
future workload intensity, but not the future user behavior. Our approach comprises
both and extracts load tests from the forecasted workload. The load tests test for future
workload a session-based system will experience. The execution of the load tests will
show whether the system can handle the future workload, or if more resources are
needed. Thus, our approach can also be used for capacity planning.
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Approach

In this thesis, the main goal is to focus only on the future workload that is relevant for a
given context, and to generate load tests which test for the relevant workload. Thereby,
we aim to keep the test execution time and the resource usage as small as possible, but
still apply the relevant workload on the system. One assumption of our approach is that
users want to load-test for future contexts. By passing a context description containing
contextual information to our approach, a user will get load tests, that only test the
relevant workload.

We already shortly outlined our approach in Section 1.3. A more detailed overview
of our approach can be found in Section 4.1. It shows the whole pipeline of the load
test generation, that starts by passing request logs to the approach. Individual parts
of the pipeline are shortly described. We summarize assumptions we make for our
approach in Section 4.2. In the next sections, we break down the pipeline into its parts,
consisting of the generation of a session log, the context description language (CDL),
the representation and forecasting of workload, and the processing of the forecasted
workload, and describe them in detail. We use WESSBAS for our approach to calculate
historical workload data. The input to WESSBAS is a session log, that is a special
representation of request logs. In Section 4.3, we explain how we generate a session log
from request logs. A context description passed by the user has to follow rules of a CDL,
that is described in detail in Section 4.4. We use time series forecasters to forecast the
future workload. To be processible by such forecasters, workload has to be represented
in a way that can be understood by the forecasters. In Section 4.5, we perform a process
to output such a workload representation and describe the forecasting approach. Finally,
in Section 4.6, we process the forecasted workload and output relevant load tests.
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4.1. Forecast Process

In this section, we provide a detailed overview of our approach. We develop a process
to forecast the future workload based on historical workload and a context description.
The output of the process are tailored load tests for the user. An overview of the forecast
process is shown in Figure 4.1. The dashed lines border parts of the process, which we
shortly describe in the following. The parts are then described in more detail in the next
sections.

Generation of Session Log: We forecast the future workload based on historical
workload data and a context description. We use WESSBAS to calculate the historical
workload from a session log, that is a representation of request logs WESSBAS can
process. We build a processor to convert request logs extracted from an system under
test (SUT) into a session log.

Request
Logs Session Log Wessbas Behavior Model

Extractor

Workload Intensity  
Calculation 

Context  
Description 

Context Description
Language 

Processing of
Forecasted Workload

Wessbas
Workload Model Generator 

Wessbas
Test Plan Generator 

Workload
Forecasting

Generation of Session Log Workload Characterization
and Forecasting Workload Processing

Load Test

TSDB

Figure 4.1.: Forecast Process
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Workload Characterization: We use time series forecasters to forecast the future
workload. For this purpose, we have to represent historical workload in a way that can
be understood by the forecasters. As stated in Section 2.1, important characteristics
of workload comprise the workload intensity and the user behavior. When forecasting
the future workload, we refer to these two characteristics. We calculate the historical
workload from a session log. Our assumption is that the log contains all required
historical workload information. We use the WESSBAS behavior model extractor to
extract behavior models (Markov chains with think times) from a session log. The
resulting behavior models represent all different user groups manifested in the log, i.e.,
with this procedure we calculate the user behavior. However, we cannot input Markov
chains to the time series forecasters. Instead, we calculate for each Markov chain (user
group) its past workload intensity, which can be expressed through a time series of
values. We can do so, since we have session information for each of the chains. The time
series is saved into the time series database (TSDB) InfluxDB so that for particular logs
of requests the workload intensity has not to be calculated again, when the approach is
triggered.

Context Description Language: We can include contexts in workload forecasts. In
the scope of this thesis, a context is either an event or a time series (e.g., temperature
curve), which has an influence on the workload a session-based system experiences.
Our approach has no knowledge about contexts and, hence, all contextual data have to
be provided by the user. For this purpose, our approach provides an endpoint, where
the user is able to stream contextual data into the InfluxDB. He can stream past as well
as future context values. Such values are, e.g., temperature values from the past and
future, or past and future occurrences of events. He can stream into a measurement
either numerical data or Strings. The user decides by himself, in which measurement
the data will retain (by choosing a name, that does not already exist in the InfluxDB, he
will create a new measurement). Once contextual data is streamed into the InfluxDB,
our approach can access it and consider it in forecasts. The user decides which contexts
to include in a particular forecast. For this purpose, the user has to pass a context
description to our approach. A context description has to follow rules of a CDL, and
consists of one or more context parameters. Each parameter at least tells our approach
from which measurement to include contextual data. Additionally, a user is able to pass
future context values with each parameter, e.g., that next week’s Friday is Black Friday.
Future context values passed in the context description have higher priority than future
context values already contained in the measurement, and, hence, will override the
information.
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Workload Forecasting: Before forecasting the workload by passing the past workload
intensities to time series forecasters, we process a user’s context description input. As
time series forecasters we use Telescope [Uni18] and Prophet [fac17], which are able to
consider regressors in their prediction models. They expect that for each value in the
time series one corresponding value in the regressor exists. In addition, values for the
forecast have to exist in the regressor. We will calculate them from the passed context
description. Included context parameters tell our approach from which measurements
to include contextual data for the forecasting. Depending on the data contained in a
measurement, we calculate regressors from a context description as follows:

1. Numerical data: If the context parameter tells our approach to include data from a
measurement containing numerical data (e.g., temperature values), we calculate
one regressor from the data. It can be seen as an additional time series to the
workload intensity. Numerical values are not changed, we insert existing values
directly into the regressor. If there are gaps, we insert a 0. Future values passed in
a context parameter update the already calculated regressor.

2. Strings (events): If the context parameter tells our approach to include data from
a measurement containing events (strings), we calculate for each different string
one regressor. One regressor can be seen as a binary indicator whether an event
did take place or not. We use 0 for no occurrence (gaps), and 1 for occurrence.
Future values passed in a context parameter are transformed to a 1 and update
the already calculated regressor.

With the regressors, the forecasters are able to do a more sophisticated forecasting,
because influences of events can be learned from the past and considered in the fore-
casting. For numerical values, they learn the influence of values on the workload, e.g.,
a higher value leads to a higher workload. The workload intensity of each user group,
represented through a time series, and regressors are passed to either Telescope or
Prophet, which then predicts the future workload intensity for that user group. The
outcome of this process is a time series for each user group, where one particular time
series is the forecasted workload intensity of one particular user group.

Workload Processing: In the last step, the forecasted workload intensities have to
be processed in order to output load tests. A user of our approach decides for which
workload scenarios he wants to test. Such a load scenario could be high workload, or a
sharp increase in workload. We cover different load scenarios a user could request for.
We aggregate the forecasted workload intensities into one aggregated time series, that
is the sum of the values of the forecasted intensities at times t1, ..., tn, where t1 is the
timestamp of the first values, and tn the timestamp of the last values of all forecasted
intensities. From the aggregated time series, we extract the load tests. For example,
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when the user requested a high workload scenario, we extract the maximum value from
the aggregated time series, and set it as the workload intensity of the load test we will
return to the user. To update the user behavior, we calculate the occurrence probability
of each behavior model during the workload generation. In the example above, we
extracted the maximum value from the aggregated time series. This value is the sum of
values from the forecasted intensities at a particular time t. To update the occurrence
probability of a particular behavior model, we divide the value of the intensity, that was
forecasted for the user group that the behavior model describes, by the maximum value.
The result is the occurrence probability of the behavior model during the workload
generation. When the load test simulates a particular user, a behavior model is then
chosen based on the probabilities, and the user navigates through the application as
specified by the chosen behavior model. To generate a load test, we pass the extracted
workload intensity for the load test and the calculated occurrence probabilities of the
behavior models to the WESSBAS workload model generator. This component generates
a workload model instance out of the workload intensity, the previously calculated
behavior models, and the occurrence probabilities. The workload model instance is
then passed to the WESSBAS test plan generator, which converts the workload model
instance into a load test. The load test is returned to the user.

In this section, we made a few assumptions, that are summarized in Section 4.2.

4.2. Assumptions

This section provides a list of assumptions we make for our approach. We also list the
limitations that are involved with each of the assumptions. They are made to limit the
scope of this thesis. The list is shown below.

• Assumption: Users want to test for future contexts.
Limitation: Users are not able to directly test for past contexts, they would have
to make a workaround.

• Assumption: All required workload and session information is manifested in the
request log.
Limitation: Our approach is restricted to session-based systems.

• Assumption: A future context that should be included in the forecast was already
observed in the past.
Limitation: Users cannot test for contexts that have never been observed.

• Assumption: Past and future contextual information is provided by the user.
Limitation: Our approach by itself has no knowledge about contexts.
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• Assumption: Our approach can access past contextual data.
Limitation: The past data has to be available to our approach before it is triggered.

4.3. Generation of Session Log

We use WESSBAS for the extraction of behavior models from request logs. As stated in
Section 2.3, the input to WESSBAS is a session log, that is a representation of request
logs WESSBAS can process. Request logs can be extracted from the session-based SUT
and we assume them to contain recorded session information. For instance, such request
logs are provided by common web servers in form of HTTP request logs [MAFM99]. In
a session log, request entries are grouped by their session identifier into session entries.
A request entry contains information of exactly one recorded request. Each session
entry lists the sequence of subsequent requests (in form of request entries) in a session
[VHS+18]. Figure 4.2 shows an example session entry with two request entries. A
session entry starts with a unique session identifier, followed by the sequence of request
entries. Request entries are separated with a semicolon. Each request entry has the
following information:

1. Requested service

2. Start time of the request

3. End time of the request

4. Request URL

5. Port

6. Host IP

7. Protocol

8. Method

9. Request parameter with values

10. Encoding

For our approach, we build a session log generator that is able to generate a session
log from request logs in CSV format. The first row of the CSV represents the column
names. They correspond to the information that is contained in a session entry. Each
of the following rows represents a request. In Figure 4.2, an example session entry is
shown. The CSV from which this entry could have been extracted is shown in Figure 4.3.
Some of the columns have been left empty. They could have been omitted completely.
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cecef3d42f6cdd008d36e78e20403d14;"studium":1536717132000000000:1536717132000000000:
/studium/login.php:8080:127.0.0.1:HTTP/1.1:GET:<no-query-string>:UTF-8; 
"studium":1536717135000000000:1536717135000000000:/studium/verif.php:8080: 
127.0.0.1:HTTP/1.1:POST:<no-query-string>:UTF-8; 

Figure 4.2.: Example session entry

id service start end url port host ip protocol method parameter encoding

cecef3d42f6cdd008d36e78e20403d14 studium 1536717132000000000 /studium/login.php GET 

cecef3d42f6cdd008d36e78e20403d14 studium 1536717135000000000 /studium/verif.php POST 

Figure 4.3.: Part of example request log in CSV format

It is to show that our approach does not require every information from a request log
to build the session log. The minimum information our approach requires are the start
time of a request and the request URL or the requested service. The other information
can be derived/ mocked as follows:

• Session identifier: To obtain sessions, we use a timeout value of 30 minutes
between two subsequent requests [FGL15] in order to calculate the session identi-
fiers.

• Requested service: When the requested service is not available, then the request
URL has to be available. We can extract the requested service from the request URL.
How this can be achieved is explained for a real-world request log in Section 6.2
in the evaluation chapter.

• End time of the request: We set the request end time to request start time.

• Request URL: When the request URL is not available, then the requested service
has to be available. We then set the request url to the service.

• Port: We set “8080” as the port.

• Host IP: We set “127.0.0.1” as the host IP.

• Protocol: We set “HTTP/1.1” as the protocol.

• Method: We set “GET” as the method.

• Parameter: We set “<no-query-string>” when no parameters exist, as in this case
this is the String expected by WESSBAS.

• Encoding: We set “UTF-8” as the encoding.
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With the session identifiers, our approach groups the requests, so that requests with
the same session identifier are in one group. For each group, our approach calculates
one session entry. Available request information is directly taken from the CSV. The
remaining information is obtained as described above for each request. The approach
then writes line by line the calculated session entries into the session log.

4.4. Context Description Language

In the scope of this thesis, a context is either an event or a time series (e.g., temperature
curve), which has an influence on the workload a session-based system experiences.
For example, sale events of web shops, like a Boxing Day event, typically lead to an
increased workload as a lot of users access the website. It is not unusual that web
pages then take extremely long to load or that the web application even crashes. This
could be prevented by load testing the application before the event occurs and then to
prepare for the upcoming scenario. To decrease the test execution time, it suffices to
test for the increased workload that occurs during the event. In this thesis, we build an
approach to generate load tests which test for the workload that is relevant for one or
more given contexts. We assume that all contextual data is provided by the user and
that our approach can access it from measurements from an InfluxDB. To test for the
relevant workload, the user passes a context description to our approach, which consists
of one or more context parameters. Each context parameter tells our approach from
which measurement in the InfluxDB contextual data should be included in the workload
forecast. We then build regressors out of the data, which can be considered by time
series forecasters in their prediction models, i.e., forecasts then consider contexts. By
processing the forecast results, we then output context-aware load tests. We summarize
and define the terms regarding context we will use throughout this thesis:

• Context: An event or time series (e.g., temperature curve) that has an influence
on the workload a session-based system experiences.

• Contextual data: Past and future occurrences of the event, or past and future
values of the time series, i.e., one or more context values.

• Context value: Either an event occurrence or one value of the time series.

• Context description: Used to describe one or more contexts. Consists of one or
more context parameters.

• Context parameter: Specifies at least from which measurement contextual data
should be included in the forecast. Furthermore, a user can pass future context
values with the parameter.
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In this section, we design a description language for context descriptions. They have to
follow the rules of the language. How a context description is then processed by our
approach is explained in more detail in the next section, Section 4.5.

Contexts impacting the workload can be very different for different session-based systems.
Hence, before we design the CDL, we first collect occurred real-world contexts that had
an influence on the workload of the affected application. They are listed in Section 4.4.1.
Based on the collected real-world contexts, we explain design decisions of the CDL in
Section 4.4.2. The metamodel is presented in Section 4.4.3, where we describe syntax
and semantics of provided context descriptions.

As already mentioned in Section 4.2, to limit the scope of this thesis, we assume in
the following that all contextual information is provided by the user and that contexts
occurring in the future already have been observed in the past.

4.4.1. Observed Contexts in Real World

Table 4.1 and Table 4.2 list observed real world context that had an influence on the
affected application. When designing the CDL, we want to be able to map all of the
collected contexts with our language. For this purpose, we categorize the found contexts
by their context type, which we could identify from the collected real world contexts.
The types are:

• Recurring event: An event, that was already observed in the past. It has an impact
on the workload, when it occurs. It lasts for a particular time span and reoccurs at
a particular point of time.

• Unpredictable event: An event, from which it is not known when it will occur.
This type can be splitted into two subtypes:

1. Observed unpredictable event: An event, that was already observed in the
past. It is not known, if and when the event will reoccur. It has an impact on
the workload, when it occurs. It lasts for a particular time span.

2. Once-in-a-lifetime event: An event, that was never observed in the past. It
is not known, when it will occur, how long it will occur, and what the impact
on the workload will be. It occurs (with high probability) once in a lifetime
and can have a great impact on the experienced workload.

• Measurements: A time series of measured numerical values that can change over
time. Changes in the values mean a change on the experienced workload.
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Date Context Context Type Impact Source

- Weekend/ holiday
effects (all web-
sites)

Recurring event Web traffic
increases/ de-
creases during
weekends and
holidays

[BRA16]

- Temperature
effects

Measurements Web traffic for
web shops de-
pends on the
weather/ temper-
ature

[Wea14]

26/12/2012 Boxing Day Recurring event High traffic due to
special offers

[Gee12]

03/03/2014 Twitter tweet dur-
ing Oscars with
many film stars

Once-in-a-
lifetime event

Twitter was dis-
rupted for 20 min-
utes

[new14]

01/10/2016 Release of new TV
series on a rainy
Saturday

Recurring event/
Continuous data

Netflix went
down for 2.5
hours due to high
traffic

[USA16]

24/11/2017 Black Friday and
new sneaker re-
leases

Recurring
event(s)

High traffic due
to Black Friday of-
fers and addition-
ally new limited
releases

[Int17]

2018 Outage of mes-
sage endpoint

Observed unpre-
dictable event

Buffered mes-
sages from
devices are send
all at once when
the endpoint
recovers, leads to
a peak load

internal

28/02/2018 Denial of service
attack

Observed unpre-
dictable event

High traffic
through sim-
ulated users,
GitHub went
down for 10
minutes

[WIR18]

Table 4.1.: Observed contexts in real world (1)
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Date Context Context Type Impact Source

29/05/2018 Question in
the “Wer wird
Millionär?” Ger-
man quiz show
[RTL19] about
existence of Ger-
man words in the
German Duden

Once-in-a-
lifetime event

duden.de [Bib19]
was not reachable

internal

04/06/2018 Project imports
from GitLab to
GitHub

Once-in-a-
lifetime event

High traffic due
to increase of
project imports
when GitHub
was acquired by
Microsoft

[t3n18]

06/07/2018 Publication of a
summertime sur-
vey

Recurring event Server went down
due to high traffic

[EUS18]

16/07/2018 Amazon Prime
Day

Recurring event High traffic due to
special offers

[BGR18]

Table 4.2.: Observed contexts in real world (2)

4.4.2. Design Decisions

As mentioned in the introduction to this section, contexts impacting workload are not
the same for all kind of applications. Therefore, it is not meaningful to predefine a
pool of contexts and restrict the user to this pool. For a specific application, a very
specific context could impact the experienced workload, that does not apply for other
applications. Therefore, we decide to let the users define their own contexts. However,
in Section 4.4.1, we identified three categories of contexts which we assume to cover all
specific contexts. This means, when users define their own context, we assume it to be
one of the identified context types in Section 4.4.1.

