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Abstract

The significance of angle-resolved photoemission spectroscopy (ARPES) as a tool for

the characterization of the electronic properties of solids originates from its ability to

reproduce the band structure directly, which gives access to properties like the quasi-

particle masses and the Fermi velocity. It is furthermore a surface sensitive method,

which got reinvigorated in recent years due to the discovery of topological surface

states.

In this thesis, ARPES is used to measure the band structure of novel 3D Dirac semimet-

als, many of which were previously unknown concerning their electronic structure.

The main results were obtained characterizing materials of space group (SG) no. 129

and more specifically ZrSiS and related compounds. These square-net materials crys-

tallize in a nonsymmorphic space group, which enforces spin-orbit coupling (SOC)

resistant degeneracies at high-symmetry points of the band structure. Resolving these,

tuning them to the Fermi level and combining them with magnetic phases was in-

vestigated in ZrSiS, ZrSiTe and CeSbTe, respectively. LaCuSb2 was then introduced

as a material on the interface of topology and superconductivity, facilitating Majo-

rana physics. The main findings of this thesis are however concerned with the sur-

face electronic structure in the ZrSiS-family of compounds. We could show that the

breaking of nonsymmorphic symmetry at the surface can lead to a new kind of surface

state named ‘floating surface state’, which was previously unknown in the literature.

Furthermore, we could reveal the nodal line character of these material, which can

result in topological ‘drumhead surface states’ in the projected nodal line overlap in

ZrSiTe.

Besides materials of SG 129, we focused on the first antiferromagnetic monolayer ma-

terial with high mobility, GdTe3. We did not only observe the charge density wave

(CDW) formed below 385 K but could also resolve the Fermi surface pockets respon-

sible for de Haas-van Alphen (dHvA) quantum oscillations measured in this mate-

rial.

As a third project, we were able to use ARPES on the photocathode material CuInTe2.

The linearly dispersing bands and high Fermi velocities make this compound an inter-

esting alternative in the field of photoelectrochemistry, although, a conclusive study on

its electrochemical properties is still pending at this point.



PACS: 79.60.-i Photoemission and photoelectron spectra

71.20.-b Electron density of states and band structures of crystalline solids

73.20.-r Electron states at surfaces and interfaces

71.70.Ej Spin-orbit coupling

25.40.Dn Elastic neutron scattering



Auszug

Die Bedeutung von winkelaufgelöster Photoemission (ARPES) als Methode zur Charak-

terisierung der elektronischen Eigenschaften von Festkörpern liegt in ihrer Fähigkeit

zur direkten Bestimmung der Bandstruktur, was es erlaubt Eigenschaften wie die Quasi-

Teilchen-Masse und die Fermigeschwindigkeit zu erlangen. Da es sich um eine ober-

flächensensitive Messmethode handelt, wurde sie durch die Entdeckung von topolo-

gischen Oberflächenzuständen in den letzten Jahren wiederbelebt.

In dieser Arbeit wurde ARPES verwendet um die Bandstruktur von neuen, dreidimen-

sionalen Dirac-Semimetallen zu untersuchen, von denen viele, in Bezug auf ihre elek-

tronischen Eigenschaften, bisher unbekannt waren. Hauptsächlich wurden dabei Ma-

terialien der Raumgruppe (SG) Nr. 129, und spezieller der ZrSiS-Familie, charakter-

isiert. Diese Materialien besitzen nicht nur Atome, die in einem quadratischen Git-

ter angeordnet sind, sondern kristallisieren zudem in einer nicht-symmorphen Raum-

gruppe, die sich durch Bandentartungen an Hochsymmetrie-Punkten auszeichen, wel-

che resistent gegen eine Spin-Bahn induzierte Bandlückenöffnung sind. Diese Entar-

tungen zu charakterisieren, sie ans Fermi Level zu heben und ihre Interaktion mit mag-

netischen Phasen zu beobachten, wurde jeweils an den Materialien ZrSiS, ZrSiTe und

CeSbTe untersucht. LaCuSb2, ebenfalls in SG 129, befindet sich darüber hinaus zwis-

chen den Feldern von Topologie und Supraleitung, was es sehr interessant im Rah-

men von Majorana-Physik macht. Nichtsdestotrotz befassen sich die Hauptresultate

dieser Arbeit mit den Oberflächenzustände der ZrSiS-Familie. Der Verlust der nicht-

symmorphen Symmetrie an der Oberfläche führt in diesen Materialien zu bisher un-

bekannten Oberflächenzuständen, genannt ‘floating surface states’. Außerdem zeigt

ZrSiTe überdies topologische ‘drumhead surface states’, die durch die Knotenlinie in

der Bandstruktur hervorgerufen werden und sich im Überlap ihrer Projektionen aufhal-

ten.

Neben Materialien der SG 129 wurde in dieser Thesis auch GdTe3 analysiert, das er-

ste monomolekulare Schichtmaterial das neben antiferromagnetischen Eigenschaften

auch eine hohe Mobilität aufweist. ARPES ermöglichte nicht nur die Beobachtung von

Ladungsdichtewellen bei Temperaturen unter 385 K, sondern auch die Auflösung der

Fermioberflächen-Taschen, die für die de Haas-van Alphen (dHvA) Quantenoszillatio-

nen verantwortlich sind.



Als drittes Projekt wurde CuInTe2, ein Photokathodenmaterial, mit ARPES untersucht.

Die linear dispergierenden Bänder und die hohen Fermigeschwindigkeiten machen

dieses Material sehr interessant im Rahmen der Photoelektrochemie, wobei zu diesem

Zeitpunkt noch keine umfassende Studie von dessen elektrochemischen Eigenschaften

durchgeführt werden konnte.

Stichwörter: Winkelaufgelöste Photoemission

Elektronen-Zustandsdichte und Bandstrukturen von kristallinen Festkörpern

Elektronenzustände an Oberflächen und Grenzfächen

Spin-Bahn-Kopplung

Elastische Neutronenstreuung
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CHAPTER 1
Introduction

The characterization of electronic properties in materials is of immense significance

for the present day digital world. In its easiest implementation, it allows us to distin-

guish between metals, semiconductors and insulators, each having their own unique

applications. Historically, one of the most prominent examples is the introduction of

the semiconducting element silicon, which replaced germanium in the 1960s [8, 9],

and is the basis for computer technology as it exists today. However, this classification

only scratches the surface of ways in which the electronic characteristics of materials

can be described. For example, not all crystalline solids have the same ballistic trans-

port properties. They vary in their response to electric fields, which is determined by

the mobility of their charge carriers, shown in the drift velocity under an applied volt-

age. The same is true for the charge carrier concentration, which can be vastly different

resulting in a higher or lower conductance in the material. Also, the reciprocal value

of the conductivity, the resistivity, can differ depending on lattice vibrations or sim-

ply lattice defects in the material; this leads to heat dissipation, a byproduct usually

aimed to be minimized in electronics. Of course, not all of these quantities are in-

dependent. For instance, the earlier mentioned mobility is just the ratio between the

effective mass of the charge carriers and the average time between scattering events.

Therefore, while a single measurement method might only determine some of these

properties, others can be concluded from the results and compared to complementary

measurements.

Modifying the electronic properties in known components or finding new materials

with better attributes has always been at the forefront of material research and devel-

opment, since devices are continuously required to be faster and smaller than the pre-

vious generation. Sometimes, these material research experiments lead to the discov-

ery of new phenomena in solid state science. For example, it was discovered that some

materials, when kept at cold enough temperatures, can reach a state of vanishing resis-

tivity, called superconductivity. More recently, a new class of topologically non-trivial
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materials has been discovered that allows for the formation of conductive behavior at

the surface of insulating bulk materials. Such new phenomena might not directly im-

prove silicon-based electronics but enable new alternative approaches in the form of

quantum computing [10, 11], spintronics [12] and twistronics [13].

One of the strongest tools available for the characterization of the electronic structure

of materials is angle-resolved photoemission spectroscopy (ARPES). It not only allows

for observing energy levels occupied by the electrons, but also their dispersion in re-

ciprocal space. In combination, these observations result in the band structure, which

enables the determination of quasi-particle effective masses, Fermi velocities and the

evaluation of recombination processes. The biggest advantage of this technique is its

strong surface sensitivity compared to transport measurements, which also measure

electronic properties but are mostly bulk limited. Specifically, in the context of topo-

logical surface states, the simultaneous observation of bulk and surface states is ben-

eficial, since it is direct proof of the bulk-boundary correspondence expected in these

materials.

This thesis aims to determine the electronic properties of new 3D Dirac semimetals

and focuses heavily, but not exclusively, on compounds of space group (SG) no. 129.

3D Dirac semimetals are materials containing four-fold degeneracies at specific points

in the band structure. Around these Dirac points, cones of linearly dispersing bands

are formed. Such materials show exotic physical properties, governed by their nearly

massless quasi-particle excitations, which, for example, results in an unusual resis-

tance response to an external magnetic field. Chapter 2 describes the theoretical back-

ground of such materials, starting from the general movement of electrons in a crys-

talline solid to motivate the principle of band structure in reciprocal space. The tools

for simulating the band structure by means of density functional theory (DFT) and

tight-binding calculations will be introduced, while distinguishing between bulk and

surface contributions. Chapter 3 will then present the experimental techniques uti-

lized in this thesis. The methods of ARPES and neutron scattering explained here were

the main tools for collecting the data shown in the following chapters. Low energy

electron diffraction (LEED) and X-ray photoemission spectroscopy (XPS) were regu-

larly performed as preliminary measurements, but are not crucial for the presented re-

sults. Furthermore, all additional results shown in the following chapters that are not

concerned with the experimental ARPES or neutron scattering data, like DFT, tight-

binding calculations or structural determination measurements, were performed by

collaborators. They show important information inaccessible by ARPES or neutron

diffraction and are usually presented next to the experimental data. The accountable

person can be found in the author contribution of the respective papers or the ac-

knowledgments chapter of this thesis.

ZrSiS, the first material revealing the potential of SG 129, is presented in chapter 4.

The square-net arrangement of atoms in this space group allows for the realization of
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the aforementioned Dirac semimetallic nature in this material; even though the band

crossing here is extended along a closed line, making ZrSiS and related compounds

Dirac nodal line semimetals. This occurs in parallel with the nonsymmorphic sym-

metry elements present in this space group, which results in degenerate points in the

band structure resistant against a gapping by spin-orbit coupling (SOC). Since these

features could be combined in an earth-abundant, non-toxic and air/water-resistant

material, ZrSiS has template character for the following chapters. One of the main

findings of this thesis is further related to the surface band structure in this family of

compounds, which was observed in ZrSiS for the first time. Due to the broken non-

symmorphic symmetry and hence the reduced symmetry at the surface, the bands are

no longer forced to meet at the nonsymmorphically protected high-symmetry points.

This results in ‘floating surface states’, a type of surface state, which has, to our knowl-

edge, not been discussed in the literature so far. In many ways, this chapter, therefore,

serves as a proof of principle concerning the inherent properties that can be realized

in this space group.

Chapter 5 focuses on the influence of the nonsymmorphic symmetry on the band

structure of ZrSiTe. This is accomplished by linking a structural parameter of the crys-

tal structure with the position of the nonsymmorphically protected points and real-

izing that in ZrSiTe, this degeneracy is located at the Fermi level. Like ZrSiS, ZrSiTe

shows a rich surface band structure, which can not entirely be related to the ‘float-

ing surface states’ theory. Some of these surface states are rather due to the Dirac

line nodes present in these materials. This chapter will, therefore, discuss the occur-

rence of topological ‘drumhead surface states’ in ZrSiTe and explain their absence in

ZrSiS.

A third compound of similar structure type, CeSbTe, is discussed in chapter 6 and fo-

cuses on the influence, the introduction of atoms with magnetic moments has on the

band structure. In this case, the lanthanide cerium is responsible for the magnetic

order, which is combined them with the attributes of SG 129 in CeSbTe. Thereby, it

undergoes several magnetic phase transitions, of which the antiferromagnetic order of

the ground state was analyzed by means of neutron diffraction. For higher magnetic

fields, this material reaches a fully polarized state with all magnetic moments ordered

in parallel. ARPES measurements could only be performed on the paramagnetic phase,

since the Néel temperature of TN = 2.7K is very low and stray magnetic fields make

ARPES measurements impossible. However, the good agreement between ARPES and

DFT in the paramagnetic phase gives credence to the theoretical calculations of the

other magnetic phases, which reveal the potential for Weyl physics and crossings of

higher order [14]. Lastly, the integration of heavier magnetic elements inadvertently

increases the strength of SOC in CeSbTe. This effect on the surrounding band struc-

ture of the nonsymmorphically protected crossings will be discussed by comparing it

with the lighter analog ZrSiS.
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The structure type of ZrSiS is not the only configuration available in SG 129. By chang-

ing the structure type and retaining the symmetries of the space group, new properties

can be introduced in the material, while keeping the square-net configuration respon-

sible for the linear dispersions. Chapter 7 focuses on LaCuSb2, a material reported to

become superconducting for temperatures below Tc = 0.9K [15, 16]. It shows the fa-

miliar diamond-shaped Fermi surface, proving the influence of the square-net motif

on the electronic structure. The combination of superconductivity with the topologi-

cal nature of this material makes LaCuSb2 highly interesting in the context of Majorana

physics.

There are, however, limitations to SG 129 that can not be overcome by replacing ele-

ments or changing the structure type. For example, the field of spintronics and twistron-

ics requires 2D scalability of a material coupled with magnetic order [12, 13]. Chapter 8,

therefore, focuses on the rare-earth tritelluride GdTe3, a material crystallizing in SG 63,

which nonetheless retains the square-net structure. While we were not the first ones

analyzing this family of compounds, it was during a collaboration in this Ph.D. work

that the potential of GdTe3 as a monolayer antiferromagnet with high mobility was dis-

covered. ARPES was used to confirm the occurrence of a charge density wave (CDW),

gapping the pockets around the Fermi level except at one high-symmetry point. There,

the size of these pockets could be related to quantum oscillations observed in this ma-

terial.

Lastly, the electronic structure of a material is also of interest in the context of its pho-

toelectrochemical properties. Usually, these attributes are not accessible by means of

ARPES, since the band gaps of these materials are too high in order to efficiently har-

vest sunlight. Chapter 9 presents ARPES data on CuInTe2, a material with its Fermi

level located very close to the valence band maximum. This allows for the character-

ization of its band structure, since charging effects are not as pronounced as in other

semiconducting materials. While being the only material discussed in this thesis, not

featuring the square-net motif, it is still an excellent example for the potential ARPES

has in the field of photoelectrocatalytic materials.

In conclusion, chapter 10 summarizes the obtained results during this Ph.D. work and

illustrates possible directions for future research projects.
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CHAPTER 2
Theoretical Background

The majority of results obtained in this thesis were collected by means of ARPES to

map out the electronic bulk and surface structure of the analyzed single crystals. While

a more in depth view on the experimental setup will be given in Chapter 3, it seems

prudent to first give an overview over the interesting features of the used compounds

and answer the question, why a surface sensitive technique like ARPES is a well suited

tool for their investigation.

To this end, this chapter aims to introduce, in Section 2.1, the basic concepts of elec-

trons in periodic crystal structures, focusing strongly on the emergent surface phe-

nomena, where a reduced symmetry allows for additional solutions to the Schrödinger

equation. In recent years, the concept of topology, furthermore, allowed for the predic-

tion of topologically distinct surface states on the surface of e.g. topological insulators.

The second part of this chapter focuses on the electronic properties of space group

129 in particular (Section 2.2). While not being the only space group analyzed during

this Ph.D. work, space group 129 and its most prominent member ZrSiS, is responsible

for some of the main findings of this thesis. Section 2.3 will then present a theoretical

overview over the crystal growth techniques to realize the previously introduced sym-

metries in a sufficiently large single crystal for ARPES measurements.

2.1 Electrons in three and two dimensional

systems: From bulk to surface states

To understand the features known as surface states that arise at the surface of crystals,

one has to start by describing the behavior of electrons in a seemingly infinite crystal

(namely the situation in the bulk of a single crystal).
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The equation, describing the motion of an electron in a solid, is the time-independent

Schrödinger equation

Ĥψ(r) = Eψ(r)[
− ~2

2m
∇2 +V (r)

]
ψ(r) = Eψ(r), (2.1)

where Ĥ is the Hamiltonian, with E being the energy, V the time-independent potential

and ψ being the electronic wave function for an electron at the position described by

the vector r. For the sake of completeness, the wave functions and energies should

have an additional index labeling the band index quantum number. We omit it here to

not unnecessarily complicate the description and since our argumentation holds true

for each value of the band index.

In a periodic and infinite 3D crystal structure, the potential energy is a periodic func-

tion:

V (r) =V (r+an), (2.2)

with an = n1a1 +n2a2 +n3a3 consisting of the primitive vectors of the lattice a1, a2 and

a3 and n1, n2, n3 ∈Z.

Bloch theorem Such a periodic potential allows for the separation of the periodic

part uk of the wave function according to Bloch’s Theorem:

ψ(r) =ψk(r) = uk(r)eik·r (2.3)

uk(r+an) = uk(r) (2.4)

The proof of this theorem involves showing that the translation operator of the crystal

structure commutes with the Hamiltonian and they therefore have common eigen-

functions. For a detailed description, follow Ref. [17], which this section roughly fol-

lows.

When multiplied by ~, the here introduced wave vector, k, is equivalent to the crystal

momentum of the electrons (which is not to be confused with the electron momentum,

p, of the free electron gas). In this context, the k vector is the quantum number of

the translational symmetry of the lattice, analogous to the momentum p, which is the

quantum number of the translational symmetry of free space. ARPES experiments, as

described in Sec. 3.2, almost directly map the crystal momentum of the electrons and

allows us to contemplate the real space crystal structure in the geometric construction

of k space (reciprocal space).
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Reciprocal space The reciprocal lattice is geometrically constructed by the recipro-

cal basic vectors b1, b2 and b3 which satisfy:

bi ·a j = 2πδi j , i , j = 1,2,3 (2.5)

and can therefore be constructed from the primitive unit cell vectors as:

b1 = 2π
a2 ×a3

a1 · (a2 ×a3)

b2 = 2π
a3 ×a1

a2 · (a3 ×a1)

b3 = 2π
a1 ×a2

a3 · (a1 ×a2)
(2.6)

This assumption of a real k vector that is furthermore limited to the lattice spanned by

the reciprocal basic vectors is a direct consequence of the boundary conditions of the

wave function chosen in Bloch’s Theorem (the Born-von Karman periodic boundary

condition). Note that the wave vector k, and therefore uk, are not uniquely determined,

since any addition of a reciprocal lattice vector (a linear combination of the reciprocal

basis vectors) leaves the Hamiltonian unaffected. It is, therefore, in many cases pos-

sible to restrict k to one cell of the reciprocal lattice. The Wigner-Seitz construction

of such a cell is called the first Brillouin zone (BZ) and it is the goal of many experi-

mental and theoretical techniques to determine the energy dispersion E(k) there, since

it contains all the necessary information about the movement of the electrons in the

crystal.

To predict computationally this energy dispersion E(k) in the first BZ, namely the band

structure, one has to apply some approximations to the Hamiltonian, which will lead

to an iterative approach to calculate the states in solids.

2.1.1 Density functional theory

This section does not aim to give a complete picture of DFT and its refinement, but

loosely follows Ref. [18] to which the interested reader is referred. DFT is a very im-

portant theoretical tool for the interpretation of ARPES measurements, not only be-

cause its ab initio calculations facilitate orientation in k space during a photoemis-

sion experiment, but more importantly, because a typical crystal is rarely perfect and

phenomena like step edges and differently aligned multi-domains can produce addi-

tional bands that are not physical but merely a sign for a band beam spot (more in

Sec. 3.2).

To derive the computationally accessible Kohn-Sham equation, one starts from the

most general many body Hamiltonian of nuclei, sitting at the atomic sites, and N elec-

trons filling the space between the cores. In an ‘all electron’ DFT calculation, this would
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contain the nuclei and all electrons, but it is usually sufficient to perform pseudo-

potential DFT calculations with ionic cores and only the valence electrons in between,

if the band structure around the Fermi level is of interest. The first approximation

usually used in DFT is the Born-Oppenheimer approximation (adiabatic approxima-

tion) that considers the electronic and nuclear motions to be separable, since their

different masses lead to changes on very different time scales. This allows us to write

the Schrödinger equation for the electrons independently of the movement of the nu-

clei.

The Hamiltonian for the many-body problem of N electrons with spinσ=↑,↓ can then

be written as:

Ĥψα(r1σ1, ...,rNσN ) =

−1

2

N∑
i=1

∇2
i︸ ︷︷ ︸

T

+
N∑

i=1
v(ri)︸ ︷︷ ︸

Vext

+ 1

2

∑
i

∑
j 6=i

1

|ri − r j |︸ ︷︷ ︸
Vee

ψα = Eαψα. (2.7)

α is a complete set of many-electron quantum numbers. T is the kinetic energy of the

electrons, followed by the interaction energy with an external field (e.g. the nuclei) Vext.

The last term, Vee, is the electron-electron interaction energy. In a classical picture,

if taken over all indices, this would be the classical Coulomb energy, while the sum

over all i = j , which has to be subtracted to reproduce Eq. 2.7, is the self interaction

energy. Vee is also responsible for the fact that a product of atomic orbitals (e.g. a

linear combination of Slater determinants) is no longer a solution of the Hamiltonian

and instead correlated wave functions need to be found. Note that atomic units were

chosen here with ~= e2 = m = 1.

In density functional theory, the main way of computationally solving the band struc-

ture in this thesis, one expresses Eq. 2.7 dependent on the electron spin density nσ(r):

nσ(r) = N
∑

σ2...σN

∫
d3r2 · · ·

∫
d3rN

∣∣ψ(rσ,r2σ2, ...,rNσN )
∣∣2 (2.8)

This definition of the electron spin density was chosen to ensure that N electrons with

spin σ are found in the volume d3r at r:

∑
σ

∫
d3r nσ(r) = N (2.9)

A change away from the wave function to describe the physical system is not obvious.

Hohenberg and Kohn [19] proved though that:

Theorem 1: The ground state energy is a unique functional of the electron density.

Theorem 2: The electron density that minimizes the energy of the overall functional is

the true ground state electron density.
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The expectation value of the Hamiltonian of Eq. 2.7 can then be expressed as:

E = T [n↑,n↓]+V [n]+U [n]+Exc[n↑,n↓] (2.10)

with T [n↑,n↓] being the expectation value for the kinetic energy and the function-

als:

V [n] =
∫

d3r n(r)v(r) (2.11)

U [n] = 1

2

∫
d3r

∫
d3r ′ n(r)n(r′)

|r− r′| (2.12)

n(r) = n↑(r)+n↓(r) (2.13)

The exchange-correlation energy functional Exc[n↑,n↓] contains again, in analogy to

the interaction energy, all terms that are not part of the first three. In practice, its cor-

rect form must be approximated and is done so in the form of local density approxima-

tion (LDA), generalized gradient approximation (GGA) or hybrid functionals, to name

just a few.

In LDA, the exchange-correlation energy depends only on the density and the exchange-

correlation energy per particle exc(n↑,n↓):

E LDA
xc [n↑,n↓] =

∫
d3 n(r)exc(n↑,n↓), (2.14)

for which the exchange part Ex can even be written analytically in the picture of a ho-

mogeneous electron gas as:

E LDA
x [n] =−3

4

(
3

π

)1/3 ∫
d3r n(r)4/3 (2.15)

GGA is only slightly more complicated and depends not only on the density but also its

derivative:

E GGA
xc [n↑,n↓] =

∫
d3r f (n↑,n↓,∇n↑,∇n↓) (2.16)

Hybrid functionals finally solve the exchange part exactly, while building the rest of

the exchange-correlation up from other sources, like LDA or GGA. In the order from

LDA, GGA to hybrid functionals, they usually increase in accuracy, while getting more

expensive in computational power.

