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Myt Tower-base fore-aft bending moment
N LQR weights on input-state coupling, N ∈ R(2f×nu)

Nr Reference number of cycles for DEL calculation
nu Number of dynamic system inputs
p Vector of generalized applied forces, p ∈ R(f×1)

p Number of bodies in MBS
P Generalized damping matrix (velocity-dependent applied forces), P ∈ R(f×f)

P Electrical power
q Vector of generalized coordinates, containing the system DoFs, q ∈ R(f×1)

Q Generalized sti�ness matrix (position-dependent applied forces), Q ∈ R(f×f)

Q LQR weights on states, Q ∈ R(2f×2f)

r Platform column radius
R Rotor radius
Rk
i Flexible body node k reference coordinates in �oating frame of reference,

Rk
i ∈ R(3×1)

R LQR weights on inputs, R ∈ R(nu×nu)

Re Reynolds number Re = vD/ν
rhp Platform heave plate radius
ri Position vector of body i, ri ∈ R(3×1)

s Laplace variable
S Load range (S/N curve)
S̃ Cross product operator S̃ (·), λ× a = S̃ (λ)a
Svv Spectrum of rotor-e�ective wind speed, including rotational sampling of turbu-

lence
Sdd Spectrum of disturbance inputs to dynamic system
S

(1)
FF Force spectrum of generalized �rst order wave forces, S(1)

FF ∈ R(6×6)

S
(2)
FF Force spectrum of generalized second order wave forces, S(2)

FF ∈ R(6×6)

Si Rotation tensor of body i, Si ∈ R(3×3)

Syy Spectrum of response of dynamic system
Sζζ Spectrum of incident wave height at the CF
t Platform draft
T Quadratic Transfer Function (QTF), T ∈ R(6×1)

T Complementary sensitivity function T = GK/(1 +GK)
T2r Zero-upcrossing period of response
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Ti Integrator time constant (PI-controller)
Tlife System design lifetime
Tp Peak spectral period
ui Deformation �eld for nodes k of body i, relative to undisplaced position,

uki ∈ R(3×1)

u Control inputs to dynamic system, u ∈ R(nu×1)

U Matrix of output directions of SVD
u0 Dynamic model input operating point at system steady state, u ∈ R(nu×1)

∆u Dynamic model inputs, linearized about u0 ∈ R(nu×1)

V Matrix of input directions of SVD
v0 Rotor-e�ective wind speed, wind disturbance input operating point
vb,ik Body velocity in coordinate i of inertial system at body node k
v̄hub Mean wind speed at hub height
vi Translational velocity of body i, vi ∈ R(3×1)

vi Wave particle velocity in direction i
vrel Relative rotor-e�ective wind speed
vrated Rated wind speed
vw,ik Water velocity in coordinate i of inertial system at body node k
W i Elastic beam shape function vector, W i ∈ R(3×fe,i)

x Dynamic model states x = [q, q̇]T ∈ R(2f×1)

∆x Dynamic model states, linearized about x0 ∈ R(2f×1)

X Wave excitation force coe�cient or force- RAO, X ∈ R(6×1)

x0 Dynamic model states operating point at system steady state, x0 ∈ R(2f×1)

xp Platform surge displacement (DoF)
xt Tower-top fore-aft de�ection w.r.t. tower-base (DoF)
y Outputs of dynamic system
zII,i Kinematic function for velocity of �exible body i including translation and ro-

tation of reference frame as well as elastic deformation in �oating frame of ref-
erence, zII,i ∈ R(6p+fe×f)

zIII,i Kinematic function for acceleration of �exible body i including translation and
rotation of reference frame as well as elastic deformation in �oating frame of
reference, zIII,i ∈ R(6p+fe×f)

zcb Distance of center of buoyancy of �oating body below SWL, positive downwards
zcm Distance of center of mass of �oating body below SWL, positive downwards
zp Platform heave displacement (DoF)





Abstract

Various existing prototypes of Floating O�shore Wind Turbines (FOWTs) demonstrate the

feasibility of placing o�shore wind turbines on �oating foundations, held in place by anchor

lines. The motivation of this thesis is to improve the understanding of how wind and waves

impact the dynamic behavior of semi-submersible-type platforms. The understanding of the

multi-disciplinary system shall be used to optimize the shape of the �oating platforms to show

the same stable dynamics as �xed-bottom ones with a resource-e�cient foundation.

The thesis addresses �rst the development of a dynamic simulation model with not more

than the necessary physical details. It shall bridge the existing gap between spreadsheet design

calculations and dynamic simulation models, which are used until the �nal design stage and for

certi�cation. The structural equations of motion result from an elastic multi-body system for a

reduced set of degrees of freedom. The mathematical model shall represent the overall system

dynamics without resolving the component loads. Therefore, the response is only calculated

in a two-dimensional plane, in which the aligned wind and wave forces act. Additional force

models for wind and wave forcing, as well as the mooring line forces, complete the mathematical

description. From the nonlinear system of equations a linearized model is derived. First, to be

used for controller design and second, for an e�cient calculation of the response to stochastic

load spectra in the frequency-domain. A veri�cation through a comparison against a higher-

�delity model shows that the model is able to reproduce the response magnitude at the system

eigenfrequencies as well as the forced response magnitude to wind and wave excitations. The

computational e�ciency proves to be high with one-hour simulations completing in about 25

seconds and even less in the case of the frequency-domain model.

Through a comparison to experimental measurements in a combined wind and wave basin

at a scale of 1:60, the model validity could be con�rmed. The tested concept is the TripleSpar,

a deep-drafted semi-submersible, designed as a reference in this thesis. A lesson from the ex-

periments is that a correct modeling of the hydrodynamic drag, as well as the wave forcing, is

important because these loads dominate the system response of �oating wind turbines. The

coupled system stability shows to be driven by the gains of the blade-pitch controller in con-

nection with the aerodynamic and the hydrodynamic damping. Controlling the rotor speed can

destabilize the rotor fore-aft motion, while a large damping in fore-aft direction can mitigate

the problem and increase system stability.

As a result of the �ndings from the experiments, the force models of the developed simulation
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model include a rather detailed hydrodynamic model and a simpli�ed, e�cient aerodynamic

model. The aerodynamic model computes the quasi-steady integral rotor forces as function of

the tip speed ratio and the blade pitch angle. The hydrodynamic model combines the �rst-order

potential �ow coe�cients and the viscous Morison drag, which is linearized for both, the wave

excitation and the damping forces from drag. Vertical drag at the heave plates, identi�ed from

the measurements, compares well with data from the literature. To generally model the drag as

realistically as possible, the literature data was parameterized and used for iteratively solving

for response magnitude-dependent drag coe�cients. The wave radiation model is simpli�ed

using a constant added mass, independent of the frequency. Second-order wave forces through

Newman's approximation allow a prediction of the low-frequency platform resonances. From

the frequency and time-domain models the response standard deviation, the fatigue damage

and short-term extremes are calculated.

With the obtained tailored simulation model, two parametric controllers were designed: A

new, robust proportional-integral-control design procedure results in a gain scheduling, speci�c

to FOWTs. It takes the stability margins at each operating point into account and thus

allows larger gains where the �oating system is better damped. The controller design can be

automated and is highly independent of the platform shape as it only feeds back the rotor speed

error. For comparison, an optimal model-based state-feedback controller was designed to show

the prospect of a multi-input-multi-output controller. Results show that this controller is less

robust but improves the system fore-aft damping and allows, again, higher gains for the rotor

speed control loop.

Finally, the previously developed simulation model and the parametric controllers were ap-

plied in a brute-force optimization with parameterized design routines for the �oating platform.

The optimum hull shape yields a reduction of more than 30 % of the lifetime-weighted fatigue

damage at a reasonable material cost. It is known that a good hull design can result in a

cancellation of the �rst-order wave loads. However, a coupled e�ect could be observed for the

optimal shape: It responds to sinusoidal waves with a translation in surge and a pitching, out-

of-phase to the surge response. This means that the FOWT rotates about a point close to the

rotor hub. Consequently, the rotor fore-aft motion is almost una�ected by the wave excitation.

A �nal code-to-code comparison with the higher-�delity model over the entire design space

was successful, yielding the same optimum as the developed reduced-order model. In order to

transfer this optimal response behavior to state-of-the-art design practices, a design indicator

was developed, which can successfully predict the optimal shape. These results show that it is

possible to design FOWTs with a very stable operational behavior. The power production and

the tower-top motion and loads are comparable to onshore wind turbines, while keeping the

size and mass of the foundation reasonably small.



Kurzfassung

Die Machbarkeit schwimmender, nur durch Ankerleinen �xierter Windkraftanlagen, wurde in

den letzten Jahren durch mehrere Prototypen bestätigt. Die Motivation der vorliegenden Ar-

beit ist, das physikalische Verständnis, wie Wind und Wellen die Dynamik von Anlagen mit

Halbtaucherplattformen beein�ussen, zu verbessern. Mit dem erlangten Verständnis des multi-

disziplinären Systems soll die Hüllform des Schwimmkörpers optimiert werden, um das Schwin-

gungsverhalten auf das Niveau von am Boden verankerten O�shore-Anlagen zu bringen. Dabei

sollen die Schwimmkörper möglichst ressourcene�zient aufgebaut sein.

Die Arbeit beginnt mit dem Entwurf eines dynamischen Simulationsmodells, das nicht mehr

als die notwendigen physikalischen E�ekte abbildet. Hiermit soll die Lücke zwischen einfachen

Tabellenkalkulationsprogrammen und komplexen dynamischen Simulationsmodellen, die bis hin

zur Zerti�zierung angewendet werden, geschlossen werden. Das strukturdynamische Modell ba-

siert auf einem elastischen Mehrkörpersystem mit wenigen Freiheitsgraden. Es soll die globale

Systemdynamik korrekt abbilden, ohne detaillierte Schnittlasten einzelner Komponenten aufzu-

lösen. Aus diesem Grund ist die modellierte Systembewegung auf die Ebene beschränkt, in der

Wind und Wellenkräfte wirken. Zusätzliche Untermodelle für die Berechnung der externen Kräf-

te aus Wind- und Wellenanregung, sowie der Ankerleinen vervollständigen die mathematische

Beschreibung des Gesamtsystems. Eine Linearisierung erlaubt zum einen die Anwendung linea-

rer Reglerentwurfsmethoden und zum anderen e�ziente Berechnungen der Systemantwort auf

stochastische Anregungen im Frequenzbereich. Der Vergleich mit einem detaillierteren Modell

hat gezeigt, dass das entwickelte Modell sowohl die Eigenschwingungen, als auch die Anregun-

gen durch Wind- und Wellenkräfte korrekt abbilden kann. Die Rechene�zienz ist beachtlich,

mit Simulationsdauern von nur 25 Sekunden für die Berechnung einer einstündigen Zeitreihe

und noch kürzeren Rechenzeiten im Freqzenzbereich.

Die Gültigkeit des Modells konnte durch einen Vergleich mit experimentellen Messdaten in

einer Skala von 1:60 gezeigt werden. Das im Test verwendete Plattform-Konzept ist der Triple-

Spar, eine Halbtaucherplattform mit groÿem Tiefgang, die im Rahmen dieser Forschungsarbeit

als Referenzmodell entwickelt wurde. Die Experimente zeigen, dass eine korrekte Modellierung

des hydrodynamischen Widerstands, sowie der Wellenkräfte unerlässlich ist, da diese die Ant-

wort dominieren. Die Stabilität des schwimmenden Systems wird hauptsächlich durch die Reg-

lerkoe�zienten, in Verbindung mit der hydrodynamischen und aerodynamischen Dämpfung,

bestimmt. Die Drehzahlregelung neigt dazu, die Bewegung der Gondel in Längsrichtung (in
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Windrichtung) zu destabilisieren. Andererseits, kann eine gröÿere Dämpfung in dieser Rich-

tung die Stabilität erhöhen.

Auf Basis der Erkenntnisse aus den Experimenten wurde das Hydrodynamikmodell mit einer

groÿen Detailtiefe aufgebaut, während sich ein einfaches Aerodynamikmodell als ausreichend

erwiesen hat. Die globalen aerodynamischen Rotorkräfte sind eine Funktion der Schnelllaufzahl

und des Blattverstellwinkels. Das hydrodynamische Modell kombiniert die Koe�zienten des

Potenzialströmungs-Ansatzes mit dem Widerstandsterm der Morison-Gleichung. Der viskose

Widerstandsterm wird linearisiert für die Anregung und ebenso für die Dämpfung, die aus dem

Strömungswiderstand resultiert. Für eine allgemein realistischere Abbildung des Widerstands

an den Tauchplatten, wurden Daten aus der Literatur parametrisiert. Das bedeutet, dass die

Widerstandskoe�zienten eine Funktion der Antwortamplitude sind. Das Wellenabstrahlungs-

problem (Radiation) wurde vereinfacht durch die Verwendung einer frequenzunabhängigen hy-

drodynamischen Zusatzmasse. Wellenkräfte zweiter Ordnung sind durch die Annäherung nach

Newman modelliert und erlauben damit eine Abbildung der niederfrequenten Plattformreso-

nanzen. Aus den Frequenz- und Zeitbereichsergebnissen werden die Standardabweichung, die

Schädigungslasten, sowie die Kurzzeit-Extrema berechnet.

Mit dem erstellten Simulationsmodell wurden zwei parametrisierte Regler entworfen. Ein neu-

es Verfahren zum Entwurf eines robusten PI-Reglers erlaubt eine neue Verstärkungsplanung, die

die arbeitspunktabhängige Stabilität der schwimmenden Plattform berücksichtigt. Höhere Ver-

stärkungsfaktoren sind hier möglich bei besseren Dämpfungseigenschaften. Das Entwurfsverfah-

ren kann automatisiert und unabhängig von der Plattform angewendet werden, da es lediglich

die Rotordrehzahl zurückführt. Neben diesem wurde ein optimaler Regler mit Zustandsrückfüh-

rung entworfen, um die Vorteile eines Mehrgröÿenreglers zu zeigen. Die Robustheit des Reglers

ist eingeschränkt, allerdings erhöht er deutlich die Dämpfung in Längsrichtung.

Am Ende der Arbeit steht eine integrierte Optimierung des Schwimmkörpers unter Zuhilfe-

nahme des vorab entwickelten Modells und der beiden Regler mit parametrisierten Entwurfs-

routinen. Das Optimum zeigt eine Reduktion der gewichteten Ermüdungslasten um bis zu 30 %,

ohne Erhöhung der Materialkosten. Für Halbtaucher ist bekannt, dass die Hüllform eine Elimi-

nierung der Wellenkräfte erster Ordnung begünstigen kann. Zusätzlich wurde für die optimale

Plattform ein gekoppelter E�ekt entdeckt: Das System antwortet auf harmonische Wellenan-

regung mit einer Translation in Längsrichtung und einer gegenphasigen Stampfbewegung. Das

bedeutet, dass das System um einen Punkt in der Nähe der Rotornabe rotiert und damit der

Ein�uss der Wellenkräfte auf den Rotor auf ein Minimum beschränkt wird. Eine Veri�kation der

Optimierungsergebnisse mit einem detaillierteren Modell über den gesamten Parameterraum

konnte das gefundene Optimum reproduzieren. Um die erreichte günstige Antwortdynamik im

gewöhnlichen Auslegungsprozess zu berücksichtigen, wurde ein passender Indikator entworfen.

Diese Ergebnisse zeigen, dass es möglich ist, Schwimmplattformen mit ruhigem Verhalten und

geringen Gondelbewegungen bei verhältnismäÿigem Materialaufwand zu entwerfen.



1 Introduction

Placing o�shore wind turbines on �oating foundations instead of bottom-�xed ones has the

prospect of increasing the applicable range to sites with intermediate to deep waters, be-

yond 45 m. The idea is not new but only in recent years large-scale prototypes have been

built in a realistic environment. This shows that from a technical and logistic point of view

the concept is realizable. The technology of Floating O�shore Wind Turbines (FOWTs) is cur-

rently passing the state of being �validated in relevant environment�, see [1, p. 139]. However,

the free-�oating foundation adds complexity to the dynamics of Horizontal-Axis Wind Tur-

bines (HAWTs) of a size currently approaching 10 MW, which are already the largest existing

rotor-dynamic systems.

This chapter gives a concise summary of the state-of-the art and the motivation of this work,

with a review of the most important previous works. The last section of this chapter introduces

the research methodology of the present thesis. A thorough introduction to the topic with the

relevant theoretical background will then be given in Chapter 2.

1.1 Motivation

Currently, the common design practice of FOWTs builds on the established methodologies for

wind turbines on the one side and the ones from o�shore structures on the other side. The

current design process for �xed-bottom o�shore turbines was compared to �oating turbines in

the paper [2] and the related project report [3]. The paper illustrates how the substructure and

the wind turbine are designed, based only on a limited exchange of parameters among the two

designers.

The consequence is a separated, component-oriented design, where the loads at the interface

are calculated using approximate models, delivered by the designer of the respective counter-

part. On the one side this means that the structural dimensioning of FOWTs follows proven

and certi�ed procedures and the systems do satisfy all design requirements. On the other side

however, the restrictive exchange of data impedes full-system optimizations. Especially for a

novel technology as FOWTs, it is important to save costs at early design stages, because a

large portion of the upcoming lifecycle costs is being determined at the beginning of the design

process already, see [1, p. 44]. The �rst out of three design stages declared by [3] includes
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mainly so-called spreadsheet calculations but no coupled simulations of the entire FOWT sys-

tem. Hence, many decisions are taken and the design is being frozen, before the full, coupled

system dynamics are considered. Therefore, new design tools of low and medium �delity are

necessary to make early-stage full-system studies possible. These tools, based on simpli�ed

dynamic models, have the advantage that they require a less detailed set of design parameters,

such that the exchange of data between two designers is less critical. The review on the FOWT

technology and markets of [1] highlights the obstacles of development due to intellectual prop-

erty and stresses the need for collaborative research. They predict a large potential for cost

reduction through technology enhancements [1, p. 143].

The goal of this work is to improve the engineering methodology for FOWT designs, which are

optimized to reject structural loads induced by wind and waves and thus, enable a smooth and

stable operation in the o�shore environment. For this end, fully integrated but computationally

e�cient mathematical models shall be used and the �ndings will be compared to conventional

methods. The focus of this work is semi-submersible-type FOWTs and the design parameters of

interest within the integrated analysis are the �oating platform hull shape and the wind turbine

controller. Since the wind turbine is usually not re-designed for the �oating foundation, the

platform shape and the wind turbine controller are the components, which �rstly vary most

between ongoing projects and secondly impact substantially the dynamic behavior. As a result,

the physical understanding of the dynamics of the FOWT system shall be improved and the

�ndings shall be processed to be incorporated in the state-of-the-art design process.

In summary, the main research questions are:

• Numerical modeling:

� Is a �medium-�delity� simulation tool realizable to bridge the gap between spread-

sheet calculations and tools for certi�cation?

� Which are the relevant physical e�ects in the concept design phase?

• Design:

� How to design a FOWT platform with a minimum response to wind and waves?

� How much fatigue load reduction is possible through

◦ hull shape optimization?

◦ controller optimization?

� Is an integrated FOWT system optimization necessary instead of a sequential one?

� Are there new design indicators which outperform conventional ones?

Design indicators refer to quantities, which can be used as cost functionals for conceptual design

calculations. They are expected to indicate optimal system properties before detailed design

calculations are conducted.

After the review of related research in the next section, the speci�c goals, the methodology

and the scope of the present study will be outlined.
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1.2 Related Work

Several works were performed before the research on this thesis started in 2013 on reduced-

order modeling, control design and integrated optimization. With the �rst conceptual designs

of FOWT platforms, studies were made already on the di�erences of the dynamic behavior

with the goal of gaining more insight into the driving physics. First approaches for numerical

simulations and an evaluation of di�erent concepts was made as early as 2000 in the thesis by

Henderson [4]. The �rst generic concepts were developed at Massachussetts Institute of Tech-

nology (MIT) in 2006 with a comparison between concepts with taut versus catenary mooring

lines under supervision of Sclavounos [5]. Around 2010, a thorough numerical analysis compar-

ing three types of �oating platforms was carried out at National Renewable Energy Laboratory,

Boulder, USA (NREL) and the University of Stuttgart by Jonkman and Matha, see [6]. Sev-

eral studies applying optimization algorithms to FOWT platforms were done afterwards for

spar-type platforms [7], for Tension Leg Platforms (TLPs) [8] and for a design space spanning

di�erent types [9].

The critical in�uence of the blade pitch controller for the FOWT dynamics was reported �rst

in [10] with further studies in [11] and [12]. The �rst parametric design study including the

wind turbine controller was done in [8] on TLPs. The distinct in�uence of the controller in the

design process, however, has not yet been analyzed.

Reduced-order numerical FOWT models, necessary for system analysis and optimization,

have been developed in 2011 by [13] for spar-type platforms including aerodynamic loads and

a bit later by [14] for the same type but speci�cally for control design purposes. The basis for

state-of-the-art numerical FOWT modeling, however, with a clear preparation of the hydrody-

namic time-domain modeling techniques, adopted from o�shore engineering, and wind turbine

aero-servo-elasticity was provided by Jonkman [15].

The thesis by Lupton [16] of the University of Cambridge, UK, focuses in detail on lineariza-

tion approaches for FOWT modeling, which enables fast spectral methods for load calculations.

As in this work, a numerical model was developed using Lagrange's equation for the multibody

system description. The subsystems of aerodynamic, hydrodynamic and mooring line forces

and the controller were linearized separately applying two di�erent methods. Additionally, an

approximation of the second-order hydrodynamic forces was investigated. The work showed

in a comprehensive way how linearization techniques can be applied to a system as complex

as a FOWT, where nonlinear e�ects play a non-negligible role for various load cases. In sum-

mary, the work has provided a good understanding of the potential of linearized formulations

of the di�erent submodels. Also, the coupled FOWT response was investigated in realistic

environmental conditions but it is stated that further work is needed for a practical application

of the code due to limitations in the operating range of the wind turbine, the description of

the environmental conditions (deterministic vs. stochastic), the platform type and the compu-
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tational e�ciency. Several �ndings and derivations of [16] strengthen the present work, such

as the frequency-domain calculations and the linearization of the hydrodynamic drag. The

work provides important �ndings for the present simulation model, especially regarding the

frequency-domain hydrodynamics.

The thesis by Bachynski [8] of the Norwegian University of Science and Technology (NTNU)

has a comparable structure as the present one as it extends existing simulation models for the

dynamic analysis of various TLP-type �oating wind turbines. For the di�erent developed TLP

platforms, in-depth numerical analyses were performed with realistic load cases, used for cer-

ti�cation, including controller fault cases. A large part of the work addresses second-order

and third-order hydrodynamic forcing with an assessment of the importance of such forces for

the considered TLPs. Nonetheless, a reduced-order model is also developed and compared to a

state-of-the art aerodynamic model, coupled to a structural model. Although Bachynski focused

on another FOWT-type than the present work, the numerical modeling approaches are com-

parable, including linear frequency-domain methods, the inclusion of the controller (although

not platform-dependent) and higher-order hydrodynamic models.

1.3 Aim and Scope

The methodology and outline of this thesis is shown in Figure 1.1. On the modeling side, a

new simulation model will be presented in Chapter 3, which is tailored to the speci�c research

questions. The computational e�ciency will allow for many load case simulations and extensive

sensitivity studies. Only the main system dynamics shall be modeled without a representation

of the component response. A linearization allows for linear system analyses, �rst of all for

controller design but also to improve the understanding of the system behavior, which depends

on the operating point and on the system parameters with and without the controller.

The developed model will be veri�ed through experimental tests in a combined wind and wave

basin, including the controller, in Chapter 4. With the measurement data the hydrodynamic

drag will be identi�ed and subsequently a validation of the assumptions taken for the model

derivation is carried out.

Two model-based controllers will be developed for an automated controller design in Chap-

ter 5. They are a baseline controller and an advanced controller, in order to assess their di�er-

ences but also their e�ect on di�erent platform hull shapes. The controllers will be applied in

an integrated optimization study.

A design space of the platform hull shape will be de�ned in Chapter 6 with the goal of running

an optimization and sensitivity studies. Design routines for the structural dimensioning as

function of the hull shape will be developed. This leads to the integrated design load simulations

of the fully parameterized system and linear system analyses to improve the understanding of
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the previously obtained loads. The obtained optimum of this brute-force optimization will be

veri�ed with the reference model FAST.

In order to limit the scope, the system analyses in this work are carried out for operational

cases with fatigue load assessments rather than extreme loads from extreme wind and wave

conditions or fault conditions. In operational conditions, the applied simpli�ed simulation

models give surprisingly accurate results and provide useful lessons for a good, disturbance

rejecting �oater design. Thus, no detailed design is carried out but a conceptual design with

a reduced set of load cases. The aim is to develop systems with good physical characteristics

through system understanding with simple models, few optimization variables and simple cost

functions, rather than a large and complex black-box optimization. Such approaches usually

imply complex cost functions for Levelized Cost of Energy (LCOE) calculation. Here, the

system dynamics are the focus, rather than the �nal LCOE.

Modeling Design

Reduced-order simulation tool

• Computationally e�cient
• Linearizable
• Model main system dynamics

Experiments & validation

• Froude-scaling (1:60)
• Wind-and-wave basin
• Including feedback controller
• Identi�cation of viscous drag

Controller design

• State-of-the art controller
• Advanced, optimal controller
• Parameterized

Structural design

• 3-column concrete semi-sub
• Steel legs between columns and
tower

• Parameterized
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Integrated optimization

• Parameterized �oating platform & wind turbine controller
• Automated simulation incl. pre-processing (e.g. hydrodynamic coe�cients)
• Operational design load case simulations & linear system analysis
• Brute-force optimization
• Veri�cation of optimum with state-of-the-art simulation model (FAST)

Chapter 6

Figure 1.1: Thesis structure and methodology.

1.4 Notation

The notation is generally adapted as much as possible from standard literature. Bold symbols

always denote vectors or matrices. The colored graphs have always lines with di�erent bright-

nesses. The explanations in the captions are ordered such that the darkest line comes �rst, if

not indicated otherwise.





2 Background

This chapter provides the necessary theory and a literature review on o�shore wind energy and

�oating wind energy with a comparison of di�erent FOWT platform types and integrated design

approaches. Subsequently, the speci�c dynamics of FOWTs are discussed, followed by linear

frequency-domain modeling techniques, the environmental conditions for load simulations and

scaled experimental testing approaches, before an introduction into the wind turbine control

system, especially for FOWTs, is presented. The chapter terminates with the speci�cation of

a reference �oater for a 10 MW wind turbine, which is developed as a baseline for all of the

following studies.

2.1 O�shore Wind Energy

The Paris Agreement of the United Nations on climate change, which entered into force in

2016, has marked a turning point in the goal of reducing global warming, it has been rati�ed

by 184 states at the time of publication of this thesis. Societal e�orts on a large scale favor

sustainable tra�c, industry and power production, triggering global trends such as the Di-

vestment Movement, which attracts more and more global players to stop their investments in

fossil power generation. Public policy regulates the market by introducing measures such as the

European Emission Trading System or di�erent subsidy systems by national governments. The

multidisciplinary interconnectedness of the energy transition is a challenging project, especially

when it comes to leaving behind traditional industries. The renewable electricity market shows

complex dynamics, above all in the times of renewable energy exceeding the demand. Notwith-

standing these challenges, with the Paris Agreement the transition to renewable energy was

for the �rst time regarded by the media as having a potential of being economically pro�table,

which is a proof of the technological achievements in the renewable energy sector as well as the

development of more e�cient machinery. Nonetheless, the research of this thesis shall not be

seen as a manifesto for high-tech solutions to the current challenges of humankind but rather

as one piece of a manifold of necessary measures, with, above all, societal changes.

According to [17] more than 50 % of the installed power capacity in Europe can be attributed

to wind energy. Wind energy overtook coal, which used to be the second largest form of power

generation in 2016. The installed capacity is higher than that of hydroelectric power and
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about 50 % larger than that of solar power. The outlook for 2030 by WindEurope (former

EWEA) [18] predicts in its central scenario an installed capacity o�shore of 66 GW compared

to 12.4 GW in 2016 [17]. In terms of the energy mix, currently about 10 % of Europe's energy

production stems from wind, of which about 12 % is produced o�shore [17]. The International

Energy Agency (IEA) predicts in its World Energy Outlook [19] a portion of 40 % of the total

power generated worldwide to come from renewables by 2040. This shows the large potential

of o�shore wind as a technology but also as a mature and expanding industry. While in

Germany, as the nation with the largest installed wind capacity in Europe (44 % [17]), the

market growth will slow down for onshore wind, there is a large potential o�shore. The overall

installed capacity o�shore in Europe grew between 2002 and 2012 from less than 100 MW to

1100 MW [20]. In 2012 about 75 % of o�shore wind turbines were installed on �xed-bottom

Monopile foundations but [20] predicts that the market of deeper waters is increasing exploring

water depths of more than 200 m. In such depths, �xed-bottom foundations are no longer

feasible. Floating platforms can be alternatives in these locations.

2.2 Floating O�shore Wind Energy

To date, the �rst prototype tests of FOWTs were successfully completed, such as Statoil's

Hywind spar with a 2.3 MW turbine [21], Principle Power's WindFloat [22], with a 2 MW

turbine and the Japanese project Kabashima with a 2 MW turbine on two di�erent platform

types. Currently, various demonstration projects are running and �rst commercial projects are

under way such as the Hywind Scotland project, the Kincardine and Dounreay �oating wind

farms, also in Scotland, with a total of almost 100 MW. The WindFloat Atlantic o� the coast

of Portugal will comprise 25 MW and a French project of 100 MW is planned with four di�erent

�oating platform concepts in two construction phases. Recently, a British and an Irish project

were announced with 1.5 GW, each. An overview of technologies and current projects can be

found in [23], [24] and [25].

Floating wind turbines can be distinguished from other o�shore turbines through the criterion

that no rigid structural connection to the sea �oor exists as is the case for �xed-bottom foun-

dations such as Monopiles, gravity foundations and jackets. The de�nition by [26] highlights

the vertical force from buoyancy as unique feature of FOWTs.

2.3 Comparison of Platform Types

The technologies can be grouped into ballast-stabilized, buoyancy stabilized and mooring-

stabilized systems. The �rst, called spar, feature a rather large draft with mostly a slender

cylindric shape and a keel �lled with ballast. Here, the large gravitational force, far below
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the Still Water Level (SWL), ensures the static stability. For buoyancy-stabilized systems,

called barge, a large volume at the water surface yields increased buoyancy forces where the

volume displaces more water, which in turn results in static stability, see Figure 2.1a. This type

of platform usually features a low draft with a large breadth. Currently, several concepts are

being developed which are hybrids between a spar and a barge, meaning that they receive the

static stability from both, buoyancy and gravity. These are called semi-submersibles, see Fig-

ure 2.1b, 2.1c. Most ongoing projects work with semi-submersible-type concepts, of which [27]

provides a general overview.

The systems with taut moorings, called TLP, are stabilized by the mooring lines, pulling the

platform body with excess buoyancy below the water surface such that a large pre-tension exists

in the lines. Due to the taut lines and a little amount of ballast this type of platform is lighter

than the other �oaters and has higher eigenfrequencies of the substructure. It is therefore sti�er,

in vertical direction almost comparable to �xed-bottom platforms, see [28]. Consequently, the

system eigenfrequencies of the TLP substructure are usually above the wave frequency range.

This is not the case for the types with slack lines, where the horizontal translation mode can

be far below the peak spectral frequency of the waves.

In the literature, a number of comparative studies can be found on the di�erent FOWT

concepts. The previously mentioned early studies by Sclavounos are summarized in the overview

paper [5]. The authors have shown that, based on frequency-domain hydrodynamic modeling

and a simpli�ed representation of the wind turbine, a small dynamic response can be achieved

either with a shallow-drafted barge or a spar on the other hand. Matha and Jonkman [6],

however, highlighted the large response of barges compared to semi-submersibles and TLPs, in

line with the �ndings by Robertson [29]. However, the latter studies did not consider parameter

variations of the hull shape, in contrast to [5]. The studies show that especially the section

forces close to the sea surface, are higher for FOWTs than for onshore turbines, due to the wave

loads.

The European research project LIFES50+1 brings together four designers of di�erent plat-

form types (2 semi-submersibles, 1 barge, 1 TLP) with three universities and three research

institutes in order to upscale the existing concepts and increase the Technology Readiness Level

(TRL) to a value of 5, meaning that the technology development of the designs is completed,

including experimental testing. This project fosters technology transfer from research to indus-

try and provides an important platform for the exchange of knowledge of the di�erent �elds

involved in o�shore wind energy. The concepts with slack mooring lines are shown in Figure 2.1.

This platform type is is the focus of this thesis and parts of the presented results were generated

within LIFES50+.

1http://lifes50plus.eu/, accessed on January 22, 2018.

http://lifes50plus.eu/
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(a) Ideol barge (b) Nautilus semi-
submersible

(c) OlavOlsen OO-Star
Wind Floater semi-

submersible

Figure 2.1: Ballast- and buoyancy-stabilized FOWT concepts of the project LIFES50+,
photographs courtesy of the designers.

2.4 Optimization and Systems Engineering

Design optimization is a topic in engineering which has been addressed extensively in the lit-

erature, especially challenging are multi-disciplinary systems such as FOWTs. Currently, the

concept of Systems Engineering is being introduced to wind turbine design (IEA task 372),

mainly focusing on the aero-elastic design, see [30, 31]. Both of these examples use a Sequential

Quadratic Programming (SQP) algorithm. Systems Engineering has its origins at the National

Aeronautics and Space Administration, USA (NASA) for aerospace applications and has the

main objective of integrating a multidisciplinary design process. As a result, components are

not designed independently but taking into account the coupling e�ects on the entire system.

For a comprehensive realization of the Systems Engineering principles, integrated, multidisci-

plinary design tools are necessary, with various interfaces between the dedicated tools for a

single discipline. The methodology is called Multidisciplinary Design Optimization (MDO).

In this work, a multidisciplinary numerical model is used for a design optimization through

a simultaneous variation of the parameters of the wind turbine controller and the platform

dimensions. Whereas MDO studies usually aim at the reduction of the overall lifetime cost, in

this work the cost function is reduced to fatigue loads and the power �uctuation. Hence, the

main goal is to optimize the dynamic behavior.

Optimization algorithms were already applied to traditional o�shore structures. An example

for a parametric design model of oil and gas support structures subject to optimization for

a reduced downtime through improved seakeeping is given in [32]. Here, a complex potential

2http://windbench.net/iea37, accessed on January 11, 2018.

http://windbench.net/iea37
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�ow model was parameterized, comparable to the present work. A �rst approach for integrated

design of �xed-bottom o�shore turbines was presented in 2004 in the thesis by Kühn [33].

Later, various studies were published, especially for jackets, where the lattice structure was

optimized. Examples are [34], applying a Particle-Swarm Optimization (PSO) algorithm, [35]

with a Genetic Algorithm (GA) and [36] using a gradient-based optimizer. With the latter

it is especially important to ensure a continuous description of the cost function, which is not

possible with complex functions and usually not feasible for MDO. For Monopiles, a recent risk-

based optimization was presented in [37]. A summary of various optimization algorithms and

an application to mechanical systems using multibody approaches and symbolic programming,

as in the present work, can be found in the thesis [38].

For FOWTs several optimization studies were described already in Section 1.2. One study,

resembling MDO techniques to the largest extent is published in [9]. It includes the hull shape

and mooring line design across di�erent platform types using a genetic algorithm. In that work,

a frequency-domain model is derived from the code FAST v7 [39], with a linear representation

of the hydrodynamic viscous damping but without representing the wind turbine controller.

The genetic algorithm is applied for single- and multi-objective optimization. The results show

di�erent, rather unconventional, designs, which might indicate that a re�nement of the cost

function is necessary, according to the author. A �rst brute-force optimization with tailored

blade-pitch controllers was performed in the course of the present research and was presented

in [40].

2.5 Dynamics of Floating Wind Turbines

While for conventional o�shore oil and gas structures the wave loads are dominant and the wind

loads are only approximated by static forces [41], this approach is not possible for FOWTs:

Dynamic simulations with a representation of the wind turbine aero-elasticity are necessary

in order to capture the dynamic response correctly and to ensure that the structure does not

show resonances leading to large loads and excursions. For FOWTs, structural elasticity is

important due to the slenderness of the tower and the blades and needs to be considered for

design calculations. The aerodynamic forces depend on the blade section local in�ow angle

of attack. Therefore, the integral rotor forces depend on the wind speed, the rotor speed and

the blade pitch angle. Since the blade pitch angle is an actuated variable of the wind turbine

control system, next to the generator torque, the controller dynamics also need to be taken into

account. This results in a multidisciplinary system as illustrated in Figure 2.2.

The purpose of this section is to give an introduction to the main system dynamic character-

istics of FOWTs and available methods for numeric simulations, looking �rst at the structural

dynamics and subsequently at the aerodynamics, hydrodynamics and mooring dynamics. Fig-
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Aerodynamics

Hydrodynamics

Servo dynamics

Mooring dynamics

Structural
dynamics

Figure 2.2: Multidisciplinary FOWT system (photograph by Henrik Bredmose, DTU).

ure 2.3 shows a comparison of the most important structural loads in terms of the Power Spectral

Density (PSD) from a one-hour simulation. The turbine is the DTU 10 MW Reference Wind

Turbine (RWT) on a �xed foundation and on a �oating foundation3 at above-rated wind speeds

and a correlated wave environment (see Table 2.1), simulated with the tool FAST [43]. While

the maximum energy of the wind spectrum is concentrated at the lower end of the frequency

axis, the wave spectrum has a pronounced peak at around 0.1 Hz. Systems with slack mooring

lines are usually designed such that the rigid-body modes of the �oating substructure are be-

low the wave frequencies. Semi-submersibles and spars usually show a large motion response

to low-frequency wind excitation and to second-order wave forces, which will be addressed in

Section 2.5.3.

The inertial coordinate system, which is commonly used, is shown with the main Degrees of

Freedom (DoF) in Figure 3.1. The rigid-body DoFs of FOWTs are called surge, sway and heave

in translational directions and roll, pitch and yaw in rotational directions. Below the �rst two

graphs of Figure 2.3 with the PSD of the wind time series v0(t), averaged over the rotor-plane

and the wave height time series ζ0(t) is the PSD of the platform pitch (or nodding) angle βp
and the rotor speed (Ω). The last two are the bending moments Myt in pitching (or nodding)

direction at the tower-base and the blade-root bending moment Moop, perpendicular to the

rotor plane or Out-of-Plane (OoP). The two signals are selected here because the tower-base

is a critical location for the design due to large bending stresses from the overturning moment

of the rotor thrust force and the wave forces. The blade-root bending moments determine the

structural blade design and pose challenges due to aerodynamic restrictions of the airfoils. The

sectional forces at the tower-base and the blade-root are largely proportional to the tower-top

displacement and the blade-tip displacement (see Section 3.2.6 for a detailed discussion). In

3The onshore system is detailed in [42] and the FOWT in Section 2.10.
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Figure 2.3, the platform pitch mode at 0.025 Hz is clearly visible in the third plot, and this

is re�ected in the tower-base loads (�fth plot). Even more signi�cant is the response of the

tower-base moment from �rst-order wave loads at the wave frequency at 0.1 Hz and slightly

above. Another distinct di�erence is the low-frequency response of the rotor speed to wind

excitations: The FOWT controller allows larger amplitudes than the onshore turbine. This is

due to the fact that the controller gains have to be de-tuned (reduced) for FOWTs to ensure

the system's stability if only standard control schemes are applied. Section 2.9 will give an

introduction into the controller for FOWTs. The blade moment (lower plot) shows a distinct

response at the Once-Per-Revolution (1p) frequency at 0.16 Hz and a response to the turbulent

wind �eld but only a slight excitation from the wave loads. Remarkable is that the 1p-frequency

is more dominant for onshore turbines than for the �oating counterpart. A possible reason is

the shifted modal properties due to the �oating substructure.
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Figure 2.3: Comparison of responses of DTU 10 MW RWT onshore and �oating at v̄hub = 17.9 m/s.

A distinct feature of FOWT dynamics is the coupling between the platform pitch motion

response with the rotor response. This is due to the relative, or apparent, rotor-e�ective wind

speed (�the one that the rotor sees�). A coupling to the controller-induced dynamics appears,

since the rotor speed responds to these changes in the relative wind speed and, in turn, the

controller reacts to the rotor speed error. The surge-direction is usually not as important
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for FOWTs as the pitch mode because it has generally a lower eigenfrequency, which is better

damped.

Numerical modeling of FOWTs has large overlaps with the methods of the o�shore oil and

gas industry, as mentioned above. One major di�erence is that fatigue analyses are highly

important for wind turbines, due to the persistent harmonic excitation [44]. For a structural

fatigue assessment, a representative probability distribution of load cycle amplitudes is neces-

sary and this requires extensive numerical simulations. First fatigue calculations were made

in the frequency-domain, due to the lower computational e�ort, see e.g. Dirlik [45]. The

calculation of the dynamic wave forcing on vertical piles was presented as early as 1965 by

Borgman [46]. Due to the multi-disciplinarity of FOWTs the complexity of numerical mod-

els increases signi�cantly and as a consequence, �rst o�shore wind farms were designed using

�de-coupled� numerical predictions of the structural stresses. With the increase of comput-

ing power, linear frequency-domain analyses for dynamic simulations were slowly replaced by

computationally demanding nonlinear time-domain simulations. In o�shore wind, so-called

multi-physics models are common where di�erent dedicated software tools run simultaneously.

Here, the Equations of Motion (EQM) are not set up as a whole but the tools solve their

own EQM and exchange states and forces in each timestep. Dedicated wind turbine models,

so-called aero-elastic modeling tools, predict the wind turbine loads and dedicated tools for the

wave-structure interaction determine the hydrodynamic forcing. Di�erent coupling schemes

for FOWTs are described in [26]. A study on the validity of a superposition of the loads at

e.g. the tower-base, coming from wind and wave loads can be found in [47] and in a recent

study [48]. The �rst approaches to integrated analyses of (�xed-bottom) o�shore wind turbines

were made as part of the theses by Kühn [33] and later by van der Tempel [49]. More details

on fatigue calculation will be given in Section 2.6 and 2.7.

For FOWTs, the �rst modeling tools were developed by Henderson [4]. Later, Jonkman [15]

provided a detailed description of the theory behind the �rst and only available open-

source FOWT simulation tool FAST [43] by NREL, which is used as a reference in this work.

A general overview on FOWT modeling can be found in the recently published book [50]. To

date, a variety of mostly commercial simulation tools for FOWTs exist, among others Simpack

by Dassault Systèmes, Bladed by Det Norske Veritas - Germanischer Lloyd (DNV-GL), Hawc2

by Technical University of Denmark (DTU) and 3DFloat by Institute for Energy Technology,

Norway (IFE). Various other commercial codes exist, in addition to a number of in-house re-

search codes by universities and research organizations. An extensive code comparison project

was performed within IEA task 23 and task 30, namely the projects O�shore Code Comparison

Collaboration (OC3), O�shore Code Comparison Collaboration, Continued (OC4) and O�shore

Code Comparison Continuation, Continued, with Correlation (OC5) where a large number of

institutions participated worldwide, running simulations on �xed-bottom and �oating wind

turbines for various load cases. The results for FOWTs are published in [51, 52, 53, 54]. Other
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studies reviewing and comparing the predictions of di�erent simulation approaches can be found

in [55, 56, 57] and in the LIFES50+ project report [58].

The next sections will give an overview on the FOWT subsystem dynamics, the structural

dynamics, aerodynamics, hydrodynamics and the mooring line dynamics and the respective

modeling methods and available simulation tools. Further details are part of the reduced-model

derivation in Chapter 3.