To limit the scope of this thesis, we made a few assumptions in Section 4.2. Two of the
assumptions we will apply here are:

1. A context that will or is assumed to occur in the future already has been observed
in the past

2. Contextual data is provided by the user
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We exclude contexts, that never have been observed in the past, since we have no
information about them and we do not know what the impact on the workload will
be when they occur. From a provided context description, our approach will build
regressors that can be passed to time forecasters, where a regressor includes past as
well future values of a context. When there are no past values, they cannot consider the
regressor in their prediction model. We first investigate for each context type, if there is
a conflict with the first assumption:

• Recurring event: Since such an event was already observed in the past, we assume
that past values are available.

• Unpredictable event: An unpredictable event is one of two subtypes:

1. Observed unpredictable event: It cannot be foreseen, when and if this event
will occur. However, this event was already observed in the past, and we
assume that our approach has access to past values. Hence, we can utilize
these types of contexts for what-if analyses. For that, a user has to specify the
assumed future contexts.

2. Once-in-a-lifetime event: Since this event never occurred in the past, our
approach cannot access past values. Hence, the user would have to provide
necessary information in the context description in order to simulate an event
according to his wishes. We will not consider once-in-a-lifetime events in our
CDL, since there is a conflict with our assumption. However, we suggest for
future work to extend the CDL to cover once-in-a-lifetime events.

• Measurements: We assume that our approach can access numerical values from
the past.

Shortly summarized, our approach will cover each context type, but not the once-in-a-
lifetime event subtype of unpredictable events. We can handle recurring and observed
unpredictable event in the same way, as in both cases we assume that our approach has
access to past values of such events. Hence, we merge them in the following together
and refer to them as the event context type.

We expect that contextual data from the past and future is available to our approach.
The information has to be provided by the user. Our approach provides an endpoint that
can be used to stream contextual data into a database (DB). As DB we use the TSDB
InfluxDB, where a DB table is called measurement. The user is able to stream past as
well as future values. The user decides in which measurement(s) the data should be
stored. He then has to tell our approach, from which measurements contextual data
should be included for the forecast. Past values of contexts must be stored into the DB.
For future values of contexts, we decide that they can be stored into the DB, and that
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the user should also be able to pass them directly in the context description. This has
the following advantages:

• When future values are known, they still can be streamed into the DB.

• When future values are not known, or the user wants to test what would be if the
future values were different, he still can pass them in the context description.

Users will be able to describe more than one context in one context description. The user
can describe contexts of different context types, e.g., temperature (measurement context
type) and a special event like Boxing Day, as well as contexts with the same context type,
e.g., two special events, in one context description. For each context, our approach will
build exactly one regressor. All regressors are then included to the forecasts.

With the decisions we made here, we are now able to build the metamodel of the CDL.
It is described in the following.

4.4.3. Metamodel

The metamodel of our CDL should be as simple as possible, but at the same time a user
should be able to describe contexts of event and measurement context type. Identified
requirements on the CDL are:

1. The user defines contexts by himself, we do not predefine any context

2. We cover events and measurements

3. In one context description, the user can describe several contexts

We want to build upon existing appropriate metamodels. Contextual data has to be
provided by the user. Our approach has an endpoint, where users can stream contextual
data into the InfluxDB. He is able to stream past as well as future values into the DB.
Since our approach uses the Influx Query Language (InfluxQL) to read the contextual
data, we build our metamodel directly upon the InfluxQL metamodel [Inf19a].

We first start with an example context description, that follows the syntax of our
metamodel. It is shown in Listing 4.1. The user passes three context parameters to the
approach, which are the three list entries of the context list. The value of measurement
tells our approach the name of the measurement containing past and future values of
contexts to include in the forecast. The first parameter, “number of offers”, consists only
of the measurement name. For “temperature”, the user did pass future temperature
numbers and the dates where the numbers will occur. The same applies for “marketing
campaigns”. The only difference is that the user did not pass future numbers here, but
Strings representing future events. Future events in this example are Sale 30% and
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Listing 4.1 Example context description
context:

- measurement: number of offers

- measurement: temperature

future:

- value: 30.0

time:

- 2019/07/22 12:00:00 to 2019/07/22 15:00:00

- value: 35.0

time:

- 2019/07/23 14:00:00

- measurement: marketing campaigns

future:

- value: Sale 30%

time:

- 2018/07/22 10:00:00 to 2018/07/22 20:00:00

- value: Sale 70%

time:

- 2018/07/23 10:00:00 to 2018/07/23 20:00:00

Sale 70%. In order to understand individual parts of the example context description
better, we have to anticipate some DB design decisions, that are described in detail in
Section 4.5. When users stream past and future values of contexts into the InfluxDB, they
have to pass a measurement name to our approach in order to locate the measurement
where the values should be saved into. A name, that is not yet connected with a
measurement, will lead to a new measurement. However, we recommend the user
to store belonging numerical values (e.g., temperature values) and events from one
category (such categories can be, e.g., marketing campaigns, holidays, sports events, etc.)
respectively into one measurement. For example, “Sale 30%” and “Sale 70%” should be
located in the “Marketing Campaigns” measurement. Another example would be that
“Labor Day” and “Christmas” should be stored together in the “Holidays” measurement.
A user can also store single events into an own measurement, e.g., he only stores
occurrences of “Boxing Day” into the “Boxing Day” measurement. When the user wants
to include values from a measurement to the workload forecasting, he has to pass the
name of the measurement. In a measurement, past as well as future values of contexts
can be stored. Future values not necessarily have to be included in a measurement,
they can also directly be passed in the context description with a context parameter.
Passed future values with the context parameter have higher priority than future values
in the measurement. They overwrite the existing data. In the example description
above, future context values were passed with the “temperature” and the “marketing
campaigns” parameter. With this DB design, we already covered the first requirement on
the CDL, since the user is able to define contexts by himself by just providing the name

36



4.4. Context Description Language

of measurements he wants to be considered for the forecasting. Additionally, he is able
to describe future context values directly in the context description.

We only need numerical values for the measurements context type, and Strings for
the event context type. In the context description example above, the “number of
offers” and “temperature” parameters lead to measurements where numerical values are
stored. The “marketing campaigns” parameter leads to a measurement where Strings
are stored. From the contextual data we build regressors and pass them to time series
forecasters. Numerical values are directly inserted into one regressor. Strings (events)
are transformed into binary indicators (0 - no occurrence, 1 - occurrence). For each
different event in a measurement, one regressor is build, since the forecaster should
learn different impacts of different events. Timestamps are always covered by InfluxDB,
and, hence, we have in addition one field “value”, that is either numerical or a String.
We have fulfilled the second requirement, since we cover events expressed through
Strings, and measurements expressed through numerical values.

The third requirement is covered by allowing for a series of context parameters in one
context description, as shown in the example context description above. Besides, more
than one context can be included to the forecast with only one context parameter, since
a context parameter can lead to a measurement with more than one event. We now
prepared everything to specify the syntax and semantics (metamodel) of our CDL. In
Section 4.4.3, we first introduce the syntax of a context description. It is based on
YAML [19b], since we use it as the serialization format for context descriptions. In
Section 4.4.3, we transform the context description to constructs and semantics of the
InfluxQL metamodel.

Syntax

Our syntax is based on the YAML syntax, since we use it as data serialization format.
However, we limit the user to a subset of YAML constructs. We introduced YAML and
required constructs in Section 2.6. The CDL syntax shown in Listing 4.2 is defined using
the Extended Backus-Naur Form (EBNF) notation [Sta96; W3C17] and shows allowed
Strings and YAML constructs. For better readability, we illustrate the EBNF using railroad
diagrams [Rad18]. We explain the syntax with the help of the diagrams. The round
boxes represent terminal symbols, and the squared boxes nonterminal symbols. Spaces,
which are represented through empty boxes in the diagrams, are used for the right
indentation in the YAML and to distinguish a key from its value, and are not mentioned
in the following. The same applies for “-” in a yellow box, which indicates a new list
element and for “\n”, which expresses new line.
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Listing 4.2 Syntax of a context description
Context ::= "context:" (NewLine "-" Space Parameter)+

Parameter ::= MeasurementAndFuture | Measurement

MeasurementAndFuture ::= Measurement NewLine TwoSpaces Future

Measurement ::= "measurement:" Space String

Future ::= "future:" (NewLine TwoSpaces "-" Space FutureType)+

FutureType ::= FutureNumber | FutureEvent

FutureNumber ::= "value:" Space Number NewLine FourSpaces Time

FutureEvent ::= "value:" Space String NewLine FourSpaces Time

Time ::= "time:" (NewLine FourSpaces "-" Space FutureDate)+

FutureDate ::= DateInstance (Space Operator Space DateInstance)?

DateInstance ::= /* Valid instance of yyyy/MM/dd HH:mm:ss */

Operator ::= "to"

Number ::= /* A double value */

String ::= Char+

Char ::= /* Unicode character (except newline) */

NewLine ::= "\n"

Space ::= " "

TwoSpaces ::= Space Space

FourSpaces ::= Space Space Space Space

Figure 4.4 shows the root entity of the context description, which is a list. The key of
the list is “context”. The user then has to pass a list of context parameters (one context
parameter is expressed through Parameter) to our approach (at least one).

context: \n - Parameter

Figure 4.4.: Railroad diagram: Context

As shown in Figure 4.5, a context parameter is either a Measurement, or a
MeasurementAndFuture.

MeasurementAndFuture

Measurement

Figure 4.5.: Railroad diagram: Parameter

Figure 4.6 shows the MeasurementAndFuture. It represents an object consisting of
Measurement and Future, i.e., the user passes to the approach a measurement name,
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and also future context values. Future represents a second attribute of the object and
has to start in a new line.

Measurement \n Future

Figure 4.6.: Railroad diagram: MeasurementAndFuture

Measurement, as shown in Figure 4.7, consists of the String “measurement:” followed
by a String value provided by the user. The String represents the measurement name
of the measurement containing context values which should be considered for the
forecasting.

measurement: String

Figure 4.7.: Railroad diagram: Measurement

Beside a measurement name, the user can also pass future values as a list in a context
parameter. This is shown in Figure 4.8, where the key of the list is “future”, and instances
of FutureType are listed in the next lines, where each FutureType consists of one future
context value and belonging dates to that value.

future: \n - FutureType

Figure 4.8.: Railroad diagram: Future

As shown in Figure 4.9, FutureType is either FutureNumber or FutureEvent.

FutureNumber

FutureEvent

Figure 4.9.: Railroad diagram: FutureType

FutureNumber, as shown in Figure 4.10, starts with key “value”, followed by a numerical
value passed by the user (Number). It is a future context value passed by the user. Our
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approach also needs the future dates, where the values will occur. Dates are passed in
the next line and are referred to as Time, which represents a list of date elements.

value: Number \n Time

Figure 4.10.: Railroad diagram: FutureNumber

FutureEvent is similar as FutureNumber, as can be seen in Figure 4.11. The only differ-
ence is that the user passes a String instead of a numerical value to our approach. The
passed String represents an event that will occur in the future.

value: String \n Time

Figure 4.11.: Railroad diagram: FutureEvent

For each future value, our approach needs at least one future date where the value
will occur. Figure 4.12 shows a visual representation of Time and how dates have to be
passed in the YAML. The user provides a list with key “time”, and lists in the next lines
instances of FutureDate. He has to provide at least one FutureDate.

time: \n - FutureDate

Figure 4.12.: Railroad diagram: Time

A FutureDate can be passed in two ways to the approach. The user either can list a single
DateInstance, or even a range of dates. A range of dates starts with a DateInstance

and is followed by the String “to”, followed again by a DateInstance.

DateInstance

to DateInstance

Figure 4.13.: Railroad diagram: FutureDate

We now explain how a context description that follows the above syntax is interpreted.
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Semantics

As already explained in Section 4.4.3, we build our metamodel upon the InfluxQL
metamodel. A context description can be interpreted as select and insert statements. For
each listed context parameter in the context description, a user either provides only a
measurement name, or a measurement name combined with future values. To retrieve
the contextual data from a measurement, we can simply run a select statement against
the InfluxDB:

SELECT * FROM <name of measurement>

where <name of measurement> is the corresponding value to the key measurement of
a passed context parameter. Additionally, when the user passed future values beside
the measurement name with the context parameter, we handle them like an insert
statement:

INSERT <name of measurement> value=<passed value> <timestamp>

where <passed value> is a corresponding future value passed with the context pa-
rameter and <timestamp> is derived from a passed date where the value will occur.
Figure 4.14 visualizes with the help of an example how the statements are extracted
from a passed context parameter. In the example, <name of measurement> is “tem-
perature”, <passed value> is 35.0, and <timestamp> is 1563883200000, which is a
milliseconds timestamp calculated from the date “2019/07/23 14:00:00” (passed as
String). In comparison to the select statement, we do not run the insert statement in
practice against the InfluxDB, i.e., future values passed in the context description are
not written into the DB. However, the semantics is similar, since we insert the passed
future values to the already extracted data set obtained through the select statement.
The timestamps are calculated from the passed dates for a future value. We perform this
statement for each future value and for each of its corresponding dates. If future values
with equal timestamps already existed in the measurement, they will be updated by the
new values. Otherwise, the values are simply inserted to the existing data set.

More information on processing contextual data is provided in the next chapter, Sec-
tion 4.5.
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- measurement: temperature 
  future: 
  - value: 35.0 
    time:  
    - 2019/07/23 14:00:00  INSERT temperature value=35.0 1563883200000

SELECT * FROM temperature

convert to timestamp

Figure 4.14.: Extraction of select and insert statement from a passed context parameter

4.5. Workload Characterization and Forecasting

In this section, we present the first part of our main approach, that consists of forecasting
the future workload based on a context description. We first have to represent past
experienced workload in a way, so that it can be used as input to time series forecasters,
which will predict the future workload. As stated in Section 2.1, the workload a session-
based system is experiencing is characterized by intra-session and inter-session metrics,
where intra-session metrics especially characterize the user behavior and inter-session
metrics the amount of active sessions over time (workload intensity). Further metrics
are provided in Section 2.1. For our approach, we require variations of the workload
over time in order to do meaningful forecasts on the workload data. We aim to represent
past workload to include user behavior and workload intensity variation over time, and
apply forecasting on these two characteristics.

In Section 3.2, we already discussed several approaches to represent workload. Summa-
rized, possible found representations are:

• Raw request logs

• Preprocessed logs, like a session log extracted from raw request logs

• Workload intensity models

• User behavior models

• Workload models modeling both, user behavior and workload intensity

Extracted request logs from an SUT and preprocessed logs contain all required work-
load information, including variations of the workload over time. However, we cannot
perform calculations well on these representations and we cannot input a log to a time
series forecaster. Approaches like WESSBAS [VHS+18] exist, that calculate workload
models from such logs. However, they either do not model variations of workload
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Figure 4.15.: Forecast of user behavior and workload intensity

over time at all, or their models are missing either user behavior or workload intensity
variation over time. In Section 4.5.1, we characterize workload and output a work-
load representation which covers both and which can be used for forecasts. After we
represented past workload in an appropriate way, we can perform forecasts. A user
of our approach not necessarily has to pass a context description to our approach to
forecast the future workload. The workload forecasting without context is described in
Section 4.5.2. Details on the context-based forecasting are provided in Section 4.5.3.

4.5.1. Workload Characterization

In Section 3.2, we provided related work on modeling workload and discussed possible
workload representations. An appropriate approach to model user behavior are Markov
chains, where each Markov chain represents a particular type of user group. However,
our approach will build on existing time series forecasters, and we cannot input Markov
chains to them. For example, Prophet and Telescope require as input a time series of
numerical values to perform forecasts. Workload data, that can be considered for this
case, is the workload intensity, as it can be described through a time series of numerical
values describing the amount of active sessions over time. In order to forecast both, the
future user behavior and future workload intensity, we can perform the steps shown in
Figure 4.15. The steps are:
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1. Identify all different type of users (user groups) accessing the system (e.g., through
request logs extracted from the system) and model the user groups through Markov
chains

2. Calculate a time series representing the past workload intensity for each Markov
chain, i.e., the past amount of active sessions over time for a particular user group

3. For each Markov chain, pass the time series to a forecaster and let it predict the
future workload intensity for each chain

4. Calculate the occurrence probability of each Markov chain during workload gener-
ation based on the forecasted intensity and save these into the Behavior Mix

Using this approach, the future workload intensity is predicted directly using time series
forecasters. We forecast the future intensity for each Markov chain separately. By
processing and aggregating the resulting time series of predicted values, we will be
able to calculate the occurrence probability for each Markov chain during workload
generation. The probabilities are saved into the Behavior Mix, which describes the future
user behavior. More information on the workload processing is provided in Section 4.6.
Summarized, for our approach, we will represent past workload through Markov chains
and the workload intensity as a time series for each of the chains.

As described in the following, we can use the WESSBAS approach to calculate Markov
chains from a session log. The past workload intensity then can be calculated from the
session entries that were considered for each chain.