To solve the presented system of Eq. 2.7 now, one can employ the density variational

principle [19, 20, 21]. One starts with the Kohn-Sham system for non-interacting fer-

mions and solves it for a given n(r):

[T +Vext(r)+VH(r)+Vxc(r)]Φi (r,σ) = εi ,σΦi (r,σ) (2.17)
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This one-electron-approximation considers each individual electron to move in a po-

tential given by the fixed nuclei Vext(r) and the average, constant field of all other elec-

trons in the system VH(r), allowing us to obtain single-electron wave functions for

Φi (r,σ) again. The DFT code used has influence on the basis functions available for

the wave functions. For example, a sum of plane waves in a Fourier series could be a

reasonable choice, since the electrons can move relatively free in between the periodic

potential of the cores. Note that, since the involved functionals in Eq. 2.17 depend on

n(r), we guess its initial form in the beginning.

We can then recalculate the electron density and repeat the process until it converges

and we, self-consistently, calculated the ground state.

2.1.2 Tight-binding

An alternative approach to get a theoretical idea about the band structure is to per-

form a tight-binding calculation. While DFT usually expresses the wave function in

the basis of plane waves (at least for distances far enough away from the cores), tight-

binding follows the opposite approach. A crystal lattice is build up by atoms, where

the electrons are distributed around the core in linear combinations of atomic orbitals

[22]. When the different atoms come close enough together, the electrons can at some

point feel the influence of neighboring (or next-nearest neighboring and so on) atoms.

For this reason, the tight-binding Hamiltonian is build up by putting atomic-like or-

bitals at the lattice sites, while allowing for a hopping of the electrons between them by

means of ‘hopping integrals’. The two center approximation does thereby allow only

for an interference of up to two orbitals at a time, while three or more center terms are

neglected.

In reality this Hamiltonian is build up by means of a look-up table (e.g. Ref. [23]). A

minimal atomic orbital basis set for the different elements is chosen, depending on

the valence band structure (lower orbitals are much more localized and therefore un-

likely to deform from their atomic orbital starting point). These tables already do the

necessary math that allows us to go from integrals over spherical harmonics to the rele-

vant terms depending on the three k directions. The hopping matrix elements are then

linear combinations of two different atomic orbitals (or of the same one, if there are

bonds between the same atoms expected). This leads to σ, π or δ orbitals, depending

on the bond angle geometry, that can be looked up as well. Their exact value is a fit

parameter, but their dependence on the bond length can be modeled (e.g. Ref. [24]).

Lastly, a pair potential needs to be chosen to describe the interaction, which adds more

parameters. The fitting is then done by adjusting the parameters to the crystal struc-

ture, by comparing with DFT calculations or other empirical characteristics, like the

band gap size.
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One important thing to note here is the fact that the tight-binding model can be de-

rived from DFT as a rigorous approximation [25, 26]. This is important in the context

of a common criticism of tight-binding, namely its empirical way of finding and fitting

parameters. Anthony T. Paxton expressed some advised thoughts to this topic (NIC

Series, 42:157, 2009 [27]):

My own view is that if the tight binding approximation contains enough of the

physics of the system we are studying then any reasonably chosen set of param-

eters will provide us with a useful model. From this point of view we would

also demand that only a very small number of parameters is actually employed

in the model. Furthermore it should be possible to choose these by intelligent

guesswork and refinement starting from some well established set of rules.

– ANTHONY T. PAXTON

This reveals one of the big advantages the tight-binding model offers compared to DFT

calculations, in its ability to catch the qualitative picture with relatively few parameters.

Therefore, it allows one to find the responsible physical concept behind e.g. a certain

band. If DFT tells one, that the measured band is real because it fits quantitatively,

tight-binding tells one, where this band comes from and how it can be explained. Note,

that this is of course not saying, that the opposite is necessarily true. DFT is very well

able to explain the origin of bands by modifying the initial structure (be it to include

defects, or introduce a periodic vacuum gap in the crystal structure to model the sur-

face) and tight-binding calculations with more parameters can allow for quantitative

agreement with experiments.

An example for the here shortly presented process will be given in Sec. 4.3, where we

used a tight-binding model to describe the effect of a surface on the nonsymmorphic

symmetries of the ZrSiS band structure.

2.1.3 The e�ect of a surface - work function

So far, we were mainly concerned with the electronic structure of the bulk crystal. As

convenient as it might be for DFT calculations to consider only periodic boundary con-

ditions, a real crystal is limited by its interface with the vacuum (and indeed this is

where ARPES and other surface sensitive measurements collect most of the electronic

properties). The atoms of any solid feel a different bonding environment at the surface

than they do in the bulk, simply because some of their nearest neighbors are missing.

The exact postition of atoms can therefore be slightly off from their Bravais lattice posi-

tion, which can also lead to a surface reconstruction. Furthermore, the charge density
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distribution does not have the same symmetry restrictions as in the bulk and this dis-

tortion can extend beyond the exact crystal boundary. This change in potential is de-

caying relatively fast on the order of some few lattice constants, but it is strong enough

at the surface to introduce an electric field against which the electrons have to perform

work [22]. Fig. 2.1 shows the charge density, as well as, the electronic energy along the

surface normal direction. The work function Φ is the energy an electron needs at least

to leave the crystal:

Φ=Φbulk +Esurface (2.18)

It consists of the bulk work function Φbulk = E∞
vac −EF, defined as the difference in en-

ergy of a free electron and the energy of an electron at the Fermi level, and a surface

contribution Esurface. The last part is due to the protruding charge carriers introducing

a dipole moment at the surface.

+-

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

bulk surface+E
bulk

Esurface

F

E

d

Figure 2.1: Charge density and electronic energy as a function of distance d from the
1D crystal surface. The energy needed for an electron to pass through the
surface is determined by the difference between Fermi level of the bulk
and the energy of a free electron and modified by the surface dipole layer.
Adapted with permission from Ref. [28]. Copyright 2015, Springer-Verlag
Berlin Heidelberg.

2.1.4 Trivial surface states

In the same way the charge density at the surface can vary from the bulk equilib-

rium, the surface potential will deviate from the perfectly periodic case introduced in

Sec. 2.1. The bulk solutions of the Schrödinger equation are still Bloch waves, but they

are exponentially dampened into the vacuum. Furthermore, additional solutions of
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the Schrödinger equation in the form of surface states are allowed in this case, which

decay exponentially into the vacuum as well as into the bulk. In solid state physics,

one distinguishes these surface states depending on their origin and a short compila-

tion will be given in the following. One thing they all have in common though, is their

confined living environment in real space and consequential, a 2D electronic character

without kz dispersion.

The states presented in the following need to be distinguished from states due to sur-

face resonances, which result from long-ranged image potentials at metal surfaces.

These resonances do only decay exponentially into the bulk, but are far less localized

in vacuum [29]. Furthermore, the most commonly found example for surface states,

the Shockley type surface state, will not be discussed here, but below in the topological

surface states paragraph.

Dangling bond surface states Electrons in semiconductors are much more local-

ized in between the atoms than it is the case in metals. A surface can cut these con-

nections by removing the out-of-plane atoms. The electrons belonging to the severed

bonds of the surface layer atoms are called dangling bonds and are usually responsible

for some kind of surface reconstruction to find a more favorable configuration. In the

electronic structure of semiconductors, the energies associated with these dangling

bond bands appear in the gap of the projected bulk bands as it is the case in Si(001)

[30].

Surface states due to surface alloying When the first atomic surface layer of a

metal is regularly alloyed by another element, the resulting order at the surface will

result in additional states in addition to the bulk bands from lower layers. An example

is the (
p

3×p
3)R30◦ Pb/Ag(111) alloy, where a third of a silver monolayer is replaced

by lead and the resulting surface bands have mixed Pb-Ag character [31]. Should the

alloy element be very heavy (e.g. Bi/Ag(111)), the increase in SOC can lead to a giant

spin split of the observed bands [32].

Quantum well surface states Quantum wells are examples of quantum confine-

ment, where electrons are confined in one direction by a potential well that only allows

for discrete energy levels in between. To observe this effect, the de Broglie wave length

of the charge carriers needs to be comparable to the quantum well thickness. In anal-

ogy, quantum well surface states can be observed on the surface of a solid, if up to a

few monolayers of a different material is evaporated on top of the bulk. This confines

the surface electrons in this 2D layer which gives rise to a varying amount of surface

states depending on the thickness of the layer. Examples of this effect can be seen in

up to 10 monolayers of Au on Pd(111), where states due to image potentials couple into

Au and form quantum well states, before exponentially decaying into the Pd bulk [33].
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Dimensional confinement can also be achieved by band bending on the surface, e.g.

water vapor exposure on the surface of Bi2Se3. The resulting H2Se gas produces posi-

tively charged vacancies, effectively binding the electrons more strongly in the surface

layer, resulting in a band bending. Depending on the amount of water vapor, a varying

amount of quantum well states can be observed that are further spin split due to the

Rashba effect [34].

2.1.5 Topological surface states

So far, the considered surface states have in common that their appearance depends a

lot on the details of the surface structure. In recent years, increased interest has been

shown to a different kind of surface states. States on the surface of topologically non-

trivial (or short ‘topological’) materials are predicted to appear, just by calculations

that are purely concerned with the bulk properties. This is called the bulk-boundary

correspondence, which states that at the interface of topological and trivial materials

(trivial materials include vacuum), there need to be surface states just to satisfy the

transition into a different Hilbert space topology.

The exact classification of an observed surface state can at times be difficult, and al-

though there were helpful mathematical formalisms developed (presented below), some

states have already been classified in the context of other surface state theories. That

the difference can be very small can be seen in the context of Shockley states, where the

influence of SOC can change the topology of a material drastically.

Shockley surface states In the context of tight-binding, when atoms are far apart,

their level system is made up by s and p states and so on. If we consider main group

elements for now, the s-states are usually the energetically lowest lying orbitals. When

the interatomic space is reduced until interactions between them are allowed, the dis-

crete states form bands. This behavior is schematically presented in Fig. 2.2. For a fixed

lattice parameter a, a band consists of closely spaced orbitals that lie in a certain energy

range with energy gaps between different bands. In Fig. 2.2 each band is represented

by six energy levels, but in reality only two electrons with opposite spin can occupy

one level (Pauli exclusion principle) and a macroscopic crystal contains a very large

number of electrons, which makes the levels numerous and closely spaced in energy.

If the s-band is always lower than the p-band for a certain interatomic spacing, than

the gap is called ‘direct’, since it follows the energy behavior of the individual atoms.

But if the interaction between different atoms becomes strong enough, hence the lat-

tice parameter small enough, the gap can close and even open up again. Since in this

latter case the s-band can be energetically higher than the p-band, we speak about an

‘inverted’ gap. It is in this region, the inverted band gap area, in which no bulk bands

should be allowed, where Shockley surface states are found as an additional solution
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interatomic distance a

energy E

s-state

p-state

p-band

s-band

Shockley
surface state

direct
band gap

inverted
band gap

Figure 2.2: Evolution of the band energy range and gap region depending on the inter-
atomic distance a. The projected bulk band structure is shown in grey. As
soon as an inverted band gap is formed, Shockley surface states are avail-
able in the bulk band forbidden region as additional solutions to the tight-
binding Hamiltonian.

to the Hamiltonian [35]. Outside of the inverted, projected bulk band gap, they merge

with bulk bands again.

Note that Tamm surface states are very similar in nature but are derived in a different

mathematical frame work [36]. Their existence is related to a perturbation of the sur-

face potential and are more relevant when d-bands are considered. For practical rea-

sons, Shockley states will be sufficient to considerate here.

One more interesting consequence of the consideration above is that not only a change

in the interatomic distance can change the system from a direct into an inverted gap

state. Other coupling effects can have a similar effect and therefore lead to the appear-

ance of surface states. SOC is especially interesting in this context, since the original

Shockley state does not consider SOC at all and is therefore spin degenerate. Should

SOC reopen the band gap, two spin split surface states are expected that could be de-

scribed as topologically derived surface states (in case of a non-trivialZ2-type invariant

as it has been shown for gold [37]). This demonstrates the importance of reevalua-

tion of surface states, since many of the historically earlier discovered surface states

might actually be described in the frame work of topological surface states, on which

Sec. 2.1.5 will hold forth about.
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Topological insulators One of the first topological states were discovered in topo-

logical insulators (TIs), where the topology is a characteristic of the band gap and can,

therefore, only change when the gap is somehow closed at the surface. Hence, TIs

are materials that are insulating in the bulk, but show spin split surface states that

bridge the gap at the surface in 3D and at the edge in 2D. These materials have be-

come an interesting research topic, since in the absence of bulk bands in the gap, the

spin polarized surface states prevent back-scattering and TIs are, therefore, very inter-

esting, among other things, for spintronics and high carrier mobility transport mea-

surements.

The following argumentation follows closely the derivation for the Berry phase given in

Ref. [38]. First the Berry phase will be derived, followed by the definition of the Z2 in-

variant and how it can be derived from the time-reversal invariant momenta (TRIMs).

Lastly, it is shown how the invariant is connected to the surface states observed in

ARPES.

In principle, Berry phases always appear in a system with a Hamiltonian depending on

an external parameter R. Here, R(t ) is a time-dependent parameter, which results in

the following Schrödinger equation:

Ĥ [R(t )] |n,R(t )〉 = En[R(t )] |n,R(t )〉 (2.19)

The n-th eigenstate |n,R(t )〉 as well as the energy En[R(t )] both then also depend on

this external parameter. In the adiabatic evolution/approximation, we consider R to

develop from R0 at t = 0 slow enough. The time evolution is then given by

Ĥ [R(t )] |n, t〉 = i~
∂

∂t
|n, t〉, (2.20)

with

|n, t〉 = exp

 i

~

t∫
0

dt ′ Ln[R(t ′)]

 |n,R(t )〉 (2.21)

Ln[R(t )] = i~Ṙ(t ) · 〈n,R(t )|∇R |n,R(t )〉−En[R(t )] (2.22)

Rewriting Eq. 2.21 reveals:

|n, t〉 = exp

− t∫
0

dt ′ Ṙ(t ′) · 〈n,R(t ′)|∇R |n,R(t )

 |n, t〉 · exp

 i

~

t∫
0

dt ′ En[R(t ′)]

 (2.23)

The second exponent is the dynamic term, while the first one is directly related to

the quantum mechanical phase accumulated. The Berry phase γn[C ] is defined on

a closed loop C from t = 0 to t = T (note that closed loop means equivalent points not

necessarily the same one, since utilizing the periodicity of the BZ is a common tech-
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nique):

γn[C ] :=
T∫

0

dt Ṙ(t ) · i〈n,R(t )|∇R |n,R(t )〉 (2.24)

=
∮
C

dR · i〈n,R|∇R |n,R〉 (2.25)

:=
∮
C

dR · An(R) (2.26)

=−
∫
S

dS · Bn(R) (2.27)

Note that the Berry phase is only defined modulus 2π. The Berry connection An(R) of

Eq. 2.26, in analogy to the vector potential in electromagnetic fields, corresponds to the

gauge field freedom. To reach the Berry curvature Bn(R) of Eq. 2.27, Stokes’ theorem

was used with:

Bn(R) =∇R ×An(R) (2.28)

These are the mathematical tools from which general rules for the topological nature

of a material can be derived. For example, in a 3D time-reversal symmetric systems, it

is in practice helpful to calculate the four Z2 invariants to classify a material. To clas-

sify a material as a (weak) topological insulator, it is sufficient to consider the TRIMsΛi

only, and a square BZ has eight of them, noting the middle of the BZ Λ0,0,0 and span-

ning all corner points in the first quadrant (other quadrants are equivalent due to the

symmetry of the system) Λπ,0,0, Λ0,π,0, Λ0,0,π, Λπ,0,π, Λ0,π,π, Λπ,π,0 and Λπ,π,π. Calcu-

lation of a Z2 invariant happens in a plane spanning four TRIMs each, which would

result in six different invariants. But even these six are not completely independent,

since products of opposite sites are redundant. A system is therefore defined by four

Z2 invariants only v0, v1, v2, v3:

wαβ(k) =〈uα,−k|Θ|uβ,k〉 (2.29)

δ(Λi ) := Pf[w(Λi )]√
det[w(Λi )]

IS=
N∏

n=1
ξ2n(Λi ) (2.30)

(−1)v0 = ∏
n j=0,π

δ(Λn1,n2,n3 ) (2.31)

(−1)vi = ∏
n j 6=i=0,π

ni=π

δ(Λn1,n2,n3 ), (i = 1,2,3) (2.32)

|unk〉 are the eigenstates of the Bloch Hamiltonian in k space from Eq. 2.4. wαβ(k) is

then the matrix representation of the time-reversal operator Θ. It is important to note

that in the case of time-reversal and spacial inversion symmetry, Eq. 2.30 can be writ-
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ten as a product of the parity eigenvalues ξ2n of occupied levels at the TRIMs instead

of having to calculate the Pfaffian and determinant of the w matrix [39]. Thereby,

ξα(Λi ) = ±1 for band α and only the valence electrons need to be considered in this

product, since filled shells always contribute in pairs with the same eigenvalues and

square to +1. Typical DFT calculations of the band structure can directly calculate

these parity eigenvalues and the only difficulty then comprises in counting the num-

ber of −1 eigenvalues, of each band crossing a TRIM, from the starting of the valence

bands till the Fermi level.

The strong topological invariant v0 is obtained by considering all TRIMs, as shown in

Eq. 2.31. Finally, the Z2 invariants v1, v2, v3 are constructed considering only the four

TRIMs lying in one of the three planes that do not containΛ0,0,0, according to Eq. 2.32.

TIs are classified by stating their four invariants (v0; v1 v2 v3), where v0 is describing

the global character of the system and for v0 = 1, a 3D TI is called ‘strong’ TI. The other

three invariants v1, v2, v3 can be interpreted as Miller indices and denote the behavior

in the three spacial directions. For v0 = 0 and at least one of the vi = 1 (i = 1,2,3), a TI

is called ‘weak’ TI. Should all invariants be 0, the system is called (topologically) trivial.

A strong TI will have surface states bridging the band gap on all surfaces, while a weak

TI will only show them on the surfaces perpendicular to the normal (v1 v2 v3). The

surface in direction of the normal is sometimes called ‘dark’. If there are topologically

protected surface states in the gap, however, the Fermi level must be cut by an odd

number of them, which is a result of connectivity constructions between the TRIMs

[39].

Finally, the topological protection that was mentioned at the beginning and that makes

these surface states particularly interesting, will be discussed in more detail. The odd

number of surface states crossing the Fermi level in TIs is enough to ensure that, re-

gardless of the exact chemical potential, the surface states will never gap out or be

influenced by non-magnetic perturbations [40]. This shows the strength of topological

surface states, since they are resistant to the exact surface nature. Importantly in this

context is the non-magnetic perturbation, since a breaking of time-reversal symmetry

can very well change our previous arguments. Besides this resilient nature, the en-

ergy dispersion along the surface parallel momenta of topological surface states forms

cones connecting the valence and conduction band. The schematic situation in 2D

and 3D is depicted in Fig. 2.3(a) and (b), respectively. The crossing point is necessarily

located at a TRIM and the dispersion in its close vicinity is of linear nature, giving rise

to relativistic Dirac fermions as the surface state low energy excitation quasi-particles.

A gapping of the cone to form parabolic dispersions is not allowed, without changing

the topological nature of the material into a trivial insulator (topological protection

against gap opening). Furthermore, the surface states show a helical spin polarization,

meaning the spin structure is locked to the momentum k∥. Where usually impuri-

ties at the surface reduce the mobility because electrons are backscattered, reversing

their momentum k∥, TI surface states are topologically protected against backscatter-
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ing, since a change from k∥ to −k∥ is forbidden, because it would require an additional

spin flip.

Γ
kǁ,x

kǁ,y

E

kǁ,x

E

Projected bulk
valence band

Projected bulk
conduction band

0

2D Dirac
cone

Helical spin
polarization

Forbidden
backscattering

Spin up/
Spin down

(a) (b)

Figure 2.3: Helical spin polarization of TI surface states shown in (a) 2D and (b) 3D. The
surface states form linearly dispersing bands crossing at the Dirac point at a
TRIM. A gap opening as well as a backscattering from k∥ to −k∥ is forbidden,
due to the topological protection and spin texture of the surface states.

Dirac and Weyl semimetals with Fermi arcs Another surface feature that is de-

rived from the bulk topology are Fermi arcs arriving in Weyl semimetals. Again, we start

with the bulk properties and derive the surface properties subsequently. Since this the-

sis is not mainly concerned with Weyl semimetals, the interested reader is referred to

Ref. [41, 42].

Where TIs exhibit a global band gap in the projected bulk band structure and the sur-

face states show Dirac physics, in Dirac and Weyl semimetals already the bulk valence

and conduction band touch at specific points and the band structure forms 3D cones

in k space around these points (3D since these features do not only exist at the surface,

but the dispersion in all three k space directions is linear in energy). Fig. 2.4 shows

the different possibilities for band touchings with linear dispersion. While all of these

show physics analogous to relativistic Dirac physics, only a four-fold crossing of bands

(two spin degenerate bands crossing) is called a Dirac crossing. Should it furthermore

appear at an isolated point only, one speaks of a Dirac cone. In this context, graphene

with its neglegible SOC and its six crossing points in the BZ is a 2D analog of a 3D

Dirac semimetal. It is important to note here that such crossings need to be protected

by crystal symmetries to not gap out. One of the requisite symmetries for spin de-

generacy, which is necessary for Dirac crossings, is the combination of time-reversal

and spacial inversion symmetry. Therefore, in the presence of SOC, the crystal sym-

metry needs to exhibit a C3, C4 or C6 rotation axis to preserve the crossing [43]. Note
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Figure 2.4: Band crossings in (a) Dirac, (b) Weyl and (c) nodal line semimetals. The
nodal line is show in red. The degenerate point is four-fold at the Dirac point
and line node and two-fold at the Weyl point. Weyl points always occur in
pairs, of which only one is shown here.

that Dirac semimetals are not necessarily topologically non-trivial nor result in surface

states.

Should one of the time-reversal or spacial inversion symmetries be broken in a mate-

rial, either because it is non-centrosymmetric or exhibits a magnetic field, all the bands

are spin split and the crossings become two-fold. In this case, one speaks of Weyl

semimetals. These Weyl nodes are of topological nature and can be seen as (anti-)-

monopole charges of the Berry curvature [44]. They have to come in pairs of opposite

chirality but are usually hard to localize in the band structure. Since they have so little

symmetry requirements, they can be off the high-symmetry points or lines. It is there-

fore sometimes easier to measure their topological surface states, called ‘Fermi arcs’,

instead. Fermi arcs run in the surface BZ and unlike surface states considered so far,

they have defined starting and end points in k space. They always connect the surface

projection of two Weyl points with opposite chirality. This also shows the stability of

Weyl cones, since they are topologically intertwined with each other, they can not gap

out individually, but instead need to combine with another Weyl cone first, forming

Dirac cones again.

Nodal lines and drumhead surface states As seen above, already Dirac cones can

only exist if certain symmetries prevent the cone from gapping when considering SOC.

Should the bands not only touch at a point but instead overlap, the intersection could

extend the crossings along a whole line in k space, called a line node. To extend the
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degeneracy of accidental band crossings along a complete nodal line, further symme-

tries need to be incorporated, which makes them a feature of materials crystallizing in

highly symmetric space groups or incorporate only very light elements to make SOC

negligible.