2.5.1 Structural dynamics

As shown above, o�shore wind turbines show large de�ections of the tower and the blades as

response to the environmental loads. Therefore a Multibody System (MBS) approach is usually

implemented in the structural modeling tools. High-�delity Finite Element (FE) models can

be applied for the �exible components of the wind turbine while the formulation of the MBS

accounts for the large reference motion with a correct physical representation of the kinetics of

inertial, Coriolis, centrifugal and gyroscopic forces.

In many simulation tools such as FAST, the �exible bodies, mainly the rotor blades and the

tower, are simpli�ed through a Model Order Reduction (MOR) and represented in the �exi-

ble MBS through a limited number of shape functions following a Ritz approach, see [59]. These

shape functions are commonly the mode shapes of the respective bodies, obtained through an

eigenanalysis using FE models. Although individual shape functions are de�ned for each body,

they should not be calculated without representing the rest of the coupled system. The Rotor-

Nacelle Assembly (RNA) inertial mass, for example, needs to be accounted for when calculating

the tower shape functions. The number of necessary mode shapes to be included is usually based

on engineering judgment. In state-of-the-art aero-elastic simulation codes, at least the �rst two

modes in fore-aft and side-side direction are used, giving four �exible DoFs of the tower. For

the blades made of �ber reinforced epoxy, the mode shapes are more complex: If the blade

cross-section is approximately symmetric it can be assumed that the principal axes are aligned

with the blade chord, a function of the radius, see [60]. Therefore, the �rst bending mode

shapes are twisted with the blade principal axis in FAST. The most important mode shapes

are normally selected as the �rst two �apwise modes (about the �soft� axis) and the �rst edge-

wise mode (about the �sti�� axis) giving a total of nine DoFs for the rotor. Especially for

large blades or for aero-elastic stability analyses, higher modes and at least one torsional mode

needs to be included because torsion changes the local angle of attack and consequently the

aerodynamic forces and moments, see [61] and recently [62] with a validation of the simulation

code FAST with full-scale measurements.

The �oating platform is modeled as a rigid body in FAST with six DoFs if all directions

are unconstrained. Studies were made recently to include the substructure �exibility in the

dynamic system analysis. This has mainly the objective to obtain the structural stresses within
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the substructure, which is not possible with state-of-the-art tools. An approach calculating the

stresses as a post-processing of the time-domain results of a state-of-the-art model was presented

�rst for Bladed [63] and by NTNU in [64]. In [65] and [66], the �exibility was also considered

in the �uid-structure interaction problem.

Additional DoFs of the state-of-the-art FOWT models are the rotor rotation, the drive-

train torsion and the blade pitch actuator model DoFs, usually represented by a second-order

dynamic system, giving four additional DoFs. While the blade pitch actuator model is not

included in FAST and has to be included in a custom Simulink model, the yaw drive actuator

is included through a rotational spring-damper element. This yaw drive actuator represents

another additional DoF.

All of the mentioned DoFs can be activated in FAST resulting in a total of 25 DoFs. The

reduced-order model derived in Chapter 3 considers only a planar platform motion in the

vertical 2D plane and neglects the �exibility of the blades in order to focus on the main system

dynamics. The structural model, however, is built with the theory of �exible MBS, as described

above. The EQM will be derived in Section 3.2.

2.5.2 Aerodynamics

Common state-of-the-art wind turbine simulation codes represent the loading from aerodynam-

ics usually through Blade Element Momentum (BEM) theory. Momentum theory is the part

describing the deceleration of the �ow across the rotor due to the momentum imposed by the

rotor on the steady �ow. The other part of BEM theory is the blade element theory, which

gives the local forces on each blade section with a discrete width and chord, given an angle of

attack and airfoil polar data. This involves an iteration because blade element theory requires

the angle of attack, which comes from the momentum theory. The result of this iteration is the

induction factor, giving the local velocities in the rotor plane based on the simulation input,

the 3D turbulent wind �eld, see Section 2.7, far upstream and undisturbed by the rotor. Only

with the local induction factor, the wind speeds at the rotor plane can be determined and the

local forces are calculated using the blade polars. A derivation of the standard BEM-theory

can be found in [60].

The basic BEM theory involves many assumptions: First, the rotor is discretized through

annuli, each having a constant induction. This means one can imagine the rotor as a disk. The

assumption of discrete annuli implies that there is no dependence of the �ow in radial direction,

which is especially critical for yawed in�ow, see [44, Chapter 3]. Another simpli�cation is related

to the root and the tip losses, which occur due to shed vortices, which reduce the circulation

at these blade sections. The authors of [44] state that this radial dependence of the induction

violates the BEM assumptions as it yields a radial exchange of momentum. However, for

common operating points, the assumption of radial independence of annular forces is said to
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be reasonable. Other assumptions include no special consideration for the situation of heavily

loaded rotors under large induction factors, where a recirculation of the �ow at the outer radius

of the disc occurs, denoted as vortex ring state and, more severe, the turbulent wake state.

Important for control design purposes might be the fact that quasi-steady aerodynamics are

assumed, meaning that a stepwise change in the angle of attack yields an instantaneous response

of the forces, e.g. [67]. This is not the case for a real rotor as several aerodynamic phenomena

yield a dynamic response of the forces. These can be grouped into three categories, see [68]

or also [26] and [69]: First, local airfoil dynamic e�ects, causing a circulation lag, also called

Theodorsen E�ect � a phenomenon happening in attached �ow conditions. Second, for large

angles of attack stall occurs reducing the lift and increasing the drag through shed vortices.

Considering unsteady changes in the angle of attack the shed vortices, traveling over the blade

chord, yield the dynamic stall phenomenon. Apart from these local e�ects, the third e�ect is

related to the global �ow through the rotor disc. It cannot be assumed to behave in a quasi-

steady manner, mainly because the �ow has to accelerate or decelerate, which cannot happen

instantaneously, due to the inertia of the �ow. This dynamic in�ow or dynamic wake e�ect

causes a delay in the blade forces following a change of, e.g., the blade pitch angle in attached

�ow conditions.

The computational scheme of BEM theory has proven to be very e�cient compared to other

methods. Therefore, a variety of correction models has been developed. An important one is,

according to [44] and [60], the hub and root loss correction model. This model accounts for the

above-mentioned vortices shed at the blade segments at the root and the tip. Correction models

to the mentioned dynamic e�ects of the aerodynamic forces are the dynamic stall and dynamic

in�ow model. The Glauert correction for large induction factors accounts for the re-circulation

e�ect. The correction of the 2D airfoil data from experiments or potential �ow simulations

for 3D �ow situations is usually done in a pre-processing step. The spreadsheet tool [70] is an

example of how to prepare the airfoil data for BEM tools with a 360◦ range of angles of attack

and the correction of e�ects from a rotating blade, rather than static airfoils. A good review

of BEM models including corrections can be found in [71]. A thesis on possible corrections

based on experimental analyses can be found in [72].

For FOWTs, especially unsteady aerodynamics can be important in certain �ow situations.

Although this work focuses on simpli�ed conceptual models, some of these are listed here for a

better understanding of the underlying physics of real wind turbine rotors. Recently, a number

of studies was made for moving rotors due to the �oating foundation. The application of the

dynamic in�ow correction models for FOWTs is described in [73]. It shows the importance

of the time scale of the frequency of the �oating platform, compared to the unsteady aerody-

namics. It showed that BEM theory-based models are generally valid for FOWT modeling.

The importance of the frequency of oscillation of the �oating platform has also been investi-
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gated by the authors of [74]. Their approaches will be discussed further in the results chapter,

Section 6.4.6.

Alternatives to BEM include the second theory implemented in the reference model FAST.

Besides BEM-theory it includes the Generalized Dynamic Wake (GDW) model, which is based

on the Pitt and Peters dynamic in�ow model, see [68], but it includes higher-order terms than

the common correction model to BEM theory, see [75]. It is still considered an independent

aerodynamic model because, even in steady conditions, the modeling is di�erent than with BEM

models: The pressure distribution along the blade is modeled through Legendre functions, which

include the above mentioned tip and root losses. One case in Chapter 6 uses this model. A

theory guide of the aerodynamic model AeroDyn of FAST can be found in [76].

Higher-�delity models are potential �ow approaches as the Lifting Line and Free-Wake Vor-

tex Method, which models the wake together with the �uid-structure interaction problem. The

thesis [77] gives a good description of the method. Its application to FOWTs can be found

in [78] and [79]. As in helicopter theory, especially the interaction of the rotor with its wake

can be better represented with these models. Even more complex Computational Fluid Dy-

namics (CFD) models have been applied to FOWTs in [80, 81, 82, 83, 84], showing reasonable

results but a challenging implementation and signi�cant computational e�ort. The project Of-

fwindtech went further, studying the di�erent aerodynamics due to the �oating foundation and

the consequences of the moving hub condition for blade design with the goal of reducing loads

and increasing the power production, see [85]. That work had a comparable objective of the

one of this thesis as variations of the design are investigated in order to adapt current concepts

better to the �oating foundations with the goal of reducing loads and therefore less material

usage in the construction.

For this work, simpli�ed, computationally e�cient and linearized aerodynamic models are nec-

essary for control design and design optimization. Several approaches exist here, the simplest

being the modeling of the entire rotor as a disk with overall aerodynamic coe�cients depending

on the Tip Speed Ratio (TSR) and the blade pitch angle, which will be described in Section 3.4.

Other simpli�ed models avoid the discretization of the blade and the time-consuming iteration

to �nd the induction factor through overall aerodynamic blade coe�cients and a representative

blade-e�ective wind speed, but still including a dynamic in�ow model, see [69]. According

to [86] the above-mentioned vortex methods can also be simpli�ed for control applications.

An extensive work on linearized, reduced-order aero-elastic modeling for controller design, was

presented in [87]. A simpli�ed dynamic in�ow representation is given in [67] with an order re-

duction of the structural and aerodynamic states (considering dynamic in�ow) based on shape

functions.
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2.5.3 Hydrodynamics

In this section, an introduction will be given to state-of-the-art hydrodynamic FOWT modeling

and the methods for hydrostatic and hydrodynamic FOWT design. Besides the available text-

books on o�shore hydrodynamics, the book section [88] provides an overview on hydrodynamic

modeling of o�shore wind turbines, including FOWTs.

Hydrostatics

Archimedes' principle of buoyancy results in static forces on the wetted surface of a FOWT,

including position-dependent restoring forces. These restoring forces are important for the static

stability of FOWTs and represent a constraint for the dimensioning. Analytical expressions for

simple shapes make an approximation of the hydrostatic properties in spreadsheet calculations

possible. The hull shape determines important parameters like the submerged volume, the

center of buoyancy, which is the center of the submerged volume, and the cross-sectional area

of the body at the water surface, the waterplane area Awp [89]. The restoring sti�ness in vertical

heave direction can be obtained with the water density ρw and the gravity constant g as

C33 = ρwgAwp. (2.1)

The hydrostatic restoring sti�ness C55 is responsible for withstanding the aerodynamic thrust

force under a limited pitch angle βp. It depends on the second moment of the waterplane area

I22,wp =

∫∫

Awp

x2dxdy. (2.2)

With the submerged volume O and the structural mass m, the restoring sti�ness in pitch is

C55 = ρwgI22,wp + ρwgOzcb −mgzcm. (2.3)

Platforms with a small waterplane area usually have a low center of gravity zcm, positive in

upward direction. The gravitational forces and the buoyancy forces, acting on the center of

buoyancy zcb, result in a restoring moment, contributing to C55. For symmetric bodies C44 =

C55. The linear sti�ness matrix C ∈ R(6×6) needs to be augmented with restoring forces from

the mooring system. For unmoored bodies, all entries but the above-mentioned ones are zero.

Ocean waves

Ocean waves require di�erent levels of complexity of their mathematical description, depending

on their nonlinearity. Linear surface waves have a sinusoidal pro�le, while steeper waves have

larger troughs and shorter crests. Di�erent theories exist to model the wave kinematics in time
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and space. Usually, potential �ow theory is employed with di�erent orders of nonlinearity of the

free surface boundary condition, see [89, p. 75] for a visualization of the di�erent regimes. Linear

waves can be modeled in a straightforward manner such that the �uid kinematics over depth can

be solved for by hand if no obstacles in the domain are considered, see e.g. [90, p. 5-12]. Linear

waves travel with the phase speed vp, a function of the wave frequency. This means that the time

series at di�erent locations cannot simply be shifted in time. The dispersion relation represents

the link between the time and the spatial dimension of linear waves. It is transcendental but it

can be simpli�ed for deep waters with a depth-to-wavelength ratio h/λ > 1/2 [90, p. 5-2]. The

deep water approximation gives the phase speed

vp =
1

2

√
g

k
=

1

2

√
gλ

2π
, (2.4)

where k denotes the wavenumber, see [91, Chapter 6.2]. With deep water approximation, the

wavenumber results from the wave angular frequency ω as k = ω2/g.

Using linear wave theory, the complex amplitude spectrum of the incident wave elevation ζ(ω)

at di�erent locations along the wave heading direction x can be obtained through the factor

fx(x, ω) = eikx. (2.5)

With this factor, the time series ζx(t) at the new location result from the amplitude spectrum at

the original location ζ0(ω) ≡ ζ(ω, x=0) in a discrete-time notation for a dataset of N elements

as

ζx(t) =
1

N

N−1∑

ωi=0

fx(x, ωi)ζ0(ωi)e
2πωit

N . (2.6)

Numerical toolboxes provide functions for the Inverse Discrete Fourier Transform (IDFT) such

that

ζx(t) =
1

N
idft (fx(x)ζ0(ω)) . (2.7)

The wave kinematics over depth z can now be calculated in the frequency-domain from the

amplitude spectrum ζ0(ω). The water particle velocity in horizontal and vertical directions

are necessary for the calculation of the wave forces through Morison's equation, Section 2.5.3.

Throughout this work, we take advantage of deep water approximation, introduced earlier in

this section, and the wave heading direction is always aligned with the global x-coordinate.

The horizontal and vertical velocities over depth z result as

vx(ω, x, z) = ωζ(ω, x)ekz (2.8)

vz(ω, x, z) = jωζ(ω, x)ekz. (2.9)
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Consequently, the horizontal velocity is in phase with the instantaneous free-surface eleva-

tion ζ(ω, x) ∈ C, while the vertical velocity is 90 deg ahead of the free-surface elevation. The

water particle acceleration can be written as

ax(ω, x, z) = jω2ζ(ω, x)ekz (2.10)

az(ω, x, z) = −ω2ζ(ω, x)ekz. (2.11)

If obstacles are present in the computational domain, e.g. �xed or �oating bodies, the di-

mensions of the body determine the characteristics of the wave-induced forcing. Potential �ow

panel codes, which include the body in the domain, can model e�ects from di�raction (of the

waves around the �oating body) as well as the forces from radiated waves acting back on the

body. Viscous loads, on the other side, are entirely neglected by potential �ow theory. This is

the strength of empirical Morison's equation, addressed later in this section. Morison's equa-

tion, however, assumes a transparent body, meaning that the wave �eld is not a�ected by the

body and di�raction e�ects are neglected.

Figure 2.4 shows the ocean wave domains as function of the nondimensional characterization

of the forcing on a body in waves. The �rst dimensionless number on the horizontal axis is

the di�raction parameter ka, the product of the wavenumber k and the body radius a = D/2.

It can be alternatively expressed with the wavelength λ as ka = πD/λ. On the vertical axis

is the Keulegan-Carpenter number, which is the product of the �uid velocity amplitude v̂ and

the wave period T , divided by the signi�cant length D [90, p. 12-16]. Alternatively, KC can

be obtained from the water particle excursion x̂, or, in a simpli�ed manner, from the wave

height H as

KC =
v̂T

D
= 2π

x̂

D
≈ π

H

D
. (2.12)

The wave breaking limit H/λ = 1/7, simpli�ed for the case of deep water waves, is shown in

Figure 2.4 as function of KC and ka [90, p. 13-4]. It is not dependent on the dimensions of the

body. The location of the scaled model parameters and Load Cases (LCs) of Chapter 4 and

the LCs used for the parametric design in Chapter 6 are marked in the �gure. Acceleration-

dependent inertial forces are the dominant ones for small KC . Velocity-dependent drag forces

become more important for larger KC . Consequently, a FOWT spar will experience a larger

portion of drag forces in a given sea state than a deep water o�shore structure of large diameter.

The large diameter will also yield a larger di�raction parameter ka and thus more signi�cant

wave di�raction. The simulation model should be set up accordingly and consider hydrody-

namic coe�cients from a panel code or include an additional di�raction correction model, when

Morison's equation is used. In general, a limit of ka = 0.5 is given in [92, p. 174], above which

the di�raction e�ect is important. Both, potential �ow theory, as well as Morison's equation

will be introduced for frequency-domain and time-domain computations.
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Figure 2.4: Wave-induced force component domains with marks for the geometries and sea-states
used in this work. Exprimental sea states of Chapter 4 (�), for LC 7 and LC 9 (darker color for higher
sea state) and design space of Chapter 6: Deep-draft design (4) and low-draft design (O) (darker color
for higher sea state). Reproduced for this work from [89, p. 290], originally from S.K. Chakrabarti.

First-order potential �ow

Linear potential �ow models, called panel codes, solve for the linear �rst-order coe�cients of

a body represented by a 3D surface mesh. Assuming linear superposition, two problems can

be solved for separately: radiation (or maneuvering) and di�raction (or seakeeping), see [91,

Section 6.19]. The radiation problem is represented by a sinusoidally moving body in still water.

The integrated surface pressures can be separated for the velocity-dependent radiation damping

matrix B(ω) ∈ R(6×6) as function of the frequency and the acceleration-dependent added mass

matrix A(ω) ∈ R(6×6). Damping e�ects are usually not considered in potential �ow models,

due to d'Alembert's paradox, stating that the wave particle velocity does not yield a force on a

�oating body. The radiation damping results from the still-water boundary condition far away

from the oscillating body. The di�raction problem consists of a �xed �oating body with waves

of di�erent frequencies (and directions), to obtain the wave pressure on the surface (Froude-

Krylov pressure) and the wave pressure from di�raction e�ects. The integrated pressures give

the frequency-dependent wave excitation force coe�cient X(ω) ∈ R(6×1). Multiplied with the

wave height amplitude spectrum ζ0(ω), it gives the �rst-order wave force spectrum F (1)(ω).

The force spectrum is given in a generalized form with respect to a selected reference point.

With these linear coe�cients, the equation of motion can be set up for a rigid body

with the complex vector of linear generalized coordinates in all three directions and orien-
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tations ξ ∈ R(6×1) as

ξ =
[
xp, yp, zp, αp, βp, γp

]T
, (2.13)

see also [91]. For the reduced-order models developed in this work, only the 2D-motion in

the xz-plane is considered and ξ reduces to

ξ =
[
xp, zp, βp

]T
, (2.14)

see also Eq. (3.1), related to the reduced order model derivation. The equation of motion is

− ω2 [M +A(ω)] ξ + jωB(ω)ξ +Cξ = X(ω)ζ0(ω) = F (1)(ω), (2.15)

with the structural mass matrix M . With Eq. (2.15), the Response Amplitude Operator

(RAO) ξ(ω)/ζ0(ω) can be calculated, the transfer function from the wave height ζ0 to the

rigid-body generalized coordinates ξ.

The above-mentioned separation of radiation and di�raction is convenient for a linear FOWT

description. The matrices A(ω) and B(ω) represent the system properties, whereas X(ω)

stands for the external forcing on the right-hand side of the EQM.

Frequency-to-time-domain transformation

FOWTs are usually simulated in time-domain to obtain extreme and fatigue loads while ac-

counting for a transient motion of the �oating body. These transients can arise from wind-

induced motion, transmitted through nonlinear force models, including the wind turbine con-

troller. Therefore, Eq. (2.15) needs to be transformed into time-domain, which was achieved

by Cummins, see [93]. Important is the mathematical description of the forces from radiated

waves, resulting from a transient body motion. The dynamics of the bulk of �uid particles

surrounding the hull are given in the frequency-domain by

K(ω) = B(ω) + jω [A(ω)−A∞] . (2.16)

The retardation function K(ω) is the sum of a real part, the damping coe�cient, and the

imaginary di�erence of the added mass and its in�nite-frequency limit A∞. The transfer

function from a body motion to the resulting forces from radiated waves can be obtained from

the �uid impulse response function K(t). Ogilvie [94] realized a time-domain description of

Eq. (2.16), by transforming its real part or the imaginary part as

K(t) =
2

π

∫ ∞

0

B(ω) cos(ωt)dω = − 2

π

∫ ∞

0

ω [A(ω)−A∞] sin(ωt)dω. (2.17)
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Consequently, the impulse response function K(t) is available from the �rst-order panel code

coe�cients A(ω) and B(ω).

With the impulse response function K(t), the generalized radiation forces can be written,

according to Cummins, as function of the generalized body acceleration ξ̈ and velocity ξ̇ with

a convolution integral

F rad(t) = −A∞ξ̈(t)−
∫ t

0

K(t− τ)ξ̇(τ)dτ. (2.18)

Cummins' equation is the complete time-domain EQM, including the radiation forces of

Eq. (2.18)

(M +A∞)ξ̈(t) +

∫ t

0

K(t− τ)ξ̇(τ)dτ +Cξ(t) = F (1)(t). (2.19)

It is commonly implemented in state-of-the-art �oating wind simulation tools like FAST, see [95]

and others. The exciting forces F (1)(t) on the right-hand side of Eq. (2.19) are usually obtained

through an IDFT of a complex force spectrum F (1)(ω). Alternatively, a transfer function can

be �tted to the dynamics from wave height ζ0 to the generalized forces F (1). The convolution

integral of Eq. (2.19) is numerically demanding because a time history of platform states has

to be kept in the memory for the integration over times τ . Also here, a transfer function can

be �tted to avoid this problem. These approaches are subject of the next section.

In summary, Eq. (2.19) has several important properties. Firstly, the added mass, or the

forces in phase with the body acceleration, depend on the body frequency of oscillation. Thus,

the eigenvalue problem needs to be iterated, as discussed in [96]. Secondly, the damping force,

due to the dissipated energy with the radiated waves, depends on the frequency of oscillation.

For many FOWT types, this linear radiation damping is small compared to the viscous damping

through shed vortices. This will be discussed in more detail in the Section 3.5.

Parametric dynamic models

The above EQM in frequency-domain, Eq. (2.15), and in time-domain, Eq. (2.19), are both

based on �numerical� transfer functions, due to the hydrodynamic coe�cients, A(ω), B(ω) and

X(ω) from the panel code, but they are not parametric equations in the Laplace domain. In

this section, an alternative is presented, which is especially useful for the controller design of

Chapter 5. The term �parametric� means here a Linear Time-Invariant (LTI) model with a

nonzero number of states in the case of a state-space model, or poles, in the case of a linear

transfer function. The coe�cients of these models are parameterized such that the new LTI

model represents the best �t to the original model from the panel code through methods of

system identi�cation. The advantage of these models is mainly that the complete time-domain
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dynamics are described as a �uni�ed�, parametric system with a general form

ẋ = Ax+Bu

y = Cx+Du.
(2.20)

The state vector is denoted by x, the input vector by u and the output vector by y. Such a

model has been applied for control-oriented representations of �oating systems, especially in

order to avoid the convolution integral of Eq. (2.19). In this case, the �tted dynamic model

of Eq. (2.20) represents the dynamics from platform position to the radiation forces on the

platform. Such LTI models for the radiation problem were proposed in [97] and [98] for wave

energy converters and in [99] and [100] for vessels with the description of the corresponding

Matlab toolbox in [101]. The method of a �tted state-space model has been applied to �oating

wind turbines and incorporated in the FAST model [39], in [102]. It is therefore possible to

directly compare the performance of coupled time-domain simulations of �oating wind turbines

using Cummins' equation with the �tted LTI radiation model.

Also the wave excitation force coe�cientX(ω), part of Eq. (2.19), can be subject to a system

identi�cation for an LTI model. As part of the research on this thesis, the theory provided in [97]

was applied to two FOWT platforms in [103]. The original model with the heave-DoF, only was

extended to the surge and pitch-direction for the non-cylindric shapes of a semi-submersible.

The input to this dynamic wave force model is the incident wave height ζ0. This is a more

intuitive input than the hydrodynamic forces F (1), which are the inputs in other models. The

new method is especially advantageous for the set up of parametric transfer functions, either of

the plant (from system inputs u to outputs y, or system states x) or from a disturbance (wave

height ζ0 to outputs or system states). These �disturbance models� are important for the design

of controllers like Dynamic Positioning (DP) control [104] for vessel stabilization and distur-

bance rejection. Here, a slow feedback control attenuates the excitations from second-order

drift forces on o�shore supply vessels. For the complex dynamics of FOWTs, such disturbance

rejection methods are important, see e.g. [105] for structural control using Tuned Mass Dampers

(TMDs), [106] and [107] for nonlinear and linear model predictive control and [108] for feed-

forward control. Feedforward control is seen as a promising application of the wave model of

this work since a better system description together with advanced wind and wave sensors can

help to reduce fatigue and also extreme loads. The parametric wave excitation model will be

included in the reduced-order model development in Chapter 3.

Morison's equation

Morison developed a semi-empirical force model for the wave forces on slender vertical

piles [109]. It has been extended for �oating bodies and has a number of practical advantages

over Cummins' equation. Morison's equation gives the horizontal force ∆F on a cylindrical sec-
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tion or �strip� i in the normal directions k of the body surface with diameter D and length ∆l.

The force is a function of the undisturbed �uid accelerations aik and the velocities vik. The

Morison forces in the two horizontal directions in the inertial frame are given by

∆Fik
∆l

= kMaik + kD vik|vik| (2.21)

with

kD =
1

2
ρwCDD and kM = CMρwπ

D2

4
. (2.22)

Several parallels are present between Cummins' equation (2.19) and Morison's equation (2.21).

The inertia coe�cient CM can be obtained from the added mass coe�cient CA as CM = 1 + CA.

In Eq. (2.21), no body motion is yet considered such that the �rst summand represents the

Froude-Krylov wave forces, represented by F (1) in Eq. (2.19). The Froude-Krylov wave forces

from Morison's equation are equal to the panel code results for low frequencies, where di�raction

is negligible, with CA = 1, see [92]. Both coe�cients, for drag CD, and added mass CA, need

to be obtained from experiments or from the literature, e.g. [110]. For simple shapes, the zero-

frequency limit A0 of the added mass coe�cient from the panel code can be used as a reference

as shown in [111] and [112].

An extension of Morison's equation has been made for moving bodies [113]. Additional to

the undisturbed wave kinematics, the �oating body velocity vb,ik and their derivatives v̇w,ik
and v̇b,ik determine the external Morison force

vik = vw,ik − vb,ik and aik = v̇w,ik − v̇b,ik. (2.23)

Thus, the Froude-Krylov forces and the radiation added mass forces are represented, as in

Cummins' equation, Eq. (2.19). The �uid kinematics are usually calculated as explained in Sec-

tion 2.5.3 assuming �hydrodynamically transparent� structures, neglecting di�raction e�ects.

In Morison's equation, the acceleration-dependent force (�rst part of Eq. (2.21)) is indepen-

dent of the frequency. This simpli�cation is valid for slender cylinders, which experience little

radiation forces.

The semi-empirical nature of Morison's equation o�ers several advantages. No pre-

computation of the hydrodynamic coe�cients A(ω), B(ω) andX(ω) of Eq. (2.19) with a panel

code is necessary. As a consequence, the distributed forces over the body axial coordinate can

be obtained. This is not generally possible with Cummins' equation, because the panel code

pre-processor integrates the pressures over the wetted surface. With the distributed pressures,

the deformation and the structural stresses of the �oating platform can be calculated. This is

only possible through a post-processing with Cummins' equation, as discussed in Section 2.5.1.

Additionally, the quadratic drag force is considered in Morison's equation, which is neglected

by the panel code.
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Many of the widespread FOWT simulation codes combine Cummins' equation with Mori-

son's equation. The advantage of Cummins' equation with the panel code coe�cients is that

di�raction is generally considered such that no restriction on the body dimensions, like the col-

umn diameter-to-wavelength ratio D/λ, is present. This is especially important for the FOWT

types barge and semi-submersible. The quadratic viscous drag forces, however, are not part of

Cummins' equation. This is the reason why the drag force component of Eq. (2.21) is often

added as additional component to Cummins' equation (2.19) as shown in [53]. Morison's equa-

tion has also been extended for vertical directions, which is important for semi-submersibles

with heave plates. A vertical drag force is here necessary to model, see [112]. The importance

of the vertical drag forces of heave plates will be discussed in more detail in Chapter 3 and

Chapter 4.

For the present model, a linearization of Morison's equation is necessary for the frequency-

domain model. It will be described in Chapter 3 on the simpli�ed simulation model. The

nonlinear drift loads at low frequencies will be introduced next.

Second-order slow-drift forces

The discussed wave force transfer function X(ω) of Eq. (2.15) is a linear description. As will

be discussed in Section 2.8, experimental tests have shown that non-negligible wave forces

outside the frequencies of the free-surface elevation ζ0 appear for FOWTs. These forces result

mathematically from nonlinear e�ects, especially from the free-surface boundary condition.

With the quadratic boundary condition, regular waves exert a steady mean drift load on a

vertical wall in the wave propagation direction, which is not the case if linear potential �ow

is applied. The theory of mean drift and slow drift forces is well explained in the lecture

notes [114]. The same model, solved for a bichromatic wave, includes forces which are out

of the range of their own frequency. The forces appear at the sum and the di�erence of

the two wave frequencies. The resulting force transfer function has two frequencies as input

and is therefore called a Quadratic Transfer Function (QTF). The low-frequency force (at the

di�erence frequency) may coincide with the system eigenfrequencies and yield large amplitudes

of motion of the �oating body and large stresses in the mooring system, see [115]. Thus, the

drift force has a frequency lower than the two input waves and therefore the force spectrum

contains energy where the wave height spectrum does not contain any energy. The same e�ect

is known from acoustics. The so-called �beat pattern� arises from the interference of two waves

of close frequencies. These two waves sum up to a resulting wave with an envelope of a low

frequency, also called �bounded long waves�, see [90].

The physical e�ects included in second-order potential theory are, as opposed to linear po-

tential �ow: (1) the integration of the forces up to the instantaneous waterline and (2) the

nonlinear boundary condition at the free surface (Bernoulli equation with quadratic dynamic
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pressure, e.g. [89, p. 48]). Two numerical options are available to calculate the second-order

potential. The more e�cient one is the far�eld solution, based on the momentum equation. It

gives, however, only translational forces. The other option is a pressure integration over the

�oating body wetted surface. This option is called the near�eld solution.

In [116] and [117] the phenomenon of second-order potential �ow forces coming from sum and

di�erence frequencies on FOWTs were analyzed and compared among di�erent computational

codes. They showed that especially the di�erence frequency component can yield platform

resonances. A comparison of slow drift forces with aerodynamic forces for the OC3 spar [111]

was made in [118] and it was shown that the energy of the motion response due to slow drift

forces is of smaller magnitudes than the aerodynamic force. In [119] the slow drift forces

were parametrically calculated for a �xed cylinder with a simpli�ed approach showing that

the response magnitude is a function of the platform diameter. Especially for large diameter

structures (o�shore oil and gas industry), a large response is to be expected for large waves.

Analyses for FOWTs on TLPs were presented in [120] and [121] showing that the slow drift

is of less importance for FOWTs with taut moorings, although it is noted in [8] that the

sum-frequency forces are important for the prediction of vertical motions and tendon tensions.

Many of the studies also mention that the e�ect of aerodynamic damping is of importance when

rating the signi�cance of second-order forces and therefore the controller dynamics, idling cases

or cases of misaligned waves can be critical. The possibility to include second-order potential

�ow forces in time-domain FOWT simulations was added to FAST in version 8, see [95].

In this work, Newman's approximation is implemented in the simulation model. It is a

simpli�cation in order to avoid the calculation of the full Quadratic Transfer Function (QTF).

Especially for the comparisons with the experiments of Chapter 4, these forces are important

and will be analyzed in more detail.

2.5.4 Mooring dynamics

As for the previously described submodels of aerodynamics and hydrodynamics, also the moor-

ing lines, responsible for the station-keeping of the FOWTs, can be modeled with di�erent

�delity levels. The major di�erence among the widespread models is the static or dynamic

description: Static mooring line models predict the section force in the line or at the an-

chor/fairlead as a function of its position only. Dynamic models include also velocity and

acceleration-dependent e�ects such as the mooring line inertial mass, added water mass and

damping through vortex shedding.

A detailed analysis comparing static and dynamic models for all three types of FOWTs was

carried out in the thesis by Azcona [122]. It could be shown that usually the fatigue loads in

the line itself are highly a�ected by the mooring model type and to a lesser extent the wind

turbine and rotor loads. The same author concluded in [123] that the tower-base fatigue loads
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are also a�ected by the mooring model for TLPs and to a lesser extent for semi-submersibles,

mostly the portion of the tower-base bending moment in side-side direction. These general

�ndings were con�rmed in a comparison of di�erent models with experimental data [124].

Several numerical tools are available for mooring line simulations like the ones integrated

into FAST, the quasi-static MAP++ model [125] and the dynamic model MoorDyn [126],

which both allow the modeling of multi-segmented lines. Another dynamic mooring line model

is the one developed in Simpack, see [26, 127] and Opass, veri�ed through experiments in [128].

A study on di�erent available methods for the derivation of the equations of motion for dynamic

models can be found in [129]. Due to the nonlinearity of mooring line forces, higher-�delity

models are necessary for the computation of extreme mooring tensions for FOWTs in storm

conditions, where slack line events can happen, yielding large ultimate loads. A study on such

load conditions can be found in [130]. For linear frequency-domain analyses, the mooring line

properties are usually linearized such that the mooring line restoring forces on the platform are

represented by a 6 × 6 sti�ness matrix. For the reduced-order model developed in this work,

a quasi-static model is implemented due to its computational e�ciency and its suitability for

linearization, see Chapter 3.

2.6 Linear Frequency-Domain Modeling

As mentioned at the beginning of Section 2.5, linear frequency-domain methods had been used

for o�shore oil and gas and wind turbine modeling before computing power increased signi�-

cantly in the last 15 years and the attention goes more towards nonlinear high-�delity models.

However, for the purpose of this work with large parametric studies and dynamic system anal-

yses, linear frequency-domain modeling is highly advantageous. Even the full load response

to a stochastic environmental excitation can be computed e�ciently through a multiplication

of transfer functions. Especially in ocean engineering such methods are advantageous because

the external loads from waves and wind are stochastic in nature. In the frequency-domain,

the power spectrum Sxx(ω) can be calculated numerically with a Discrete Fourier Transform

(DFT) of the stationary stochastic process x(t). The stationarity means that the expected

value E[x(t)] and E[x(t)x(t+ τ)] are both independent of the time t. The complex amplitude

spectrum x(ω) results from the discrete DFT, normalized with the number of elements N of

the frequency vector, as

x(ω) =
dft(x(t))

N
, (2.24)

where N includes also negative frequencies in the Fourier space. Thus, x(ω) is a two-sided

amplitude spectrum, which is consequently half the magnitude of the one-sided amplitude

spectrum. In the Laplace domain, no negative frequencies exist but the transient dynamics are

covered by the complex Laplace variable s, while the frequency variable in Fourier space is the
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real angular frequency ω. With a Single-Input-Single-Output (SISO) state-space model with

system matrix A, input vector b and output vector c, the linear transfer function G(jω) in the

imaginary Laplace domain can be calculated with the identity matrix E

G(jω) = cT (jωE −A)−1b. (2.25)

The PSD, the response auto-spectrum is de�ned as

Sxx(ω) =
dt

N
|dft(x(t))|2 = dtN |x(ω)|2 . (2.26)

In o�shore wind turbine analyses, the wind and wave disturbances can be described as spectra

of stochastic processes, de�ned in standards such as [131], which will be detailed in Section 2.7.

A good introduction to stochastic processes and spectral methods is given in [46] and the

references therein. For a Multi-Input-Multi-Output (MIMO) system G(ω), the response auto-

spectrum Syy(ω) to the matrix Suu(ω) of the input spectra is simply given by the multiplication

Syy(ω) = G∗T (ω)SuuG(ω), (2.27)

where G∗T (ω) denotes the complex conjugate transpose. The argument ω covers positive

frequencies ω > 0 and therefore the PSD is single-sided. The imaginary unit of the Laplace-

domain frequency axis will be omitted for the calculation of response spectra. From a power

spectral density Sxx(ω), the standard deviation σ or Root Mean Square (RMS) can be calculated

from the zeroth spectral moment m0 using Parseval's theorem by numerically integrating over

the positive frequencies

σ =
√
m0 =

√∫ ∞

0

|S1sdd
xx (f)| df. (2.28)

Therefore, no integration or �time-stepping� as in time-domain methods is necessary for solving

the Ordinary Di�erential Equation (ODE) of the state-space model, which can save orders of

magnitude of computational time. The large amount of simulation time necessary for calcu-

lating a su�cient number of load cycles of all relevant frequencies for fatigue load estimation

makes time-domain simulations challenging, see [132] for a good elaboration of fatigue design

methods for wind turbines. This is why these e�cient methods reappeared recently in o�shore

wind simulation studies, see [16, 69, 133, 134]. A selection of published frequency-domain sim-

ulation tools for wind turbines includes the tool Turbu by the Energy Research Center of the

Netherlands (ECN) described in [135] and Hawc2Stab by DTU, see [136].

For wind turbines, the dependency of the system dynamic properties on the azimuth angle

of the rotor presents a challenge for the frequency-domain modeling. This is usually handled

through the transformation of the states de�ned in the rotating frame into the non-rotating
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frame. An application of this Coleman transformation can be found in [69]. In the same

reference also the challenges arising from nonlinearities of the aerodynamic forces are discussed.

One of these cases is when the �ow is not anymore attached to the airfoil and stall occurs, see

Section 2.5.2. For large rotor blades, also structural nonlinearities play a signi�cant role such

that linear beam model might not always be su�cient as was discussed in Section 2.5.1.

For hydrodynamics, nonlinearities occur if steep or braking waves are modeled or when

considering the nonlinear potential �ow problem (quadratic free-surface boundary condition),

see Section 2.5.3. Next to the wave model, the forcing model is also of importance. The

linearization of the viscous drag is a challenging task. This is discussed in detail in Chapter 3.

Linear models are only valid to represent nonlinear physics, where a small change of ∆x

about an operating point x0 occurs. These nonlinearities have to be considered with respect to

the phenomenon being analyzed. In summary, frequency-domain methods are very useful for

conceptual design calculations, optimizations and for applying linear control design methods,

where an understanding of the overall system properties is important. The linear model used

in this work will be derived in Chapter 3.

2.7 Environmental Conditions and Load Calculation

The structural loads are usually the response quantity of interest for limit-state design, where

the Ultimate Limit State (ULS) can be a design driver but, especially for wind turbine compo-

nents, also the Fatigue Limit State (FLS). Additionally, also displacements and accelerations

can be a constraint, e.g. the maximum blade tip de�ection or the maximum acceleration at the

nacelle. This section will introduce the characteristics of wind and waves and their modeling.

Eventually, a simpli�ed set of Design Load Cases (DLCs) will be de�ned and the principles of

load calculation and requirements for the design.

2.7.1 Wind

The wind can be modeled either as a deterministic time-dependent function or as a random

stochastic process. For stochastic load simulations, the mean wind speed is constant in time

periods between 10 min to 60 min. The �uctuating component is determined by the turbulence

spectrum, where the standard deviation σx in the longitudinal direction is de�ned for the Normal

Turbulence Model (NTM) by the IEC [131] as

σx = Iref (0.75v̄hub + b) . (2.29)

The expected value of the turbulence Iref at 15 m/s depends on the class the turbine is designed

for. In this work, the lowest turbulence class (C) is used due to the reduced turbulence at sea.
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In [131] factor b is de�ned as b =0.56 m/s. With σx, the Kaimal spectrum can be de�ned based

on [131, Appendix B.2]. The standard also de�nes an exponential coherence model for the

longitudinal component, with which it is possible to generate 3D turbulent wind �elds. The

more advanced Mann model, also part of the standard, de�nes additionally a coherence model

for the lateral and vertical wind speed components. For time-domain analyses, the spectra at

each grid point over the rotor plane are augmented with a random phase and transformed to

the time-domain with an IDFT. A wind pro�le is a representation of the boundary layer due

to surface friction, which depends on the surface roughness. In this work, a logarithmic pro�le

for the longitudinal wind speed v̄(z) is used

v̄(z) = v̄hub(
z

zhub
)α (2.30)

with a logarithmic exponent α = 0.14 following the o�shore standard [137].

The basic theory of spectral wind models and time-domain realizations can be found in [138]

and in the TurbSim user guide [139]. The tool is used in this work for generating the wind

�elds.

2.7.2 Waves

Linear wave theory for the calculation of the hydrodynamic forces was already discussed in

Section 2.5.3. The de�nition of the met-ocean conditions determining the properties of the

external loading is the subject of this section. For load calculations, deterministic regular waves,

or focused waves can be used for an e�cient representation of extreme situations. Alternatively,

irregular, stochastic waves represent more realistic sea-states. Common parametric wave spectra

are the Pierson-Moskowitz spectrum and the Jonswap spectrum, see [89, Chapter 5.8]. They

are de�ned as a function of the peak spectral period Tp and the signi�cant wave height Hs,

the mean of the highest third crest heights. The instantaneous free surface elevation ζ0(t) is

usually the one at the Center of Flotation (CF) at the initial position of the FOWT without

wind forces. Figure 2.5 shows the Jonswap wave spectra according to the met-ocean conditions

of Table 2.1.

2.7.3 Design loads

With the standards speci�c to FOWTs by DNV-GL [28] and the International Electrotechnical

Commission (IEC) [140] the necessary set of DLCs is de�ned and the previous standards for

bottom-�xed o�shore wind turbines, see [137] and [141], are extended. The IEC standard

references additionally the standard for onshore wind turbines for all requirements related to the

wind models, see [131]. A variety of operational, idling and fault cases are de�ned under normal

and extreme environmental conditions. For a representative selection of met-ocean conditions
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Figure 2.5: Jonswap wave spectra used in this work with parameters of Table 2.1. Darker colors for
increasing sea state.

for the design calculations according to the standard, site data is necessary. For ULS conditions

it is necessary to perform a reliable extreme value extrapolation, see [131]. For FLS conditions

the set of operational plus fault cases has to be selected according to [137], using a binning

with respect to short-term mean wind speeds. In each bin, the most likely set of combinations

of wind speed, signi�cant wave height and peak spectral period has to be determined. Based

on measurements, joint probability functions can be derived, see [142], allowing a selection

of the combinations for the power production case (DLC1.2, [137]). A reduced set of these

operational conditions from the project LIFES50+ can be found in Table 2.1, taken from [143,

Chapter 7]. Figure 2.6 shows the Probability Density Function (PDF) for the wind speed �tted

with a Weibull distribution. These environmental conditions will be used in the remainder of

this thesis.

wind speed v̄hub [m/s]
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Figure 2.6: Wind speed Weibull PDF for fatigue design.

As mentioned in Section 1.3, the focus of this work are operational load cases, where the

wind turbine control is active. Extreme loads are not addressed as extensively as fatigue loads.

This is due to the fact that the employed simpli�ed models are valid in a small range about

an operating point. Extreme load simulations require models of higher �delity due to large

excursions, de�ections where nonlinear e�ects become important. The main objective of this
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Table 2.1: Met-ocean conditions of LIFES50+ fatigue load case (DLC1.2).

Wind speed Signi�cant wave height Peak spectral period
v̄hub [m/s] Hs [m] Tp [s]

5.0 1.38 7.0
7.1 1.67 8.0
10.3 2.2 8.0
13.9 3.04 9.5
17.9 4.29 10.0
22.1 6.2 12.5
25.0 8.31 12.0

thesis is to provide overall indications of platforms with limited excitations to wind and waves.

The fatigue loads can be evaluated using load cycle counting methods. These will be introduced

in the following.