Leveraging WESSBAS

The outcome of our forecast process will be one or more tailored load tests for the user.
WESSBAS is already capable of extracting a load test from workload model instances.
We decide to build our approach upon the WESSBAS workload model (see Section 2.3).
These are the advantages when we leverage WESSBAS:

• WESSBAS’ behavior model extractor component extracts behavior models
(Markov chains enriched with think times) from a session log. We can use this
component to calculate the Markov chains.

• WESSBAS specifies a behavior mix, which assigns probabilities to each of the
behavior models describing their occurrence probability during workload genera-
tion. We can manipulate the Behavior Mix after the workload forecasting to assign
updated probabilities to the chains.
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• WESSBAS’ workload model specifies intra- and inter-session metrics (including
user behavior, workload intensity and behavior mix). We can use this workload
model to cover important workload characteristics required to accurately model
the workload a session-based system experiences.

• WESSBAS’ workload model generator extracts instances of the workload model
based on the previous calculated behavior models. We can use it after the workload
forecasting to generate workload model instances.

• WESSBAS’ test plan generator is already capable of extracting load tests from
workload model instances. We can leverage it to generate load tests.

However, we could identify the following challenges when using WESSBAS individu-
ally:

• WESSBAS takes the average or maximum amount of active sessions observed from
the session log, and sets is as the intensity that should occur during workload
generation. WESSBAS does not forecast the future intensity.

• WESSBAS does not consider future contexts, which could impact the distribution
of users to user groups

Hence, the workload generated through the load tests could be not representative. With
our approach, we will address the challenges by forecasting future workload based on
context descriptions, as described in detail in Section 4.5.3.

Calculation of Markov Chains

We use WESSBAS’ behavior model extractor to calculate behavior models from a session
log. In Section 4.3, we discussed how to extract a session log from request logs and,
therefore, can assume here that they are already available. WESSBAS’ behavior model
extractor utilizes the X-means clustering algorithm [PM+00] to extract the Behavior
Mix and corresponding behavior models from a session log. For this purpose, session
entries in the session log are first transformed into vectors on which clustering can be
applied. Vectors representing session entries with similarities in performed requests are
assigned to one cluster. Since one session entry represents the sequence of requests one
user made, this process identifies users with similar navigational patterns. Such users
are grouped into one user group, which is then characterized by a behavior model. The
more session entries were considered for a resulting behavior model, the higher the
occurrence probability is in the mix. More details on the calculation of the Behavior Mix
and behavior models are described in detail in the WESSBAS paper [VHS+18].
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We extend the behavior model extractor for our purpose, because WESSBAS does not
save a list of the session entries that were considered for a particular behavior model. We
require this information in order to calculate the past workload intensity for each chain.
WESSBAS converts session entries into vectors for the clustering. After clustering, the
information of the assignments of the initial vectors to the resulting clusters is available.
Since an initial vector corresponds to one session entry, we can infer assignments of
session entries to the behavior models and, hence, save for each behavior model a list of
belonging session entries.

Workload Intensity Calculation

In the previous part, belonging session entries were assigned to each Markov chain
(behavior model). One session entry covers session information that is required by
WESSBAS in order to build a workload model instance. The session information is
presented in Section 4.3. For our approach, we can make use of the contained session
information in order to calculate the past workload intensity for each user group. We
will represent the workload intensity as a time series of intensity values, where one
data point in the time series (intensity value and timestamp) describes the amount of
active sessions at a particular point of time. Such a time series can be the input to a time
series forecaster. To calculate the intensity values, we divide the time range in which all
sessions occurred into sub-ranges. From the sessions that lie in a particular sub-range,
we then calculate the intensity value for that sub-range.

Before we present the workload intensity calculation algorithm, we introduce some
design decisions that will impact the algorithm. These are:

• All sub-ranges have the same length. This guarantees equidistance between
calculated intensity values, since the timestamp of one value is set to the start
timestamp of the sub-range for which it was calculated.

• Sub-ranges have to start at a full time unit, that is either full second, minute,
hour or day. Thereby, we will be able to directly assign regressor values to each
calculated intensity value, because timestamps of regressor values describe the
same full time unit. More information on regressors is provided in Section 4.5.3.

The user tells our approach about the time unit for which intensities should be calculated.
In order to do so, a user has to pass his choice in the same YAML file that is used to pass
a context description to our approach. For this purpose, beside the context list (list of
context parameters), a user adds in the YAML file a forecast-options dictionary holding
key-value pairs (representing an object with attributes), where one of the key-value
pairs has as key time unit, and the value either is second, minute, hour or day. Forecast
options represent required information from the user in order to perform the forecasting.
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Further options comprise, e.g., how long the forecast should last. An example YAML file
that comprises both, a context description and forecast options, is provided later in the
sections about forecasting. There we define the remaining key-value pairs. Summarized,
the passed time unit will be used

1. to infer at which full time unit sub-ranges have to start (e.g., to full hour) and

2. to infer the length of a sub-range (e.g., if the passed time unit is hour, then the
length of the sub-range is also one hour).

For each Markov chain, we have a list of session entries. One session entry contains
session information of exactly one recorded session. Important information are the
session identifier, start times of the requests, and end times of the requests. From the
start and end times, we can easily extract the start and end time of a session, by picking
the lowest start time and the highest end time of all requests recorded for that session.
The session identifier, start time, and end time of a session are the session information
required by our algorithm. The information is contained in the session entries, which
we input to our algorithm. We call them sessions in the following.

We can subclassify the workload intensity calculation algorithm into two algorithms. The
first algorithm calculates the sub-ranges and assigns to each sub-range the sessions that
lie in that sub-range. It then passes each sub-range and belonging sessions to the second
algorithm, which calculates the intensity value for that sub-range. The result is passed
back to the first algorithm, which then saves all values with belonging timestamps into a
map, that represents the intensity time series. We start by explaining the first algorithm,
named WorkloadIntensityCalculation, with the help of the pseudocode that is shown
in Algorithm 4.1. The inputs are sessions and the sub-range length, that is either second,
minute, hour, or day. The format of the length are nanoseconds. We first order the
sessions by their start times in ascending order. In line 4, we set tstartT imeF irstSession to
the start time of the first session, before in line 6 it is rounded down to the next full unit
of time, that can be inferred from the sub-range length. Analogous, thighestEndT imeSessions

is first set to the highest end time of all sessions, and then rounded up in line 7 to the
next full unit of time. The overall time range for which intensity values will be calculated
is then the difference between thighestEnd and tstart (line 9). In line 10, The amount of
sub-ranges that have to be considered is calculated by dividing the overall time range by
the sub-range length. Since we rounded tstartT imeF irstSession down to the next full time
unit (tstart), we ensure in line 13 until 17 in the for loop, which calculates the sub-ranges,
that all sub-ranges start at a full time unit by starting from tstart, and then consecutively
adding the sub-range length to it. The result is a list of sub-ranges. From line 22 until
30, to each sub-range considered sessions are assigned. These basically occur within the
sub-range. In the algorithm a session is considered for a sub-range, when

• the start time of the session is contained in the sub-range or
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Algorithm 4.1 Workload intensity calculation algorithm for a user group

function WORKLOADINTENSITYCALCULATION(sessions, subRangeLength)
sort sessions by their start times in ascending order

tstartT imeF irstSession = sessions.get(0).getStartT ime()
5: thighestEndT imeSessions = getHighestEndT ime(sessions)

tstart = roundDownToNextFullT imeUnit(tstartT imeF irstSession)
thighestEnd = roundUpToNextFullT imeUnit(thighestEndT imeSessions)

overallT imeRange = thighestEnd - tstart

10: amountOfSubRanges = overallT imeRange / subRangeLength

subRangesList = Ø

for i = 0 to amountOfSubranges.size() - 1 do
subRange = range(tstart, tstart + subRangeLength)

15: subRangesList.add(subRange)
tstart = tstart + subRangeLength

end for

intensity = Ø
20: for all subRange ∈ subRangesList do

sessionsInSubRange = Ø
for all session ∈ sessions do

tstartOfSession = session.getStartT ime()
tendOfSession = session.getEndT ime()

25: rangeOfSession = range(tstartOfSession, tendOfSession)
if subRange ∈ rangeOfSession

|| tstartOfSession ∈ subRange

|| tendOfSession ∈ subRange then
sessionsInSubRange.add(session)

30: end if
end for
valueOfSubRange =

VALUECALCULATION(subRange, sessionsInSubRange)
intensity.put(subRange.min, valueOfSubRange)

35: end for
return intensity

end function

48



4.5. Workload Characterization and Forecasting

• the end time of the session is contained in the sub-range or

• the session ranges completely over the sub-range, i.e., the start time of the session
is before the start time of the sub-range and the end time of the session is after the
end time of the sub-range.

In order to check if the session ranges completely over the sub-range, we build a range
out of the session in line 25, where the start is tstartOfSession and the end is tendOfSession.
If the range of the session contains the sub-range, then the session is considered for
the sub-range. One session can be considered for more than one sub-range, since
it can occur in more than one. For each sub-range, a list of considered sessions is
calculated. The intensity value for that sub-range is then calculated by calling in line
33 V alueCalculation(subRange, sessionsInSubRange), passing the sub-range and the
considered sessions for that sub-range to the V alueCalculation algorithm. In line 34,
the resulting intensity value valueOfSubRange is put into the intensities map, where
the key is the start timestamp of the sub-range, and the value is the intensity value.

The algorithm to calculate an intensity value, named V alueCalculation, is shown in
Algorithm 4.2. It is called by the WorkloadIntensityCalculation algorithm in line 33.

Algorithm 4.2 Calculation of the workload intensity value for a particular sub-range

function VALUECALCULATION(subRange, sessionsInSubRange)
sumOfTime = 0
tstartOfSubRange = subRange.min

tendOfSubRange = subRange.max

5:

for all session ∈ sessionsInSubRange do
tstartOfSession = session.getStartT ime()
tendOfSession = session.getEndT ime()
if tstartOfSession < tstartOfSubRange then

10: tstartOfSession = tstartOfSubRange

end if
if tendOfSession > tendOfSubRange then

tendOfSession = tendOfSubRange

end if
15: lengthOfSession = tendOfSession - tstartOfSession

sumOfTime+ = lengthOfSession

end for

return sumOfTime / (tendOfSubRange − tstartOfSubRange)
20: end function
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The inputs to the algorithm are a sub-range for which the intensity value should be
calculated and the sessions that occur in the sub-range. The algorithm sums up the
session lengths of all sessions that lie in the passed sub-range, and then divides the
session length by the sub-range length to obtain the overall amount of active session
for the sub-range. As a particular session could have started earlier and/or ended later
than the sub-range, we maybe have to shorten its session length to ensure that only
the session length that is relevant for the sub-range is considered. For this purpose, as
we iterate from line 6 until 17 over all sessions, we check in line 9 for each session
whether tstartOfSession is smaller than the minimum of the sub-range (tstartOfSubRange). If
this is the case, we set tstartOfSession to tstartOfSubRange. Analogous, when tendOfSession is
higher than the maximum of the sub-range, it is set to tendOfSubRange. In line 15, the
considered session length is the difference between tendOfSession and tstartOfSession. In line
16, the variable sumOfTime is increased by the session length. The algorithm returns
the overall amount of active sessions for the passed sub-range by dividing sumOfTime

by the sub-range length.

The workload intensity calculation algorithm is executed for each Markov chain (user
group). Hence, we have a time series of values for each of them. At this point, it could
be that not all time series start and end at the same time (depends on the smallest
start time and highest end time of all session entries considered for a user group). The
considered session log contains recorded requests from users in a particular time range.
At the beginning of this time range, some user groups could have been inactive, while
others were active. Analogous, at the end not all user groups must have been active. This
information is currently missing in the time series, i.e., we have to add zero intensity
values to the time series if necessary. For this purpose, we first search for the smallest
and highest timestamp of all time series. For each time series, we proceed as follows:

• We compare the timestamp of the first value with the smallest timestamp. If the
timestamp of the first value is higher, we subtract the sub-range length from the
timestamp, and insert a zero value with the resulting timestamp to the time series.
We repeat this until the resulting timestamp equals the smallest timestamp of all
time series.

• If the timestamp of the last value in the time series is smaller than the highest
timestamp, we add the sub-range length to the timestamp, and insert a zero value
with the resulting timestamp to the time series. We repeat this until the resulting
timestamp equals the highest timestamp of all time series.

We not only ensured that all time series start and end at the same time, but also that all
time series have the same amount of values.

One time series is saved into one measurement in the TSDB, i.e., for each user group
one measurement exists. Thereby, intensity values are calculated once for a particular
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request log. The next time the user triggers our approach for the same request log, our
approach will first check if already measurements holding the intensity values exist. If
so, our approach will skip the intensity calculation part. In the following, we explain
how the past intensity is forecasted without context.

4.5.2. Forecasting without Context

A user of our approach not necessarily has to provide a context in order to forecast
the future workload. It is also possible to trigger our approach without providing a
context. In this case, the user only has to pass request logs to our approach (and some
required forecast information), but no context description. Internally, we then do not
pass any regressors to time series forecasters. We make use of time series forecasters
Telescope [ZBH+17] and Prophet [TL18]. Before we can forecast intensities, we need
some information from the user. The information that is required is:

• Which time series forecaster should be used

• Until which date the forecast should last

A user has to pass the information in a YAML file to our approach. It is the YAML file
where he also could pass a context description to our approach. For the calculation of
the past workload intensities, a user has to pass the time unit for which intensity values
will be calculated in a forecast-options dictionary. The user adds the further required
information into this dictionary. Listing 4.3 shows an example forecast-options dic-
tionary that could be passed by an user. In this example, the user wants the forecast
to last until February 15th, 2019. The chosen forecaster is Prophet. The time unit
for which workload intensity values should be calculated is one hour. By passing the
options to our approach, we first calculate the workload intensities and save them into
measurements. If this has already been done for a particular request log, we omit this
step. Then, the forecast part of our approach is triggered. In contrast to the context
description, forecast-options have to be always passed by the user in order to do the
forecasting.

In the previous part, we already calculated the past workload intensity for each user
group, and saved the values in several measurements. The forecasting is done step-wise
for each measurement. In the following, we explain how the intensity is forecasted
for one of these measurements. The forecast for the other measurements is done
analogously.

We first fetch all data points from the measurement. One data point consists of a
timestamp and a value. The forecasting is either done by Telescope or Prophet. As
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Listing 4.3 Example forecast options
forecast-options:

forecast-date: 2019/02/15 00:00:00

forecaster: prophet

time-unit: hour

described above, the user sets the tool in the passed YAML file. The intensity values are
passed as follows to the tools:

• Telescope expects as input either a vector of values, a matrix with two columns,
where the first column contains the timestamps and the second column contains
the values, or an R time series object. We pass the intensity values as a vector to
the tool, i.e., we omit the timestamps.

• Prophet expects as input a R dataframe object, where the first column contains
dates and the second column contains the values. We obtain the dates by converting
the timestamps into the expected format.

The second expected input by both tools is the amount of values that should be forecasted.
We can calculate the amount with the help of the passed date that describes the point
of time until the forecast should last. We convert this date to a timestamp. From the
fetched data points we take the timestamp of the last value in the time series. We can
calculate the amount of values to be forecasted by increasing the timestamp of the last
value by the passed time unit until we reached the timestamp of the passed date. To
do the forecasting without context, no more information is required by the tools. Using
Prophet, we directly get a time series of predicted intensity values. Using Telescope, we
only get a vector of predicted intensity values. As we calculated the amount of values to
be forecasted, we also obtained their future timestamps, i.e., for each value in the vector
we can set its corresponding timestamp in order to get the time series.

In the next part, we add regressors to each of the past workload intensities, and then
trigger the forecast.

4.5.3. Context-Based Forecasting

In the previous part, we already forecasted the past intensity without context. Here,
we add contexts to the forecast. In Section 4.4, we introduced our CDL in order to
describe contexts that should be considered for the workload forecasting. All contextual
information has to be provided by the user. This includes past as well as future values
of contexts. Past context values have to be stored into measurements in the InfluxDB.
Future values can be included into the forecast in two ways:
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1. Future values of a context are stored in the same measurement where its past
values are stored. The user then only has to pass the name of the measurement to
our approach.

2. The user can pass future values of contexts in the context description.

Past and future values of contexts are used in order to build regressors, which can be
considered by the time series forecasters Telescope and Prophet in their forecasts.

In the following, we first describe how a user can provide contextual data to our
approach in detail. Once contextual data is available to our approach, it can be included
in forecasts. We then explain how regressors are build from the contextual data, and then
pass the regressors along with the workload intensity to the time series forecasters.

