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Abstract

Industrial companies are currently competing for higher degrees of automation and adaptability
in their factories. In the course of the fourth industrial revolution factories have become smarter
by the introduction of technologies such as cyber-physical systems, Cloud Computing, 5G, and
the Internet of Things. With the introduction of systems into their factories that combine these
technologies such as Driverless Transport Systems, industrial companies are confronted with a
previously unknown web of complexity that emerges from the interconnectivity between the various
application components of these systems. The amount of collected data and the need for data
analysis in industrial environments grows steadily and results in a new accentuated role for the IT.
Due to this trend, system architects are now often faced with large and heterogeneous environments
when introducing a new system into an existing smart factory and have to look attentively at the
way they embed new applications into the existing IT-infrastructure.

To reduce the cost in general, the goal is to reuse existing computation resources for new applications
where possible. Finding optimal placement locations for multiple application components in a pool
of resources that ranges from traditional options like on-device computing capabilities to emerging
options like the edge cloud, is an optimization problem that is often described as the Application
Component Placement (ACP) problem.

This thesis addresses these issues by presenting a conceptual approach to solving this problem for an
industrial use case by making use of the concepts of the Topology and Orchestration Specification for
Cloud Applications (TOSCA) standard and extending the capabilities of the OpenTOSCA ecosystem
by providing a prototypical implementation of an ACP-solving algorithm.
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1 Introduction

The first chapter introduces the motivation and goals behind this thesis presented in Section 1.1,
followed by Section 1.2 on page 19 which outlines the structure of the following chapters in this
work. Finally, a running example throughout this thesis and its related use cases are presented
in Section 1.3 on page 19 and Section 1.4 on page 20, which are used to explain the conceptual
approach presented in this work.

1.1 Motivation

We are currently in the midst of the Cloud Computing era which, in recent years has made storage
and computing cheaper and more flexible for companies. Companies are transitioning their industrial
facilities from a more traditional approach to a smart approach that makes use of emerging paradigms
like the Internet of Things. Because the level of automation in industrial environments and therefore
the amount of generated and collected data is rising, the number of applications in the IT-landscape
of companies that analyze and process this data is growing as well. Such Industry 4.0 environments
with a high degree of automation and interconnectivity of systems rely on webs of application
components for their realization. A convenient option is to host these applications in the enterprise
cloud, if feasible. Nonetheless, many of these industrial applications in smart factories are latency
sensitive and therefore have real-time requirements that can’t be met by traditional cloud offerings
and call for being hosted in close proximity to their place of usage i.e., the edge of the network.

In the case of a Driverless Transport Systems (DTS) in a smart factory for example, components for
image processing, engine control, and sensor data need to interact with each other in an efficient
manner even though they have different requirements and may be hosted in different locations. On
top of that, additional components for the inventory management may interact with these components
as well e.g., databases or components for the management of digital twins of items in the inventory.

Each of these components could theoretically be deployed on-device (a mobile compute unit, in the
case of a DTS), in the edge cloud, in the private cloud or in the public cloud, but when considering
the constraints of each component e.g., the latency-sensitivity of an engine control component, it
becomes clear that these requirements can hardly be met by a machine hosted in a remote data
center. A popular alternative in the past was to host such components on-device and to transfer any
collected data to a company server in intervals rather than continuously in real-time.

But advancements in the research on 5th Generation networks (5G) proposing speeds of 10Gbit/s
and latencies of no more than a few ms have made Edge Cloud Computing and computation
offloading another viable option for applications with real-time requirements without having to rely
on mobile on-device computing resources [YWJ+15], [GJF+16], [SCZ+16], [CJLF16]. Therefore,
nowadays the goal has become to increase the reliability, flexibility and cost-efficiency of industrial
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1 Introduction

applications, as well as to increase the degree of automation of operating these applications as much
as possible, by embracing the favorable properties of Cloud Computing, while not violating the
individual technical constraints and requirements of individual applications.

Figure 1.1: The Continuum of Deployment Locations.

Figure 1.1 shows a continuum of deployment locations, inspired by [Mor18]. It shows the different
possible deployment locations on a one-dimensional axis that combines the remoteness, density and
distribution of each option. The first half demonstrates the increasing degree of virtualization while
the second half demonstrates the Cloud Computing options from the edge of the network to remote
data centers. It is fair to assume that the cost of the options depicted on the continuum decreases
from left to right. This is mainly due to the higher start-up and maintenance costs of on-premise
options compared to cloud offerings, but also due to secondary effects such as e.g., the increase of
battery life of systems such as DTS, which can operate for longer periods of time when opting for
computation offloading.

Naturally, companies want to make use of that, but the problem of finding optimal placement
locations for each application component can be very challenging for humans as well as algorithms,
especially post modeling phase. During the modeling phase of a smart factory i.e., when designing
the whole infrastructure from scratch and considering all software and hardware components in
advance, the problem of Application Component Placement (ACP) is easier to deal with. In reality,
this case is not that common, as nowadays more and more industrial companies find themselves in a
transitory phase from a traditional to a smart implementation of their factories, where providers of
smart systems such as DTS are confronted with a heterogeneous, rigid and legacy IT-infrastructure
and have to potentially reuse preexisting computation resources, and therefore install their systems
and place their application components with regards to the unique idiosyncrasies of every other
factory. Therefore, there is a need for a solution that can assist industrial users when confronting
the problem of ACP and that lets them express preferences while doing that. This thesis presents
such a concept of an algorithmic approach to the ACP that is implemented prototypically as part of
the OpenTOSCA ecosystem.
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1.2 Structure

1.2 Structure

The structure of this thesis is made up of six chapters.

The first chapter began with the motivation and is concluded by the upcoming sections that
present the running example throughout this thesis followed by the different use cases this
work revolves around.

Chapter 2 on page 25 introduces necessary technical fundamentals as well as background infor-
mation on TOSCA and OpenTOSCA.

In Chapter 3 on page 35 the state of the art in the field of application placement and other related
work is presented.

Chapter 4 on page 39 contains the concept for the placement of application components onto
running instances that was developed as part of this thesis.

Chapter 5 on page 49 explains all the implementation details of the prototypical implementation
of this concept along with the environment in which the prototype was tested initially.

Finally, Chapter 6 on page 65 concludes this work with a summary and an outlook.

1.3 Running Example

The main use case chosen for this thesis relates to the placement of the application components of a
DTS in an industrial environment, such as a smart factory.

The application topology shown in Figure 1.2 on the following page as well as the topology of a host
shown in Figure 1.3 on the next page will act as technical dummys throughout this work. They were
created with the Topologymodeler1 of the Eclipse Winery2 project which follows the Vino4TOSCA
visual notation for application topologies by Breitenbücher et al. [BBK+12].

The MyTinyToDo3 topology is a minimal example of an application that acts as a placeholder for
industrial applications throughout this thesis, especially for those introduced in the use cases in the
upcoming section. Its contents are not considered as it solely acts as a dummy for real industrial
applications in the context of this thesis. It consists of a containerized variant of the application that
connects to a MySQL4 database which relies on a Database Management System (DBMS) and a
Docker5 engine to run on.

The UbuntuOnOpenStack topology acts as a placeholder for different placement environments such
as the edge cloud, the private cloud and the public cloud which are simulated for the use cases of this
thesis which are described in the following sections. Both the MyTinyToDo application as well as the
UbuntuOnOpenStack instances will have distinct annotations to reflect their differences and to meet

1https://github.com/eclipse/winery/tree/master/org.eclipse.winery.frontends
2https://projects.eclipse.org/projects/soa.winery
3https://www.mytinytodo.net/
4https://www.mysql.com/
5https://www.docker.com/
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1 Introduction

Figure 1.2: The topology of the MyTinyToDo application.

the requirements of the application components explored in the use cases section. The goal will be
to place components of the MyTinyToDo application onto instances of UbuntuOnOpenStack. This
process is explained in detail in the concept chapter in Section 5.1 on page 49. The proof-of-concept
prototype in Chapter 5 on page 49 makes use of these different variants.

1.4 Use Cases for Application Placement in Industrial Environments

To better understand the applicability and the usefulness of the conceptual approach that follows
in Chapter 4 on page 39, a number of use cases related to a Driverless Transport System and the
computation-offloading of its applications will be presented in this section. These use cases are
chosen such that they cover common applications of DTS, are distinct in nature and cover a large
range of values for some of the most common properties of components a placement strategy can

Figure 1.3: The topology of the UbuntuOnOpenStack host.
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be optimized for, such as cost, bandwidth usage, CPU usage, RAM usage, etc. The application
components that are subjects of these use cases will be simulated by the dummy applications that
were just presented and used for an initial evaluation of the prototype in Chapter 5 on page 49.

1.4.1 Use Case I: Driverless Transport System (DTS) - Image Processing

A Driverless Transport System, also called Active Shuttle, is used in a production environment to
transport items autonomously. To achieve this, the Active Shuttle uses a live camera that is paired
with an image processing application which analyzes the footage produced by the camera system.
For example, the Active Shuttle can identify objects and find the correct object to pick up out of
multiple candidates or it can notice different angles of orientation of an object and position itself in
respect to the object it wants to pick up.

Due to the computationally heavy nature of the image processing application, it shouldn’t run on
the mobile computer of the Active Shuttle but in the centralized enterprise cloud, since the goal
is to minimize the energy consumption of the Active Shuttle so that the productive time-windows
of the system can be maximized. A low latency is not of highest priority for this use case but the
applications should run reliably to avoid outages of the Active Shuttle. Due to the high bandwidth
required, the high sensitivity of the data and the non-feasibility of encrypting and decrypting raw
video footage, the public cloud is not an option since it would be too costly, too unsecure and too
slow.