Typically a mirror or glide symmetry is able to support nodal lines, if the valence and

conduction band have different mirror/glide eigenvalues. Much more interesting for

this thesis is however the case, where a π Berry phase shift is stabilizing the nodal

line. In these systems, any closed loop to determine the Berry phase, according to

Eq. 2.26, will give a phase of π, while all loops not containing the nodal line will give

0. The nodal line is in this case topologically stabilized, since there is no continuous

deformation of the nodal line that would nullify its Berry phase, without opening the

gap. This local evaluation of the Berry phase is of course much more involved than the

global evaluation of a material, e.g. in the form of the Z2 invariant. It is nevertheless

important, since systems with topologically protected nodal lines show characteris-

tic surface states, called ‘drumhead surface states’, which will become important for

Sec. 5.2.

Drumhead surface states exist only inside of the surface projection of the nodal line,

where the Berry phase isπ. Like a 2D drumhead, these surface states span the encircled

band gap area and have been theoretically predicted in a number of compounds [45,

46, 47].

2.2 The many features of space group 129

All of the topics of the aforementioned sections have been realized, or at least theo-

retically predicted, in various compounds. It is the possibility to realize all the trivial

to exotic physical phenomena in one family of compounds that makes the presented

concepts here so interesting. Since the main part of the experimental findings of this

thesis in the Chapters 4, 5, 6 and 7 is dedicated to these effects, this section aims to give

a basic understanding of the properties of SG 129 (P4/nmm). This will allow us to un-

derstand the common features of all these compounds and how each of the chapters

focuses on one or two of these properties. The reader is advised to keep in mind that,

while this section discusses the properties of a square-net material in SG 129, this ar-

gumentation is actually limited to a certain structure type, namely the PbFCl structural

family here.

The following paragraph follows closely the argumentation given in Ref. [48], which is

heavily inspired by the work of Ref. [49]. As an easy example, ZrSiS is a material crystal-

lizing in SG 129, although the following argumentation can be extended to isostructural

and even some non-isostructural compounds as well. The crystal structure of ZrSiS is
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shown in Fig. 2.5(a) and (b). The main building block is the Si square net that sand-

wiches the rocksalt-type layers of Zr and S. Since SG 129 is a nonsymmorphic space

group, between the two sulfur layers, there exists a glide plane that combines a mirror

operation in z with a translation of half a unit cell in x+ y direction, to coincide the top

and bottom part of the unit cell. The exact symmetry operations will be discussed in

detail in Chap. 4 since it is important for the tight-binding calculations of the surface

state origin. For now, we consider only chemically intuitive arguments to develop the

general band structure.

Since ZrSiS is a layered material, we will neglect the kz dispersion for now and focus on

the square net exclusively. If we consider only s and p orbitals (as expected for Si) in a

square-net arrangement of atoms, we can evaluate their phases for the high-symmetry

points of the tetragonal BZ. As can be seen in Fig. 2.5(c), the phases are all aligned at

Γ, which is only a favorable bonding constellation for the s and pz orbitals leading to a

band minimum for the bands formed from these orbitals. Since s bands, with their σ

bonds, are energetically lower lying than the π bonding in p bands, we can construct a

starting position for the bands at Γ, with arbitrary energies Es < Epz < Epx = Epy . The

bands will continuously evolve from there towards the high-symmetry point X. The

phases of the orbitals are switched along kx at this point, which results in a slightly

less favorable setting for s and pz since they only remain in phase along ky . px and py

behave completely opposite here, since the X point represents the band minimum for

px , while it is the energetically most unfavorable position for the py band. The M point

finally switches phases along kx as well as ky , which leads to a band degeneracy for px

and py again that is preserved along the complete high-symmetry line M-Γ. s and pz

bands have their band maximum at the M point. The complete schematic picture of

the square-net band structure is given in Fig. 2.5(d).

From this 2D starting point, we can consider the effect of the nonsymmorphic glide

plane. As the small schematic in Fig. 2.5(b) shows, the so far considered square-net

unit cell is doubled in size and rotated by 45 ◦ because of the translational part of the

glide symmetry. Or in other words, the Zr and S square nets are less dense and require

a, twice as big, unit cell when extending our model to the 3D crystal structure. Such

a doubling of the unit cell leads to a back-folding of the BZ in k space, which is de-

picted in Fig. 2.5(d). The derived band structure is folded along the perpendicular bi-

sector of the Γ-M line, resulting in a superposition of Γ and M. The 45 ◦ rotation makes

this overlay the new Γ-X line. The same holds true for the square-net X-M line, which

will be folded and become the new Γ-M high-symmetry line in the nonsymmorphic

BZ.

This results in some features all materials in this structure type have in common. All

bands are forced to be degenerate at the X and M point and this degeneracy is even ex-

tended along the X-M line if we do not consider SOC, as we did in this derivation. In the

following this behavior is called ‘nonsymmorphical protection’, since without the non-
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symmorphic symmetry this crossing would be lifted (more on this topic in Sec. 4.3).

Furthermore, should the exact energetic position of the pz band allow for a crossing

with the px and py bands (as implicitly assumed above), a Dirac line node exists in the

BZ. The line node energy will vary throughout the BZ, but it is a direct consequence of

the square net, since it already exists without the nonsymmorphic symmetry consider-

ations. Should the Fermi level be located within this energy window, the material can

be classified as a Dirac line node semimetal.
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Figure 2.5: Common crystallographic and electronic features of the PbFCl structural
family, crystallizing in SG 129. (a) Side view of the crystal structure of ZrSiS.
The unit cell is shown in black. The Si atoms form a square net, while the
nonsymmorphic symmetry elements effectively double the unit cell. (b)
Top view of (a). The schematic shows the doubling and 45 ◦ rotation from
the square-net (blue) to the nonsymmorphic (black) unit cell. (c) Phases of s
and p orbitals at the high-symmetry points of the square-net BZ. White and
grey colors correspond to positive and negative signs of the wavefunction,
respectively. Matching phases leads toσ and π bonding, resulting in the en-
ergy dispersion of the bands. (d) BZ bisection due to the unit cell doubling
and resulting back-folding of the bands in the band structure. This figure is
heavily influenced by Ref. [48].
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2.3 Crystal Growth

As a last preparatory step to the electronic characterization of the materials measured

in this thesis, a few words about the crystal growth seem appropriate. In principle,

there are several synthesis methods available to reach the required size of a few mm

for the ARPES measurements described in Sec. 3.2. The growth method has a direct

influence on the electronic structure however, since doping and surface defects alter

the clean band structure of the conducted DFT calculations. Since this thesis is mainly

concerned with the electronic property measurements though, the interested reader is

referred to the Section ‘Cycle of Material Development’ in the book chapter of Ref. [6],

which arose from the work leading to this thesis. This section will only summarize the

most crucial points of the vapor transport synthesis, since it was used for most of the

materials of SG 129.

Vapor transport is arguably one of the easiest ways to obtain sizable crystals. The reac-

tants are sealed in a quartz tube together with a transport agent, which is or becomes

gaseous at the required temperatures (mostly elemental halides), and heated in a fur-

nace. A temperature gradient along the tube is used to form volatile halide transition

metal intermediate products that decompose on the cold side and form the crystal.

The transport agent, going from less reactive (I2 and Br2) to more hazardous (Cl2 or

NH4Cl), and the temperature settings have to be chosen accordingly and are the major

tuning parameters. The exact growth conditions for the materials analyzed in this the-

sis can be found in the published papers. For more information on the vapor transport

in particular, see also Ref. [50, 51].
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CHAPTER 3
Experimental Setup

The phenomena introduced in Chapter 2 are especially of relevance for experimen-

tal techniques that combine a sensitivity for bulk, as well as, surface related proper-

ties. The main tool to realize this duality used in this thesis is ARPES. This technique

is based on the photoelectric effect introduced in Section 3.1 that not only allows for

the measurement of the electronic (surface) structure of a material, but also the inter-

action of these electrons with phonons or other electrons. Besides being a powerful

measurement technique, the required experimental setup is relatively easy to realize

in its minimalist form (elaborated in Section 3.2). For these reasons, in recent years,

ARPES has become more and more of a service tool to map out the electronic structure

of new materials to confirm theoretical predictions. Nevertheless, the following chap-

ters, especially Section 4.3, will hopefully convey the idea that ARPES measurements

are still a powerful tool to make new experimental discoveries, which in turn motivates

new theoretical models and theories.

The last part of this chapter, Section 3.3, will give a short overview over a neutron scat-

tering experiment. Complementary to ARPES, neutron scattering was used to not only

determine the electronic, but also the magnetic structure of a material. In this the-

sis, neutron scattering was mostly of interest for the magnetic members of SG 129 (see

CeSbTe in Chapter 6).

3.1 The photoelectric e�ect

The photoelectric effect describes the behavior of a material to emit electrons if illu-

minated by light and was first described by Heinrich Hertz in 1887 [52]. As Albert Ein-

stein could successfully explain, and was awarded the Nobel prize for in 1921, photons
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are able to transfer their energy to the electrons in the solid and if their energy ex-

ceeds the work function of the material, these electrons can leave the material into the

vacuum [53]. The intensity of the photon beam is thereby irrelevant for their ability

to remove electrons, only their energy (related to the frequency as E = ~ω) is of im-

portance. In photoemission spectroscopy, described in the following section, we are

interested in these electrons that were removed from the solid. Before one can un-

derstand the technicality of a photoemission experiment however, it seems prudent

to first derive the mathematical basis for this process. To this end, the following para-

graph closely follows Ref. [54], starting from Fermi’s Golden Rule to motivate the in-

troduction of the spectral function and followed by the practical application of it in the

Green’s function formalism. This theory is then extended by recognizing the shortcom-

ings of the presented derivation, which is relevant for the experimental implementa-

tion.

One of the most successful approximations in the context of photoemission is the sud-

den approximation that assumes one electron is removed from the N electron system

in the solid immediately without interacting with the remaining N −1 electron system.

The change in potential due to the removal of the electron is stored in the remaining

electrons only, which move to compensate for the loss. According to Fermi’s Golden

Rule, the distribution of the photoexcited electrons is given by:

I (k,~ω) ∝
occupied∑

s

∣∣〈N −1, s;k|ĤI|N ,0〉∣∣2
δ(EN ,s −EN ,0 −~ω), (3.1)

where |i 〉 = |N ,0〉 is the N -electron ground state with energy EN ,0, | f 〉 = |N − 1, s,k〉
is the excited state s of the remaining N − 1 electrons with energy EN ,s and one free

electron with wave vector k and energy εk. Note that εk is not yet the quasi-particle

energy E(k) that will be introduced in the Green’s formalism later and which we are ac-

tually interested in, in an ARPES experiment. The transition operator ĤI describing the

interacting part of the Hamiltonian can be expressed as:

ĤI =− e

mc
[A(r) ·p]+ e2

2mc2
|A(r)|2 (3.2)

This equation results from a non-relativistic charged particle picture in an electromag-

netic field in the Coulomb gauge (this takes care of the ∇ ·A term in the interaction

Hamiltonian here, but needs to be treated carefully in the context of surfaces). For low

enough incident photon fluxes, terms of the order |A|2 can be neglected, although we

have to be aware of the limitations we imply on the system. For example, we disregard

two-photon processes in the following.

In the dipole approximation, we can further express the periodic, external electromag-



3.1 The photoelectric effect 27

netic vector potential as:

A(r) = A0 eikr Taylor= A0 (1+ ikr+ ...)
Dipole= A0 (3.3)

This approximation is valid for low enough photon energies (up to a few keV), since

the resulting photo-electron velocities are relatively small compared to the speed of

light and the wavelength of the light source is much larger than the size of orbitals the

electrons occupy [55].

Due to the sudden approximation, we can write the final state | f 〉 as:

| f 〉 = |N −1, s,k〉 = c†
k|N −1, s〉, (3.4)

with c†
k being the creation operator of a photo-electron. Since this also allows for the

decoupling of energies, Eq. 3.1 can be written as:

I (k,~ω) ∝∑
s

∣∣〈N −1, s|ckĤI|N ,0〉∣∣2
δ(EN−1,s +εk −EN ,0 −~ω) (3.5)

We can write the transition operator in its electronic matrix representation with cre-

ation and annihilation operators:

I (k,~ω) ∝∑
s

∣∣∣∣∣〈N −1, s| ck
∑
i j
〈i |ĤI| j 〉c†

i c j |N ,0〉
∣∣∣∣∣
2

δ(EN−1,s +εk −EN ,0 −~ω) (3.6)

If the photo-electron decouples immediately before any relaxation takes place (again

part of the suddden approximation), then c†
k ≈ c†

i and:

I (k,~ω) ∝∑
s

∣∣∣∣∣∑
j
〈k|ĤI| j 〉〈N −1, s|c j |N ,0〉

∣∣∣∣∣
2

δ(EN−1,s +εk −EN ,0 −~ω)

∝∑
i j

〈k|ĤI| j 〉 Ai j (εk −~ω) 〈 j |ĤI|k〉

∝∑
i j

∣∣〈k|ĤI| j 〉
∣∣2︸ ︷︷ ︸

overlap matrix elements

Ai j (εk −~ω), (3.7)

where we introduce the one-electron spectral function:

Ai j (E) =∑
s
〈N −1, s|ci |N〉 δ(E −εs) 〈N |c†

j |N −1, s〉, (3.8)

with εs = EN ,0 −EN−1,s being the final energy of the solid. A physical interpretation

of the spectral function we introduced here, is the probability of removing (or adding)

and electron of energy E and momentum k to the system.

After introducing the spectral function as a concept, we now need a working form of it
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for our data analysis. In Green’s function formalism, on which this thesis aims to give

just a short overview, the spectral function can be expressed depending on the single-

particle Green’s function:

A(k,E) =− 1

π
Im G(k,E)︸ ︷︷ ︸

Green’s function

(3.9)

Lastly, the Green’s function can be expressed depending on the interaction considered.

In the easiest case, we consider non-interacting electrons, resulting in:

G0(k,E) = 1

E −E(k)− iη
, η→ 0

⇒ A(k,E) =− 1

π
δ(E −E(k))

⇒ I (k,~ω) ∝∑
j

∣∣〈k|ĤI| j 〉
∣∣2
δ(εk −~ω−E(k)) (3.10)

If we consider interacting effects like electron-phonon or electron-electron coupling,

the Green’s function changes accordingly:

G(k,E) = 1

E −E(k)−Σ(k,E)

⇒ A(k,E) = 1

π

Im Σ(k,E)

(E −E(k)−Re Σ(k,E)︸ ︷︷ ︸
energy

renormalization

)2 + (Im Σ(k,E)︸ ︷︷ ︸
life time

broadening

)2
(3.11)

= 1

π

Γ

(E −E(k))2 +Γ2
(3.12)

The last step holds true for Σ(k,E) = iΓ purely imaginary and constant. The spec-

tral function has then the shape of a Lorentzian with Γ determining the width of the

peak. It is therefore possible to determine the life time of the analyzed electronic states

by means of line profile analysis. The self-energy Σ therein contains all the informa-

tion concerning the interaction with other electrons and the lattice. For now, let’s only

consider the first picture of non-interacting electrons as it is mostly sufficient in the

context of this thesis and motivates well the initial state properties investigated in this

work.

Before continuing with the experimental details relevant for an ARPES experiment,

there is one more important detail when it comes to the photoemission process. So far,

we did not consider the path the electron has to take from the bulk of the solid to the

surface and into the vacuum. Historically, there are two models describing this process

[56]. The ‘three-step model’ is historically older and more intuitive. The photocurrent

depends on three independent factors, the excitation probability in the bulk, the scat-
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tering probability of the excited electron on its path to the surface and the transmis-

sion probability of said electron through the surface of the solid and into the vacuum.

These steps are treated independently and can not interfere. Depending on the pro-

cess one is interested in, e.g. valence band spectroscopy or core level spectroscopy,

one or some of these probabilities can be set to unity to simplify the calculation. In

contrast, the ‘one-step model’ treats these steps together and always considers inter-

ference between these effects [57]. It is, therefore, intrinsically more accurate, at the

prize of clarity, since it condenses all scattering processes into the coherent final state

of the matrix element from Eq. 3.7. This theory is usually used nowadays since the

true final state is required for the accepting of the photoelectron later at the detec-

tor. Nevertheless, it should be mentioned that there are considerable shortcuts to this

model, if one knows about the system and what one is interested in to learn about

it.

In the sudden approximation of the derivation above, we did not pay attention to any

of these models and neglected the (in)elastic scattering events that take place. One

of the most obvious consequences of inelastic scattering is the energy loss an electron

perceives on its way to the surface. While the photons can penetrate deep into the bulk,

most electrons have lost their kinetic energy or changed their direction via scattering

after a few nm, which means that deeper electrons can not leave the crystal anymore

and photoemission experiments usually only probe the first few atomic layers. The in-

elastic mean-free path (IMFP) proved to be a valuable tool for calculating this escape

depth and as it turns out, it is mostly independent of the material considered. Fig. 3.1

shows the IMFP determined from a phenomenological equation by Seah and Dench

Figure 3.1: Universal curve of the inelastic mean-free path. Equation from Ref. [58]
with monolayer thickness a.
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[58]. The ARPES experiments carried out in this thesis vary between 20 and 700 eV. The

minimum in this range limits the depth to several Å only. This does not have to be a

major disadvantage though, since it allows photoemission to be relatively surface sen-

sitive even for high photon energies and a modification of the top-most layer is usually

not obscured by a too high intensity of bulk bands. Since our derivation was only con-

cerned with elastic scattering so far, the exact way, in which the inelastic background

is taken care of, will be presented in the following section.

3.2 Angle-resolved photoemission spectroscopy

The goal of this section is to give the working understanding of an ARPES experiment.

Many of the theoretical concepts developed in Sec. 3.1 are important for the ideas

presented here, but in its practical application, we do not tend to think, for exam-

ple, about the sum over all occupied states, but instead multiply our fit spectra with

a Fermi-Dirac distribution to also take care of the temperature effects in our sam-

ple. In this spirit, the following section will not give a one-to-one relation from the

theoretical derivations, but show their functional form and only hint at their origin

form the previous section. For a more thorough derivation, the reader is referred to

Ref. [6, 59].

Figure 3.2(a) shows a typical ARPES setup. Monochromatic light with a specific energy

~ω enters the sample and transfers its energy to an electron, which, if close enough to

the surface (above the order of the IMFP), will leave the sample and be collected by a

hemispherical analyzer, which has a specific angle θ to normal emission. The analyzer

can then determine the number of counts in a kinetic energy region defined by the

applied voltage. Should this, so called ‘fixed mode’ energy window not suffice, several

overlapping spectra can be obtained while slowly changing the energy region (‘swept

mode’). This basic buildup is identical in most ARPES experiments. What distinguishes

the measurements in the lab from beamtime results is mainly the light source, which

will be elaborated in the following sections.

During the photoemission process, energy and momentum need to be conserved if

we consider only elastically scattered electrons, which leads to two fundamental equa-

tions. Let us first consider energy conservation, which results from the δ function in

Eq. 3.10. Fig. 3.2(b) presents the situation of a core level or valence band electron that

is excited above the work function of the sampleΦS, introduced in Sec. 2.1.3, to escape

into the vacuum. On the analyzer site, this free electron is distinguished by its kinetic

energy. From this picture it is relatively easy to see that we have to consider the work

function of the analyzer ΦA in the energy conservation, since the analyzer spectrum is
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Figure 3.2: (a) Illustration of the photoemission process in the ARPES setup. Mainly
electrons above the IMFP contribute elastically to the spectrum. When scat-
tering at the surface, only the parallel component of the wave vector is con-
served. Note that k and real space are shown in the same picture. Picture
from Ref. [6]. (b) Illustration of the photoemission process in the electron
density of sample and analyzer. Note that the work function Φ of sample
and analyzer do not need to be identical, but onlyΦA enters the energy con-
version law. Analyzer and sample spectrum after Ref. [59].

what gives us the kinetic energy of the electrons:

Ekin = ~ω−ΦS −EB , or

Ei = Ekin −~ω+ΦS

= Ekin −Ekin(EF), (3.13)

Here, Ei is the initial state energy (which is the negative binding energy) and EF is the

energy of the Fermi level.

Momentum conservation on the other hand will allow us to assign the collected N (Ekin)

signal to a specific k direction. The number of electrons collected will be identical to

the intensity I (Ekin) in the following. Fig. 3.2(a) does not only contain the real space

geometry of the setup but also sketches the movement of the electrons at the sur-

face. The refraction process at the surface does only preserve the in-plane component

of the momentum vector k∥ and hence, we obtain for negligible photon momentum:

ki,∥ = kf,∥ =
p

2m

~
√

Ekin sinθ. (3.14)
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Knowledge of the kinetic energy of the electrons and their escape angle to the sample

normal is therefore sufficient to measure a line profile for one k point called the en-

ergy distribution curve (EDC). Such an EDC, taken at a photon energy of ~ω= 70eV, is

shown in Fig. 3.3.

Above the Fermi level at 65.6 eV, the intensity is reduced to zero (apart from random

noise), since there are no occupied states available for the photoemission process.

As mentioned in the beginning of this section, this behavior, as well as the tempera-

ture broadening of the Fermi level is modeled by a Fermi-Dirac distribution, located

at ~ω−Φ ≈ 70eV − 4.4eV. The peaks, each representing a band crossing or touch-

ing this k point, have Lorentzian shape and are superimposed by the Shirley back-

ground. The first term of the iterative Shirley/Sherwood method can be expressed as

[60]:

IShirley(E) = c

∞∫
E

dE ′ I (E ′) (3.15)

Originally a phenomenological way of modeling the contribution of inelastically scat-

tered electrons, it has been shown that the Shirley background results from a specific

Figure 3.3: ARPES EDC for a photon energy of ~ω = 70eV. The black fit curve is ob-
tained by subtracting the Shirley background and fitting the spectrum to
several Lorentzian peaks multiplied by the Fermi-Dirac distribution around
the Fermi level. Picture from Ref. [6].



3.2 Angle-resolved photoemission spectroscopy 33

form of the inelastic energy-loss cross section [60].

Modern analyzers determine the kinetic energy not only at one point at a time, but

along a slit angle α on a CCD chip. The result is a 2D intensity picture consisting of

several EDC lines, shown in Fig. 3.4. During an ARPES experiment, θ is then changed

in small steps to obtain the dispersion relation along a specific direction, resulting in

a data cube I (Ekin,θ,α). From a constant Ekin cut through this cube, it is apparent

that the Γ point of the first BZ is not located at (α,θ) = (0,0), which is a result of the

glueing process of the single crystal making perfect horizontal alignment very difficult.

Since it is only a linear offset however, a simple subtraction of the cube data takes care

of this in most cases where the first BZ is easily identified. In practice a tilt angle in

many manipulators allows for the correction of the α offset and θ can just be chosen

accordingly. After this offset correction, the transformation into k space is taken care of

by Eqs. 3.13 and 3.14 in addition to a transformation along the slit angle, which results

from simple geometric considerations:

Ei = Ekin −Ekin(EF)

kx =
p

2m

~
√

Ekin sinαcosθ

ky =
p

2m

~︸ ︷︷ ︸
≈0.512Å−1/

p
eV

√
Ekin sinθ (3.16)

It would be preferable to identify kx = 0 and ky = 0 with high-symmetry lines in the BZ,

which is not automatically given with a random glueing of the crystal in the in-plane

direction. Before the cube is recorded in the experiment, this can be accounted for

through theϕ angle of Fig. 3.2(a). Otherwise, during data analysis, this can be corrected

by multiplying the data cube with a rotation matrix:(
kx

ky

)
=

(
cosϕ −sinϕ

sinϕ cosϕ

)(
kx

ky

)
(3.17)

After discussing the parallel components of the k vector, let us now consider the per-

pendicular direction k⊥ = kz , which is not preserved at the surface. kz is usually ob-

tained by tuning the photon energy, while remaining at a constant (kx ,ky ) position.