Providing Contextual Data

Our approach provides an API endpoint that can be used to provide contextual data to
our approach. We use JSON [19a] as exchange format. Example (shortened) JSONs
containing contextual data are shown in Listing 4.4. The user determines by himself in
which measurement context values will be stored. For this purpose, in one JSON, the
user passes one or more context values with corresponding unix timestamps, along with
the name of the measurement into which these data should be stored, to our approach.
In the examples, for the temperature measurement the user passes only one value,
and for the marketing campaigns measurement two values with corresponding unix
timestamps. The resolution of the timestamps is milliseconds. A timestamp can describe
a date in the past as well as a future date, i.e., the user is able to pass past and future
values to our approach. Furthermore, it has to describe a full time unit, that is either full
second, minute, hour or day. All timestamps passed in one JSON have to describe the
same full time unit. This design decision later ensures equidistance between regressor
values. Furthermore, regressor values then can be easily assigned to intensity values.
Gaps between passed values in the JSON are allowed, i.e. a user has not to ensure that
for every full time unit in a time series a context value has to exist. The data type of the
values can either be numerical or String. It is not possible to mix data types in one JSON.
This corresponds to our CDL, where a user can pass events (Strings) and measurements
(numerical values) in a context description to our approach. One context parameter
passed in a context description at minimum has to contain the name of a measurement,
where our approach can find either events or measurements stored in that measurement.
If a JSON input is valid (i.e., conforms to the above described design decisions), our
approach will process it. This is done in the following two steps:

1. Check if the measurement in the JSON already exists. If it does not exist, create it.
Otherwise access the already existing one.
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Listing 4.4 Example JSONs containing contextual data
{"measurement":"temperature", "values":[{"timestamp": 1548975600000, "value": 35.0}]}

{"measurement":"marketing campaigns", "values":[{"timestamp": 1542927600000, "value":

"Black Friday"}, {"timestamp": 1543186800000, "value": "Cyber Monday"}]}

2. Store the passed data into the measurement.

A measurement only has two columns time and value, where timestamps and values of
contexts are stored into. It is the user’s decision into which measurements contextual
data is distributed. However, as already described in Section 4.4.3, we recommend the
user to store belonging numerical values (e.g., temperature values) and events from one
category respectively into one measurement. Such categories can be, e.g., marketing
campaigns, holidays, etc. Then, when the user selects a measurement in the context
description, all of its contained values are considered for the workload forecasting by
building one or more regressors out of them. In the next paragraph, we build the
regressors.

Building Regressors

A regressor can be an additional time series to the workload intensity or a binary
indicator and can be considered by time series forecasters Telescope and Prophet for
forecasts. It consists of values with timestamps. We build regressors from contextual
data contained in measurements. By passing context parameters in a context description
to our approach, the user decides about the measurements that should be considered by
our approach. A measurement either contains values with String data type, or numerical
data type. Strings are not understood by Telescope and Prophet. They cannot include
String values in their prediction models. Their models are either based on additive
models or multiplicative models, and components of the model are expressed through
numerical data. Hence, Strings have to be transformed into numerical data. Since
Strings express events, and events either occur or not occur, we decide to use a binary
indicator for events. The binary indicator is defined as follows:

• 0 - no event occurrence

• 1 - event occurrence

For each different String in a measurement one regressor will be build, since the
forecaster should learn different impacts of different events. From numerical data
contained in a measurement only one regressor will be build. In contrast to events,
numerical data can be inserted directly to a regressor, resulting in an additional time
series to the workload intensity.
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In order to add a regressor to the workload intensity for the forecast, Telescope and
Prophet expect a corresponding regressor value for each intensity value. This applies
to the calculated past intensity values as well as to the intensity values that will be
forecasted. Timestamps of the future intensity values are known (see Section 4.5.2).
A regressor value is build from one context value. The timestamp of the regressor
value is set to the timestamp of the context value. We assign regressor values based on
timestamps to intensity values. A regressor value is assigned to an intensity value when
their timestamps match. Hence, we require a uniform time unit representation of the
timestamps of the regressor and intensity values. As already explained in the previous
part, timestamps of context values in measurements describe a full time unit. The time
unit has to be the same as the time unit for which intensity values were calculated,
otherwise regressor values will not be assigned correctly. The user is responsible that
the time units conform. For example, when the timestamps of intensity values describe
full hours, timestamps of the provided context values should also describe full hours.

From contextual data contained in a particular measurement, a regressor is build as
follows:

• When the measurement contains numerical data, one regressor is built. Values and
their timestamps are directly transferred to the regressor. When for a particular
intensity value with timestamp t no numerical value with timestamp t in the
measurement is found, we insert a 0 with timestamp t to the regressor.

• When the measurement contains Strings, one regressor from each different String
is build. Same Strings are considered for one particular regressor. They are
converted into a 1 and then are inserted with their timestamps into the regressor.
Afterwards, when for a particular intensity value with timestamp t no regressor
value with timestamp t exists in the regressor, we insert a 0 with timestamp t to
the regressor.

The start time of the time range of the context values inside a measurement can be
smaller than the start time of the past workload intensities. In this case, only the
contextual data starting from the start time of the past workload intensities is considered
for the forecast. Analogous, the end time of the time range of the context values inside
a measurement can be greater than the provided forecast date by the user. In this case,
only the contextual data until the passed forecast date is considered.

A regressor contains past as well as future regressor values. When the user did pass
future context values with a context parameter, they are converted into regressor values,
and override the future regressor values with the same timestamps already contained in
the regressor.

In the next part, we perform an example forecast with regressors.
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Forecasting with Regressors

Figure 4.16 shows an example forecast with regressors. In the example, we use Prophet
as the forecaster. The future workload intensity is forecasted based on a context
description and on a past workload intensity. Timestamps describe full days and are
represented as dates, e.g., 01/02/2018. Past dates are the dates of 2018, and future
dates are the dates of 2019. The passed context description contains two context
parameters. They tell our approach that contextual data should be included from the
temperature and the marketing campaigns measurement. For marketing campaigns,
the user also passed two future values with the context parameter. Sale 30% occurs at
01/02/2019, and Sale 40% occurs at 04/02/2019. The workload forecasting approach
then queries a past workload intensity and the contextual data from the InfluxDB. As
it can be seen, the temperature measurement contains future temperature values, and
the marketing campaigns measurement not. However, the user passed future values of
marketing campaigns with the context parameter. From the context values, regressors
are built. They are assigned to the past workload intensity, which is denoted with Y. The
dates of DS correspond to the date representation accepted by Prophet. For example,
2018-02-01 is the same date as 01/02/2018. For the dates of 2019, Y has no values, as
these values will be forecasted. However, the regressors contain future values in order
to provide the forecaster the future context. The values will impact the future intensity
values. The regressors contain a 0 value when no context value is available at the date.
For example, the temperature regressor has a zero value at 2018-02-03, as there is no
context value in the temperature measurement at 03/02/2018. The Sale 30% regressor
contains a zero value at 2019-02-02, as there will be no Sale 30% event. It contains a 1
at 2019-02-01, as the user passed in the context parameter that at 01/02/2019 a Sale

30% event will take place. The past intensity and assigned regressors are the input to
Prophet, which forecasts the future workload intensity. The column YHAT contains the
forecasted values. In the example, we forecasted the future workload intensity of one
particular user group. The process is repeated for the other user groups by querying
the other workload intensities from the InfluxDB and assigning them the regressors.
Using Telescope as the forecaster, the process is the same, except that we do not pass
the timestamps of the values (intensity and regressor values) to it.

The result of the context-based forecasting are a time series of predicted values for each
user group. As described in the next section, we can update the Behavior Mix based
on the time series. This will describe the future user behavior. Besides, we process and
aggregate the time series and output load tests.
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context: 
- measurement: temperature
- measurement: marketing campaigns
  future:
  - value: Sale 30%
    time:
    - 01/02/2019 
  - value: Sale 40%
    time:
    - 04/02/2019 

Workload Forecasting
DB

time value
01/02/2018 2 
02/02/2018 3 
04/02/2018 4 
05/02/2018 3 

... ... 
01/02/2019 3 
02/02/2019 4 
04/02/2019 5 
05/02/2019 5 

... ... 

time value

01/02/2018 Sale 30% 

04/02/2018 Sale 40% 

Input

Queries

temperature

marketing campaigns
Values

Prophet

DS Y temperature Sale 30 % Sale 40 % 
2018-02-01 3 2 1 0 
2018-02-02 8 3 0 0 
2018-02-03 5 0 0 0 
2018-02-04 7 4 0 1 
2018-02-05 11 3 0 0 

... ... ... ... ... 
2019-02-01  3 1 0 
2019-02-02  4 0 0 
2019-02-03  0 0 0 
2019-02-04  5 0 1 
2019-02-05  5 0 0 

... ... ... ... ... 
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DS YHAT 
... ... 

2019-02-01 4 
2019-02-02 9 
2019-02-03 6 
2019-02-04 7 
2019-02-05 12 

... ... 

Add regressors

forecast

Figure 4.16.: Forecasting with regressors
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4.6. Workload Processing

In the previous section, we forecasted the future workload intensity of each different
user group identified by WESSBAS from a session log. Each of these user groups is
described through a behavior model, which specifies how a particular user belonging
to the corresponding user group navigates through the application. In this section, we
will process the forecasted intensities and return one or more load tests to the user,
where each load test simulates a load scenario. An example load scenario would be high
workload, and a load test simulating this scenario would generate a high workload on
the SUT. A user of our approach decides, for which load scenarios he wants to test. The
load scenarios our approach covers are presented in Section 4.6.1. Our approach then
processes the forecasted intensities, and extracts for each requested load scenario one
load test from the forecasted workload. How this is done is explained in Section 4.6.2.

4.6.1. Covered Load Scenarios

We derive load scenarios users could want to test for mainly from application scaling
scenarios. The scenarios are also relevant for applications that cannot scale. In the
following, we call applications that can scale “scalable application” and applications that
cannot scale “static application”.

We first start with load scenarios where the application experiences small, medium and
high workload. In order to ensure that an application can perform its basic functionalities,
we first could apply small workload on the system. The next step would be to test the
medium workload on the system. Here, we would test whether the system functions
during expected load. High workload will show whether the application crashes under
more extreme situations. For scalable applications, these load scenarios will also show
if capacities are always utilized, regardless of the current load on the system. Our
approach covers all three load scenarios.

The next covered load scenarios comprise sharp increases (spikes) and sharp decreases
in workload. A sharp increase in workload tests whether a scalable application can scale
up fast enough in order to handle the situation. Scaling up fast can ensure that the
application still functions during unexpected high increase of workload, and that the
application does not crash. Analogously, a sharp decrease in workload tests whether
a scalable application scales down fast. Scaling down fast ensures that resources are
released fast once they are not needed anymore. Allocating resources from cloud
providers often costs money as long as you use them, and, hence, the faster resources are
released, the more money is saved. Sharp increase and decrease in workload can also
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be applied on static applications to test if the application can handle these situations,
i.e., if the application functions during these situations.

The last load scenario we cover is to test for all possible workloads. For this load
scenario, we will output a load test that simulates the entire forecasted workload. This
tests whether the application can cope with every workload situation that will occur in
the future, but will also result in huge testing effort.

The user is able to output load tests simulating the above described scenarios. For future
work, we suggest to add even more load scenarios to our approach. Two possible load
scenarios are listed in Section 7.3. In the next part, we describe how we extract load
tests from the forecasted workload.

4.6.2. Load Test Extraction

A user of our approach decides for which load scenarios he wants to test. As described
in Section 4.5.2, a user has to pass a forecast-options dictionary in a YAML file to
our approach. It includes information that is required in order to do the workload
forecasting. We extend this dictionary through a list element scenarios, that is optional.
When the user omits it, we will return one load test that tests for the maximum workload
by default. The user can list one or more load scenarios in scenarios. An example
forecast-options dictionary including scenarios is shown in Listing 4.5. The user
wants to test for three scenarios, that are high and medium workloads, and a sharp
increase in workload.

A load scenario can be described through one or more intensity values describing the
amount of concurrent users, and the behavior of the users. To obtain the intensity values,
we proceed as follows. The forecasted workload intensities are a time series of predicted
intensity values. We aggregate these time series to exactly one time series. For this
purpose, we sum up the intensity values of all time series at times t1, ..., tn, where t1 is
the timestamp of the first intensity values, and tn is the timestamp of the last intensity
values, and obtain as result the aggregated time series, which we call in the following
the aggregated workload intensity. The values of the aggregated workload intensity
are called aggregated intensity values. For each listed load scenario in scenarios, we
will process the aggregated workload intensity and extract one or more values, which
we set as the load intensity of the load test that will be returned to the user. The user
behavior was already calculated by WESSBAS in form of the behavior models. Each of
the forecasted workload intensities belongs to one user group, and hence belongs to one
behavior model. We will not change the calculated behavior models, but will update the
behavior mix. The behavior mix contains the occurrence probability of each behavior
model during workload generation. To update the behavior mix, we will first extract a
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Listing 4.5 Example forecast options
forecast-options:

forecast-date: 2019/02/15 00:00:00

forecaster: prophet

time-unit: hour

scenarios:

- high

- medium

- sharp increase

single intensity value from each forecasted workload intensity. Each of these extracted
values belongs to exactly one behavior model. The occurrence probability of a particular
behavior model results from the division of its belonging intensity value by the sum of all
extracted intensity values. For each load scenario a new behavior mix is calculated, and
then included in the load test that simulates the scenario. Each load test then includes
one or more intensity values, a behavior mix, and the previously calculated behavior
models. For each simulated user, a behavior model with the probability specified in the
behavior mix is chosen, and the user navigates through the application as specified in
the behavior model.

In the following, we explain for each presented load scenario in Section 4.6.1, how we
extract the load test that simulates the load scenario from the forecasted intensities. For
this purpose, we explain how we extract the workload intensity for a load test and how
we update the behavior mix it will include. We use the following structure to explain
how load tests are extracted for each load scenario:

• User input: The term a user has to pass in the scenarios list in order to get the
load test that simulates the desired load scenario

• Intensity: How the load intensity for the load test is extracted from the aggregated
workload intensity

• Mix: How the occurrence probabilities in the Behavior Mix are calculated

We start with the “entire workload” scenario.

Entire Workload

• User input: all

• Intensity: We do not process the aggregated workload intensity. The load intensity
of the load test is set to the aggregated workload intensity.
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• Mix: To update the occurrence probabilities of each behavior model in the behavior
mix, we calculate the average intensity value of each forecasted time series.
Afterwards, we sum up the average intensity values. To update the occurrence
probability of a particular behavior model, we divide its belonging average intensity
value by the sum of all average values.

High Workload

• User input: high

• Intensity: From the aggregated workload intensity, the maximum value is ex-
tracted.

• Mix: The maximum value extracted from the aggregated workload intensity is the
sum of the intensity values from the forecasted intensities at a time t. We extract
these intensity values from the forecasted intensities. The behavior mix is updated
by dividing for each behavior model its belonging intensity value by the maximum
value.

Medium Workload

• User input: medium

• Intensity: From the aggregated workload intensity, we calculate the average
intensity value. For this purpose, all aggregated intensity values are summed up,
and the result is divided by the total number of intensity values.

• Mix: We calculate the average intensity value from each forecasted time series.
Afterwards, we sum up the average intensity values. To update the occurrence
probability of a particular behavior model, we divide its belonging average intensity
value by the sum of all average values.

Small Workload

• User input: small

• Intensity: From the aggregated workload intensity, we extract the smallest value,
that is not zero. This is to ensure that the resulting load test does simulate workload
on the SUT.
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• Mix: The minimum value extracted from the aggregated workload intensity is the
sum of the intensity values from the forecasted intensities at a time t. We extract
these intensity values from the forecasted intensities. The behavior mix is updated
by dividing for each behavior model its belonging intensity value by the minimum
value.

Sharp Increase in Workload

• User input: sharp increase

• Intensity: We perform the following two steps to find the sharpest increase in the
aggregated workload intensity:

1. Iterate over all aggregated intensity values and select all pairs with two
consecutive values, where the second value is at least twice as high as the
first value, i.e., the increase is minimum 100 percent.

2. From the selected pairs select the pair with the highest second value. If two
or more pairs include this value, select the one where the percentage increase
between first and second value is higher. We call the selected pair the sharpest
increase in the intensity.

The outcome is a load test that simulates consecutively two different intensity
values, e.g., in the first hour 300 users, and in the second hour 900 users.

• Mix: The sharpest increase includes two values at times ti and ti+1. To update the
occurrence probabilities of the behavior models, we calculate from each forecasted
intensity the average value from its values at times ti and ti+1. We sum all
calculated averages up. The occurrence probability of a behavior model is its
belonging average value divided by the sum of the average values.

Sharp Decrease in Workload

• User input: sharp decrease

• Intensity: We perform the following two steps to find the sharpest decrease in the
aggregated workload intensity:

1. Iterate over all aggregated intensity values and select all pairs with two
consecutive values, where the first value is at least twice as high as the second
value, i.e., the decrease is minimum 50 percent.
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2. From the selected pairs select the pair with the highest first value. If two or
more pairs include this value, select the one where the percentage decrease
between first and second value is higher. We call the selected pair the sharpest
decrease in the intensity.

• Mix: Analogous to the sharp increase in workload load scenario.

We use WESSBAS as the load test generator to automatically generate the load tests. For
each load scenario, we pass the extracted workload intensity and the updated Behavior
Mix to the WESSBAS workload model generator. The behavior models were already
calculated and are available to WESSBAS. It first generates a workload model instance
out of the data. Afterwards, the instance is passed to the WESSBAS test plan generator,
which converts the instance to a load test. The resulting load tests are returned to the
user. The question that remains is how long the load tests have to be executed. For the
load tests that simulate one intensity value (maximum, average, and minimum), the
user has to decide how long the load test should run. However, approaches exist, which
recommend when to stop the load test [ASSH16]. To test the entire workload, the load
test should run as long as the time range of the forecast, e.g., when the forecast was
made for the next week, the load test would have to run for one week, consecutively
simulating the intensity values. Therefore, the test execution time can be extremely
high, but every occurring load scenario is covered. Load tests simulating sharp increase
and decrease simulate two consecutive intensity values. When they were calculated for
an hourly time interval, the load test could be executed for two hours, in the first hour
simulating the first intensity value and then increasing the intensity in the second hour
to the second intensity value.
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Chapter 5

Implementation

In this chapter, we provide implementation details of our approach. As already explained
in the introduction of this thesis (Chapter 1), our approach extends the ContinuITy
project. This is done by embedding our approach into it. All parts of our approach are
then executed automatically. The extended ContinuITy approach is presented in Sec-
tion 5.1. In Section 5.2, we explain how the forecast process works in ContinuITy. Finally,
in Section 5.3, we summarize the technologies used to implement our approach.