A suitable placement strategy for this use case and its image processing component would be a
strategy that places this component in the private cloud which is responsive enough as well as secure
and reliable.

The Active Shuttle is shown in Figure 1.4 and the schematic view of this use case is shown in
Figure 1.5 on the next page.

Figure 1.4: A group of Active Shuttles transporting boxes of goods.

21



1 Introduction

Figure 1.5: Schematic view of the image processing use case.

1.4.2 Use Case II: Driverless Transport System (DTS) - Engine Control

The driving and engine control application of the Active Shuttle requires real-time processing and
can’t be deployed anywhere where the latency would be too high to perform driving tasks reliably.
For safety reasons the DTS stops immediately when the connection times out due to high latency or
when it loses the connection to application. This faulty behavior is to be avoided to maximize the
productivity of the system. The schematic view of this use case is shown in Figure 1.6.

Figure 1.6: Schematic view of the engine control use case.

Due to the latency-sensitive requirements of the engine control application, edge computing capa-
bilities are needed to satisfy these requirements. A suitable strategy for this use case would be a
strategy which favors low latency and reliability over cost or bandwidth concerns. Therefore the
desired hosting location for this component is the edge cloud.

1.4.3 Use Case III: Driverless Transport System (DTS) - Sensor Data

In the last use case sensor data for the provenance of items that are transported by the DTS have to
be analyzed. These sensors are equipped with a GPS module as well as a temperature and humidity
sensor. The Active Shuttle collects data from these sensors permanently and transfers it to the cloud
every now and then. The schematic view of this use case is shown in Figure 1.7 on the next page.
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Figure 1.7: Schematic view of the sensor data use case.

Due to the relatively small amount and textual format of the collected data, the bandwidth required
for this use case is very low. Latency sensitivity is not given, since the data is transferred in intervals
rather than real-time. The data is not security relevant and can be analyzed in a distributed manner.
Reliability requirements are low since the data can be transferred during the next interval if the
connection is lost.

Therefore, a suitable strategy for the application in this use case would be a strategy that offloads it
to a cheap and flexible option, such as the public cloud.
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2 Fundamentals

Having presented different use cases for ACP in industrial environments, the next step is to provide
some background information as well as knowledge about previous approaches to solving this
problem. This work is about providing a conceptual solution for the placement of application
components onto existing IT infrastructure in industrial environments as well as to provide a
prototypical implementation of it by enhancing the existing OpenTOSCA1 ecosystem with such a
feature. Therefore, it is assumed that the infrastructure consisting of a number running instances of
hosts had to be set up using OpenTOSCA in the first place. This is important since knowledge about
running instances is critical for being able to place any application. By making this assumption this
work can concentrate on the actual step of application placement. Nonetheless an instance model
and methods for obtaining knowledge about the states of instances such as hardware crawling and
monitoring are a prerequisite for the step of placing components onto running instances and may be
considered in future work.

To be able to understand the concept and the prototype of this thesis, the OASIS standard TOSCA as
well as the OpenTOSCA ecosystem have to be introduced first. Before that, a quick overview of how
management of enterprise applications is done by organizations today is presented in Section 2.1.
Section 2.2 on the next page then presents the TOSCA standard and Section 2.3 on page 29 describes
the TOSCA runtime that has been developed by the University of Stuttgart, called OpenTOSCA.

2.1 Automation and Management of Enterprise Application
Deployment

The landscape of current enterprise applications is often times a web of complex systems. It is no
rarity for companies today to have hundreds if not thousands of custom applications deployed. The
Cloud Security Alliance in their 2017 trends report even went as far as stating that “every company
is a software company” today2. This is especially true for many industrial companies where the
degree of automation in industrial environments is increased continuously.

These applications are heterogeneous, distributed and modular. On the one hand this enables appli-
cations to be cloud-native and benefit from elasticity, horizontal scaling and redundancy [BMQ+07],
but on the other hand, since they often depend on each other and have been developed at different
points in time with different technologies by different people, the maintenance costs and error
proneness of these systems are high. Furthermore such applications are often not documented
adequately and management is often done completely manually or via bash scripts [Bin15].

1https://www.opentosca.org/
2https://downloads.cloudsecurityalliance.org/assets/survey/custom-applications-and-iaas-trends-2017.pdf
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2 Fundamentals

The ubiquity of cloud computing offerings in today’s industrial IT landscapes has driven the need for
manageability of applications that live in multi-tenant environments such as the cloud. Administering
and operating such a complex web of applications is costly and difficult but with the right tools it
can be automated and managed more efficiently. Descriptive and reproducible approaches such as
Infrastructure-as-Code (IasC) have turned out to be a good solution for this problem. Because of the
rise of agile and lean techniques that shorten development timeframes and as continuous integration
becomes more pervasive with time, the need for IasC tooling grows even more [ABN+17].

Vendors with large cloud offerings like Amazon, Microsoft and Google have written standards for
this reason that allow infrastructure design in an IasC manner. One example being Amazon’s AWS
CloudFormation3, which allows defining sets of AWS resources and relations between them in a
JSON format. Such tools are used increasingly in production as the growing complexity of operating
and managing enterprise and industrial applications has forced companies to adopt modern DevOps
methodologies and to make use of the benefits of this approach. Apart from proprietary vendor
formats and solutions there are also open specifications like the OASIS TOSCA standard that
implement similar ideas. TOSCA, an industrial standard for IasC, which is used by many software
solutions in this domain, has been developed concurrently to these vendor specific standards and is
described in more detail in the following section.

2.2 TOSCA

The Topology and Orchestration Specification for Cloud Applications (TOSCA) by the Organization
for the Advancement of Structured Information Standards (OASIS)4 is about “enhancing the porta-
bility and operational management of [...] cloud applications...” 5 [BBKL13b], [BBLS12]. The
TOSCA standard is a YAML (2016) and XML (2013) based descriptive language that can be used
to define topologies of cloud applications, the relationships between their components as well as the
processes that provision, instantiate and manage them throughout their lifecycles. The important
parts of the TOSCA model will be presented in the following subsection, to better understand the
concept presented in this thesis.

2.2.1 TOSCA Model

The TOSCA metamodel allows the definition of so-called application topology models in a descrip-
tive manner. The application topology of a web service describes the set of components (nodes)
that an application consists of as well as the Relationships they have to each other. In TOSCA this
definition of a web service’s structure is referred to as the TopologyTemplate of a service. Plans
define the models of the processes that are used to manage a service during its lifetime [OAS14]. The
TopologyTemplate, a directed graph, can be divided into a set of NodeTemplates (representing nodes
in the graph) and a set of unidirectional connections between them, called RelationshipTemplates.
These nodes (NodeTemplates) have their respective types that are called NodeTypes. Node Types can
be thought of classes or types and NodeTemplates can be thought of objects from an object-oriented

3https://en.m.wikipedia.org/wiki/AWS_CloudFormation
4https://www.oasis-open.org/
5https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
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2.2 TOSCA

Figure 2.1: Structural Elements of a ServiceTemplate and their Relations, from [OAS14]

perspective. On top of the classical understanding of classes and objects the TOSCA standard
allows NodeTypes to also specify usage constraints. These entities contain a “Properties” field that
allows plain text, key-value or XML-based properties to be defined that are used to describe certain
aspects of an entity. To model the requirements and capabilities that a component has, the Node
Type definition can be extended with Capability Definitions and Requirement Definitions. These
two are specialized properties of Node Types that can be used to model dependencies of certain
components like the need for at least 16GB of RAM on a potential host system.

In this thesis, the capitalization of terms such as “Property”, “Requirement” or “Capability” signal-
izes that it refers to the TOSCA-centric meaning of the word. Analogous to the distinction between
NodeTypes and NodeTemplates there are RelationshipTypes and RelationshipTemplates in TOSCA.
They can be used to describe relationships between components such as a ”hostedOn”relation
between an application component and an operating system node. The combination of the afore-
mentioned entities represents a ServiceTemplate, which is the main construct of a web service in the
sense of the TOSCA model. Figure 2.1 shows these structural elements of a ServiceTemplate.
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2 Fundamentals

2.2.2 TOSCA CSAR

The Cloud Service ARchive (CSAR) is described by the TOSCA standard as an archived file
containing the different elements that make up a ServiceTemplate. It contains model information
needed to be able to interpret the content as well as artifacts needed for the provisioning and
management of the service, such as bash scripts, SQL statements or mountable images. All the
components mentioned in Section 2.2.1 on page 26 are bundled together with all the necessary
artifacts required for the management operations into a single .csar file. Figure 2.2 shows this
concept.

Figure 2.2: The parts of a CSAR, from [Wai]

This file is supported by every TOSCA runtime such as OpenTOSCA. It enables users to save their
defined services in a portable manner together with meta information about these services that allow
the interpretation of the CSAR by the TOSCA runtime. For example, in OpenTOSCA the user can
upload CSAR archives of a service and instantiate it through the OpenTOSCA UI.
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2.3 OpenTOSCA

The OpenTOSCA6 ecosystem for TOSCA-based cloud applications was developed by the Institute
of Architecture of Application Systems (IAAS) and the Institute for Parallel and Distributed Systems
(IPVS) of the University of Stuttgart. It’s partially founded by the German government and various
affiliated projects. It supports the majority of the TOSCA specification and consists of multiple
components shown in Figure 2.3.