Damage-equivalent loads from time series

Whereas many civil engineering structures can be designed using static load calculation, fa-

tigue can be critical for wind turbines depending on the component material. Fatigue damage

assessment usually relies on dynamic time-domain simulations. A load cycle counting reveals

the damage caused by cyclic stresses in the components. The load calculation procedure for

steel structures is detailed in the standards Eurocode [144] or DNV [145], speci�c to o�shore

structures. The load cycles from simulations are compared to experiments of a given material

and a given con�guration, e.g. di�erent geometries and mechanical joints. For these specimen,

the failure event is recorded depending on the stress amplitude (S) and the related number

of load cycles (N). This results in S-N-curves, usually plotted in a lin-log scale. Typically for

steel structures is an S-N curve of a decaying straight line, which �attens for high load cycle

numbers and low load ranges, where no fatigue failure occurs (fatigue endurance). The S-N

curves from experimental tests, relevant for wind turbine towers, can be found in [144]. For

simpli�ed assessments, the S-N relation can be modeled for N < 106 . . . 107 cycles as

N = adS
−m (2.31)

with the slope −1/m of the straight line in a graph with logarithmic x-scale and an intersection

of the curve with the y-axis at ad. Now the total damage caused by a load spectrum of di�erent

load amplitudes each with a di�erent number of cycles can be assumed to accumulate linearly,

according to the Palmgren-Miner rule. The rain�ow counting method is commonly applied to

the time series from load measurements or simulations for the cycle counting. The algorithm
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used here is the one by Adam Nieslony4. The result is a histogram of the number of cycles nj
for a given load range Sj. The total damage D is according to [146, p. 114] the sum of the

individual damage of each load range bin with nj cycles divided by the corresponding cycle

number Nj causing failure

D =
k∑

j=1

nj
Nj

=
1

ad

k∑

j=1

nj (Sj)
m ≤ η. (2.32)

Here, the simpli�ed S-N curve model of Eq. (2.31) is used. Failure occurs when D exceeds the

usage factor η, depending on the component, see [146]. Fatigue is only assessed qualitatively

in this work as structural design calculations are outside the scope of this thesis. Therefore, a

reduced parameter representing the fatigue damage from a given load spectrum is used. It is

the load amplitude (usually a section force or moment), exerted during a hypothetical number

of cycles (here Nr = 2× 106) giving the same D as the full load spectrum. The Damage-

Equivalent Load (DEL), represented by ∆Seq, can be calculated as

∆Seq,i = m

√
1

Nr

∑

j

∆Smj nij. (2.33)

A weighting using a distribution function such as the one of Figure 2.6 is possible by multiplying

the load range number nij of the respective load range bin j with the lifetime fraction Ti/Tlife
of wind bin i giving

nij = nj
Ti
Tlife

. (2.34)

In this simpli�ed fatigue assessment, the in�uence of the mean stress and stress ampli�cation

factors due to the component geometry are not considered. Stress ampli�cation at notches

is neglected and, as a consequence, the uniaxial stress is proportional to the section force, or

moment, see Section 3.2 for more details.

Damage-equivalent loads from frequency-domain spectra

The damage estimation from a given load spectrum with Eq. (2.32) requires load time series

from measurements or time-domain simulations to get the histogram with the cycle numbers nj
through a rain�ow counting algorithm. Various attempts have been made to obtain an estima-

tion of the load histogram from a frequency-spectrum. This has the advantage of a reduced

simulation time through frequency-domain methods as introduced in Section 2.6 and was es-

pecially necessary for the design of o�shore oil and gas structures under stochastic loading

before computational power became a�ordable. A comparison of the di�erent approaches can

4http://de.mathworks.com/matlabcentral/fileexchange/3026-rainflow-counting-algorithm, ac-
cessed on January 22, 2018.

http://de.mathworks.com/matlabcentral/fileexchange/3026-rainflow-counting-algorithm
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be found in [147]. The most accepted method is the one from Dirlik [45]. It approximates the

number of cycles N for the di�erent load ranges S. The Dirlik formula is written as

nj = E[P ] p(Sj)T, (2.35)

where E[P ] is the expected value of the number of peaks, a function of the second and fourth

spectral moments. The parameter p(S) is a nonlinear function of the zeroth, �rst, second and

fourth spectral moments, see [147, Eq. 6]. The resulting number of cycles for each stress range

bin nj is given for a time period T . In order to obtain a representative set of cycle numbers

for each load range bin, the method of inverse transform sampling can be applied: From the

load range histogram nj a Cumulated Distribution Function (CDF) can be calculated through

an integration of the histogram over the bins of the load cycle numbers. The representative

set of samples (equal to the result of a rain�ow counting) can be obtained by assuming equally

distributed cycle counts, which are then mapped through the CDF from the count running sum

on the load ranges. The method has been implemented in the linearized model of Chapter 3

and compared to the conventional rain�ow counting method, see Section 3.9.

For the assessment of the controller, additional signals are of relevance, apart from the

structural loads. These are summarized together with the selected constraints for this work

in Table 2.2. The constraints on the left may not be exceeded, whereas the targets, usually

the signal Standard Deviation (STD) is sought to be minimized for optimal performance. The

indicated overshoots are evaluated in this work for one-hour time series. This is a simpli�cation

for a straightforward quantitative design assessment, while for detailed design the probability

for a signal to exceed its bounds with respect to its lifetime needs to be calculated. The main

loads to be minimized by design and controller optimization are the tower-base loads. These

loads are the highest of FOWTs, compared to onshore turbines, see Section 2.5. Furthermore,

they represent the response of the tower-top displacement and also of the platform pitch motion.

These are important signals when looking at the overall FOWT system dynamics as already

discussed in Section 2.5.

Table 2.2: Requirements on controller performance.

Requirement Target

Rotor speed overshoot max. 15 % STD rotor speed min.
El. power overshoot max. 15 % STD el. power min.
Generator torque overshoot max. 15 % STD generator torque min.

STD blade pitch angle min.
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Estimation of short-term extremes from frequency-domain spectra

A means to obtain short-term extreme responses from frequency-domain spectra will be in-

troduced in this section. This is especially useful for controller tuning when it is necessary to

get an estimate of the overshoot of the electrical power or the generator torque, the design

requirements shown in Table 2.2.

Assuming stationary Gaussian waves and a narrow-banded response signal, the response

amplitudes are Rayleigh distributed [90]. The short-term probability density function fst of the

amplitudes y is then given by

fst(y) =
y

m0y

exp

(
− y2

2m0y

)
. (2.36)

The zeroth spectral moment m0y of the response is equal to σ2
y, the squared STD.

The probability of exceedance of the amplitudes y for a given time T can now be estimated

with the CDF Pst or the integral over the amplitude range of Eq. (2.36) as

Pst(y > a) =

∫ ∞

a

y

m0y

exp

(
− y2

2m0y

)
dy. (2.37)

The total number of occurrences NT of the values of y exceeding a limit a can be estimated

from the average zero-upcrossing period T2r. This follows from the conception that �there is

only one peak value between an upcrossing and a subsequent downcrossing of any level a� [148,

p. 237]. It results

NT =
T

T2r

Pst(y > a). (2.38)

The amplitude which is reached or exceeded NT times in a given time T can be calculated

with Eq. (2.38), solving for the amplitude a. A comparison of this estimation with time-domain

data is also shown in Section 3.9, see Figure 3.29.

2.8 Model Tests

Experimental testing has become especially important for FOWTs due to the additional dy-

namics from the �oating substructure, mooring lines and wave forces. Thus, model tests have

the objective to validate software tools in general, but as the TRL increases with the �rst

tests in a realistic environment, model tests also helped to reduce the risk associated with the

deployment of a prototype.

It is common to the scaled testing of o�shore structures to maintain a constant Froude

number Fr , see e.g. [91]. The Froude number is written with the characteristic length D, the
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velocity v and the gravitational constant g as

Fr =
v√
gD

. (2.39)

Consequently, if the length scaling factor is λ (e.g. λ = 1/60 for the TripleSpar, see Section 4)

forces are scaled with λ3. The scaling factors for masses, forces and frequencies are collected in

Table 2.3. Scaling with this method shows that the frequency increases in model scale and the

time coordinate decreases, which results in a smaller simulation timestep and a higher sampling

rate for sensors, processors, communication interfaces, etc. Froude-scaling has been successfully

employed in o�shore engineering, see e.g. [90] or [91]. A di�culty arises if the drag becomes

important, as it is usually Reynolds-dependent.

The Reynolds number

Re =
vD

ν
, (2.40)

is the ratio of inertia to viscous forces, a function of the kinematic viscosity ν. Since the work-

ing �uid of experiments is usually not modi�ed (air or water) the viscosity remains constant

and Re cannot be maintained while scaling down the system. Many o�shore structures have

small viscous forces compared to inertia forces and therefore for FOWTs the problem is more

signi�cant for the aerodynamic model of the wind turbine rotor, see [149] for an introduction.

A solution has been to re-design the rotor for low Reynolds numbers. The most discussed tests

of the FOWT community were the DeepCWind tests, [150] and [151], and the comparison to

di�erent simulation methods in the ongoing OC5 project. New methodologies of scaled test-

ing include also Hardware-in-the-Loop (HIL) methods, where either the hydrodynamic or the

aerodynamic model is replaced by a force actuator, which is real-time controlled. A simulation

model calculates the forces, which are then imposed on the physical model. Such a test with a

fan imposing the aerodynamic forces was conducted within INNWIND.EU, see [152]. A com-

parable approach was made in [153] and [154]. The same methodology but with an actuation

of the hydrodynamic forces, instead of a physical wave basin was topic of the study [155] of

the project LIFES50+. An overview of reported FOWT model tests with a comparison of the

employed methods and outcomes can be found in [156]. The numerical FOWT design process

including experimental tests is the focus of [157].

Table 2.3: Froude-scaling.

Parameter Unit Scaling factor

Length L λ

Mass M λ3

Force MLT−2 λ3

Frequency T−1 λ−
1
2
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In the course of this research, two model tests were performed. One at the Research

Laboratory in Hydrodynamics, Energetics & Atmospheric Environment, Nantes, France

(LHEEA) in 2014 with the DeepCwind semi-submersible as part of the project INNWIND.EU5,

see [158, 159]. The other one focused on active blade pitch control on the TripleSpar semi-

submersible concept designed as part of this research and described in Section 2.10 with a

scaled 10 MW turbine, see [160]. This test was performed in a joint e�ort with DTU and Na-

tional Renewable Energy Centre of Spain (CENER). The experience from both tests was fed

back into the development of the reduced-order model of this thesis and a �rst validation study

was done by Wei Yu in her thesis, see [161]. The hydrodynamic drag model of the simpli�ed

simulation model of Chapter 3 will be validated through these tests and the drag coe�cients

of the TripleSpar platform will be identi�ed in Chapter 4.

2.9 Control

This section provides the basics of modern wind turbine control and a review of challenges and

state-of-the-art control design methods for FOWTs.

2.9.1 Variable speed blade-pitch-to-feather-controlled turbines

The control system of modern wind turbines includes supervisory control for special events

like start-up and shut-down. The safety system regulates emergency shut-down events when

failures are detected to prevent damage to the turbine. Feedback control is mainly responsible

for capturing the maximum amount of energy from the wind through controlling the rotor speed,

depending on the wind conditions. In this work, the focus is on the feedback control of the

rotor speed. Feedforward control is bene�cial when information of the incoming disturbance

is known, such as wind and waves for wind turbines, see [162]. Feedforward control is not

considered in the present work.

The feedback control of wind turbines depends on the operating point with three regions and

the switchings in between. Region 1 covers wind speeds not relevant for energy production.

In region 2, the rotor speed is controlled by actuating the generator torque in a way that the

optimal TSR is maintained in order to capture the maximum amount of energy. Region 3 is

the above-rated region, where the blade pitch angle is actuated to control the rotor speed at

its rated speed and consequently maintaining the rated power. Earlier control methodologies

make use of the stall e�ect to reduce the lift force. This method avoids the blade pitch actuator

but is not present anymore in most modern wind turbines. An introduction to wind turbine

control can be found in [44] and [163].

5http://www.innwind.eu/, accessed on January 22, 2018.

http://www.innwind.eu/
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2.9.2 Floating wind turbines

Whereas below-rated control does usually not imply challenges for the design of FOWT con-

trollers, the coupled dynamics of the �oating system pose di�culties together with the blade-

pitch controller for above-rated wind speeds. A standard rotor-speed controller for above-

rated wind will pitch the blades when the rotor speed exceeds its rated value. In the case

of FOWTs, this feedback loop can imply, as a side-e�ect, that the tower or the platform ex-

periences large excursions. This is due to the aerodynamic properties of the rotor: When the

relative wind speed (the one seen by the rotor) increases, the controller will pitch the blades to-

wards feather (increasing blade pitch angle) and thereby reduce the aerodynamic rotor torque.

As a consequence, the thrust also decreases. This means, on the other hand, that an oscilla-

tion of the platform in pitch (about y, Figure 3.1) will become unstable if the controller reacts

su�ciently fast to the sinusoidally oscillating relative wind speed.

The contradicting goals of stabilizing power for above-rated wind speeds and minimizing

platform motion are a key challenge for FOWTs and of general importance for the fatigue

life, see [164]. A too aggressively tuned blade-pitch controller results in unstable platform

behavior. This is due to a Non-Minimum Phase Zero or Right Half-Plane Zero (RHPZ) of

�oating platforms. This leads to a bandwidth reduction of the blade pitch controller. A good

explanation of this �negative damping� problem is given in [165]. A simple pole-placement

method to adjust the Proportional-Integral (PI)-controller to mitigate this negative damping

problem was proposed by [10]: The de-coupled rotor (including drivetrain) is considered as

rigid body in the closed loop (with active blade pitch control). Then the rotor closed-loop

eigenfrequency has to be selected lower than the critical support structure eigenfrequency,

which is usually the platform pitch frequency. This is roughly aligned with the general control

rule of thumb to limit the bandwidth for systems with RHPZs to half the frequency of the RHPZ

according to [166, p. 187]. The advantage of this procedure is that no linearized model of the

complete FOWT system is necessary but only the isolated rotor model and a quick de�nition

of reasonable control gains for conceptual design is rather straightforward. The disadvantage is

that �rst, the isolated rotor eigenfrequency might deviate from the coupled rotor eigenfrequency

and therefore also the desired pole will deviate from the real pole of the coupled system. Second,

the overall system stability is not ensured with this method and therefore, instabilities might

still exist for certain operating points. The method was applied in [15] and compared with an

additional tower-feedback controller in [11] for a barge-type platform. An evaluation of this

method, also called �de-tuning of gains� was carried out by [167] and [168]. The comparison

in [169] includes also controllers with more than one feedback loop, in order to further improve

the control performance.

More advanced strategies are, among others, Multi-Input-Multi-Output (MIMO) controllers:

Here, the feedback of additional signals, the addition of more loops to the control architecture,
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can help to reduce the coupling e�ects in the system. The feedback of, e.g. the tower-top

acceleration is possible such that the blade pitch angle reacts not only to the rotor-speed

deviation but also to the tower-top acceleration. A sequential, �manual� tuning of feedback loops

and their respective gains, comparable to decentralized control, has been called �multi-SISO�

control, see [3, Appendix]. Real MIMO control looks at the FOWT system as a dynamic system

with multiple inputs (actuators like generator torque and blade pitch angle) and outputs (rotor

speed, tower-top displacement, etc.). As several standard linear control design methods do not

hold anymore for MIMO systems, the design process is more complex, see [170] for a study

on onshore turbines. Therefore, the authors of [12] published a �parallel path modi�cation�

approach to mitigate the constraints from the RHPZ through the feedback of the tower-top

acceleration on the generator torque � an approach published in the early stages of MIMO

control research, see [171].

Furthermore, optimal control design approaches have been presented, where optimization al-

gorithms are applied to �nd the best feedback law, mostly using a linearized system description.

Such optimal controllers are a Linear Quadratic Regulator (LQR), as presented in [172], with

a state-feedback law. The LQR problem was extended to include nonlinearities of the FOWT

system in [173]. The optimal control problem in the frequency-domain can be solved with H2

or H∞ controllers, see [166]. Here, a target response (sensitivity function) is de�ned in the

frequency-domain with a given set of available sensors. This has been applied to onshore wind

turbines in [174, 175] and to FOWTs in [14] and [176]. Other multivariable controllers were

developed by [177], mostly using all or the most relevant system states as controller input. A

model development and Linear Model-Predictive Control (MPC) design can be found in [106]

and, especially aiming at wave disturbance preview in [178]. A comparison of di�erent ap-

proaches for model predictive control for wind turbines can be found in [179]. An advanced

controller addressing speci�cally the purpose of reducing disturbances is Disturbance Accomo-

dating Controller (DAC): A waveform of the disturbance is assumed and augmented to the

system as a feedforward term to cancel out the disturbance forcing. This was applied by [180]

and [181] to onshore wind turbines and to FOWTs in the thesis [182], among others.

Additional actuators to stabilize the tower were implemented in [105]. As was noted by [183],

the standard actuators of a turbine (generator torque and blade pitch angle) might not be strong

enough to mitigate �rst-order wave loads. Here, additional actuators can help to improve the

motion response of a FOWT. For onshore turbines, passive systems like TMDs or tuned liquid

column dampers have been investigated. Also active systems are possible, see e.g. [105] and

the Master's thesis [184]. An additional actuator on the nacelle of a FOWT was proposed

by [185], an active vane to damp tower-top vibrations. A semi-active liquid column damper

with an optimal control approach was presented in [186]. In the project MARINA-platform,

the combination of a FOWT and a wave-energy converter was investigated and the potential to

produce energy from the waves. Possible approaches for such multipurpose o�shore structures
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are compiled in [187]. For �xed-bottom foundations structural damping devices have been

analyzed to reduce structural loads for large o�shore wind turbines in [188], especially focusing

on the adaptation of the control to the actual structural properties. A general report on

methods for the mitigation of tower loads can be found in [189]. For o�shore wind turbines,

various control approaches including tower feedback control were compared and assessed in the

thesis by Fischer [190]. Within the project INNWIND.EU di�erent members and cross-braces

with speci�c dynamic properties are placed inside the tower or foundation to optimize the load

response � something which is in general also feasible for FOWTs. Especially for damping the

blade response and smoothen the electrical power, smart blades, e.g. with �aps, are subject to

research, see e.g. [191]. Many of these studies show that additional actuators o�er the prospect

of damping the structural response with more or less use of actuator power. Some of these

systems are already being applied, i.e. TMDs in civil engineering, whereas others, like vanes

are still being analyzed in research projects.

With Individual Pitch Control (IPC), the blade pitch angles are not controlled simultane-

ously, as in the case of Collective Pitch Control (CPC), but individually. Thus, azimuth-

dependent forcing is possible, especially for reducing the 1p blade loads and the Three-Times-

Per-Revolution (3p) tower loads due to the vertical wind pro�le, see Section 2.7.1. A basic IPC

controller for wind turbines was proposed by Bossanyi in [192]. For FOWTs an extensive study

on IPC for FOWTs can be found in the thesis by Namik [182]. A FOWT controller for all

operational regions combining the prospects of DAC and Nonlinear Model-Predictive Control

(NMPC) with IPC is presented in [193] with a good improvement in terms of load reduction

compared to a standard controller but only short description of the modeling assumptions is

given.

Special approaches to improve the control performance for FOWTs were presented: In [194]

a set point change of the rotor speed as function of the platform pitch velocity was proposed.

This might be comparable to feedforward control such that the knowledge of the change in

relative wind speed at the rotor is used to determine the feedforward gain. Another proposed

approach is to use an estimator in real-time to distinguish the origin of the rotor speed deviation:

Whether it results from a forcing of waves on the support structure or from a change in the wind

�eld. With an estimator it is possible to have the controller react primarily on the e�ects from

the wind �eld �uctuation and not the platform oscillation and thereby overcome the RHPZ

limitations. Additional sensors, mainly for disturbance preview for FOWTs, have been studied

with promising results: A feedforward controller using wind preview information on a FOWT

was shown in [108] and [195]. Light Detection And Ranging (LiDAR) signal data, used for an

advanced NMPC is presented in [106] and extended for IPC in [196].

First scaled experimental tests of FOWTs including active control were performed in [197]

in order to validate simulation models and assess the robustness of the control. Experimental

testing of FOWTs including control will be topic of Chapter 4 of this thesis.
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The topic of the necessary model �delity for the controller design was discussed for onshore

turbines in [198] and several aerodynamic models suitable for controller design are presented

in [87]. Especially coupling e�ects are important for FOWTs as resonances might shift or

interact with each other. This was shown for the interaction of blades and tower in [199]. The

next section on the model development of this research addresses the question of the necessary

model �delity for FOWTs.

In this thesis, especially the problem of MIMO control for FOWTs is addressed, studying

the dynamic properties and the coupling e�ects of the standard actuators blade pitch and

generator torque on the di�erent outputs such as rotor speed and tower-top displacement, see

Chapter 5. This is done with the goal of understanding the dynamic properties of the wind

turbine mounted on a �oating foundation, subject to wave loads. Based on these �ndings, an

optimal LQR assuming perfect measurements has been designed and an automated method for

designing a state-of-the-art SISO PI-controller. The optimal controller is seen as a benchmark

for the upper bound of what is achievable with control to be compared with the baseline

controller. Both controllers are parameterized and will be integrated in the optimization study

of the platforms, Chapter 6.

2.10 Reference Design

Within the project INNWIND.EU, a platform design competition among the project partners

resulted in three di�erent concepts, described in [200]. For the one initially designed at Stuttgart

Wind Energy (SWE) within this thesis, a detailed design was done towards the end of the

project, see [123]. Figure 2.7 shows a sketch of the concept: It is a deep-drafted semi-submersible

with the prospect of combining the advantages of a spar with those of a semi-submersible:

Spars usually have lower material costs due to its simple, cylindrical shapes and a restoring,

dominated by gravitational forces. Semi-submersibles, on the other side, are more �exible with

respect to the site as the draft is smaller. The TripleSpar draft is, with less than 60 m, smaller

than the one of typical spar platforms and still, the material cost advantage of spars can be

maintained. These simple cylindrical columns can be made of concrete or steel. The columns

are only connected through a three-legged steel structure above SWL in order to enable an

assembly at site, as for the Hywind Scotland wind farm, see [201]. The use of concrete for

the columns was initially investigated in the project Alternative Floating Platform Designs for

O�shore Wind Turbines using Low Cost Materials (AFOSP) for a concrete spar, see [202].

Recently, reinforced concrete has been proposed by various platform designers. The properties

of the TripleSpar concept are summarized in Table 2.4. The concept is public and the FAST

model can be downloaded from [203]. The full set of parameters used in this work is listed in

Table A.1.
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Figure 2.7: INNWIND.EU TripleSpar con-
cept for DTU10 MW wind turbine.

Platform draft [m] 54.5

Platform column diameter [m] 15.0

Platform column
26.0

spacing (to centerline) [m]

Platform mass [106 kg] 28.3

Number of mooring lines [-] 3

Water depth [m] 180.0

Mooring line length [m] 610.0

Turbine mass [106 kg] 1.1

Rated rotor speed [rpm] 9.6

Rated wind speed [m/s] 11.4

Table 2.4: INNWIND.EU TripleSpar platform and
DTU10 MW wind turbine main parameters.
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Simulation Model

A tailored numerical model will be derived in this chapter, �rst for a linear system analysis

and model-based control design and second, for a computationally e�cient load calculation

and design optimization. A description of the model, together with exemplary results and

veri�cation will be published in [204]. After the derivation of the structural model, all submodels

related to aerodynamics, hydrodynamics and the mooring lines will be described. The derivation

is shown for a nonlinear time-domain formulation with a linearization of each submodel. A

veri�cation of the model, called Simpli�ed Low-Order Wind turbine (SLOW) in the remainder,

through a comparison with FAST [43] will terminate the chapter. The next section will list the

functional requirements of the model with respect to its applications.

3.1 Requirements

State-of-the-art simulation models for FOWTs as introduced in Section 2.5 are engineering

models, which can be handled on standard PCs. Nonetheless, the computational e�ciency is

usually not high enough for large parameter variations in preliminary design stages.

Here, a list of requirements is formulated, for a simulation model enabling the goals speci�ed

in Section 1.1. Full system optimizations shall be possible at early design stages with a reduced

simulation time to bridge the gap between simple spreadsheet calculations and DLC simulations:

• Fidelity: Representation of overall system dynamics, no resolution of components

• Speed: High computational e�ciency

• Functionality:

� Suitability for model-based controller design and DLC-simulations

� Nonlinear and linearized equations of motion

� Only scalar disturbance inputs

• Architecture:

� Fully parameterized

� Flexible de�nition of Multibody System (MBS)

� Portability among di�erent platforms (symbolic Equation of Motion (EQM))
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Based on these requirements, a model will be developed with dynamic equations derived from

physics rather than through system identi�cation approaches using a more advanced model. For

a reduction of the computational time and code portability, the EQM are set up symbolically.

This means that the right-hand side of the ODE is not set up step by step with numeric values

but is available in the program code directly in terms of symbolic variables.

3.2 Structural Model

This section introduces MBS theory applied to the FOWT system with the goal of deriving EQM

with a reduced number of DoFs � �rst, for models of rigid bodies, linked by spring-damper

elements and then adding the theory of �exible bodies for beam structures. Although the

derivation is conducted for a FOWT system, the description and also the code is set up in a

way that it is possible to simulate other mechanical systems as well. This di�ers from many

other MBS models in wind energy, which are exclusively set up for modeling HAWTs.

MSL

z

x

Ω

θ

βp

v0

yxp

xt

η

zp

Figure 3.1: Topology of the simpli�ed multibody model (independent of �oating platform con-
cept), [205].

AMBS model is based on the assumption of a large rigid-body reference motion together with

small elastic deformations. This holds especially for rotating systems, such as any kind of tur-

bines. Wind turbines are especially challenging to model due to the �exible tower and the highly

�exible blades of ever increasing size. If no �exible bodies are involved the rigid-body MBS

consists of point-mass bodies coupled with spring-damper elements. Newton's second law for
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translational motion and Euler's law for rotational motion is set up for each of the di�erent

bodies and the momentum equations are set up directly. No conservation of energy is applied

as in Lagrange's principle. The Newton-Euler algorithm is documented in [206] and in [207].

It can be used for rigid and �exible MBS. The MBS topology can have an open (tree) struc-

ture or a loop structure (imagine a Darrieus rotor of a Vertical-Axis Wind Turbine (VAWT),

where the blade is connected at both ends). In the latter case, additional constraint equations

are necessary for imposing the joint condition, where the loop connects, resulting in a system

of Di�erential Algebraic Equations (DAEs), see e.g. [207]. For the HAWT on the �oating plat-

form, only open (tree) structures are necessary. The constraints for describing the system joints

can be geometric, meaning only dependent on the position or kinematic, if also the velocity is

constrained. The constraints for the systems analyzed here are all purely geometric and time-

independent (scleronomic), although time-dependent constraints can generally be implemented,

e.g for modeling a deterministic rotor speed or blade pitch angle maneuver as function of time.

The derivation of the equation of motion of FAST using Kane's method [208] seems similar to

the present one. However, in this work a formalism is used, which aims at a user-de�ned MBS

layout. This is unlike the FAST equations.

3.2.1 Rigid multibody systems

For systems undergoing large excursions with small elastic deformations, a modeling through

rigid MBS can be an e�cient but accurate approach as the body forces such as centrifugal,

Coriolis and gyroscopic forces are accounted for using a limited number of DoFs. The rigid

bodies with a lumped mass and lumped mass moments of inertia are connected through spring-

damper elements, whose forces are part of the applied forces acting on the bodies. The book

by Wörnle [209] gives a general overview on rigid MBS. The notation here follows the one of

Eberhard and Schiehlen [206] and Seifried [207]. The EQM for rigid bodies, described in the

following, are set up in the inertial reference frame, which is, in case of a FOWT, located at

the center of �otation in equilibrium position without external forces, see Figure 3.1.

Kinematics

The EQM require a suitable formulation of the system kinematics, which are a function of the

generalized coordinates consisting of the system DoFs, collected in the vector q. For the FOWT

allowed to move in 2D, the f generalized coordinates q are

q =
[
xp, zp, βp, ϕ, xt

]T
(3.1)

with platform surge xp, platform heave zp, platform pitch βp and rotor azimuth ϕ and the

elastic tower fore-aft deformation xt, see Figure 3.1. For FOWTs the translational displacement
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coordinates of the �oating platform xp and yp are i.e. usually de�ned at the center of �otation

of the platform and not at its Center of Mass (CM) in the same way as the inertial coordinate

system as described above.

The kinematic quantities of the translational velocity vi and the translational acceleration ai
of each body's CM in inertial coordinates can now be calculated from the position vectors ri to

each body's CM. The velocity vi results from the position vector ri, di�erentiated with respect

to time, as

vi(q, q̇) = ṙi(q, q̇) =
∂ri(q, q̇)

∂q
q̇ = J t ,i(q, q̇)q̇ (3.2)

omitting the partial di�erentiation with respect to time, since no time-dependent boundary

conditions exist (scleronomic system). One can see that the Jacobian matrix J t ,i transforms the

kinematics, described in the inertial coordinate system, into the space of minimal coordinates,

see [206]. The same will be done later with the global Newton-Euler equations. As a result,

the EQM are a set of ODEs with one scalar equation per generalized coordinate and constrained

directions are not anymore part of the EQM. This has the major advantage that no additional

constraint equations are necessary and the EQM are available as ODE instead of a set of Partial

Di�erential Equations (PDEs).

The translational accelerations ai are

ai = v̇i(q, q̇) =
∂vi(q, q̇)

∂q̇
q̈ +

∂vi(q, q̇)

∂q
q̇ = J t,i(q, q̇)q̈ + v̄i(q, q̇) (3.3)

with the component v̄i, called the local velocity.

The rotational generalized coordinates are also called quasi-coordinates as they cannot be

di�erentiated directly yielding the angular velocity vector ωi. The vector of rotation angles αi
is connected to the rotation tensor S(q) according to the selected description of the rotation.

For a rotation in three dimensional space, various descriptions are possible [210]. With Kardan

and Euler angles, the rotation matrix describes a successive rotation about the instantaneous

axes of the coordinate system. Therefore, it is important to keep in mind that simulation

results showing an angle about one axis represent the rotation about a rotated axis, not a �xed

one. In this work, Kardan angles are selected with the sequence XZY , which is of advantage

for the rotation of the �oating platform as the largest rotational displacement is usually in

pitch-direction (about y) due to wind and wave forcing. Consequently, the Kardan angle βp is

approximately the one about y of the inertial frame I. The rotation tensor can be written as

S =




1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)







cos(γ) − sin(γ) 0

sin(γ) cos(γ) 0

0 0 1







cos(β) 0 sin(β)

0 1 0

− sin(β) 0 cos(β)


 . (3.4)
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The angular velocity vector ω = [ ω1, ω2, ω3 ]T results from the rotation matrix according

to [206]

ṠST =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 = S̃ (ω) , (3.5)

where the cross-product operator S̃ replaces the cross product

λ× a = S̃ (λ)a. (3.6)

Note that a linearization of Eq. (3.4) yields a transformation matrix Slin , which does not

preserve the vector magnitude as tr(Slin) 6= 1. Corrections are possible, such as the one used

in the reference model FAST [15]. No corrections are employed for the linearized model in this

work. With the sequence of rotation of Eq. (3.4), the angular velocity vector remains as

ωi =




α̇

0

0


+




1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)







0

0

γ̇


+

+




1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)







cos(γ) − sin(γ) 0

sin(γ) cos(γ) 0

0 0 1







0

β̇

0


 . (3.7)

This angular velocity holds for the body i, rotated by Si such that its local coordinate sys-

tem iei = [ 1 1 1 ]T is transformed to its counterpart in the inertial coordinate system Iei

by
Iei = Si

iei (3.8)

In this chapter, all quantities are de�ned in the inertial frame Ie and the superscript is omitted

for simplicity. This description of the rotation is used for all bodies in the MBS of the FOWT in

this work. In rotational directions, the Jacobian matrix J r,i can be calculated from the angular

velocity vectors as

J r,i =
∂ωi(q, q̇)

∂q̇
. (3.9)

The rotational acceleration of body i is then

αi(q, q̇) = ω̇i(q, q̇) =
∂ωi(q, q̇)

∂q̇
q̈ +

∂ωi(q, q̇)

∂q
q̇ = J r,i(q, q̇)q̈ + ᾱi(q, q̇). (3.10)

Again, with the vector of the local angular acceleration ᾱi(q, q̇), following the notation of [206].
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Kinetics

Applied forces have to be de�ned for each body in the inertial coordinate system in the same

way as the kinematics. Applied translational forces F a
i and torques Lai of rigid MBS are any

type of external forces, like aerodynamic or hydrodynamic forces, gravitational forces and forces

from the MBS coupling elements, e.g. spring-dampers. These forces are, other than the reaction

forces, known a-priori and not only after solving the EQM. They are usually calculated in every

timestep by external force models, which will be described in the following sections. The bodies

of the FOWT having a signi�cant �exibility or elasticity are the tower and the blades. In this

work, a �exible MBS with �exible tower was generally used, except for the scaled experiments

of Chapter 4, where a rigid MBS was more suitable. In this case, a translational spring-damper

element at the tower-top can be de�ned. The overall sti�ness can be calculated by integrating

the sectional sti�nesses assuming a static shape and an approximate modal damping, see [211,

p. 375]. With this approach one portion of the tower mass is attributed to the platform and

another to the tower-top (RNA). A recommendation given in [163, p. 294] is to attribute 25 %

of the tower mass to the tower-top. Note that for the tower elastic restoring sti�ness the forces

on the nacelle are F a
nac = F spring

nac = −F spring
twr due to the principle �actio = reactio�.

The reaction forces F r
i and torques Lri acting on joints are unknown. For the calculation of

the response, they do not have any in�uence and can be eliminated with the transformation

into minimal coordinates as is done in the next section. A discussion on how to calculate these

reaction forces and sectional forces of �exible bodies will be made in Section 3.2.6.

Newton-Euler equations

With the described kinematics and kinetics, the equations of motions can be written. For the

translational directions, Newton's second law remains for each body i as

miai = F a
i + F r

i . (3.11)

with the acceleration ai given by Eq. (3.3). The mass matrices mi ∈ R(3×3) contain the

body masses mi on the diagonal. In the same way as for translational motion, the angular

momentum (Euler-) equations are set up. The mass moments of inertia I i of each body i

are needed in the inertial coordinate system. As they are usually known in the body frame,

a transformation with the rotation tensor Si is necessary to obtain I i. The Euler equation

becomes with the angular acceleration αi of Eq. (3.10) following [206]

I iαi + S̃ (ωi) I iωi = Lai +Lri . (3.12)

The global Newton-Euler equations for a total of p rigid bodies can now be put together
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resulting in a set of (2 · 3 · p) equations as



miJ t,i
...

I iJ r,i
...



q̈ +




miJ̇ t,iq̇
...

I iJ̇ r,iq̇ + S̃ (ωi) I iωi
...




=




F a
i

...

Lai
...




+




F r
i

...

Lri
...



. (3.13)

Now the reaction forces F r
i and torques Lri can be eliminated according to the principle of

d'Alembert by multiplying Eq. (3.13) with the global Jacobian matrix

J =
[
J t,1, . . . J t,p, J r,1, . . . J r,p

]T
(3.14)

from the left. Since the reaction forces always point into the constrained directions, perpen-

dicular to the generalized coordinates q, they are eliminated with this operation. After the

transformation Eq. (3.13) takes the form

M(q)q̈ + k(q, q̇) = p(q, q̇) (3.15)

with the mass matrix M ∈ R(f×f), the Coriolis, centrifugal and gyroscopic forces k ∈ R(f×1)

and the applied forces p ∈ R(f×1). For a convenient numerical solution, Eq. (3.15) can be

transformed into state space by solving for the second derivative of the generalized coordinates q̈

and de�ning the state vector x as

ẋ =
dx
dt

=


 q̇
q̈


 =


 q̇

M−1(p− k)


 . (3.16)

With the state vector of Eq. (3.1), selected for this work, the rotor is considered a rigid disk

and the structural model does not contain any dependency on the azimuth angle ϕ. In this

case, the azimuth angle is not a state as it is not necessary for a complete description of the

system and can be deleted from x. It is noted that the closed-loop system includes ϕ as state

again when introducing an aerodynamic force model, which includes an azimuth-dependency

or a rotor speed controller with an integral term.

Added mass forces

For �oating bodies, an acceleration-dependent force needs to be added to the inertia-term of

Eq. (3.13) in the same way as in the rigid-body EQM, Eq. (2.19). The added �uid mass depends

on the hull shape and is usually calculated by potential �ow (or panel-) codes. Depending on the

reference point and the symmetry, the added mass matrix A(ω) ∈ R(6×6) has coupling elements
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between translational and rotational DoFs. These coupling terms need to be respected in

Eq. (3.13). In the present model this is solved by writing the structural mass matrices for all

bodies i as M i ∈ R(6×6) including the translational mass matrices and the mass moments of

inertia. From these, the left summands of Eq. (3.13) result from


 miJ t,i

I iJ r,i


 = M i


 J t,i
J r,i


 . (3.17)

For the planar (2D) EQM, the most important coupling terms are usually the surge-pitch (5,1)

and (1,5)-elements. This becomes even more important when the reference point for the added-

mass matrix is the CF (at the water surface, as is the usual procedure and also done in this work)

because this point is distant from the Center of Buoyancy (CB). The frequency-dependency

of A is further discussed in Section 3.5.1.

3.2.2 Flexible multibody systems

In this section, the EQM for rigid MBS will be extended to account also for �exible (elastic)

bodies. The �exible MBS approach simpli�es the inclusion of all body forces from large displace-

ments of the reference frame. These are di�cult to obtain from standard FE approaches, which

require the computationally expensive absolute nodal coordinate formulation, see [210] for de-

tails, or hybrids like the co-rotational frame formulation implemented in 3DFloat, see [212]. A

derivation of a nonlinear FE model for wind turbines can be found in [213] for the tool FAST.

The notation here follows the one from Schwertassek and Wallrapp [59]. The assembly of the

equations, equivalent to the ones of rigid systems, Eq. (3.13), follows Seifried [207], because he

uses d'Alembert's principle, as opposed to [59], who use Jourdain's principle for the elimination

of the reaction forces. The vector of generalized coordinates q will be a combination of rigid

and �exible (elastic) DoFs q = [qr, qe]
T . With a �exible tower, the vector q, de�ned for rigid

bodies in Eq. (3.1), is composed of a rigid and a �exible part as

qr =
[
xp, zp, βp, ϕ, θ1

]T
and qe =

[
xt

]
. (3.18)

In Chapter 5 and 6, the collective blade pitch actuator is included in the �exible MBS with

a single DoF θ1. The next sections describe the derivation of the additional equations to the

Newton-Euler equations of Eq. (3.13) to represent �exible bodies. Therefore, the index i refers

to a �exible body in this section.
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Kinematics

The present derivation follows the ��oating frame of reference� method, see [59] and [214]: It is a

reference coordinate system for the de�nition of the �exible body, which is not necessarily its CM

but any reference point that is convenient for the description of the elastic properties. This

formulation simpli�es parts of the equations and is useful for a pre-computation of the elastic

properties of the bodies, which is detailed at the end of this section. Eventually, the kinematics

of an elastic body i can be described by the reference kinematics with a large nonlinear motion

and the small linear motion described by the fe,i generalized elastic coordinates qe,i ∈ R(fe,i×1)

of body i.

The coordinates (in the local body reference frame R) of the nodes k of a �exible body in

the reference con�guration (undeformed) with respect to the reference system are collected in

the vector R = RR. The deformation �eld Ruki (t) of the body is de�ned in the local frame for

each node k relative to the reference coordinates RR. The position vector ρki (t) to the �exible

nodes k, using the �oating frame of reference is in the local reference frame R

Rρki (t) = Rri(t) + RRk
i + Ruki (t) = STi

Iρki (t). (3.19)

For the orientation the same description holds: In the same way as Rk
i , the tensor Γk

i represents

the orientation of node k of the �exible body i in the reference con�guration with respect to

the reference frame.

Looking at a straight rotor blade with the z-coordinate of ei pointing to the blade tip, the

beam reference coordinatesRi, aligned with the shear axis of the beam, see [60], will have zero x

and y-coordinates and the entries in x-direction are the radial position of the blade stations,

the same as in FAST [39]. For a pre-bent blade such as those of the DTU 10 MW RWT, this

is not the case and also the orientation of Γk
i is not constant for di�erent k, due to the blade

twist and the pre-bending.

A deformed body has the nodal orientation

Dk
i = Θk

i (t)Γ
k
i (3.20)

with the additional rotation from the deformation de�ned by the rotation tensor Θk
i (t). The

rotation tensor Dk
i is de�ned in the same way as Si according to the convention of Eq. (3.8).

Shape functions As in FE models, shape functions are used to avoid having to solve the PDEs

of continuum mechanics. With the Ritz-approach, the time-dependent and space-dependent

solution can be separated: Time-independent characteristic shapes are used to approximate the

deformation and are integrated to the ODE to solve for a time-dependent response. For MBS,

this approach can also be used by approximating the deformation of a �exible body with a
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characteristic shape. This is part of MOR techniques, one of which is the Guyan reduction,

which uses static modes of the �exible body as shape functions. In the present model, the

mode shapes of importance for the system dynamics will be used. For a recent work on MOR

methods in structural dynamics see [215] and speci�cally to wind turbines [216].

The shape function for translation Φk
i ∈ R(3×fe,i) for each node k has fe columns, as many as

generalized elastic coordinates de�ned for �exible body i. For the rotation, the shape function

is Ψk
i ∈ R(3×fe,i). Note that one shape function represents a translational and at the same time

rotational displacement. The nodal rotation tensor Θk
i (t) can be calculated from the rotation

shape function ϑki for small displacements with the identity matrix E as

Θk
i (t) = E + S̃

(
ϑki
)
. (3.21)

The general relative deformation �eld for translation uki (t) of Eq. (3.19) and for rotation ϑki (t)

of Eq. (3.20) can now be written as function of the generalized coordinates of the elastic

body qe,i(t)

uki (t) = Φk
i qe,i(t) ϑki (t) = Ψk

i qe,i(t). (3.22)

For beam models, used in this work for the tower, the shape functions are written as function

of the beam axis x ≡ R1. Here, one mode shape is used to represent the tower elasticity in

fore-aft direction. The shapes for a linear Bernoulli beam with only one DoF for bending take

the form1

Φi(R) =




Wi,1(x)

0

−R2W
′
i,1(x)


 , (3.23)

where Wi,1(x) stands for the lateral de�ection of the beam axis for the �rst shape. The shape

function for the beam element rotations reads

Ψi(R) =




0

W ′
i,1(x)

0


 . (3.24)

Looking at Eq. (3.22), it becomes clear that the shape functions Φi(R) and Ψi(R) have more

than one column for qe,i containing more than one coordinate.

As a result, the overall orientation ISki with respect to the inertial coordinate system I of

1Here written as continuous function of R and not for the nodes k as the shape functions are usually approx-
imated by analytic expressions.
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node k can be calculated using Eqs. (3.21) and (3.22) as

Ski =
(
E + S̃

(
Ψk
i qe,i(t)

))
Γk
iSi(t), (3.25)

where the rotation of the reference system of body i is Sk=0
i = Si. Equation (3.25) is of

importance for the de�nition of the orientation of a new body attached to a �exible body, for

example the nacelle mounted at the tower-top. In that case, the end node k̂ of the tower gives

the nacelle orientation Snac = Sk̂twr. In the same way the angular velocity ωki can be calculated

from the rotation tensor Ski using Eq. (3.5) or, as done in this model, from the de�nition of

Kardan angles, Eq. (3.7). The nodal velocities relative to the inertial frame I can be obtained

by di�erentiating Eq. (3.19) with respect to time in either the reference or the inertial frame.