Our code is available on GitHub [CP19].

5.1. ContinuITy Extension

ContinuITy consists of a microservice architecture, which is depicted in Figure 5.1.
The workflow is controlled by the Orchestrator. It receives an order at /order/submit
and then calls the other services via RabbitMQ [Piv19] exchanges in order to produce
required results. For example, the Session Logs microservice produces session logs.
When a microservice has to access a created artifact of another microservice, it can call a
link passed by the Orchestrator to obtain the artifact. For example, the Workload Model
microservice, which generates a workload model from a session log, obtains a produced
session log by calling the link it received from the Orchestrator [CP19].

To embed our approach into ContinuITy, we extend the ContinuITy architecture by a
new microservice, that contains the workload forecast logic. The extended architecture
is shown in Figure 5.2. The new Forecast microservice shares results with the Workload
Model microservice, as WESSBAS is included in it. WESSBAS is used to calculate the
behavior models. The Forecast microservice receives a link from the Orchestrator to
obtain the session log entries for each Behavior Model, and forecasts the future workload
intensities, processes them, and updates the Behavior Mix. Afterwards, the Orchestrator
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provides the Workload Model service a link to obtain the produced results from the
Forecast microservice. From the updated behavior mix, the processed future intensity,
and the previously calculated behavior models WESSBAS then generates a load test. A
more detailed overview of the forecast process is presented in Section 5.2.
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Figure 5.1.: Previous architecture of ContinuITy [CP19]
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Figure 5.2.: Updated architecture of ContinuITy (based on [CP19])

For our approach, we mainly extended the Session Logs and Workload Model microser-
vice, and have implemented the Forecast microservice. In the following, we summarize
for each of these three microservices the innovations.
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Extension of the Session Logs Microservice

Before this thesis, the Session Logs microservice could only extract session logs from
invocation sequences [NTC19] and OPEN.xtraces [OHH+16], i.e., session logs could
not be produced from recorded request logs. We extend the microservice, so that session
logs can be generated from request logs in CSV format. For this purpose, we embed our
session log generator into the service, that was presented in Section 4.3.

Extension of the Workload Model Microservice

The WESSBAS behavior model extractor component is already capable of generating
behavior models from a session log by clustering session entries. As explained in
Section 4.5, we extend the clustering of the session entries to retain the information
of which session entry was assigned to which cluster. For each behavior model, we
then have a list of session entries. We extend the microservice by an endpoint, that
the Forecast microservice can use to obtain the lists of session entries. We extend
the microservice further in order to access the produced results from the Forecast
microservice, that are the forecasted workload intensity and the updated Behavior Mix.
The artifacts are used to create a WESSBAS model instance with the WESSBAS workload
model generator component. The model instance is then converted into a load test with
the WESSBAS test plan generator. More details on the load test generation can be found
in Section 4.6.2.

Forecast Microservice

The implementation of this microservice was the main part of our approach. It requests
from the Workload Model microservice the session entries for each behavior model. It
then calculates the past workload intensity of each user group. How this is done in
detail was already explained in Section 4.5. The calculated intensities are saved into an
InfluxDB, so that for the same request log intensities do not have to be calculated again.
Furthermore, this microservice receives JSONs at /context/submit containing contextual
data, i.e., the endpoint can be used to stream contextual data into the InfluxDB. When
the user passes a context description with an order to the Orchestrator, this microservice
sends queries to the InfluxDB to obtain the contextual data that should be considered
for the workload forecast, and calculates regressors from the data. The regressors are
assigned to the calculated workload intensities and the data is passed to either Telescope
or Prophet, which forecast the future workload intensity of each user group. More details
on the workload forecasting can be found in Section 4.5.3. The service processes the
future workload intensities and updates the Behavior Mix. How this is done is described
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in Section 4.6. The Forecast microservice provides the processed load intensity and
updated Behavior Mix through an endpoint, that the Workload Model microservice can
use to access these artifacts.

In the next part, we show how the forecast process works.

5.2. ContinuITy Forecast Process

After we embedded our approach into ContinuITy, two different processes for the load
test generation exist. Figure 5.3 shows the processes. The process to generate a load
test that does not include forecasting already existed before this thesis. The process is
triggered by submitting an order to the Orchestrator. The order is based on YAML and
contains information required by ContinuITy, like the workload intensity that should be
considered for the load test, the duration of the load test, and especially the link where
traces containing measured data from production can be found. The Orchestrator passes
the link to the Session Logs microservice, which converts the data first into a session
log. The session log is then processed by the WESSBAS microservice, which clusters
the session entries to calculate the behavior models and the behavior mix. With the
workload intensity passed by the user, WESSBAS then first generates a workload model
instance, and then converts the workload model instance into a load test.

The forecast process we implemented is similar to the process that does not include
forecasting, but contains more steps. Again, the user submits an order to the Orchestrator.
He sets a flag in the order to tell ContinuITy that it should generate a load test from
forecasted workload. The order must contain the forecast-options dictionary, that
tells ContinuITy, for example, how long the forecast should last. If the user wants
to include contexts in the forecast, the order must also contain a context description.
Further required information include the duration of the load test and the link where
either traces containing measured data from production can be found or recorded
request logs. The workload intensity has not to be passed with the order. The Session
Logs microservice converts the traces/request logs into a session log. The WESSBAS
microservice takes the session log as input, and calculates the behavior models and the
mix, which will be updated later. Then, the Forecast microservice performs the workload
forecasting. For this purpose, it takes the lists of session entries as input. The result
is the workload intensity for the load test and the new behavior mix frequencies. The
WESSBAS microservice executes a second time and takes the workload intensity and
the new behavior mix frequencies as input. It updates the behavior mix with the new
frequencies, and generates then the workload model instance. The workload model
instance is converted into a load test, which is returned to the user.
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In the current implementation, the user of ContinuITy can only request the high workload,
average workload, and the low workload scenario. The reason is that WESSBAS in its
current implementation can generate a load test with only a single workload intensity
value. We suggest for future work to extend WESSBAS, so that more than one intensity
value can be mapped into a load test.

5.3. Used Technologies

We used mainly the Java [Ora19] programming language to implement our approach.
Time series forecasters Prophet [fac17] and Telescope [Uni18] are available in R
[The19b]. We use them to forecast the future workload intensities of different user
groups. To be able to execute R code during the forecast process, we use the Java/R
Interface (JRI) [RFo19], which allows us to embed R code in Java code. Using JRI, R
code is run as a single thread. For each tool, one main R script exists that performs the
time series forecasting. JRI allows us to pass Java variables to the scripts. They take as
input the past workload intensities, and output a time series of forecasted values. The
forecasted values are passed back to the Java code, which then processes the forecasted
data.

In order to be able to process inputs by the user, we use the Jackson API [Fas18], that
can be used to map, e.g., JSON and YAML data to Java objects and vice versa. We use
the Jackson API to map context descriptions (YAML data) to Java objects, and to map
provided contextual data in form of JSON Strings to Java objects.

To process request logs in form of CSV data, we use the Univocity CSV parser [Uni19]
to parse the request logs and to generate Java objects out of the data. From each row
in the CSV, one Java object is generated. We then do calculations on the Java objects
to generate the session log. We use WESSBAS [VHS+18] to calculate behavior models
from a session log.

Our algorithms to calculate the past workload intensity from session data (Algorithm 4.1
and Algorithm 4.2) utilize the range implementation of the Apache Commons Lang Java
library [The18]. The past workload intensities are saved into a time series database
(TSDB). We use InfluxDB [Inf19b] as the TSDB.
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Chapter 6

Evaluation

In this chapter, we evaluate our approach. In Section 6.1, we first present our evaluation
goals, and derive our research questions (RQs) from them. We perform our experiments
with non-synthetic logs extracted from a real-world information system. The logs
are described in Section 6.2. Afterwards, in Section 6.3, we present the setup of our
experiments in order to answer the RQs. After we have run the experiments, we obtained
our evaluation results. The results are presented in Section 6.4. In Section 6.5, we
analyze the results and answer the RQs. Finally, we investigate whether our evaluation
is valid. Threats to validity comprise internal, external, construct, and conclusion threats,
which are discussed in Section 6.6.

6.1. Evaluation Goals

Our approach consists of two main parts. The first part is the workload forecasting based
on a context, and the second part the processing of the forecasted workload to extract
load tests. Our evaluation will cover both parts. We investigate the following:

• is WESSBAS appropriate for our approach to calculate the historical workload

• are time series forecasters Telescope and Prophet suitable for our approach to
predict the future workload intensity for several user groups

• is the forecasted workload accurate and can contexts increase the accuracy

• do load tests returned by our approach cover requested load scenarios that occur in
the future, and if only the required testing effort (test execution time and resource
usage) is spent when executing the test
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• do contexts help to decrease the testing effort and increase the coverage of re-
quested load scenarios that will occur in the future

We can derive the RQs from the evaluation goals. The first RQ is:

RQ1: How accurate is the forecasted workload?

By answering this RQ, we can find out whether our overall approach is meaningful.
Our approach strongly depends on existing tools. We use WESSBAS for the extraction
of different user groups from request logs and time series forecasters to predict their
future load intensities. The workload will only be accurate if WESSBAS and the time
series forecasters function as expected. They are appropriate for our approach, when
the forecasted workload is accurate. For this purpose, first the user groups have to
be identified correctly and second their future load intensities have to be forecasted
accurately. Prophet and Telescope are also able to include regressors in their prediction
models. We calculate regressors from contexts. With the regressors, we hope to gain
even higher accuracy. The second RQ is:

RQ2: What is the impact of contexts on the accuracy of the forecasted workload?

RQ1 and RQ2 target the first main part of our approach. The next RQs target the second
main part, the workload processing.

The third RQ is:

RQ3: How efficient is our approach in covering requested load scenarios that will occur
in the time range we test for?

This RQ considers the fourth evaluation goal. We want to cover all load scenarios a user
could request and that will occur in the future, and at the same time we want to spend
only the testing effort that is really required to simulate a particular load scenario. For
example, when the maximum intensity that will occur in the future is 10000, then a
returned load test that tests for 20000 users covers the maximum intensity that occurs
in the future, but the testing effort is too high, as 10000 users more than required are
simulated with the load test. Analogous to RQ2, we can test if providing a context can
help decrease the testing effort and/or to cover requested load scenarios that occur in
the future. The fourth RQ is:

RQ4: What is the impact of contexts on the coverage and on the efficiency?

For each RQ, we design one experiment to answer it. The setup of these experiments is
described in Section 6.3.
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6.2. Input Data for the Evaluation

Our experiment is executed with non-synthetic logs from a real-world system. The usage
of synthetic logs would result in external threats to validity, since they could not contain
representative information of occurred workload during production.

For our evaluation, we use real-world logs [Hid19] extracted from the Student Informa-
tion System (SIS) [Cha19b] of the Charles University in Prague [Cha19a]. Users of the
system not only include normal students, but also, e.g., Ph.D. students and professors. It
is possible to look up exam dates, register for courses, search for persons at the university,
add teaching material, etc. The logs were recorded by an Apache web server [The19a]
over a six month time period. All log entries include the IP address of the machine from
which the requests came from. However, not all log entries contain session identifiers.
Session identifiers are only available for those records where the user was logged in.
Users that are not logged in are able to access only some of the SIS pages. However, in
order to build a session log out of the raw logs, all log entries have to contain a session
identifier (otherwise, log entries without session identifiers would not be considered).
We group log entries without session identifiers and assign log entries in one group
the same session identifier. The following conditions apply for log entries in the same
group:

• The log entries have the same IP address.

• The time difference between two subsequent log entries is a maximum of 30
minutes. We use the 30 minutes as timeout value between two requests [FGL15]
in order to calculate the session identifiers.

We process log entries that already contained session identifiers the similar way, since
we have identified a considerable amount of recorded sessions in the logs that last for
several hours and where the user is inactive most of the time. Hence, we apply here also
the 30 minutes timeout threshold and assign new session identifiers to these log entries
if required. We do this the following way. If between two subsequent log entries a and b
with same session identifiers the time difference is higher than 30 minutes, then, starting
from b, all following log entries with the same session identifier will be considered as
records of a separate session.

While we grouped log entries with the same session identifiers, we identified sessions
with a huge amount of requests to the same endpoint, and lasting for several hours, or
even days. We assume the system either performing batch jobs in this case, or the user
making use of an API to update permanently, e.g., his calendar with exam dates. We
omit these sessions, because they describe a constant load on the system.
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We can reduce the amount of data to be processed further. We remove all records from
the logs where static content was loaded, as the system performs no calculations when
providing this content. This comprises all log entries where files with the following
format were loaded: js, png, css, gif, jpg, ttf, ico, woff, svg, txt, and pdf. After we
removed the static content, we still have several hundreds of SIS pages left that could
have been recorded. The user follows navigation links in order to perform the desired
task, and, thereby, moves from one page to another. Typical URLs of the website are, e.g.,
“/studium/login.php”, “/studium/eng/index.php”, and “/studium/predmety/index.php”.
(Almost all) URLs have the following structure:

“studium/eng/category/name_of_page”

where “eng” and “category” are not always used. “eng” is used, when the user sets the
language of the application to English. We delete “eng” from all URLs, where it occurs.
Category is used, when the user accesses a so called “module” of the application, that
can be seen as a particular service, where the user can, e.g., look up information or
download data. When the user is situated at the main page “studium” and did not access
a module, then category is not used. Beside modules, further URLs can be found with
the same structure. However, they do not describe services users can access, but are
called by the system itself to, e.g., reset the duration of a session. Such URLs are called
by the system when the user accesses a service, and, thus, go along with other services.
They also extend the duration of sessions to hours, even when the user is not active.
Categories in the affected URLs are, e.g., “stev” and “lib_class”. Further URLs that do not
describe any service contain, e.g., “lib”, “lib_tiny” or “res” as category. As we investigated
these URLs, we found out that these are mostly static content. In a few cases, the system
executes a php script. We decide to discard URLs where the category does not describe a
service, as otherwise sessions would last too long and requests would be included that
are not part of the navigational pattern of the user. We group the remaining URLs into
the categories. When no category is available, the user is situated at the main page, and
we use “studium” as the category.

Overall, we identified 64 categories (services). WESSBAS clusters session entries in a
session log by first converting each into a behavior model. Each service would correspond
to one state in the behavior models. The number of features used for the clustering
results from the amount of possible state transitions, which would be approximately
4000 in our case. For the clustering, all features of the behavior models are compared
against each other, even state transitions with zero probability. Besides, a huge amount
of session entries has to be processed. This results in memory problems when clustering
the behavior models, even with a machine with over 100 GB of RAM. Calculations take
extremely long time and the machine runs out of memory, when there are too many
features. Hence, we have to decrease the amount of considered categories. We cannot
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summarize categories, because we do not have enough knowledge about the endpoints.
Therefore, we decide to omit some of the categories. Our requirement was to not run
out of memory and that the calculation performs of maximum one day. We tested
configurations and could perform the clustering on 3 weeks of data with a size of 1.5 GB,
and 50 categories. The RAM utilization of the machine we use for our experiment was
98 % at the end of the calculation. The used machine has 128 GB RAM. The calculation
took approximately eight hours. To not run out of memory, we cut out smaller logs with
a maximum of approximately 1.5 GB of data from the six month SIS logs, and run our
experiments on the smaller logs. Furthermore, we reduce the amount of categories to
50. For this purpose, we first count the amount of requests made to each service over the
six month time period, and investigate, which of these services are requested the least
(negligible workload). The least requested services (categories) are omitted, until 50
are left. The considered 50 categories are listed in Table 6.1 and Table 6.2, whereas the
omitted categories can be found in the appendix in Table A.1. The categories are ordered
based on the request counts, so that services with higher request counts are listed first.
For each category we list the service that is accessed and the role we assume a user at
least has to have to access the service. Not all services are accessible by normal students.
Some require, e.g., admin permissions. When the role is “student”, we could access the
page by ourselves. Otherwise, we see the title of the page and get a notification that the
module cannot be accessed. Hence, for the other roles, we cannot guarantee, that our
assumptions are correct. These are only guesses. In cases we could not infer the role
at all we left the cell free. We hope WESSBAS can identify user groups with different
roles with its clustering, since users with different roles perform different tasks in the
system.