Figure 2.3: The three components of the OpenTOSCA ecosystem, from [RRR+16]

2.3.1 Winery

The Eclipse Winery project is a web-based graphical tool for modeling TOSCA applications, their
topologies as well as for defining reusable TOSCA types like Node Types and Relationship Types
or adding different artifacts to ServiceTemplates. An instance of Winery requires a so-called
winery-repository that has a REST-interface which allows the changes from the graphical tool to be
reflected in the file system. It uses the TOSCA standard as storage format and supports the CSAR
file type for importing and exporting ServiceTemplates [KBBL13]. It was initially developed by the

6https://www.opentosca.org/
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2 Fundamentals

University of Stuttgart and later introduced to the Eclipse Foundation7. There is a fork of Eclipse
Winery called OpenTOSCA Winery that is used for preparing OpenTOSCA contributions to the
Eclipse version and has a different set of features.

2.3.2 OpenTOSCA Container

The OpenTOSCA container is the actual runtime for TOSCA-based cloud applications [BBH+13].
It is written in Java and based on the OSGi8 framework to establish a modularized component model
architecture of bundles that guarantees extensibility, as well as Apache Maven9 for management of
the software project. It supports the provisioning of the services that can be modeled in the Winery
by interpreting the contents of the respective CSAR file. It has a REST-interface that allows various
operations on the contents of a CSAR as well as on the running instances of the container itself.
Figure 2.4 on page 32 shows an overview of the API and the various resources that can be addressed
and accessed through it. The underlying services are used in this thesis to gather information about
running instances that inform the placement algorithm.

It consists of multiple components such as the Application Bus, the Plan Builder and the Service
Invoker. The Application Bus provides a number of APIs that provide the core functionality of the
Application Bus Engine to other components. The Application Bus Engine collects the information
that is needed for the invocation of operations, for example, determining the endpoint of the invoked
application, and determines the plugin that is capable of performing the invocation [Ope]. The
Plan Builder is generating the Build Plans and Termination Plans that are able to install, deploy
and provision the parts of a TopologyTemplates. It derives an executable BPEL process from the
abstract control flow that it constructs from the topology of an application in a given CSAR and
the type of plan to be created [Ope]. The Service Invoker (aka Management Bus) provides the
service invocation interface and connects to other components of the OpenTOSCA container. It is a
mediator between a plan and the SI-Engine that invokes the actual services, such as the Endpoint
Service and the Instance Data Service [Ope].

Figure 2.5 on page 33 shows an architectural overview of the OpenTOSCA container.

2.3.3 OpenTOSCA UI

The OpenTOSCA UI is a modern Angular-based10 successor to the OpenTOSCA Vinothek project.
It is a self-service portal that allows the provisioning of cloud applications via a graphical web-
application that hides technical details of the container [BBKL14]. The user can see running
instances in detailed views of certain services and initiate management actions that were defined as
management plans during the design phase.

Figure 2.6 on page 33 shows the interaction between the OpenTOSCA UI and the OpenTOSCA
container. A user would usually upload a CSAR that defines a ServiceTemplate that can be interpreted
by the TOSCA runtime. This prepares the ServiceTemplate for provisioning immediately and results

7https://projects.eclipse.org/projects/soa.winery
8https://www.osgi.org/
9https://maven.apache.org/

10https://angular.io/
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in an error if the CSAR that was uploaded is not well-defined. In the next step the user would provide
certain properties that are required for the instantiation of a certain component, for example, the
credentials to a cloud provider. After the user confirms the provisioning the OpenTOSCA UI sends
a HTTP request to the REST interface of the OpenTOSCA container with payload that contains the
properties that were specified. When the instantiation was initialized by the container, the UI gets
refreshed with the according information about the instance and an entry in the running instances
list.
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Figure 2.4: An overview of the container API, from [Ope].
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Figure 2.5: An overview of the container architecture, from [Ope].

Figure 2.6: The workflow of instantiating an application in the OpenTOSCA ecosystem.
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3 Related Work

There is already a large amount of work on the topics discussed in this thesis. This chapter gives
a quick overview of related work the concept of this thesis is based on and aims to deliver a
glimpse into the thought process that went into the narrowing down and development of it. Firstly,
methodologies for obtaining information about running instances are presented, followed by a brief
summary of previous approaches to solving the ACP problem.

3.1 Obtaining Information about Running Instances and their States

Large and complex nets of enterprise applications require a model for keeping track of the states of
their running instances, as well as relationships between them, to be able to adjust the infrastructure
to the quickly changing demands that organizations today have to adapt to [Bin15]. Such an instance
model is required to avoid the tedious and costly task of identifying existing instances in the IT-
infrastructure manually and to be able to analyze, adapt and optimize the IT-infrastructure [PX13].
The two main approaches for sourcing the information for such an instance model that were identified
during the research phase of this thesis are crawling and monitoring. The next two subsections will
present earlier work on these approaches, both done in the context of TOSCA and OpenTOSCA
respectively.

3.1.1 Crawling of IT-Instance Models

Binz presents an automated way of crawling IT-instance models using TOSCA [BBKL13a], [Bin15].
His idea is to use a crawler that generates component topologies and can be extended by plugins
for idiosyncratic aspects of different components. Such a plugin can either be written in a way to
obtain information about the logic and relationships between components or about the actual state
of components. The focus on extensibility is explained by the need for being able to address the
heterogeneity of IT-systems. The plugins that make up the crawler have to pull i.e., extract the data
from the components rather than the components pushing the data to the crawler, as the components
shouldn’t have knowledge about the crawler and as it would require a manipulation of the existing
setup.

His concept of a crawler follows a top-down approach, meaning that it starts from the root nodes of
an application and goes deeper towards the platforms it is hosted on and the machine it is deployed
on. Like this a topology that follows the TOSCA specification can be generated by the crawler. It
consists of multiple components with different tasks. The first component is an action sequence
controller that decides the order and locations in which the different plugins are executed. The
second component is a management component that stores data about iterations of the crawler, and
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the last component is a plugin management component that manages the injection of plugins and is
extended by a deduplication component and the component that generates the topologies. Figure 3.1
shows an overview of this architecture.

Figure 3.1: Architecture of a crawling concept, from [Bin15].

The plugin nature of this concept allows the retrieval of any kind of information about running
instances that may inform the placement algorithm during the placement operation.

3.1.2 Monitoring

Another way of obtaining information about the state of running instances is monitoring. Monitoring
represents a whole field on its own, and is only touched upon briefly in this subsection. In an earlier
master’s thesis different monitoring systems were compared and as a result of this evaluation
the TICK Stack1 was integrated into the existing OpenTOSCA ecosystem [Wie18] as part of a
prototype.

The TICK Stack is based on Telegraf2, InfluxDB3, Chronograf4 and Kapacitor5.

1https://www.influxdata.com/time-series-platform/
2https://influxdata.com/time-series-platform/telegraf/
3https://www.influxdata.com/products/influxdb-overview/influxdb-2-0/
4https://influxdata.com/time-series-platform/chronograf/
5https://influxdata.com/time-series-platform/kapacitor/
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Telegraf is an agent that gets deployed on an instance and can collect different metrics such as
system stats (CPU, RAM, networking) as well as listen to events and observe message queues.
Kapacitor is the real-time stream processing engine that orchestrates incoming data of multiple
Telegraf instances and Chronograf is the interface to the InfluxDB, a time series database capable
of storing this data.

The way the monitoring system was integrated was that a separate monitoring VM hosting the
TICK Stack was set up alongside the OpenTOSCA VM that runs the OpenTOSCA container, the
OpenTOSCA UI and the Eclipse Winery. A test VM hosting an Apache Tomcat6 instance that
serves as a dummy application was then supplemented by a Telegraf agent that reported information
about the test VM to the monitoring VM. An overview of this setup is shown in Figure 3.2.

Figure 3.2: Overview of the monitoring system architecture from [Wie18].

Because crawling and monitoring present whole fields of research on their own and the prototypes of
these works aren’t trivial to setup, using real instance data sourced by these systems was outside the
scope of this thesis, therefore instance information is only simulated for the prototype of this thesis.
The details of the simulated example that the prototype was initially tested against are presented in
Chapter 5 on page 49.

6http://tomcat.apache.org/
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Nonetheless, the presented related work on crawling and monitoring demonstrated that obtaining
information about running instances is possible with TOSCA and the OpenTOSCA ecosystem.
Therefore it is safe to assume that a crawling and monitoring system can exist in the OpenTOSCA
ecosystem and can provide information about running instances which could potentially feed the
decision process of the component placement algorithm that is presented in this thesis.

The remaining part of the related work chapter is concerned with the ACP problem.

3.2 Approaches to the Application Component Placement Problem

There have been many approaches of trying to solve the problem of ACP – known to be NP-
hard [URS07] – efficiently, ranging from mathematical optimization frameworks like the ACP
solver by Xiaoyun Zhu et al. [ZSB+08], [JCL11], over centralized [KSST05], [TSSP07], [CSW+08],
[ASLW14], [BML+17] and distributed [BMT14] algorithmic approaches. This section presents
the approach to solving this problem that inspired the ideas in this work, before presenting the
conceptual approach discussed in this thesis in Chapter 4 on the next page.

3.2.1 Dynamic Application Placement under Constraints

Kimbrel et al., a group of IBM researchers, presented a heuristic algorithm to solve the problem
of satisfying the requirements of applications in an environment where available system resources
can change dynamically [KSST05]. Their algorithm was implemented into the IBM Websphere7

environment as part of the Websphere component known as the placement controller. The way
it works is that the placement controller is aware of the preexisting mapping of applications onto
instances in a given Websphere cell. It then can periodically or upon need execute the placement
algorithm to readjust the mapping i.e., the placement of components onto running instances. The
placement controller reacts to changes in loads by relying on monitoring data. It also contains a
workload predictor and historical information to make better decisions. Their algorithm assumes
the following problem formulation:

• There are m servers (instances) 1, ...,m,

• with memory capacities Γ1, ...,Γm,

• and service capacities (no. of requests served per unit of time) Ω1, ...,Ωm.