Eventually, the kinematic functions for velocity zII,i and acceleration zIII ,i can be expressed

using minimal coordinates with the Jacobian matrices J t,i and J r,i following [207] as

zII ,i =




Rvi

Rωi

q̇e,i


 =




J t,i(q)

J r,i(q)

J e,i


 q̇ and zIII ,i =




Rai

Rαi

q̈e,i


 =




J t,i(q)

J r,i(q)

J e,i


 q̈ +




J̇ t,i(q, q̇)

J̇ r,i(q, q̇)

0


 q̇.

(3.26)

Consequently, the kinematics of elastic bodies are described by a reference translational and

rotational motion as for rigid bodies, see Eq. (3.2)�(3.7), but additionally by the generalized

coordinates of the elastic motion qe,i. Thus, there are fe additional equations in the (2 · 3)

Newton-Euler equations (Eq. (3.13)) for each elastic body i. The selection matrix J e,i assigns

the elastic coordinates qe,i of q to the corresponding bodies and therefore these elastic equations

are unchanged when transforming the system into minimal coordinates. The global Jacobian

matrix J , de�ned for rigid bodies in Eq. (3.14), is for �exible bodies

J =
[
J t,1, J r,1, J e,1, . . . J t,p, J r,p, J e,p

]T
. (3.27)

In the case of elastic bodies, the kinematics are written in the reference coordinate system

denoted by the superscript R, taking advantage of the �oating frame of reference approach

as introduced at the beginning of this section. The kinematics of the rigid bodies within the

global MBS of rigid and �exible bodies, however, are still written in the inertial coordinate

system I as derived in Section 3.2.1.

Selection of the body reference frame The reference frame R for the elastic body does not

have to be the body-CM as for rigid bodies of Section 3.2.1. A guidance for the choice of the

location of the reference frame is given in [59, p. 257]. For the tower-body, the tower-base is
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selected with the z-axis aligned with the beam axis. Thus,

u0
i (t) = 0 and ϑ0

i (t) = 0. (3.28)

In this case also the shape functions Φk
i and Ψk

i need to obey this condition, i.e. for a beam

the derivative of the shape functions is with respect to the beam axis W ′(x= 0) = 0. For a

hinge joint at the reference frame of the �exible body, the reference frame orientation depends

on the elastic generalized coordinates, qe,i. For a FOWT tower this can be the case due to

the �oating foundation. It is possible to obtain the tower mode shapes including a �exible

foundation with an unreleased version of the tool BModes [217] by NREL. This has not been

done in this work for simplicity. With the kinematics the body forces consisting of inertial,

gravitational, centrifugal, Coriolis, gyroscopic and elastic forces can be calculated.

Kinetics

The kinetics of elastic bodies di�er from those of rigid bodies as the e�ects of the body de-

formation have to be included in the calculation of the body forces. The notation is di�erent

from the one of rigid bodies, following the reference book for the model setup [59] (in German).

In the book by Shabana [214], the same derivation can be found in English, although with a

di�erent notation and a description in the inertial frame instead of the body reference frame.

The Newton-Euler equation for an elastic body i includes the mass matrixM i, the quadratic

velocity vector hω,i with Coriolis, centrifugal and gyroscopic forces, gravitational forces hg,

applied discrete forces hd,i, inner elastic forces he,i, based on the selected deformation tensor

and again, the reaction forces hr,i

M izIII ,i + hω,i = hg,i + hd,i + he,i + hr,i. (3.29)

In the following the components of Eq. (3.29) will be derived. For simplicity, the index for the

body i will be omitted as all equations are set up initially for a single body.

Mass matrix The mass matrix for a �exible body i for the generalized coordinates zI is

according to [59]

M =




M tt sym.

M rt M rr

M et M er M ee


 =




m sym.

mS̃ (c) I

Ct Cr M e


 . (3.30)

One can see that the entries of M related to translations t, rotations r and elastic coordi-

nates e contain coupling elements. This means that inertial forces on the �exible body frame R
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result from a generalized acceleration q̈e and vice-versa. Couplings between translations and

rotations do not appear in the case of rigid bodies, Eq. (3.13), because for rigid bodies the

position vectors ri always point to the respective CM. The same happens when transforming

the rigid EQM from one reference point to another (meaning that the Newton's and Euler's law

are written with a reference point other than the body-CM) using the system transformation

matrix de�ned in [218, p. 176], see also Section 3.5.3.

The CM c of the �exible body can be obtained for beams with cross-section A, length l and

density ρ through an integration along the beam axis x as

c =
1

mi

∫ l

0

ρAxdx+
1

mi

CT
t qe. (3.31)

The second summand, Ct ∈ R(fe×3), is the in�uence from the body deformation

Ct =

∫ l

0

ρAΦT
i (x)dx. (3.32)

The mass moment of inertia I = I(qe) is the sum of the one of the undeformed body I0 and

the contributions from elasticity I1(qe) and I2(qe)

I(qe) = I0 + I1(qe) + I2(qe) with (3.33)

I1 =

∫ l

0

(
S̃ (R) S̃ (Φqe)

T + S̃ (Φqe) S̃ (R)T
)
dm and I2 =

∫ l

0

S̃ (Φqe) S̃ (Φqe)
T dm.

The coupling between elasticity and rotations Cr is given by

Cr =

∫ l

0

ΦT S̃ (Φqe)
T dm. (3.34)

The mass matrix of the generalized elastic coordinateM e can be calculated by integrating over

the squared shape functions

M e =

∫ l

0

ΦΦTdm. (3.35)

Gravitational forces The gravitational body forces hg also depend on the deformation of the

body with the vector of the gravitational acceleration g = [ 0, 0, g ]T as

hg =




E

S̃ (R+ Φqe)

ΦT


 dm g =




m

mS̃ (c)

Ct


 g. (3.36)
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Inner elastic forces The inner elastic forces give, integrated over the volume of the �exible

body for each mode shape, the restoring sti�ness and structural damping forces on the MBS.

Thus, the strain can be calculated with the parameterized shape of deformation of the body.

From the strain the stresses can be computed with the material law. A number of transforma-

tions is necessary, depending on the coordinates used to parameterize the deformed shape as a

space curve. Here, a short overview is given for Bernoulli beams, which are used in this work.

The Green-Lagrange strain tensor reads in a linearized formulation for small displacements

following [59, p. 79]

Gij =
1

2

(
∂ui
∂Rj

+
∂uj
∂Ri

)
(3.37)

and gives the strain vector

ε = [ G11, G22, G33, 2G12, 2G23, 2G31 ]T . (3.38)

With this de�nition, the strains can be calculated from a given deformation. Often the defor-

mation is written in terms of the beam coordinates

ν(x, t) =
[
w1(x, t), w2(x, t), w3(x, t), ϑ1(x, t)

]T
, (3.39)

where

w = Wqe. (3.40)

Thus,W = W ∈ R(3×fe) has the same dimension as the matrix of shape functions Φ, compare

Eq. (3.23). For Bernoulli beams deformed in 3D including torsion about the beam axis ϑ1, the

general displacement �eld is given by [59, Eq. (4.86)] as

u =




w1 +R2 (−w′2 + w′1w
′
2 − ϑ1w

′
3) +R3 (−w′3 + w′1w

′
3 + ϑ1w

′
2)

w2 −1
2
R2 (w′22 + ϑ2

1) −R3 (ϑ1 + w′2w
′
3)

w3 R2ϑ1 −1
2
R3 (w′23 + ϑ2

1)


 . (3.41)

Applying now Eq. (3.37) on the displacement �eld, Eq. (3.41), the strain for Bernoulli beams

results as

G11 = w′1 −R3w
′′
3 −R2w

′′
2 ,

G12 = G21 = −1

2
R3ϑ

′
1, G13 = G31 =

1

2
R2ϑ

′
1, (3.42)

G22 = G33 = G32 = G23 = 0,
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see [59, Eq. (6.423)]. For large reference motions, the assumption of small de�ections is often not

valid anymore. This is for example the case for a rotating blade on a wind turbine rotor, which

usually shows increasing blade eigenfrequencies with an increasing rotational speed through

centrifugal sti�ening. Here, quadratic terms are necessary, which can be included in a linearized

fashion in G, see [59, Eq. (6.424)].

The remaining part is a transformation of the strain tensor G, because the strain is needed

as function of the generalized elastic coordinates qe. With this end the matrix BL is introduced

ε = BLqe. (3.43)

Note that BL ∈ R(6×fe) contains only the linear terms. For the nonlinear terms BN , resulting

for example from geometric sti�ening (centrifugal sti�ening) refer to [59, p. 356]. Comparing

now the de�nition of the strain vector ε, using Eqs. (3.38), (3.42) and (3.43), one can derive BL

and consequently the strains ε as function of the generalized elastic coordinates qe. For a linear

Bernoulli beam without the DoFs for longitudinal extension and torsion, as implemented in

this model, all elements of the Green-Lagrange strain tensor G vanish except for G11 and the

linear restoring sti�ness for mode k = 1 can be calculated with the Young's modulus E as

KeL =

∫

V

BT
LEBLdV =

∫ l

x=0

EJ22W
′′2
1 (x)dx. (3.44)

The integration over the cross-section A with the lateral coordinate R1 yields the second mo-

ment of area J22 about y. The linear generalized sti�ness matrix KeL ∈ R(fe×fe) has as many

rows and columns as elastic degrees of freedom, de�ned for the body. Thus, the diagonal

entries are the modal sti�nesses, which can be also used as spring sti�ness when using the

rigid MBS of Eq. (3.13). For the tower, the �rst mode can be used as dominant mode giv-

ing F a
twr(1) = KeL,twr(1, 1)xt. Looking at Eq. (3.44), it becomes clear that the modal sti�ness

matrix, which determines the dynamics of the �exible MBS, depends on the material, but clearly

on the shape function (with its second derivative W ′′, squared). Thus, a modi�ed shape, i.e.

from de�ning a di�erent tower-top mass in tools like BModes [217], will change the modal

sti�ness.

The structural modal damping matrix De ∈ R(fe×fe) can be calculated from the modal

sti�nessKeL and the modal massM e for mode k assuming a given structural damping ratio ξk

De = diag(Dek) with Dek = 2ξk
√
KekMek. (3.45)

Thus, for a constant structural damping ratio di�erent modal damping ratios can be calculated,

depending on their corresponding modal sti�ness. The modal damping ratios are user-de�ned

inputs in FAST [43].
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Finally, the vector of inner elastic forces he results as

he =




0

0

−KeLqe −Deq̇e


 . (3.46)

External applied forces External forces in this FOWT model are the ones from aerodynamics

and hydrodynamics, subject of the next sections. In order to include them, they need to be

transformed into the space of the generalized coordinates representative for the �exible bodies.

The discrete applied forces hd of Eq. (3.29) are again a combination of translational, rotational

and elastic forces, aligned with the generalized coordinates zII and zIII , de�ned in Eq. (3.26).

Based on the nodal forces F k and torques Lk in the reference frame the generalized forces are

hd =




hdt

hdr

hde


 =

∑

k







E

S̃
(
Rk + Φkqe

)

ΦkT


F

k +




0

E

ΨkT


L

k


 . (3.47)

Quadratic velocity vector The contributions from centrifugal, gyroscopic and Coriolis forces

are combined in the quadratic velocity vector hω of Eq. (3.29). As these forces are of minor

importance for the FOWT moving in 2D and no bodies are attached to the spinning rotor,

the derivation is omitted here and can be looked up in [59, p. 296] (for a reference in English

see [207]). Still, the quadratic velocity vector is implemented in the present model.

The global Newton-Euler equations of each, rigid and elastic, body are now complete and

can be transformed into minimal coordinates with the assembled global Jacobian matrix J for

rigid bodies of Eq. (3.14) and for �exible bodies of Eq. (3.27) such that the nonlinear EQM

result in the form of Eq. (3.15).

Standard Input Data Many kinematics and kinetics functions can be written as function of

the generalized elastic coordinates qe,i. They can therefore be computed independently of the

response of the MBS. This is due to the description of the �exible body in the body reference

frame R. A standard format was de�ned in [219] to provide an interface between FE models

calculating the elastic properties in a pre-processing step for the subsequent solution of the MBS

model. With this format, �exible bodies can be pre-computed in FE tools and exported to be

used in MBS codes. The Standard Input Data (SID) format is object oriented and the arrays

are stored depending on the order of qe. Part of the SID are the reference coordinates R, the

shape functions, Φ and Ψ, the product mc, the elements of the mass matrix M , Eq. (3.30)

and the sti�ness and damping matrices Ke and De, respectively, among others. The SID is

calculated in the present model in a dedicated function for beam structures.
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3.2.3 Additional dynamic couplings

Next to the MBS equations derived above, the FOWT includes several dynamic couplings,

which do not require a mechanical multibody model. The blade pitch actuator, for example,

is usually modeled as a time-delay or a second-order dynamic transfer function from the com-

manded blade pitch angle to the measured blade pitch angle. Another example is the drivetrain

�exibility resulting in a dynamic coupling between the aerodynamic torque and the reaction

torque between the gearbox housing and nacelle. These dynamics can be written as user-de�ned

dynamics, setting up the right-hand-side of an ODE in the input �le to the EQM.

In the present model, the rotor shaft �exibility is neglected. This can be justi�ed with the

controller bandwidth. All controllers used have a bandwidth below the tower eigenfrequency.

This reduces signi�cantly the external forcing at the torsional shaft eigenfrequency, which is

usually above the tower eigenfrequency. The blade pitch actuator is modeled as a second-order

transfer function with eigenfrequency and damping ratio given in Appendix A.

3.2.4 Symbolic programming

As main target of the SLOW model a high computational e�ciency was highlighted in Sec-

tion 3.1. In order to meet this goal and to allow for a high independence of the platform

and the programming language, the EQM of the structural model are written using symbolic

programming. As a result, the EQM are well portable and can be implemented on real-time

systems. However, when using symbolic programming, a number of limitations has to be kept

in mind: The size of the equations must not exceed a certain limit depending on the compiler

and the code optimization routines implemented in it. Especially multiple rotations in the tree

structure of the MBS increase the size of the equations and lead to long compilation times.

An assessment of the compilation times for symbolic codes can be found in [38]. On the other

side, the above derivations, speci�c to �exible bodies as opposed to rigid bodies, do not di-

rectly lead to large equations and do not necessarily increase the computational time. A �ow

chart with the tool architecture from the derivation of the EQM down to the time-domain and

frequency-domain results is shown in Section 3.7.

3.2.5 Linearization

The structural EQM are linearized symbolically by calculating the Jacobians with respect to

the states x of all variables of the global nonlinear EQM, Eq. (3.15), of rigid and �exible bodies.

With system inputs (control and disturbance inputs) de�ned in vector u (e.g. rotor-e�ective

wind speed v0, blade pitch angle θ, etc.), the equations are linearized about the set point of the
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states x0 and the setpoint of inputs u0

x = x0 + ∆x u = u0 + ∆u, (3.48)

where ∆x and ∆u are the new vectors of di�erential states and inputs, respectively. For

all linear descriptions, ∆ will be omitted in the following for brevity. The coupled nonlinear

equations of motion in state-space description can be separated for position- and velocity-

dependent terms. It remains with the input matrix B

ẋ =


 0 E

−M−1Q −M−1P




︸ ︷︷ ︸
A

x+Bu. (3.49)

One can identify the position-dependent matrix Q and the velocity-dependent matrix P , which

both result from the transformation of the vector of Coriolis, centrifugal and gyroscopic forces

and the applied forces. The linearization of the force model will be addressed together with

the description of the external force submodels in Section 3.3�3.6. The linearization is most

critical for the aerodynamic force coe�cients due to its highly nonlinear behavior.

3.2.6 Time-domain motion and load response signals

For structural design, especially the stresses inside the components are of interest to assess

static or dynamic integrity in ULS or FLS analyses as initially introduced in Section 2.7.3.

For controller design, also the position, velocity and acceleration of components are of interest,

in order to damp certain responses and make sure design limits are not exceeded. Therefore,

coordinate systems or nodes of �exible bodies can be de�ned at locations other than the ones

where the generalized coordinates q are de�ned, or be expressed in other coordinate systems.

Often the absolute tower-top displacement, in inertial coordinates is needed and not the one

relative to the tower-base frame as the generalized coordinate xt.

Section forces or structural stresses can be calculated based on the generalized elastic co-

ordinates of �exible bodies qe, see [59, p. 357]. The therein presented approximation of the

section forces is straightforward and can be easily implemented in computational algorithms.

It neglects, however the dynamic component, as it depends only on the position of the elastic

coordinate: Looking at bending only, as for the inner elastic force calculation in Eq. (3.44), the

information on the second derivative of the shape function W ′′
l (x), related to the considered

elastic coordinate l, is necessary. The bending stress σb as function of the beam longitudinal

coordinate x and the lateral coordinate in the cross-section R1 is

σb(x,R1) = −ER1W
′′
l (x)qe,l. (3.50)
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The approximation remains for the internal bending moment Lb(x)

Lb(x) = EJ22W
′′
l (x)qe,l. (3.51)

For a more exact calculation, considering also velocity-dependent sectional loads (including

inner elastic forces due to structural damping), the same approach is used here for rigid and

�exible MBS. Assuming a �modal spring-damper element� at any longitudinal location along

the beam axis gives the section forces as the forces exerted by this spring-damper element. At

the tower-top, the sectional forces F tt are

RF tt =




−ktwrxtwr − dtwrẋtwr
0

0


 , (3.52)

with the tower modal sti�ness ktwr and damping dtwr. These constants can be selected to

be equal to the dominant modal sti�ness and damping coe�cients within KeL and De of

Eq. (3.46). This force produces a sectional moment along the tower axis, which can be used to

calculate the stresses with the second moment of area J22 using the basic laws of mechanics.

3.2.7 Frequency-domain motion and load response spectra

From the linear state-space description of Eq. (3.49), SISO transfer functions from a speci�c

input to a speci�c output can be derived using Eq. (2.25). Applying frequency-domain spectral

methods the response spectra can be calculated without time integration. The response PSD

Syy(ω) results with the transfer function G(ω) and its complex conjugate transpose G(ω)∗T

and the disturbance spectrum Sdd as

Syy(ω) = G(ω)SddG(ω)∗T . (3.53)

Note that the FOWT plant model G(ω) includes the structural model and the disturbance

models, part of Section 3.3�3.6. In order to simplify the computation, the response spectra

from wind and waves (d = [v0, ζ0]T ) are calculated by assuming that the cross-spectral density

between wind and waves is zero Sdd(1, 2) = Sdd(2, 1) = 0. It results

Syy(ω) = Gv(ω)SvvG(ω)∗Tv +Gζ(ω)SζζG(ω)∗Tζ . (3.54)

Section forces

The section force calculation will be derived here in the frequency-domain with the re�ned

method of Eq. (3.52), including the velocity-dependent forces. The simpli�ed method, neglect-
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ing the velocity-dependent forces, does not always yield a good agreement with the reference

model FAST. Based on Eq. (3.52), the tower-base bending moment Myt can be calculated.

Additionally to the elastic forces, which depend on the tower DoFs, the pitch-DoF-dependent

forcing due to gravity needs to be included. The static transfer function

HMy =




cT0,z

KeLztt

Deztt


 , HMy ∈ R(3×fe) (3.55)

is used to calculate the tower-base bending moment cross-spectral density matrix SMyMy . The

vector cT0,z of Eq. (3.36) represents the center of mass of the tower in tower-base coordinates

(tower reference frame). As the tower is modeled through a single mode shape, HMy is a

column vector here. The PSD of the tower-base bending moment results as

SMyMy(ω) = HMy(ω)Syy(ω)H∗TMy(ω). (3.56)

For the computation, the reduced response spectral density matrix Syy(ω) is used, which in-

cludes a reduced set of system outputs: The pitch (βp)-DoF and the tower-top states xt and ẋt.

Electrical power

The calculation of the electrical power P is a quadratic problem, it is the product of the

generator speed Ωg and the generator torqueMg. This is why it is especially addressed here for

the frequency-domain model. In the time-domain, the electrical power can be calculated with

the static components Mg0 and Ωg0 and the �uctuating components ∆Mg and ∆Ωg with the

e�ciency of the generator ηgen as

P = ηgenMgΩg = ηgen(Mg0 + ∆Mg)(Ωg0 + ∆Ωg). (3.57)

Here, the electrical power spectrum SPP(ω) is calculated from the frequency-domain complex

response amplitude spectra yi(ω) in order to keep the nonlinearity. These spectra can be

obtained using the linear transfer functions Gij(ω) and the input amplitude spectra dj(ω),

compare Eq. (2.24), as

yi(ω) = Gij(ω)dj(ω). (3.58)

It results for the electrical power spectrum SPP(ω) with yi = ∆Ωg and the control input ∆Mg

SPP(ω) = (Mg0 + ∆Mg(ω))(Ωg0 + ∆Ωg(ω))(Mg0 + ∆Mg(ω))∗(Ωg0 + ∆Ωg(ω))∗, (3.59)
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where (·)∗ denotes the complex conjugate. Expanding the sums and neglecting the static

component Mg0Ωg0 it remains

SPP(ω) = (Mg0∆Ωg(ω) + Ωg0∆Mg(ω) + ∆Ωg(ω)∆Mg(ω))(Mg0∆Ωg(ω)+

Ωg0∆Mg(ω) + ∆Ωg(ω)∆Mg)
∗(ω). (3.60)

The complex response amplitude spectra yvi (ω) to wind excitation v0(ω) without a dynamic

disturbance model is

yvi (ω) = Gv,i(ω)v0(ω) (3.61)

and to wave excitation ζ0(ω) with the wave-force RAO X(ω) of Eqs. (2.15) and (3.71)

yζi (ω) = GF,i(ω)X(ω)ζ0(ω). (3.62)

Here, the additional drag-excitation of Morison's equation, see Section 3.5.4 is neglected for

simplicity. From the amplitude spectra yi(ω), the PSD is calculated using Eq. (2.26). Again, the

wind and wave response is added neglecting the cross-correlation such that the total response

of P is the sum of the contribution from wind excitation and from wave excitation

SPP(ω) = SvPP(ω) + SζPP(ω). (3.63)

A comparison of this approximate computation against nonlinear time-domain results can be

seen in Figures 6.19�6.23. Especially, in the wave frequency range the linear approximation

underpredicts the power response. This might be due to the negligence of the cross-correlation

between wind and waves.

3.3 Wind Model

The 3D turbulent wind �eld time series are generated with TurbSim v1.06.00 [139] and subse-

quently averaged over the rotor plane to obtain the rotor-e�ective wind speed v0(t) as input to

the model described in the next section. To capture the 3p forcing, a rotational sampling of

turbulence as e.g. in [69] is carried out instead of averaging over the entire rotor plane. Here,

the blade-e�ective wind speed, as function of time, is calculated assuming a constant rotor

speed at the operating point. The thrust force is calculated according to Eq. (3.65) of the next

section, by summing over the three blades. The resulting 3p forcing due to wind shear can be

observed in Figures 6.19�6.23.
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3.4 Aerodynamic Model

A large variety of aerodynamic models with respect to computational e�ort and accuracy exists,

as described in the introduction, Section 2.5.2. For control design, the approach of modeling

the rotor as a rigid disk with a thrust and power coe�cient has proven to be a reasonable rep-

resentation, especially in regard to its simplicity and e�ciency. The nonlinear model, described

in the following, can be linearized in a straightforward manner as is shown subsequently.

3.4.1 Nonlinear model

The model uses one scalar input signal, the rotor-e�ective wind speed v0. It is computed a-priori

from the 3D wind �eld in the time-domain, see Section 2.5.2. If the model is applied as a real-

time model for model-predictive control, v0 can also be calculated from LiDAR measurements.

Another input is the velocity component of the hub vhub in global Ix-direction to calculate the

relative wind speed vrel seen by the rotor

vrel = v0 − IeI1 · Ivhub , (3.64)

where (·) denotes the dot-product. The outputs of the aerodynamic model are the torque about
the shaft Maero and the thrust force in shaft-direction Faero as

Maero =
1

2
ρaπR

2 cp(λ, θ1)

Ω
v3

0 and Faero =
1

2
ρaπR

2ct(λ, θ1)v2
0. (3.65)

The power and thrust coe�cient cp and ct are calculated as functions of the TSR λ = ΩR/v

and the (measured, not the commanded) blade pitch angle θ1. This is done using FAST [43]

with rigid blades, a rotor shaft aligned with the global x-axis at the steady state with a static

uniform wind speed and varying rotor speeds Ω for the di�erent TSR λ. The coe�cients

for the DTU 10 MW RWT can be seen in Figure 3.2. Eventually, the force Faero and the

torque Maero are included in the right hand side of equation (3.13), described in Section 3.2.1.

For a better agreement with BEM-models, this simpli�ed model can be augmented with the

rotationally sampled turbulence as described in Section 3.3.

The simple rotor-disk model has been extended to include the blade structural elasticity with

the �exible MBS described in Section 3.2.2. For the aerodynamic forcing, it was coupled to the

code Aerodyn v14 [76]. Results on this model are, however, not included in this thesis. The

aim is to include simple engineering models for the unsteady aerodynamic forcing of FOWTs

in the future as described in Section 2.5.2.
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3.4.2 Linearized model

The aerodynamic torque Maero acting on the rotor about the shaft axis can be written as

a Taylor series up to the �rst order with the partial derivatives with respect to the di�erential

rotor speed ∆Ω about the operating point, the di�erential blade pitch angle ∆θ1 and the

di�erential relative wind speed ∆v as

Maero =
ρaπR

2

2︸ ︷︷ ︸
ka

v3

Ω
cp(λ, θ)

≈ ka

[
v3

0

Ω0

cp,0

+

(
− v

3
0

Ω2
cp,0 +

Rv2
0

Ω0

∂cp
∂λ

∣∣∣∣
0

)
∆Ω +

v3
0

Ω0

∂cp
∂θ

∣∣∣∣
0

∆θ1

+

(
3v2

0

Ω0

cp,0 −Rv0
∂cp
∂λ

∣∣∣∣
0

)
∆v

]
.

(3.66)

The thrust force Faero can be written similarly as

Faero = kav
2ct(λ, θ)

≈ ka
[
v2

0ct,0

+ Rv0
∂ct
∂λ

∣∣∣∣
0

∆Ω + v2
0

∂ct
∂θ

∣∣∣∣
0

∆θ1

+

(
2cT,0v0 −RΩ0

∂ct
∂λ

∣∣∣∣
0

)
∆v

]
.

(3.67)

As the coe�cients are pre-computed as function cp = cp(λ, θ), see Figure 3.2, the relations

∂cp
∂v

=
∂cp
∂λ

∂λ

∂v
=
RΩ

v2

∂cp
∂λ

(3.68)

and
∂cp
∂Ω

=
∂cp
∂λ

∂λ

∂Ω
=
R

v

∂cp
∂λ

, (3.69)

and in the same way for ct, are used for the derivation of Eqs. (3.66)�(3.67). In the work by [16],

di�erent methods for linearizing the aerodynamic force model were implemented and compared,

i.e. the tangent and the harmonic linearization. The calculation of the partial derivatives ∂c∗
∂x

was

done in the present work by applying a central-di�erence scheme, interpolating linearly between

the data points. For a model veri�cation, a comparison of the rigid-body rotor dynamics was

done with a transfer function G(jω)v⇁Ω and G(jω)v⇁F calculated by the tool Simulink. The

alternative method, the harmonic linearization would seek an error minimization from the

linearization for a given amplitude of oscillation of the aerodynamic model inputs.
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Figure 3.2: Thrust and power coe�cients of the DTU 10 MW RWT.

The tangent linearization using a rigid disk for the rotor showed a reasonably good agreement

with the reference code FAST, coupled to Aerodyn v14. The fact that such a simple model

delivers satisfying results for FOWTs is because it is able to represent the dynamics of the RHPZ

through the controller, introduced in Section 2.9, and the low-frequency excitation from the

turbulence. These are the dominant aerodynamic e�ects for FOWTs, whereas the rotor speed

harmonics are either more damped than for onshore turbines, Figure 2.3, or merely of a lower

order of magnitude than the �rst-order wind and wave loads. A comparison of the simple model

compared to two other aerodynamic models can be found in Section 6.4.6.

3.5 Hydrodynamic Model

The common approach for FOWT modeling is a time-domain representation with Cummins'

equation, Eq. (2.19), with additional Morison drag forces to represent the viscous forces ne-

glected by potential �ow theory, as introduced in Section 2.5.3.

In order to achieve the goal of computational e�ciency, a simpli�cation of the convolution

integral of Cummins' equation is necessary, avoiding a time-consuming numerical solution and

to obtain an equivalent LTI model. The next sections will introduce the still-water (radiation)

problem, a conventional and a parametric �rst-order wave excitation model, before Morison's

equation and the formulation of slowly-varying drift forces is introduced. Special attention is

paid to the linearization of the Morison drag in Section 3.5.4 because �rst, the system damping is

important for a robust controller design of Chapter 5 and second, a good drag parameterization

is necessary for the parametric design studies of Chapter 6.
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3.5.1 Radiation model

A simpli�cation of the radiation problem in numerical representations has been subject to

research for many years. One example is the approximation of the radiation force dynamics

with a parametric LTI model as described in the introduction, Section 2.5.3. In this case, a

dynamic model is �tted to the dynamics from the motion of the �oating body to the resulting

forces on the body itself. The model has a number of states depending on the quality of the �t

in each DoF of the �oating body. As a consequence, the radiation force model adds a signi�cant

number of states to the FOWT model (usually 3�6 states for each DoF).

A dynamic state-space radiation model was implemented for this model according to [101].

However, for the results shown in this work it was not applied. Instead, the frequency-

dependency of the added mass A(ω) is neglected in the present nonlinear time-domain model

and a constant frequency is chosen, at which the added mass matrix is interpolated. This

simple and e�cient model has shown very promising results, see Section 6.4.6. With this �con-

stant matrix� approach, reported in [220], reasonable frequencies have to be selected for the

interpolation to obtain the frequency-independent Ac ≡ A(ωc). In this case, the EQM of a

rigid body of Eq. (2.15) is transformed to the time-domain as

(M +A(ωc))ξ̈(t) +B(ωc)ξ̇(t) +Cξ(t) = F (1)(t). (3.70)

One approach is to select the constant frequencies of vector ωc according to the respective

eigenfrequencies of the rigid �oating body. This approach has the disadvantage that the solution

is in fact only valid for the selected frequency ωc. Section 6.4.6 will show, however, that the

response deviation at other frequencies is limited. In the present implementation, the coupled

entries of A(ω) are interpolated at the eigenfrequency of the motion-DoF (index i) instead

of the force-DoF (index j). Figure 3.3 shows the frequency-dependent added mass with the

interpolated values.

For the radiation damping matrix B(ω), an interpolation is not possible due to the strong

dependence on the frequency. The nonlinear SLOW model does not include any frequency-

dependent parameters and completely neglects radiation damping. The linear frequency-

domain SLOW model includes the frequency-dependent radiation damping and the frequency-

dependent added mass. The linear state-space description, Eq. (3.49) is solved sequentially for

all frequencies. A drawback is here the signi�cant computational e�ort, due to the inversion of

the mass matrix. A comparison of the computational speed for the entire model is shown in

Section 3.9.

As discussed in the introduction, the radiation model has two major e�ects: One is the

(frequency-dependent) damping due to the radiated waves and the other is a frequency-

dependent added mass. The damping e�ect is often quite small for FOWTs, compared to
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Figure 3.3: Panel code added mass of TripleSpar platform with values interpolated at respective
eigenfrequencies.

the viscous damping from �ow separation, but the magnitude depends �nally on the �oater

hull shape. The assessment of Section 6.4.6 shows that the radiation damping is small for the

shapes used in this work. It is commonly large at frequencies outside the rigid-body natural

frequencies. Therefore, radiation damping is neglected for most results of this work.

3.5.2 First-order wave force model

The driving force of the right-hand side of Eq. (2.19) in time-domain, the wave excitation

force F (1)(t), is usually obtained through an IDFT of the wave force spectrum. It is, however,

also possible to derive a parametric transfer function from the wave height (which can be

measured by buoys or radars) to the six forces on a �oating body, as introduced in Section 2.5.3.

This new approach was investigated as part of this thesis in order to prepare the necessary

models for model-predictive control including a preview of the incoming waves. Both methods

are presented in the following.

Fourier transform-based model

The six �rst-order force amplitude spectra F (1) on a �oating body for a given sea state can be

obtained in the frequency-domain by multiplying the force coe�cient X(ω) with the complex

wave amplitude spectrum ζ0(ω)

F (1)(ω) = X(ω)ζ0(ω). (3.71)
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Figure 3.4: Panel code radiation damping of TripleSpar platform.

This is realized numerically in the present model by interpolating the panel code results at the

wave spectrum Sζζ(ω) frequencies. These depend on the simulation length as T = N dt = N/fs.

For conventional time-domain simulations of FOWTs, the wave height spectrum magnitude is

a model input. Prior to the simulation, the wave force time series F (1)(t) in all six directions

are calculated for the entire simulation time through an inverse Fourier transform

F (1)(t) =
1

N
idft (ζ0(ω)X(ω)) . (3.72)

Note that the wave spectrum ζ0(ω) ∈ C in Eq. (3.72) is the complex amplitude spectrum with

a random phase, not the power spectrum. This random phase introduces equally random time

realizations, see also [15] for a clear derivation. The complex amplitude spectrum ζ0(ω) can be

generated through a user-de�ned spectrum, see Section 2.7.2, or through a DFT of measured

time series. This is especially useful for the time-domain comparison with experiments or

between models as in Figure 3.26.

The procedure described above employing a DFT is not possible for real-time applications as

it requires the knowledge of the complete wave force time series F (1)(t) prior to a time-domain

simulation. However, it is possible to apply the same method as for state-space radiation force

models to the wave excitation problem. This makes it possible to obtain a uni�ed model of

the FOWT with only the rotor-e�ective wind speed and the current incident wave height as

disturbance inputs. The next section will shortly introduce the parametric wave excitation

model for FOWTs.
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Parametric model

This section deals with the system identi�cation of the frequency-dependent wave excitation

force coe�cient X(ω) as presented in [103]. It is originally calculated by 2D strip-theory

or 3D panel codes employing linear potential �ow theory. The force vector X(ω) contains two

components: The Froude-Krylov force due to the incident wave pressure on the hull and the

force due to di�raction of the wave �eld. The di�culty of �tting the wave excitation force to

an LTI model is the fact that the wave height ζ0, used as reference in the panel code for the

calculation of X(ω), is the wave height at the longitudinal position of the FOWT CF. This

results in a �non-causal� transfer function, which means that the forces might arrive at the

�oating body prior to the wave elevation. In this case the disturbance model input ζ0 would

no longer be the cause for the output, the wave excitation force. Potential �ow theory shows

that ocean waves are dispersive, i.e. they travel at di�erent phase velocities vp depending on

the wavenumber k, see Section 2.5.3. When selecting a wave height sensor position at some

distance from the body against the wave heading direction, the wave excitation force model

can be made causal. Falnes has elaborated this problem comprehensively in [221].

A system identi�cation approach will be followed with an impulse response being subject to

the �t of a parametric model. see [222]. The next sections will address the causalization of the

wave excitation force and the model �t.

Causalization The wave excitation problem, or the wave excitation transfer function will now

be modi�ed to obtain a causal relationship between the wave height ζ0 and the six forces on the

platform F (1). Figure 3.5 shows the response of the wave excitation force coe�cient X(ω) to a

wave height impulse at t = 0 s in red. The response has been calculated through an IDFT of the

wave excitation force coe�cientX(ω). It can be seen that there is a response at negative times,

showing the non-causality as described above. A model �t of a non-causal transfer function is

not possible and therefore, as discussed above and in [221], a time delay τc will be introduced

in order to make sure that the transfer function GF,i ≡ Gζ⇁Fi is causal for all directions i.

The time delay τc is the time by which the causalized impulse response is lagged compared

to the original one. This means that the response time of the causalized system is tc = t− τc.
Thus, a wave height time series at the position of the platform at time t yields its physically

corresponding wave force response at the time tc. In frequency-domain, the time delay τc is

converted to a frequency-dependent phase lag ϕc(ω) as

ϕc(ω) = ω τc. (3.73)

The time delay τc, selected for the OC3-Hywind spar in Figure 3.5 is τc = 6 s.
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Figure 3.5: Non-causal (red) and causalized (gray) wave excitation impulse response of the OC3-
spar [111] in surge [103].

Impulse response �t The causalized impulse response is now subject to the system identi�-

cation. For an identi�cation in the time-domain, the error of the original impulse response ŷi(t),

compared to the simulated response yi(t) is minimized through an optimization of the model

parameters and the initial conditions x0,i. The model parameters are the parameters of a state-

space system with m states, which has therefore m free parameters in canonical form. Further

details on the model �t can be found in [103].

In this work, the model structure is selected such that the in�nite frequency limit of the

identi�ed transfer function GF,i(jω) is zero, lim
ω→∞

GF,i(jω) = 0. Therefore, the relative degree

is r ≥ 1 and the transfer function GF,i(jω) is strictly proper. A nonzero steady state ampli�ca-

tion is not a problem in the case of the wave excitation problem because the wave height ζ0(t)

has a zero mean. A relatively small number of states (or poles) around m = 6 has given

reasonable results for the �oater geometries studied here.

The �tting procedure has been applied to a three-column semi-submersible shape (OC4, [112])

with the impulse response function shifted in time by a delay of τc = 7.5 s. The quality of the

model �t is assessed in Figure 3.6 for models with m = [4, 6, 8] states (depicted by increasing

darkness). For this rather complex hull, compared to a single-cylinder spar shape, m = 4

states do not give a satisfying agreement. But the models with �ve and six states show a

good agreement in both, the frequency and time response. Figure 3.7 shows the response

of the �tted model to irregular waves with a comparison to the inverse Fourier transform

approach. Especially for the high-frequency waves on top of Figure 3.7, the identi�ed model

does not capture all characteristics. For the longer waves of Tp = [10, 15] s, the surge and pitch

responses show a better agreement than the heave response. This might be due to the shape of

the phase response of the causalized model, which is not captured for all frequencies f > 0.1 Hz,

see Figure 3.6 (center).

A more detailed evaluation of the identi�ed wave force model can be found in [103] together

with results of the wave force model coupled to the structural FOWT model. The parametric

model of this section will be used to obtain the transfer functions in Section 5.1. The presented

methodology has been incorporated in OpenFAST [223], the successor of FAST v8 [224].
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Figure 3.6: Panel code (blue), causalized (red), model �t with m = [4, 6, 8] states (gray, increasing
darkness), OC4 semi-submersible [103].

3.5.3 Transformation of hydrodynamic coe�cients

The panel code calculations are usually done with respect to the �oater CF as discussed in

Section 3.2.1 on the formulation of the MBS mass matrices. The convention for the rigid

bodies of the MBS, however, is to de�ne all properties with respect to their CM. Therefore,

the hydrodynamic coe�cients A(ω), B(ω) and X(ω) need to be transformed from the CF to

the platform CM. This can be done with the system transformation matrix H(rp) with rp =

[0, 0,−zcm]T , see [225, p. 176]. The matrix reads

H(rp) =


 E

3×3 S̃ (rp)
T

03×3 E3×3


 . (3.74)

The transformation of the added mass matrix follows (for all frequencies) as

Acm = H−T (rp)AcfH
−1(rp) (3.75)

and the transformations of B(ω) and X(ω) work equally through a linear transformation.
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for Tp = [5, 10, 15] s, OC4 semi-submersible, [103].

3.5.4 Morison's equation

For the modeling of viscous drag forces, Cummins' equation with the linear panel code coe�-

cients needs to be augmented with Morison's quadratic drag term. This is the main objective

of this section, although Morison's full equation has been implemented in the model. The

implementation accounts for viscous damping as well as drag-induced excitation forces. A pub-

lication, dedicated to the application of Morison's equation with the linearized SLOW-model

of this work can be found in [226].

The drag coe�cients CD for cylindrical structures in horizontal cross-�ow can be found in the

literature, e.g [227]. They depend usually on the Keulegan-Carpenter KC and the Reynolds

number Re, see Eqs. (2.12) and (2.40) in the introduction. Although Morison's equation (2.21)

provides only horizontal forces, a quadratic drag term can be applied to heave plates in vertical

direction. Chapter 4 on the experiments will deal more in detail with the identi�cation of the

drag coe�cients of the di�erent members of the �oater. Exemplary results are shown in this

section for the scaled TripleSpar model of Chapter 4 and the full-scale TripleSpar, introduced

in Section 2.10 and subject of Chapter 6.

The next sections will �rst address the nonlinear implementation of Morison's equation and

subsequently the linearization procedure.
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Morison's equation nonlinear

For the present model, the submerged part of the �oating platform is discretized through

nodes, as shown in Figure 3.8. Thus, Morison's equation for a cylinder, Eq. (2.21), is ex-

tended to account for the relative �uid velocities. The necessary wave kinematics for solving

Morison's equation to obtain the excitation forces were introduced in the frequency-domain in

Section 2.5.3. For the time-domain, an inverse Fourier transform according to Eq. (2.6) gives

the time-dependent velocities v(t, z) and accelerations a(t, z). Morison's equation is in this

work based on nodes k, each having associated modi�ed Morison drag C∗D,ik and added mass

coe�cients C∗A,ik for all three directions i, which include the respective hull surface area Aik,

projected on direction i in the body-�xed coordinate system or the volume Ok in case of the

added mass coe�cients. Reformulated Morison's equation reads

Fmor ,ik = C∗M,ik aw,i − C∗A,ik ab,i + C∗D,ik (vw,ik − vb,ik) |vw,ik − vb,ik| (3.76)

with the modi�ed drag coe�cients

C∗D,ik =
1

2
ρwAikCD,ik. (3.77)

This quadratic drag term yields third-order excitations of the system due to the relative velocity

magnitude. For the semi-submersibles analyzed in this work, the horizontal and vertical drag

coe�cients are set according to Figure 3.8: The vertical heave plate drag force is applied to

the keel nodes with CD,hp = CD,zk and calculated with the cross-sectional area associated with

the same node. No transverse drag forces in horizontal direction are calculated for the heave

plates, only for the slender columns. For large heave plates, it might be necessary to calculate

the heave plate kinematics at more than one node due to the nonlinearity of the drag forces.

The same restriction holds for the reference model FAST, which calculates the heave plate

velocity vb,zk at the center node and uses the value for the entire heave plate.

ref horizontal drag: CD > 0

vertical drag: CD,hp > 0

black/green: CD = 0

node k

Figure 3.8: Integration of horizontal and vertical node-based Morison drag coe�cients [226].
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The modi�ed inertia coe�cients are de�ned as

C∗M,ik = ρwOk(1 + CA,ik) = C∗A,ik + ρwOk. (3.78)

The modi�ed added mass coe�cient C∗A,ik, related to the body acceleration, is in the reduced-

order model already included in the structural mass matrix in order to avoid forces dependent

on the generalized accelerations (which are on the left-hand side of the EQM, Eq. (3.16) and

therefore only known for the previous integration step). For heave plates, the modi�ed added

mass coe�cient is usually referenced with the volume of a half sphere as

C∗A,zk =
2

3
πr3

i ρwCA,zk. (3.79)

Although the vertical Froude-Krylov forces are not part of Morison's equation, they are also

calculated based on the nodes in Figure 3.8: For every submerged surface having a projected

horizontal component Azk, a node k is de�ned giving the force Ffk,zk. The dynamic Froude-

Krylov pressure is calculated based on linear wave theory using deep water approximation

as

Ffk,zk(ω) = Azkζ0(ω)e−k(ω)zk . (3.80)

The drag-excitation part poses a challenge for the time-domain model in satisfying the ini-

tial goal of Section 3.1 because no measurable, scalar, time-dependent disturbance can be fed

to the force model of Morison's equation. Instead, an IDFT is necessary, based on a wave

height spectrum. Within this work, simpli�cations have been tested, i.e. assuming the wave

height is a narrow-banded stochastic process such that Eqs. (2.8)�(2.10) can be solved for a

constant frequency and a constant wavenumber k = kp = (2π/Tp)
2/g, calculated at the peak

spectral period Tp. With this simpli�cation it is possible to calculate the wave kinematics in

vertical and horizontal direction as a function of the incident wave height ζx(t) and its deriva-

tive ζ̇x(t) = dζx/dt at the longitudinal location x (assuming the wave heading direction is x). In

spite of these advantages, the nonlinear dispersion relationship of Eq. (2.4) produces a quadratic

dependency between the wavenumber k and the wave angular frequency ω, yielding large errors

for frequencies outside the selected narrow band of frequencies. Especially in heave-direction,

the Froude-Krylov force transfer function decays quickly with increasing frequencies such that

the simpli�cation yields large errors in the low-frequency regime. As a consequence, the sim-

pli�cation is not employed in the present study but the wave kinematics are calculated a-priori

from an IDFT. The implementation of the Morison model for Linear Model-Predictive Control

(MPC) with a disturbance measurement input for the waves needs further investigation.