The first Γ point is ideally suited for such a measurement, since it also remains con-

stant in angle space when changing the photon energy. For a free-electron-like final

state approximation, ki,⊥ = kz can be obtained by

kz =
p

2m

~

√
Ekin cos2θ+V0, (3.18)

where V0 is determined by fitting to a periodic behavior of the initial state energy of the
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bands Ei(~ω).
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Figure 3.4: The process of acquiring ARPES data on the example of ZrSiS at ~ω= 700 eV.
For several θ angles, 2D intensity pictures consisting of individual EDCs are
collected. The Fermi level can be determined by fitting to a Fermi-Dirac
distribution. A stacking of all recorded θ angles results in a data cube, which
can be cut to obtain the Fermi surface. Picture from Ref. [6].

It should be noted here that not all measurements are necessarily angle-resolved, just

because the experiment allows for it. The core levels for example disperse only very

little, so it is far more practical to integrate over the complete slit angle α. Since high

photon energies are required to lift the core levels above the Fermi level and into the

vacuum, core level spectroscopy is often also called X-ray photoemission spectroscopy

(XPS). XPS was regularly performed during this work, since it allows the characteriza-

tion of the elemental composition. Furthermore, the exact position of the f level in

the lanthanides of Chap. 6 and 8 was necessary to fix the U parameter in the respective

DFT+U calculations [61].

3.2.1 Lab 7B15

Experiments performed at the Max Planck Institute for Solid State Research (MPI FKF)

in Stuttgart used a monochromatic He lamp with photon energies of ~ω= 21.2eV (He
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I) and ~ω = 40.8eV (He II). The hemispherical SPECS PHOIBOS 150 electron analyzer

has an energy and angular resolution of about 15 meV and 0.5 ◦, respectively. All mea-

surements were conducted on crystals cleaved in situ at room temperature in the low

10−10 mbar pressure range. Since the resolution and variability of photon energy al-

lowed for better results at synchrotrons, only the presented initial measurements on

ZrSiS of Chap. 4 were performed with this setup.

3.2.2 Synchrotron Bessy II

Instead of using a gas lamp with a fixed photon energy, one can use synchrotron radia-

tion (radiation produced by electrons in a particle accelerator) that has a wide spec-

trum, and a monochromatized beam of an undulator-based beamline can provide

high-intensity in combination with variable energy and light polarization. Most mea-

surements with a photon energy between 20 and 120 eV were performed at the 12-

ARPES experiment installed at the UE112-PGM-2a beam line at Bessy-II in Berlin. The

analyzer has an energy resolution of down to 1 meV for photon energies below 100 eV

and an angular resolution of 0.1 ◦. Measurements can be performed with LHe down to

40 K.

3.2.3 Synchrotron APS

All soft x-ray ARPES measurements (photon energies between 248 and 1000 eV) were

performed at the 29ID-IEX beam line at the Advanced Photon Source (APS) at the Ar-

gonne National Laboratory in Chicago. The hemispherical Scienta R4000 electron ana-

lyzer has an energy and angular resolution of 220 meV and 0.1 ◦, respectively. Measure-

ments can be performed with LN2 and LHe at variable temperatures down to 8 K.

3.3 Neutron scattering

During the course of the magnetic structure determination of CeSbTe, presented in

Chap. 6, a neutron diffraction beamtime was conducted. Since the principle of elas-

tic neutron scattering is not the main focus of this thesis, we will refrain from giving

a derivation of the Bragg peak structure of the scattering rate starting from Fermi’s

Golden Rule, but provide the working knowledge to understand the data collected at

the beamtime.

Neutron diffraction is, like electron diffraction, a tool to resolve the atomic structure

of a material. These methods are therefore complementary to the electronic charac-

terization we discussed above. Like in photoemission experiments, the electron scat-

tering experiment is thereby limited to a few atomic layers (surface-sensitive), while
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neutron scattering does not experience the strong Coulomb interaction and is there-

fore a bulk probe. Furthermore, neutrons with the necessary wave length to detect

interatomic distances (λ≈ 2Å) have only energies of tens of meV, while electrons are in

the order of eV already. This makes them in principle susceptible to different kinds of

excitations in an inelastic scattering experiment, which we will not go into detail here.

The attenuation of the coherent scattering due to neutron adsorption is furthermore

a factor to be considered before designing an experiment with e.g. boron or gadolin-

ium.

For an elastic neutron diffraction experiment, a neutron source supplies the incoming,

beforehand monochromatized, neutrons with initial momentum ki and spin projec-

tion σi , which will be collected by an analyzer after the scattering took place. Here,

the differential cross-section, the number of neutrons scattered into a solid angle ele-

ment per time, is measured. This happens for various angles around the sample and

the spectrum can then be plotted against this angle. If the Bragg reflection condition is

fulfilled, one observes coherent interference resulting in a Bragg peak under this an-

gle and collecting all these peaks in a powder diffraction experiment allows one to

determine the lattice structure. These peaks are furthermore dampened by a form

factor, taking care of interference effects similar to the form factor in x-ray scatter-

ing.

One of the biggest advantages when it comes to neutron scattering is the additional

spin a neutron carries, compared to x-ray diffraction. The magnetic neutron scattering

will result in its own magnetic Bragg peaks (which can be identical in case of a ferro-

magnet) with a magnetic form factor, reducing the Bragg reflections with large recipro-

cal magnetic lattice vectors. Additional peaks appearing in the diffraction pattern for

temperatures below the magnetic phase transition temperature can therefore be used

to determine the magnetic structure reliably.

For all practical purposes, a software package allows to refine the diffraction pattern,

which results in the nuclear or magnetic structure, given the elements are known.

The powder neutron diffraction data were collected on the WISH instrument at ISIS,

Harwell Oxford [62], between 1.5 and 5 K to gather data above and below the TN of

CeSbTe. The diffraction patterns were refined by the Jana2006 software [63].
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CHAPTER 4
ZrSiS - The First Nonsymmorphic Dirac

Nodal Line Semimetal1

Understanding is a three-edged sword. Your side, their side, and the truth.

– OLD VORLON PROVERB

The discovery of Graphene ignited a new field of research and was later even awarded

with the Nobel prize 2010 [64]. One exciting aspect of graphene lies in its electronic

structure, which features linearly dispersing bands over a wide energy range and a four-

fold crossing point at the Fermi level. This results in massless Dirac fermions as low-

energy quasi-particle excitations. Real-world applications, however, uncover several

difficulties when working with a 2D material in a 3D environment. For example, while

suspended graphene shows ultra-high mobilities in the order of 105 cm2/Vs, substrate-

induced scattering will reduce this number considerable when using graphene in field

effect devices [65, 66]. It is for this reason that the research focus shifted towards 3D

Dirac and Weyl semimetals that have similar electronic properties and exhibit exotic

transport properties such as ultra-high mobility and large, linear and negative mag-

netoresistances, but are intrinsically already 3D removing the necessity of a substrate

[67, 68, 69, 70]. Many of the known semimetals struggle though in their usefulness in

applications, since they contain toxic elements and their band crossings are not close

enough to the Fermi level, or rather the crossing is convoluted by additional bands

[43].

Already in 1986, Tremel and Hoffmann [49] published their ideas on ‘Square Nets of

Main Group Elements in Solid-State Materials’, of which ZrSiS was one example. They

showed its interesting electronic properties, but focused on the effect of distortions

1This chapter is based on the publications [1, 3]
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and complicated superstructures. As it turns out, the square net in ZrSiS does not

distort and many of the attributes of SG 129, which were introduced in Sec. 2.2, can

already be observed here. ZrSiS is, therefore, the first Dirac nodal line semimetal that

also comprises nonsymmorphic crossings. Since it is further a non-toxic and earth-

abundant material, ZrSiS had template character for the materials to come in Chapters

5, 6 and 7.

Section 4.1 will introduce the design concept behind ZrSiS and show the theoretically

expected and experimentally determined band structure. The discrepancy in theory

and experiment allows for the identification of a rich surface band structure. The

quasi-two dimensional nature of the bands close to the Fermi level in ZrSiS make it,

however, difficult to distinguish between bulk and surface bands in the photon energy

dependent measurements presented in Section 4.2. It is here that the unusual prop-

erties of the surface states play a role for the first time, since they are clearly resolved

up to a photon energy of 700 eV. The properties of these surface states will then be dis-

cussed further in Sec. 4.3. Since they do not fit any of the surface state categories of

Sec. 2.1.4 or 2.1.5, this section will also develop the theoretical concept of a symmetry

reduction at the surface and show how a broken nonsymmorphic symmetry can lead

to the observed ‘floating’ surface states.

4.1 Exemplary band structure of space group 129

It has been shown in Sec. 2.2 that, depending on the position of the Fermi level, a ma-

terial of the PbFCl structure type can be regarded as a Dirac semimetal. Therefore, it

seems to be prudent to evaluate the electron count in ZrSiS once, as an example for the

materials in the following chapters.

A simple electron counting and electronegativity approach for ZrSiS results in an oxi-

dation state of +4 and -2 for Zr and S, respectively. This leaves an oxidation state of -2

for Si in the square net. On one hand, this is beneficial, since this does not allow for

a completely filled p-band, which would otherwise result in a trivial insulator. On the

other hand, a system consisting of only s- and partially filled p-bands is unstable in

the square-net structure and undergoes the aforementioned distortions [49]. In ZrSiS,

however, the overlap of the strongly bonding Si p- and Zr d-bands stabilizes the anti-

bonding Si-Si bond. In this configuration, each Si atom forms two lone pairs and has

two electrons available for four bonds, which results in a delocalized bonding network

in the square net [48, 49, 71].

As mentioned above, ZrSiS was the first compound of an isostructural family of ma-

terials crystallizing in SG 129. For this reason, the atomic structure has been mapped
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out carefully with scanning electron microscopy (SEM), low-energy electron diffrac-

tion (LEED), high-resolution transmission electron diffraction (HRTEM) and preces-

sion electron diffraction (PED), which all confirm the expected square-net structure.

The results of the mentioned measurements are presented in Fig. 4.1. Most impor-

tantly for the following ARPES measurements, the LEED pattern shows the Γ points or-

dered in a square structure without any surface reconstruction.

c
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Figure 4.1: Structural characterization measurements of ZrSiS. (a) Crystal structure
with the unit cell shown in black. (b) SEM image of a ZrSiS crystal. The
crystals grow in the ab plane. (c) LEED pattern of a cleaved crystal taken
at 73 eV. (d) HRTEM image of the [110] orientation with a focus plane of
∆ f = −50nm. Atoms appear in black. The inset shows the simulated pat-
tern. (e) HRTEM and PED pattern of the [001] surface. The square-net
structure is clearly resolved and shows no distortions. Picture adapted from
Ref. [1].

Based on this crystal structure, DFT calculations without SOC were performed and are

shown in Fig. 4.2(a) and (b). Since ZrSiS is a centrosymmetric material and no magnetic
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field is applied, all bands are two-fold spin degenerate. The dispersion is shown along

a path through the 3D BZ, which is shown in Fig. 4.2(c). For completeness and since

it is important for the comparison with the ARPES data in the following, the surface

BZ is presented here as well and shows the surface projection of the bulk BZ points.

The colors in (a) and (b) represent different irreducible representations (irreps) of the

bands, and since only bands of different irreps can cross in the band structure, certain

bands already show a gapping further away from the Fermi level. However, at EF, the
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Figure 4.2: DFT calculations of ZrSiS, (a) and (b) without SOC. The colors represent
different irreducible representations. The bands form a Dirac line node that
has a cage like structure around Γ and are degenerate in the kx = π and
ky = π plane due to the nonsymmorphic symmetry. (c) 3D BZ with sur-
face projection along [001]. The Dirac line is indicated in yellow and the
nonsymmorphic symmetry projection in green (without SOC) and red (with
SOC). (e) and (f) Band structure along the same path in (a) and (b). The
Dirac line node gaps slightly due to the low atomic mass and subsequent
small SOC strength, but the nonsymmorphically protected X and M points
(R and A, respectively) stay degenerate, indicated by the red circle. Picture
adapted from Ref. [1].
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only bands crossing the Fermi level all form linearly dispersing Dirac crossings and,

as hinted towards in Sec. 2.2, indeed form a Dirac line node that has a diamond shape

around the Γ and Z point. The line node is schematically shown in yellow in (c). The

diamond-like shapes of the line node in the kz = 0 and kz = π plane connect along kz

and form a cage in the 3D BZ, while still projecting as a diamond in the surface BZ. The

exact energy of the line node is not fixed to the Fermi level and it varies slightly along

its path in the 3D BZ. A tight-binding approach on this line node with a colored energy

representation is given in Sec. 5.2, since the nodal line is important for understanding

the drumhead surface state in ZrSiTe. For now it is sufficient to assume the nodal line

in the kz = 0 and kz = π plane fall on top of each other in the projection and the nodal

line is close enough to the Fermi level to dictate most of its transport properties. In-

dependently of the Dirac line node, the nonsymmorphic symmetry in SG 129 enforces

the expected degeneracies at X and M (R and A, respectively) that are, in the absence

of SOC, extended along the complete high-symmetry line and plane X-M-A-R, marked

in red and green in Fig. 4.2(c).

Fig. 4.2(d) and (e) consider the same path through the 3D BZ as (a) and (b), but in-

cluding SOC as a second variational process. Since SOC reduces the number of irreps,

the nodal line is no longer protected and gaps as indicated in Fig. 4.2(e). The gap was

optically determined to be below 30 meV [72], which is relatively small due to the low

atomic mass of the incorporated elements. A similar gapping can be observed along

the X-M and R-A direction, although it is too small to be resolved in any ARPES mea-

surement. A comparison with a heavier member of SG 129 will be given in Sec. 6.2.

With SOC, only the X-R and M-A high-symmetry lines are nonsymmorphically pro-

tected (shown in red in Fig. 4.2(c)), which results in a crossing at the X and M point in

the surface BZ that does not gap independently of the strength of the SOC. It would

be desirable to have this nonsymmorphic crossing closer to the Fermi level, to have it

contribute more to the transport properties, which motivated the characterization of

ZrSiTe in the following chapter 5.

We can now compare these theoretical expectations with the experimental data col-

lected with ARPES, shown in Fig. 4.3. This will lead to the discovery of a surface state

that is not part of the bulk band calculations, which will be derived in the following

Sec. 4.3.

When we look at the Γ-X-M line collected at ~ω= 21.2eV, it is relatively straightforward

to identify the lower part of the Dirac line node, marked in purple in Fig. 4.3(a). The lin-

early dispersing bands do not cross exactly at the Fermi level, which can be explained

by a slight doping of the analyzed crystals. Surprisingly, an additional state appears,

seemingly crossing the bulk bands (marked as ‘Surface State’ in (a)). Since this addi-

tional state does not match the DFT bulk band calculations, this leaves two potential

explanations for its appearance in the experimental spectra. Either the DFT calcula-

tions are not correct, which we exclude due to its perfect reproduction of the other bulk
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bands, or the additional state is surface-derived. ARPES, as a surface-sensitive mea-

surement would naturally measure a combination of bulk and surface bands, while

the bulk DFT would only catch the bulk bands. As it turns out, this is indeed the case

in ZrSiS and related compounds, hence the name-giving of the observed state in (a).

However, before we talk about the origin of this surface state, it is reasonable to analyze

its progression in reciprocal space first. In Fig. 4.3(b), a cut orthogonal to (a), M-X-M,

is shown where the surface state runs from -0.4 eV initial state energy up to the Fermi

level. Again, in Fig. 4.2(b), along X-M there are no bulk bands expected to cross the

Fermi level, which allowed us to identify the course of the surface state. Moving away

from the high-symmetry lines in Fig. 4.3(c), it becomes evident that the surface state is

not really crossing the bulk bands in (a), but consists of several parts that mostly run

in parallel to the bulk bands and are only distinguishable where they do not. This is a

common feature of surface states in SG 129, which will be more apparent in the sur-

face bands of CeSbTe and will be discussed further in Sec. 6.2. The same holds along

a parallel dispersion path of (b), presented in Fig. 4.3(d), which is shifted just enough

to reach the crossing point of bulk and surface bands in (a), slightly away from the

X point. The upper surface band seemingly flows into the lower bulk band, without

a hint to the character of these bands, if it were not for the DFT bulk band calcula-

tions.

At the Fermi surface, presented in Fig. 4.3(e), the Dirac line node proceeds as expected

in a diamond-like fashion around the Γ point. The inset of the ~ω= 700eV Fermi sur-

face was taken with a bigger tilt angle at ~ω = 26eV, which explains the difference in

detail of the two Fermi surfaces. The surface state is clearly visible around the X point

as a ring-like feature.

To confirm the surface derivation of the observed states, it is possible to simulate the

effect of a surface in DFT by performing slab calculations. A supercell is defined along

the c axis containing a slab of five ZrSiS unit cells intermittent by a 5.3 Å vacuum gap

(see Fig. 4.4(a)). The termination layer of the slab was chosen between the sulfur atoms,

in accordance with the HRTEM data in Fig. 4.1(d). To compare the calculations with

the Fermi surface in Fig. 4.3(e), the DFT bands crossing the Fermi level were projected

to the surface independent of their kz value. Fig. 4.4(b) shows the resulting theoreti-

cal Fermi surface for the ZrSiS unit cell (bulk) and the newly defined supercell (slab).

Since the energy of the line node is not fixed to the Fermi level, the diamond-shape

around the Γ point is slightly extended in both figures. This is in agreement with the

line node observed in experiment. Especially at 26 eV in Fig. 4.3(e), the line node is

clearly resolved to consist of two bands crossing slightly above the Fermi level. The

biggest difference between the bulk and slab DFT calculation is marked in orange,

showing an additional contribution to the Fermi surface in the form of a ring-like shape

around the X point, which is in perfect agreement with the surface state observed in

experiment. The agreement between DFT slab calculation and ARPES experiment be-

comes even more apparent, when we superimpose the high-symmetry line dispersions
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Figure 4.4: DFT slab calculations of ZrSiS. (a) Supercell used for the DFT slab calcula-
tion consisting of 5 unit cells intermitted by a 5.3 Å vacuum gap. (b) DFT
Fermi surface comparing the bulk and slab calculations. The surface states
appear as a ring-like structure around the X point consistent with the ex-
perimental observation. (c) ARPES dispersion along the Γ-X-Γ direction su-
perimposed by the DFT slab calculation. (d) The same along the M-X-M
direction. The surface bands consist of several parts resulting in a seeming
crossing of bulk and surface states. Subfigures (b) - (d) adapted from Ref. [1].

in Fig. 4.4(c) and (d). It is quite common for DFT calculations to require a stretch-

ing factor along the energy axis to fit to the experimental data. In ZrSiS however, the

band dispersion fits perfectly, at least down to Ei = −1eV. The surface-derived bands

(again shown in yellow) were identified by comparison with the bulk DFT calcula-

tions of Fig. 4.2. From their course, our assessment of the different parts of the sur-

face state is confirmed and an additional surface band could even be identified fol-

lowing the bulk bands at Ei = −0.45eV to lower initial state energies along X-M in

Fig. 4.4(d).

Despite the surface states crossing the Fermi level, the transport properties of a con-

ductive material are mostly dominated by its bulk properties. ZrSiS shows exotic phys-

ical properties like an extremely large and nonsaturating, butterfly-shaped anisotropic

magnetoresistance and nearly massless Dirac fermions with a strong Zeeman splitting

in de Haas-van Alphen oscillations [73, 74, 75, 76], as well as, an effective mass en-

hancement for high magnetic fields [77], which are a clear indicator of the influence of
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the Dirac line node.

4.2 3D vs 2D nature of bulk bands

To identify surface states in ARPES measurements, it is common to compare the kz

dispersion of the states in question. Since surface states are restricted to the surface,

they should in principle show no kz dispersion at all, while bulk states occupy different

initial energies depending on the kz plane measured. In ARPES, the photon energy is

changing kz according to Eq. 3.18. This allows to distinguish between bulk and surface

states, by plotting the inital state energy versus photon energy and observe an oscilla-

tory behavior in the bulk states (since kz =π equals kz =−π), and a constant in the sur-

face states. Figure 4.5(a) shows the dispersion along the Γ-X-Γ direction around X for

different photon energies between ~ω = 20 and 40 eV. Since the matrix elements vary

with photon energy and especially between different Brillouin zones, the branches of

the bands around X change in intensity depending on the photon energy. By following

the energy of the maxima (blue and green) of the surface state slightly off and the min-

imum (violet) of the surface state at the X point and comparing them to the energy of

the nonsymmorphically protected bulk band crossing at the X point (red), the disper-

sion shown in Fig. 4.5(b) can be obtained. While the photon energy independent be-

havior of the potentially surface-derived states (green, blue and violet), at first glance,

strengthens the theory of emergent surface states, the bulk state crossing in red shows

no dispersion as well. This is mostly due to the layered composition of the ZrSiS struc-

ture, which results in a weakly dispersing bulk behavior in this energy range as well. Al-

ready in the slab calculations of Fig. 4.4(c), the black bulk bands below the Fermi level

lie almost on top of each other, although they result from different kz planes. Com-

paring these results with Fig. 4 of Ref. [1], a small deviation in the variation from the

mean value can be noticed, which is mostly due to a photon energy arrangement er-

ror in the published data. Because we observe a straight line though, this error leads

to the same conclusion in the end, namely that neither the bulk nor the surface states

show any dispersion. This even holds true, when we consider far higher photon ener-

gies in Fig. 4.5(c), although the broadening of the bands make it exceedingly difficult to

determine the exact position of the bands in this case.

On the note of unusual behavior, it has to be mention that the surface states appear to

be unaffected by the high photon energies, which was taken for granted in Fig. 4.3(e)

and Fig. 4.5(c). This is however not at all trivial and will be discussed here. As has been

noted in Sec. 3.1, Fig. 3.1, the IMFP increases with increasing photon energy. In the

case of ZrSiS, this implies an increase of the IMFP from 0.49 nm for 26 eV to 1.43 nm

for 700 eV [58]. Since no optical measurements of the IMFP exist for ZrSiS yet, it is

not possible to obtain the IMFP directly from such data. Therefore, the increase of
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Figure 4.5: Dispersion along Γ-X-Γ around X for different photon energies between (a)
20 and 40 eV and (c) 248, 374 and 700 eV. (b) Photon energy dependency of
the surface state maxima (blue and green), surface state minimum (violet)
and bulk band crossing (red). None of the states show a noteworthy or os-
cillatory kz dispersion, which is due to the 2D nature of the surface states
and the quasi-2D nature of the bulk bands in a layered material like ZrSiS.
Subfigures (a) and (b) adapted from Ref. [1]. 700 eV dispersion of subfigure
(c) from Ref. [3].
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a factor of ≈ 3 is only a rough estimation. Regardless, an increase in the relative in-

tensity between bulk and surface states is only expected if the increase of the IMFP

outweighs the increase in created and annihilated phonons. Otherwise, the increase in

phonon-assisted non-direct transitions would smear out the initial states with increas-

ing photon energy. A good way to quantify this behavior is the Debye-Waller factor

W (T ) = exp

[
−1

3
∆k2(~ω) 〈u2(T )〉

]
, (4.1)

where ∆k(~ω) = kf −k~ω−ki and 〈u2(T )〉 is the 3D mean-square vibrational displace-

ment [78]. A Debye-Waller factor W > 50 % allows to resolve the bands individually,

but for ARPES a W > 90 % is usually aimed for. For W < 10 %, only the density of states

is visible and the bands are smeared out over the complete Brillouin zone [79]. Due

to the high Debye temperature of ZrSiS (≈ 493 K [80]), we were able to obtain nicely

resolved ARPES spectra even at room temperature. The Debye temperature is a rough

estimation at which temperature the vibrational displacement 〈u2(T )〉 starts to play

a significant role in the negative exponent of the Debye-Waller factor (exact formula

in Ref. [78]). A high Debye temperature, therefore, allows for a high Debye-Waller fac-

tor over a larger temperature range. As delineated by Hofmann et al. [81], the effect

of a higher photon energy can also be modeled by increasing the temperature. Going

to higher photon energies, while decreasing the temperature allows us, therefore, to

retain our high Debye-Waller factor. Just from this argument, we would expect an in-

crease in bulk band intensity compared to the surface band intensity, since the increase

in the IMFP increases the bulk band probing depth.