• There are n application components with memory requirements γ1, ..., γn.

Before the placement all servers (instances) the values of their densities Ωi/Γi and the densities of
application components ωjt/γj are ordered in decreasing order. Then the two with highest densities
get matched if the capabilities of the server satisfy the memory demands of the application and the
application gets removed from future consideration. The available memory and service capacities
are recomputed after each iteration. This is repeated until the initial placement candidate is found.

The concept of this thesis is based on a similar idea and is presented in detail in the upcoming
chapter.

7https://www.ibm.com/cloud/websphere-application-platform

38

https://www.ibm.com/cloud/websphere-application-platform
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Components

Having introduced the ACP problem briefly, as well as different ways it was tackled by earlier work,
this chapter starts with an overview of the general idea and design behind this concept. After that,
the underlying ACP problem is formalized and the algorithmic approach that is used in this work
is presented, along with different potential strategies of flavors the algorithm could be adapted to.
Finally, a bridge from the theoretical concept to the OpenTOSCA ecosystem is made, to introduce
the prototypical implementation of the concept discussed in Chapter 5 on page 49.

4.1 General System Design

The system design of the concept is shown in Figure 4.1. It is inspired by earlier work on automated
ACP by Zhu et al. [ZSB+08] who used a similar design for their ACP solver.

Figure 4.1: A simplified view of the general system design of the conceptual solution.

A crawling and monitoring system is assumed which in an ideal case would feed into the resource
or instance model of the given environment. Ideally the instance model would already exist before
any placement operation is done or it would be generated by the crawler in a preliminary step. The
monitoring system should continuously update the state of the resources so that there is a single
source of truth that represents the amount of available resources or the loads of a certain instance at
a given time. It is also assumed that the application model was initially designed by a human who
expressed preferences over e.g., the placement locations of individual components. In the case of
this thesis the resource model is only simulated but in a real use case knowledge about the given
IT-infrastructure should preferably be known before the application is modeled. These three sources
are then fed to the placement algorithm which performs the actual placement operation and returns
a placement candidate if one is found or aborts the placement if no candidate could be found. This
candidate is represented as a map between NodeTemplates of the components of applications that
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have to be placed and the NodeTemplateInstances of their chosen hosts. To avoid a coercive user
experience the placement candidate is then presented to the user who can override the decisions of
the algorithm. After that, the final TopologyTemplate that contains all the selected matches between
components and instances is constructed by making use of the topology editing capabilities of the
Eclipse Winery. This returns a well-defined CSAR that can then be deployed normally using the
existing workflow of the OpenTOSCA ecosystem.

4.2 Formalizing the problem

Chapter 3 on page 35 showed that ACP solutions from related work or the industry itself are in
general based on some kind of theoretical model, such as a collection of sets or graph-based models.
Therefore this section describes the formal model that was used to better reason about the underlying
problem of this thesis and that enabled the engineering of an appropriate algorithm which addresses
the problem. Many publications in the field of ACP use their custom and/or proprietary models
to describe their solutions and concepts. The previously described TOSCA standard makes no
exception to this observation, as demonstrated earlier in the fundamentals chapter. Even though all
of them have their respective idiosyncrasies that get more perceivable the more one gets into the
details, these models still follow very similar ideas that can be summarized as follows:

There is a set of components C = {c1, c2, ..., ci} with its corresponding subsets of software com-
ponents S = {s1, s2, ..., sj} and hardware components H = {h1, h2, ..., hk}, where S ⊂ C ⊃ H and
S ∪ H = C. Between components are connections Rmn = (rm, rn) that are often described as rela-
tionships. These connections can exist between software components where they describe software
dependencies (e.g., a webserver relying on a database) as well as between hardware components
(e.g., a physical connection) or between software and hardware components (e.g., an operating
system being hosted on a hardware node).

Components and connections have certain properties attached to them that carry necessary informa-
tion for the mapping between software and hardware components or in other words for the placement
of software components onto hardware components.

A common abstraction of software and hardware components is required in theory because the
boundary between software and hardware is not a hard one but can rather be moved on the continuum
that exists between bare-metal, hypervisors, virtual machines, operating systems, PaaS offerings,
and so on. This is especially true today where the boundary between hardware and software gets
blurred increasingly. Hence, it’s up to the user to decide what qualifies as hardware and where
software starts in a certain use case. In practice this distinction can be achieved by attributing
different properties to hardware and software components and by assigning different types to them,
so that they can be distinguished from each other clearly. One way this can be done, and the way that
it is done in the prototype of this thesis, is to only regard VMs that qualify as operating system nodes
as potential hosts for application components and to disregard their successors i.e. the machines
that they are hosted on, as they aren’t required for the placement process. Therefore, whenever the
word hardware is used in this work, it can stand for any kind of node with hosting capabilities, such
as a VM.
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As previously stated, the goal is to place all software components onto hardware components. This
implies that not all hardware components have to be used, especially if the goal is cost efficiency.
Rather than occupying fresh host instances, one may want to reuse hosts that still have enough
computational resources to host another application.

Figure 4.2 shows a graphical representation of a set of software and hardware components as well
as different candidates that could result from matching the two. For example, in candidate #1 all
hardware components are utilized, whereas in candidate #2 the hardware component H6 is not used
as a destination by any of the software components. Achieving this reasonably well relies on solving
an optimization problem.

Figure 4.2: Possible Candidates

In principle all quantifiable and qualitative properties of software components (requirements) have
to be met by those of hardware components (capabilities) for a match to become possible. As long
as the model allows assigning properties to components that can later be compared and matched
algorithmically, one can find appropriate placement candidates in reasonable time for realistic
problem sizes with the correct approach.

These properties are not limited to the ones that are predetermined by the nature of an application
(like the requirements of a JRE of a Java application) but can rather be chosen freely by the system
architect according to their needs or for example, represent system stats that were gathered through
crawling and monitoring.

In fact, any metric that carries useful information for its user can be used to reach conclusions
about the placement problem. For reasons of scope, this work will only concentrate on a couple
of these properties, but similar techniques to those presented in this work can be used for any
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quantifiable metric. Since a component often will have many different properties or metrics that
describe its requirements or capabilities, these metrics can be regarded as values on distinct axes
which corresponds to a multi-dimensional vector. The multi-dimensionality of these attributes that
have to be optimized for, provides a complex problem that has to be tackled in the right manner. On a
side note, since optimizing for multiple dimensions at once is very difficult, dimensionality-reducing
cost functions and greedy approaches that make use of one dimensional approximate costs, seem to
be reasonable approaches for future work.

Having made this assumption, it should be said that the goal of this work is not to provide ground-
breaking algorithmic methods that can improve the time-complexity compared to existing solutions.
The goal is to define a conceptual approach that works reasonably well, provides a higher degree of
automation for its users and allows the expression of user preferences for the treatment of individual
components by the placement algorithm.

It should provide some additional value for the user compared to traditional methods of placing
application components, especially in those cases where the problem sizes aren’t too large and
placement decisions are still often done manually by humans based on historical data and experience
of the system architects.

4.3 Algorithmic Approach

Optimizing the placement of subsets of software components onto subsets of hardware components
for multiple attributes like e.g., CPU load, RAM space and network load, at the same time, is a
NP-hard problem and can’t be achieved in polynomial time. Another assumption in this work in
that this class of problems represents a variation of the well-known Set Cover Problem (SCP)
and can be reduced to it. It’s one of Karp’s 21 NP-complete problems, demonstrated to be the
case in 1972 [Kar72]. The following subsection will demonstrate the suitability of the Set Cover
Problem for the goal of this work. Even though the practical part of this thesis i.e., the prototypical
implementation that is described in Chapter 5 on page 49, does not mirror the theoretical concepts
discussed in this section in a 1:1 fashion, it was still heavily influenced by the formal discussion of
the SCP that follows.

4.3.1 The Set Cover Problem

For easier reasoning about we can re-use the sets that were defined in Section 4.2 on page 40. Instead
of dividing C into S and H though, we can ignore this distinction here, as the Set Cover Problem
is a generalization of a whole family of such optimization problems and is easier to understand this
way.

Definition 4.3.1
Let C = {c1, c2, ..., cn} be the universe of n components, K = {K1,K2, ...,Kj} be the collection of
subsets of C, and w : K → Q+ be a cost function. Find a minimum cost collection of subsets of K
that covers all elements of C.
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Figure 4.3: A possible solution of a Set Cover Problem.

In the case of mapping software components onto hardware components this means that all software
components have to be covered by a hardware component such that the cost (however this cost
function is specified) is minimal. To be able to visualize how the problem of application placement
can be reduced to the Set Cover Problem, we have to make a few distinctions first. In our use
case the idea of a subset of components Kj represents a hardware component that covers this set
of software components. This means that we don’t need to take the hardware components into
consideration as elements of C when doing this, as the resulting set of subsets {K1, ...,Km} contains
precisely the representations of the m hardware components we want to deploy onto. Furthermore
the Set Cover Problem allows for the overlapping of such subsets. Semantically, for the use
case of this work, this would mean that multiple hardware components can host a certain software
component. Obviously this is just a limitation of the physical reality of the problem but does not
violate the validity of this observation in any significant way. Figure 4.3 shows a visual abstraction
of a solution to a Set Cover Problem.