For the linearized frequency-domain FOWT model, a linear transfer function will be derived

in the following with a linearizaton of the quadratic Morison drag term.
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Morison's equation linearized

Morison's equation contains external excitation forces (all summands of Eq. (3.76) which are a

function of the wave kinematics, subscript w) and damping forces (all summands of Eq. (3.76),

which are a function of the body velocity, subscript b). This nonlinear drag term is a challenge

for the linearization. A recent publication by Pegalajar-Jurado [96] presents a method, simpli-

fying the quadratic problem of relative velocities. Although the linearization method selected

in this work is di�erent, it also separates the external forcing and the damping terms.

All external forcing terms of Morison's equation (velocity and acceleration-dependent) can be

written as a transfer function within the linearized model. With the water velocity vw(ω, x, z)

and the water acceleration aw(ω, x, z) from Eqs. (2.8)�(2.10), the transfer functions from wave

height ζ0 at the initial position to the three translational (superscript t) forces on the CF are

Gt
Fmor(ω) =

∑

k=1

(
C̄w∗
D,ikvw,ik + C∗M,ikaw,ik

) 1

ζ0(ω)
. (3.81)

The overline denotes the linearized drag coe�cients to be identi�ed. For the transfer function

in rotational direction (superscript r) from ζ0 to the three moments on the platform about

the CF remains

Gr
Fmor(ω) =

∑

k=1

rik ×Gt
Fmor(ω), (3.82)

the cross product with the position vector rik to each node k. Note that it has shown to

be important to calculate the wave kinematics at the longitudinal positions of the respective

member of node k, see Eq. (2.5). A comparison of the acceleration-dependent parts (Froude-

Krylov forces, last two summands of Eq. (3.81)) using Morison's approach with the potential

�ow approach is shown next, before the linearization to obtain the equivalent coe�cients C̄w∗
D,ik

is addressed.

Froude-Krylov excitation The transfer functions for the Froude-Krylov (acceleration-

dependent) part are shown in Figure 3.9, without the velocity-dependent part, in order to

compare to the panel code results. Here, the added mass coe�cients C∗A,ik are chosen such

that the integral added mass from the panel code results equals the added mass from Mori-

son's equation. It can be seen that there is a fairly good agreement for low frequencies. In

the introduction, a limit of ka = 0.5 was given, above which di�raction becomes important,

see Figure 2.4. The di�raction limit is here 0.997 Hz for ka = 0.5. Beyond this frequency the

agreement is poor, especially in surge-direction. The wiggles result from the dependence of the

kinematics on the longitudinal position and represent the interference of the wave length with

the �oater members, Eq. (2.5). The linearization of the (velocity-dependent) drag coe�cients

for the excitation part is subject of the next section, followed by the drag-induced damping.
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Drag linearization Various procedures for the linearization of the drag term of Eq. (3.76)

have been proposed, mainly for stationary vertical cylinders. The general challenge of a correct

modeling of the drag forces is the dependence of the quadratic coe�cients CD on the relative

�ow around the body, usually quanti�ed through Re and KC , see Section 2.5.3. The �ow

situation, on the other hand, depends on the sea state, the member shape and its motion

response. So does the relative velocity about which the quadratic drag CD is linearized depend

on these parameters. Chapter 4 on the experimental tests will deal more in detail with the

determination of the Morison drag coe�cients.

For the linearization itself, the method most commonly used in literature, following

Borgman [46], is based on the standard deviation of the relative �uid velocity. A discussion on

the method with a comparison to alternatives can be found in [228]. The authors conclude that

Borgman's method underestimates the Morison force for �ows around cylindrical structures,

dominated not by inertia but by drag forces. A di�erent method, minimizing the residual be-

tween the linear and nonlinear response, was presented by [229] and applied to FOWTs in [16].

In this work, a procedure was developed for the damping part as well as the drag excitation

part of Morison's equation employing Borgman's formula.

The velocity-dependent term of Morison's equation (3.76) includes one part contributing

to the external �uid velocity-induced or viscous drag-induced excitation and one part related

to the damping. An e�cient method for the linearization of the velocity-dependent part of

Eq. (3.76) is selected: The nonlinear drag coe�cient CD,ik is split into a wave-velocity and



80 3 Development of a Low-Order Simulation Model

a body-velocity dependent part. The velocity-dependent linearized nodal Morison force F̄D ,ik

results with the approximation as

F̄D ,ik = C̄w∗
D,ikvw,ik − C̄b∗

D,ikvb,ik (3.83)

in direction i. The part related to the external drag-excitation is (C̄w∗
D,ikvw,i), and the damping

part is (−C̄b∗
D,ikvb,i). While the cross-correlation between �uid and body velocity is neglected in

Eq. (3.83), it is respected for the identi�cation of the linearized coe�cients C̄w∗
D,ik and C̄

b∗
D,ik.

Following [46], the linearized drag coe�cients C̄D,ik for wave and body velocities are based on

the STD σ(vik) of the scalar velocity in direction i of a node k with characteristic cross-sectional

area Aik, normal to direction i, as

C̄∗D,ik =

√
8

π
σ(vw,ik − vb,ik)

1

2
ρwAi,kCD,ik. (3.84)

In the following both, the part representing an external forcing and subsequently the damping

part of Eq. (3.83) will be addressed. Additionally, a parameterized formulation of the quadratic

drag coe�cient CD for heave plates is implemented, as a function of the KC -number. This is

possible because the drag forces from �ow around the edges is usually not Re-dependent.

Drag excitation For the linearization according to Eq. (3.84), the actual relative �uid ve-

locity STD is necessary. However, this is di�cult as the body response is not yet known. In

order to avoid an iterative procedure, a �rst approach is to consider a stationary body for the

identi�cation of the excitation problem. The drag force transfer function GFmor(ω) for the

velocity-dependent components is shown in Figure 3.10 for surge, heave and pitch. Looking at

the magnitudes it can be seen that for the TripleSpar, the velocity-induced excitation is very

small, approximately 20 times smaller than the Froude-Krylov forcing of Figure 3.9.

Next to the above approach, an improved alternative method for obtaining the relative �uid

velocities in Eq. (3.84) was implemented: Here, the cross-spectral density matrix of the gener-

alized velocities S ξ̇(ω) in the 2D xz-plane with the reference point SWL is used, see Eq. (2.14).

To obtain these, the generalized body velocity response spectrum is calculated with the panel

code RAO. Equation (2.15) is di�erentiated to obtain the generalized velocity transfer function

Gζ⇁ξ̇(ω) = jω
ξ(ω)

ζ0(ω)
(3.85)

and the cross-spectral density matrix for the generalized platform velocities becomes

S ξ̇ξ̇(ω) = Gζ⇁ξ̇(ω)SζζG
∗T
ζ⇁ξ̇

(ω). (3.86)
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Figure 3.10:Morison excitation transfer functionsGFmor for drag-induced component only with CD =
0.6 and CD,hp = 20. Top: Surge (blue) and heave (orange), bottom: pitch, scaled TripleSpar of

Chapter 4.

The velocity spectrum Svkvk (ω) at each of the nodes k of Figure 3.8 can be calculated using

the cross-spectral density matrix S ξ̇ξ̇(ω) of the reference point with the transformation matrix

for the nodes, here assuming a rigid platform

Hk = H(rk) =
[
E3×3 S̃ (rk)

T
]
. (3.87)

The nodal velocity cross-spectral density matrices Svkvk (ω) ∈ R(3×3) with the three translational

velocity components result as

Svkvk (ω) = HkS ξ̇ξ̇(ω)HT
k . (3.88)

Thus, the body nodal velocity STD σ(vb,ik) is available together with those of the water veloci-

ties σ(vw,ik) using Eq. (2.28). Consequently, Borgman's formula, Eq. (3.84), can be solved using

the relative velocities. This approach using the RAO implies, however, that the body response

is calculated with the panel code only, neglecting the hydrodynamic viscous drag, the wind

forcing and the structural �exibilities. In the results section, Chapter 6, it will be shown that

the response to �rst-order waves does not depend on the system's damping, which encourages

the use of the RAO for the drag excitation identi�cation.

Drag damping Now, the drag coe�cients related to the damping of the FOWT, C̄b∗
D,ik are

identi�ed. Generally, the same procedure is applied as in the previous paragraph. However, now

the full system response is used to obtain the body nodal velocities vb,ik. This is due to the fact

that there is an important interaction of the hydrodynamic damping properties of the FOWT
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and the rotor dynamics and thus, a coupling with the wind turbine controller. The proposed

procedure uses the previously calculated wave force spectra but now an iteration is necessary:

The hydrodynamic damping is updated as a function of the response, until it converges.

For the identi�cation of the system damping from Morison's equation, only the body veloci-

ties are considered and the �uid velocity through the wave kinematics theory, Eqn. (2.8)�(2.10),

is set to zero. This simpli�cation allows to separate the above excitation force problem from

the present damping problem (which is important for separating the external force calcula-

tion (pre-processing) from the calculation of the system response). The relative nodal veloc-

ity (vw,ik − vb,ik) is usually dominated by the body velocity at the low-frequency eigenmodes

and by the water velocity at the �rst-order wave frequencies. Thus, for the identi�cation of the

damping component (important for the low-frequency resonances, see Chapter 4) the negligence

of the wave kinematics can be considered reasonable.
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Figure 3.11 (left) shows the velocity standard deviation over the length of the scaled Triple-

Spar used in Chapter 4 for two sea states. It can be seen how the body velocity depends on

the depth. Equally does the drag coe�cient, Figure 3.11 (right), depend on the body velocity

as given by Eq. (3.84). The linearized nodal drag force F̄D ,x1 for node 1 at SWL is shown in

Figure 3.12 together with the nonlinear drag force as function of the nodal velocity vb,x1. The

�gure shows F̄D ,x1 for the same two sea states as Figure 3.11, LCs 7 and LC 9 of Chapter 4.

Clearly, the linearization depends on the response magnitude (STD marked by dashed lines).

The obtained linear nodal drag coe�cients C̄b∗
D,ik can be integrated resulting in the generalized

coe�cient matrixD ∈ R(6×6) such that the generalized linearized Morison drag force F̄ b
D results

as

F̄
b
D = Dξ̇. (3.89)

This is convenient as only a single damping matrix for the entire platform results, equal to the

hydrostatic sti�ness matrix C. It can be used, for example, to update the RAO, Eq. (2.15),

with the viscous drag forces. The integration to obtain the coe�cient matrix D is written

again using the transformation tensor H(rk) of Eq. (3.87) as

D =
∑

k=1

HT (rk)D
b
kH(rk) (3.90)

with the nodal drag matrix

Db
k = diag

(
[C̄b

D ,xk , C̄
b
D ,yk , C̄

b
D ,zk ]

)
. (3.91)

The procedure can be seen as a transformation of the nodal drag coe�cients into the generalized

coordinates, which are de�ned at the reference point. The iteration and the �nal damping

matrix D is shown in Figure 3.13 for the scaled model of Chapter 4. It can be seen that

the solution converges already with about 4 iterations. The implemented algorithm checks

for convergence with an exit criterion of 5 %. For the same model, time series of the overall

Morison drag forces F b
D(t) were calculated for the (severest) LC 9 in Figure 3.14: Once with the

linearized drag force and once with the quadratic drag force. The drag excitation of Morison's

equation is set to zero in this case, so that the only velocity-dependent force is the drag force.

The forces on the right are the integrated generalized forces in the respective directions. It can

be seen that the linearized drag follows well the nonlinear one, except for the largest velocity

peaks, where the nonlinear model reaches higher values. The generalized damping matrix D

over the bins of Table 2.1 is shown for the full-scale TripleSpar concept in Figure 3.15. It

can be seen that the linearized damping coe�cients increase in magnitude for higher wind

speeds (correlated with higher sea-states according to Table 2.1). This is due to the increased

response amplitude at these more severe conditions. However, Figure 3.15 also includes a
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parameterized nonlinear heave plate drag coe�cient CD,hp, which decreases for larger response

amplitudes. This is the subject of the next paragraph.

Keulegan-Carpenter-dependent drag coe�cients After the model validation with the ex-

periments, subject of Chapter 4, showed a good agreement with the heave plate drag coe�cients

from dedicated experiments published in [230], the quadratic drag coe�cients CD,hp were pa-

rameterized as a function of KC . The drag coe�cient magnitude as function of KC from

literature data can be seen in Figure 4.12. For heave plates with sharp edges and detached

�ow, there is no dependency on Re and the parameterization is more straightforward than for

cylindrical structures with various vortex shedding regimes. The general convergence behavior

shown in Figure 3.13 does not change with the inclusion of the parametric quadratic drag in

the iteration. The resulting heave plate drag coe�cient can then be used in the same way for

the nonlinear time-domain simulations with the simpli�ed nonlinear model and with FAST.

The iterative frequency-domain solution with KC -dependent heave plate drag is the topic of

the paper [226]. Figure 3.16 shows the KC -dependent resulting quadratic heave plate drag
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coe�cients over the operating wind speeds for the full-scale TripleSpar concept. It can be seen

that KC increases for higher wind speeds, which is due to the increasing response amplitude.

As a result, the nonlinear heave plate drag coe�cient CD,hp decreases for both, the excitation

and the damping problem. The use of a response magnitude-dependent drag coe�cient is not

common so far but the strong dependency on the LC of Figures 3.15 and 3.16 suggests that

this might be necessary. A summary of the hydrodynamic forcing calculation can be found in

Figure 3.18, including the iterative linearization of the viscous drag forces.
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Figure 3.16: Heave plate KC -number and resulting quadratic drag coe�cient CD,hp from data of
Figure 4.12 for environmental conditions of Table 2.1. Case (1): Damping (blue) with Closed Loop
(CL) system model iterated until convergence. Case (2): Excitation (orange) with body velocity

calculated based on panel code RAO and wave kinematics with linear wave theory, [226].

3.5.5 Second-order slow-drift model

For bichromatic waves, external forces on a �oating body appear at the sum and di�erence of

the two wave frequencies, as introduced in Section 2.5.3. A nonlinear force model, representing

this e�ect, was included in the present work because of clear resonances, visible in the model

tests of Chapter 4. Pinkster derived the second-order slowly-varying drift force spectrum us-

ing the QTF, denoted by T (ω, ω), which can be obtained from nonlinear panel codes. The

formulation from [229] reads

S
(2)
FF (µ) = 8

∫ ∞

0

T (ω, ω + µ)Sζζ(ω)Sζζ(ω + µ)T (ω, ω + µ)∗Tdω, (3.92)

where µ = ωi−ωj is the di�erence-frequency of the bichromatic wave. Newman proposed in [231]
a simpli�cation of Eq. (3.92), calculating the force spectrum S

(2)
FF with the diagonal T (ωi, ωi)

only, instead of the full QTF. This can be justi�ed by the fact that the QTF does usually

not show large variations with the di�erence-frequency, see [115, p. 157]. A computational

advantage of this simpli�cation is that the diagonal of the QTF results from a �rst-order panel

code calculation, already. The force spectrum with Newman's approximation is then

S
(2)
FF (µ) = 8

∫ ∞

0

T (δ, δ)Sζζ(ω)Sζζ(ω + µ)T (δ, δ)∗ dω (3.93)

with δ = ω+µ/2. In the time-domain, Newman's simpli�cation becomes more important. The

force time series result according to [231] from a double IDFT

F (2)(t) =
∑

i

∑

j

ζ(ωi)ζ(ωj)
∗ T (ωi, ωi) cos [(ωi − ωj)t+ ϕζ,i − ϕζ,j] . (3.94)
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The numerically expensive double summation over ωi and ωj of Eq. (3.94) can be written, as

proposed in [231], as the square of a single sum over suitable frequency ranges. In this case,

the time series result in the formulation of [117] as

F (2)(t) = θ2
∣∣
T (ωi,ωi)>0

− θ2
∣∣
T (ωi,ωi)<0

with

θ =
∑

i

|ζ(ωi)|
√

2|T (ωi, ωi)| cos(ωit+ ϕζ,i),
(3.95)

where |ζ(ωi)| is the wave amplitude magnitude at ωi, i.e. from Eq. (2.26), and ϕζ,i is the phase

angle corresponding to the same frequency. In this work, the phase convention is such that ϕ=0

on the positive real axis. The single sum accelerates signi�cantly the numerical solution. How-

ever, this acceleration comes at the cost of oscillations at high frequencies, appearing in the

force time series. These are not physical and need to be �ltered. A further development of

Newman's approximation was proposed by Standing [232] with the product of two sums as

F (2)(t) = Re

([∑

i

|ζ(ωi)| sgn(T (ωi, ωi))
√
T (ωi, ωi) exp(ωit+ ϕζ,i)

]
·

[∑

j

|ζ(ωj)|
√
T (ωj, ωj) exp(−ωjt+ ϕζ,i)

])
. (3.96)

In Figure 3.17, the previously mentioned formulations for the slowly varying drift force of

Eqs. (3.93)�(3.96) are compared for a LC of the experiments of Chapter 4 with the 1/60-scaled

TripleSpar of Figure 2.7. The mean drift coe�cients for the model, calculated with the near�eld

solution, are shown in surge-direction in the second plot. The two lower graphs of Figure 3.17

show the force spectra and the corresponding time series. As expected, the drift force spec-

tra S(2)
FF ,11 (ω) in surge contain energy outside the frequencies of the wave spectrum Sζζ(ω) (on

top). The direct frequency-domain calculation, Eq. (3.93), predicts the largest response mag-

nitude, especially at low frequencies. The double sum approach of Eq. (3.94) gives slightly

smaller force amplitudes. The above-mentioned unphysical force oscillations can be observed

for Newman's original formulation, Eq. (3.95). They are not present in the improved formula-

tion by Standing, Eq. (3.96). The response magnitude at low frequencies, however, is the same.

The formulation, which is implemented in the model, is the one according to Standing et al.,

Eq. (3.96), the same which is implemented in HydroDyn, see [95] and [117]. For the linearized

frequency-domain model, the spectral densities S(2)
FF (ω) are computed through a DFT of the

force time series of Eq. (3.96) in order to ensure equal di�erence-frequency excitation for both

models. In conclusion, it is noted that di�erences between the various implementations for a

simpli�ed representation of the slowly-varying drift forces exist. A response di�erence in the

order of magnitude of Figure 3.17 is also reported in [232, Figure 8]. On the other hand, the dif-
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Figure 3.17: Wave spectrum (top), mean drift coe�cients T11 (ω, ω), surge slow-drift force spec-

trum S
(2)
FF ,11 (ω) and time series F

(2)
11 (t) with frequency-domain calculation (Eq. (3.93)), dou-

ble IDFT (Eq. (3.94)), original Newman approximation (Eq. (3.95)) and Standing et al.'s formula-
tion (Eq. (3.96)) for scaled TripleSpar of Chapter 4, LC 7.

ference in the computational resources is also signi�cant as the number of function evaluations

is N2 for the double IDFT, compared to 2N for Standing et al.'s formulation and the accuracy

can be considered su�cient for a conceptual phase design calculation. In this work, Newman's

approximation is used for the identi�cation of the viscous drag in irregular wave conditions of

the experimental tests of Chapter 4.

3.5.6 Summary

The computational procedure for calculating the wave excitation forces, for both, the nonlin-

ear time-domain model and the frequency-domain model is illustrated in Figure 3.18. This

calculation takes place o�ine, meaning as a pre-processing to the calculation of the FOWT
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response. The forces consist of the �rst-order wave force F (1), the slow-drift forces F (2) and

the drag excitation component of Morison's equation Fmor. The nonlinear time-domain model

does not require an o�ine calculation of the drag excitation from Morison's equation because

it is calculated in each timestep, based on the wave kinematics. In the frequency-domain

model, the Morison excitation forces are included in the pre-processing through the linearized

transfer functions. The linearization is di�erent for columns and heave plates because of the op-

tional KC -dependent drag parameterization for the heave plates. The resulting cross-spectral

density matrix of the hydrodynamic excitation forces SFF (ω) can then be used directly to

calculate the response spectra Syy(ω) according to Eq. (2.27). Chapter 4 will deal with the

experimental determination of the Morison drag coe�cients.

1st order wave force model

• F (1)(t) = idft(X(ω)ζ(ω))

2nd order slow-drift model

• F (2)(t) = idft(idft(ζiζjT (i, i)))

Morison's equation

• wave kinematics
vx(t, z), vz(t, z), ax(t, z), az(t, z)

1st order wave force model

• S
(1)
FF (ω) = X(ω)Sζζ(ω)X(ω)∗T

2nd order slow-drift model

• S
(2)
FF (ω) = F (2)(ω)F (2)∗(ω)

Morison's equation

• wave kinematics
vx(ω, z), vz(ω, z), ax(ω, z), az(ω, z)

• body kinematics through RAO
(
ξ
ζ = X(ω)

−ω2(M+A(ω))+jωB(ω)ξ+C

)

columns

• nodal
STD σ(vi,rel)

• C̄∗
Di =√
8
πσ(vi,rel)C

∗
Di

heave plates (optional)

• nodal
STD σ(vi,rel)

• KCi = f(σi)

• C̄Di,hp =
f(KC), see [230]

• C̄∗
Di =√
8
πσ(vi,rel)C

∗
Di

• GFmor(ω) =
∑
iHiC̄D,ie

−kzi

Fζ(t) = F (1)(t) + F (2)(t)

Nonlinear Linear:

SFF (ω) =
(GF +GFmor)Sζζ(GF +GFmor)

∗T

Figure 3.18: Overview on calculation scheme for 1st order, 2nd order and Morison (drag component
only) wave excitation forces as input to nonlinear time-domain model and linear frequency-domain

model. Some formulations are shortened in this overview.
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3.6 Mooring Line Model

The mooring model is a quasi-static nonlinear model according to the nonlinear system of

equations given in [125]. The equations are solved numerically using Matlab's root �nding

algorithm. In order to save simulation time, the force-displacement relationship for a range

of vertical and horizontal positions of the fairlead in coordinates of the anchor is stored in

a look-up table a-priori. The kinematics of the fairleads in anchor coordinates ranch−frld are

computed in the nonlinear code and in the linearized equations through symbolic expressions.

For the linearized version, a sti�ness matrix Cmoor ∈ R(6×6) about a body-�xed reference point

results from the nonlinear equations through a perturbation analysis, see Figure 3.19.

ref rfrld

anchor

fairlead

Ffrld ,z

Ffrld ,x

ranch−frld

Figure 3.19: Mooring module kinematics.

The standalone kinematics function returns the resulting forces and moments Fmoor

and Mmoor in inertial coordinates about the selected platform reference point, usually the

platform CM. The n single vertical and horizontal force pairs of each line k have to be trans-

formed from the fairleads coordinate system (x pointing towards the anchor) to the inertial

coordinate system and be summed as

Fmoor =
n∑

k

IF frld ,k , Mmoor =
n∑

k

Irfrld ,k × IF frld ,k (3.97)

in order to be included in the Newton-Euler equations, Eq. (3.13). For the generation of the

look-up table, the overall forces Fmoor,Mmoor are computed for various platform positions and

rotations. The linearized sti�ness matrix Cmoor = Cmoor|0 is computed about an operating

point rref . Figure 3.20 and 3.21 show the overall forces Fmoor and moments Mmoor for a

successive displacement in the six directions (see each of the six plots) for the TripleSpar

design, introduced in Section 2.10. It can be seen that the forces and moments behave linearly

around the equilibrium position but more and more nonlinearly for larger excursions. For the

maximum thrust at rated conditions, the translational displacement (x) is about 18 m. The

dynamic cable is neglected in FAST and the developed simpli�ed model.
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Figure 3.20: Overall mooring forces from all three lines on platform for three independent transla-
tions (left) and rotations (right), Fmoor,x (blue), Fmoor,y (red), Fmoor,z (green), TripleSpar.
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lations (left) and rotations (right), Mmoor,x (blue), Mmoor,y (red), Mmoor,z (green), TripleSpar.



92 3 Development of a Low-Order Simulation Model

3.7 Code Architecture

An overview of the implementation of the reduced-order model is shown in Figure 3.22. A

peculiarity of symbolic equations is that a symbolic preprocessor is necessary to build the EQM.

These EQM are then incorporated into the simulation tool (which is not shown in Figure 3.22).

The �rst block (1.) contains the symbolic preprocessor with the structural EQM, introduced

in Section 3.2. The preprocessor is structured with functions applied to each body of the MBS

divided into rigid (r) and �exible (f) bodies. This part requires two user-de�ned input �les, one

for the MBS con�guration and one for the applied forces (see underlines). As a result of the

derivation of the EQM, two �les are written with the symbolic equations, the nonlinear version

in C-code and the linearized version in Matlab-code. The external force models are either

included in the C-code S-function and called in every timestep (nonlinear model) or contained

in the input matrix of the linear model, Eq. (3.49).

Additionally, the model parameters,(item (2.) in Figure 3.22) need to be de�ned in an input

�le. This �les is read by the linear and nonlinear simulation tool. A template input �le is being

written while deriving the EQM. These parameters require pre-processing steps using other

tools like a panel code for the hydrodynamic coe�cients (Section 3.5) and a BEM model for

the aerodynamic rotor coe�cients (Section 3.4). The iteration of the linearized hydrodynamic

viscous drag coe�cients is here omitted and the coe�cients are assumed to be known. The

mooring line nonlinear and linear restoring properties are calculated by an own mooring model

as introduced in Section 3.6.

The lower part (3.) of Figure 3.22 refers to the pre-processing of external disturbances. The

time or frequency-dependent disturbances are usually stochastic in nature (although determin-

istic inputs are also possible). For the time-domain model, as well as for the frequency-domain

model, the rotor-e�ective wind speed is the external disturbance. It can be augmented with

rotationally sampled turbulence at the rotor frequency as introduced in Section 3.3.

The hydrodynamic forces from the panel code are again equal for time-domain and frequency-

domain. However, the external Morison forces are calculated online (in each time-step) of the

nonlinear model, based on the wave kinematics vk and ak, while these forces are calculated

through the transfer functions derived in Section 3.5.4 for the frequency-domain model as

part of the pre-processing. Figure 3.22 does not include the parametric wave force model of

Section 3.5.2. If it is used, the input in (3.) is the wave height ζ0(t) instead of the forces F (1)(t).

The frequency-domain model has the option of solving the EQM for all frequencies with A(ω)

and B(ω), as opposed to the constant matrix approach of the nonlinear model. A 4th order

Runge-Kutta solver with �xed timestep integrates the nonlinear model for the time-domain

response, whereas the response spectra of the frequency-domain model result from Eq. (3.53).
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1. MBS con�guration (DoFs, body position vectors, body angular velocity, mass
matrices, beam data, parameters, additional dynamic couplings) (rigid/�exible)

2. Standard input data (SID) (r/f)

3. Kinematics (r/f)

4. Mass matrices (r/f)

5. Quadratic velocity vector (r/f)

ẋ =

[
q̇

M−1(p− k)

]
ẋ =

[
0 E

−M−1Q −M−1P

]

︸ ︷︷ ︸
A

x+Bu

• Aerodynamics: Coe�cients cp, ct
calculated by AeroDyn, Fig. 3.2

• Hydrodynamics: Coe�cients C, A,
X, T calculated by Ansys Aqwa

• Mooring dynamics: Force-disp.
relationships, Fig. 3.20, 3.21

• Aerodynamics: Linear coe�cients
∂cx
∂λ ,

∂cx
∂θ , Eq. 3.66, 3.67

• Hydrodynamics: Equal to nonlin.

• Mooring dynamics: Lin. sti�ness
matrix Cmoor|0 for all lines

• Timeseries v0(t)

• Timeseries vk(t), ak(t)

• Timeseries F (1)(t) and F (2)(t)

• Spectra Svv(ω)

• Spectra S
(mor)
FF (ω)

• Spectra S
(1)
FF (ω) and S

(2)
FF (ω)

3. Disturbances of wind & waves (pre-processing)

+ external force models:
F aero(x, t), Fmor(x, t), Fmoor(x)

Nonlinear (time-domain):
[C-code S-function]

Linear (frequency-domain):
[Matlab-code]

sy
m
b
ol
ic
eq
u
at
io
n
s

1. Derivation of symbolic equations of motion

2. Parameters (pre-processing)

incl. external force model F aero(x)

6. Applied forces (r/f)

7. Applied beam forces (f)

8. Linearization

9. Export

Figure 3.22: Work�ow of writing reduced-order model equations of motion and preparing simulation.
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3.8 Linear Analysis

In this section, the linearized model is applied to obtain the Open Loop (OL) eigenvalues

and eigenvectors (without feedback control). Again, the reference FOWT model de�ned in Sec-

tion 2.10 is used. For the mechanical state-space formulation, Eq. (3.49), a quadratic eigenvalue

problem can be solved (
Mλ2 +Qλ+ P

)
v = 0, (3.98)

giving solutions for the eigenvalues λ and the corresponding eigenvectors v. Figure 3.23 shows

the eigenfrequencies for the system DoFs surge, heave, pitch and tower-top displacement. For

visualization, the eigenvectors have been scaled and the rotor rotation mode was omitted.

For FOWTs with slack catenary mooring lines, the platform eigenfrequencies are usually below

the peak wave frequency. The peak wave period is mostly in the range Tp = 5 . . . 15 s. The

tower system mode is critical for large rotors as these have a smaller rated rotational speed

due to the limitation of the maximum tip speed. Hence, the tower mode can interact with

the 3p frequency and lead to a resonance. For the TripleSpar design the tower eigenfrequency

is in the 3p range, which is for the DTU 10 MW RWT f3p = 0.3 . . . 0.48 Hz. Solutions to

this problem were studied in INNWIND.EU, see Deliverable 4.37 [233]. Simulations by the

di�erent project partners have shown that the resonance magnitude is limited, compared to

the excitations from �rst-order waves. The problem was also subject in LIFES50+ and the

option of designing a sti�er tower to shift its eigenfrequency above the 3p range was discussed.

However, this implies a high tower mass and associated costs.
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Figure 3.23: Mode shapes calculated by the reduced-order simulation model for TripleSpar concept,
Section 2.10, [205].

Figure 3.24a shows the poles (or eigenvalues) in the complex plane and the zeros for a SISO

system from the commanded blade pitch angle θ to the rotor speed Ω. It can be seen that
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the surge, pitch, heave and tower modes are undercritically damped with each having complex

conjugate poles. In this case, the damped eigenfrequency ωd (Figure 3.24b) is equal to the

imaginary part of the pole λ and the undamped eigenfrequency ω0 is equal to the magnitude

of λ. The damping ratio results as a fraction of the real part δ and the undamped eigenfrequency

as ξ = δ/ω0. The rotor mode is overcritically damped in this OL con�guration and has two poles

on the real axis. For poles on the real axis no oscillation is possible as the mode is overdamped.

Then, the magnitude of λ is equal to its real part giving the time constant τ = 1/Re(λ).

The pole with the smaller magnitude is then the one dominating the dynamic behavior of the

corresponding mode shape v.

The RHPZ discussed in Section 2.9 can be seen in Figure 3.24: The imaginary part of

the complex conjugate zeros represents the frequency of the zero. For the zeros with smaller

frequency, it can be seen that they are very close to the platform pitch eigenfrequency. The zeros

with the higher frequency (right-hand side of Figure 3.24a) have approximately the frequency

of the damped tower mode. The zeros will be important for control, as the blade pitch signal

is not ampli�ed but attenuated at the frequencies of the zeros, see Chapter 5. The results of

the eigenanalysis agree well with the time-domain analyses with the nonlinear model.

3.9 Model Veri�cation

For a code-to-code comparison, the tool FAST [43] was used as introduced in Section 2.5.1.

The presented simulations are made with FAST v8.16.00a-bjj with the submodules Elasto-

Dyn v1.04.00a-bjj, AeroDyn v14.05.01a-bjj, In�owWind v3.03.00, ServoDyn v1.06.00a-bjj, Hy-
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droDyn v2.05.01 and MAP++ v1.20.10. The enabled features, compared to the nonlinear and

the linearized SLOW model are summarized in Table 3.1.

Table 3.1: Comparison of modeling approaches between FAST, SLOW nonlinear and SLOW linear.

FAST SLOW (nonlinear) SLOW (linear)

St
ru
ct
ur
al

dy
na
m
ic
s

nonlin. �ex. MBS nonlin. �ex. MBS linearized �ex. MBS

6 platform DoFs surge, heave, pitch-DoFs surge, heave, pitch-DoFs

4 tower DoFs 1 fore-aft DoF 1 fore-aft DoF

3 · 3 blade DoFs rigid rigid

drivetrain torsional DoF rigid shaft rigid shaft

2nd order blade pitch actuator

A
er
o-

dy
na
m
ic
s

BEM with corrections cp, ct-model (nonlin.) cp, ct-model (lin.)

distrib. forces along blade lumped rotor forces lumped rotor forces

full 3D turb. wind �eld
blade-averaged wind �eld with

rotationally sampled turbulence

quasi-static, no dynamic in�ow

no tower shadow

H
yd
ro
-

dy
na
m
ic
s

convolution integral �constant matrix� frequency-domain

radiation damping � radiation damping

relative form of Morison's equation cross-corr. approximated

quadr. Morison drag quadr. Morison drag linearized Morison drag

2nd order slow-drift with Newman's approximation

no wave stretching

M
oo
ri
ng
-

dy
na
m
ic
s quasi-static model quasi-static model quasi-static model

nonlin. force-disp. nonlin. force-disp. linearized sti�ness

eq. solved online eq. solved a-priori eq. solved a-priori

The most signi�cant di�erence between the tools is the aerodynamic model and the reduced

number of structural DoFs (2D motion, only). For an improved computational e�ciency, most

of the results in this work of the linearized model are made without the frequency-dependent hy-

drodynamic coe�cients but with a constant added mass and neglecting the radiation damping,

see Section 3.5.1.

3.9.1 Stochastic operational condition

Figure 3.25 shows the PSD to stochastic wind and wave loads for a load case

with v̄hub = 17.9 m/s as described in Section 2.7.3 for the linearized model, the nonlinear model
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and FAST. The model includes a SISO PI-controller as described in Chapter 5. All model

parameters can be found in Table A.1. It can be seen that the frequencies of the platform

resonances in surge xp, heave zp and pitch βp are well captured in frequency and magnitude.

The response to the wave loads at fwave = 0.1 Hz can be clearly seen in the xp and xt sig-

nals. The tower-top displacement xt also shows a second peak above the wave frequency,

below its coupled eigenfrequency of 0.42 Hz at about 0.18 Hz. This is due to the wave force

transfer function X(ω), which shows two peaks, divided by an attenuation range, see �wave

cancellation e�ect� for semi-submersibles. This can be also seen in Figure 3.6 and is a topic

of Chapter 6. The slow drift force model of Section 2.5.3 results in large amplitudes at the

resonance frequencies of surge xp and pitch βp, also re�ected in the tower bending xt. Without

this di�erence-frequency excitation, the response to the turbulence would be visibly smaller.

The Morison drag coe�cient for the heave plates CD,hp is obtained according to Section 3.5,

Figure 3.16 with the linear model and its value is used for both nonlinear models.

The rotor speed Ω responds to the βp-motion, which is related to the discussed RHPZ,

Section 2.5. It will be a further topic in the remainder of this work. Since the torque is

constant above rated (vrated = 11.4 m/s), the rotor speed Ω is proportional to the electrical

power P . The tower eigenfrequency is mainly excited by the 3p excitations on the rotor from

the vertical wind shear. It is well captured by the reduced-order model with the rotational

sampling method of Section 3.3. The tower-base bending moment Myt follows generally the

tower-top displacement xt, except for the structural damping force, as discussed in Section 3.2.6.

For a time-domain comparison of the same load case as Figure 3.25, the same turbulent wind

�eld was input to SLOW and FAST and the wave height time series ζ0 of FAST were input

to SLOW using Section 3.5.2. The results of Figure 3.26 show in this time-domain comparison

that also the transients and steady states (means) compare well between SLOW and FAST.

The wind speed signal on top shows more high-frequency oscillations for SLOW because of the

rotational sampling, as opposed to the rotor-e�ective wind speed, shown for FAST. The steady

state deviation of surge (xp) and the blade pitch angle θ is due to the tilted rotor: It has a

nonzero angle about y, through the shaft tilt of 5 deg and through the platform pitching βp. This

misalignment results in nonzero force and moment-components in the directions perpendicular

to the shaft, see Glauert's yaw model in [44, Chapter 3].

3.9.2 Deterministic operational condition

The response of the nonlinear SLOW model and the FAST model to an Extreme Operating

Gust (EOG) at still water can be seen in Figure 3.27. This load case results in large transient

rotor loads and an impulse response-like behavior (the duration of the gust is rather short in the

time-scales of the FOWT). Nonetheless, the nonlinear SLOW model reproduces well the FAST

results. The only visible di�erence is the steady state in surge (xp). This is, again, due to the
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Figure 3.25: Model veri�cation PSD v̄hub = 17.9 m/s, Hs = 4.3 m, Tp = 10.0 s. Linearized
model (blue), nonlinear model (red), FAST (green).
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di�erent aerodynamic modeling. The linear model was used in this case for a comparison in

the time-domain. Even though the state excursions are large, the linear model follows well the

transients of the nonlinear models. A notable di�erence is the damping in surge-direction. The

reason for this is that the linearized platform damping was determined for the response STD

of the respective stochastic load case of Table 2.1, as introduced in Section 3.5.4.

More references for the veri�cation of SLOW can be found in the paper [234], which ad-

dresses its use for the determination of critical DLCs in the conceptual design phase. It shows

benchmark comparisons with FAST for the OC3-Hywind spar for a preliminary system analysis

with standard DLCs.
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Figure 3.27: Model veri�cation EOG time series v̄hub = 14.0 m/s with linear model (blue), nonlinear
model (red) and FAST (green).

3.9.3 Fatigue from frequency-domain model

For the DEL estimation introduced in Section 2.7.3, the rain�ow counting method, based

on time series data, is compared to Dirlik's method, based on PSDs of the respective time

signal. The method is especially useful because fatigue loads can be estimated from the linear

frequency-domain power spectra. Figure 3.28 shows the DEL for each of the bins of DLC 1.2

of Table 2.1, calculated with the rain�ow method of the tower-top displacement signal of the

nonlinear model, compared against Dirlik's method, Eq. (2.35).

Dirlik's method was applied twice: Once to the PSD obtained from the time series through

Welch's method2 and once to the spectra obtained from the linear frequency-domain model

directly, compare red and blue curve in Figure 3.25. The time series PSD was computed

with an n/4-point hamming window. However, no impact on the results is expected from the

2http://mathworks.com/help/signal/ref/pwelch.html, accessed on January 22, 2018.

http://mathworks.com/help/signal/ref/pwelch.html
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windowing due to the large amount of hamming points. The DEL values are calculated for

each bin independently and not weighted but extrapolated for a lifetime of 20 years.

It can be seen that the match is very good with a maximum deviation of only 0.4 % for

the time series data. This con�rms Dirlik's method for the nature of the tower-top signal

in the given load conditions. As for the linearization methodology, it does not imply larger

discrepancies than Dirlik's method itself.

Rainflow counting from timeseries

Dirlik from timeseries-PSD

Dirlik from freq.dom.-PSD
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Figure 3.28: DEL for tower-top displacement xt for operational DLCs of Table 2.1. Calculated with
(1) rain�ow counting, (2) Dirlik's method with spectra obtained from time series data of (1) and

(3) Dirlik's method with spectra obtained from linearized frequency-domain model.

3.9.4 Short-term extremes from frequency-domain model

It is especially important for controller design to obtain the maximum amplitudes of certain

signals from a 10 min or a 60 min-responses as a performance indicator. In order to be able to

extract these short-term extremes from the linear frequency-domain model, a Rayleigh distri-

bution of the peaks is assumed in order to obtain the expected maximum amplitudes for a given

duration, as introduced in Section 2.7.3. Figure 3.29 shows a comparison, as in Figure 3.28, of

the maximum amplitude (mean of maxima of three 20 min-segments) of the tower-top displace-

ment xt from a time-domain simulation, through the Rayleigh distribution using the PSD of the

time series and through the linear frequency-domain model. It can be seen that the estimation

from the spectrum underestimates the maximum around rated winds, which is likely because

in these cases the signal is not normally distributed. In the other cases the method seems to

give plausible results for the tower bending.
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Figure 3.29: Short-term extremes for tower-top displacement xt for operational DLCs of Table 2.1.
Calculated from (1) time series directly, (2) from PSD of time series and (3) from linear frequency-

domain model response spectrum using Eq. (2.36).

3.10 Computational E�ciency

A computational speed assessment is shown in Table 3.2. The simulation times are given for

a standard PC with a 2.5 GHz processor for one hour simulations and n = 500 frequencies for

the linear frequency-domain computations. The pre-processing of wind and waves is necessary

for each load case due to the environmental conditions, cf. Table 2.1. For the SLOW model,

the wave-preprocessing includes the �rst-order wave force time series and spectra, the Morison

external drag force spectra and the di�erence-frequency spectra and time series using Newman's

approximation, see Section 3.5. The pre-processing of the aerodynamics relates to the BEM-

calculations to determine the look-up tables for cp and ct, Section 3.4. This is only required

once for every new wind turbine rotor. The same holds for the mooring dynamics: The force-

displacement relationships have to be re-calculated only if a new mooring system is employed.
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Table 3.2: Comparison of computational speed between SLOW and FAST. Linear SLOWmodel calcu-
lates response in frequency-domain. Pre-processing of mooring lines and aerodynamics (coe�cients cp

and ct, Eq. (3.65)) only design-dependent, not load case-dependent.

Pre-processing Simulation

SL
O
W

Wind: 75 s nonlinear 30 s

Waves: 30 s
linear 1 s

Aerodynamics: 7200 s

Mooring dynamics: 30 s linear (incl. radiation) 15 s

FA
ST Wind: 560 s 950 s

3.11 Summary

In this chapter, the reduced-order simulation model was derived. The goals, described in Sec-

tion 3.1, were mainly the high computational e�ciency with a correct representation of the

main system dynamics in a nonlinear and linearized description. The code developed avoids

wherever possible computationally expensive recursions and iterations like the convolution in-

tegral for the radiation model or the BEM model for the rotor aerodynamics. It consists

mainly of symbolic equations of motion for the structural model and additional external force

models. It could be shown through a comparison against FAST in Section 3.9 that the main

resonances and the excitations to �rst-order and second-order slow-drift wave forces are well

captured compared to FAST. In spite of the simpli�cations of the aerodynamic model and the

radiation model, the nonlinear model as well as the linearized model can represent the motion

and load response of the rotor, the tower and the �oating platform satisfactorily. Although

simple operational load cases are studied without yawed in�ow, misaligned waves, etc., the set

goals of a reliable representation of the system dynamics at a signi�cant speed improvement

are successfully met. This is true for the nonlinear model, but also for the linearized model in

rather severe operational environmental conditions.

Earlier versions of the model were presented in [235] and [205] with a veri�cation across

di�erent load cases in [234]. Control-oriented applications were tested in [236] and in the

European projects INNWIND.EU [40], LIFES50+ [237] and TELWIND [238]. A comparison

of the model against scaled experiments was made in [160, 161]. In [239], SLOW was used to

investigate the stability of a 2-bladed onshore wind turbine. The model will be used in the

next chapter to identify the hydrodynamic drag coe�cients and to validate the results through

experimental data.