We pass chunks of the six-month log to our session log generator, which we extended for
our evaluation through the rules described above. The logs do not include request end
times, i.e., the request end time is set to the request start time. The output are session
logs which can be processed by WESSBAS.
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Category Service Role

studium Main page Student
predmety Subjects Student
rozvrhng Schedule NG Student

predm_st2 Subjects and schedule registration Student
term_st2 Exam dates Student

prijimacky Admission Student
dipl_st Thesis (subject selection) Student

zkous_st Summary of exam results Student
kdojekdo Search for persons Student

omne Personal data Student
zkous_uc2 Exam results Student

phdisp Individual degree program for Ph.D. students Ph.D. student
soub_mana File Manager Student

dipl_uc Student thesis
nastenka Notice-board Student
ciselniky Classifiers Student
anketa inquiry Student

term_uc2 Exam dates - publishing Professor/ assistant
szz_st Final exams Student

predm_uc Students registration into subjects Professor/ assistant
ekczv Life-long education programs Student
cml Publications

szz_uc Protocols of final state exams
komise Committees Student

grupicek Study Group Roster Student
szz Invitations to state exams Student
esc Official journey registration Professor/ assistant

podprij Admission requirements
wstip_st scholarships Student

akreditace_rvh Acreditation RVH NAU
promoce Graduation Student
wstip_uc Scholarships
skolitel List of advisors Student
grupik - This service does not load -

role Selection of role Admin
harmonogram Harmonogram Student

rozpis Curriculum Professor/ assistant

Table 6.1.: Considered categories (1)
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Category Service Role

prezkumy_st Study charges and petitions
deda_zahost Admission of a foreign guest

vyspl Listing of responsibilities
sestavy Learning sets Professor/ assistant
diplmat Diploma-matrix
uchak Candidate Commission
ave SIS Administration Admin

deda_amu Organisation of events with international partic-
ipation

staze_uc Internships
ave_uziv SIS Administration: Roles and users Admin

deda_strav Meals
transcript Transcript

bookmarks Bookmarks Student

Table 6.2.: Considered categories (2)

6.3. Setup of Experiments

Our approach is embedded into ContinuITy, which automatically can execute all the steps
of our approach. However, in order to investigate intermediate results produced from
individual parts of our approach more easily, we decide to perform the steps manually.
We summarize the steps in the following and list the intermediate results obtained after
each step:

1. Step: Convert request logs into a session log
Result: Session log

2. Step: Input the session log to the WESSBAS behavior model extractor
Result: behavior models

3. Step: Calculate the past workload intensity of each user group
Result: Past workload intensities

4. Step: Calculate regressors from a context description
Result: Regressors

5. Step: Input the regressors and the workload intensities to a time series forecaster
Result: Forecasted workload intensities
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6. Step: Processing the forecasted intensities
Result: Load test(s)

Step 4 is omitted when the user did not pass a context description. We run four
experiments in total. For a particular experiment, we do not have to perform all of the
steps mentioned above. In the following sections, we describe for each experiment,
which steps we perform, and which RQs we aim to answer with the experiment.

Hardware Infrastructure: Our experiment is run on a virtual machine with a CPU
that has eight cores. The clock speed is 2.20 GHz. The machine has 128 GB RAM and the
installed operating system on the machine is Microsoft Windows Server 2016 [Mic19].

6.3.1. Experiment 1: Simulation of the Forecasted Workload

With this experiment, we aim to answer RQ1. For this purpose, we perform steps 1,
2, 3, and 5. This means, we do not consider contexts (step 4) and will not process
the forecasted intensities (step 6), i.e., we will replay the forecasted workload as it is.
This corresponds to the “entire workload” load scenario described in Section 4.6, but
here we do not need to calculate a behavior mix, as we do not generate a real load
test with WESSBAS. We will simulate each forecasted intensity, and simulated users
of a particular intensity always follow the behavior model describing the user group
for which the intensity was forecasted. In order to be able to compare the forecasted
workload against the real workload the system under test (SUT) will experience, we
consider one part of a given request log as the already recorded log and the other part
as the log that will be recorded in the future. For this purpose, we take one month of
the SIS logs, and consider the first three weeks as the past log, and the last week as the
future log. For the past log we perform the steps and then obtain the future intensity of
each user group. The time interval for which intensities are calculated is set to one hour.
The forecast range is one week, and, hence, the duration of a load test simulating the
forecasted workload would be one week, too. Due to time restrictions, we are not able
to execute a load test for one week. Thus, we decide to implement a load test simulator
that writes sequences of requests users perform into a file. It simulates each user group
by simulating its forecasted intensity, e.g., in the first hour 100 users, in the second hour
200 users, and so on. Each user starts a session and performs a sequence of requests
as specified by the corresponding behavior model. When the session is finished, the
user starts a new session. As think times we use the mean think times between state
transitions as specified by the behavior models. For each resulting session, one session
entry is created, that is written into a session log. The resulting session log comprises
all requests of all user groups made in the forecasted week. From the session log, we
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calculate different metrics that are associated with workload. We calculate the same
metrics from the real log that we assumed as the future log. The results are compared
against each other, and, thus, we are able to compare the forecasted workload against
the real workload. The considered metrics are:

• Arrival rates: Number of sessions arriving per time interval

• Completion rates: Number of completing sessions per time interval

• Average number of sessions per time interval

• Request count of a service: Number of requests a service received

• Session length: Amount of requests made in a session or session duration in
seconds

• Number of sessions

• Number of requests

From the six-month SIS logs, we cut out one month. The recorded requests start from
28/05/2018 00:00:00, and end at 24/06/2018 23:59:59, where the 28/05/2018 is a
Monday. This is the first month of the six month SIS logs, that starts with a Monday. We
are not able to consider more data, as the WESSBAS clustering would then utilize more
RAM than available (see Section 6.2). We assume the first three weeks of the log as the
past log, and the last week as the future log. In order to compare results obtained by
using Prophet and Telescope, we run the experiment twice, once with Prophet as the
forecaster, and once with Telescope as the forecaster. To simplify explanations, we name
the resulting log of the experiment run where Prophet was the forecaster “Prophet log”,
and the log of the experiment run where Telescope was the forecaster “Telescope log”.
We change two configurations of Prophet. First, we set the width of the uncertainty
intervals to 50 percent (default is 80 percent). Second, we set the time interval from
days to hours. We do not change any other configurations in the time series forecasters.
We execute the experiment as described above and collect results for the metrics.

There can be a slight error rate between the simulated intensity of a particular user
group and its forecasted intensity. An error value between a simulated intensity value
and the forecasted intensity value could occur, when from one hour to another hour
there is a decrease between two consecutive forecasted intensity values. We start at
each hour a number of users as specified by the forecasted intensity. Each of these
users starts a new session when the previous session has finished. Sessions that have
been started in one hour can still execute in the next hour (and also in the following
hours). Therefore, the intensity value in the next hour could be too high, as too much
sessions could be active. Our simulator tries to reduce the too high intensity value by
starting less users at the beginning of the next hour, and also by finishing some sessions
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that have started in the previous hour earlier. However, in the next hour the intensity
value could be still slightly too high or now even slightly too low. We calculated the
average error between a simulated intensity value and a forecasted intensity value and
obtained as result approximately one percent. In this experiment, we assume that the
simulated intensities conform to the forecasted intensities, even though the slight error
rate remains, which results in an internal threat to validity. We provide the load test
simulator as supplementary material to this thesis [Hid19].

6.3.2. Experiment 2: Regressors for Saturday and Sunday

With this experiment, we aim to answer RQ2, i.e, we want to investigate whether
a context can increase the accuracy of a workload intensity forecast, and, thereby,
also the future workload. We perform the steps 1, 3, 4 and 5. Step 3 is modified
as we calculate exactly one past workload intensity directly from a session log, i.e.,
we do not calculate user groups. From the SIS logs, we consider recorded requests
that start from 28/05/2018 00:00:00, and end at 10/06/2018 23:59:59. The last two
days are Saturday (09/06/2018) and Sunday (10/06/2018). In this experiment, we
forecast the workload intensity occurring on both of these days. This means, that we
calculate the past workload intensity from the session log that contains the data from
28/05/2018 00:00:00 until 08/06/2018 23:59:59. In this time range, Saturday and
Sunday each occur once. Saturday and Sunday describe an appropriate context, as
the SIS is used much less on these days. We perform the intensity forecast twice, once
without regressors, and once with regressors. We calculate two regressors, one for
Saturday, which we refer to as Saturday regressor, and one for Sunday, which we refer to
as Sunday regressor. The Saturday regressor values are 1 during Saturday, and otherwise
0. Analogous, the Sunday regressor values are 1 during Sunday, and otherwise 0. The
regressors contain past as well as future values. They are passed with the workload
intensity to a forecaster, which then predicts the future intensity based on a context. The
intensity forecasts with and without regressors are compared against the real intensity
that occurred on both days. For this purpose, we use the following metrics:

• Maximum intensity on Saturday

• Maximum intensity on Sunday

• Average intensity on Saturday

• Average intensity on Sunday

The forecaster we use for this experiment is Prophet.
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6.3.3. Experiment 3: Extraction of Workload Intensities

With this experiment, we aim to answer RQ3. In experiment 1, we do not process the
forecasted intensities. Here, we perform step 6 with the forecasted workload intensities
from experiment 1. We execute the experiment twice, once with the forecasted intensities
by Prophet, and once with the foreasted intensities by Telescope. The forecasted
intensities are aggregated to exactly one intensity, which is the sum of the intensity
values of all forecasted intensities at times t1, ..., tn, where t1 is the timestamp of the
first intensity values, and tn is the timestamp of the last intensity values. We consider all
load scenarios, except the “entire workload” scenario, as this scenario is already covered
by experiment 1. For a particular load scenario, we obtain one or more intensity values
from the aggregated intensity, which are set as the workload intensity of a load test
simulating for that load scenario. The considered workload intensities comprise:

• Maximum intensity (single value)

• Average intensity (single value)

• Minimum intensity (single value)

• Sharpest increase in intensity (two consecutive values)

• Sharpest decrease in intensity (two consecutive values)

The testing effort only consists in the simulation of users, and, hence, we only investigate
the extracted workload intensities for load tests. From the real intensity, we extract
the same workload intensities for load tests, so that we can compare them against the
workload intensities obtained from the forecasted data. In order to investigate if we
cover the occurring maximum, average and minimum intensity in the future, and at the
same time if the required testing effort is spent when simulating the users, we assume
the following.

• If the single value of the intensity obtained from the forecasted data is roughly
the same as the single value obtained from the real data, we covered the intensity
correctly and spend the required testing effort. Roughly the same means up to
approximately 10 percent difference.

• If the value of the intensity obtained from the forecasted data is clearly 10 percent
higher than the real value, then we covered the intensity, but the testing effort is
too high.

• If the value of the intensity obtained from the forecasted data is clearly 10 percent
lower than the real value, then the intensity is not covered, and at the same time
the testing effort was without success, and, thereby, too high.
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The workload intensities consisting of two values (sharpest increase and decrease) are
compared as follows.

• From the sharpest increase extracted from the forecasted data we calculate the
percentage increase between the first and the second value. We do the same for
the real sharpest increase. If the difference between both percentage increases is
roughly the same (up to approximately 10 percent difference), and if the difference
between the second values of the sharpest increases is also roughly the same (again
up to approximately 10 percent difference), then we covered the sharpest increase
correctly and spend the required testing effort.

• If the percentage increases are roughly the same, but the second value of the
sharpest increase from the forecasted data is clearly over 10 percent higher than
the real second value, then the sharpest increase is covered, but the testing effort
was too high.

• If the percentage increase of the sharpest increase extracted from the forecasted
data is clearly over 10 percent higher than the percentage increase of the real
sharpest increase, and if the second value of the sharpest increase from the
forecasted data is clearly over 10 percent higher than the real second value, then
the sharpest increase is covered, but the testing effort was too high.

• If the second value of the sharpest increase from the forecasted data is clearly
over 10 percent lower than the real second value, then the sharpest increase is not
covered, and at the same time the testing effort was without success, and, thereby,
too high.

• If the percentage increase of the sharpest increase extracted from the forecasted
data is clearly over 10 percent lower than the percentage increase of the real
sharpest increase, then the sharpest increase is not covered, and at the same time
the testing effort was without success, and, thereby, too high.

• The sharpest decrease extracted from the forecasted data is compared to the real
sharpeast decrease analogously, but here we compare the percentage decreases
and the first values of the sharpest decreases.

In the cases where the real occurring intensity in the future is not covered by the
returned load test, the user of our approach obtains false safety. The system is not tested
correctly and, therefore, could not handle the real occurring load. This result is worse
than investing more testing effort than required.
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6.3.4. Experiment 4: Regressor for Special Event

With this experiment, we aim to answer RQ4. In experiment 1 and 3, the forecasted
week ranges from 18/06/2018 00:00:00 until 24/06/2018 23:59:59. In real, the system
experienced on the Tuesday of this week, at 20:00:00 o’clock, an extreme load. The
intensity at this hour, which was in average 1418 active sessions, was clearly higher
than normal. However, such a high value never was observed in the three weeks before
that week. We expect that this high value will not be detected in experiment 3 as the
maximum value. We assume for this experiment, that there was a special event when
the high intensity occurred, and assume it as a context. However, our approach only
functions when the special event was already observed in the first three weeks. As we
investigated the intensity on the Tuesday in the week before the fourth week, we found
four consecutive intensity values from 11:00:00 until 14:59:59 o’clock that are lower
than the value of 1418 in the fourth week, but are quite close it. The values are 1139,
1126, 1081, and 1083. We assume that at that time there was also a special event, as
the values are still clearly higher than normal. For this experiment, we assume that the
special event was the same as in the fourth week. We input the intensity of the first
three weeks to Prophet, and pass a regressor with the intensity. The regressor values
are 1 at the timestamps where the high values occur, and 1 at the timestamp where the
high value in the fourth week occurs. We then forecast the fourth week, and extract the
maximum value from the result. We then compare the value against the real maximum
value of 1418.

6.4. Experiment Results

In this section, we show the results of each experiment. In Section 6.5, we answer our
RQs based on the results. We start with the results obtained from experiment 1.

6.4.1. Experiment 1: Simulation of the Forecasted Workload

The experiment is executed as described in Section 6.3.1. We obtain metrics for three
logs: The real log, one calculated log using Prophet, and one calculated log using
Telescope as the forecaster. The period of all three logs is the same. They start from
18/06/2018 00:00:00 and last until 24/06/2018 23:59:59. Table 6.3 lists the number of
session entries (one session entry represents exactly one session) and the total number
of request entries (one request entry represents exactly one request) in the session
logs, and how long one session entry in the logs is. SD is the abbreviation for standard
deviation.
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Real log Prophet log Telescope log
Number of sessions 667841 54124 37527
Number of requests 4368146 315907 232661
Mean session length (# requests) 6.54 5.84 6.2
SD session length (# requests) 332.6 11.1 15.67
Mean session length (in seconds) 240.76 3585 3767
SD session length (in seconds) 2607.63 5117 6054

Table 6.3.: Number of sessions and session length

The real log has a lot more session entries than the calculated logs, and for that reason
also a higher number of request entries. The session length expressed through the
average amount of requests in a session is similar for all three logs. In contrast, the
average session length expressed through the session duration (in seconds) differs
between the real log and the calculated logs. For the calculated logs it is approximately
one hour, whereas for the real log it is four minutes. The differences between the number
of sessions, number of requests, and the mean session length (in seconds) between the
real log and the calculated logs are high. A simulated user by our simulator starts a
new session when the previous session is finished. To obtain the high amount of session
entries as in the real log, sessions would have to finish fast in the simulation, so that
simulated users spawn lots of sessions. However, the length of sessions (in seconds)
in the simulation is approximately one hour in average. This is due to the high think
times between state transitions as specified by the behavior models. For example, it
takes 15 minutes to transition from “studium” to “studium”, which is the most frequently
executed state transition. We found that the think times calculated by WESSBAS are too
high and decided to calculate them again, and then to restart the experiment with our
own calculated think times. For this purpose, we consider the three weeks past log. We
calculate the mean think time of a particular state transition as follows. We search for
all its occurrences in the past log and sum up the think times. The resulting think time is
divided by the amount of occurrences of this transition. The new calculated mean think
times are actually smaller than specified by the behavior models. For example, the mean
think time of the transition “studium” to “studium” is now 1.3 minutes. We explain in
Section 6.5.1 why the mean think times calculated by WESSBAS are higher. Table 6.4
lists the new results obtained for the same metrics as in Table 6.3. As it can be seen, in
comparison to Table 6.3, the values obtained from the calculated logs are now more
similar to the values obtained from the real log. The number of session entries in the
Prophet log is now higher than in the real log. In contrast, the number of session entries
in the Telescope log is lower than in the real log. The same applies for the number
of request entries. The mean session lengths (requests and in seconds) are similar for
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Real log Prophet log Telescope log
Number of sessions 667841 819508 612959
Number of requests 4368146 4814591 3743739
Mean session length (# requests) 6.54 5.88 6.11
SD session length (# requests) 332.6 12.26 11.48
Mean session length (in seconds) 240.76 234.89 229.07
SD session length (in seconds) 2607.63 314.51 315.76

Table 6.4.: Number of sessions and session length - Own calculated think times

all three logs. The real log, compared to the calculated logs, shows a high standard
deviation in the session lengths.

Further presented results only include the results from the experiments where we used
our own calculated think times for state transitions.