However, the increase in photon energy also influences the surface states directly, which

led to the calculation of individual Debye-Waller factors for surface and bulk states in

the literature [82]. Depending on the system, the thermal motion (again, the lower

wavelength for higher photon energies allows for an equivalent behavior of temper-

ature and photon energy in this argument [81]) can be higher at the surface, since

the bonding environment is reduced [82], effectively reducing the Debye tempera-

ture for the surface initial states. On the other hand, the reduced dimensionality at

the surface facilitates coherent emission, which can in special cases lead to a high

surface sensitivity at high photon energies [81]. Without an extended temperature

study, which is beyond the scope of this thesis, this question cannot be answered suf-

ficiently.

For this reason, we will argue here, that the continuing, but slightly less intense ap-

pearance of the surface states for high photon energies is due to the increase in IMFP.

The perseverance against phonon-induced nondirect transmissions, however, hints

towards a strong localization of the surface states at the surface [81], which is in accor-

dance with the ‘floating’ surface states theory, presented in the following.
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4.3 `Floating' surface states

Despite the surface states not interfering too strongly with the electronic properties of

the bulk bands, it is still worthwhile to investigate their origin. Exploring the com-

mon origins of surface states, cf. Secs. 2.1.4 and 2.1.5, the list becomes quickly ex-

hausted, without providing insight to the source of surface states in ZrSiS. For ex-

ample, the weak SOC might be sufficient to gap the Fermi level, which would result

in topological surface states, should the gap be non-trivial [83]. However, ZrSiS be-

longs to the same class as ZrSiO, when it comes to its topological properties, which

was found to be a weak topological insulator with a Z2 topological invariant of (0;

001) [84]. This result is in agreement with our own parity analysis based on Eq. 2.30

of the previously presented DFT data. Therefore, ZrSiS is a weak topological insula-

tor, but notably with the dark surface being the (001) surface, which is where the un-

known surface states appear. This excludes a topological explanation on the basis of TI

surface states. ZrSiS also shows no detectable surface reconstruction ruling out dan-

gling bonds, which were already unlikely because of the semimetallic nature of ZrSiS,

but will be discussed in more detail at the end of this section. Its clean surface with-

out alloying or band bending also gives no incentive for a dimensional confinement

of the electrons, which could result in quantum well states. And lastly, the surface

states appear in an area that is not governed by an inverted band gap, which excludes

Shockley states. For a more in-depth analysis on the mentioned exclusion criteria, see

Ref. [3].

Before describing the ‘floating’ surface state theory developed during this Ph.D. work to

explain this new type of surface state in nonsymmorphic materials, let us first evaluate

the properties of these states that hints towards this origin and motivates this expla-

nation. Fig. 4.6(a) and (b) show the dispersion along Γ-X-M measured by ARPES with

a photon energy of ~ω= 26eV and calculated by a DFT slab without SOC, respectively.

Here, a slab size of seven unit cells was chosen, which yields the same information as

the previous calculation based on five unit cells. The surface band (SS) appears again

as a very intense feature in the spectrum in (a). Furthermore, a second surface state at

Ei ≈−1.7eV (SS’) crosses the X point. Both are reproduced by the DFT slab calculation

and can be identified by their strong Zr orbital character (indicated by the radius of the

red cycles). Using VASP, the band character can be determined by calculating the ab-

solute value of the overlap between the respective state and the spherical harmonics,

representing the orbital character [85]. We can understand the orbital character choice

of Zr for identifying the surface bands, when we look at the isosurfaces of the surface

band for different k points. For now, let us focus on the upper surface state that was first

discovered in the original paper [1], although the same argument holds for the lower

surface state SS’ as well. Fig. 4.6(d) shows constant electronic density isosurfaces of the

surface unit cell in real space (indicated in Fig. 4.6(c) where cleaving removed half of

the bulk unit cell). The electronic density producing the surface band shows mostly Zr
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dz2 and S p character at the X point, while it shifts to Zr dz2 , dxz and dy z orbital char-

acter for the dispersion towards Γ and M. The Si p band seems to have no influence on

the surface state character.

4.3.1 Potassium evaporation

One of the first extraordinary properties the surface state (SS) showed during its char-

acterization was its modification, but not annihilation, by potassium evaporation at

40 K. Fig. 4.6(e) and (f) show the ARPES spectrum and DFT slab calculation along Γ-X-

M for a surface covered with 1 monolayer of potassium. In the DFT calculations this

was achieved by covering the surface with a regular array of one K atom per unit cell

and allowing them to relax, resulting in a distance of 2.74 Å from the surface. In the

direct comparison with the bare surface of the panels (a) and (b), the bulk bands seem

to change very little, except for a slight doping effect. The surface band SS, in contrast,

splits into two branches, one connecting below the Fermi level (SS1) and one follow-

ing the bulk bands from above the Fermi level along Γ-X and dispersing back above

EF along X-M (SS2). The DFT calculation shows exactly the same behavior, if we ig-

nore states that arise from the regular K lattice (green squares), which are necessary for

the calculation but not present in reality. The gapping of surface states that appears

around the X point and reveals the different branches of the surface state is nothing

new, remembering the effect of SOC in the DFT slab calculations of Fig. 4.4(c). We

can therefore conclude that the surface modification results in a mixing of the orbital

characters, as would an artificially increased SOC, which in turn is responsible for the

observed avoided crossings. Since the strength of SOC is very weak in ZrSiS, this effect

is not intrinsically observable, but is enhanced by the surface potential variation by the

potassium monolayer.

While qualitatively agreeing with the ARPES data, the gap size between the different

surface state branches is much bigger in the DFT calculations. There are several rea-

sons for the overestimation of the surface state gap size in DFT. Most obviously, the

distance of the K layer to the surface plays an integral part in the gap size, since in the

limit of very large distances, the orbital mixing is not present anymore, resulting in the

ungapped and single surface state without potassium. This might imply that the re-

laxed potassium distance determined by DFT is slightly off. Furthermore, the chosen

coverage of one K atom per unit cell is definitely not accurate, since experimentally, an

error of 10 % is not uncommon in metal evaporators. A partial monolayer, or partial bi-

layer might very well result in a different relaxed distance and can explain the observed

difference to the ARPES data.
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Figure 4.6: (a) ARPES data on ZrSiS taken at ~ω = 26eV along Γ-X-M. The spectrum
consists of intense surface states crossing the bulk bands forming the nodal
line. (b) DFT slab calculations without SOC of the dispersion path in (a).
The surface state character is highlighted by showing the strength of Zr d
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cell after cleaving. (d) Isosurfaces of the surface band for different k points
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where it cuts the pictured cell. (e) and (f) ARPES data and DFT slab calcula-
tions without SOC for a monolayer of K evaporated at 40 K. The surface state
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array in (f) is shown in green squares and is expectedly not matched by the
experimental data. Figure adapted from Ref. [3].
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4.3.2 Tight-binding model and `�oating' surface state theory

Surfaces have the, sometimes unenviable, property to break the periodicity of the crys-

tal structure, which is defined by its atomic basis and the symmetries of the space

group. A semi-infinite crystal is then expressed by a reduced symmetry group at the

surface. In a crystal with inversion and time-reversal symmetry, for example, all bands

are forced to be spin-degenerate. Nevertheless, the bands can be spin-split by SOC at

the surface, since inversion symmetry is no longer preserved there. This is commonly

known as the Rashba effect [86], although inversion symmetry is only one of the many

symmetries that is broken by the surface.

In ZrSiS for example, the cleavage along the (001) plane additionally breaks all of the

nonsymmorphic symmetries. Since the nonsymmorphic symmetry is responsible for

the degeneracy at the X and M points in the bulk, this crossing point of the bands is

no longer enforced in the reduced space group of the surface. The theory of ‘floating’

surface states assumes the states to proceed, depending on the surface potential, in an

area usually not accessible to the bulk bands, since they are no longer constrained by

their crossing at the high-symmetry points. Since the surface breaks inversion symme-

try, these surface bands should be furthermore spin-split by SOC, although this will not

be resolvable in ZrSiS with the low atomic masses of the incorporated elements. SOC

should therefore not be the driving mechanism responsible for these surface states and

it should be possible to explain them in a spinless model.

To validate this theory, DFT calculations are not the method of choice, since it mod-

els all of the surface contributions in parallel, which will predict the surface states, but

not allow us to retrace their source. For this reason, a tight-binding model was devel-

oped during the course of this thesis. As explained in Sec. 2.1.2, it would be desirable

to explain the occurrence of these states qualitatively with relatively few parameters

(here an effective four-band model in Fig. 4.7(b)) and catch the states quantitatively

with more parameters fitted to the DFT calculations (shown in Fig. 4.7(c) in a 26-band

model).

To develop the model Hamiltonian, let us first consider the symmetries of the ZrSiS

bulk, the tetragonal SG 129. The, for our theory relevant symmetries, are the nonsym-

morphic glide plane M̄z = {Mz |1
2

1
2 0}, which expresses a mirror along ẑ and a half unit

cell translation along x̂+ŷ , two screw axes C̄2x = {C2x |1
2 00} and C̄2y = {C2y |0 1

2 0}, a mirror

Mx y and lastly the combination of time-reversal symmetry T and inversion symmetry

I . Further, we consider a spinless model, which results in the schematic symmetry sit-

uation shown in Fig. 4.7(a). Due to the combination of T I , all bands are two-fold de-

generate. The combination of time-reversal symmetry and the nonsymmorphic sym-

metries enforces four-fold crossings at TRIMs (solid colors), while the symmetries M̄z ,

Mx y and the combinations C̄2xI and C̄2yI allow for accidental four-fold crossings of



52 4 ZrSiS - The First Nonsymmorphic Dirac Nodal Line Semimetal

different symmetry eigenvalues throughout the BZ (dashed lines). The former is re-

sponsible for the nonsymmorphically protected points, while the latter results in the

forming of the nodal ring in ZrSiS.

In a spinless model Hamiltonian, we catch this situation by defining two nonsymmor-

phic sublattices A and B (eigenvalues of the Pauli matrix τz), related by their half unit

cell translation along x̂ + ŷ . We further define two orbitals (eigenvalues of σz), which

can be even or odd with respect to M̄z . The band Hamiltonian H=∑
kΦ

†
kHkΦk is then

acting on the basis Φk = |cA,+,cA,−,cB ,+,cB ,−〉k. The ca,i are creating an electron in the

sublattice a = A,B with an orbital i =+,−, even or odd under M̄z . If we consider time-

reversal and the spacial symmetries, this results in the symmorphic part of the hopping

Hamiltonian H s
k, which preserves the sublattices:

H s
k =µ+mσz + t±x y (coskx +cosky )σ±+ t±z coskzσ±, (4.2)

withσ± = 1±σz being the projector into the even or odd orbital sectors.

Coupling the sublattices A and B is the nonsymmorphic part of the hopping Hamilto-

nian

H ns
k = t [1+coskx +cosky +cos(kx +ky )]τx + t [sinkx + sinky + sin(kx +ky )]τy , (4.3)

with the hopping coefficients of the sublattices being fixed relatively to each other [87]

and the overall hopping Hamiltonian being the addition:

Hk = H s
k +H ns

k (4.4)

With some initially guessed parameters, the bulk band structure of a four-band model,

shown in white dashed lines in Fig. 4.7(b), is obtained. We used µ = −0.1, m = 0.5,

t−x y =−t+x y = 0.5, t+z = 0.05, t−z = 0.02 and t = 0.5, which results in a qualitative concor-

dance with the observed band structure of Fig. 4.6(a). Expanding the model to the DFT-

fitted 26-band tight-binding model, we obtain Fig. 4.7(c), which also quantitatively re-

sembles the ZrSiS bulk band structure.

If we now consider the cleaving along the (001) plane and introduce a surface to the

situation described above, an asymmetry in the nonsymmorphic sublattices is intro-

duced due to the displacement along the ẑ axis that all nonsymmorphic symmetries

have in common in ZrSiS. Since the nonsymmorphic symmetries are broken at the sur-

face, the space group reduces to the spare wallpaper group P4mm (SG 99). In this situ-

ation, only the crossings along Γ-X and Γ-M remain protected (green, yellow and blue

dots in the surface BZ in Fig. 4.7(a)). The bulk Dirac ring reduces to surface Dirac points

as M̄z is broken. The surface mass term responsible for the gapping of the formerly de-

generate bands can shift the surface bands into a region usually not occupied by the

bulk bands, which will be identified as the floating surface bands.
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In the tight-binding model, this is achieved by including a surface potential at the top

and bottom layer:

H surf =−0.1(τ0 +τx)σ+ (4.5)

This term implicitly breaks the nonsymmorphic symmetry, which requires intraband

hopping to be equal in the two sublattices. This imbalance between the local chemical

potentials and hopping amplitudes between the two sublattices is expected from the

modification in the crystal field at the surface. In our choice, we left the even orbital

unaffected. The surface band structure is calculated according to Ref. [88], with a slab

thickness of 20 unit cells, and presented as the color code in the Figs. 4.7(b) and (c). The

bulk band degeneracy along X-M corresponding to the odd orbitals is lifted, shifting

one of the branches to lower initial state energies, which results in the appearance of

the surface state.

If we consider the odd and even bands in Fig. 4.7(b) again and realize how one of them

is no longer degenerate at the surface and responsible for the surface state, we could

ask ourselves how this asymmetry is physically motivated. Since we can observe the

same behavior in the DFT calculations of Fig. 4.6(b), where only the upper nonsym-

morphically protected X point at Ei ≈ 0.75eV is the origin of the surface state SS, we can

conclude that it is not an artifact of our model but has physical meaning. The origin

of the surface state in the upper degenerate point is even more obvious, if one follows

SS away from the high-symmetry point and notices it merging with the bulk bands

forming the nonsymmorphically protected crossing, while the lower degenerate point
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at Ei ≈−0.4eV remains completely unaffected by the surface. Even the surface state SS’

is, if anything, originating from the even lower degeneracy at Ei ≈−2eV, which gives us

all the more reason to solve this question.

To explain the selected sensibility of the nonsymmorphically protected points towards

the introduction of a surface, let us consider the bulk bands in the DFT calculation

again, presented in Fig. 4.8(a). So far, we were mainly focused on the orbital char-

acter of the surface states. But looking at the real space charge density of the bulk

degenerate points at X in Fig. 4.8(b), the occupancy of the sulfur-pz orbital is only

relevant in the upper point. On the other hand, the lower degenerate point shows

mainly sulfur-s character. The introduction of a surface (cleavage plane is shown as

a dashed line in the middle of the unit cell) does not affect the lower crossing, since its

electrons do not spacially extend into the surface area, which allows this Dirac point

to retain its bulk symmetry. The pz electrons occupying the upper nonsymmorphi-

cally protected point however feel the surface potential change, which explicitly breaks

the symmetry protecting the degeneracy, leading to the floating, unpinned surface

band.

After developing the theory explaining the surface states appearing in ZrSiS, we can

now consider the effects disregarded so far. While SOC only plays a minor role in
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Figure 4.8: (a) DFT bulk band calculations of the band structure in ZrSiS. The size of the
red circles correspond to the overall Zr orbital character, in contrast to the Zr
character of the topmost unit cell presented in Fig. 4.6. (b) Isosurfaces of the
bands forming the nonsymmorphically protected point at X. The cleavage
plane (CP) does only affect the upper degeneracy with pz orbital character.
Figure from Ref. [3].
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ZrSiS, it is a factor in heavier members of SG 129. If we consider the surface also

breaking inversion symmetry, we would expect the surface states to be spin-split in

compounds with stronger SOC due to the Rashba effect. This was observed in HfSiS

[89, 90] and results in singly degenerate surface bands, which will be further discussed

in Sec. 6.2.

4.3.3 Alternative explanations

It is interesting to note that there are alternative explanations for the surface states

appearing in members of SG 129. There have been theories, attributing the surface

state to dangling bonds of the Zr atoms, which are weakly bound to the sulfur atoms of

the next-nearest S layer above the cleavage plane [91]. This theory was developed on

the isostructural compound ZrSnTe, but at least in ZrSiS there are no signs of dangling

bonds, since hydrogenation over time, due to residual hydrogen in the chamber and,

more obviously, potassium evaporation shown in Fig. 4.6(f) do not lead to the satura-

tion of the surface state [92, 93], but merely to its gapping. Furthermore, this modifi-

cation of the connectivity stands in contrast to the robustness of an explanation due

to topological origins, which is hinted at as well [83, 91]. Lastly, it was proposed that

the cleaving of a ZrSnTe crystal could lift up the last layer of the crystal and decou-

ple a freestanding monolayer from the bulk [91]. This is supported by monolayer DFT

calculations showing states around the X point in the area of the surface state. Never-

theless, slab calculations show a far better agreement with the experimental data. It is

worth mentioning here that a slab calculation and a free standing monolayer describe

two different situations, when it comes to the symmetries they break and conserve. It

was shown above that a slab breaks all nonsymmorphic symmetries, as well as inver-

sion symmetry. A monolayer on the other hand preserves these symmetries, result-

ing in a still four-fold degenerate X point, as has been explicitly shown by Guan et al.

[94] on a monolayer of HfGeTe (also isostructural to ZrSiS). The two situations there-

fore describe a very different situation around the X point, where the surface states

are most prominent. The appearance of bands in the monolayer calculation, in an

energy range not occupied by bulk bands, is expected from a change in the hopping

potentials, in which a slab and a monolayer calculation are very similar. The better

agreement with slab calculations is, however, a clear indication for an explanation not

relying on a freestanding monolayer. Outside of theoretical evidence, at least in ZrSiS,

the brittleness of the crystals give a clear chemical argument against a monolayer lift-

off.
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4.3.4 Conclusion

In principle there are three basic requirements that need to be fulfilled to observe a

floating surface state in a crystalline solid. Firstly, the space group needs to contain

nonsymmorphic symmetry elements. This, in itself, is easily given in many materials,

since 157 of the 230 space groups are nonsymmorphic. Secondly, the surface needs

to break this nonsymmorphic symmetry and reduce the space group accordingly. And

lastly, the bulk bands at the nonsymmorphically protected points in the BZ need to

show a real space density of state extending into the cleavage plane, or in other words,

the orbital character of the bands in question need to be sensitive to the introduction

of a surface.

These conditions are very general and at least in SG 129 easily fulfilled. It is, therefore,

very likely that this kind of surface state has already been observed in isostructural

compounds of ZrSiS, e.g. ZrSiTe, CeSbTe and HfSiS [2, 5, 89]. It should however be

mentioned here that at least in ZrSiTe, the surface state landscape is far more compli-

cated than it is in ZrSiS. This will be discussed further in Sec. 5.2.
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CHAPTER 5
ZrSiTe - Tuning the Nonsymmorphic

Point to the Fermi Level1

Change is the essential process of all existence.

– MR. SPOCK

In the wake of the success ZrSiS had when it comes to its extensive potential appli-

cations, it makes sense to extend our search towards the complete structure type. As

it was shown in the previous chapter, many of the interesting features in ZrSiS can not

easily be observed in transport measurements, since they are located too far away from

the Fermi level. Graphene, for example, would not have nearly been as successful, if it

had not been for its linear crossings at the Fermi level that show almost no gapping due

to the small atomic mass, and therefore SOC, of carbon. In this context, especially the

nonsymmorphically protected crossings of SG 129 show great potential, intrinsically

resisting a gapping by SOC.

By relating a structural property of SG 129 with the energy position of the nonsym-

morphic degeneracy, it was possible to locate the crossing at the Fermi level in ZrSiTe,

which will be discussed in Sec. 5.1. Similarly to ZrSiS, ZrSiTe shows a rich surface state

electronic structure interfering with the bulk band properties, we are interested in. In

contrast to ZrSiS, however, the larger SOC gaps the crossing between bulk and sur-

face bands more obviously. This allows us to distinguish different branches of surface

states, of which some can be explained similarly to the floating surface states of Sec. 4.3.

Others, however, have topological origin and will be discussed in the context of drum-

head surface states in Sec. 5.2.

1This chapter is based on publication [2]
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5.1 Chemical strain e�ect on the electronic

structure

If we start with the electronic structure of ZrSiS again, there are several possible ways to

move the nonsymmorphic crossings at the X point, of which one is located above and

one below EF, to the Fermi level. Doping the crystal itself during the growth process

would result in more or less available valence electrons, which would shift the Fermi

level. The disadvantage of this method lies in the introduction of additional scattering

centers in the otherwise homogeneous crystal structure, which could counteract the

very reason we are trying to move the nonsymmorphic point to the Fermi level. On the

other hand, uniaxial strain could shift the Fermi level to the point we require it to be.

Fig. 5.1(a) presents the crystal structure of ZrSiTe, which emphasizes a fundamental

property of the unit cell of compounds of the ZrSiS-like family: The size of the unit

cell along the a and b axis is mostly defined by the square-net atoms, while the c axis

distance is susceptible to changes in the Rocksalt-type layers. Since Te lies two periods
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Figure 5.1: Crystal structure characterization of ZrSiTe. (a) Crystal structure with the
cleavage plane marked by arrow between the Te layers. (b) SEM picture
of a typical ZrSiTe crystal. (c) HRTEM graph showing the [100] direction.
The focus plane is ∆ f =−35nm. The inset shows the simulated image with
the atoms marked in their corresponding colors. (d) PED patterns of the
[100] direction. Simulation (white) and experiment (black) show a perfect
agreement. (e) LEED pattern at 120 V showing the tretagonal lattice of the Γ
points. Figure from Ref. [2].
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higher in the periodic table than S, the unit cell is stretched along the c axis, while a and

b stay relatively constant. Systematically replacing the sulfur atoms by elements of the

same group has, therefore, physically the same effect as applying uniaxial strain to the

ZrSiS unit cell. As can be seen in Fig. 5.1, such isostructural compounds grow relatively

similar to ZrSiS, although it has to be noted here that ZrSiTe can already be cleaved

by scotch tape, since the gap between the Te layers is also increased. For example,

the SEM picture in Fig. 5.1(b) reveals an involuntary peeling of a thin layer just by the

sample preparation procedure.

It is, therefore, not far-fetched to use the c/a ratio as a structural parameter to influ-

ence the position of the nonsymmorphically protected points. Finding such structural

properties and relating them to the chemical or electronic properties of a material lies

at the center of material science and has led to the understanding and prediction of

many compounds [6, 48]. Fig. 5.2(a) shows the initial state energies of the two non-

symmorphic points for increasing uniaxial strain. While the gap is still very large for

ZrSiS (# 8), it becomes smaller towards HfSiTe. The two lines connecting the points are

a guide to the eye and do not indicate a fitting. For the c/a ratio of ZrSiTe, the upper

nonsymmorphic degeneracy is accidentally located exactly at the Fermi level. For this

reason, ZrSiTe became the second material studied during the course of this thesis.

Fig. 5.2(b), (c) and (d) show the DFT calculations along Γ-X-M, getting more sophisti-

cated starting without considering SOC, then considering SOC and ending with a slab

calculation with SOC. Panel (b), where different irreducible representations are shown

in different colors, clearly reveals the nodal line alongΓ-X. As predicted, the upper non-

symmorphic point at X is accidentally located very close to the Fermi level. With SOC,

shown in panel (c), the nodal line crossing is gapped, while the nonsymmorphic point

at X stays protected and the degeneracy along X-M is again slightly lifted. The gap size

in the nodal line is however considerably larger than it was in ZrSiS, which can be re-

lated to the larger atomic mass of Te. Lastly, the DFT slab calculation with SOC in panel

(d) reveals surface-derived states that cross the bulk bands similarly to ZrSiS. Fig. 5.2(e)

is showing the ARPES data measured along Γ-X-M, which is a direct comparison to

the slab calculations of panel (d). All the bands are perfectly resolved again, showing

the surface bands with much higher intensity. It is prudent to note here that, while

it was our goal to locate the nonsymmorphically protected degeneracy at the Fermi

level, there are other bands, belonging to the nodal line or being part of the surface

bands, crossing the Fermi level as well. This prevents the nonsymmorphic point from

contributing considerably to transport measurements. One possibility to increase the

‘cleanness’ of the surrounding of the nonsymmorphic crossings will be presented in

Sec. 6.2 and utilizes the gapping characteristic of SOC.