4 Experiments

Two test campaigns were performed in the course of this thesis project. One in France in

2014 and one in Denmark in 2016. This chapter describes the latter, performed at the Danish

Hydraulic Institute (DHI) within a joint project by SWE, DTU and CENER in 2016. The

TripleSpar concept introduced in Section 2.10 was built at SWE in a scale of 1/60 and assembled

with a turbine model of the DTU 10 MW RWT, built at DTU, see Figure 4.1. The scaling

laws applied follow Froude-scaling as introduced in Section 2.8. The test campaign had the

primary goal of testing active blade pitch control in a model test and the results were published

in [160], [161] and [240]. Additionally, three thesis projects were conducted on the tests. The one

at SWE by Wei Yu [241] deals with the simulation model setup, the parameter identi�cation,

controller development and implementation. Another one conducted at DTU focused on the

wind generator and the rotor design, see [242] and a Bachelor thesis on the electromechanical

hardware is not published. Prior to this test, most experimental tests of FOWTs did not include

a blade pitch controller. This means that the rotor speed was maintained by a servo motor,

which actuates the torque. However, the gains of this servo controller were usually not tuned to

match the full-scale controller as implemented on standard wind turbines and the blade-pitch

controller was not represented in the tests. As the aerodynamic scaling is challenging, due to

the Reynolds number mismatch the rotor was redesigned for low Re-numbers by DTU in order

to match mainly the Froude-scaled thrust and rotor speed. Recently, a number of researchers

has taken the step to include the control system in scaled model tests after a �rst attempt

had been made for the Hywind concept, see [197]. The negative damping problem was studied

in [243]. Later, tests at Marine Research Institute Netherlands (MARIN) with di�erent PI-

controllers were presented in [244], assessing the controller in�uence on the response. Another

test in the same basin was presented in [245]. At Osaka Prefecture University, Japan, an H∞
controller was experimentally studied, see [246].

The objective of this chapter is to validate the previously described hydrodynamic model

and to calibrate the Morison drag coe�cients. At the same time, comparisons between the

simulation model of Chapter 3 and experimental data with active blade pitch controller will

be shown to validate the full FOWT model. The �ndings of this chapter will be used in the

parametric design studies of Chapter 6.



106 4 Experiments

Figure 4.1: TripleSpar test campaign at DHI 2016: Joint project by SWE, DTU and CENER,
photograph by Henrik Bredmose, DTU, [240].

Table 4.1: LCs de�ned for irregular wave tests [160].

Model scale Prototype scale
LC Hs [m] Tp [s] v̄hub [m/s] Hs [m] Tp [s] v̄hub [m/s]

1. . . 6, 8, 10 not used, see [241]
7 0.091 1.08 1.89 5.46 8.37 14.64
9 0.159 1.43 1.89 9.54 11.1 14.64

4.1 Model Parameters and Load Cases

The simulation model used for the following analyses is the one described in Chapter 3 with the 5

DoFs platform surge xp, platform heave zp, platform pitch βp, tower fore-aft displacement xt and

rotor speed Ω. The tower is modeled through a linear spring through the rigid MBS approach

of Section 3.2.1. The model parameters used in [161] were not changed, except that the added

mass was calculated with Ansys Aqwa and used in the simulations without further tuning. An

additional linear sti�ness in x-direction of 8 N/m was introduced to represent the power and

signal cables of the servo motor and blade pitch actuators, which can be seen in Figure 4.1.

This is about one third of the horizontal restoring sti�ness of the mooring lines in the initial

position. In pitch-direction an additional sti�ness of −25 Nm/rad was necessary to match the

natural period from the measurements, equal to about 5 % of the hydrostatic restoring in pitch.
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Figure 4.2: Steady state blade pitch angles θ over wind speeds v0 (left) and proportional gains kp
over steady state blade pitch angles (right) associated with time constant Ti = 2.9 s for the 1/60

TripleSpar, [240].

The static vertical force and the vertical sti�ness of the power cables on the system is neglected.

The model parameters can be found in the Appendix A.2.

The properties of the di�erent components of the FOWT system were veri�ed and identi�ed

with di�erent methods: For the rotor, a BEM model was set up in the Master thesis [241] with

the polars calculated by DTU and the torque and thrust for di�erent TSR were compared to

the measurements as shown in [161]. The tower structural properties were determined for a

�xed con�guration used in a previous test by DTU, see [247]. For the present work, an impulse

response of the tower-top with the tower mounted on the �oating platform was measured. It

resulted in a slightly higher sti�ness than the one assumed in [161]. The mass properties of the

platform were calculated in detail by Florian Amann via a parametric Computer-Aided Design

(CAD) model with the exact �nal ballast con�guration.

A measurement of the wind �eld was made without the turbine with a hot wire on a pulley

system, see [160]. Due to a misplaced fan on the top of the wind generator array, a higher

wind speed could be measured at lower levels, creating a shear. This might have an e�ect on

the presented results later in this chapter. The turbulence intensity was not changed and a

constant, uniform wind speed was used for the simulations. The optical motion tracking system

was con�gured to update the reference position every day to the actual position of the CF (as

reported in other tests, the steady state of the platform changes due to the static friction

between the mooring lines and the seabed). The presented results show the displacements with

respect to the global coordinate system, by re-introducing the o�set to the signals.

The wave generator was calibrated with numerous wave gauges, see [242]. The highest

uncertainty in the model parameters is likely the anchor position, also due to the high sensitivity

of the mooring forces with respect to the position of the anchor. As in many other tests, the

wind �eld and blockage e�ects could not be entirely measured. An assessment of the blockage
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e�ect of the �rst experiment in Nantes, 2014, using CFD was presented in [159]. The hardware

of the feedback controller including encoder and actuator were thoroughly tested, however, the

time lags or additional dynamics associated to the control system are not represented in the

simulation model.

The rotor speed controller used in the following tests was designed in [241] following a method

proposed by myself in [40]. The robust procedure described in Chapter 5 is an extension

to it. The gain scheduling of the proportional gain kp, shown in Figure 4.2 together with

the steady state blade pitch angles, ensures a stable system for all operating points with a

�xed time constant Ti = 2.9 s for all wind speeds (the gain scheduling function was limited

to 1.5 deg ≤ θ < 11 deg, keeping the last value for θ > 11 deg). The shape resembles the one of

the full-scale controller of Figure 5.9 with decreasing values for wind speeds above rated and

increasing values for higher wind speeds, close to the cut-out wind speed.

The environmental conditions for the test are shown in Table 4.1. Although a large range

of sea states (and corresponding LCs) was de�ned, only the higher-wave conditions are used in

the following because of a limited response of the system to small waves. Due to splash water,

the motion tracking system did not work satisfactorily in all cases for LC 9. A large number

of tests was performed also for regular waves, focused waves and misaligned waves. Therefore,

in some cases the number of repetitions had to be limited.

Table 4.2: Coupled system eigenfrequencies.

DoF Surge Heave Pitch Tower
Eigenfrequency [Hz] 0.05 0.469 0.275 3.23

4.2 Drag Identi�cation

In this section, experimental data with wind and control is compared to the simulation model

in order to identify the (horizontal) Morison drag coe�cients CD for the columns and the

(vertical) CD,hp for the heave plates, as described in Section 3.5. Several methods to identify

the Morison coe�cients CD and CA are proposed in [90, p. 12-9] (here we focus on CD and

rely on the added mass computed by the panel code). However, these methods are particularly

adapted to the times of little computational resources when full simulations of the experiments

where not yet possible. In a �rst step we will analyze free decay tests in surge xp and pitch βp
by comparing measurements against numerical responses with di�erent drag coe�cients.



4.2 Drag Identi�cation 109
PSfrag replacements

time [s]

β
P

[d
eg

]
x
P

[m
]

0 10 20 30 40 50

−3

0

3

−0.3

−0.1

0.1

(a) Surge: Morison
drag CD = [0.5, 1.0, 1.5, 2.0] (increasing darkness),

CD,hp = 25.

PSfrag replacements

time [s]
β
P

[d
eg

]
x
P

[m
]

0 10 20 30 40 50

−5

0

5

−0.2

−0.05

(b) Pitch: Morison drag CD = [2.0],
CD,hp = [10, 15, 20, 25]
(increasing darkness).

Figure 4.3: Free decay in surge and pitch-directions and experiment (dashed line), [240].

4.2.1 Free-decay

The Morison coe�cient CD in�uences most the surge response while the heave plate drag CD,hp
in�uences more the heave and pitch response. Figure 4.3 shows simulations of various CD for

the surge-decay on the left and of various CD,hp for the pitch-decay on the right. The best

agreement for both cases is with CD = 2.0 and CD,hp = 25.0.

4.2.2 Stochastic wind and waves

In a next step, the drag is identi�ed in irregular wave tests: Figure 4.4 shows the PSD of the

measured and simulated response for di�erent combinations of the Morison drag coe�cient CD
of the TripleSpar columns and the heave plate drag CD,hp for LC 9. The shown sensors are

the wave height ζ0, the platform heave zp, surge xp and pitch βp and the upwind mooring line

force Fline1 (to the right looking upwind, at 60 deg) and the tower-top acceleration ẍtt. Note

that ẍtt is the acceleration measured by the accelerometer and thus in the inertial frame, not

relative to the tower-base frame as xt of Eq. (3.1). Therefore, ẍtt is obtained from the simulation

model through a transformation of the derivative of the state vector ẋ.

The response to the wave height ζ0 at around 0.8 Hz is clearly visible in Figure 4.4. In this

range, the damping is of no e�ect as the waves yield a forced response at frequencies distant from

the system eigenfrequencies. The velocity-dependent Morison excitation force term, however,

can be of importance for platforms with larger KC numbers (e.g. smaller diameters). This



110 4 Experiments

CD = 0.2, CD,hp = 5.0

CD = 0.6, CD,hp = 5.0

CD = 0.2, CD,hp = 15.0

CD = 0.6, CD,hp = 15.0

exp.

frequency [Hz]

tw
r-

to
p
ẍ
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Figure 4.4: Response to wind and waves, LC 9 (Table 4.1) with simulations of various combinations
of CD and CD,hp and experiment (see following graphs for detailed views), [240].

was shown for example for the drag tuning in [248]. In the present work, the inertia forces

of Morison's equation are dominant with little velocity-dependent excitation as discussed in

Section 2.5.3. A visualization of the regimes of dominant wave forcing terms is shown with an

indication of the experimental LCs in Figure 2.4. Figure 4.4 shows that the responses of the

di�erent DoFs match well at the wave frequencies. Larger than the �rst-order wave response

is the one below the wave frequencies, at the platform surge, heave and pitch eigenfrequencies,

listed in Table 4.2. At these frequencies the wave height spectrum ζ0(ω) is nearly zero, so the

excitation results from second-order slow drift loads as introduced in Section 3.5.

The response magnitudes at the platform eigenfrequencies are highly dependent on the Mori-

son drag coe�cients: Figure 4.4 shows a large variation of the simulated response magnitudes

at the surge and pitch-eigenfrequencies. Therefore, the focus will be on the frequency range

below the waves for the identi�cation of the Morison drag coe�cients. In the following, the

irregular wave response of two LCs will be shown, LC 7 and LC 9. For LC 7, Figure 4.5 shows a

variation of CD with constant CD,hp while Figure 4.6 shows the corresponding variation of CD,hp
with constant CD. From Figure 4.5 it can be seen that the best match of xp with the mea-

surement results is for CD = 0.6. For the identi�cation of CD,hp (vertical), the focus is put on

the pitch-direction because for FOWTs, the heave response is generally not as important as the

pitch response. Figure 4.6 shows that with CD,hp = 20, reasonable results for pitch and heave
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(ẍ
tt
)

[m
2
/s

2
/H

z]

frequency [Hz]

P
S
D

(F
li
n
e1

)

[N
2
/H

z]

P
S
D

(β
p
)

[1
0−

3
/H

z]

P
S
D

(x
p
)

[m
2
/H

z]

P
S
D

(z
p
)

[m
2
/H

z]

P
S
D

(ζ
0
)

[m
2
/H

z]

0.
2

pi
tc
h
0.
3

0.
4

he
av

e
0

su
rg
e

0.
1

0.
15

×10−5×10−6

0

0.25

0

5

10
0

3

0

0.1

0

5

0

5

Figure 4.5: Response to wind and waves, LC 7 (Table 4.1) with simulations of Morison
drag CD = [0.3, 0.6, 0.9] (increasing darkness), CD,hp = 20 and experiment (dashed line).

can be obtained but the measured pitch response is still smaller. A possible explanation for

the smaller measured response magnitude is a conceivable platform pitch velocity-dependent

restoring torque on the hub from the vertical wind shear as mentioned before.

The simulated response of the tower ẍtt at the pitch eigenfrequency (Figure 4.6) does not

match as well as those for the wave response. As mentioned above, a main di�erence between

the two response peaks is that for the surge and pitch resonances damping is important, while

it is not for the wave response. Consequently, a di�erence in the aerodynamic damping or the

tower structural damping could lead to the underpredicted surge and pitch resonance of ẍtt. It

is noted that, although the eigenmode is labeled �pitch�, this mode does also include a response

of the tower-DoF, which can be seen in the modal analysis, Figure 3.23.

The mooring line force is always underpredicted by the model, in the resonance frequen-

cies (surge and pitch) but also in the wave frequency range. The reason for this is possibly the

quasi-static modeling approach as described in Section 3.6. If a mooring line mode lies close to

the platform resonances the quasi-static forces can be signi�cantly higher, see also Section 2.5.4.

However, Vittori [152] showed for the test in Nantes 2014, that a dynamic mooring model, on

the other hand, usually overpredicts the mooring tension compared to experiments. This is

signi�cant for the calculation of the mooring section loads but does usually not impact the

other FOWT DoFs.
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Figure 4.6: Response to wind and waves, LC 7 (Table 4.1) with simulations of Morison drag CD = 0.6,
CD,hp = [10, 15, 20, 25] (increasing darkness) and experiment (dashed line).

Looking at the more severe LC 9, Figure 4.7 shows the variation of CD and Figure 4.8

shows the corresponding variation of CD,hp. The surge response xp for CD = 0.4 gives here the

best agreement with the measurements. And a heave plate drag of CD,hp = 10 gives the best

agreement with the pitch-direction βp.

A remarkable e�ect is that the pitch eigenfrequency changes compared to the free-decay test.

The labels for the eigenfrequencies in Figure 4.5�4.8 correspond to the ones of the decay test

in Figure 4.3. Both, the simulated and measured response in LC 7 and LC 9 have a lower

pitch resonance frequency than the one of the free-decay tests. However, the simulated one is

slightly smaller than the measured one. This is in line with the results of Chapter 5, which

revealed that the platform pitch mode is critical to the blade pitch controller and its damping

and frequency can be altered by the control gains, possibly even making the system unstable.

An excessively aggressive controller was also tested and presented in [160].
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Figure 4.7: Response to wind and waves, LC 9 (Table 4.1) with simulations of Morison
drag CD = [0.2, 0.4, 0.6] (increasing darkness), CD,hp = 10 and experiment (dashed line), [240].
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Figure 4.8: Response to wind and waves, LC 9 (Table 4.1) with simulations of Morison drag CD = 0.4,
CD,hp = [5, 10, 15] (increasing darkness) and experiment (dashed line), [240].
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4.3 Full System Response

Figure 4.9 shows again the results of LC 7 but now with the rotor speed signal Ω and the

blade pitch θ together with the results of the nonlinear model (as Figure 4.5�4.8) and the

linear frequency-domain model. For the previously analyzed signals surge, heave and pitch,

the agreement is good, also at the smaller magnitudes visible in the logarithmic y-scale. The

frequency-domain model agrees very well with the nonlinear model showing that the response

is mostly in the linear range.

The rotor speed and blade pitch signal is underpredicted at the wave frequen-

cies (fwave ≈ 0.8 Hz) by the simulation models. The reason for this is not known exactly. Due

to the o�set over a large range of frequencies, an incorrect drivetrain model seems one plausible

explanation: Especially the numerical damping and friction model is rather simple with a static

friction, independent of the rotor speed. Another possible reason is the neglected �uctuation

of the wind speed by the simulation model (a constant wind is assumed). The turbulence of

the wind generator was not identi�ed in su�cient detail. As will be shown in Section 6.4.6,

there is a strong coupling between the rotor speed mode and the platform pitch mode, which

is in�uenced also by the wake dynamics. Research on unsteady aerodynamics for FOWTs was

recently presented in [74], con�rming the importance of unsteady aerodynamic models for the

moving hub of a FOWT. The misplaced wind generator discussed in the introduction might be

another e�ect possibly causing the observed di�erence on the rotor response.

The di�erent drag values CD and CD,hp, identi�ed for the decay tests, LC 7 and LC 9, are

collected in Table 4.3. It can be seen that the drag is highest for the decay tests and decreases

with the severity of the sea state or the magnitude of the response with the highest identi�ed

drag for the decay tests. It suggests that it is di�cult to identify drag coe�cients in general. As

the drag depends strongly on the state of the �ow surrounding the members (KC number) a LC-

dependent drag is necessary. This is in line with the �ndings of [248], who could well identify

the drag for irregular sea states but found a mismatch of the simulation results tuned to these

cases with the wind-only conditions. After collecting these drag coe�cients, it is important to

keep in mind that the main excitation of the low-frequency modes is the slow-drift force, which

is approximated with Newman's approximation, Section 3.5.5. For this reason, the obtained

results will be compared to literature values in the next section.

Table 4.3: Identi�ed Morison drag coe�cients, [240].

Load case Morison drag CD Heave plate drag CD,hp
Free decay 2.0 25.0
LC 7 0.6 20.0
LC 9 0.4 10.0
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Figure 4.9: Response to wind and waves, LC 7 (Table 4.1) with nonlinear model (red), linear
frequency-domain model (gray) and experiments (black, dashed); note logarithmic scale on y-axis, [240].

4.4 Comparison to Drag Coe�cients from Literature

The dimensionless numbers Re and KC will be calculated from di�erent LCs for the columns

and the heave plates. The experimentally obtained values of the coe�cients CD and CD,hp are

compared against literature values for the dimensionless numbers.

4.4.1 Columns

Morison drag is usually a function of the Keulegan-Carpenter number KC , Eq. (2.12), and the

Reynolds number Re, Eq. (2.40). Di�erent experimental results for smooth cylinders have been

collected by Sumer and Fredsøe [227, p. 144], see Figure 4.11. It can be observed that the drag

generally decreases for increasing Re, while larger KC yield a larger drag. In order to judge

the identi�ed coe�cients of Table 4.3, the dimensionless KC and Re-numbers are calculated

for LC 7 and LC 9 over the column length. This is done using the linear frequency-domain

model: The velocity amplitude v̂ for the calculation of the dimensionless numbers was based

on the STD. Assuming a Rayleigh distribution of the maximum and minimum amplitudes of

the velocity response over the columns, it is possible to approximate a representative velocity

amplitude v̂ necessary for the calculation of Re and KC . Here, the mean of the third highest

response amplitudes is taken as a reference, the same as for the calculation of the signi�cant
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wave height Hs. The velocity v̂ is calculated as

v̂ ≈ kpeakσ(v), with kpeak = 2.0. (4.1)

Using the linear SLOW model, KC and Re are calculated once for the �uid particle motion,

only and once for the body motion, only. The body motion is the one which in�uences the

system damping, which in turn shows the largest sensitivity on the response-STD as shown in

the previous section. This is a major di�erence to the validation of [248] because in that work

the Morison drag excitation forces (as opposed to damping forces) are of major importance.

Re×1e4 [-]KC [-]

b
o
d
y

m
ot

io
n

d
ep

th
[m

]

w
av

e
m

ot
io

n

d
ep

th
[m

]

0 1 2 3 4

0 5 10

0.2 0.4 0.6 0.8

0 0.5 1 1.5

-1

-0.6

-0.3

SWL

-1

-0.6

-0.3

SWL

Figure 4.10: Keulegan-Carpenter number and Reynolds number over depth from LC 7 (blue)
and LC 9 (red) from linearized model.

The zero-upcrossing period T2 using the zeroth moment m0 (Eq.(2.28)) and the �rst mo-

ment m1 of the respective spectrum (either from body motion or wave motion), is used for the

calculation of KC (Eq. (2.12)), see also [90, p. 5-42]

T2 = 2π

√
m0

m1

. (4.2)

Figure 4.10 shows the Reynolds number and Keulegan-Carpenter number over the length of

a vertical column for both, LC 7 and LC 9 for the body motion and wave motion. It can be

seen that both, Re and KC increase with the sea state. Comparing the values to Figure 4.11,

it can be seen that the Keulegan-Carpenter number is KC < 1 and therefore out of the range

of Figure 4.11, while the Reynolds number Re ≈ 1× 104 is at the lower end of the data. Such

low KC numbers suggest that the �ow is even unseparated, see [115, p. 228]. Looking at the
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Figure 4.11: In-line force coe�cients for a free, smooth cylinder as function of the Re-number for
various KC with vertical lines for Re-values corresponding to LC 7 (blue) and LC 9 (red). Adapted

from [227, p.144], reprinted with permission from author, 2018.

vertical axis of Fig 4.11 at Re = 1× 104, the CD values decrease for decreasing KC and the

obtained values of Table 4.3 with CD = 0.4 (LC 9 and CD = 0.6 (LC 7) seem in a plausible

range.

Another, analytic equation for CD for circular cylinders of low KC is given by Wang in [115,

Eq. (7.21)]. It returns values of CD = 0.47 for LC 7 and CD = 0.2 for LC 9. The values are a

bit lower than the identi�ed ones but the trend is the same and con�rms the plausibility of the

experiments.

4.4.2 Heave plates

The same comparison can be made for the heave plates in vertical direction. Table 4.4 shows

the Reynolds number and Keulegan-Carpenter number for both LCs. Due to the low response

in heave-direction, the values are even smaller than for the columns. However, now the values

are within the range of the literature values taken from [230] and reprinted in Figure 4.12. The

data is compared in the publications for heave plates of di�erent porosity, while here only the

black diamonds of zero porosity are of interest. For the body motion of the more severe LC 9,

we get KC = 0.35. Reading the corresponding CD,hp o� Figure 4.12 results in CD,hp ≈ 10.

This is equal to the identi�ed value for LC 9 of Table 4.3. For the mild sea state (LC 7),

one obtains KC = 0.054 with an identi�ed CD,hp = 20. This value seems also plausible when

extrapolating the present data of Figure 4.12 to the left. The heave plate drag is independent

of the Reynolds number due to the sharp corners and small thickness of 3 mm.
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Figure 4.12: Vertical drag coe�cient CD,hp for heave plates of di�erent porosities (only 0-porosity
relevant) with vertical lines for KC -values corresponding to LC 7 (blue) and LC 9 (red). Adapted

from [230, p.1012], reprinted with permission from Elsevier, 2018.

Table 4.4: Keulegan-Carpenter number and Reynolds number for heave plates (vertical direction)
from linearized model.

LC 7 LC 9
KC [-] Re [-] KC [-] Re [-]

body motion 0.054 4.9× 103 0.35 2.6× 104

wave motion 0.043 4.7× 103 0.18 1.7× 104

4.5 Summary

It could be shown in this chapter that the simulation model of Chapter 3 is able to reproduce

the platform eigenfrequencies, as well as the response magnitudes. The hydrodynamic model

including the �rst-order panel code coe�cients and the second-order slow-drift model show to

be correctly implemented as both, the low-frequency and the wave frequency response compare

well to the experiments. The Morison model with horizontal and vertical members is well suited

to model the experimental tests. Di�erences exist for the controller-related DoFs, the rotor

speed and the blade-pitch angle. This suggests that a drivetrain model with a more detailed

identi�cation of the bearing friction might be necessary. Further research should also address

the aerodynamic force model, which includes the wake dynamics. The uncertainty of the FOWT

model properties, the wind and wave generators and the sensors has not been quanti�ed in this

study. Eventually the research shows the importance of a correct modeling of the hydrodynamic

drag, depending on the load case. Due to the strong coupling of the platform pitch and the

rotor mode, this hydrodynamic damping is important for a robust tuning of the wind turbine

controller. The identi�ed drag values seem reasonable after the comparison to literature data.

The values given in [230] will be parameterized for the optimization of Chapter 6.
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This chapter starts with a linear system analysis with the previously developed model to get an

understanding of the coupled properties of the dynamic FOWT system, relevant for controller

design. After the standard below-rated controller is introduced, a new scheme for a robust PI-

controller for above-rated conditions will be developed. It uses only the rotor speed error as

input and actuates the blade pitch angle (SISO) and relies therefore on a standard control

architecture. However, the gain scheduling is designed such that the system robustness is

ensured at all operating points. This criterion is the basis for a new, automated, model-based

design algorithm, in order to be used for the integrated optimization of Chapter 6. This gain

scheduling controller is subject of the paper [249].

Next to this SISO controller, an optimal MIMO controller will be designed for above-rated

conditions. It has the objective of showing the principally possible upper bound of the controller

performance, to be compared to the standard SISO controller. Thus, it is another reference

for the integrated optimization. The design is here done for the TripleSpar of Section 2.10 but

the validity of the controllers is ensured for the entire design space of platforms of Chapter 6.

This MIMO-controller and a linear system analysis as in the next section is subject of the

paper [205].

5.1 Linear System Analysis

In this section, an input-output scaling will be applied to the transfer function from disturbance

inputs d = [v0, ζ0]T (wind speed and wave height) and control inputs u = [Mg, θ]
T (generator

torque and blade pitch angle) to the outputs y = [Ω, xt]
T (rotor speed and tower-top displace-

ment from bending). This allows for a quantization and comparison of the e�ects of the di�erent

system inputs. Next, the coupling of the system from the control inputs and disturbance inputs

to the outputs will be examined in a MIMO system analysis. The analyses are made with a

focus on the di�culties arising from the RHPZ due to the �oating platform, which is especially

critical slightly above rated. This is why the operating point is selected as v0 = 13 m/s.
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5.1.1 Scaling

The scaling law to obtain the dimensionless system transfer function Ĝ from the dimensional

one G following [166] reads

Ĝ = D−1
y GDu∗ . (5.1)

The scaling matrix for inputs Du∗ includes control and disturbance inputs u∗ = [u,d]T . For

the chosen input and output signals it results

Du∗ = diag([ M̂g, θ̂, v̂0, ζ̂0 ]) and Dy = diag([ Ω̂, x̂t ]). (5.2)

The scaling factors are usually de�ned based on actuator constraints or maximum allowable

excursions, respectively, see [166]. Here, the speci�ed requirements for the controller perfor-

mance of Table 2.2 were used for the rotor speed Ω and the generator torqueMg. For all others,

simulation results of the DTU 10 MW RWT on the TripleSpar at v̄hub = 13 m/s in closed-loop

were used with the sea states of Table 2.1. The scaling factors are based on the STD σ of

the respective signals. The 2σ values are used as in Section 4.4, which is the mean of the

third largest amplitudes for a narrow-banded process, see Section 2.7.3. All scaling factors are

collected in Table 5.1.

Table 5.1: Scaling factors.

u d y

M̂g = 0.15Mg,rated = 31.1 kNm v̂0 = 2σ = 2.4 m/s Ω̂ = 0.15 Ωrated = 1.44 rpm

θ̂ = 2σ = 6.0 deg ζ̂0 = 2σ = 1
4Hs = 1.4 m x̂t = 2σ = 0.28 m

5.1.2 Input-output analysis

As discussed in Section 2.9, the biggest challenge for FOWT control is maintaining the rotor

speed while at the same time damping the platform motion. With the two standard actuators

of blade pitch θ and generator torque Mg, generally two control inputs are available and it

is also possible to feed back more signals than the rotor speed Ω. This encourages MIMO

controllers, which have the potential of mitigating the RHPZ [166]. In this section, the scaled

transfer dynamics from the control inputs u to the outputs y at a wind speed of v0 = 13 m/s

is analyzed. Figure 5.1 shows the 2 × 2 transfer function as Bode plots: At each frequency,

a sinusoidal input signal is ampli�ed by the factor of the upper Bode plot. Additionally, the

ampli�ed output is shifted by the phase angle of the lower Bode plot. Consequently, Figure 5.1

shows two properties: The transfer functions, including the poles and zeros, causing changes in

the phase, depending on their location in the complex plane (Figure 3.24) and additionally, the
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authority of both actuators on the outputs. If the ampli�cation of one actuator on the outputs

is |Ĝu⇁y(jω)| � 1 this means that this actuator is likely not to yield a good trajectory tracking

and disturbance rejection. This is why the ampli�cation of the disturbance inputs d is shown

in Figure 5.1 with gray lines for comparison with the control inputs (it is only shown for u2 = θ

because the ampli�cation of u1 = Mg is an order of magnitude smaller, as will be discussed

later). The control inputs should always have more authority than the disturbances to be able

to reject them successfully. The disturbance transfer function from the wave height to the wave

forces on the platform Gζ⇁F , which is necessary to calculate the disturbance transfer functions

of Figure 5.1, was calculated with the parametric approach of Section 3.5.2.
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Figure 5.1: I/O transfer function Bode diagram with inputs u = [Mg, θ]
T and outputs y =

[Ω, xt]
T (black). For comparison, including magnitude of disturbance transfer functions from

wind v0 (light gray) and wave height ζ0 (dark gray), @v0 = 13 m/s, scaled, [205].

The comparison of the ampli�cation of control inputs as opposed to disturbances in Figure 5.1

shows that the wind speed v0 has a comparable e�ect on the rotor speed Ω as the blade pitch θ

with a rather low in�uence from the waves ζ0. The tower-top displacement xt, however, sees

disturbances from the wind at lower frequencies and from waves at frequencies f > feig,βp ,

which are in the range of the authority of the blade pitch angle, or even above. This analysis

reveals that it is challenging to attenuate the wave disturbance on a FOWT using the standard

actuators of the rotor, especially in the wave frequency range, above the pitch frequency.

The 2 × 2 transfer dynamics of Figure 5.1, on the other side, show the signi�cant phase

loss in the dynamics from blade pitch to rotor speed, because of the two RHPZ discussed in
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Section 2.9 (the positive phase of 180 deg at ω → 0 is due to the negative ampli�cation of

both control inputs). The generator torque shows about four times less ampli�cation on the

rotor speed than the blade pitch angle and even more, about twenty times less ampli�cation on

the tower-top displacement. This is generally advantageous as one could decouple the system

and control the rotor speed with the generator torque and the tower-top displacement with the

blade pitch angle. The same can be found analyzing the Relative Gain Array (RGA), see [166].

Unfortunately, the actuator constraints prohibit such a realization, since the generator is usually

not designed with an excessive safety factor on the electrical current and therefore only small

�uctuations of the torque at rated wind speed are allowed. A comparison of the magnitudes

from blade pitch to the outputs (Figure 5.1, right column) shows that changing the blade pitch

angle does not only result in a change of the rotor speed with |Ĝθ⇁Ω(jω)| > 1 but also of

the tower-top displacement xt with |Ĝθ⇁xt(jω)| > 1. Thus, the blade pitch yields a �parasitic�

disturbance as a side e�ect, especially in the frequency range of the common bandwidth for SISO

controllers at f > feig,βp , which is the reason why a decoupling, diagonal controller is hardly

feasible for wind turbines.

5.1.3 Multi-input-multi-output analysis

The previous open loop analysis can also be done systematically through a Singular Value

Decomposition (SVD), see [166], transforming the transfer function matrix G into a diagonal

matrix of two singular values representing the maximum and minimum gain σ and σ, respec-

tively in the correlated direction of the outputs U and inputs V


 G11 G12

G21 G22


 =

[
U U

]

 σ 0

0 σ


 [V V

]T
. (5.3)
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Input
directions:

Output
directions:

Figure 5.2: Input and output directions for ω = 0. Output ampli�cation is not shown, each output
direction will be ampli�ed by σ and σ, respectively.

Figure 5.2 is a visualization of both directions, applied to the input and output signal of

the present system G. The strongest and weakest one are always orthogonal and both are
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Figure 5.3: Singular-value decomposition of I/O transfer function: Strongest (dark) and weak-
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T and the second plot the �rst coordinate of the output coordinates
y = [Ω, xt]

T , the third plot shows the gain associated with the strongest and weakest direction and
the MIMO zeros of G, @v0 = 13 m/s, [205].

ampli�ed individually by σ and σ, respectively. Figure 5.2 visualizes the zero-frequency limit

of the frequency-dependent SVD of Figure 5.3. We can now investigate the combination of

the inputs that yield the highest gain on the outputs. This strongest gain σ is associated

with the strongest output direction. Thus, this analysis addresses the true MIMO system with

combinations of the inputs and their e�ect on the outputs, as opposed to Figure 5.1, which

shows the independent transfer dynamics.

Figure 5.3 shows in the upper two graphs the �rst coordinate of the input and output di-

rections (abscissa of Figure 5.2). It can be seen that the strongest singular value in dark color

contains only little contribution of the generator torque Mg but a high portion of the blade

pitch angle θ, which con�rms the �ndings from the I/O transfer function matrix of Figure 5.1.

Looking at frequencies up to the platform pitch eigenfrequency this combination of inputs (or

�direction�) is well suited to control the rotor speed Ω (second plot, dark color). At the platform

pitch eigenfrequency, the strongest gain σ decreases, showing that the control of both, the rotor

speed and the tower becomes rather di�cult.

One can assess the e�ect of using the two control inputs (Mg, θ) as compared to the blade

pitch angle, only: The strongest singular value yields slightly higher gains (Figure 5.3, bottom)
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than the blade pitch angle only (Figure 5.1, upper right) for f < feig,βp . Consequently, the

generator torque is a useful actuator, although Figure 5.1 (upper left) shows very small gains

associated with it.

The strongest (control) output direction (Figure 5.3, second plot) can now be compared

to the output disturbance directions from wind and waves. These are shown in Figure 5.4.

For low frequencies, wind and waves a�ect more the rotor speed than the tower-top displace-

ment (Figure 5.4, top). Interesting are here the gains of the strongest disturbance output

directions, compared to the strongest control output directions: The gain of the strongest con-

trol input (Figure 5.3, bottom) is of about twice the magnitude of the gain from wind on the

outputs (Figure 5.4, middle left). For the waves it is di�erent: The ampli�cations of the waves

on the outputs is of comparable magnitude as of the control inputs. This is con�rmed by the

disturbance condition number γ, which takes high values if the disturbance direction is aligned

with the weakest control output direction. This means that it is high if the disturbance a�ects

directions which are hard to control, see [166]. Here, this is the case for wind excitations of

high frequencies and for waves, around the MIMO zero at 0.05 Hz, see Figure 5.4, bottom row.
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5.1.4 Summary

The main �ndings of the OL analysis are �rst, the di�erent impact of the two actuators blade

pitch and generator torque on the rotor speed. The ampli�cation of the blade pitch signal on the

rotor speed proves its better suitability for control, compared to the generator torque. However,

blade pitch has, as opposed to the generator torque, the negative side e�ect that it in�uences

more the tower-top fore-aft forcing than does the generator torque. This �nding in�uences the

selection of a MIMO control layout: While it would be desirable to have two control inputs

with two di�erent controlled variables with no interaction of one loop on the other, this seems

not possible due to the generator torque constraints. Second, it was shown that supporting

rotor-speed control with a slight portion of generator torque actuation can improve the control

performance while exciting less the tower-top motion. However, the control against the wave

forcing is found to be challenging, especially at the frequencies of common wave spectra.

5.2 Below-Rated Controller

For wind speeds between cut-in (4 m/s) and rated wind (11.4 m/s), a standard KΩ2-controller

is used for both of the above-rated controllers to be designed in the next sections. The below-

rated controller will not be adjusted to the di�erent platform designs in this work because it

does not in�uence the system stability as the above-rated controller. The goal is to control the

rotor speed for optimal power production at TSR λ = ΩR/v0 = λopt, see Section 2.9. Therefore,

the generator torque Mg is a nonlinear state feedback of the rotor speed Ω following [44] as

Mg = kΩΩ2
g with kΩ =

1

2
ρaπR

3 cp,max
λopt

. (5.4)

For the DTU 10 MW RWT, the rated generator torque is rather low compared to the rotor

properties. Therefore, there is no increase of generator torque necessary in the transition from

the optimal-TSR region and the above-rated region. Often, the switching methodology to the

above-rated control region substantially in�uences the overall fatigue loads of the rotor and

the tower. In this work, this switching is not a focus but rather the design of the above-rated

controller. The tested wind speeds of Chapter 6 yield only few switching events.

5.3 Robust Proportional-Integral Controller

As described in Section 2.9, a common way of designing SISO controllers for FOWTs is to �de-

tune� the gains, making the controller less aggressive to avoid instability due to the RHPZ.

A common method, described in [10] and [15], and repeatedly used for the generic FOWT

concepts OC3 and OC4, see [111, 112], is to model the de-coupled (rigid) rotor including
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Figure 5.5: PI-controller for above-rated wind speeds.

aerodynamics and design the controller such that the closed-loop-eigenfrequency of the rotor

lies below the fundamental platform eigenfrequency (usually platform pitch, see Section 2.5). As

discussed already in Section 2.9, this method gives good �rst guesses for reasonable control gains

without large modeling e�orts (the �oater and tower dynamics do not have to be represented).

However, mainly the gain scheduling law does not always yield reasonable results. It suggests

constant dynamics over the entire operating range, which is the intention of gain scheduling.

But this is not always true because of the neglected fore-aft dynamics in the model. With a

more re�ned simulation model, the rotor dynamics in closed-loop will alter signi�cantly over

the operating range, contradicting the design conditions.

Here, a method is proposed based on the linearized model of Chapter 3, which includes the

�oater dynamics, especially the platform pitch mode. For a robust PI-controller, stability is the

�rst criterion and the rotor eigendynamics (as in the above �de-tuning� method) is a secondary

criterion. Thus, the controller ensures a certain robustness over the operating range, which is

important considering the RHPZ and also the uncertainty related to the system damping, see

Chapter 4.

Figure 5.5 shows the block diagram of the controller. There is no explicit gain scheduling

factor included. Instead, the proportional gain is written as a function of the blade pitch

angle kp = kp(θ). The controller maintains a constant generator torque Mg in the above-rated

wind speed region. The feedback control law reads with the azimuth angle ϕ =
∫

Ω dt, equal

to the integral of the rotor speed Ω, the PI time constant Ti and the gear ratio igear

∆θ =
kp(θ)

igear
∆Ω +

kp(θ)

igearTi
∆ϕ. (5.5)

Using the Nyquist criterion, see [166], a Gain Margin (GM) and a Phase Margin (PM) can

be de�ned as a design criterion. Here, a di�erent method is chosen, involving only a single

criterion, in order to simplify the automation intended for this controller. The single criterion is
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the inverse of the maximum sensitivity Ms, as proposed in [250]. Figure 5.6 shows the Nyquist

diagram, the loop transfer function L(jω) in the complex plane, for di�erent proportional

gains kp = 0.002 . . . 0.008 s on the left and with varying time constants Ti = 4.5 . . . 9.5 s on the

right. The margin to the stability limit at [−1, 0] is indicated. This distance to this point is

exactly 1/Ms, see [250, p. 13-6]. One can see that the margin is reduced for increasing kp and

decreasing Ti.

Not only the stability is a criterion but especially the rejection of the disturbances is a control

goal for FOWTs, as discussed in Section 2.7.3. Therefore, the response in the closed-loop with

relevant design loads was calculated for di�erent combinations of kp and Ti. Figure 5.7 shows

the variation of the PSD of the blade pitch angle θ and the rotor speed Ω for the TripleSpar

platform of Section 2.10. The other design indicator of Table 2.2, the tower-top displacement xt,

does not visibly depend on the control gains because the wave loads dominate its response. For θ

and Ω, on the other side, the signi�cance of the controller settings is observable. Clearly, a more

aggressive control (larger kp and smaller Ti) reduces the rotor speed tracking error at the cost

of an increased blade pitch activity. It seems like a more aggressive controller is always better

for rotor speed tracking. This is not the case, however, because the stability decreases, yielding

a large fore-aft response. Consequently, the lowest possible stability margin can be seen as the

best compromise between the two control objectives. A larger hydrodynamic damping can thus

help to improve rotor speed tracking through a possible increase of the controller gains.
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In a next step, the criteria for setting up a gain scheduling law over wind speeds are set up.

The �rst design criterion is the stability margin of 1/Ms = 0.4. The corresponding gains kp can

be interpolated after calculating the margins 1/Ms for a grid of wind speeds v0, gains kp and

time constants Ti. Figure 5.8 shows di�erent quantities, all interpolated at the stability limit

of 1/Ms = 0.4 for di�erent Ti. The �rst is the proportional gain kp, which decreases initially

before it raises again at higher wind speeds. On the right-hand side of Figure 5.8, the STD

of the rotor speed Ω, the blade pitch angle θ and the tower-top displacement xt can be seen.

For all signals the largest Ti yield the smallest �uctuations. This might be connected with

the observation that larger Ti yield a higher damping of the rotor-speed mode (see pole-zero

map, Figure 3.24). The properties of the rotor mode can be seen in the two plots on the

lower left of Figure 5.8. The pole magnitude λrot is equal to the undamped eigenfrequency for

undercritically damped poles with ξrot < 1. For overcritically damped poles, only the magnitude

of the dominant, smaller pole is shown, which is equal to the inverse of the time constant τrot,

see Figure 3.24b. With higher wind speeds and increasing Ti, the rotor dynamics become faster

and the damping ratio increases up to the overcritical range.

Following the observations of Figure 5.8, the time constant was �xed to Ti = 9.5 s, a value

up to which the performance increases slowly with no improvements beyond. For higher wind

speeds, stability is not an issue because for v0 > 20 m/s, the limit of 1/Ms = 0.4 cannot

be reached anymore for the investigated range of gains kp, see Figure 5.8. Therefore, the
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time constant of the (overdamped) rotor mode is �xed, as a secondary design criterion for

the gain scheduling. This is in line with the procedure of [10] but here it is calculated for

the coupled model instead of the rotor-only model. An algorithm identifying the eigenvectors

and assigning them to the states has been implemented for the automated design algorithm.

With this it is possible to interpolate the gains kp (with a constant Ti again) at the desired

eigenfrequency ω0,rot, or the desired time constant τrot for an overdamped mode.

Figure 5.9 shows the resulting gain scheduling kp = kp(v0) at the desired stability 1/Ms = 0.4

or the desired rotor closed-loop time constant τrot, respectively. It can be seen that the stability

requirement results in decreasing kp for wind speeds above rated. Towards the cut-out wind

speed of v0 = 25 m/s the stability criterion is not relevant anymore and the gain scheduling

takes the values which yield a constant τrot. At rated wind, the stability is most critical and

therefore the proposed criteria yield small kp. The design of the PI-controller needs to be

aligned with the switching procedure to below-rated winds.

The gain margins and phase margins for the gains at 1/Ms = 0.4 of Figure 5.9 are shown

in Figure 5.10. Recommended margins from control engineering textbooks are in the range

of GM ≈ 6 dB and PM = 40 . . . 60 deg. The resulting margins of the designed controller are

roughly in this range and slightly below for the gain margin at low wind speeds and the phase

margin at high wind speeds. This con�rms that the chosen value of 1/Ms = 0.4 is reasonable.
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A �nal evaluation of the controller in the load case of Table 2.1 with the nonlinear and linear

SLOW models and the FAST model is shown in Figure 5.11 with the STDs of the control inputs

and outputs as well as overshoot of the rotor speed Ω̂ over the rated value. It can be seen that

the values agree very well among the models. The STD of the rotor speed Ω is roughly constant

for wind speeds v̄hub > 20 m/s, due to the design criterion of the �xed time constant of the

rotor τrot, see Figure 5.9. The linearized model deviates from the nonlinear only slightly for

certain wind speeds. The blade pitch angle θ, predicted by FAST, shows larger STDs, which

can be due to the blade elasticity. The rotor speed overshoot Ω̂ is above the 15 % design limit

of Table 2.2 for the wind speeds around rated. This is likely due to the switching scheme to

below rated conditions. Here, additional measures are necessary to improve the performance of

this SISO baseline controller. A comparison between the models is further topic of Section 6.4.5.
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Figure 5.12 shows the step responses of Ω of the nonlinear model at di�erent wind speeds

above rated. It can be seen that the dynamics are close to constant for the wind speeds

above 20 m/s at which the controller was designed for a constant rotor time constant τrot.