In the case of Figure 4.3, the colored rounded rectangles are the subsets of C (the hardware
components) that host the software components C = {c1, ..., c16}. As you can see, the green subset
is not required to cover all software components as the red and the blue subsets also provide the
capabilities required by the components {c1} and {c5, c9, c13} respectively. We would therefore
have to choose the subsets {red, yellow, blue} to cover all software components.
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Theoretically, in a more complex example with many more components there could be billions of
possible subsets that are redundant in terms of fulfilling the requirements of the software components
through their capabilities. Choosing the optimal set of subsets (e.g., the ones with the minimal
cost) would therefore be impossible to do in reasonable time in these cases – as mentioned earlier –
especially with brute force approaches. To address this impossibility there are some greedy strategies
that make the Set Cover Problem more approachable through algorithmic approaches.

4.3.2 A Greedy Approach to the Set Cover Problem

A common approach for solving problems like these are variations of so called greedy approximation
algorithms [Bla98]. Greedy algorithms are used in optimization problems and follow some sense of
intuition or heuristic. They make the compromise of selecting the locally optimal choice at each
iteration and thereby approximating the global optimum. In many problems like the Set Cover
Problem such approaches don’t always produce optimal solutions as they don’t consider all the
options but they are are part of a family log(n) approximate algorithms that are used to solve such
problems [Hoc82]. The idea is to make iterations of optimal steps at each step of the iterator to find
a solution eventually that, approximates the globally optimal solution reasonably well.

In the case of this work, a greedy approach would remove the already covered software components
after each iteration of the algorithm from the universe of components C which would remove them
from consideration during the following iterations of the algorithm. In other words, if we take a
look at Figure 4.3 on page 43 again, if we imagine that the green subset is the result of the very first
iteration of the algorithm, it would certainly be part of the final solution, even though we can easily
see that it shouldn’t be part of an optimal one, since selecting the red, blue and yellow ones leaves us
with only a single redundancy (c3). Nonetheless, this seems like the most reasonable approach for
the goal of this thesis, as the decision making of application placement is still done mostly manually
in current industrial environments and this would be a step forward into the automation of such
processes. The critical part of getting the best heuristic for such a greedy algorithm is therefore to
define a strategy that determines a smart order in which the software components are selected for
placement.

Such a strategy could be as simple as one that chooses the destination for software components solely
on the least potential amount of computational residue during each of the algorithm’s iterations.

4.3.3 Least Residue Strategy

Each of these software components may have different requirements e.g., different amounts of free
RAM required for operation. The cost function Cost(Si) in this case could be defined as the sum of
residual GB of RAM for each subset Sj . The following example is used to demonstrate this strategy.
Assuming that the algorithm follows the least computational residue principle at each iteration, it
would always choose the subset of components whose cost effectiveness is smallest. The elements
of the chosen subset would be added to a resulting set I, until I equals the set of all components U
and no more components are left.

Example: Let {s1, s2, s3, s4 and s5} be software components that have to be placed on a set of
hardware components.
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The set of subsets corresponds to the hardware components with the necessary capabilities that
satisfy the requirements of the software components. For simplification purposes lets assume
different constant costs for the subsets at this point to focus on the algorithm itself. In a real use
case the cost would have to be recalculated at every step.

S1 = {s1, s2},Cost(S1) = 3

S2 = {s1, s3, s4},Cost(S2) = 2

S3 = {s2, s3, s5},Cost(S3) = 4

In this case, hardware component 1 which corresponds to subset S1 has the theoretical capabilities
that could satisfy the requirements of the components {s1, s2}. The other two subsets follow
analogously. The algorithm would go through all subsets and find the subset Si whose ratio of
Cost(Si)/|Si − I | is minimal. This tries to place as many components as possible while minimizing
cost (in this case computational residue) at each step. The components in Si would then be added to
I. The pseudo code of this greedy algorithm is presented in Algorithm 4.1.

Algorithm 4.1 Pseudo code of the greedy algorithm, inspired by [Ste06]
I ← ∅
while I , U do

find Si in S1, S2, ..., Sk with Min(C(Si)/|Si − I |)
I ← I + Si

end while
return I

A Walkthrough

First iteration:

I = {}

– S1 = Cost(S1)/|S1 − I | = 3/2

– S2 = Cost(S2)/|S2 − I | = 2/3

– S3 = Cost(S3)/|S3 − I | = 4/3

Since S2 is the minimum in this iteration we add its elements to I.

Second iteration:

I = {s1, s3, s4}

– S1 = Cost(S1)/|S1 − I | = 3/1

– S3 = Cost(S3)/|S3 − I | = 4/2
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Since S1 is the minimum in this iteration we add its elements to I.

Third Iteration:

I = U = {s1, s2, s3, s4, s5}

Since I now contains all components we are done at this point. The subsets that the algorithm
selected are hardware components containing the software components that shall be placed onto
them.

4.3.4 Other Strategies and Heuristics

As part of this work, a prototypical implementation of such an algorithm was implemented in
the OpenTOSCA container and will be described in detail in the Implementation chapter. This
prototype is limited to the Least Residue Strategy described in Section 4.3.3 on page 44 since
the implementation of a generic version of the Log(n) Approximate Greedy Algorithm that would
support interchangeable strategies and heuristics is beyond the scope of this thesis.

In an ideal case though, the user of this system would be able to specify preferences in terms of
providing different heuristics or strategies, and different flavors of cost functions, to make this
algorithm adaptable to different user preferences for different use cases in production.

A conceptual mockup of such a potential feature is shown in Figure 4.4. It could be added to the
placement dialog of the UI, which is described in more detail in the Implementation chapter.

Figure 4.4: Preferences for the algorithm a user could express through the UI

Even though this dynamicity is not implemented in the prototype, it is certainly an interesting aspect
for future work. The compromise that this work makes instead, is that it offers the user an option
via the UI to override the recommendations of the algorithm manually, if so desired. By doing that
the user still has full control over the actual matching between the components and the instances for
cases when the placement candidate returned by the algorithm doesn’t seem to be optimal.
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Nonetheless, other interesting strategies and heuristics were explored conceptually during this
work, including the following ones, that may have been interesting for some of the use cases of this
thesis:

As-distributed-as-possible: A strategy with the goal of spreading out the software components
onto as many hardware components as possible. Such a strategy would maximize the resilience
of the resulting application and distribute computational load optimally.

As-centralized-as-possible: A strategy with the goal of providing latency-sensitive applications
the most performance possible. This would maximize the throughput of these components.

Preference for a certain resource: A strategy like this would allow the user to prioritize the
conservation of a certain resource e.g., to try to rather waste CPU cores than RAM. I.e., this
would be a special case of the least residue strategy.

4.3.5 Expressing Preferences via Requirements and Capabilities

As described earlier, the TOSCA specification supports RequirementTypes, CapabilityTypes and
instances of these types called Requirements and Capabilities. These can be assigned to Node-
Types and NodeTemplates respectively. This means that apart from a generic and strategy-aware
greedy algorithm, user preferences and strategies may also be expressed through Requirements and
Capabilities.

The idea is to assign equally named Requirements and Capabilities to NodeTemplates that have to be
placed and to NodeTemplates of their potential hosts, respectively. To achieve that efficiently, lists of
NodeTemplateInstances that have a certain Capability are created first. These lists are then hashed
into a map where the key is the name of a CapabilityType and the value is the list containing the IDs
of all NodeTemplateInstances that have this Capability. By creating these lists first, the algorithm
only ever looks at pairs of NodeTemplates with matching Requirements and Capabilities.

On the one hand this means that the user can limit the placement of certain components to a certain
subset of instances that have the necessary Capabilities and thereby express a preference or strategy,
on the other hand this increases the performance of the algorithm and reduces error proneness by
guiding the placement process according to the user’s preference.

Another way the complexity of the operation gets reduced is by assuming that the NodeTemplateIn-
stances were marked as potential hosts in some way at modeling time. This can be a simple property
that marks a NodeTemplate as an operating system node, for example. By doing this, the algorithm
only looks at operating system nodes, instead of considering all of their successors and neighbors in
a TopologyTemplate.

An example of such a pair of Requirements and Capabilities would be a NodeTemplate with
the Requirement “ReqLocationOnDevice” accompanied by another NodeTemplate of a running
instance with the Capability “CapLocationOnDevice”. This would, for example, guarantee that this
specific application would be placed on-device assuming that the operating system NodeTemplate of
the TopologyTemplate that represents the computational resources of the device has been enriched
with this Capability and deployed with OpenTOSCA beforehand.
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4.4 From Placement Matches to a Deployable CSAR

After the algorithm returns a placement candidate and the user confirms the selection via the UI, a
topology completion task has to be performed, similar to previous work on splitting and matching
of topologies by Saatkamp et al. [SBKL17]. This means that the ServiceTemplate that was selected
for placement is edited by adding NodeTemplates of the same NodeType the matched instance
has to the existing TopologyTemplate and drawing a ”hostedOn”RelationshipTemplate onto it. To
identify the correct instances, the NodeTemplates of the added instances have to have a property
that contains the IP address of the running instance, as well as a property of “state” with the value
of “running”. This step is necessary because the OpenTOSCA container doesn’t support dynamic
editing of running instances. The ServiceTemplates are combined into a single one that doesn’t
have any open requirements anymore and can be deployed normally.