To identify the nonsymmorphic point and the course of the surface states better, panel

(f) is showing the dispersion along Γ
′
-X-Γ. The bands leading to the nonsymmorphic

points are superimposed with dashed lines and the upper bands meet slightly above

the Fermi level, labeled ‘NS’. This is most likely due to a slight hole doping of our sam-
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ple, since the effect was much stronger in earlier batches and continues to decrease

with increasing sample quality. In this representation, it is also much more obvious

that, due to the increase in SOC, the surface-derived states clearly gap where they cross

the bulk bands. This allows us to identify three parts of the surface states around X. In

the following section, the outermost one, labeled ‘drumhead surface state’, will be fur-

ther discussed.

Fig. 5.3 shows constant energy cuts of the dispersions shown in Fig. 5.2. Panels (a) and

(b) were taken at ~ω = 100eV and provide an overview over the first BZ, while panels

(c) and (d) were taken at photon energies of 30 eV, resolving the band structure around

the X point in more detail. The Fermi surface of panels (a) and (c) still show a slight

extension of the bands at the X point, since the upper nonsymmorphic crossing point

is located slightly above EF, while the X point is clearly dot-like in the panels (b) and

(d) showing the lower nonsymmorphic crossing point. Furthermore, the Fermi sur-

face shows the two branches of the drumhead surface state (labeled in the panels (a)

and (c)), which correspond to the surface state branch along the high-symmetry line

identified in Fig. 5.2(f).
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5.2 Drumhead surface states2

Based on the theoretical work of Chan et al. [46] and addressed in Sec. 2.1.5, a topo-

logical surface state is expected inside of the surface projection of a nodal line, if the

crossing of the nodal line results in a change of the quantized Berry phase. In this case,

the surface state is bound to the projection of the nodal line taking the form of a 2D

drumhead and there is a direct connection between the stability of the nodal line and

the surface state. As mentioned in the last section, we expect such a drumhead surface

state to be present in ZrSiTe, which we consolidate by examining the surface projection

of both the surface state and the nodal line and comparing the theoretically expected

course of the surface state with the experimental ARPES data.

Fig. 5.4 illustrates the nodal line path through the BZ in ZrSiTe compared to ZrSiS.

While the area enclosed by the nodal line in the kz = 0 and kz = π plane is vastly dif-

ferent in ZrSiTe, they almost overlap in the surface projection of ZrSiS. It is however

exactly in this overlap region, where the π Berry phase shift appears and the surface

state should appear. This explains why we did not observe such a drumhead sur-

face state in ZrSiS, since the overlap area is far too small compared to ZrSiTe. The

Berry phase was calculated by the Wilson loop formalism enclosing the nodal line.

Fig. 5.4 does however not consider the effect of SOC on the nodal line or the drum-

head surface state. As we observed in Fig. 4.2(e) and 5.2(c), the nodal line is not pro-

tected against SOC and will gap; stronger in ZrSiTe due to the larger atomic mass of Te.

The drumhead surface state is, in this case, expected to split into two branches, one

connecting the lower part of the Dirac line node, and one connecting the upper one

[46, 47].

It is fairly difficult to prove the expected origin of an observed surface state in practice.

If the surface state is existing in the projected bulk band gap of an insulator, like in the

case of the topological surface states of TIs, then they solely contribute to the transport

properties of this material and allow for a distinction between bulk and surface char-

acteristics. As we already saw in ZrSiS, this is not as easy, if we deal with a semimetal.

From an ARPES point of view, there are certain properties and limitations we expect

for a drumhead surface state. Fig. 5.5(a) shows the theoretical DFT surface projection

of the surface-derived states between the Fermi level and -0.35 eV. The four cuts along

and parallel to Γ-X are shown in panel (b), where cut 4 slices the outermost part of the

drumhead contribution to the Fermi surface. The color code of the dispersion plot in-

dicates the bulk band projection and surface character of the bands. The projection to

the Fermi surface down to -0.35 meV in panel (a) was chosen, because the drumhead

surface state (labeled ‘DH’) has its minimum there. Other surface-derived states are

labeled as floating bands (‘FB’), originating from the broken nonsymmorphic symme-

try at the surface as presented in Sec. 4.3. Fig. 5.5(c) shows the corresponding ARPES

2This section is based on a publication soon to be submitted



5.2 Drumhead surface states 63

3D BZ - side view 2D BZ - surface projec�on

-0.2

0.2

0.0

Ei

-0.2

0.2
0.0

0.0

-0.4

-0.8

0.4

0.8 0.0
-0.4

-0.8

0.4
0.8

-1k  (Å )x

-1
k

 (
Å

)
y

Berry
Phase

0 π 0
Γ

X

M

0.0-0.4-0.8 0.4 0.8

0.0

-0.4

-0.8

0.4

0.8

-0.3

0.3

0.0

Ei

0.0
0.4

0.8

-0.4
-0.8

0.0

0.4

0.8

-0.4

-0.8

0.0

0.4

-0.4

-1
k  (Å )x

-1k  (Å )y

-1
k

 (
Å

)
z

-1k  (Å )x

-1k  (Å )y

-1
k

 (
Å

)
z

-1
k  (Å )x

-1
k

 (
Å

)
y

0.0-0.4-0.8 0.4 0.8

0.0

-0.4

-0.8

0.4

0.8

Zr
Si

Te
Zr

Si
S

Γ
X

M
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in ZrSiS.

Fermi surface. At a photon energy of 39 eV, only a small part of the BZ can be visualized

at a time, wherefore the spectrum was centered around the X point. Panel (d) is show-

ing the dispersion plots corresponding to the DFT band structures of (b). By changing

the ky values slowly from the high-symmetry line to negative values, we can observe

the drumhead surface state dispersing monotonously between, and merging at its ends

with, the surface projection of the nodal line. As described above, due to the significant

SOC strength in ZrSiTe, the drumhead consists of two branches connecting the top and

bottom part of the nodal line. The agreement in these surface bands, slowly dispers-

ing up to the Fermi level and continuing above after cut 4, is remarkable. The floating

bands, instead, show a very different behavior, dispersing much stronger in this area

and disappearing above the Fermi level very rapidly.

The agreement is, however, not expected to be perfect. Since for a given photon en-
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Surface projection of a DFT slab calculation between 0 and −0.35meV. The
bulk nodal line projection is indicated in black. (b) Dispersion cuts along
the arrows in (a). The drumhead surface states (DH) exists in between
the nodal line projections, while other floating bands (FB) disperse much
stronger. (c) ARPES Fermi surface measured at ~ω = 39eV. (d) Experimen-
tal dispersions corresponding to the arrows in (c). The unusual color scale
was chosen to highlight the surface states, while simultaneously resolving
the bulk band projections. This figure is part of a manuscript soon to be
submitted.

ergy, the kz value is fixed in the ARPES experiment, we do not observe the nodal line

projection in as much detail in panel (d) as it is visible in (b). Furthermore, the cuts

1 to 4 show slightly different ky values in the experiment, compared to the theoretical

values: the theoretical values vary between 0 and −0.2550Å−1, while they stay between

0 and −0.2192Å−1 in the ARPES experiment. Again, this is not very surprising, since

only very few materials show a perfect qualitative agreement with the slab calculations

(in which ZrSiS was exceptional).

The most convincing argument for the topological drumhead nature of the surface

states can be found in its surface projection of panel (a), since it exists exclusively in

the theoretical projection of the nodal line (black line). In this projection it does not

fill out the complete nodal line overlap area but only the area close to X, which we at-

tribute to the continued dispersion above the Fermi level, seen in panel (b). Of course,

such a surface projection can not be seen in the experimental Fermi surface directly,
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but would substantiate our presumption further.

For this reason, Fig. 5.6(a) shows the area the outermost surface state occupies for dif-

ferent constant energy cuts as well as the projection of these to the Fermi surface.

Fig. 5.6(b) then compares the two projections of experimental data and theoretical data

in black and green, respectively. They show qualitatively the same shape, down to the

crescent-shape when the surface states continue above the Fermi level, and are both

fully located inside of the nodal lines. Quantitatively, there is again an offset between

the two projections, with the experimental data located closer to the X point and not

extending as far into the BZ in ky , as already observed in Fig. 5.5.

At the point of this thesis’ submission, our analysis confirmed the theoretical predic-

tion of drumhead surface states in ZrSiTe by ARPES experiments. To our knowledge,

this is also the first time, such a topological drumhead surface state is limited by the

interplay of two nodal lines with different kz values and therefore existing only in the
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cal projection areas superimposed on the Fermi surface in black and green,
respectively. While quantitatively differing, they qualitatively describe the
same behavior inside of the nodal line. This figure is part of a manuscript
soon to be submitted.



66 5 ZrSiTe - Tuning the Nonsymmorphic Point to the Fermi Level

overlapping area.
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CHAPTER 6
CeSbTe - Magnetic Order and
Nonsymmorphic Symmetry1

There are four lights!

– CAPT. JEAN-LUC PICARD

We saw in the previous chapter that it is possible to tune the electronic properties of a

material by selectively replacing elements, while keeping the space group symmetries.

So far, we did not consider one fundamental property of the potential replacement

atoms: their spin structure. By introducing f electron elements into the atomic struc-

ture of ZrSiS, we should in principle also be able to influence the magnetic properties of

the system. In this chapter we consider the compound CeSbTe, with the lanthanide Ce

carrying the magnetic moments. This allows for a multitude of magnetic phases rang-

ing from the antiferromagnetic (AFM) ground state below the Néel temperature, over

a fully polarized ‘ferromagnetic’ (‘FM’) phase for small magnetic fields, to a paramag-

netic phase for high temperatures. As shown in Sec. 2.1.5, the breaking of time-reversal

symmetry can lead to Weyl crossings with the corresponding Fermi arcs. But also the

additional magnetic order of the AFM phase will influence the electronic structure.

CeSbTe is therefore the first system that allows the tuning from a Dirac (paramagnetic

phase), over a Weyl (‘FM’ phase), to a ‘new Fermion’ state (AFM phase) in combination

with the nonsymmorphic symmetry of SG 129.

To this end, Sec. 6.1 introduces the measurements leading to the determination of

the magnetic phase diagram. For the paramagnetic phase, ARPES measurements will

be presented that underline the agreement between DFT and experiment. Since the

1This chapter is based on the publications [4, 5]
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AFM phase is limited to very cold temperatures, Sec. 6.1.1 presents theoretical cal-

culations of the electronic structure in this magnetic configuration that reveal a true

eight-fold degeneracy displaying an exotic ‘new Fermion’ state [14]. Sec. 6.1.2 then de-

scribes the electronic structure of the ‘FM’ phase for magnetic fields above the transi-

tion field. Since magnetic fields would deflect any photoelectrons, this section is sim-

ilarly limited to theoretical considerations. Lastly, Sec. 6.2 will deal with the effect of

the greatly increased SOC in this compound compared to ZrSiS. Since the nonsym-

morphic symmetry protects the crossings at high-symmetry points only when SOC

is considered, and otherwise along complete high-symmetry planes, an increase in

SOC can lead to a more isotropic, cone-like dispersion around the high-symmetry

points.

6.1 Magnetic order in space group 129

Fig. 6.1 shows the refined neutron diffraction data of a CeSbTe powder sample at 5 K.

The atomic structure for determining the red calculation, as well as a typical CeSbTe

single crystal are shown as insets. This structure determination serves as a reference

for the magnetic structure determination of the Figs. 6.2 and 6.3. Additional HRTEM

images to underline the crystal structure, similarly to the ones for ZrSiS, can be found

in the Supplementary Materials of Ref. [5].

By replacing Zr with Ce to allow for magnetic moments in the structure, we formally

loose one electron in the valence bonding model, since the Ce 4 f 1 electron does not

contribute to the hybridization and is only visible as a localized 4 f band. It is for this

reason that the square-net element Si is simultaneously replaced by an element of the

fifth main group, Sb.

To identify the magnetic properties of CeSbTe, temperature-dependent magnetic sus-

ceptibility χ measurements were conducted for different strengths of the magnetizing

field, H∥c, shown as different colors in Fig. 6.2(a). For a paramagnetic material, the

susceptibility is expected to increase in a magnetic field with decreasing temperatures.

For low fields, the susceptibility curve however shows a sharp cusp at the Néel temper-

ature TN = 2.7K from where χ decreases to zero again. This is indicative for the forma-

tion of an AFM phase, compensating the spin polarization. For field strengths larger

than 0.25 T, the cusp disappears again, which indicates the achievement of a fully po-

larized ‘FM’ phase, where the alignment field is strong enough to flip the anti-parallel

spin layers. To figure out the easy axis, the magnetization can be plotted as a function

of the magnetic field, which is shown in Fig. 6.2(b). The colors indicate varying tem-

peratures, below and above the critical temperature TN. For T < TN and a field H∥c,

a critical field can be extracted with µ0Hc = 2.224T, where the magnetization shows

a sharp increase. This signifies again the transition from AFM to ‘FM’. In the case of
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Figure 6.1: Refined neutron diffraction data fitted to the crystal structure of CeSbTe
presented as inset next to a scanning electron microscopy image of a typi-
cal crystal. At 5 K the neutron data observe the paramagnetic case. Figure
adapted from Ref. [5].

H⊥c, this field is far higher, roughly 1.75 T, which indicates that the spins prefer to

align along the easy axis c. The transition perpendicular to c can then be explained by a

spin-flop transition, while the far slower reached saturation moment indicates a strong

magnetic anisotropy of the Ce moments. The specific heat measurements of Fig. 6.2(c)

draw a similar picture, revealing a kink at TN = 2.7K in the temperature dependent spe-

cific heat that reduces with increasing field. The kink is furthermore shifted to slightly

higher temperatures for fields above 1 T, which is reminiscent of ferromagnetic mate-

rials.

While it is quite obvious that in the fully polarized state, all spins align in parallel

along the c axis, it is not definite what the AFM phase is composed of. Therefore,

during this Ph.D. work, neutron powder diffraction measurements were performed on

the low-field magnetic structure. Fig. 6.2(d) shows the AFM Bragg peaks at 1.5 K, be-

low TN, above its intensity difference to the paramagnetic reference at 5 K of Fig. 6.1.

Most obviously, the experimental data show an additional peak marked by the arrow,

which is visible as a strong peak in the difference plot. This is reminiscent of a dou-

bling of the magnetic structure along the c axis. Hence, there are always two spins

ordered in parallel before changing to two spins in antiparallel alignment to the c

axis.

Implementing this spin structure, there are actually two possibilities for the parallel-
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Figure 6.2: Magnetic property measurements of CeSbTe. (a) Temperature-dependent
magnetic susceptibility measurements for different field strengths H (col-
ors) applied along the c axis. (b) Field-dependent magnetization measure-
ments for different temperatures and field directions (colors). Below TN,
CeSbTe undergoes a field-direction dependent phase transition. The satu-
ration moment is reached faster for H ∥ c than for H ⊥ c. (c) Temperature-
dependent specific heat measurements for different fields H ∥ c (colors). (d)
Refined neutron diffraction data showing data at 1.5 K and the difference to-
wards data from Fig. 6.1 at 5 K. Besides small changes in the unit cell param-
eters, which are responsible for the changes in the background, one main
magnetic Bragg peak is visible (arrow) indicating a doubling of the unit cell
along the easy c axis in the AFM phase. Figure adapted from Ref. [5].

antiparallel transition plane. Either the spins flip between the Te layers (the cleaving

plane), or they flip at the Sb square net. Both situations are shown in Fig. 6.3(b) and

(d), next to their best neutron data fits in (a) and (c). Both AFM structures belong to

the magnetic space group Pc 4/ncc (no. 130), but correspond to different irreducible

representations when it comes to their origin (they differ by a shift of half a unit cell

in c). From the fits to the neutron data, the structure could be solved to belong to

mZ+
1 with the origin at (000), which is the situation of a spin flip between the Te layers

shown in Fig. 6.3(a) and (b). This red fit curve is also superimposed on the data of

Fig. 6.2(d).
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between the Te layers. (c) and (d) The same as (a) and (b) with a switching of
the magnetic moments between the Sb square net. The refinement fitting
shows a clear indication of the AFM structure of (b). Figure adapted from
the SI of Ref. [5].

From the measurements of the magnetic properties of CeSbTe and the structure deter-

mination by neutron diffraction, we can derive the following magnetic phase diagram

(Fig. 6.4). At temperatures higher than TN = 2.7K, CeSbTe is a paramagnetic material,

with the magnetic moments of the Ce atoms ordered randomly. As expected, for a

strong enough external field, the moments align along the field direction (with the easy

axis being the c axis) and CeSbTe undergoes a transition into the fully polarized ‘FM’

phase. The ground state, for T < TN and small fields, however is the AFM phase with
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paramagnetic (PM) phase, which can be polarized for relatively low field
strengths H ∥ c allowing for a crossover into the fully polarized (‘FM’) phase.
Figure from Ref. [5].

a doubling of the unit cell along c. This makes CeSbTe a system able to realize many

different exotic and even topological states, by influencing the addition and breaking

of specific symmetries in one material through the many magnetic phases it exhibits

(presented in the following Secs. 6.1.1 and 6.1.2).

While it is difficult to measure the AFM and ‘FM’ phases with ARPES due to the very

cold temperatures and necessary magnetic fields, respectively, it is possible to mea-

sure the electronic structure of the paramagnetic phase and verify the theoretical pre-

dictions made by DFT. Fig. 6.5(a) shows the Fermi surface of CeSbTe at ~ω= 70eV mea-

sured at room temperature, which ensures that we are far away from the phase tran-

sition. It shows the typical diamond-shaped nodal-line feature, characteristic for SG

129. The kz dispersion is here much more pronounced than it was the case for ZrSiS

or ZrSiTe, which can be seen in the dispersion, for example, along X-Γ-X (purple line

in panel (a)), shown in Fig. 6.5(b). The theoretical DFT kz = 0 (Γ-X-Γ) and kz = π (Z-R-

Z) dispersions along this direction draw a very different picture, which are opposed to

the experimental data with a similar energy axis in Fig. 6.5(c). It would be preferably

to extract the photon energy corresponding to a high-symmetry plane by performing

a photon energy dependent study. In absence of such a time intensive study, we can

instead use the nonsymmorphically protected point at X and R, which have very dis-

tinct initial state energies, to determine the approximate kz value for the experimental

ARPES spectra at the measured photon energy of ~ω= 70 eV. Since identifying the exact
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Figure 6.5: ARPES data taken at ~ω = 70eV and DFT calculations of CeSbTe. (a) Fermi
surface showing the typical diamond-like feature surounding the Γ points.
The high-symmetry points of the first BZ are labeled. (b) Dispersion along
X-Γ-X (purple line in (a)). (c) Bulk DFT calculations along the same k vector
of (b) for kz = 0 and π. The position of the nonsymmorphically protected
point close to the Fermi level at X is indicated by the red dashed lines in (b)
and the kz = 0 data of (c). (d), (e) Dispersion parallel to the path shown in
(b), along ky =−0.1Å−1 revealing the bands leading to the nonsymmorphic

crossings in (b). (f) Dispersion along Γ-M-Γ, revealing the nondispersive Ce
4 f 1 band at Ei = −3.1 eV. (g) Superposition of the kz = 0 (blue) and kz = π

(green) plane DFT bulk calculations along the k vector of (f). (h) Tracing of
the visible experimental band structure of (f) shown by the red dots. Band
crossings at M are enumerated. (i) DFT slab calculation along the same
path. Except for a difference in the energy axis scaling, the experimental
band structure is perfectly reproduced. Additional surface-dericed bands
are shown in red. Figure adapted from Ref. [5] and its SI.
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experimental band dispersion close to the Fermi level in Fig. 6.5(b) proved to be diffi-

cult, due to the special symmetry properties of the high-symmetry line and hence the

great reduction in intensity due to matrix element effects, we instead follow the bands

in the dispersion plot slightly off the high-symmetry line. Fig 6.5(d) and (e) show a

parallel dispersion path to the purple line in (a), with ky = −0.1Å−1. The bands indi-

cated by the dashed red lines in (e) are much more pronounced here, which allows us

to follow them to the crossing point in Fig 6.5(b), marked in dashed red lines as well.

Comparing the energy of this degeneracy to the DFT data in Fig. 6.5(c), only the X point

reveals a linear dispersion leading to a crossing point close to the Fermi level (similarly

indicated by the red dashed lines). We can, therefore, conclude that the ~ω= 70eV data

is represented fairly well by the kz = 0 plane.

Since slab calculations proved to be very reliable in the electronic structure determi-

nation of ZrSiS and ZrSiTe in the previous chapters, we will compare the ARPES disper-

sion along Γ-M-Γ in Fig. 6.5(f) with its theoretical slab counterpart. This has the further

advantage of showing additional surface-derived states. To get an initial idea, about the

slab calculation appearance, we can plot the superposition of the kz = 0 (Γ-M-Γ) and

the kz = π (Z-A-Z) direction, presented in Fig. 6.5(g). This reveals the kz dispersion to

be far less pronounced at the M point than it would be for a similar plot containing

X, apparent from panel (c). This makes it easier to compare the slab calculation with

the ARPES data along a path that contains M. For completeness purposes, the super-

position and slab calculation along X-M-X can be seen in Fig. 6.8 of Sec. 6.2. Fig. 6.5(h)

and (i) show the traced experimental band structure (red dots) next to the slab calcu-

lation along the same path and energy. Additional surface-derived bands, appearing

in an area not confined by the bulk bands of Fig. 6.5(g), are shown in red and most

likely result from the loss of nonsymmorphic symmetry at the surface (cf. the float-

ing surface state theory of Sec. 4.3). The identified band crossings of surface and bulk

bands at M are numbered. The agreement between ARPES and slab calculations is re-

markable, showing only a consistent deviation in the energy axis for lower initial state

energies. The lowest degenerate point (number 6) is, for example, clearly visible in the

slab calculations, while the bands in ARPES will only meet below -5 eV, outside of the

measured energy range. This can be attributed to the increasing inaccuracy of DFT far

away from the Fermi level, which only allows for a qualitative agreement with ARPES

here.

Furthermore, starting at around -3.1 eV initial state energy, we observe a flat, nondis-

persive band, which can be attributed to the localized Ce 4 f 1 band. These bands are

treated like core states in the DFT of the paramagnetic material, but their exact posi-

tion is important for the magnetic DFT calculations shown later. The energy position

of the 4 f band agrees with photoemission data on CeTe and CeBi [95] and is further

supported by the magnetization data of Fig. 6.2(b), clearly indicating one localized f

electron per Ce atom.
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6.1.1 Antiferromagnetism and higher order crossings

After introducing the AFM ground state of CeSbTe, it is interesting to discuss its con-

tribution to the realization of novel states of matter. While Dirac and Weyl phases were

discussed in Sec. 2.1.5 already and attributed to their four- and two-fold band cross-

ings, the additional magnetic symmetry of the AFM phase in combination with the

nonsymmorphic symmetries allows for the realization of quasi-particles beyond Dirac

and Weyl fermions [14].