5.4 Linear Quadratic Regulator

As a benchmark of a MIMO controller, an LQR is designed using the blade pitch angle and the

generator torque as control inputs. Such optimal controllers have already been applied to wind

turbines in [175], to FOWTs in [172] and, as part of this research, in [107]. The focus is here

put on the de�nition of the MIMO controller, valid for all platforms analyzed in Chapter 6.

Thus, this section gives a short introduction with the de�nition of the LQR weights but does

not describe a new controller design methodology, as previously for the PI-controller. The LQR

minimizes a quadratic cost function J of a linear model with weights on the squared control

inputs u and states x and their product ux, see [166], as

J = lim
T→∞

1

T

∫ T

0

[
xTQx+ uTRu+ 2xTNu

]
dt. (5.6)



132 5 Controller Design

The weights R on the inputs u take the form

R = diag
([
rMg , rθ

])
(5.7)

and for the weights on the states x only four nonzero weights are chosen as

Q = diag
([

0, 0, 0, qϕ, 0, 0, 0, 0, qβp , qΩ, 0, qxt
])
. (5.8)

The order of the states follows Eq. (3.18) with the �exible tower-DoF last. The weight on the

product of states and outputs is selected as

N(10, 1) = nΩ,Mg , N ∈ R(2f×nu). (5.9)

It has the purpose of reducing the power �uctuation, which is the product of the tenth state Ω

and the �rst control input Mg. The weighting factors inside R, Q, and N are shown in

Table 5.2. They are mostly normalized with the square of the scaling values of Table 5.1.

Although Table 5.1 is given for only one wind speed (v0 = 13 m/s), the response of most states

and inputs is highest around rated and therefore these weights are taken as a representative

reference for the entire operating range. In order to calculate amplitudes of the derivatives and

integrals of the scaling values of Table 5.1, a reference frequency of ω̄ = 0.63 rad/s (= 0.1 Hz)

was chosen, the frequency of common wave spectra. The 2σ-value of the platform pitch angle βp,

not included in Table 5.1, is β̂p = 2.2 deg.

Table 5.2: LQR weights.

R Q N

rMg = 0.01

M̂2
g

qϕ = 5.7× 10−4

(Ω̂/ω̄)2
nΩ,Mg = 31.6

(Ω̂M̂g)2

rθ = 1.4× 10−3

θ̂2
qΩ = 0.027

Ω̂2

qβ̇p = 0.038

(β̂pω̄)2

qẋt = 9.8× 10−6

(x̂tω̄)2

The solution of the Riccati equation [166] results in the state feedback matrix K lqr and the

feedback law of the LQR reads

u(t) = −K lqrx(t). (5.10)

An equivalent integral action for the rotor speed signal is included because the rotor az-

imuth ϕ = x(4) is part of the state vector x. Usually, the state signals, as inputs to the LQR,

need to be calculated by an observer. In this work, however, the states are assumed to be

perfectly measurable in order obtain a benchmark of an optimal control performance.
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The LQR results, per de�nition, in a stable closed-loop system. However, robustness is not

guaranteed. This means also that it might de-stabilize a system, which includes higher-order

dynamics than the linear model used for its design. Especially the fact that the coupled tower

eigenfrequency lies within the 3p range of the DTU 10 MW RWT yields a coupling between the

blade structural dynamics and the tower. As this e�ect is not covered in the simpli�ed model,

the LQR cannot be used with the FAST model.

The LQR can nonetheless be taken as a meaningful benchmark, for the simpli�ed model

to compare the performance with a theoretically optimal controller against the simple PI-

controller. This will be done in Chapter 6.

5.5 Bandwidth Comparison

The reduced control bandwidth of SISO-FOWT-controllers due to the RHPZ has been discussed

in Section 2.9. Figure 5.13 shows the complementary sensitivity T (jω), or the transfer function

from the reference rotor speed Ωref to the measured rotor speed Ω. The bandwidth is the

frequency at which |T (jω)| crosses 1/
√

2 from above for the �rst time. Additionally to the SISO

controller and the LQR, a PI onshore-controller is included as a reference. Its design follows

the pole-placement method (i.e. [15]) with a rigid-body model of the rotor only (no tower

fore-aft motion) and a closed-loop eigenfrequency of ωrot,CL = 0.3 rad/s and a damping ratio

of ξrot,CL = 0.7.

frequency [Hz]

∠T
(j
ω
)
[−

]
|T

(j
ω
)|
[−

]

su
rg
e

pi
tc
h

he
av

e
0.
1

0.
2

0.
3

tw
r

0.
5

−720

−360

0
0

1

Figure 5.13: Complementary sensitivity functions T (jω) (transfer function from Ωref to Ω) for PI-
(blue), LQR (red) and equivalent onshore PI-controller (green) at v0 = 13.9 m/s.
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For the two FOWT systems, the zero at the platform pitch eigenfrequency is well visible.

It is usually this mode which limits the bandwidth for semi-submersibles. The surge-mode

(lower frequency than pitch) has a higher damping and the other fore-aft mode, the tower, is

of a higher frequency. The onshore system, which does not have the soft fore-aft dynamics,

has an about 50 % larger bandwidth. Even though the LQR is a MIMO controller, feeding

back all states, the platform pitch mode is, also here, a limiter of the bandwidth. However,

it can be shown that a higher fore-aft damping or a shift of the RHPZ to the left-half plane

through more generator torque actuation can increase the bandwidth of the LQR. Such a case

was presented in [205], giving a bandwidth comparable to the onshore system through a smaller

weight on the generator torque Mg. This would, however, exceed the limits of Table 2.2. The

bene�ts of the LQR are in this work still clearly visible in the results of Chapter 6, especially in

Figure 6.12, with an improved attenuation of the resonances and the low-frequency excitations

from wind and slow-drift forces.
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The numerical model of Chapter 3 and the parametric controllers of Chapter 5 will be used in

this chapter for an integrated design study. The parametric simulation model, including the pre-

processing for the hydrodynamics, allows for a calculation of the response of the coupled system

over a design space of �oating platform geometries with an individually designed controller.

This is seen as a �rst step towards Systems Engineering of FOWTs, as discussed in Section 2.4.

The inherent dynamic properties and the transmission of environmental loads on the structure

will be analyzed for the entire design space. The advantages of certain designs over others and

the underlying physics causing these di�erences will be assessed in detail.

The structure of the chapter is such that the optimization methodology, the design space and

the parametric design approaches are introduced before various simulation results are shown:

Linear system analyses and operational fatigue loads and eventually design indicators for a

�cascading� of the obtained knowledge on optimal designs into feasible design criteria. The

chapter terminates with a veri�cation of the results obtained from the reduced-order model

with the reference model FAST and further studies on the necessary model �delity.

6.1 Methodology

The integrated optimization of this chapter has the objective of a sensitivity study, or �brute-

force optimization� rather than a closed-loop optimization. This has the reason that the focus

is not on a distinct optimization algorithm but on the understanding of the FOWT dynamics.

The parametric studies allow a clear visualization of the results such as structural loads, but

also system properties such as eigenfrequencies, damping ratios and transfer functions. A

closed-loop optimization was also done in the course of this thesis for the project LIFES50+,

see Deliverable 4.3 [251] and the associated conference paper [237]. The present approach is

subject of the publication [252].

Of major importance to the analysis is a reasonable de�nition of the design space and a clear

description of the problem to be answered: As was shown in Chapter 5, the �rst-order wave

loads are of signi�cant magnitude and hardly controllable with the wind turbine actuators. It

was also shown that the platform pitch-direction has signi�cant e�ects on the wind turbine

operation as the platform pitch mode is a limiter to the controller bandwidth. Consequently,
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the controller is a good means for further tuning of the system response but in the �rst place

the reduction of �rst-order wave loads, mainly in pitch-direction, is a clear-cut goal of the hull

shape optimization. This reduction of the wave loads is known especially for semi-submersibles

and is called �wave cancellation�, see i.e. [253]. It results from an integration of the pressures

of a given wave period over the hull surface. Depending on the wave frequencies, these forces

can cancel themselves partially.

The methodology is shown in Figure 6.1. The free variables determine initially the hull shape,

which determines further design parameters in the subsequent design steps. The design space is

de�ned for a three-column semi-submersible with heave plates and only two free variables. This

allows for a clear visualization of the results and a �full factorial� simulation � an evaluation of

all possible parameter combinations. The designs range from a deep-drafted semi-submersible

of three slender columns to a design of large breadth, large column radius and shallow draft.

The geometric constraints ensure that the aspect ratio of heave plate radius rhp and column

radius r are reasonable regarding the structural design and manufacturing constraints, see Fig-

ure 6.2. A simpli�ed structural design methdology is followed for a three-legged steel tripod

connecting the concrete columns with the transition piece at the tower-base. With the mass

distribution, the hydrostatic calculations can be made, keeping a pre-determined hydrostatic

restoring in pitch-direction. This condition is ful�lled by adjusting the draft t, which is the

variable that completes the de�nition of the hull shape. The panel code calculates the hy-

drodynamic coe�cients, the �rst-order wave force-RAO as well as the mean drift coe�cients.

The force spectra include also Morison drag excitation forces and slowly-varying drift forces

using Newman's approximation, as introduced in Section 3.5. For a realistic representation of

the viscous drag at the heave plates, the heave plate drag is parameterized as function of KC

using the values con�rmed by the experiments of Chapter 4. The linear response spectra are

calculated for an initial estimation of KC , and then iterated until convergence, as described in

Section 3.5.4. This iteration includes the controller, as shown in the lower part of Figure 6.1:

It is re-designed for each updated hydrodynamic damping.

Thus, the two controllers of Chapter 5 are parameterized and automatically adjusted for every

new platform design with its load case-dependent hydrodynamic drag. This is straightforward

using the optimal LQR, which determines the state-feedback matrix based on a linearized

model at the operating point. The simpler PI-controller, however, is usually designed using

pole-placement or loop-shaping techniques. This is an iterative procedure and is normally not

automated. The stability-based criterion, de�ned in Section 5.3, however, is the basis for a

robust, automated controller design algorithm. The objective of including a simple SISO con-

troller, next to the optimal MIMO controller, is to ensure that the controller design procedure

is �fair� for all designs, without biasing the results towards certain types.
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Figure 6.1: Parametric FOWT system design and brute-force optimization scheme.
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6.2 Design Space

The selected hull shape parameters include the column spacing from the platform centerline d,

the column radius r, the heave plate height hhp, the ratio of heave plate radius to column

radius r̂hp = rhp/r and the draft t, as shown in Figure 6.2.

As mentioned, it is a target to have a narrow and reasonable design space with little di-

mensions in order to produce realistic results, which can be well interpreted. If a large range

is used, linear or nonlinear constraint functions are necessary in order to discard unfeasible

designs in terms of manufacturing and installation. Also, the distribution of the major system

eigenfrequencies has to be veri�ed in order to avoid a resonance due to excitation from the

rotor or the waves. Such constraints are thus not known at the beginning of an optimization

loop but only at its end.

For this work, it was decided to de�ne upper and lower bounds for each of the free variables

such that the design space is Cartesian, meaning that the range of every variable does not

depend on the values of the others. This can be easily understood by looking at the range of

heave plate radii rhp. For small column spacings d and large column radii r, a design with the

largest heave plate radius ratio might not be feasible.

d

r

hhp

rhp

SWL

t

Figure 6.2: Free variables for parametric hull shape design.

The column radius r is de�ned dependent on the maximum possible column radius rmax and

is therefore a function of the column spacing d

r(d) = 0.52 rmax (d) = 0.52 d sin(60◦) = 0.52 d

√
3

2
. (6.1)

Table 6.1 lists the free variables and the dependent variables. The only free variables are the

column spacing d and the heave plate height hhp. The ratio of the heave plate-to-column

radius r̂hp is kept constant with r̂hp = 1.3. This ensures that the aspect ratio is reasonable and

feasible from a manufacturing standpoint. The draft t, which is a result of the hydrostatic

constraints as mentioned above, is not an actual constraint of the design space but an upper

limit of 80 m was considered in the a-priori de�nition of the bounds of the free variables.
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Table 6.1: FOWT hull shape design parameters.

Free variables Dependent variables

• Column spacing d • Column radius r
• Heave plate height hhp • Heave plate radius rhp

• Draft t
• Steel tripod strut width &
sheet thickness

• Ballast mass
• Platform mass distribution
• Mooring line fairleads position
• Wind turbine controller

The overall dimensions of the 2D design space are shown in Figure 6.3 with a column spacing

range d = 15.0(1.0)24.0 m and a heave plate height range hhp = 1.0(3.5)8.0 m. Thus, the designs

range from slender deep-drafted platforms to large-breadth shallow-drafted ones. Larger column

spacings than the ones considered are expected to result in excessive bending stresses in the

tripod structure.

The variable heave plate height adds another degree of freedom of altering the vertical Froude-

Krylov forcing on the columns and consequently facilitate the wave cancellation e�ect. The

icons on top of Figure 6.3 show that the column radius is largest for the lowest draft. The cost

increases generally for increasing column radii r but decreases again for the ones of shallow

draft with a large contribution of buoyancy to the hydrostatic restoring. The assumptions

for the material cost estimation will be given in Section 6.3, it is roughly proportional to the

submerged volume.

The three designs shown in Figure 6.3 will be selected in a number of the upcoming analyses

and indicated by �deep draft�, �medium draft�, and �low draft�, see Table 6.2. The detailed set

of parameters of these three platforms, necessary to build a FAST model, can be be found in

Table A.3.

Table 6.2: Three selected example designs for detailed analyses.

Parameter Column spacing Column Heave plate Heave plate Draft t
d [m] radius r [m] radius rhp [m] height hhp [m] [m]

Deep draft 15.0 6.76 10.9 4.5 78.48
Medium draft 19.0 8.56 13.8 4.5 49.95
Low draft 24.0 10.81 17.4 4.5 21.94
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Figure 6.3: Design space with two dimensions: column spacing from centerline and heave plate height.
Heave plate height hhp = [1.0, 4.5, 8.0] m (increasing darkness).

6.3 Parametric Design

The dimensioning of the platform is the subject of this section: Various parameterized routines,

highlighted as blue boxes in Figure 6.1, determine the component parameters, listed also as

dependent parameters in Table 6.1. The �rst part addresses the structural design assumptions

for the concrete platform and the steel tripod interfacing the columns with the tower-base. It

follows the hydrostatic calculation yielding the platform draft, based on the small-angle stability

requirements. The procedure to obtain the panel code coe�cients together with the Morison

drag coe�cients and the parametric controller properties is introduced thereafter. The section

ends with a veri�cation of the assumptions through a comparison of various public designs.
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6.3.1 Structural design

Approximate but realistic assumptions for the structural design make it possible to obtain the

mass distribution for the overall system simulations. The entire �oater is assumed to be rigid

but the dimensions are selected reasonably to ensure structural integrity. Further design steps

are expected to detail the structural design without substantially changing the values obtained

from the presented approximations. The material properties for the following calculations are

listed in Table 6.3.

Table 6.3: Structural design assumptions.

Parameter Unit Value

Concrete column wall thickness [m] 0.6
Heave plate upper and lower lid thickness [m] 0.4
Reinforced concrete average density [kg/m3] 2750.0
Steel density [kg/m3] 7750.0
Ballast density [kg/m3] 2500.0
Processed steel cost [e/t] 4500
Processed concrete cost [e/t] 399

Steel tripod

The steel tripod design is based on an approximation from public data of the Bard Tripile, sup-

porting a 5 MW wind turbine. For a parameterization of the dimensions of the steel legs (shell

thickness, width, height), FE analyses were performed covering the design space of the distance

between the columns. The calculations include a static thrust load at the tower-top of 4.605 kN,

as given in [42, p. 61].

The critical failure mode is assumed to be the notch stress at the interface between the tower

and the legs. The dimensions of the legs (struts) are selected such that the maximum notch

stress at the interface of the legs with the tower is of comparable magnitude as the one resulting

from the same calculation with the Bard tripile. The dimensions of the tripod for the minimum

and the maximum column spacing are shown in Table 6.4. The Bard tripile data is no longer

available online but the details on the upscaling can be found in [233]. The structural design

of the TripleSpar concept, which started in 2015, was continued in the project INNWIND.EU

with the detailed design calculations of the substructure presented in [233] and [254].

Concrete columns and heave plates

The concrete columns are assumed to be built with pre-stressed concrete following the example

of the KIC-AFOSP spar design [202]. The wall thickness is constant for all of the hull shape
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Table 6.4: Parametric design of the TripleSpar steel tripod (FE calculations by Florian Amann).

Minimum column spacing Maximum column spacing

50 mm

5 m

60 mm

7 m

Column spacing
10.0 m 35.0 m

(distance to centerline)
Strut width & height 5.0 m 7.0 m

Steel wall thickness 50 mm 60 mm

Maximum stress 146.0 N/mm2 142.0 N/mm2

Tripod mass 447 t 1716 t

variations, see Table 6.3. The heave plates are also made out of reinforced concrete with the

same material properties as the columns. The columns reach down to the keel with heave

plates consisting of concrete rings attached to the columns at their lower end. This assumption

is rather conservative and accounts for further compartmentation and reinforcements of the

detailed design phase. The design of the baseline TripleSpar concept of Section 2.10 has heave

plates out of sheet metal and is therefore not directly comparable. The column wall thickness

of the TripleSpar is 0.4 m.

Mooring lines

The mooring line characteristics can be found in [58]. They were designed by myself to-

gether with Michael Borg of DTU with two upwind lines and one downwind line with fairleads

above SWL, at zfrlds = 8.7 m and a distance from the tower centerline of dfrlds = 26 m. The

same mooring system was used for the scaled experiments of Chapter 4. The parameters of the

mooring lines can be found in Appendix A.
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Tower

The tower design is not varied in the optimization study but the parameters of the refer-

ence TripleSpar are used, see Table A.1. Regarding the placement of resonances with respect

to the rotational frequencies, the present method assumes a rather small design space, which

is de�ned based on experience and preceding spreadsheet calculations. Therefore, the scatter

of platform eigenfrequencies is limited and consequently no adaptation of the tower sti�ness

to the substructure sti�ness is necessary. As mentioned in Section 3.8, the tower design can

generally be a bottleneck for wind turbines as large as 10 MW, due to tower excitation from

the 3p-frequency. The shown results for the present designs in Figures 6.19�6.23 indicate that

the response of the tower at the eigenfrequency of fd,twr = 0.416 Hz is at the analyzed wind

speeds, below and above rated, rather small compared to the response to waves. Therefore, the

tower design is expected not to alter the �ndings of the present platform optimization study.

Cost estimation

In di�erent research projects cost models for FOWTs were presented with a good overview and

summary in [255]. In the present work, a lumped cost for the processed material, meaning the

sum of the material, manufacturing and assembly costs, is assumed. The values are according

to LIFES50+ Deliverable 4.3 [251] and can be found in Table 6.3. It needs to be mentioned

that these values are rough indications, which can vary due to concrete shrinkage (concrete

prices are, as opposed to steel, usually not given per mass but per volume) and also due to

price variations over time.

6.3.2 Hydrostatic design

The hydrostatic properties determine mainly the FOWT stability and the system eigenfrequen-

cies together with the mass distribution, see also Section 2.5.3. If no active ballast system is

included, the hydrostatic restoring in pitch-direction determines, together with the vertical dis-

tance between the fairleads and the hub, the inclination of the rotor to the vertical plane and

therefore the power losses, which deteriorate the e�ciency by ηcos ∝ cos3(βrotor). The nonlinear

intact stability criteria are relevant for certi�cation and might challenge designs with a soft

pitch sti�ness C55. Another constraint for the maximum (dynamic) pitch angle is the wind

turbine gearbox and other components requiring an upright operational position.

For the present study, a hydrostatic restoring in pitch of C55 = 2.255× 109 Nm/rad, resulting

in a steady state platform pitch angle at rated wind speed (disregarding again the mooring

line restoring) of βp,rated = 5.0 deg, is set as constraint for all geometries of the design space.

Depending on the free variables column spacing d and heave plate height hhp, the draft is

determined such that this constraint is met. This is realized through a root-�nding algorithm
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including the structural design and the hydrostatic functions. The steady state pitch angle

reduces to about βp,rated ≈ 3.0 deg with the mooring lines.

6.3.3 Hydrodynamic coe�cients

The parametric calculation of the hydrodynamic coe�cients is performed with Ansys Aqwa

with a generation of the parameterized hull geometries by Ansys APDL. The added mass

is then interpolated at the respective eigenfrequencies and transformed to the platform CM,

according to Section 3.5.3. The radiation damping B(ω) is neglected in the analysis of this

chapter based on the discussion of Section 3.5.1 and the �ndings of the sensitivity study of

Section 6.4.6. The mean drift force coe�cient D(ω) is calculated for all designs and used for

Newman's approximation on the di�erence-frequency excitation, see Figure 6.1.

The column drag coe�cient is kept constant for all designs and sea-states. It has been selected

as CD = 0.4 because this value was also identi�ed in the scaled experiments of Chapter 4. The

selected value is rather conservative, as guidelines suggest minimum values of CD = 0.65,

see [256, p. 117]. For the heave plates, the drag coe�cient is iterated based on the drag

coe�cients given in [230], which were parameterized as a function of KC , see Section 4.4. In

order to reduce the problem complexity, the vertical drag force is applied only at the lower

surface of the heave plates and the same cross-sectional area is used for the calculation of the

drag force. The procedure was introduced in Section 3.5, see Figure 3.18.

With the increase of the heave plate radius r, the characteristics of the hydrodynamic forces

change. The wave regime graph, Figure 2.4, shows the values of the Keulegan-Carpenter

number KC and the di�raction parameter ka for the deep-draft (slender columns) and the low-

draft (big columns) design. It can be seen that di�raction becomes more important for smaller

sea-states and the drag component of the forcing increases with decreasing column diameters.

The vertical drag due to heave plates, on the other side, is not covered by Figure 2.4. This

vertical drag becomes more important for increasing heave plate diameters, see Section 3.5.

This is a nonlinear e�ect (quadratic drag), which yields simulation errors when the linearized

model is used, see Section 6.4.5.

6.3.4 Controller design

For each of the concepts of the design space (Figure 6.3), a SISO PI-controller and a MIMO LQ-

controller is designed. The controllers have the architecture of the ones described in Chapter 5.

The advantage of the MIMO controller is that it feeds back more signals and uses the generator

torque as additional actuator to the blade pitch angle. It has therefore a higher potential

to improve rotor speed tracking and disturbance rejection. As all states of the simulation

model are fed back, disregarding the question of how to measure or observe them in reality,
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this controller is seen as a means to obtain an upper bound of the possible performance of

an optimal controller. The straightforward model-based design makes this controller perfectly

suited for this integrated design study.

However, it was found that the advantages of speci�c gains on e.g. platform pitch βp depend

signi�cantly on the platform shape. Therefore, the comparison of the simple SISO controller

o�ers a means to evaluate the �fairness� of the LQR towards di�erent platform shapes. The SISO

controller ensures the same stability for all shapes and does not feed back any states other than

the two rotor rotation states. A special challenge with the LQR design is the fact that damping

the wave response by feeding back system states is not possible and might even increase the

response, see [183] and discussions in Chapter 5. This can result in a reasonable response to

wave for one design but in a ampli�cation for another design. The main reason for this is that

the system response depends signi�cantly on the characteristics of the force-RAO X(ω), which

is not part of the system matrix A but the input matrix B and therefore not taken into account

by the LQR design routine. For this reason, the determination of the matrices Q, R and N

was made considering all platforms of the design space resulting in the values of Table 5.2.

The new parameterization of the SISO PI-controller was introduced in Section 5.3. The

criterion of the maximum sensitivity 1/Ms and the rotor time constant τrot, introduced in

Chapter 5, allow for an automation. As opposed to the MIMO controller, the PI-controllers

are designed based on the models, linearized at all operational wind speeds above rated. This

yields the gain scheduling function of Figure 6.4, including the switching criterion between the

stability objective for wind speeds above rated and the one of a constant τrot, see Section 5.3.

The LQR can be designed for each operating point independently and makes the iterative

determination of the viscous drag, introduced in Section 3.5.4, easier.

Figure 6.4 shows the feedback gains for the three example designs of the design space for

the LQR and PI-controllers over above-rated wind speeds. Generally, the gains of the deep-

drafted platform di�er from the medium- and low-draft platform. A reason might be the

di�erent platform pitch-mode frequency and damping as will be shown in Figure 6.7. The two

upper rows show the feedback gains of the generator speed, not as state feedback gains of ϕ

and Ω but as proportional gain kp and integrator time constant Ti of an equivalent PI-controller,

see Figure 5.5. It can be seen that the proportional gains kp of the LQR are signi�cantly larger

than those of the PI-controller. This means that the additional damping of the platform

and tower, through the tower and platform velocity feedback, allows for a more aggressively

tuned rotor speed control loop. The same approach was selected by [183], who maintained the

onshore gains for the FOWT and added additional feedback loops for platform stabilization.

The question of stability, however, is then not resolved, as is also the case for the LQR, which

might have limited stability margins. The integrator time constant Ti does not change over the

wind speeds for the PI-controller, see Section 5, but decreases for the LQR.
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Figure 6.4: Parametric controllers (LQR and PI) for di�erent feedback loops over above-rated wind
speed bins. Deep draft (blue), medium draft (red) and low draft (green). First two rows concern rotor
speed control: Here, not the state feedback gains are shown but the proportional gain kp on high-speed
shaft speed and the integrator time constant Ti (Eq. (5.5)). For clarity calculated for model without

blade pitch actuator, giving 10 states instead of 12 in Eq. (3.18), zp-loop not shown.

Remarkable is that the surge velocity (ẋp) and pitch velocity (β̇p)-feedback is negative. As

the system eigenfrequencies do not vary much with the wind speed the changing LQR gains are

an adaptation to di�erent system damping ratios due to the aerodynamic operating points, see

Section 3.4. The bandwidth for the low-draft and deep-draft platform with the two controllers

is shown in Figure 6.5, as in Figure 5.13 for the TripleSpar. The complementary sensitivity

function T (jω) is shown for above-rated wind speeds. It can be seen that the PI bandwidth

is also for these platforms limited by the platform pitch eigenfrequency at fd,βp ≈ 0.03 Hz.

Although |T (jω)| increases again for f > fd,βp , the phase loss and the magnitude drop indicate

that the RHPZ is not fully mitigated through the LQR. However, the low-draft platform seems

to be better damped than the deep-draft design such that the LQR yields here, for higher wind

speeds, an increased bandwidth, comparable to the onshore controller of Figure 5.13.
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6.3.5 Design veri�cation

Especially for the concrete columns and heave plates, no structural design calculations have

been performed but the numbers are based on the project KIC-AFOSP on which I worked

in the course of this thesis. Therefore, the structural design assumptions are veri�ed through

a comparison with other public FOWT designs. The platform mass distribution is taken as

indicator, represented by the platform center of mass zcm,ptfm and the overall FOWT center of

mass zcm,fowt , including the wind turbine (without mooring lines).

For semi-submersibles and spars, an e�ective design has a mass concentration at the lowest

possible point, close to the keel, in order to maximize the restoring moment from the gravita-

tional forces. Then the center-of-mass-ratio zcm/t approaches a value of 1. Such high values

of zcm/t are not possible in reality, due to the plating, sti�eners and girders, compartmentation

and secondary steel, the elements resulting from the detailed structural design, which is not

included in the present dimensioning. These elements sum up to a signi�cant amount of mass

at higher levels, elevating the center of mass and decreasing the hydrostatic stability.
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It is therefore more conservative for the present study to take structural design assumptions

yielding smaller ratios of zcm/t instead of assuming a design with unrealistically thin walls and

therefore high values of zcm/t.

Figure 6.6 shows the ratios zcm/t over the design space of Figure 6.3. For comparison,

the public concepts of the OC3-Hywind steel spar [111], the OC4-DeepCwind steel semi-

submersible [112], the OlavOlsen OO-Star concrete semi-submersible [257, 258] and the SWE-

TripleSpar concrete semi-submersible design of Section 2.10 are listed in Table 6.5. Comparing

the OC3-spar with the OlavOlsen semi-submersible, it can be seen that the spar has larger

ratios zcm/t than the semi-submersible. This is because a spar is purely ballast-stabilized,

whereas the OlavOlsen concept has a very shallow draft, with a signi�cant restoring from wa-

terplane area. For such concepts, a low center of mass is not as much a design-driver as for

spars. The ratios over the design space of the present study, shown in Figure 6.6, are mostly in

a range zcm,ptfm/t = 0.5 . . . 0.7 and zcm,fowt/t = 0.3 . . . 0.6, which is comparable with the semi-

submersibles of Table 6.5. Therefore the structural design assumptions seem to be reasonably

conservative.

The last column of Table 6.5 shows the theoretic platform pitch angle βp,rated for the re-

spective rated thrust force of the di�erent wind turbines at hub height (Faero = 1.65 MN

for DTU 10 MW RWT and Faero = 0.738 MN for NREL5 MW RWT), disregarding the restoring

e�ect of the mooring lines (applying a pure torque (Faero · hhub) to the center of �otation). It can
be seen that rather low equilibrium pitch angles are common, due to the beforementioned power

losses from the static inclination. Thus, the selected steady pitch angle of βp,rated = 5.0 deg

seems reasonable.

Table 6.5: Selected design properties of di�erent FOWT concepts.

Concept Rating Draft t zcm,ptfm/t zcm,fowt/t Equiv. pitch βp,rated
[MW] [m] [−] [−] [deg]

OC3-Hywind spar 5.0 120.0 0.75 0.65 3.25
OC4-DeepCwind semi 5.0 20.0 0.67 0.49 3.9
OlavOlsen OO-Star semi 10.0 22.0 0.69 0.36 7.9
SWE-TripleSpar semi 10.0 54.5 0.66 0.57 4.1
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Figure 6.6: Ratio of platform center of mass-to-draft and ratio of overall FOWT center of mass-to-
draft over design space. Heave plate height hhp = [1.0, 4.5, 8.0] m (increasing darkness).

6.4 Results

In this section, the results of full operational DLCs over the design space are shown together

with linear system analyses revealing the physical reasons for advantages or disadvantages of

di�erent platform geometries re�ected in the DLC results. Subsequently, the entire design space

is simulated with the simpli�ed models (linear and nonlinear) and the full FAST model and

di�erent modeling options for comparisons and an assessment of the model �delity over the

design space.

6.4.1 Linear system analysis of open loop system

Figure 6.7 shows the results of the eigenanalysis over the design space using the simpli�ed lin-

earized model in the open loop con�guration. Compared to a simpler eigenanalysis with a panel

code (assuming a single rigid body, linearized mooring sti�nesses and 1st-order hydrodynamics),

the following features are included in SLOW:

• linearized aerodynamics of entire rotor, rotor-DoF

• �exible tower (1st mode)

• mooring sti�ness linearized about operating point

• linearized Morison drag

Therefore, the eigenmodes of the platform can be expected to be more accurate than the

ones predicted by the panel code, especially due to the inclusion of the hydrodynamic viscous

drag, the tower and aerodynamics. The controller dynamics are not included here but they

are subject of the next section. The two columns of Figure 6.7 contain the minimum and

maximum heave plate thickness hhp = [1.0, 8.0] m while the column spacing d is on the x-axis

of each graph. The two top rows show the surge and pitch eigenfrequencies and the lower rows
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show the global modal damping ratios for the surge and pitch mode. It can be seen that the

damped eigenfrequencies fd in surge and pitch increase for increasing column spacings (which

corresponds to decreasing drafts, see Figure 6.3). As the hydrostatic sti�ness C55 is constant

for all platforms, the increase results mainly from the di�erent added mass and structural

mass/inertia, which is mainly due to the varying draft.

The damping ratio ξsurge increases approximately with the severity of the environmental

conditions (see Table 2.1). However, also the aerodynamics seem to have an in�uence as the

damping ratio has a minimum at v̄hub = 17.9 m/s above rated. The damping ratios ξpitch,

on the other hand, tend to decrease for higher sea states. This e�ect can be attributed to

the KC -dependent description of the heave plate drag coe�cient, see Section 6.3.3. As KC is

proportional to the velocity and the heave plate drag decreases for increasing KC (see [230]),

the resulting overall damping ratio decreases. Additionally, the increasing heave plate diameter

for larger column spacings d yields a disproportionately large damping for the low-draft shapes.
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6.4.2 Linear system analysis of closed loop system

The eigenanalysis in the closed-loop for the two controllers of Chapter 5 is shown in Figure 6.8.

Comparing the values to the open loop case of Figure 6.7, it can be seen that the damped surge

eigenfrequencies are comparable but tend to higher frequencies due to the introduced controller

dynamics.
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Figure 6.8: Eigenfrequency for CL with iterated hydrodynamic and aerodynamic damping.
PI-controller (left) and LQR-controller (right) (darker colors for higher wind speeds v0 =

[5, 7.1, 10.3, 13.9, 17.9, 22.1, 25] m/s).

In pitch-direction, it can be observed that the platform eigenfrequency increases for above-

rated wind speeds v̄hub = [13.9, 17.9, 22.1, 25] m/s. The same e�ect was visible for the exper-

iments, Chapter 4, and can be seen even more clearly in Figure 6.13. The damping ratio ξ

also changes with closing the control loop: While in surge-direction the controller a�ects most

the below-rated damping ratios, there is a clear change of damping in pitch-direction for the

above-rated wind speeds (darker colors). There is less damping in pitch for the PI-controller,
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which is due to the negative damping problem, discussed in Section 2.9. The LQR, on the

other hand, re-introduces damping with the state-feedback loop for v̄hub > vrated. With this

controller-induced additional system damping, it is possible to increase the magnitude of the

state feedback gains of the rotor (i.e. making it more �aggressive�), see Section 5.4.

In Figure 6.8, also the undamped closed-loop rotor eigenfrequency is shown. It was discussed

in Chapter 5 that the rotor eigenfrequency is usually overdamped for FOWTs above rated.

Therefore, the undamped eigenfrequency f0 is equal to 1/τ , where τ is the time constant. The

time constant τrot is kept constant for the PI-controller at wind speeds where stability is not the

driving design criterion, see Section 5.3. It can be seen that the weights Q, R and N , de�ned

independently of the wind speed, result in a constant rotor eigenfrequency for all platforms.

With the PI-controller developed here, τrot is only constant for the higher wind speeds, as

opposed to the �de-tuning� procedure discussed in Section 2.9, which designs for a constant τrot
over all wind speeds.

6.4.3 Operational design load cases

In this section, the response to the operational IEC DLC 1.2 for all operational wind speeds

with a normal wind speed and normal sea state model as given in Table 2.1 is presented.

These are the main results of the optimization study, which will be analyzed, interpreted and

explained in the following sections. The statistics for DLC 1.2, weighted over the turbine

lifetime, are shown in Figure 6.9. The results are weighted with the Weibull PDF of Figure 2.6.

The values for the DEL1 and the STD are normalized with the corresponding values for the

onshore DTU 10 MW RWT with the same wind �elds. For onshore turbines, the signi�cant

loading from waves is not present and especially the harmonic loads of the 1p and 3p-frequencies

are fatigue drivers next to the low-frequency turbulence. It can be seen that the weighted DEL

of the tower-base bending momentMyt has a minimum at the low-draft shape. The same holds

for the weighted STD of the platform pitch angle βp and the rotor speed Ω. The blade pitch

activity (θ) shows little variation over the design space. These results are quite signi�cant as

the tower-base bending damage can be reduced by more than 30 % with a favorable design.

The resulting tower-base bending moment fatigue is then not signi�cantly larger than for the

equivalent onshore turbine. Although the low-draft platform has a large column spacing of d =

24 m and a column radius of r = 10.8 m with heave plates of rhp = 17.4 m (Table 6.2), the

estimated material cost is comparable to the one of the deep-draft shape, see Figure 6.3.

The comparison between the controllers shows that the LQR is able to improve the response

in terms of tower-base loads but also in terms of rotor speed variation. However, this advanced

controller gives qualitatively the same optimum as the PI-controller.

1The tower-base bending moment equivalent DEL(Myt) is calculated for a lifetime of 20 years with a Wöh-
ler exponent of m = 4, Eq. (2.31).
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One �nding from this is that the low-frequency platform pitch response to wind and di�erence-

frequency excitations is likely not the reason for the improved performance of the low-draft

shape as these resonances are damped by the LQR.

A comparison of the response spectra among the deep draft and the low draft platforms with

the PI-controller is shown in Figure 6.10. Since the magnitudes are signi�cantly di�erent, a

logarithmic y-axis is selected. It can be seen that the low-draft shape gives a larger di�erence-

frequency and wind-induced response in surge. Other than this, the low-draft platform has

clearly smaller responses at the pitch eigenfrequency of fd ,pitch ≈ 0.04 Hz but, more impor-

tantly, at the wave frequencies of 0.1 Hz (v̄hub = 17.9 m/s, left) and 0.08 Hz (v̄hub = 25 m/s,

right). This is visible for the platform motion response βp but even more for the tower

bending (xt, Myt), the rotor speed Ω and the electrical power P .
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The validity of the controllers is shown in Figure 6.11 in terms of the criteria de�ned in

Table 2.2. The maximum amplitude is here estimated from the frequency-domain response

spectra for a time of T = 3600 s with the Rayleigh distribution for the response amplitudes as

described in Section 2.7.3. It can be seen that keeping the limits for a FOWT is challenging.

This is mainly due to the reduced bandwidth of the controller. The overshoot of the rotor speed

can be signi�cantly reduced by feeding back additional signals and by using the generator torque

as an actuator above rated. Then, however, it is important to design the controller such that

the torque limits are not exceeded. Here, the LQR exceeds the rated torque up to 17 % for short

time periods. The power overshoot can be reduced by the LQR such that the limit of 15 % is

exceeded only for the highest waves.
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Figure 6.11: Rotor signals percentage of maximum over rated values (overshoot) for opera-
tional DLC1.2, Tab 2.1 for above rated wind speeds v = [13.9 (4), 17.9 (+), 22.1 (�), 25.0 (O)] m/s

for di�erent column spacings d, hhp = 4.5 m. Left PI-controller, right LQR.

Comparing the PI-controller and the LQR, it can be seen that the largest amplitudes result

from wind speeds around rated, while it is the case for the cut-out wind speed for the LQR.

This is because the instability issue of FOWTs is critical at rated wind speeds as discussed in

Section 5.3, while the instability is mitigated through the LQR such that the high sea-states

drive the response amplitudes.
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A direct comparison between the PI-controller and the LQR can be seen in Figures 6.12

and B.1 for the deep-draft and low-draft platforms. For both platforms, the LQR does not

damp the low-frequency surge response. It does, however, damp the pitch response to wind

and di�erence-frequency forces. The rotor speed response to the wind is signi�cantly reduced

by the LQR and a small reduction of the wave response is visible. This can be attributed

to the aid of the generator torque actuation, which is not present for the PI-controller. The

question to be answered by the next sections is why the low-draft platforms show an improved

performance compared to the ones of deeper draft and which indicators help to predict such

favorable overall dynamics.

6.4.4 Indicators for the goodness of a design

In LIFES50+ Deliverable 7.4 [3], the variety of di�erent existing standards and design guidelines

for FOWTs was analyzed, compared and a new design process was developed. In the �rst design

stage, as de�ned in [3, p. 13], it is crucial to arrive quickly and e�ciently at a reasonable design,

which is able to meet the speci�cations.

In this section, the RAO will be analyzed in order to �nd out how well the ampli�cations of

the wave height on the platform DoFs re�ects the results obtained with the simpli�ed FOWT

model shown in the previous section. Thereafter, two additional indicators are presented with

an improved signi�cance.

Response amplitude operator and wave cancellation

It is common to use the RAO as a means to quickly estimate the principle dynamics of a �oating

body. The RAO is the transfer function from the wave height at the CF to the six DoFs of

the �oating body, as introduced in Section 2.5.3. With the developed linear FOWT model

it is possible to derive the transfer functions also to other states. On the other hand, the

transfer functions to the same DoFs, as calculated by the panel code, can be calculated with

the developed coupled model, resulting in a re�ned result due to the additional physics included.

In Figure 6.13, the RAO in pitch-direction is shown for the three di�erent geometries. It is

compared to the equivalent RAO, calculated with the linearized SLOW model, including the

linearized Morison drag, the �exible tower and aerodynamics. Additional to this, the closed-

loop RAO is shown for the SISO PI-controller and the LQR. It can be observed that the Morison

drag damps signi�cantly the pitch-resonance. The PI-controller reduces the eigenfrequency,

which was also found from the experiments in Chapter 4. The LQR can introduce additional

damping for the pitch motion, which con�rms the results of Figure 6.9. In the wave frequency

range, above the pitch-mode, the ampli�cation is equal for all con�gurations, which con�rms

the di�culty of damping the wave response through position or velocity feedback control.
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Figure 6.14 shows the RAO in surge and pitch-direction for di�erent column spacings d. It

can be seen that there is a clear di�erence of the ampli�cation of wave loads in the typical wave

frequency range around 0.1 Hz, especially in pitch-direction. This is due to the above-mentioned

wave cancellation e�ect, which happens because the wave excitation forces on a submerged hull

cancel themselves if summed for a certain DoF (e.g. platform pitch). This e�ect depends on

the ratio of column spacing to the wave length but also on the hull shape geometry, especially

heave plates, which introduce vertical Froude-Krylov forces and con�rms the previous results

of DLC 1.2.

For this reason it is also useful to look at the force-RAO, the transfer function from wave

height to the six forces on the body. If it does not show a large ampli�cation for the wave

frequency range it is likely that the forces cancel themselves, e.g. in the pitch-direction. This

e�ect can be observed in Figure 6.15 for the platform of d = 23 m (second darkest), whereas the

platform of largest column spacing d = 24 m (darkest) ampli�es the waves around 0.1 Hz, as

it happens for the other shapes of deeper draft. This is surprising because the best dynamics,

predicted by the simpli�ed FOWT model of Figure 6.9, are those of the platform with lowest

draft (d = 24 m).
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As an indicator of goodness of the design, the RAO is integrated over f = 0.06 . . . 0.15 Hz in

Figure 6.14. The results agree well with those of the simpli�ed model, Figure 6.9, as the integral

decreases for larger spacings d. However, the RAO of Figure 6.14 increases again signi�cantly

for the largest spacing of d = 24 m in the same way as the force-RAO of Figure 6.15. The reason

why the largest spacing (d = 24 m) is underestimated by the RAO, as opposed to the DLC

results, is discussed in the next section.

Harmonic response

A key to understanding the underlying e�ect for the disturbance rejection of the low-draft

platform (d = 24 m) is the harmonic response to wind and wave loads. Figure 6.16 shows

lines representing the FOWT centerline. The horizontal displacement and orientation of each

line stands for the amplitude of the body response at all elevations along the centerline to

sinusoidal wind (top) and wave excitations (bottom) of di�erent frequencies. The analysis is

made with the reduced order linearized model with �rst-order hydrodynamics in closed-loop

with the PI-controller at v̄hub = 13.9 m/s. It is noted that the controller does not signi�cantly

a�ect the harmonic response, especially for the wave response, which cannot be damped through

control. The solid horizontal lines indicate the overall CM of the FOWT and the dashed line

indicates the center of buoyancy. For ships, the instantaneous center of roll motions is usually

the metacenter [218, p. 62]. Here, the instantaneous center of rotation in pitch is the vertical

location on the platform with zero amplitude. The response to harmonic wind excitations shows

a center of rotation equal to the CM. The same behavior is generally visible for all platforms.