The OpenTOSCA container doesn’t support the full TOSCA model either, which is why a separate
instance of the Eclipse Winery – called OpenTOSCA container repository in the context of the
container – was added as a supplementary component, so that the OpenTOSCA container can connect
to it to delegate TOSCA modeling tasks. This is a compromise that is used in the OpenTOSCA
ecosystem for now, to make use of the full TOSCA modeling capabilities of the Eclipse Winery.
The connection to the container repository from the container is achieved by the WineryConnector,
a class that was created specifically for this purpose. The OpenTOSCA container may have full
TOSCA model interoperability in the future which would make this step unnecessary.

After the completion task is done, the container repository exports the newly merged CSAR which
then is ready to be installed in the OpenTOSCA container and instantiated via the OpenTOSCA
UI. The whole flow of actions across the different TOSCA tools that is required for the end-to-end
operation of placing application components is described in more detail in the implementation
chapter that follows.
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Concept

A goal of this work was to provide a prototype that would enable the placement of application
components onto existing instances as discussed in Chapter 4 on page 39, using a TOSCA runtime
such as OpenTOSCA.

This prototype was implemented in form of extensions to the existing OpenTOSCA ecosystem.
Because the idea of ACP onto existing instances relies on the assumption that the instances were
instantiated using OpenTOSCA and enhanced with respective Capabilities beforehand, such an
environment had to be created in preparation for the prototype of this thesis.

This step of preparing the instances to fit the use cases of this thesis is described in the next section.
After that the actual prototype is presented in more detail.

5.1 Modeling the TOSCA-Types for the Use Cases

To achieve this and to model the two types of nodes (application components vs. hardware instances),
different ServiceTemplates were created, using the Eclipse Winery tool, to serve as minimal examples
for the concept and as subjects for the prototypical implementation afterwards. This section presents
the important parts of the two ServiceTemplates and their different variants that were created to
demonstrate how the demands of the use cases presented in the introductory chapter could be
satisfied accordingly.

Ubuntu on OpenStack

The UbuntuOnOpenStack ServiceTemplate used in this work is a modified version of an equally
named ServiceTemplate from the OpenTOSCA/tosca-definitions-internal Github repository1. An
overview of its topology was shown earlier in Figure 1.3 on page 20. The Ubuntu-VM NodeType
that is part of this TopologyTemplate was duplicated and enriched by different CapabilityTypes for
the different use cases, namely by a CapLocationPrivateCloud, a CapLocationEdgeCloud and a
CapLocationPublicCloud CapabilityType that is used to inform the matching algorithm that it is
a suitable host for applications that should be placed in the private cloud, edge cloud, and public
cloud respectively.

1https://github.com/OpenTOSCA/tosca-definitions-internal
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To validate the least-residue-strategy of the greedy placement algorithm of the prototype a key-value
property called “AmountOfRAM” was added to the Ubuntu-VM NodeType as well. In the case of
an instance it can be understood as the amount of available RAM this instance can provide for its
applications.

The TOSCA standard supports key-value properties for Requirements and Capabilities as well but
for the example of this thesis they were deliberately expressed as NodeTemplate Properties instead.
The reasoning behind this choice is explained in more detail in the implementation details part that
follows.

MyTinyToDo

The MyTinyToDo ServiceTemplate mocks the application components of the Driverless Transporta-
tion System that are to be placed onto the instances. An overview of its topology was shown earlier
in Figure 1.2 on page 20. The DockerEngine and MySQL-DBMS NodeTypes that are part of it
were enhanced with RequirementTypes that match the CapabilityTypes of the instances, to inform
the algorithm that they have open requirements and want to be placed onto a running instance
with matching Capabilities. To match the “AmountOfRAM” Properties of the instances, the Dock-
erEngine and MySQL-DBMS NodeTemplates were given this property as well. In the case of an
application it can be understood as the amount of RAM required for operation.

5.1.1 Overview of the Setup

To better understand the environment in which the prototype was tested, this subsection gives a quick
summary of the various instances of the ServiceTemplates described in Section 5.1 on page 49 that
were created for the purpose of testing the prototype. For simplicity the OpenStack NodeTemplate is
omitted in the following summary as we are only interested in the NodeTemplateInstances that can
become the targets of hostedOn RelationshipTemplates in the processes of placement i.e., in this case,
the Ubuntu-VMs. Section 5.1.1 shows a tabular summary of the instances of this ServiceTemplate
that were created including their respective Capabilities and Properties to simulate the existing
IT-infrastructure of an industrial company.

Table 5.1: An overview of the VMs that were instantiated as the initial setup.
NodeTemplateInstance Capability Key-Value Property Related Use Case
Ubuntu-VM #1 CapLocationPrivateCloud { “AmountOfRAM”: “32” } DTS - Image Processing
Ubuntu-VM #2 CapLocationEdgeCloud { “AmountOfRAM”: “8” } DTS - Engine Control
Ubuntu-VM #3 CapLocationPublicCloud { “AmountOfRAM”: “8” } DTS - Sensor Data
Ubuntu-VM #4 CapLocationPublicCloud { “AmountOfRAM”: “16” } DTS - Sensor Data

The rows of this table can be interpreted as follows:

• There is one VM that simulates the environment of the private cloud with 32GB of available
RAM, and it is the intended destination for the image processing component.

• There is one VM that simulates the environment of the edge cloud with 8GB of available
RAM, and it is the intended location for the engine control component.
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• There are two VMs that simulate the environment of the public cloud with 8GB and 16GB
of available RAM respectively, both with the Capabilities to host the sensor data analysis
component.

A view of this TopologyTemplate is shown in Figure 5.1

Figure 5.1: An overview of the topology of the instances that were created for this prototype.

To complement these instances, two copies of the MyTinyToDo application were saved in a single
ServiceTemplate and exported as a CSAR file. Each of the MyTinyToDo copies contains two leaf
nodes with different Requirements and Properties, which results in the following 4 NodeTemplates
that have to be placed, shown in Section 5.1.1 on the following page. The other NodeTemplates are
omitted, as we are only interested in those with open requirements.

The rows of this table can be interpreted as follows:

51



5 A Prototypical Implementation of the ACP Concept

Table 5.2: An overview of the NodeTemplates that have to be placed.
NodeTemplate Requirement Key-Value Property Related Use Case
DockerEngine #1 ReqLocationPrivateCloud { “AmountOfRAM”: “32” } DTS - Image Processing
DockerEngine #2 ReqLocationEdgeCloud { “AmountOfRAM”: “8” } DTS - Engine Control
MySQL-DBMS #1 ReqLocationPublicCloud { “AmountOfRAM”: “4” } DTS - Sensor Data
MySQL-DBMS #2 ReqLocationPublicCloud { “AmountOfRAM”: “4” } DTS - Sensor Data

• There is one DockerEngine NodeTemplate that simulates the image processing component
that requires 32GB of RAM and has the Requirement that tells the algorithm that it has to be
deployed in the private cloud.

• There is one DockerEngine NodeTemplate that simulates the engine control component that
requires 8GB of RAM and has the Requirement that tells the algorithm that it has to be
deployed in the edge cloud.

• There are two MySQL-DBMS NodeTemplates that simulate the sensor data analysis compo-
nents that each require 4GB of RAM, both with the the Requirement that tells the algorithm
that they have to be deployed in the public cloud.

An overview of this TopologyTemplate is shown in Figure 5.2.

Figure 5.2: An overview of the topology of the applications that have to be placed.

Since the algorithm implements the least-residue-strategy explained in Section 4.3.3 on page 44 no
unnecessary resources should be wasted. Because both sensor data analysis components (represented
by the MySQL-DBMS NodeTemplates) require 4GB of RAM and the Ubuntu instance #3 offers
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exactly 8GB of available RAM via its Properties, the last Ubuntu instance should not be part of
the final placement candidate, as its resources are not required in an optimal solution. Therefore
Figure 5.3 shows the desired topology of the placement candidate in this example.

Figure 5.3: An overview of the desired topology of the optimal placement candidate.

5.2 Implementation Details

The sophistication of the prototype and the ServiceTemplates used in this example is limited to
fit into the scope of this thesis. Therefore some features described in the concept chapter were
simplified or changed for the prototypical implementation, to be extended by future contributors
and to adjust to the idiosyncrasies of the existing OpenTOSCA feature set. Existing interfaces and
methods were used whenever possible to maximize the reusability of existing methods and to avoid
code duplicates.

The placement functionality on the backend – inside the OpenTOSCA container – was introduced
in a plug-in manner by adding a new bundle to the existing Maven project. The functionality on the
frontend – inside the OpenTOSCA UI – was provided by creating new Angular components where
necessary and by extending existing HTML templates, reducer functions and event handlers. This
approach provides a loosely coupled addition to the existing system that can be extended and / or
replaced in the future.

This chapter describes these changes to the OpenTOSCA UI, the OpenTOSCA Container as well as
the Eclipse Winery in detail. The structure of this section loosely follows the chronological order
of actions required for placing an application starting from the CSAR upload in the OpenTOSCA
UI. This means that the changes made to each OpenTOSCA tool will be described by going
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through each of the steps from uploading a CSAR until the placement of an application is achieved.
Where necessary, an overview of the original feature set will be provided to create a contrast,
before explaining the changes that were done as part of this thesis. An overview of the end-to-end
choreography that results from the interaction between the different OpenTOSCA tools for placing
an application is depicted in the diagram shown in Figure 5.4 on the facing page.
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Figure 5.4: The choreography between the different OpenTOSCA tools when placing an application.
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5.3 Additions and Changes to the OpenTOSCA UI

This section goes beyond the brief description of the interaction between the OpenTOSCA UI and
the container that was provided in Chapter 2 on page 25 to understand which changes had to be
made to the existing code. As mentioned earlier, when the user uploads a CSAR via the UI, it gets
sent to the REST API of the OpenTOSCA container where it is processed further. Since a CSAR
that requires placement onto existing instances is not well-defined by nature, meaning that it is not
instantiable before getting matched with instance nodes, it de facto has open requirements.