The AFM phase formally breaks TRS, but simultaneously introduces a new symmetry

to the Schrödinger Hamiltonian in the form of the AFM ordering, here a doubling of

the unit cell along the c axis. In CeSbTe, the symmetry element {1̄|(0,0, 1
2 )} squares to

-1 and therefore maps k to −k, as would TRS do in space group no. 130. Hence, the

AFM phase of CeSbTe, although crystallizing in SG 129, behaves as belonging to SG

130 with TRS. This has a profound influence on the band structure, since it causes the

bands to still be four-fold degenerate at X, M and R, but allows for eight-fold degenerate

points at A. Fig. 6.6 shows DFT calculations of the AFM phase in CeSbTe. Two different

crossings at A are magnified and the lower one at Ei = −4.6eV shows a true eight-fold

crossing.

To experimentally observe this crossing now, it would be necessary to perform the ex-

periment at very cold temperatures T < 2.7K, as for example possible in the 13 exper-

iment at the BESSY 2 synchrotron. A careful photon energy dependent study around

the M point could resolve the A point (since the M point does not show such a degen-

eracy), but since we are not able to count the bands at this point in ARPES, we would

always be forced to rely on DFT to verify our observation of an eight-fold degener-

acy.
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Figure 6.6: DFT calculations of the AFM phase in CeSbTe. At Ei =−4.6eV, a true eight-
fold degenerate point can be realized at the A point. Figure adapted from
Ref. [5].
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6.1.2 `Ferromagnetism' and Weyl physics

If a strong enough field is applied, whose strength depends on the temperature and

field orientation, the fully polarized ‘FM’ phase can be reached. While the combination

of time-reversal symmetry T and spacial-inversion symmetry I enforced all bands to

be at least two-fold spin degenerate in the paramagnetic phase, the breaking of T in

the ‘FM’ phase removes this necessity. The direction of the magnetic field is, however,

very important when it comes to, by other symmetries enforced, crossings in the band

structure. Fig. 6.7(a) shows the DFT calculated bulk band structure of the paramagnetic

phase as a reference. We will in the following consider two four-fold crossings in this

phase and observe their change depending on the field direction. The green box marks

the position of the nonsymmorphically protected degeneracy at the X point, which is

additionally protected by the anti-unitary combination of T and the screw axis C̄2x .

The orange box highlights a crossing along Γ-Z, which is protected by the four-fold

rotation symmetry of SG 129. Together with (T I)2 =−1 both these cases result in four-

fold crossings, even with the addition of SOC.

If now a magnetic field is applied, time-reversal symmetry is no longer preserved. In
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Figure 6.7: DFT calculations of the band structure for different magnetic phases of
CeSbTe. (a) Paramagnetic bulk band DFT calculations with SOC. (b) Some
of the magnetic phases possible in CeSbTe. (c) Nonsymmorphic crossing
at X (green). (d) Crossing along Γ-Z, protected by the four-fold rotation
symmetry (orange). The different cases belong to the labeles in (b). Figure
adapted from Ref. [5].
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the case of a temperature T < 2.7K and a field applied along the [001] direction with

µ0Hc > 0.224T, this does lift the spin degeneracy of all bands involved. The combina-

tion of nonsymmorphic and TRS C̄2xT is, however, still enforcing a degeneracy at X and

the rotational axis is still enforcing one alongΓ-Z, which splits the four-fold degeneracy

into two two-fold crossings. This is shown in Fig. 6.7(b), (c) and (d) in the M ∥ 100 case.

In contrast, a field along [100], which is analogous to a field along [010] in a tetragonal

space group, breaks the rotational symmetry and only leaves the nonsymmorphic de-

generacy protected. An equivalent point can be made for a field direction along [110].

Note that a much larger field (µ0H > 2T) is required to align the spins in a direction

perpendicular to the easy axis.

It is therefore possible to realize two-fold degenerate points in CeSbTe, which should

in principle result in Fermi arcs expected from Weyl physics, even if it is not possible to

measure ARPES in a magnetic fields.

6.2 The e�ect of spin-orbit coupling in space

group 129

If we consider the evolution of the band structure, coming from ZrSiS in Chap. 4, con-

tinuing with ZrSiTe in Chap. 5 and ending with CeSbTe in this chapter, we notice a

steady increase in the atomic mass of the involved elements and the strength of SOC,

accordingly. Usually, SOC is related to the increase in gap sizes in bands with forbid-

den crossings. From this perspective, it is more of a disturbing force in the design of

electronic properties sought to minimize, since it is related to the prevention of linear

crossings and the increase in parabolic dispersion. As nonsymmorphic symmetries are

protected against a gapping at the high-symmetry points, but SOC retains its full effect

on the degeneracies along the high-symmetry lines, SOC can be used to create much

more isotropic Dirac cones in SG 129.

To emphasize this point, Fig. 6.8 compares the electronic structures of ZrSiS, a material

with negligible SOC, and CeSbTe, a compound of sizable SOC strength. If we consider a

similarly linear dispersion of the bands, coming from Γ and forced to meet at X, but re-

member that along the border of the BZ, along X-M, the nonsymmorphic protection is

only extended without SOC, we can observe two majorly different courses of the bands

in the surface BZ (schematically shown and exaggerated in Fig. 6.8(a) and (e)). Only in

CeSbTe, a real 2D Dirac cone is formed, while in ZrSiS this ‘cone’ is very anisotropic,

only crossing linearly perpendicular to X-M. Since the second derivative of the band

dispersion is linked to the mass of the quasi-particles, we favor the situation shown in

(e), which is independent of the k∥ vector direction. This counter-intuitive advantage

of SOC in nonsymmorphic space groups is, of course, not as pronounced in the exper-

imental spectra of the two materials, shown in Fig. 6.8(b) and (f). To evaluate the effect



78 6 CeSbTe - Magnetic Order and Nonsymmorphic Symmetry

X M

kx

ky

E

X M

kx

ky

E

X M

X M

0

-1

-2

-3

-4

0
-1
-2
-3
-4
-5
-6

-0.5 0 0.5 1 1.5

-0.5 0 0.5 1

E
 (

e
V

)
i

E
 (

e
V

)
i

-1k  (Å )y

-1k  (Å )y

X MM
hν = 700 eV

hν = 65 eV

(a) (b)

(e)

M

X X M X
R A R

X M
R A

M
A

Z
rS

iS
C

e
S

b
T
e

ARPES Slab calculation Bulk calculation

(c)

(f)

BS

SS

4-fold BS

2-fold SS

X M X

BS

SS
1-fold SS 2-fold BS

4-fold BS

2-fold BS

(d)

(g) (h)

Schematic

Figure 6.8: Comparison of the effect of SOC on ZrSiS and CeSbTe. (a) and (e) Schemat-
ics of the degree of anisotropy. (b) and (f) ARPES data measured along X-
M at ~ω = 700eV and 65 eV, respectively. (c) and (g) DFT slab calculations
of the path shown in (b) and (f), respectively. The order of degeneracies
is labeled in the bulk (BS) and surface states (SS). Surface-derived states are
shown in red. (d) and (h) Bulk DFT calculations of the path shown in (b) and
(f), respectively. The kz = 0 (M-X-M) plane is shown in blue, while kz =π (A-
R-A) is displayed in green. Figure adapted from Ref. [4].

of SOC in the bulk and surface bands, slab calculations along the same directions are

shown in Fig. 6.8(c) and (g). The bands labeled ‘BS’ (bulk state) and ‘SS’ (surface state,

shown in red) are identified by comparing the slab calculations with the bulk band cal-

culations of (d) and (h), which show the kz = 0 (M-X-M) and kz = π (A-R-A) plane in

blue and green, respectively. The first distinction in the bulk bands can most easily be

seen in ZrSiS (panel (d)), where we know all bands are four-fold degenerate at the high-

symmetry points. Since the bands do neither split along X-M, nor R-A, we can conclude

that they stay four-fold, since SOC is too weak to lift the degeneracy. In CeSbTe (in (h))

on the other hand, the bands split along X-M (R-A, respectively) and only meet at the

high-symmetry points. The bulk bands are therefore only two-fold spin-degenerate.

As described in Sec. 4.3, the surface does no longer preserve the nonsymmorphic sym-

metry, and the surface bands in Fig. 6.8(c) are therefore only two-fold degenerate at

the high-symmetry points and lines, accordingly. Since the surface also breaks inver-

sion symmetry and, together with a sizable SOC, the spin-splitting is lifted apart from

the time-reversal invariant momenta, the CeSbTe surface bands in panel (g) are singly

degenerate along X-M. The theoretical band dispersions are perfectly matched by the
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ARPES data in Fig. 6.8(b) and (f), aside from the usual discrepancy in the energy axis,

although, the ARPES data do not allow us to count the degree of degeneracy of each

band observed. Furthermore, the splitting of the surface bands is still too weak to be

reliably observed, although the surface band is clearly too broad to contain only a sin-

gle band.

It is, therefore, in principle possible to decrease the anisotropy of the nonsymmorphi-

cally protected Dirac cones by increasing the SOC in the material. The increase in gap

sizes at accidental, non-protected crossings, should in principle also allow for cleaner

crossings at the high-symmetry points. While the effect is visible in CeSbTe, it is still

not strong enough to significantly gap the bands. Hence, these results only indicate a

possible direction to increase the electronic properties of nonsymmorphic materials,

and SG 129 in particular.
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CHAPTER 7
LaCuSb2 - Space Group 129 and

Superconductivity1

It took us 15 years and three supercomputers to MacGyver a system for the gate

on Earth.

– CAPT. SAMANTHA CARTER

In the context of topology, there has been increased interest in topological quantum

computing in recent years [10]. Quantum computers employ qubits nowadays, instead

of the bit structure used in classical computers, to store information. Algorithms op-

erating on qubits utilize the intrinsic quantum mechanical properties of these states,

which allows quantum computers to be much more efficient at certain problems, like

quantum simulations, or improve existing limitations of classical systems, like in the

case of quantum-based cryptography. One of the biggest limitations in the field of

quantum computing so far is the decoherence of the prepared quantum states that

need to be carefully decoupled from their environment to allow for quantum gates to

operate on them faster than their decoherence time. Though it is in principle possi-

ble to simulate ideal quantum circuits, by performing operations on imperfect ones as

long as the error rate is below a certain threshold [96], the field of topological quan-

tum computing approached this problem by implementing fault tolerance on a hard-

ware level. The robustness of topologically protected states against localized imper-

fections plays a major role in the implementation of fault-tolerant Majorana fermions

as anyons obeying non-Abelian statistics [97]. Such non-Abelian Majorana particles

can be realized in vortices of topological superconductors, a state of matter, where su-

perconductivity is induced in the topological phase via the proximity-effect. Such a

1This chapter is based on a publication soon to be submitted
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topological superconducting phase can either be achieved by bringing a strong topo-

logical insulator very close to an s-wave superconductor [98], or by utilizing the bulk

superconductivity of certain topological 3D semimetals directly, which is the way we

aim to achieve here.

We already showed in previous chapters that some members of space group 129 show

a non-trivial Berry phase and how this could lead to topological surface states, e.g.

on the surface of ZrSiTe. So far, these semimetals were not analyzed in the context of

their superconducting properties. Here, we focus on LaCuSb2, another member of SG

129, which shares the square-net motive, but is not isostructural to ZrSiS. Its crystal

structure and electronic properties are presented in Sec. 7.1, while Sec. 7.2 introduces

its topological features and emphasizes the potential of LaCuSb2 as a material at the

interface between topology and superconductivity.

7.1 Electronic structure determination

As mentioned above, LaCuSb2 is not isostructural to ZrSiS, but still belongs to the same

space group P4/nmm (no. 129). This implies, it exhibits the same symmetries, but not

necessarily the same atomic basis. Fig. 7.1(a) and (b) show a side and top view of the

crystal structure of LaCuSb2, respectively. The unit cell is shown in black. Since it fea-

tures the same square net of Sb atoms as CeSbTe (cf. Fig. 6.1) and, as we showed earlier

in Sec. 2.2, it is responsible for many of the properties leading to a Dirac semimetallic

nature, we would expect a recognition of the electronic features in the band structure

as well. This should, to first order, be independent of the additional Sb atoms, which

each bond to four Cu atoms. The Cu atoms are each similarly bond to four Sb atoms

in a tetrahedral fashion. Since Cu presents itself as a d10 system, we do not expect any

magnetism or strong electron correlations in LaCuSb2.

Fig. 7.1(c) shows the Fermi surface of LaCuSb2, measured by ARPES at ~ω= 80eV. The

high-symmetry points of the first BZ are shown in red. As a comparison, a DFT calcu-

lation of the Fermi surface is shown in Fig. 7.1(d). Both, experimental and theoretical

data reveal an absence of bands close to the Fermi level around M and a diamond-

like structure around Γ, almost, but not quite, connecting the X points. The internal

structure around the Γ point is better visible in successive BZs, since matrix element

effects reduce the intensity in the first BZ considerably. All these features are com-

monly found in SG 129 and are present here as well. It would now be interesting to

see, if we can resolve any surface states close to the X point, which were present in, for

example, ZrSiS (cf. Fig. 4.3(a) and (b)). An extension of the X point Fermi surface inten-

sity along X-M was a clear indication of a surface state there. For this, we evaluate the

DFT bulk band calculations first. As shown in Fig. 7.1(e), the bands are again four-fold

degenerate at X and M (R and A, respectively) due to the nonsymmorphic symmetry
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Figure 7.1: (a) and (b) Side and top view of the crystal structure of LaCuSb2, respec-
tively. The unit cell is indicated in black. (c) ARPES Fermi surface measured
at ~ω= 80 eV. The high-symmetry points of the first BZ are shown in red. (d)
Corresponding Fermi surface DFT calculation. (e) DFT band structure cal-
culations with SOC. (f) ARPES spectra along the path shown in dashed lines
in (c). Bands with very weak intensity are indicated with arrows. (g) and (h)
Corresponding kz = 0 plane and kz =π plane of the dispersion in (f), reveal-
ing the better agreement of the ARPES data with the BZ center plane. The
figure is part of a manuscript soon to be submitted.

present in the system. The X point further reveals some bands dispersing above the

Fermi level along X-M, which was usually deserted of bulk bands and a good indica-

tion for surface bands. Since there is no direct indication for a predestined surface

state area, we compare the dispersion measured in ARPES and theoretically predicted

in DFT directly. Due to the significant kz dispersion present in LaCuSb2, we oppose

the ARPES spectra in Fig. 7.1(f) with the kz = 0 plane in (g) and the kz = π plane in

(h). The easiest feature to identify the kz plane in the DFT data is the number of lin-

early dispersing crossings of the Fermi level along Γ-X. The experimental data clearly

resolve four bands, two of which are weak in intensity but indicated by arrows. This

situation of extended linear dispersion is caught perfectly along Γ-X, while Z-R would
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predict an area of several oscillating bands here. The following parabolic dispersion

towards M along X-M is nearly independent of kz and present in (g) and (h). The only

feature, remotely more accurately attributed to the kz = π plane, is visible in the en-

ergy gap between the first and second pair of bands along X-M in panel (f). Shortly

before the M point, these bands show a forbidden crossing that is gapped by SOC, but

stronger gapped in the kz = 0 plane. This big gap is absence in the kz = π plane and

reproduces the experimental spectra better here. We, therefore, conclude that for a

photon energy of 80 eV, the ARPES spectra are recorded close to, but slightly off, the BZ

center plane. We were, however, not able to resolve any additional states in the ARPES

data that we could relate to surface-derived states. It is possible that the surface states

run in parallel and on top of the bulk bands in this energy range, which could be un-

covered by performing slab calculations, which were not available at the time of this

writing.

Our ARPES measurements did reveal, however, the presence of bands linearly dispers-

ing along a large energy range of at least 0.5 eV, which could give rise to Dirac fermion

physics at the crossing points of these bands, explaining many of the exotic properties,

e.g. the large linear magnetoresistance, in LaCuSb2. A manuscript on these measure-

ments, as well as, on the here presented ARPES data, is in preparation.

7.2 Topology and superconductivity

To evaluate the topological properties present in LaCuSb2, quantum Shubnikov-de

Haas (SdH) oscillations were recorded. The resistivity was measured at high-magnetic

fields, where periodic oscillations can be observed, if the separation of the Landau

levels is large enough (usually fulfilled in Dirac materials) and the temperature is low

enough for the carriers to populate the lower Landau levels. Fig. 7.2(a) shows the am-

plitude of the SdH quantum oscillations at T = 0.27K as a function of inverse field.

The four-point resistance measurements were performed on single-crystal structures

prepared by focused ion beam lithography and measured in the setup shown in panel

(b). Measurements of the c-axis resistivity used an excitation current of 150µA with

magnetic fields up to 12 T applied along the c axis. The dominant SdH oscillation has a

frequency of 49.6 T and can be observed up to 30 K, as shown in the FFT data of panel

(c). It is possible to plot the inverse field positions of the oscillations against the n-th

Landau level index (where maxima are integer and minima are half-integer indices) to

fit a linear function to the data points and extract the index-axis crossing point γ. This

crossing point is related to the Berry phase φB [99, 100]:

γ= 1

2
+ φB

2π
(7.1)
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(a) (b)

(c) (d)

Figure 7.2: Quantum SdH oscillation measurements of LaCuSb2. (a) Amplitude oscil-
lations in the resistivity measurement at T = 0.27K. (b) Sample setup of the
four-point resistance measurements. (c) FFT amplitude of the measure-
ment in (a) for various temperatures shown in different colors. The pre-
dominant frequency is identified as 49.6 T. (d) Temperature evolution of the
FFT amplitude of the 49.6 T peak. Lifshitz-Kosevich theory allows for the
determination of the effective electron mass as m∗ = 0.065me. The figure is
part of a manuscript soon to be submitted.

And although this analysis results in a γ of -0.18(5) in LaCuSb2, which would yield a

φB of approximately π, if we consider Dirac fermions resulting in a γ=−1
8 factor [101],

this finding is not robust without performing Hall measurements on the same sample

as well to determine the absolute phase from the resistivity. At the writing of this thesis,

these measurements are still pending.

It is, however, possible to plot the FFT amplitude of panel (c) against their tempera-

tures, which allows us to obtain information about the effective carrier mass m∗ and

the Fermi momentum kF according to the Lifshitz-Kosevich theory [102]. The values

are extracted from the fit in Fig. 7.2(d) and are determined to be m∗ = 0.065me and

kF = 3.88×108 m−1, of which the ultra-low carrier mass indicates strongly the presence

of Dirac fermions.

This evaluation of the topological nature is only a preliminary one right now and the
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determination of the π Berry phase is not yet completed, it however shows the poten-

tial LaCuSb2 has in this field. One the matter of superconductivity, there have been

several claims in the literature that LaCuSb2 turns superconductive below Tc = 0.9K

[15, 16], although, at the time of this writing, we were not able to confirm this phase

transition. Should this last step be realized, LaCuSb2 might provide an interesting

model system on the interface between Dirac physics, topology and superconductiv-

ity.
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CHAPTER 8
GdTe3 - Towards Monolayer

Antiferromagnetism1

‘Out-of-the-box’ is where I live.

– LT. KARA ‘STARBUCK’ THRACE

The previous chapters focused all on the many features and application possibilities

of space group 129. There are however limitations to this family of compounds that

prevent materials like ZrSiS from being utilized in certain fields of material science.

One such limitation lies in its 2D scaling capability. The field of 2D materials does not

only include physical properties like Dirac fermions [103], topological insulators [104]

or Ising superconductivity [105], but did also recently get expanded by ‘twistronic’ de-

vices [13]. Twistronic applications utilize the twist angle in 2D bilayer heterostacks to

influence their electronic structure, of which superconducting graphene is a promi-

nent example [106]. The idea to employ 2D materials in applications is not a new idea

however, as they are used in spintronic devices already [107]. Very often, their mag-

netic properties are of primary importance in this context, which forced people to be

content with the poor carrier mobilities these materials offered [108]. The introduc-

tion of a magnetic 2D material with high carrier mobility and a resulting large mean

free path would open up a new way of device fabrication.

It is in this context that GdTe3 could contribute to an advancement of the field, since it

combines high carrier mobilities with an antiferromagnetic bulk and thin flake struc-

ture at low temperatures. In contrast to ZrSiS, this is possible due to the combination

of a clear van der Waals gap in the crystal structure and the f electrons comprised in

the Gd atoms. Rare-earth tritellurides (RTe3, R = La-Nd, Sm and Gd-Tm) have already

1This chapter is based on a publication soon to be submitted
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been shown in the past to exhibit an incommensurate charge density wave (CDW)

[109, 110, 111, 112, 113, 114, 115, 116, 117] in combination with rich magnetic phases

[118, 119] and even superconductivity at high pressures [120, 121]. Sec. 8.1 will intro-

duce the electronic structure of GdTe3 and show the emergence of the CDW, gapping

almost all pockets at the Fermi level. Sec. 8.2 will then present its potential in the di-

mensional reduction by exfoliation and AFM order it demonstrates at low tempera-

tures.

8.1 Nesting driven charge density wave

The crystal structure of GdTe3 contains many elements familiar from SG 129. Without

considering the CDW for now, it crystallizes in the orthorombic space group Bmmb,

illustrated in Fig. 8.1(a). The two in-plane lattice parameters deviate however only

slightly between a = 4.320Å and b = 4.330Å, while the out-of-plane axis c = 25.570Å

is considerably longer. GdTe3 features a double-layer of Te atoms forming a square-

net structure intermittent by a double corrugated Gd-Te slab. While the square-net

structure is again a good indication for linearly dispersing bands and the consider-

ably large van der Waals gap, present between the Te sheets, allows for an exfoliation

of the material, the Gd-Te slab will be responsible for the low-temperature AFM or-

der.

The x-ray diffraction data of Fig. 8.1(b) attest the phase purity of the as-grown crystals

(microscopy and SEM picture in insets). Below 377 K, GdTe3 hosts a single CDW along

the b axis [113], which is, for example, clearly resolved in the STM image of panel (c),

taken at 72 K. It furthermore reveals a very low defect concentration of roughly one de-

fect per 200 unit cells. The temperature-dependent magnetization data of Fig. 8.1(d),

finally, confirm the AFM order arising below the Néel temperature TN = 12.0K. Two

additional magnetic transitions at T1 = 7.0K and T2 = 10.0K are visible in the low-

temperature inset, which were not reported in the literature so far, but will not be the

focus of this thesis.

The CDW of GdTe3 results in a k-dependent gapping of the bands around the Fermi

surface along ky . This is clearly resolved in the ARPES data of Fig. 8.2(a), where there

are no bands visible contributing to the Fermi surface along Γ-Y-Γ
′
. The overall shape

of the Fermi surface is shown in the theoretical picture of panel (a). It consists of

two rectangles (a small and a big one centered around the Γ points), which can be

explained by starting from a 2D picture of the px and py orbitals of the Te square

net and successively adding the effects of px-py interactions and the doubling of the

unit cell necessary in a and b, when the unit cell is expanded to 3D (again leading

to a back-folding in k space) [122]. This also directly results in the dispersion shown

in Fig. 8.2(b) along Γ-X, 45◦ off the high-symmetry line and X-M. The ARPES data
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Figure 8.1: Structural characterization of GdTe3. (a) Crystal structure containing a dou-
ble van der Waals-gap layer of Te. The unit cell is indicated in black. (b) Pow-
der x-ray diffraction pattern of a oriented single crystal showing only the 00l
reflections. (c) STM image measured at 72 K at a bias of 0.2 V. The CDW vec-
tor is visible along b. (d) Temperature-dependent magnetization data for a
field parallel (red) and perpendicular (blue) to the c axis. Phase transition
temperatures are indicated by arrows. The figure is part of a manuscript
soon to be submitted.

is shown without further processing and in its second derivative form in panel (b),

both revealing certain parts of the band structure better than the other representa-

tion.