In the appendix, we provide two tables, Table A.2 and Table A.3, which list for each
service how many requests it received, i.e., the request counts of the services. The
services are ordered based on their actual request counts in the fourth week (real log
column). In Figure 6.1, a bar chart of the request counts of the first 20 services is
provided, so that differences between the request counts obtained from the logs can
be spotted more easily (at least for the first 20 services). As it can be seen, there are
a lot of similarities between the results. However, some major differences exist. For
example, according to the real log the second highest called service is predmety, but
according to the Prophet log it is prijimacky, and according to the Telescope log it is
term_st2. For the arrival rates, completion rates, and average number of sessions per
time interval (intensity) metric we obtained for each of these metrics a time series of
values for each log, where a value was calculated for a time interval of one hour. The
time series consist of 168 values, since we forecasted for one week (7 ∗ 24 = 168). We
want to compare the time series values obtained from the real log against the time series
values obtained from the calculated logs, e.g., the arrival rates, and investigate if they
are similar. For this purpose, we use the euclidean distance as similarity measure. The
euclidean distance is defined as

d(x, y) =
√∑n

i=1(xi − yi)2

where in our case x1, ..., xn are the values of one time series, and y1, ..., yn are the values
of another time series. In the following, x describes the values of a time series calculated
from the real log, a the values of a time series calculated from the Prophet log, and
b the values of a time series calculated from the Telescope log. Table 6.5 shows the
results. What can be seen is that the euclidean distances between the values of the time
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Figure 6.1.: Request counts of services - Bar chart

series calculated from the Telescope log and the real log are smaller than the euclidean
distances between the values of the time series calculated from the Prophet log and
the real log. The euclidean distances in the arrival and completion rates are clearly
higher than the distances in the intensity, because thousands of sessions can arrive and
complete in one time interval, but the average amount of sessions per time interval stays
at large part below 1000.
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Prophet: d(x, a) Telescope: d(x, b)
Arrival rates 17227.12 12111.7

Completion rates 17229.3 12155.78
Intensity 1591.22 1394.13

Table 6.5.: Euclidean distances between time series

6.4.2. Experiment 2: Regressors for Saturday and Sunday

Figure 6.2 shows the real workload intensity that occurred on 28/05/2018 00:00:00
until 10/06/2018 23:59:59. Each peak shows the intensity that occurred on a particular
day (2 weeks = 14 days = 14 peaks). The last two peaks represent the workload
intensity on Saturday and Sunday. The maximum value of the peak (maximum intensity)
on Saturday is 222, whereas on Sunday it is 318. The average intensity on Saturday
is 132.75, and on Sunday 174.75. We now forecast the intensity on both days. We
start with the forecast without regressors. The result can be seen in Figure 6.3. Here,
the last two peaks look very similar, and compared to the last two peaks of the real
workload intensity, they are clearly too high. We calculate the same metrics as above. As
maximum intensity on Saturday we obtain 564.42, which results in an error of 152.24
percent, as the real intensity is 222. For Sunday we obtain 563.51, which results in an
error of 77.2 percent. Besides, the maximum intensity on Saturday is higher than on
Sunday, whereas in the real intensity it is the other way round. The average intensities
on both days are also clearly too high. On Saturday the average intensity is 309.91,
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Figure 6.2.: Real workload intensity
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Figure 6.3.: Intensity forecast without regressors
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Figure 6.4.: Intensity forecast with regressors

and on Sunday 309. Both values, as well as the maximum intensity values, are very
similar. Figure 6.4 shows the forecast with regressors. Some intensity values in the
forecast had to be set to zero, as they were negative. The last two peaks, compared to
the forecast without regressors, are now smaller. Also, the second of the last peaks is
a little higher than the first. We calculate again the metrics. As maximum intensity on
Saturday we obtain 337.74. Compared to the forecast without regressors, we were able
to decrease the error from 152.24 percent to 52.14 percent. On Sunday, we obtain as
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Real intensity Without regressors With regressors
Maximum Saturday 222 564.42 337.74
Maximum Sunday 318 563.51 371.8
Average Saturday 132.75 309.91 131.35
Average Sunday 174.75 309 152.87

Table 6.6.: Workload intensities on Saturday and Sunday

maximum intensity 371.8. Here, we were able to decrease the error from 77.2 percent
to 16.92 percent. Also, the maximum intensity on Saturday is now smaller than the
maximum intensity on Sunday. The average intensity on Saturday is 131.35, and on
Sunday 152.87. These intensities are clearly more close to the real average intensities
than the average intensities obtained from the forecast without regressors.

With the results, we can infer that both peaks are now more close to the last two peaks
of the real intensity. However, the peaks still differ. Table 6.6 summarizes the results of
this experiment.

6.4.3. Experiment 3: Extraction of Workload Intensities

Table 6.7 shows the experiment results. We extracted workload intensities for load
tests from the real intensity of the fourth week, and from the aggregated intensities.
The aggregated intensity of the forecasted intensities from Prophet is called “Prophet
intensity”, and the aggregated intensity of the forecasted intensities from Telescope
“Telescope intensity”. With both, Prophet and Telescope, we do not cover the real
maximum intensity, and the testing effort is without success, as both maximum values
from the Prophet and Telescope intensity are not even half as high as the real maximum.
With Prophet, we cover the average intensity, but the testing effort is too high, as the
percentage difference to the real average is approximately 20 percent. With Telescope,
we are also able to cover the average intensity, as the percentage difference to the real

Real intensity Prophet intensity Telescope intensity
Maximum 1418 655 637
Average 265 321 235
Minimum 36 19 30
Sharpest increase (89, 180) (132, 266) (129, 305)
Sharpest decrease (1418, 584) - (181, 90)

Table 6.7.: Extracted workload intensities for load tests
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average is approximately 12 percent, which we consider as acceptable, plus we spend
the required testing effort. With both tools, the minimum intensity cannot be covered
(61 and 18 percentage difference). The sharpest increase is covered by Prophet, but
with too much testing effort. Both, the real and the sharpest increase of the Prophet
intensity have a percentage increase of around 100 percent, but the second value of
the sharpest increase of the Prophet intensity is clearly higher. The same applies for
the sharpest increase of the Telescope intensity, but here also the percentage increase is
clearly higher between both values, and, hence, the testing effort is even higher. From
the Prophet intensity, no sharpest decrease is detected. The sharpest decrease of the
Telescope intensity does not cover the real sharpest decrease, as its first value is clearly
lower than the first value of the real sharpest decrease.

In the real intensity there are two consecutive high values (863 and 1418), that are
higher than the other values. When they would not exist, the real maximum intensity
would be 685. In this case, the maximum intensities from the Prophet and the Telescope
intensity would cover the real intensity, and the required testing effort is spent.

6.4.4. Experiment 4: Regressor for Special Event

Figure 6.5 shows the real workload intensity that occurred on 28/05/2018 00:00:00
until 24/06/2018 23:59:59. Each peak shows the intensity that occurred on a particular
day (4 weeks = 28 days = 28 peaks). As it can be seen, in the last two weeks on
Tuesdays the corresponding peaks have very high values. In the week before the last
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Figure 6.5.: Real intensity
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Figure 6.6.: Intensity forecast without regressor
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Figure 6.7.: Intensity forecast with regressor

week the values are 1139, 1126, 1081, and 1083, and in the last week the value is 1418.
We first forecast the intensity of the fourth (last) week without regressors. The result
can be seen in Figure 6.6. As it can be seen, the forecast does not cover the high value
on Tuesday. The maximum value of the forecasted intensity is 666.9, which results in an
error of 52.97 percent. Now, we forecast the fourth week again, but this time we add
the regressor to the forecast. The result is shown in Figure 6.7. The maximum value
we now obtain is 970.9. We were able to reduce the error from 52.97 percent to 31.53
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Figure 6.8.: Forecast with modified values

percent. However, the result is still not acceptable. It seems that the occurrences of a
context have to lead to similar intensities. We want to investigate this and modify the
high values in the third week so that they are similar to the high value in the fourth
week. For this purpose, we add to all four values 300, so that the values are around
1400. This ensures that both special events lead to similar intensity. The modified values
are 1439, 1426, 1381, and 1383. Figure 6.8 shows the forecast with the regressor again,
but now with the modified values. The maximum value in the forecasted week is now
1272.3. The error is now 10.28 percent, which is acceptable, i.e., we cover now the
maximum intensity that occurs in the future, and we spend the required testing effort.

6.5. Analysis of Results

In this section, we analyze the experiment results and answer the RQs. We start with
the analysis of the results from experiment 1.

6.5.1. Experiment 1: Simulation of the Forecasted Workload

Before we restarted the experiment we used the mean think times of state transitions
calculated by WESSBAS, and found out that they are too high. The high think times
in the behavior models result from a design decision of the WESSBAS approach for
the think times calculation, which is inappropriate for the used data set (SIS logs) in
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this evaluation. WESSBAS considers only the different think times of a particular state
transition for the calculation of its mean think time. For example, when the think times
of a particular state transition are 2s, 2s, and 116s, then WESSBAS considers the 2s

think time only once, and the resulting mean think time is (116s + 2s)/2 = 59s. Without
the duplicate removal, the mean think time would be (116s + 2s + 2s)/3 = 40s. As we
processed the SIS logs, we ensured that the time distance between two consecutive
requests in a session is maximum 30 minutes. For a particular state transition, a wide
range of think times can exist. From one second to 30 minutes everything could be
covered. However, smaller think times still appear way more often than greater think
times, but WESSBAS considers the same small think times only once for the mean
calculation. In the processed SIS logs, wide ranges of think times for the most frequently
occurring state transitions exist. For, e.g., the “studium” to “studium” transition, this
results in a mean think time of 15 minutes. For our calculation of the mean think times,
we did no duplicate removal.

We now want to investigate, why the Prophet log has more session and request entries
than the real log, and why the Telescope log has less session and request entries than
the real log (see Table 6.4). The Prophet log was the result of the load test simulation
with forecasted intensity values from Prophet, and the Telescope log was the result of
the load test simulation with forecasted intensity values from Telescope. For each of
the simulations, we calculate how many users were simulated in average per hour. For
this purpose, from the Prophet and the Telescope log, we first calculate the workload
intensity. Then, for each log, we sum up all resulting intensity values, and divide the
result by 168, which is the amount of hours of the forecasted week. The result is 318
users that are in average simulated per hour by our simulator when using the forecasted
intensity values from Prophet. Using the Telescope intensities, we simulated 232 users
in average. Without the error rate during the simulation of the forecasted intensities the
average values would be 321 and 235 (see Table 6.7). The average intensity calculated
from the real log is 265. This means, that the forecasted intensity values of Prophet in
average are too high, and that the forecasted intensity values of Telescope in average are
too low. Thereby, in the simulation with the values forecasted by prophet we simulate in
average 53 users per hour too much, and in the simulation with the forecasted values
by Telescope 33 users too little. This is also reflected in the number of session entries
obtained from each log. The distance between the number of session entries in the
Prophet log and the number of session entries in the real log (819508−667841 = 151667)
is higher than the distance between the number of session entries in the Telescope log
and the number of session entries in the real log (667841 − 612959 = 54882), as the error
value of 53 users is higher than the error value of 33 users. The results hypothesize that
Telescope forecasts the workload intensity with higher accuracy, and, hence, seems to be
more appropriate than Prophet for our approach. The mean session length regarding
both, the amount of requests made in the session and the session duration in seconds, is
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similar in all three logs. This indicates that the calculated behavior models are correct,
and that our calculated think times are meaningful. The standard deviation in session
lengths of the real log is very high, as in the processed SIS logs still a lot of sessions exist
that are very long.

Table A.2 and Table A.3 list the request counts of all services, and Figure 6.1 shows a
bar chart of the request counts of the first 20 services listed in the tables. We can see
that there are some similarities between the results obtained from the logs, but also
differences. We first want to investigate the major differences. The greatest difference
we observe is the request count of the prijimacky service. We want to investigate
this in detail. We found out that in the second of total five behavior models, which
occurs with approximately 15 percent probability during workload generation, there
is a 100 percent probability that the start state transitions to prijimacky, i.e., the first
request of a user following that model always addresses this service. The transition
prijimacky to prijimacky is then chosen with approximately 68 percent probability,
and with approximately 22 percent the behavior model transitions from prijimacky to
the end state. We now have a look on the forecasted workload intensity of the user
group described by the second behavior model. We start with the intensity forecasted by
Prophet. Figure 6.9 shows the forecast. The first 504 points (21 peaks = 21 days = 3
weeks) are the past intensity values we have calculated, and the last week is the forecast.
The curve starts at Monday (28/05/2018), 12 am. The overall curve shows the intensity
of exactly four weeks. As it can be seen from the diagram, in the forecasted week the
decrease of a peak is not as strong as the decreases of the other peaks in the first three
weeks. This means, when we simulate the curve, that there is always a considerable
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Figure 6.9.: Inaccurate intensity forecast by Prophet
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high amount of users on the system which performs requests to the prijimacky service,
as with high probability the transition from prijimacky to prijimacky is chosen, or the
session finishes. In case the session finishes, the same user would start a new session
and would again request the prijimacky service first. Besides, in comparison to the
other peaks, in the most cases the forecasted peaks are higher. This further increases
the number of requests received by the prijimacky service. To verify that the forecasted
intensity in the last week is too high, we calculate the average and the median from
the intensity in the first three weeks and also from the intensity in the last week. We
calculate the median, as in the first three weeks there are a few high values which
seem to be outliers. They could have a too strong impact on the average. The average
intensity in the first three weeks is 13.88. In the last week, the average is 23.83, which
is approximately 72 percent higher than the real average. The median value in the first
three weeks is 8, whereas in the last week it is 24.28, which is more than three times
higher. We infer that in the last week the forecasted intensity is too high.

In Figure 6.10, we see again the forecasted intensity of the user group described by
the second behavior model. This time Telescope is the forecaster. The peaks of the last
week (forecast) look very similar to the peaks of the first week, but are much smaller
than the peaks of the second and the third week. It seems to be that the intensity in
the last week is too low, and, hence, less users are simulated that send requests to the
prijimacky service. To verify this observation with measures, we again calculate the
average and the median from the intensity in the last week. In the first three weeks the
average intensity is 13.88, and this time the average intensity in the last week is 5.81,
which is approximately 58 percent lower. The median is 6.19 and approximately 23
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Figure 6.10.: Inaccurate intensity forecast by Telescope
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percent lower than the median in the first three weeks. We infer that in the last week the
forecasted intensity is too low. The inaccuracies in the forecasts lead to totally different
request counts of the prijimacky service.

As we compared the order of the request counts between the logs, we noticed that the
orders differ from each other. We assume the order of the request counts of the Prophet
and the Telescope log to be more similar to the order of the request counts of the log
containing the data from the first three weeks. To investigate this, we calculate from
this log the request counts. The order of the services based on the request counts can be
seen in the appendix in Table A.4 and Table A.5 for each of the logs. Real log (1) is the
log containing the data from the first three weeks, and real log (2) contains the data
from the fourth week. To show that the order of the request counts obtained from the
simulations is more similar to real log (1) than real log (2), we again create a bar chart,
this time with the request counts of the real log (1), and the Prophet and the Telescope
log. We divide the request counts of real log (1) by three, to obtain the average request
counts of one week. The bar chart shows the request counts of the 20 services that had
the highest request counts in the first three weeks. It is depicted in Figure 6.11. As it can
be seen, not only the order is more similar, but also the request counts by themselves.
Hence, we can confirm our assumption. We conclude, that WESSBAS’ behavior model
extraction functions as expected. The reason is that WESSBAS clustered the data of the
first three weeks, and obtained request counts of services are very similar to the request
counts in the first three weeks. That the order of the request counts is more similar to
real log (1) than real log (2) is a problem of inaccurate forecasts of the intensities of
user groups. Inaccurate intensity forecasts even result in major differences in the request
counts (as has been shown for the prijimacky service).

The results from Table 6.4 hypothesized that Telescope forecasts the workload intensity
with higher accuracy than Prophet. The results from Table 6.5 strengthen this assumption
further, as the euclidean distances between the values of the time series calculated from
the Telescope log and the real log are smaller. No Baseline exists that tells us whether the
obtained distances are high or low. However, the euclidean distances of the intensities at
least show that the intensity forecasts were not optimal. When we divide, for example,
1591.22 by 168, we obtain a mean square error of approximately 10 in the simulated
users per hour, i.e., per hour 10 users are simulated too little or too much (the value
would have been even higher when we would have calculated the linear distances
between the real and the simulated intensities). With higher forecast accuracy not only
the euclidean distances between the real intensity and the simulated intensity would be
lower, but also the euclidean distances between the arrival and completion rates, as they
depend on the amount of simulated users.

Summarized, based on the experiment results and the analysis, we can infer that
inaccurate intensity forecasts made by the used time series forecasters hinder our
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Figure 6.11.: Request counts of services - Bar chart (2)

approach to do accurate workload forecasts. With more accurate intensity forecasts,
the simulated workload could be more close to the real workload. In its current state,
our approach has limitations regarding the accuracy of the forecasted workload. This
answers RQ1.
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6.5.2. Experiment 2: Regressors for Saturday and Sunday

With our experiment results, we investigate whether a context can increase the forecast
accuracy. This also would answer RQ2, which asked what the impact of contexts on
the forecast accuracy is. As we answered RQ1, we already found out that the intensity
forecasts hinder our approach to forecast the future workload accurately. Thereby, it
is meaningful to investigate whether contexts can help to increase the accuracy of an
intensity forecast. The experiment results show that this is the case. In the intensity
forecast without regressors, the forecasted intensity is too high. For example, the
maximum intensity on Saturday is 564.42, and the average intensity 309.91. In the
real intensity, the maximum is 222, and the average is 132.75 on Saturday. Also, the
workload intensity on Sunday should be higher than on Saturday, as can be seen from the
real intensity, which is not the case. After we passed the context in form of regressors to
the tool, the maximum intensities on Saturday and Sunday are clearly lower and did get
more close to the real maximum intensities. The same applies for the average intensities.
Also, the intensity on Sunday is higher than on Saturday now, which conforms with
the real intensity. As both peaks are clearly lower now, we also managed to reduce the
testing effort. When we return a load test to the user that tests for, e.g., the maximum
intensity during Saturday and Sunday, the load test simulates a lower amount of users
as it would have tested when no context would have been considered. The reason is that
the more users are simulated with a load test, the more system resources are utilized,
i.e., the resource usage increases. Tools that execute load tests, like Apache JMeter
[AJ19], include also a ramp-up time that defines the amount of time it will take to add
all simulated users to the test execution [Bla17]. The more users are simulated, the
higher the ramp-up time, and, hence, the higher the test execution time. We infer, that
contexts can decrease the testing effort. This answers in part RQ4.