Open Requirements

An application can have open requirements e.g., when the target environment of an application
is not known in advance i.e., at modeling time [SBK+18]. The OpenTOSCA container is able to
detect open requirements in ServiceTemplates as the CSAR gets uploaded. The container detects
open requirements if the number of outgoing RelationshipTemplates is smaller than the number of
Requirements.

Originally the container would reject such CSARs and return an error to the OpenTOSCA UI
following a deletion of the uploaded CSAR. Since open requirements are always present in the use
case of application placement, this behavior had to be changed.

With changes to the CsarController’s handleCsar() function, the container now accepts CSARs
with open requirements and returns a flag inside its HTTP response to the UI that informs it that a
placement of the application can be initiated.

After receiving this response, the updated UI then enables the additional placement button next
to the instantiation button (that now gets disabled in the case of open requirements) to avoid the
instantiation of uncompleted ServiceTemplates. This feature is demonstrated in the screenshot
shown in Figure 5.5.

Figure 5.5: The new placement button is enabled when a CSAR has open requirements.

Since the UI only gets this information once, namely when the CSAR gets uploaded, the placeability
of a CSAR had to be kept in the state of the web application to correctly reflect which CSAR is
instantiable and which one is placeable, as this would otherwise get lost during a page refresh.

This functionality was achieved by storing references to each placeable CSAR inside an array of
objects that consist of the CsarId as well as a “placementPossible” flag inside the localStorage of
the browser. Whenever the detailed view of a CSAR is opened by the user, the onInit() lifecycle
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method of this Angular component now takes care of loading the respective array of placeable
CSARs from localStorage and dispatching an update action to the Redux2 reducer function that
updates the inner application state of the currently viewed CSAR accordingly.

With this change, a CSAR with open requirements can be kept inside the UI permanently and is
always distinguished correctly from CSARs without open requirements, as long as the localStorage
of the browser doesn’t get emptied by a third party. A more persistent option that reflects the
placeability of a CSAR and that is based on a single source of truth should be favored over this
approach in the future.

Initiating the Placement Algorithm from the UI

When the user clicks the placement button by interacting with the placement dialog shown in the
screenshot in Figure 5.6, another HTTP request to the REST API of the container is sent with the
intent of trying to place this application’s components onto existing instances.

Figure 5.6: The placement dialog offering the initiation of a placement operation to the user.

If the container finds a suitable placement candidate, it is returned to the OpenTOSCA UI along
with all alternative placement locations mapped to each NodeTemplate that has to be placed. Like
this, the user retains control about the final decision of placement and can inspect the solution of
the algorithm before the instantiation of the NodeTemplates that have to be placed.

Figure 5.7 on the following page shows the set of dropdown lists, containing alternative placement
locations for each NodeTemplate that the user can choose from.

Since the least residue strategy is only applied on the backend (as will be explained shortly) any
placement locations the user might choose manually from these dropdown lists, may lead to cases
where the “AmountOfRAM” property of an instance has a smaller value than the sum of the same
property’s values of the NodeTemplates the user chooses to place on it. Therefore future work
may consider the implementation of a feature that keeps track of the amount of resources of each
instance throughout the whole end-to-end process. The following section describes the additions
and changes that were done to the OpenTOSCA container as part of the prototype of this thesis.

2https://redux.js.org/
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Figure 5.7: Dropdown list with placement locations for each NodeTemplate that has to be placed.

5.4 Additions and Changes to the OpenTOSCA Container

Originally the container did not support any CSARs that had open requirements, and would reject
them on upload. Now with the changes to the CsarController inside the org.opentosca.controller.api
bundle these CSARs don’t get deleted anymore and a response to the OpenTOSCA UI is sent
containing the information that a placement operation can be initiated for this CSAR.

The existing container REST API, that was shown earlier in Figure 2.4 on page 32 was extended
by a POST method at /csars/{csar}/servicetemplates/{servicetemplate}/placement. This change is
demonstrated in the diagram in Figure 5.8 on the facing page, that shows an excerpt of the container
API. Sending a PORT request to this path activates the PlacementController that was added to the
container API bundle to handle these requests which then calls the PlacementService inside the new
bundle org.opentosca.placement that was added to the existing OSGi framework and root Maven
project respectively, to handle the placement operation itself.

The various Services in the OpenTOSCA container support the retrieval of created instances as well
as the retrieval and modification of ServiceTemplateInstance and NodeTemplateInstance Properties
in line with the TOSCA standard. This is necessary for the PlacementService to be able to distinguish
different instances of the same ServiceTemplates and NodeTemplates respectively, since they get
assigned an unique ID on instantiation.

To limit the search space during the search for viable host instances for the costly placement algorithm
the prototype makes use of an existing helper method that only returns NodeTemplateInstances
which qualify as operating system nodes. With this assumption and limitation the algorithm
doesn’t have to visit all nodes and its performance is increased significantly.

As mentioned earlier in the OpenTOSCA ecosystem, Properties are used to describe idiosyncrasies of
certain NodeTemplates at modeling time. For example, they can be expressed in terms of key-value
pairs of strings such as:
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Figure 5.8: The added path for initiating a placement operation via a HTTP POST request.

/placement

{ “location”: “onPremise”}.

As mentioned in Chapter 4 on page 39 the matching of Requirements and Capabilities in this
prototype is done between NodeTemplate Requirements and Capabilities rather than between one
NodeTemplateInstance’s Capabilities and one NodeTemplate’s Requirements. The latter option
allows for mathematical operations on the values of Requirements and Capabilities that reflect
some resource availability e.g., the subtraction of a certain amount of available RAM from a
NodeTemplateInstance’s Capability, after having placed a NodeTemplate with a certain amount of
required RAM onto it.

This allows keeping track and adjusting of values of Capabilities dynamically during the operation of
the algorithm and beyond that. On top of that, this represents a reasonable approach to constructing
a cost function. Since this is also possible via a NodeTemplateInstances’s Properties rather than its
Capabilities and since the OpenTOSCA container already supports the retrieval and modification
of properties, this option was chosen over implementing methods for the retrieval of Requirement
Properties and Capability Properties. The running example throughout this thesis has only one such
property named ÄmountOfRAM”. Obviously, this simplifies the complexity of the cost function
implemented in this thesis, compared to cost functions where a multitude of such properties would
have to be considered at the same time.

5.4.1 PlacementController

The PlacementController lives inside the context of its ServiceTemplate by default due to the
HATEOAS [Fie00] maturity level of the OpenTOSCA container’s REST API. This allows the
retrieval of all necessary information that the PlacementService needs for finding suitable placement

59



5 A Prototypical Implementation of the ACP Concept

candidates such as the CsarId, the ServiceTemplateId as well as its Requirements, Capabilities and
Properties. It handles incoming placement requests and calls the PlacementService with all the infor-
mation it requires. To achieve that, the PlacementController searches for all NodeTemplateInstances
as well as all NodeTemplates of the ServiceTemplate that have to be placed e.g., that have open
requirements. For each NodeTemplateInstance that represents an operating system and that has some
Capabilities, an Object of the class CapablePlacementNode is created. For each NodeTemplate
with open requirements an Object of the class ToBePlacedNode is created. Figure 5.9 shows an
UML diagram of these two classes which contain all the required attributes the PlacementService
needs, to perform the matching and to identify each instance precisely. These Objects are then
added to their respective ArrayLists shown in Listing 5.1 and handed to the PlacementService which
implements the actual placement operation.

Figure 5.9: UML class diagram of the classes of ToBePlacedNode and CapablePlacementNode

Listing 5.1 Excerpt from PlacementController.java

1 List<CapablePlacementNode> listOfCapablePlacementNodes = new ArrayList<CapablePlacementNode>();

2 List<ToBePlacedNode> listOfToBePlacedNodes = new ArrayList<ToBePlacedNode>();

5.4.2 PlacementService

The PlacementService contains the actual algorithmic approach that was implemented in this
prototype. In the first step, it compares the Capabilities of the CapablePlacementNodes with
the Requirements of the ToBePlacedNodes and matches them by comparing the names of their
Requirements and Capabilities assuming that they were named equally following their different
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prefixes of “Req” and “Cap”. This results in a HashMap of Lists of CapablePlacementNodes
for each Capability shown in Listing 5.2. This map corresponds to the collection of subsets of
the universe discussed in Section 4.3 on page 42 and therefore presents the NodeTemplate and
NodeTemplateInstance data to the algorithm in a compatible format.

Listing 5.2 Excerpt from PlacementService.java I

1 /**

2 * This map contains all nodes with a certain capability in the form of:

3 * { key: value } ==> { capName: List<CapablePlacementNode> }

4 */

5 Map<String, List<CapablePlacementNode>> capNamesToCapableNodes

6 = new HashMap<String, List<CapablePlacementNode>>();

In the next step it compares the Properties of each NodeTemplate that has to be placed to those of
each CapablePlacementNode in a for-loop. It only continues if there are Properties with matching
keys and then calculates the computational residue out of the values of these Properties that would
result from a match between these two nodes. In the use case that was constructed for the initial
testing of this prototype, this Property was the AmountOfRAM property. The residue is kept in
a local variable that resides outside of this for-loop and it is updated only if a smaller residue is
found between the NodeTemplate and another CapablePlacementNode. A chosenHost variable
keeps track of the currently optimal choice and it also resides outside of this for-loop.