Special focus should be payed to the X point, being the only high-symmetry point not

fully or partially gapped by the CDW. The bands contributing to the Fermi surface

around this point can be traced and their dispersion is superimposed on the bands

and explicitly shown in Fig. 8.2(c). Their Fermi level puncture points are also shown in

panel (a) in the corresponding colors. Along the high-symmetry line, only two Fermi

surface intersections can be identified, corresponding to the blue and red pocket along

Γ-X in the theory of panel (a). The two Fermi surface crossings, 45◦ off the high-

symmetry line, however, allow us further to recognize that the red pocket around X
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Figure 8.2: Electronic structure characterization of GdTe3. (a) Fermi surface in ARPES
experiment and theory. The pockets around the X point are the only ones
contributing to the quantum oscillations due to the gapping along ky by the

CDW. The two pockets around X are further split by the kz dispersion result-
ing in four Fermi surface pockets. (b) ARPES dispersions at ~ω = 500eV
along Γ-X, 45◦ off the high-symmetry line, and X-M in normal and sec-
ond derivative representation. (c) Band contributing to the Fermi surface
around X. The double bands shown in red in the theory of panel (a) are only
resolved 45◦ off the high-symmetry line due to the high photon energy used
in this experiment. The theory of panel (a) is adapted from a manuscript
soon to be submitted.

actually consists of two bands, although this is hardly visible in the ARPES Fermi sur-

face of panel (a), but indicated in the theory plot. From this doubling, 45 ◦ off the

high-symmetry line, we can conclude that we should actually observe four crossings

along Γ-X, which is not resolvable due to the low resolution of the high photon energy

data.
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The bands tracked in Fig. 8.2(c) also reveal a fairly high Fermi velocity from the bands

around the X point. The results are presented in Tab. 8.1. The values for ZrSiS [1]

and graphene [123] are given below, which are very much comparable to the veloci-

ties found in GdTe3:

band Fermi velocity (eV Å)

blue 5.05±0.03

violet 4.86±0.02

red 4.52±0.03

green 3.9±0.07

tomato 7.36±0.06

orange 4.71±0.01

ZrSiS 4.3

graphene 6.7

Table 8.1: Fermi velocities of the bands around X in GdTe3 evaluated along Γ-X and
45◦ off the high-symmetry line. As a comparison, the values for ZrSiS [1] and
graphene [123] are provided.

These values follow the expected trend of higher Fermi velocities angled off the high-

symmetry line, but are slightly lower than the average Fermi velocity of 10±1eV Å ex-

tracted for RTe3 compounds in Ref. [122]. Since their analysis however did not con-

sider GdTe3 itself and they found strong deviations from this average value, we can

easily account for our lower values by considering the poor band resolution at such a

high photon energy. Besides the large slope of the bands forming the Fermi surface,

their linear dispersion further suggests that GdTe3 is a material with fairly high carrier

mobility. Indeed, magnetic field-dependent in-plane resistivity measurements at vari-

ous temperatures were performed and reveal magnetoresistance data similar to some

nonmagnetic semimetals (mobilities on the order of 104 cm2/Vs). Furthermore, the

Fourier analysis of the de Haas-van Alphen (dHvA) effect allow for an estimation of the

Fermi surface pockets responsible for these oscillations. The four oscillation frequen-

cies translate to 2.13%, 2.28%, 3.67% and 3.83% of the BZ area, which is in very good

agreement with the two pockets around X, if we consider their further splitting due to

kz dispersion.

8.2 Monolayer antiferromagnet

The high mobility and AFM order in single crystals is only one of the features important

for applications with GdTe3. We further have to show that it is scalable to two dimen-

sions, while keeping its magnetic and electronic properties.
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Fig. 8.3(a) shows an optical image of an exfoliated GdTe3 sheet on a Si wafer covered

with SiO2. The highlighted area is presented in an atomic force microscopy (AFM) pic-

ture in panel (b) and reveals different few-layer regions. Along various step edges, in-

dicated by white lines, the height profiles are plotted in panel (c). At the moment of

this thesis’ submission, we were able to exfoliate the flake down to three layers, which

corresponds to 1.5 unit cells. We are therefore quite confident that it is only a matter of

time until a single monolayer (half a unit cell) is realized.

In this low-dimensional confirmation, we performed Raman spectroscopy on a 7.5 nm

thin flake to ascertain its atomic structure and measured the temperature-dependent

resistivity of a 22 nm thin flake affirming its magnetic structure. Fig. 8.3(d) features

changes in the resistivity slope showing the development of the CDW at 385 K and the

Figure 8.3: 2D scalability and carrier mobility of GdTe3. (a) Optical microscopy of a
thin flake. (b) AFM picture of the highlighted area in (a). (c) Height pro-
file along the white lines in (b) revealing thin flakes down to three layers
(1.5 unit cells). (d) Temperature-dependent resistivity measurements on a
22 nm thin flake. The inset shows the low temperature data under an ap-
plied field of 5 T. The CDW formation and the magnetic phase transition
temperature are both retained for this low-dimensional confirmation. (e)
Temperature-dependent electron and hole mobilities for the 22 nm thin
flake. This figure is part of a manuscript soon to be submitted.
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magnetic transition temperature at TN = 9.5K. In this confirmation, GdTe3 does not

only retain its magnetic structure, but also shows very high mobility as apparent from

Fig. 8.3(e), determined from the thin-flake transport measurements. These thicknesses

are still preliminary, since thinner devices are theoretically possible but are very time

intensive.
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CHAPTER 9
CuInTe2 - Towards Catalysis

Applications1

Leeloo Dallas Multipass.

– LEELOOMINAÏ LEKATARIBA LAMINA-TCHAÏ EKBAT DE SEBAT

When we consider the possible areas of application for ARPES measurements, one

would usually not name the field of photoelectrochemistry. The electrochemical con-

version of solar energy into a storable and transportable fuel, like hydrogen in wa-

ter splitting, does however pose some interesting questions on the electronic prop-

erties of the photoelectrodes. To evaluate the performance of a material as a potential

photoelectrode, a good starting point are usually the thermodynamical requirements,

like the band gap and position of the Fermi level. It is easy to forget that kinetic fac-

tors are of equal importance when it comes to practical applications [124]. While the

sun light must excite electrons from the valence into the conduction band forming an

electron-hole pair, the charge carriers must still separate afterwards to reach, for ex-

ample, the adsorbed water molecules at the surface of the electrodes, forming O2 and

H2, respectively. If this separation is not happening reasonable fast compared to the

recombination rate, than the photoexcited charge carriers can never contribute to the

electrochemical process. This separation process depends on the electrical proper-

ties and, therefore, the band structure. The charge transfer of majority charge carriers

(holes) in the photocathode, for example, depends directly on the valence band struc-

ture, and more explicitly on the band velocity and the mobility of the quasi-particles

[125].

1This chapter is based on publication [7]
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This is an area where ARPES could contribute greatly to enhance the understanding of

the intrinsic limitations of photoelectrodes. In most cases however, the band structure

determination turns out to be rather difficult. Experimentally, due to the large band

gaps, and theoretically due to the large influence SOC seems to have on these materi-

als.

Here, we present ARPES data on CuInTe2, which has its valence band maximum very

close to the Fermi level and a rather small band gap, allowing for a characterization

of the band structure via photoemission. As a first step, the surface BZ determina-

tion is presented in Sec. 9.1. Although CuInTe2 belongs to a tetragonal space group,

its reciprocal counter part showed only signs of a cubic BZ. Afterwards, we present

the indications of a good catalytic performance in ARPES and in thermodynamical

measurements in Sec. 9.2 and 9.3, respectively. We hope this proves not only the par-

ticular purpose of CuInTe2, but also the importance of electronic measurements in

general for the determination of the performance of good photoelectrocatalytic mate-

rial.

9.1 Surface Brillouin zone determination

While ARPES measurements usually reveal the periodic order of reciprocal space quite

accurately and is in accordance with the theoretical expectations from the unit cell

calculations, in CuInTe2 we found a discrepancy in this regard, which will be discussed

here.

Fig. 9.1(a) shows the unit cell of tetragonal chalcopyrite CuInTe2 and the primitive vec-

tors in black. This theoretically results in the black BZ shown in the orthographic view

of panel (b) and, with the natural cleavage plane located along the (112) plane, in the

surface BZ side cuts shown in (c). From this, the projections of the Γ points should be

distributed on a tetragonal lattice in the surface BZ, shown in panel (d) in black dots.

The theoretical first BZ around Γ is shown as a black frame. This is, however, not what

we observed in the constant energy cuts of the ARPES measurements in Fig. 9.2(a). The

Γ points are clearly showing a hexagonal unit cell structure. We can superpose this

hexagonal structure in blue on the tetragonal results in Fig. 9.1. If we follow the big-

ger, blue hexagonal BZ reversely, starting from panel (d), and keeping in mind that the

cleaving plane in the reciprocal coordinate frame of the hexagonal BZ is the [111] di-

rection, we end up with the blue unit cell vectors in panel (a). These clearly indicate the

primitive vectors of the smaller, cubic zinc blende unit cell.

Already Pettenkofer et al. [126] reported on such a pseudo-cubic unit cell in CuInSe2

and similar phenomena have also been reported in the orthorombic structure of the

perovskite CaTiO3 [127]. One driving factor for this phenomenon seems to be the lat-

tice parameters of CuInTe2. Since c ≈ 2a, it is possible to derive the tetragonal unit
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Figure 9.1: Unit cell determination of CuInTe2. Items belonging to the tetragonal and
cubic unit cell are shown in black and blue, respectively. (a) Crystal struc-
ture of the tetragonal unit cell. The primitive vectors are indicated with ar-
rows. Te atoms are not plotted but are each tetrahedrally connected to two
In and Cu atoms. (b) First BZ with the cleaving plane direction indicated
along [112] or [111], respectively. (c) Side-views of the first BZ, with high-
symmetry point projections towards the surface BZ. (d) Γ points of the sur-
face BZ. The ARPES data of Fig. 9.2 match the hexagonal BZ belonging to the
cubic unit cell. Figure adapted from Ref. [7].

cell by a “stacked” zinc blende structure of two cubic unit cells along c, with a lattice

mismatch of only 0.1 %. Thus, the elemental difference between the tetragonal and

the “stacked” cubic unit cell is only given by the difference in the two cation species

Cu+1 and In3+. This seems to be resolvable by diffraction, but invisible to our APRES

measurements.

It is prudent to note here, that our DFT calculations are still based on the tetragonal

structure, which requires us to compare the positions of high-symmetry points care-

fully. This was done in Fig. 9.1(c), where we identified the kx direction with the DFT

path along Γ-N. ky can be identified either with Γ-Z or Γ-X, much stronger depending

on the kz value, which will further be discussed in the following section.

9.2 The indications of a good photocathode in

ARPES

After having analyzed the theoretical surface BZ of CuInTe2, we will now present the

ARPES data measured at a photon energy of ~ω = 80eV in Fig. 9.2. Panel (a) shows

two constant energy cuts, at the Fermi level (Ei = 0eV) and at Ei =−0.87eV. The Fermi

surface reveals only weak intensity spots at the Γ and Γ
′

points, since they are simul-

taneously the valence band maxima in CuInTe2. It shows, however, a clear hexagonal
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Figure 9.2: ARPES measurements of CuInTe2. (a) Constant energy cuts at Ei = 0 and -

0.87 eV. TheΓ andΓ
′
points indicate a hexagonal BZ (the blue color indicates

the influence of the cubic unit cell). (b) Evolution of the bands around the
Γ point. (c) Shirley-background subtracted and secon derivative ARPES dis-
persions along ky = 0Å−1 and kx = 0Å−1, which represents the theoretical
N-Γ-N and Z-Γ-Z direction in the tetragonal unit cell calculations, respec-
tively. Band dispersions are indicated by dashed lines and white arrows. (d)
DFT calculations with SOC for the dispersions in (c). Figure adapted from
Ref. [7].

structure of the first BZ, which was the decisive factor in identifying the stacked cu-

bic unit cell in Fig. 9.1. The distance between Γ and Γ
′

is experimentally determined

at 1.66 Å−1, matching the expected distance of the cubic BZ centers projected along

its [111] direction perfectly. Fig. 9.2(b) shows the band evolution around Γ, revealing

an internal structure of several bands, leading to the clover-shaped feature surround-

ing Γ. To evaluate this further, we analyzed the dispersion along ky = 0Å−1 (N-Γ-N)

and kx = 0Å−1 (Z-Γ-Z) in the upper and lower row of panel (c), respectively. The cor-

responding bulk DFT calculations with SOC are shown in panel (d) and were identi-

fied according to Fig. 9.1(c). Along kx = 0Å−1, Γ-Z achieves a much better agreement

with the experimental data, which makes us believe that the kz plane is cutting the Z

point for a photon energy of ~ω= 80eV. Furthermore, the DFT band structure had to be

stretched by a factor of 2, to accommodate for the changed distance between Γ and Γ
′

of the tetragonal and cubic unit cell. The dispersion plots of panel (c) show the Shirley

background subtracted and second derivative ARPES spectra, revealing a pair of bands

meeting very close to the Fermi level at Γ. At Ei ≈ −0.8eV, a third band, responsible

for the internal clover shape in the constant energy cuts, crosses Γ. All three bands are

emphasized by dashed lines in the ARPES data and marked with white arrows in the

second derivative data. These bands are qualitatively reproduced in the DFT data of

panel (d), however, they are not as steeply dispersing as their experimental counter-

parts. To reach a quantitative agreement, the DFT energy axis needs to be stretched

by a factor of 1.9, a trend opposite to the commonly found reduction in theoretical
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band width calculations usually attributed to electron-electron correlations [128]. In

fact, the experimentally determined band velocity slightly below the Fermi level al-

ready amounts to 2.5-5.4×105 m/s, about 25-50 % of the Fermi velocity in graphene

[123]. We evaluated the band slope slightly below the Fermi level, since the parabolic

dispersion very close to EF of course decreases the band velocity quite considerably.

Our evaluation is however justified due to the photo-absorbed excitement of electrons

well below the Fermi level, which allows for a high initial band velocity of the created

holes. This high band velocity is interesting in the context of photocatalysts, since in

the case of halide perovskite materials, it has been shown theoretically that the high

carrier velocities can be related to reduced recombination rates and high mobilities

[125]. Additionally, the wide range of linearly dispersing bands, results in low effec-

tive masses (for perfectly linear dispersions, even zero effective mass), which results in

high charge carrier mobilities. As a comparison, the experimentally determined mo-

bility of the p-type charge carriers was estimated to be 870 cm2V−1s−1, two orders of

magnitude greater than for poly-crystalline samples of CuInS2 and CuInSe2 [129] and

eight- (three-)times higher than those of other light-harvesting semiconductors like

single-crystalline CH3NH3PbI3 [130] (BiVO4 [131]).

Lastly, we have to consider the effect of SOC on the electronic and catalytic proper-

ties. As can be seen in Fig. S4 of the SI of Ref. [7], the three experimentally observed

bands showing their maximum at Γ can only be reproduced by DFT when consider-

ing SOC. Otherwise the third band is degenerate with one of the others along Z-Γ-Z

and there is never a -0.8 eV shift of the third band to lower initial state energies. SOC

can, however, also more indirectly influence the carrier lift time. It has been shown

that a Rashba-type spin splitting, due to the effect of SOC on the surface of an in-

version symmetric material, can result in spin-split indirect band gaps that reduce

the recombination rate and therefore greatly enhance the carrier lift time [132, 133,

134]. While CuInTe2 lacks spacial inversion symmetry to begin with, already the bulk

bands show spin-splitting when considering the effect of SOC, due to a combination

of bulk Rashba and Dresselhaus effects. To analyze the effect of therefore created spin-

split indirect band gaps, we in principle need to calculate the spin distribution around

the Γ point. This can be easily done along Γ-Z, where the C2v symmetry distributes

the spins in-plane, as it would be case for a pure Rashba-type splitting [135], but al-

ready along Γ-N, the situation is not as obviously clarifiable, since the valence and

conduction band could be influenced individually. Since we, however, do not observe

a strong Rashba-type splitting at the surface of CuInTe2, this effect, if present, will only

have a minor influence on the mobility in the context of the other effects discussed

above.
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9.3 Thermodynamical measurements

While there are, to our knowledge, no studies on the photoelectrochemical properties

of CuInTe2 and our own study is not concluded at the moment of this thesis’ submis-

sion, we can at least confirm that this material is thermodynamically capable of pho-

toelectrochemical water reduction.

To this end, we determined the flat band potential of the valence band by an AC impe-

dance measurement for a Mott-Schottky (M-S) analysis and compared it to the results

of a chopped-light linear sweep voltammetry (LSV) measurement. For a more de-

tailed explanation of the two measurement methods, the reader is revered to Ref. [7].

Fig. 9.3(a) shows the results of the M-S plot of CuInTe2. The measurement was per-

formed at pH 9 in 0.6 M Na2SO4(aq) for different AC frequencies. The common x-axis

intercept of the linear approximations of the different frequency lines can be used to

Figure 9.3: Thermodynamical measurements of CuInTe2. (a) M-S plot at 1, 3 and 5 kHz
under dark conditions. The common x-axis intercept is determined by lin-
ear approximation. (b) Chopped-light LSV curve. The dark current was
subtracted from the light measurement (both shown in inset) to obtain the
graph. The onset potential is determined by the growth from the baseline.
(c) Schematic band edge diagram. The conduction band minimum was de-
termined by the gap size. The black dashed line represents the water reduc-
tion potential at comparable conditions and is comprised in the gap. Figure
taken from Ref. [7].
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determine the flat band potential even if the semiconductor-electrolyte interface is

never ideally capacitive [136, 137]. This M-S analysis results in a flat band potential

of -0.62± 0.041V vs. Ag/AgCl. Fig. 9.3(b) shows the chopped LSV plot. The j-V curve

was obtained by subtracting the dark current from the illuminated curve, which are

shown in the inset LSV scans. Here, the flat band potential can be identified as the po-

tential at which the photocurrent starts to vary from its baseline, the onset potential. It

is determined as -0.58±0.073V vs. Ag/AgCl at pH 9.

The two results within the error bars and schematically shown in Fig. 9.3(c). The con-

duction band minimum was approximated by the optically determined band gap of

0.91 eV [7]. Since the band edges comprise the H2 evolution potential vs. Ag/AgCl at

pH 9 (dotted line in panel (c)), we can confirm that CuInTe2 is thermodynamically ca-

pable of photoelectrochemical water reduction.
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CHAPTER 10
Conclusion & Outlook

In this work, we used ARPES to study the electronic properties of novel Dirac semimet-

als. Our aim was to advance the field of material science and physics by uncovering the

band structure characteristics of new compounds. Since these materials were for the

most part not characterized beforehand, we chose ARPES to simultaneously resolve

the electronic surface and bulk band structure, while using DFT and tight-binding cal-

culations to explain the origin of the observed features.

10.1 The many faces of space group 129

In the first part of this thesis, we focused on materials crystallizing in SG 129. The

square-net motif incorporated in many of these compounds allows for the realiza-

tion of linearly dispersing Dirac crossings close to the Fermi level, which is combined

with the nonsymmorphically protected crossings enforced at certain high-symmetry

points. In particular, ZrSiS and related compounds proved to be a rich play ground

when it comes to the interplay of bulk and surface electronic structure. Here, we showed

that ZrSiS is a Dirac nodal line material with the nodal line forming in a diamond-

shape in the kz = 0 and π plane, which are perpendicularly connected. This cage-like

structure is only slightly dispersing close to the Fermi level. The nonsymmorphic sym-

metry in the bulk, furthermore, enforces degeneracies along X-R and M-A, which are

resistant to gapping due to SOC. These bulk features were superimposed by surface-

derived bands in the ARPES spectra, which do not fit any of the known surface state

origins in the literature. We showed that they can be explained by the breaking of

nonsymmorphic symmetry at the (001) surface and hence reduced surface symme-

try, resulting in the formation of ‘floating surface states’. Such surface states could be

found in all analyzed compounds of this family, like ZrSiTe and CeSbTe, but should be a

common feature of nonsymmorphic space groups in general. It is therefore one of the
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main findings of this thesis. In addition, the isostructural compound ZrSiTe featured,

in addition, the perfect ratio between c and a axes to ensure the energetic position

of the nonsymmorphic bulk degeneracy at the X point to be located very close to the

Fermi level. This marks the first step towards the characterization of nonsymmorphic

symmetry in transport experiments. Compared to ZrSiS, ZrSiTe shows a much more

complex surface band structure. One of these bands, occupying the projected over-

lap of the nodal lines, was identified as a representative of the topological ‘drumhead

surface states’. Furthermore, CeSbTe allowed for the combination of magnetism and

nonsymmorphic symmetry. A neutron scattering experiment identified the anitferro-

magnetic ground state featuring a doubling of the c axis in the magnetic order, which

complemented the magnetic phase diagram of CeSbTe. In this compound, it was the-

oretically shown that it should be possible to observe Weyl physics and degeneracies of

higher order in the fully polarized and the antiferromagnetic state, respectively. Addi-

tionally, the increased SOC was shown to be advantageous in the formation of isotropic

Dirac cones around the nonsymmorphically protected high-symmetry points. Lastly,

LaCuSb2 showed potential for combining the fields of topology with superconductivity

in SG 129.

Many of these projects were only a proof of principle so far and can be extended with

specific measurements. One example is the AFM phase of CeSbTe, which is not ac-

cessible due to the low-temperature restriction. If a low-temperature beamtime, e.g.

at the 13 beamline at Bessy-II, could be conducted, it would be worthwhile to ob-

serve the AFM phase by means of ARPES. As we showed in the DFT calculations, this

could lead to the observation of a true eight-fold degeneracy at the A point. The same

low temperature argument can be made about LaCuSb2, whose topological proper-

ties are so far only hinted at and whose low-temperature superconducting phase has

not yet been observed by us. Furthermore, combining the results obtained by differ-

ent compounds might be interesting in the future. For example, the correct structural

ratio to move the nonsymmorphically protected Dirac point to the Fermi level, like

in ZrSiTe, in combination with strong SOC (gapping most other crossings and result-

ing in an isotropic nonsymmorphic degeneracy), like shown in CeSbTe, could be very

interesting to measure the nonsymmorphic properties of a material by transport ex-

periments. Then again, the square-net materials of SG 129 are vastly uncharacter-

ized concerning their electronic properties so far, and the interplay of the stabilizing

d bands close to the Fermi level might be very interesting in the context of cataly-

sis.

10.2 GdTe3 and its magnetic structure

GdTe3 was shown to be the first antiferromagnetic monolayer material with high mo-

bility. In this context, ARPES observed the existence of the CDW in this material and
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correlated the quantum oscillations from the dHvA effect with the size of the Fermi

pockets around the X point. These are the only pockets not partially or fully gapped

by the CDW. The Fermi velocities of bands crossing the Fermi surface there are slightly

lower than in other rare-earth tritellurides, but still on the order of ZrSiS and graphene.

It would be desirable to resolve the exact AFM structure below TN directly by means of

neutron diffraction (as presented in the case of CeSbTe), but such experiments proved

to be problematic because of the high neutron absorption coefficient of Gd. An inelas-

tic x-ray scattering experiment might be able to resolve the structure and a beamtime

is planned at the writing of this thesis.

10.3 CuInTe2 applications in

photoelectrochemistry

Using ARPES in the field of semiconductors is usually problematic due to the intrinsi-

cally large band gaps. In CuInTe2 we used ARPES to resolve the valence band structure.

This was possible due to the valence band maximum being located very close to the

Fermi level. We resolved its pseudo-cubic BZ in the ARPES experiment and verified its

potential for photoelectrochemistry by observing a wide range of linearly dispersing

bands. With this in mind, the strong influence of SOC on the band structure is quite ob-

vious, which demonstrates the importance of measurements to verify the DFT codes,

which only consider SOC in a second variational procedure.

Since our experiments prove the thermodynamical possibility for water reduction, the

next step would certainly be a complete photoelectrochemical study on the properties

of CuInTe2. Should this yield promising results, CuInTe2 might be able to replace some

of the, so far used, semiconducting materials in this field.
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