Summarized, the results have shown that contexts can increase the accuracy of the
intensity forecast, and hence can increase the accuracy of the forecasted workload. This
is the answer to RQ2. Besides, contexts can decrease the testing effort.

6.5.3. Experiment 3: Extraction of Workload Intensities

With the analysis of the results of experiment 1 we already found out that the forecasted
intensities by the used time series forecasters are not accurate. This is also reflected in
the results we obtained with experiment 3. Due to inaccuracies, occurring load scenarios
in the future are either not covered at all, or the testing effort is too high.

In the current state, our approach in some cases returns load tests to the user, which
do not cover the requested load scenarios that occur in the future. Hence, when a user
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executes the load test, the effort he spends is without success, but what is more worse is
that he obtains false safety. It could be, that the SUT cannot handle the real occurring
load, as the user did not test for it. For example, when his web store cannot handle the
real occurring load, it could crash, and the user of our approach could lose customers
and money. This is not unlikely when the maximum workload the system will experience
is not covered by a load test.

With the experiment results we have shown that contextual information in some cases is
necessary. The real maximum intensity value of 1418 is not covered by our approach.
When we assume that during the occurrence of this value there was a special event,
then the used time series forecasters have no knowledge about it, and, therefore, cannot
forecast this value. In experiment 4, we have seen that we did get more close the real
maximum intensity value after we have provided a context.

Summarized, the answer to RQ3 is that in its current state, our approach in some cases
is not able to cover load scenarios occurring in the future, and that in the most cases the
spent testing effort is too high.

6.5.4. Experiment 4: Regressor for Special Event

As we analyzed experiment 2, we already found out that a context can help to decrease
the testing effort. The results of experiment 4 show that a context can also help to
cover a requested load scenario. However, we have also found out that we only get an
acceptable result when the occurrences of a context lead to similar intensities. With the
modified values in the third week and a regressor we were able to decrease the error
from 52.97 percent to 10.28 percent. With the real values and a regressor we were able
to decrease the error from 52.97 percent to 31.53 percent. In both cases, the obtained
maximum is clearly more close to the real maximum. We have shown that contexts help
to focus only on the relevant workload. However, without the modified values, the result
was still not acceptable and we were not able to cover the real maximum. We infer, that
contexts help to cover a requested load scenario, but the occurrences of a context have
to lead to a similar intensity.

Summarized, contexts can help to decrease the testing effort and to increase the coverage.
This is the answer to RQ4.
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6.6. Threats to Validity

In this section, we investigate whether our evaluation is valid. For this purpose, we
analyze threats to validity. We start with internal threats.

Internal threats: We processed the SIS logs before we have used them in our
experiments. We applied rules to the logs to decrease the amount of data and to
calculate session identifiers. We cannot guarantee, that the processed logs are still
representative for the real workload the SIS experienced. We suggest to execute the ex-
periments again with another real world data set that is not processed, and to investigate
whether the evaluation results will be the same.

We have built a load test simulator that simulates the forecasted workload intensities.
We assumed that the simulated intensity conforms to the forecasted intensity, but there
is an error rate between both intensities, which could impact the obtained experiment
results. However, we calculated the average error between a simulated intensity value
and a forecasted intensity value and obtained as result only one percent. Thus, we
assume that the impact on the experiment results is very low. Nevertheless, to be sure,
we suggest to run experiment 1 again and to execute a real load test that simulates users
based on the forecasted intensities.

External threats: All of our experiments were executed with only one data set. Hence,
our evaluation results cannot be generalized. We cannot guarantee that the results are
the same for other data sets. We suggest to execute the experiments again and to test
the approach with more data sets.

Construct threats: In experiment 4, we assumed that a special event occurred during
the high observed workload. The reason for the high workload could have been
another. Furthermore, we assumed that the same event occurred one week earlier,
so our approach can consider the event as a context. The experiment should be executed
again with a data set annotated with a real recurring event that is known.

We only changed two configurations of Prophet. We did not change any other configura-
tions in the used time series forecasters. Especially Prophet provides many configuration
options [fac19]. Maybe the forecast accuracy could have been increased when the tools
were configured properly. We suggest to investigate which configuration options exist,
and to try out different configurations of the tools.
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Conclusion threats: For our experiment, we restricted to fundamental statistical
measures such as single values like the mean and the maximum. For future work, we
suggest analyzing our results with more rigorous statistics.
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Chapter 7

Conclusion

In this chapter, we provide a summary of this thesis, discuss whether we have achieved
our goals, and propose future work. In Section 7.1, the summary can be found. In
Section 7.2, the retrospective, we discuss whether we were able to achieve our goals. In
Section 7.3, we propose work for the future we were not able to complete in the scope
of this thesis.

7.1. Summary

In this thesis, we developed an approach to forecast the future workload based on
historical workload and a given context. The goal of this work was to extract one
or more load tests from the forecasted workload that test for relevant occurring load
scenarios in the future.

The historical workload is calculated from recorded request logs of a production system.
We have build a session log generator to first generate a session log from the recorded
request logs, that is a representation of request logs WESSBAS can process. We use
WESSBAS to extract different user groups in form of behavior models from the session
log. The behavior models are the result of a clustering of the session entries within the
session log, where each session entry represents exactly one session. We extended the
clustering process to retain the information of which session entry was considered for
which resulting cluster of the clustering process. Each resulting cluster is converted
into one behavior model. After the clustering, we have for each behavior model a list
of session entries. For each behavior model, we calculate with the session entries the
part workload intensity of the user group described by the behavior model. The past
workload intensity is a time series of values, that can be the input to an existing time
series forecaster. We have developed a context description language (CDL) to provide
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context descriptions containing contextual information. Contextual information includes,
for example, that in the time range the user wants to test for an event will occur, which
will have an impact on the experienced workload. When such a context description
is provided by the user, our approach converts the contextual data into one or more
regressors, which are a representation of the data that can be understood by time series
forecasters Prophet and Telescope. The regressors and calculated workload intensities
are passed to one of these forecasters, which then forecasts the future workload intensity
of each user group. From the forecasted workload intensities, we then identify occurring
load scenarios in the future. The user gets a load test for each load scenario he wants
to test for. When he wants to test for, e.g., high workload, we extract the maximum
value of the forecasted intensities, and set it as the workload intensity of the load
test we will return to the user. Furthermore, we calculate a behavior mix holding
occurrence probabilities of the behavior models during workload generation. The
occurrence probabilities are calculated from the forecasted intensities. We pass the
workload intensity of the load test and the behavior mix to WESSBAS, which finally
generates from the behavior models, the behavior mix and the workload intensity a load
test, that is then returned to the user.

We implemented the forecast process and embedded it into the ContinuITy approach.
The evaluation has shown, that contexts help to focus on the relevant workload and to
decrease the testing effort. However, we have also found out that our approach in its
current state has limitations regarding the accuracy of the forecasted workload.

7.2. Retrospective

In Section 1.2, we listed the goals we wanted to achieve with this thesis. We now discuss
for each goal, if we were able to achieve it.

The first goal of this thesis was to develop a description language to express occurring
contexts in the future. We developed such a description language. The language can be
used to express occurring events in the future, or to express a time series that impacts
the experienced workload (e.g., temperature curve, or price history of a product). We
achieved this goal, but the language is restricted to events that were already observed in
the past. We suggest for future work to extend the language to express also events that
have never been observed in the past.

The second goal was to find a suitable workload representation for our approach. The
workload representation should cover the user behavior and the workload intensity,
should be usable to forecast the future workload, and it should be able to extract load
tests from the workload. We successfully have found such a workload representation. We
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represented the user behavior through behavior models (Markov chains), and calculated
for each of them a time series of values representing the workload intensity.

The third goal was to forecast the future workload accurately. The evaluation has
shown, that our approach in its current state has limitations regarding the accuracy of
the forecasted workload. However, we were able to increase the forecast accuracy by
providing contexts to the approach. Hence, we achieved this goal in part.

The fourth goal was to extract relevant load tests from the forecasted workload. The
evaluation has shown that due to inaccuracies in the forecasted workload, our approach
in some cases is not able to cover real load scenarios that will occur in the future.
Furthermore, in the most cases the testing effort would be too high when the user would
execute load tests obtained from our approach. We were not able to achieve this goal.

The fifth goal was to implement our approach and to embed it into ContinuITy. We
successfully achieved this goal. A user of ContinuITy is now able to generate context-
aware load tests by passing a context description to it.

The sixth goal was to evaluate our approach. We found out, that our approach in its
current state is not able to do accurate workload forecasts, and that returned load tests
do not always cover real load scenarios that will occur in the future. Furthermore, we
found out that contexts can help to increase the forecast accuracy and the coverage of
load scenarios. We successfully achieved this goal.

7.3. Future Work

In this section we propose work for the future, that we could not complete in the scope
of this thesis.

The first work we recommend is to extend the CDL to be able to test for an event that is
assumed to occur in the future and that has never been observed in the past. Since this
event was never observed in the past and the workload that will be experienced cannot
be foreseen (except the event is very similar to another event that already occurred),
the user would have to provide assumptions in the context description. An idea would
be to include the possibility to express that in the future an event will occur, and during
this event the workload will be, for example, twice as high as normal.

We suggest to add more workload scenarios a user could want to test for to our approach.
Currently, only the entire, high, medium and small workload scenarios can be requested,
as well as a sharp increase and a sharp decrease in workload. Two further meaningful
load scenarios would be slow increase and slow decrease in workload. During the
simulation of these scenarios it can be observed whether a scalable application scales
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7. Conclusion

normally up and down. For a static application it could be interesting to investigate
whether the application functions normally when workload increases and decreases.

During our evaluation we have found out that the execution of the WESSBAS behavior
model extractor requires a lot of RAM to cluster a big amount of session entries and
when the data set includes to many different services. With a machine that has 128 GB
RAM we were able to cluster only three weeks of data with 50 different services. We
suggest to replace the WESSBAS for the calculation of the Markov chains by another
approach, which is able to process more data. We recommend to calculate the Markov
chains using data stream clustering [GMMO00].

The evaluation has shown that time series forecasters Prophet and Telescope seem to
not suit well to forecast the future workload intensities of user groups. However, as
already discussed in Section 6.6, it could be that the tools were not configured properly.
We suggest to try out different configurations of the tools in order to see if the forecast
accuracy can be increased. Besides, further time series forecasters could be researched
that are able to forecast the future intensity based on contexts, and to investigate
whether they suit better for our approach.

In Section 6.6, we listed further threats that could have impacted our evaluation results.
For each threat, we suggested how to eliminate it. For future work, we recommend to
consider the provided suggestions. Summarized these are:

• Execute the experiments again with another real world data that is not processed

• Execute a real load test instead of simulating a load test

• Execute the experiments with more data sets

• Consider for the experiments data sets annotated with real reccurring events

• Try out different configurations of the used time series forecasters

• Analyze the experiment results with more rigorous statistics
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Appendix A

Appendices

In this chapter, we attach further outcomes of this thesis.

A.1. Omitted categories

Table A.1 lists the categories from the SIS log that we did not consider for our evalua-
tion.

Category Meaning Role

info2 Support for students with special needs in the UK
rozcestnik Navigation for third party application Student
konzultace Office hours

odmeny Remuneration for the trainers
ddipl Diploma supplements Diploma students

term_st - not accessible, maybe not a service -
dotaznik Questionnaire
ave_motd SIS report - News Admin
dbschema Database schema Admin
akreditace Acreditation Student

predmety_en Edit English names of objects Admin
erb Error buster Admin

whois Search for persons and organizational units Student
pisemnosti PDF documents

Table A.1.: Omitted categories
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A.2. Request Counts of Services

Table A.2 and Table A.3 list the request counts of services. The services are ordered
based on their actual request counts in the fourth week, which lasts from 18/06/2018
00:00:00 until 24/06/2018 23:59:59.

Service Real log Prophet log Telescope log

studium 1231485 1367028 1184431
predmety 618280 498638 437050
term_st2 616488 789187 762270

prijimacky 552242 869029 219656
rozvrhng 271023 257326 204011
dipl_st 166770 130201 109325

zkous_st 123994 130739 120702
soub_mana 115514 36253 31350
zkous_uc2 108605 113570 107166
kdojekdo 88844 72085 67518
term_uc2 54263 60148 56819
nastenka 44129 44058 35697
dipl_uc 43860 54423 52171
anketa 43451 33703 27039
omne 42967 42657 39306
cml 33478 68350 66033

szz_uc 31634 34134 30616
predm_st2 27851 36147 34178

szz_st 24430 40833 38753
ekczv 18095 19957 15647

ciselniky 17997 4209 3396
szz 13948 14159 11400

komise 9663 20933 20918
phdisp 8446 9874 9041

esc 8205 9186 8359
grupicek 5852 9818 9143

akreditace_rvh 5511 4147 3951
promoce 4899 4549 3811

Table A.2.: Request counts of services (1)
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A.3. Order of Services based on Request Counts

Service Real log Prophet log Telescope log

skolitel 4865 3468 2612
wstip_uc 4130 4293 3996
predm_uc 3990 4338 4210

podprij 3546 3796 2909
wstip_st 3062 2913 2602
grupik 1880 2474 2564

harmonogram 1866 977 790
role 1824 2078 1744

diplmat 1457 111 92
sestavy 1317 1614 1264
vyspl 1306 1393 786

deda_amu 1169 482 381
staze_uc 1121 319 268

prezkumy_st 1089 884 781
deda_zahost 958 1324 1208

transcript 614 1069 1030
uchak 547 5886 4709
ave 538 829 874

ave_uziv 504 77 111
rozpis 167 142 143

deda_strav 165 629 732
bookmarks 107 154 176

Table A.3.: Request counts of services (2)

A.3. Order of Services based on Request Counts

Table A.4 and Table A.5 list the order of services based on their request counts. Real log
(1) contains the recorded data from 28/05/2018 00:00:00 until 17/06/2018 23:59:59,
and real log (2) the recorded data from 18/06/2018 00:00:00 until 24/06/2018
23:59:59 from the SIS logs.
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Real log (1) Real log (2) Prophet log Telescope log

studium studium studium studium
term_st2 predmety prijimacky term_st2

prijimacky term_st2 term_st2 predmety
predmety prijimacky predmety prijimacky
rozvrhng rozvrhng rozvrhng rozvrhng
zkous_st dipl_st zkous_st zkous_st

zkous_uc2 zkous_st dipl_st dipl_st
dipl_st soub_mana zkous_uc2 zkous_uc2

kdojekdo zkous_uc2 kdojekdo kdojekdo
term_uc2 kdojekdo cml cml

cml term_uc2 term_uc2 term_uc2
dipl_uc nastenka dipl_uc dipl_uc
szz_st dipl_uc nastenka omne
omne anketa omne szz_st

nastenka omne szz_st nastenka
predm_st2 cml soub_mana predm_st2
soub_mana szz_uc predm_st2 soub_mana

szz_uc predm_st2 szz_uc szz_uc
anketa szz_st anketa anketa
komise ekczv komise komise
ekczv ciselniky ekczv ekczv
szz szz szz szz

grupicek komise phdisp grupicek
phdisp phdisp grupicek phdisp

esc esc esc esc
predm_uc grupicek uchak uchak
promoce akreditace_rvh promoce predm_uc

Table A.4.: Order of requested services in each log (1)
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A.3. Order of Services based on Request Counts

Real log (1) Real log (2) Prophet log Telescope log

uchak promoce predm_uc wstip_uc
akreditace_rvh skolitel wstip_uc akreditace_rvh

wstip_uc wstip_uc ciselniky promoce
podprij predm_uc akreditace_rvh ciselniky

ciselniky podprij podprij podprij
wstip_st wstip_st skolitel skolitel
skolitel grupik wstip_st wstip_st
grupik harmonogram grupik grupik

role role role role
sestavy diplmat sestavy sestavy
vyspl sestavy vyspl deda_zahost

deda_zahost vyspl deda_zahost transcript
harmonogram deda_amu transcript ave
prezkumy_st staze_uc harmonogram harmonogram

diplmat prezkumy_st prezkumy_st vyspl
ave deda_zahost ave prezkumy_st

transcript transcript deda_strav deda_strav
deda_strav uchak deda_amu deda_amu
ave_uziv ave staze_uc staze_uc

deda_amu ave_uziv bookmarks bookmarks
rozpis rozpis rozpis rozpis

staze_uc deda_strav diplmat ave_uziv
bookmarks bookmarks ave_uziv diplmat

Table A.5.: Order of requested services in each log (2)
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