If a better match is found i.e., one that produces less residue, the previously chosenHost is added
to the list of alternative hosts and the new, locally optimal host is reassigned to the chosenHost
variable. The result is a list of PlacementMatches that represents the placement candidate as well as
a second list that contains potential alternative matches which are presented to the user via the UI if
the user wants to change the decisions made by the algorithm. An UML class diagram of the class
PlacementMatch is shown in Figure 5.10.

Figure 5.10: UML class diagram of the class PlacementMatch

Listing 5.3 on the next page shows a code excerpt of the important parts of the PlacementService
that demonstrates the implementation of the behavior that was just described.
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Listing 5.3 Excerpt from PlacementService.java II

1 public PlacementCandidate findPlacementCandidate(final List<CapablePlacementNode> cpbNodes,

2 final List<ToBePlacedNode> tbpNodes) {

3

4 List<PlacementMatch> results = new ArrayList<PlacementMatch>();

5 List<PlacementMatch> alternativeMatches = new ArrayList<PlacementMatch>();

6 Map<String, List<CapablePlacementNode>> capNamesToCapableNodes

7 = new HashMap<String, List<CapablePlacementNode>>();

8

9 capNamesToCapableNodes.forEach((cap, nodesWithThisCap) -> {

10 tbpNodes.forEach(tbpNode -> {

11 tbpNode.getReqsOfToBePlacedNode().forEach(req -> {

12

13 // Get the important part of the Requirement name for matching with Capabilities

14 List<String> reqStrings

15 = splitPrefixFromReqOrCap(removeNumbersFromString(req.getLocalPart()));

16 String reqName = reqStrings.get(1);

17

18 nodesWithThisCap.forEach(cpbNode -> {

19 // only look at cases where capabilities and requirements match

20 ...

21 // 1. calculate residue of properties

22 // 2. find out intersection of properties

23 // 3. if there are common properties

24 if (intersect != null) {

25 intersect.iterator().forEachRemaining(propertyKey -> {

26 // if enough resources are available

27 ...

28 if (amountCap >= amountReq) {

29 // first iteration

30 if (chosenHost == null) {

31 residue = amountCap - amountReq;

32 chosenHost = cpbNode;

33 } else if (chosenHost != null) {

34 Integer myResidue = amountCap - amountReq;

35 if (myResidue < residue) {

36 residue = myResidue;

37 // add as alternative host since it got beaten by the latest cpbNode

38 alternativeHost = chosenHost;

39 chosenHost = cpbNode;

40 } else {

41 alternativeHost = cpbNode;

42 }

43 }

44 cpbNode.getPropertyMap().put(propertyKey, residue.toString());

45 }

46 });

47 }

48 }

49 });

50 // create PlacementMatch if one was found

51 ...

52 });

53 });

54 });

55 return new PlacementCandidate(results, alternativeMatches);

56 }
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5.5 Additions and Changes to the Eclipse Winery

The OpenTOSCA container depends on an instance of the Eclipse Winery, also called OpenTOSCA
container repository, for advanced TOSCA model manipulation functionalities, as mentioned earlier
in Section 4.4 on page 48. The last step from the PlacementCandidate to a deployable CSAR is to
inject NodeTemplates of the NodeTemplateInstances into the Topology of the uploaded CSAR that
contains the application components that have to be placed. The Winery REST API doesn’t follow
the HATEOAS approach but rather organizes the URLs in the following way:

/<type>/<encoded namespace>/<encoded id>.

The type can be a ServiceTemplate, a NodeTemplate, a NodeType, etc. It is uniquely identified by
providing its namespace and id after that.

For this last step a POST method was added to the existing REST API of the Winery that resides
behind the ServiceTemplateResource and the placement/completion path. It is inspired by similar
methods which include TopologyTemplate manipulation that were implemented as part of earlier
work by Saatkamp et al. [SBKL17], [SBK+18], [SBKL19].

Firstly the NodeTemplates of the chosen hosts in the placement candidate are retrieved from the
repository of the Winery where they were stored initially when the CSARs of the instances were
uploaded. They are copied over to the TopologyTemplate that contains the application components
and hostedOn connections from the NodeTemplates that have to be placed, are drawn to the chosen
hosts.

Another important step is that a couple of Properties of the newly added NodeTemplates of the
instances have to be set before the CSAR gets exported. Firstly, the “{ State: Running }” property
has to be set which tells the OpenTOSCA container that the instances that the application components
will be hosted on are already existent and running. Secondly, the Property that contains the IP
address of the Ubuntu VM has to be set, so that the VM can be found by the OpenTOSCA container
eventually. Finally, the CSAR that results from this operation can be exported utilizing the existing
CSAR-export functionality of the Winery. This CSAR can then be deployed via the OpenTOSCA UI
in the usual manner, completing the end-to-end workflow of ACP in the OpenTOSCA ecosystem.
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This thesis presented a concept of an algorithmic approach that tries to tackle the Application
Component Placement (ACP) problem onto running instances. It showed that the placement of
TOSCA modeled applications onto running instances in the context of the OpenTOSCA container
is possible.

The running example throughout this thesis that revolves around the integration of a Driverless
Transport System (DTS) into the existing infrastructure of a smart factory was introduced in Chapter 1
on page 17. Dummy applications were used as placeholders for the characteristic application
components of DTS such as an image processing component, an engine control component and
a sensor data analysis component. Dummy instances of Ubuntu VMs on an OpenStack instance
were set up to simulate different placement locations these components can be offloaded to. The
applications and instances were enhanced with TOSCA-conform Requirements and Capabilities,
namely ones that represent a desired placement location such as the edge cloud, the private cloud
and the public cloud, as well as a NodeTemplate Property, namely an “AmountOfRAM” property,
that was used to define an application component’s amount of required RAM and an instances
amount of available RAM.

By making use of an approximate greedy algorithm with a heuristic that follows a least residue
strategy and by considering the amount of available resources as the subject of a cost function, it is
ensured that a reasonably optimized solution can be provided by the prototypical proof-of-concept
implementation that was created as part of this work.

The prototype was implemented in terms of extensions to the existing OpenTOSCA ecosystem.
As the goal was to provide a proof-of-concept implementation that represents a minimal end-to-
end implementation, changes were made to three different components, namely the OpenTOSCA
container, the OpenTOSCA UI and the Eclipse Winery (OpenTOSCA container repository).

The OpenTOSCA UI was enhanced by a feature that treats uploaded CSARs with open requirements
differently than well-defined ones, by enabling an additional placement button for these cases. A
couple of HTTP methods were implemented in the OpenTOSCA UI to communicate with the other
OpenTOSCA tools. Firstly, a method that enables the initiation of the placement operation inside
the OpenTOSCA container and secondly a method that sends the chosen placement candidate to
the Winery for topology completion. The overruling of the placement candidate by the user via
the OpenTOSCA UI was made possible through the provided placement dialog, removing any
source of coercion that may be caused by blindly applying the solution returned by the placement
algorithm.
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The OpenTOSCA container was enhanced by an additional OSGi bundle that offers the placement
operation for ServiceTemplates with open requirements. This was done by having implemented a
version of the aforementioned algorithm which can be initialized from the context of an uploaded
CSAR in the OpenTOSCA UI via the new resource path that was added to the existing REST API
of the OpenTOSCA container.

The Eclipse Winery was extended by a method that converts the map between NodeTemplates that
have to be placed and running instances into a deployable CSAR by completing the CSAR that was
selected for placement with the respective NodeTemplates of the running instances and pointing to
them by providing their IP addresses.

The proof-of-concept prototypical implementation was tested initially using four application com-
ponents and four instances of VMs, demonstrating the capabilities and acceptable performance of
the algorithmic solution for reasonably small problem sizes.

Outlook

Future work should consider substituting the mocked availabilities of resources with real data, by
combining the concepts of monitoring, crawling and placement, potentially even considering the
modeling of the underlying networking capabilities of certain resources. This would be an important
step forward from the experimental stage of this prototype to a more generally applicable solution.
Defining a clear set of rules for how placement preferences can be expressed by users at modeling
time should be another goal of future work, to minimize the amount of assumptions the prototypical
implementation had to make.

Since the proof-of-concept implementation of this thesis only uses a single resource that the algorithm
optimizes for (AmountOfRAM), future work should consider enhancing the algorithm with a more
sophisticated variant of a cost function that can work with the multi-dimensionality when comparing
for a number of such properties concurrently or that makes use of dimensionality-reducing techniques
such as Principal Component Analysis to reduce the complexity for the algorithm. This would
enable a system where bad placement candidates are being punished more during the process of
dimensionality reduction by making use of weighted cost functions, which would imply that the
placement candidate that fits the model the best i.e., “that hurts the least” in terms of not being an
outlier could be selected at every iteration of the algorithm.

Since the user can override the placement candidate recommended by the algorithm via the UI
and potentially choose a placement location for a component that does not have enough available
resources, future work could prevent that by extending the instance API of the OpenTOSCA container
by a feature that returns the actual amount of available system resources to provide a single source
of truth for both the UI and the placement algorithm.

The different strategies discussed conceptually in Chapter 4 on page 39 all have their raisons d’être
in their respective potential use cases, therefore it may be interesting for future work to make the
placement algorithm more generic by enabling the provision of different strategies and heuristics in
a plugin manner.
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Earlier work has shown that distributed ACP solver algorithms beat the performance of centralized
ones. If the need for a more performant variant of the placement algorithm arises, a distributed
algorithm could be developed by future work.
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