Looking at the response to waves in the lower part of Figure 6.16 shows that the instantaneous

center of rotation is now below the CM for the deep drafted platforms. A remarkable e�ect

can be seen for the platform of the lowest draft (d = 24 m): Here, the instantaneous center

of rotation is at higher locations, close to the hub. This is remarkable as it means that the

hub does not move horizontally due to wave excitations. Consequently, the wind turbine power

production is only minimally a�ected by the waves for this geometry. The harmonic response

is such that the motion in surge is positive, when it is negative in pitch. Thus, both DoFs are

out-of-phase, as opposed to the platforms of deeper drafts, which have an in-phase response of

surge and pitch to waves. For a better understanding of the behavior of the designs in-between,

the medium and low-draft is shown in Appendix B.3.

The result of Figure 6.16 is important for the design as the observed �counter-phase pitch

response� is favorable for both, the stability and the rejection of disturbances: With a small

motion response at the hub, the power �uctuation is minimized and the controller coupling is

also reduced. The controller usually feeds back the rotor speed deviation from the set point.

If the rotor responds less to the wave forces, the wave response will be ampli�ed less by the

controller than with an instantaneous center of rotation at lower levels. The observation of



6.4 Results 161

PSfrag replacements

0.095Hz

0.102Hz

0.109Hz

0.116Hz

0.123Hz

0.130Hz

0.137Hz

0.144Hz

0.151Hz

0.158Hz

0.010Hz

0.017Hz

0.024Hz

0.031Hz

0.038Hz

0.045Hz

0.052Hz

0.059Hz

0.066Hz

0.073Hz

d = 24m, r = 10.8md = 19m, r = 8.6md = 15m, r = 6.8m

x [m]

x [m]

x [m]

x [m]

x [m]

h
ar

m
on

ic
re

sp
on

se
to

u
n
it

w
av

e

z
[m

]

x [m]

h
ar

m
on

ic
re

sp
on

se
to

u
n
it

w
in

d

z
[m

]

0 0.5 1

0 5 10

0 1 2

0 5 10 15

0 1 2

0 5 10 15

-60

-40

-20

SWL

20

40

60

80

100

hub

140

160

-60

-40

-20

SWL

20

40

60

80

100

hub

140

160
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Figure 6.16 is also of importance for the design of more advanced controllers as it reveals that

feeding back the platform pitch angle for motion damping might not be harmful for the designs

of deeper drafts, but it would even increase the response of the hub for the low-drafted platform.

In summary, the good performance of the low-draft platform in terms of the DLC 1.2 results

can be explained by the �counter-phase pitch response�. As the standard RAO to the plat-

form DoFs predicts only the response magnitude in the individual DoFs, it cannot reproduce

this coupled system response behavior, as opposed to the SLOW model used to generate the

harmonic response of Figure 6.16.

Minimum required actuation with perfect control

It has been shown that the harmonic response to waves is a suitable design criterion to predict

the good dynamics of the low-draft shape. In this section, a new design indicator will be

introduced. It quanti�es the necessary controller activity to reject the external forcing from

wind and waves. The smaller the controller activity, the better the capability of the design to

reject disturbances itself. Figure 6.17 shows the FOWT systemG(jω) with additive disturbance

transfer functions for the same inputs u = [Mg, θ]
T and outputs y = [Ω, xt]

T as in Section 3.8.

The disturbance transfer function for wind Gd,v0(jω) and for waves Gd,ζ(jω), collected in Gd,

are again scaled according to Eq. (5.2) as well as the plant G(jω) and the maximum input

magnitude exceeds its limit if ui ≥ 1. According to [259], the minimum required control input

magnitude U∗min for perfect control (perfectly rejecting the disturbances) can be calculated by

solving

U∗min = max
d

(min
u
‖u‖) s.t. Gu+Gdd = 0; ‖d‖ ≤ 1. (6.2)

with the 2-norm of the inputs ‖u‖2 =
√
u2

1 + u2
2 + . . .+ u2

n. Thus, the outputs y as responses

to |d‖ ≤ 1 shall be exactly zero. The required control input u can be obtained given a

disturbance d through system inversion as

u = −G−1Gdd. (6.3)

In order to simplify the problem set of Eq. (6.2), only one disturbance at a time will be

considered in the following: Using the singular values of Eq. (5.3), we can obtain the �strongest�

and �weakest� combination of the inputs u. Then, the required control input can be calculated

to cancel the disturbances for both, the strongest and weakest singular values resulting in a

range of the 2-norm of the input signal ‖u‖ in-between these two boundaries according to [259]

as
‖Gd‖2

σ(G)
≤ ‖u‖2 ≤

‖Gd‖2

σ(G)
. (6.4)

The resulting system inputs u (the outputs of the inverted system) are the ones necessary to
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Figure 6.17: FOWT square plant with additive disturbances.

perfectly cancel the disturbances. The strongest actuation �direction� given by the SVD, see

Section 5.1, will be used in the following. Thus, a scalar value of U∗min = ‖Gd‖2/σ(G) results,

representative of both control inputs.

The minimum required actuation U∗min(ω) has been calculated for the di�erent platforms, for

wind excitation d = v0 = 1 and wave excitation d = ζ0 = 1, separately in Figure 6.18. The part

from wind excitation (upper part of Figure 6.18) does not show a large variation over the design

space, except for the variation of the eigenfrequencies. For the part from wave excitation it is

di�erent: The best performance (equal to the least required actuation U∗min) results here for the

largest column spacing d = 24 m. This is opposite to the RAO of Figure 6.14, which showed

a larger response in pitch for the low-draft platform (d = 24 m) than the narrower (d = 23 m)

design.

Thus, the assessment of the minimum required control input makes it possible to identify

the optimality of the semi-submersibles seen in the harmonic response of Figure 6.16 and the

weighted results of DLC 1.2, Figure 6.9. As opposed to the RAO, U∗min is a design indicator

able to predict the optimal behavior through the �counter-phase pitch response�.

In summary, this section provided insight into the physical reasons of the low-draft platform

better performing than the ones of deeper draft. The coupled response behavior to waves, with

the surge and pitch-DoF being out of phase giving an almost stationary hub, yields the least

variation of the rotor speed and power and also the smallest tower-base bending. Although this

optimality cannot be seen from the RAO, the new design indicator of the minimum required

control input proves to be better suited here.

The next section will analyze the �delity of the reduced-order models compared to FAST for

the three selected designs.
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Figure 6.18: Minimum required control input magnitude U∗min to perfectly reject wind (top) and
wave (bottom) disturbances assuming the strongest combination of control inputs u = [Mg, θ] for

platforms of di�erent column spacings d = [15(1)24] m (increasing darkness) and hhp = 4.5 m.

6.4.5 Assessment of numerical models for three concepts

The agreement of the reduced-order SLOW models against FAST was shown in Section 3.9 for

the TripleSpar concept at the wind speed bin of v̄hub = 17.9 m/s. In this section, the code-to-

code comparison will be made for the three di�erent designs of the integrated optimization. The

previous analysis showed that the motion response characteristics depend signi�cantly on the

hull shape of the designs of Figure 6.3. Therefore, the comparison will show if the optimization

results are valid for the entire range of platforms. The following Figures 6.19�6.23 compare

the response PSD of various signals to the wind and wave excitations, shown on top, between

the reduced-order linearized frequency-domain model, the reduced-order nonlinear time-domain

model and the FAST model.

Model settings

The FAST model has all 25 DoFs enabled, while the SLOW models have 6DoFs and the

motion is only allowed in the vertical xz-plane, see Section 3.2. Radiation damping is neglected

for the reduced-order models, following the argumentation of Sections 3.5.1 and 3.10. The

importance of radiation damping over the design space will be discussed in Section 6.4.6. The

hydrodynamic forces include for all models �rst and second-order excitations using Newman's
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approximation, see Section 2.5.3, and additionally the drag-induced damping and excitation

from Morison's equation, see Section 3.5.4. All models use the PI-controller with the gains

of Figure 6.4. The below-rated controllers are the same for all models, see Chapter 5, with a

linearized representation of the nonlinear state-feedback in the frequency-domain model.

The results are shown for operational conditions at three wind speeds of Table 2.1 below

rated, above rated and at cut-out: v̄hub = [7.1, 17.9, 25] m/s. The severity of the sea state does

signi�cantly increase with the wind speed and thus, the validity of the linearized model is

clearly challenged for the higher waves as nonlinear e�ects become important. All time-domain

simulations are run over T = 3600 s. A convergence study has been performed with simulation

lengths up to 3 hours, showing that the selected simulation length is enough to obtain reliable

responses in the low-frequency range.

Response spectra to stochastic loads during operation

Figures 6.19�6.21 show the results for the deep-draft design at the three wind speeds. The

rotor-e�ective wind speed on top with rotational sampling of turbulence shows a peak at the 3p-

frequency, which has the purpose of introducing the nodding forces through vertical wind

shear. Generally, a good agreement between the reduced-order models and FAST can be

observed. Di�erences to FAST are the surge-response at the platform pitch-eigenfrequency at

around 0.03 Hz. The closed loop eigenfrequencies for all platforms were shown in Figure 6.8.

Simulations without aerodynamic forcing have shown that this is due to the aerodynamic

model, while the di�erence-frequency forcing is equal between FAST and the reduced model.

This di�erence will be discussed more in detail in Section 6.4.6.

The heave response agrees well and is very small compared to the low-draft designs, which

have larger vertical Froude-Krylov forces due to the vertical surfaces closer to SWL. The pitch-

response agrees also well with di�erences to FAST again at the pitch-eigenfrequency. For

the small wave height there is no visible response of pitch to waves. This is di�erent for

the tower-top displacement xt, which is underpredicted in the wave frequency-range by the

reduced-order models. This is the e�ect of the neglected radiation damping. It will be seen in

Figure 6.25 (lower left), discussed in Section 6.4.6, for the same platform and same loads that

the simpli�ed constant matrix approach (Section 3.5.1) can result in a larger xt-response with

the radiation model than without.

The response of the rotor speed Ω to low-frequency wind-excitations and to the wave

excitations agrees well among the models, in the same way as the electrical power P . The

section forces at the tower-base have the most energy at the wind frequencies for the small

sea state here. The agreement is very well. Here, no notable di�erence occurs between the

linearized and the nonlinear reduced model.
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For the wind speed v̄hub = 17.9 m/s above rated, Figure 6.20 shows for the deep-draft platform

generally better agreements between the reduced-order models and FAST. The responses to

waves are now clearly larger than for the below-rated case. However, the energy contained in

the low-frequency response of the platform-DoFs (xp, zp, βp) to wind and di�erence-frequency

forces is still signi�cant, compared to the one of �rst-order waves. For zp, some scatter of the

heave response magnitude and frequency is visible, which can be due to numerics, considering

the small overall response magnitude in heave. The di�erence of xt in the wave frequency

range, due to the neglected radiation damping, is here not as pronounced anymore as in the

smaller sea state. This is because the viscous Morison damping becomes more important than

the linear radiation damping for larger response magnitudes.

Figure 6.21 shows the highest wind speed and the largest sea state with the deep-draft

platform. Here, a large response to �rst-order wave forces and a pronounced peak for the

platform pitch eigenfrequency is visible. The agreement of the models is here surprisingly good

as the environmental conditions might suggest that the assumptions for the linearized model

do not hold anymore. The wave response of the rotor speed Ω and the electrical power P

is underpredicted by the linearized model, equally to the following cases. This was discussed

already in Section 3.2.7. A likely reason is the neglect of the cross-correlation between the

rotor-e�ective wind v0 and the wave height ζ0.

In summary, the code-to-code comparison for the deep-draft platform shows that the SLOW

models can well represent the main resonances at the eigenfrequencies but also the forced

responses to wind, including the 3p-forcing from the wind shear and the response to �rst-order

and second-order wave forces. For this deep-draft platform, the hydrodynamic drag at the

columns is more important than for the ones of larger diameter as shown in Figure 2.4. Its

linearization is successful, which is proven by the agreement of the �rst-order wave response

and the platform low-frequency resonances.

For the medium-draft and the low-draft designs only the largest sea state is shown here,

while the other two conditions are shown in Appendix B.4. Figure 6.22 shows the medium-

draft design response with t = 50 m at the cut-out wind speed of v̄hub = 25 m/s. It has generally

a comparable level of agreement among the models as the low-draft design. The only di�erence

of the linearized model is the response at the platform pitch mode, which is larger for the

frequency-domain model. As the response for the time-domain models is equal, it is likely

that the linearization is the origin of this di�erence. A simple explanation is the di�erent

resolution of the frequency-axis for the frequency-domain calculation, which better resolves

this narrow-banded resonance. Another explanation is the linearization technique of the viscous

drag of Section 3.5.4: The selected linearization technique of the Morison damping neglects the

wave kinematics. This does, however, not explain why the agreement is better for the low-

draft platform. The underpredicted rotor speed and power by the linearized model is, again,

attributed to the neglected cross-correlation between the wind and the wave response.
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Figure 6.20: Model comparison v̄hub = 17.9 m/s, Hs = 4.3 m, Tp = 10.0 s for deep draft d = 15 m: lin-
ear model, frequency-domain (blue), nonlinear model, time-domain (red), FAST, time-domain (green).
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Figure 6.21: Model comparison v̄hub = 25.0 m/s, Hs = 8.3 m, Tp = 12.0 s for deep draft d = 15 m: lin-
ear model, frequency-domain (blue), nonlinear model, time-domain (red), FAST, time-domain (green).
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Figure 6.22: Model comparison v̄hub = 25.0 m/s,Hs = 8.3 m, Tp = 12.0 s, medium draft d = 19 m: lin-
ear model, frequency-domain (blue), nonlinear model, time-domain (red), FAST, time-domain (green).
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Figure 6.23 shows the low-draft platform response to the largest wind and sea state. The

largest di�erence between the models can be seen for this platform: Due to the severity of

the sea state, large drag-excitation forces are present, induced by the large-diameter heave

plates. This e�ect represents a clear di�erence between the linearized and the nonlinear models.

Interestingly, the tower-top displacement xt predicted by the nonlinear SLOW model, deviates

more from FAST than the frequency-domain SLOW model. The same e�ect can be seen for

the tower-base fore-aft bending moment Myt. As opposed to the tower-top displacement xt,

the platform pitch angle βp is larger for the reduced-order models than for the FAST model.

Figures B.6�B.7 of the appendix show the lower wind speeds v̄hub = [7.1, 17.9] m/s for the

medium-draft and low-draft designs. No notable, additional model deviations are visible for

these less sever conditions, compared to the previous results.

In order to obtain this agreement over the entire design space, an iteration of the model

�delity was necessary: Especially, the viscous heave plate drag turned out to be of importance

for the low-draft platforms. Thus, a computation of the wave particle kinematics at the exact

location of the members is necessary and for the linear model a good linearization technique

for the Morison drag is required. For all models and the considered signals, the aerodynamic

model is su�ciently accurate and the neglected radiation damping (constant-matrix approach)

does not yield signi�cant modeling errors at a highly improved computational e�ciency. The

di�erence of the number of DoFs in FAST and in SLOW, especially the fact that the SLOW

model moves only in the 2D xz-plane does not yield noticeable deviations of the response. After

this comparison of the PSDs, the weighted STDs and the DEL over the entire lifetime will be

compared in the next section.

Weighted lifetime results

Figure 6.24 shows the weighted DEL of the tower-base bending moment Myt, the STD of the

platform pitch angle βp, the rotor speed Ω and the blade pitch angle θ. The �rst observation

is that the qualitative optimum towards large d (low drafts) is predicted equally by the three

models. There is a constant concept-independent o�set of the DEL between the simpli�ed

models and FAST. This is due to the approximate inclusion of the 3p-excitation through rota-

tional sampling of turbulence in the simpli�ed nonlinear and the linearized aerodynamic/wind

model, see Section 3.3. Although the previous PSDs showed a comparable 3p-response, the

resulting fatigue damage at the tower-base is underpredicted by SLOW. The other noticeable

o�set is related to the linearized SLOW model for the rotor signals Ω and θ: This model

underpredicts the �uctuation of these signals, which is due to the in�uence of the switching

in region 2.5, see Chapter 5. The switching becomes here important through the weighting

with the Weibull distribution of Figure 2.6 because the wind speeds slightly below rated are

weighted higher than the others. This is a nonlinear e�ect, which cannot be represented in the
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Figure 6.23: Model comparison v̄hub = 25.0 m/s, Hs = 8.3 m, Tp = 12.0 s for low-draft d = 24 m: lin-
ear model, frequency-domain (blue), nonlinear model, time-domain (red), FAST, time-domain (green).
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frequency-domain model. It is, however, included in the time-domain model, which shows a

notably good agreement with FAST for both rotor signals. The platform pitch angle agrees well

among the time-domain models with a slight underprediction of SLOW for the deep-drafted

platforms. The linearized model underpredicts the pitch-STD for the low-draft platforms.
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Summary

As a result of this code-to-code comparison, it can be said that the agreement between the

simpli�ed models and FAST is surprisingly good, given that the simulated conditions (Table 2.1)

are rather severe. The model �delity of SLOW, i.e. the number of DoFs and its physical

modeling assumptions (see Table 3.1) are suitable for the representation of the overall system

dynamics throughout the present design space of semi-submersibles.
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6.4.6 Model �delity

In this section, speci�c phenomena found in the previous section are analyzed more in detail.

The �rst assessment addresses the signi�cant simpli�cation of SLOW, neglecting the radiation

damping and modeling the radiation memory e�ect with a constant added mass as introduced

in Section 3.5.1. Also the importance of drag-induced Morison excitation and the e�ect of

di�erence-frequency wave forces is assessed. Finally, the impact of the aerodynamic model on

the pitch-mode below rated is addressed.

Radiation model

The constant-matrix approach is used throughout the analyses of this chapter because it has

clear advantages in terms of computational speed as shown in Table 3.2. However, the simpli�ed

frequency-domain model has the capability to model the radiation memory e�ect and therefore

simulations have been performed with this model and FAST with the full radiation model and

with the simpli�ed constant matrix approach for both models. It is noted that this approach

does not only impact the damping properties but also the added mass. Consequently, the

constant-matrix approach can have an e�ect on the system eigenfrequencies.

In order to implement this approximation in FAST, modi�ed Wamit �les (.1-�le) were gener-

ated with a constant added mass, interpolated at the respective eigenfrequencies, see Figure 3.3.

The radiation damping coe�cients were set to zero and the �ag to compute the radiation

memory e�ect convolution was switched o�. Figure 6.25 shows the comparison between the

linearized SLOW and the FAST model for the deep-draft platform and Figure 6.26 shows the

results for the low-draft platform, both for the below-rated and the cut-out wind speed. All

�gures are zoomed in at the frequencies where radiation is important, roughly at the frequen-

cies of the wave spectra, see Figure 3.4. It is noted that the absolute response magnitude is

small in some cases, especially for the below-rated wind speed. In Figure 6.25, it can be seen

for the below-rated wind at v̄hub = 7.1 m/s that generally, the di�erence between the models is

larger than the di�erence induced by the radiation e�ect and the response to �rst-order wave

forces is very small. For the cut-out wind at v̄hub = 25 m/s, FAST does not show any di�erence

between the radiation modeling approaches whereas the reduced model shows a slightly smaller

platform response. For the tower-top displacement xt the same holds, whereas the reduced

frequency-domain model gives a smaller response with radiation damping.

Looking now at the same analysis for the low-draft platform in Figure 6.26, the platform

responses for xp and βp for the below-rated wind speed are comparable. For the higher wind

speed (right column), there is a general di�erence between SLOW and FAST, with SLOW

predicting a larger response. However, both show a reduced βp response with radiation damping.

This is not the case for the tower-top displacement xt. It shows an even larger response at the

higher wind speed for the low-draft platform with radiation damping enabled compared to the
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Figure 6.25: Comparison of constant added mass approach without radiation damping (light color)
against radiation model (dark color). Nonlinear time-domain model FAST (gray) and linear frequency-

domain model (red), deep draft (d = 15 m).

PSfrag replacements

v̄hub = 25m/sv̄hub = 7.1m/s

frequency [Hz]frequency [Hz]

tw
r-

to
p
x
t

[m
2
/H

z]

p
it

ch
β
p

[1
0−

3
d
eg

2
/H

z]

su
rg

e
x
p

[m
2
/H

z]

0.05 0.1 0.15 0.2 0.250.05 0.1 0.15 0.2 0.25

0

0.1

0.2

0

1

2

0

50

100

0

0.005
0

0.01

0.02

0

0.5

Figure 6.26: Comparison of constant added mass approach without radiation damping (light color)
against radiation model (dark color). Nonlinear time-domain model FAST (gray) and linear frequency-

domain model (red), low-draft (d = 24 m).



176 6 Integrated Optimization

constant matrix approach. This might be due to the e�ect of the constant matrix approach on

the added mass magnitude and the resulting change of eigenfrequencies. Thus, it might not be

due to the damping e�ect, alone.

In general, the analysis shows that the e�ect of radiation damping is small in most cases.

Due to the linear nature of the damping, it can be dominant over quadratic damping for small

motion responses. In the analysis for the given design space, the most signi�cant di�erence is

present for the largest sea state for the low-draft platform. No visible change in the platform

eigenfrequencies between the models is present in the results. This can be also observed in the

previous Section 6.4.5, where FAST always includes radiation damping with the convolution

integral while the simpli�ed models neglect radiation damping.

Wave forces from Morison drag and �rst-order potential forces

Figure 6.27 shows the three components of the wave force spectra of the xz-plane for the deep-

draft and the low-draft concept. While the ratio of �rst-order potential forces to Morison-drag

forces is equal for both designs in the �rst direction (x) there is a clear di�erence between these

ratios for the forces in heave- and pitch-direction. With large heave plates, the Morison drag-

excitation becomes more important such that their correct modeling is of importance. This

means, in addition, that the drag linearization leads to errors in the simulation of large waves.
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Figure 6.27: First-order wave force spectrum (blue) and Morison drag-excitation force spectrum (red)
in surge, heave and pitch-direction for deep-draft (left) and low-draft (right) at v̄hub = 25 m/s.
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This con�rms the results of Section 6.4.5, where the largest di�erences between the linear

and the nonlinear SLOW model were present for the platform with the largest heave plates at

the largest wind and sea state.

Second-order slow-drift forces

Figure 6.28 and Figure 6.29 show the response with and without di�erence-frequency excitation

for the two wind speeds of the previous analyses. While there is almost no di�erence for the small

sea state at v̄hub = 7.1 m/s in both �gures, di�erences are visible for the deep-draft platform

for the above-rated wind speed of v̄hub = 25.0 m/s. Especially at the low surge-frequency, the

response is higher if the second-order forcing is included.
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Figure 6.28: Comparison of response without (blue) and with (red) di�erence-frequency excitation,
deep-draft (d = 15 m).

For the low-draft platform, Figure 6.29 shows for the high sea state (right column) that

the response to drift forces at the eigenfrequencies at 0.008 Hz and 0.035 Hz is signi�cant.

Consequently, it is more important to include the second-order force models for the low-draft

platform than for the deep-draft platform.

Aerodynamics

In this section, the simpli�ed rigid disk model of SLOW is compared to the two aerodynamic

models of FAST. Simulations were run with SLOW and FAST in still water at a wind speed
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Figure 6.29: Comparison of response without (blue) and with (red) di�erence-frequency excitation,
low-draft (d = 24 m).

of v̄hub = 10.3 m/s. Next to the previously used BEM-model of FAST, simulation were per-

formed with the Generalized Dynamic Wake (GDW) model, which includes dynamic in�ow

e�ects. The same was done in the recent publication [74], in which scaled model experiments

for the unsteady aerodynamics of a FOWT were compared to the GDW model. In that paper

the �reduced wake velocity� was introduced as

V ∗W =
v̄hubT

D
, (6.5)

which represents the ratio of the distance of the wind traveling with the velocity v̄hub within

one period T of the platform motion to the rotor diameter D. This value is for the deep-

draft platform V ∗W ≈ 1.9 and for the low-draft platform V ∗W ≈ 1.4. The authors of the

publication [74] state that unsteady aerodynamic e�ects are of importance for V ∗W < 5, which

con�rms the importance of the unsteady aerodynamic model in the present case.

Figure 6.30 shows the response in pitch βp, tower-top displacement xt, rotor speed Ω and

generator torqueMg for the two platforms. The platform pitch eigenfrequency is highlighted for

both designs. Interesting is the fact that the response at the pitch-mode of FAST with GDW is

closer to the simpli�ed SLOW model than to the FAST model with a steady BEM model. For

lower frequencies, the GDW-model predicts generally smaller responses of the signals shown

here. This is the same for the low-draft and the deep-draft platform.
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These results show that the aerodynamic modeling is especially important at these resonance

frequencies, in spite of the general dominance of the wave forcing, and even more for lower wind

speeds than for high wind speeds, where V ∗W takes larger values. In conclusion, the further

investigation of unsteady aerodynamic e�ects needs to be assessed in more detail, re�ning the

state-of-the-art BEM model. Although it is not expected that a more detailed model would

change the �ndings of the present platform optimization, the unsteady aerodynamics can be

important for model-based controller design as discussed in Section 2.5.2.





7 Conclusions and Outlook

The goal of this work was to improve the understanding of how wind and waves impact the dy-

namic behavior of the �oating systems and how their shape can be optimized for �oating wind

turbines showing the same stable dynamics as bottom-�xed ones with a rather lightweight, and

resource-e�cient foundation. In order to pursue this goal, a dedicated simulation model was

developed with a simpli�ed representation of the structure, the aerodynamics and hydrodynam-

ics. The developed model was veri�ed with the open-source code FAST for a public baseline

design of a 10 MW turbine on a concrete deep-draft semi-submersible. It was also validated

against scaled experiments of the same concept in a combined wind and wave tank including

blade pitch control. Finally, a brute-force optimization of a three-column semi-submersible

with adapted wind turbine controllers revealed that an optimization of the hull shape can yield

a reduction of the tower-base bending moment of more than 30 %, yielding comparable fatigue

to onshore turbines.

7.1 Reduced-Order Simulation Model

A �exible multibody system has been developed with a general formulation that is not speci�c

to wind turbines. It has been set up with only six degrees of freedom, allowing a motion in two

dimensions. A symbolic linearization method yields a linear representation, which was used for

load calculations in the frequency-domain and linear system analyses. Through a comparison of

the simulation results with the higher-�delity FAST code and experimental data, the relevance

of the physical e�ects could be estimated.

A rather high level of detail was selected for the hydrodynamic model because the loads and

motion response of �oating wind turbines is dominated by the wave forcing and the hydrody-

namic viscous drag is important for the overall system dynamics. In addition to the �rst-order

panel code coe�cients, a �exible node-based implementation of Morison's equation was real-

ized. The Morison drag forces include the horizontal and vertical components of damping, as

well as wave excitation. The magnitude of the Morison drag-excitation depends strongly on

the semi-submersible heave plates and requires a proper linearization procedure or a nonlinear

modeling for large sea-states. The radiation memory e�ect, however, has shown to have a

minor impact on the main system dynamics for the considered platform shapes. Its proposed



182 7 Conclusions and Outlook

simpli�cation yields a substantially decreased simulation time. For an identi�cation of the hy-

drodynamic drag coe�cients, especially the inclusion of the second-order di�erence-frequency

forces was important. The results of the model validation led to a parametric de�nition of the

heave plate drag, which, using the linearized frequency-domain model, allowed for an iterative

solution. These load case-dependent drag coe�cients were used for the simpli�ed nonlinear

model and the FAST model. Both results show that the parametric heave plate drag results

mainly in larger global damping coe�cients for larger sea-states. It will be important to take

such a parameterization into account for a realistic estimation of the hydrodynamic damping

in load simulations.

The aerodynamics could be well represented through an e�cient force model for the integral

rotor. The quasi-static model provides the rotor forces as function of the tip speed ratio and

the blade pitch angle, the actuated variable of the above-rated controller. For a representation

of the blade excitation from wind shear, rotational sampling of turbulence showed to be an

e�cient and suitable method.

In a comparison with FAST, the model has proven to be able to represent the dominant

system dynamics, the main eigenfrequencies but also the magnitude of the frequency response

to rather severe met-ocean conditions. In a comparison against scaled experiments, the eigen-

frequencies and the magnitude of the response to wind and wave forces was well predicted.

The computational performance of the time-domain model is such that a simulation runs

about 120 times faster than real-time. The linear frequency-domain model requires only matrix

algebraic operations and is therefore even faster. Common state-of-the-art simulation models

are usually not faster than twice the real-time, which might limit large conceptual design

studies.

The model was successfully applied for linear model-based controller design. The resulting PI-

controller proved to be suitable also for the FAST model, which includes dynamics, neglected

in the controller design model. The integrated platform optimization over a large design space

of semi-submersible platforms made use of the tailored properties of the model. Although

the hydrodynamic properties of the analyzed platforms show a large variation with di�erent

characteristics of the hydrodynamic forcing, the developed model was able to reliably predict

the dynamic behavior for all designs. A veri�cation of the optimization results with FAST

showed the same optimum.

Although the model description, adapted to the problem, is highly e�cient for this work,

there are clear limitations, related to the simpli�cations of the above mentioned involved sub-

models. Especially the motion, constrained to the vertical plane in wind and wave direction

prohibits the modeling of yawed in�ow and misaligned waves. The structural dynamics ne-

glect the elasticity of the �oating platform, the higher tower modes and the blade elasticity.

The simpli�ed representation of the aerodynamics does not allow for the simulation of extreme

aerodynamic situation with strong shears, transient events or stalled �ow conditions. The hy-
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drodynamic model resembles more the one of the FAST model but there is also a restriction to

linear waves and the second-order slow drift forces are approximated. Hence, the model is well

suited for operational conditions without failures or extreme events. Operational load cases are

the important ones in the concept design stage and for a general system optimization. Extreme

cases are subject of the detailed design stage, which requires high-�delity models, adapted to

the complexity of the simulated conditions.

In summary, the developed reduced-order simulation model could successfully �ll the gap

between spreadsheet calculations on one side and simulation tools for certi�cation on the other

side. It is hence a well-suited model for the conceptual design phase of �oating wind systems.

Even though it includes all main system dynamic e�ects, it can be used for large parameter

studies. It was shown in the integrated optimization that such a coupled description is necessary

to �nd the optimum for the herein selected design space of semi-submersible platforms, as

opposed to simpler, de-coupled approaches.

7.2 Controller Design

A Single-Input-Single-Output (SISO)-design procedure was developed, satisfying a prede�ned

stability margin at all operating points. With this new procedure of a gain scheduling controller

for �oating wind turbines, the entire system is considered for the controller design. Commonly,

the gain scheduling function maintains the closed loop rotor dynamics over the entire operating

range.

In the proposed method, not only the rotor dynamics but the entire FOWT dynamic system

stability is a design criterion for all operating points. The developed SISO design procedure

yields a gain scheduling for above-rated wind speeds, which di�ers from the common gain

scheduling of onshore turbines. This is because the stability issue of �oating wind turbines is

more critical for lower wind speeds than for higher wind speeds. As a result, the proportional

gain decreases for increasing wind speeds above rated, before it increases again towards cut-out

wind speeds. A rather high time constant of the SISO-Proportional-Integral (PI)-controller

showed to give better results for �oating turbines, which is another di�erence to common on-

shore controllers. The advantages of this controller are the robustness properties and therefore

the high independence from the simulation model in terms of unmodeled dynamics of the design

model. The developed design algorithm can be automated using the linearized model in each

operating point.

Additionally to this controller, an optimal Multi-Input-Multi-Output (MIMO) controller was

designed, in order to show its advantages over the previous one. The determination of the

controller weights was successful with a good performance over the design space. While the

controller showed to improve signi�cantly the damping of the system resonances, its robustness
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is limited. Therefore, the controller is useful as an indicator of the upper performance bound,

showing the theoretical potential to damp low-frequency platform resonances and improving

rotor speed tracking.

7.3 Integrated Optimization

The optimum platform shape of a concrete semi-submersible was found through an integrated

design approach. The primary goal of this optimization was to improve the overall system

dynamics of the FOWT, such that the response of the system to stochastic wind and wave

loads in fore-aft direction but also in terms of the power �uctuation is reduced. To meet this

goal, a small design space of a three-column semi-submersible with heave plates was set up,

ranging from a slender deep-draft geometry to a low-draft one with large column diameter. As a

result of the optimization, the low-drafted design gave a promising improvement of the response

of the tower-base bending, at only slightly higher levels than onshore wind turbines (which are

not subject to wave forcing).

Subsequent analyses using the linear dynamic model revealed the reasons of the variation of

the performance among the di�erent designs. The optimum design was found to be not the

one with the smallest wave load ampli�cation in pitch-direction as predicted by the Response

Amplitude Operator (RAO), the commonly used performance indicator in the conceptual design

phase. With the harmonic response function, derived from the developed linearized low-order

model, the dynamic characteristics of the optimum shape could be identi�ed: The FOWT

response amplitudes to unit waves along the tower centerline were visualized. The optimal

design shows almost no fore-aft motion at the rotor hub, which means that the entire system,

subject to wave loads, rotates about this point. As a result, the hub is almost stationary and

the �uctuations of the power, the rotor speed, generator torque and blade pitch angle can

be signi�cantly reduced. An interpretation of this is that the surge and pitch response are

out-of-phase, yielding a positive surge displacement when the pitch angle is negative.

In order to generally rate the suitability of a �oating platform to support a wind turbine, a

new performance indicator was developed: From control engineering, controllability measures

are known, quantifying the necessary actuator performance for perfectly rejecting a given dis-

turbance. A plot of this �least required actuator action� to reject the wave loads showed that

the actuator action magnitude, especially at the wave frequencies, is proportional to the fatigue

loads over the design space. Consequently, this indicator is one which is able to predict the

platform design optimum obtained from the conducted optimization.
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7.4 Outlook

The reduced-order simulation model SLOW, the parametric control routines, as well as the

integrated optimization approach can be employed in further studies. Tailored designs, grown

into the ocean environment, rejecting wind and wave loads with the help of advanced sensors

and actuators, shall help to make �oating wind more sustainable in the future. The following

works, based on the presented thesis, are conceivable:

• Structural model: The blade elasticity was not included in the present work. However,

works started on including modally reduced bodies for the blades and need to be continued

in order to be able to compute the blade loads and represent azimuth-dependent loading

on the rotor.

• Aerodynamic model: A more detailed model including azimuth dependency, aerodynamic

states and sheared in�ow should be implemented while keeping the e�ciency. In certain

conditions, unsteady aerodynamic e�ects can be of importance for model-based controller

design and should be represented.

• Hydrodynamic model: Only one possible way of implementing the linearized Morison

equation was realized. The in�uence of the cross-correlation between body motion and

wave motion is to be analyzed as well as other, improved, formulations for the drag

linearization.

• Experiments: The tool validation with scaled experiments showed that the magnitude of

the response to wind and waves and the system dynamic properties are well predicted by

the developed simulation model. However, the uncertainty related to all of the involved

components, measurement devices and testing procedures needs to be assessed. This will

go in line with the further improvement of the testing methodologies themselves, mitigat-

ing the issues related to the simultaneous scaling of aerodynamics and hydrodynamics.

• Control: A standard and an optimal controller were developed. A frequency-domain

optimal controller should be tested, especially for a further reduction of the response to

�rst-order wave loads.

• Optimization: The developed methodology can be applied to other concepts of �oating

wind turbines. Closed-loop optimization algorithms were tested in this work but not

shown here in order to allow a better interpretation and visualization. The development

of suitable cost functions and the selection of appropriate optimizers should be addressed

using Systems Engineering approaches.





A Model Parameters

All parameters of the FOWT designs used in this work are listed in the following Sections A.1�

A.3. Platform parameters always refer to the structural properties of the platform from keel to

the tower base, without mooring lines.

A.1 Full-Scale TripleSpar Parameters

Table A.1 lists the parameters of the scaled simulation model used for the simulations of Chap-

ter 6.

Table A.1: Model parameters of the full-scale TripleSpar concept with the DTU 10 MW RWT.

Parameter Unit Value

Platform mass (incl. ballast) [kg] 2.82682× 107

Tower mass [kg] 4.36451× 105

Nacelle mass [kg] 4.46036× 105

Rotor mass [kg] 2.30598× 105

Platform inertia about y w.r.t. its CM [kgm2] 1.8674× 1010

Nacelle inertia about y w.r.t. its CM [kgm2] 7.32634× 106

Column spacing (to tower centerline) [m] 26.0

Column diameter [m] 15.0

Heave plate thickness [m] 0.5

Heave plate diameter [m] 22.5

Draft [m] 54.464

Platform CM below SWL [m] 36.018

Tower-base above SWL [m] 25.0

Tower CM above SWL [m] 63.72

Nacelle CM above SWL [m] 118.08
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Nacelle CM downwind of tower centerline [m] 2.687

Shaft tilt [deg] 5.0

Hub overhang (yaw axis to hub) [m] 7.1

Vert. dist. from tower-top to shaft [m] 2.75

Generator e�ciency [-] 0.94

Blade pitch actuator eigenfrequency [Hz] 1.6

Blade pitch actuator damping ratio [-] 0.8

Rotor max. power coe�cient cp [-] 0.48

Gen. torque control kΩ [Nms2/rad2] 112.34

Rated rotor speed [rpm] 9.6

Rated wind speed [m/s] 11.4

Rotor opt. TSR [-] 7.2

Rotor radius [m] 89.17

Rotor inertia about shaft [kgm2] 1.59993× 108

Gearbox ratio [-] 0.02

Hub height [m] 119.0

Tower outer radius @ tower-base [m] 3.85

Tower inner radius @ tower-base [m] 3.816

Tower outer radius @ tower-top [m] 2.76

Tower inner radius @ tower-top [m] 2.74

Tower length (elastic) [m] 90.63

Tower Young's Modulus [N/m2] 2.1× 1011

Tower steel density [kg/m3] 8.5× 103

Tower fore-aft (1st) modal sti�ness [N/m] 3.497× 106

Tower fore-aft (1st) modal damping [Ns/m] 1.8204× 104

Platform displaced volume [m3] 2.9205× 104

Hydrostatic sti�ness in z [N/m] 5.328× 106

Hydrostatic sti�ness about y
[Nm/rad] −6.199× 109

(buoyancy + waterplane area) w.r.t. SWL

Added mass A11 @ surge eigenfrequency [kg] 2.75× 107

Added mass A33 @ heave eigenfrequency [kg] 9.0× 106
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Added mass A55 @ pitch eigenfrequency w.r.t. SWL [kgm2] 1.085× 1010

Added mass A51 @ surge eigenfrequency w.r.t. SWL [kgm] 2.605× 108

Added mass A15 @ pitch eigenfrequency [kgm] 2.455× 108

Morison drag coe�cient CD for columns [-] 0.4

Morison drag coe�cient CD,hp for heave plates (vert.) [-] see Figure 3.16

Mooring line length [m] 610.0

Mooring line mass per length in air [kg/m] 594.0

Mooring line weight per length in water [N/m] 5066.0

Number of mooring lines [-] 3

Angle of �rst line towards downwind direction [deg] 0.0

Fairleads radius [m] 54.48

Fairleads above SWL [m] 8.7

Anchor radius [m] 600.0

Water depth [m] 180.0

A.2 Model-Scale TripleSpar Parameters

Table A.2 shows the parameters of the scaled simulation model used for the simulations of

Chapter 4.

Table A.2: Model parameters of scaled 1/60 TripleSpar simulation model.

Parameter Unit Value

Platform mass (incl. ballast) [kg] 127.4

Tower mass [kg] 2.25

RNA mass [kg] 3.495

Platform inertia about y w.r.t. its CM [kgm2] 32.25

Tower inertia about y w.r.t. its CM [kgm2] 0.53

RNA inertia about y w.r.t. its CM [kgm2] 0.782

Column spacing (to tower centerline) [m] 0.43

Column diameter [m] 0.25

Heave plate thickness [m] 0.003
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Heave plate diameter [m] 0.375

Draft [m] 0.918

Platform CM below SWL [m] 0.639

Tower-base above SWL [m] 0.333

Tower CM above SWL [m] 1.173

RNA CM above SWL [m] 2.07

RNA CM downwind of tower centerlinex [m] 0.0007

Rotor overall e�ciency (elec.+mech.) [-] 0.65

Rotor max. power coe�cient [-] 0.36

Minimum blade pitch angle [deg] 1.5

Rated rotor speed [rpm] 71.0

Rated wind speed [m/s] 1.47

Rotor design-TSR [-] 7.516

Rotor radius [m] 1.486

Rotor inertia about shaft [kgm2] 0.2259

Gearbox ratio [-] 1/5

Hub height [m] 2.07

Tower fore-aft sti�ness [N/m] 1050.0

Tower fore-aft structural damping [Ns/m] 8.04

Displaced volume [m3] 0.1362

Hydrostatic sti�ness in z [N/m] 1441.549

Hydrostatic sti�ness about y
[Nm/rad] -476.6247

(buoyancy + waterplane area) w.r.t. SWL

Added mass A11 @ surge eigenfrequency [kg] 126.2

Added mass A33 @ heave eigenfrequency [kg] 36.85

Added mass A55 @ pitch eigenfrequency w.r.t. SWL [kgm2] 16.29

Added mass A51 @ surge eigenfrequency w.r.t. SWL [kgm] 25.15

Added mass A15 @ pitch eigenfrequency [kgm] 25.15

Additional sti�ness in x @ SWL
[N/m] 8.0

representing power cables

Additional sti�ness about y representing power cables [Nm/rad] -25.0
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Mooring line length [m] 9.95

Mooring line mass per length in air [kg/m] 0.1650

Mooring line weight per length in water [N/m] 1.4072

Number of mooring lines [-] 3

Angle of �rst line towards downwind direction [deg] 0.0

Fairleads radius [m] 0.908

Fairleads above SWL [m] 0.145

Anchor radius [m] 9.74

Water depth [m] 3.0

A.3 Deep-Draft, Medium-Draft and Low-Draft

Parameters

Table A.3 shows the parameters of the three selected platforms of the design space of Chapter 6.

All values not included in Table A.3 are equal to the ones of Table A.1.

Table A.3: Model parameters of deep-draft, medium-draft and low-draft platforms.

Parameter Deep-draft Medium-draft Low-draft

Platform mass (incl. ballast) [kg] 36.051× 106 38.691× 106 31.149× 106

Platform inertia about y w.r.t. CM [kgm2] 28.38× 109 17.0× 109 87.97× 108

Column spacing (to tower centerline) [m] 15.0 19.0 24.0

Column radius [m] 6.76 8.56 10.81

Heave plate thickness [m] 4.5 4.5 4.5

Heave plate radius [m] 10.9 13.8 17.4

Draft [m] 78.48 49.95 21.94

Platform CM below SWL [m] 52.34 34.28 13.36

Displaced volume [m3] 3.6837× 104 3.9412× 104 3.2055× 104

Fairleads radius [m] 26.0

Fairleads above SWL [m] 8.7

Anchor radius [m] 571.5





B Additional Results

The results, presented in the following, complete the results of Chapter 6. For the cases, where

not all of the three selected platforms of Table 6.2, or not all of the three wind speeds could be

shown, results can be found in the following sections. An additional sensitivity study, assessing

the e�ect of the peak spectral wave period is subject of Section B.2.

B.1 Comparison of Controllers for Low-Draft Platform

Figure B.1 shows the PSD for the low-draft platform. It can be seen that the LQR performs

better than the PI-controller also for this platform, as it does for the deep-draft platform,

Figure 6.12. This con�rms the validity of the selected LQR gains of Table 5.2.
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Figure B.1: Comparison of PI-controller (blue) and LQR (red) for v̄hub = 17.9 m/s (left)
and v̄hub = 25.0 m/s (right) for low-draft d = 24 m.
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B.2 Sensitivity to Wave Period

This analysis indicates whether the reason for the low-draft better rejecting the wave loads

is due to the magnitude of its eigenfrequencies, only. This refers to a hypothetical claim

that the low-draft performs better only because its eigenfrequencies are located more favorable

than those of the other designs. Figure B.2 shows the response statistics for a single wind

speed (v̄hub = 13.9 m/s) for various wave peak spectral periods Tp as given in [143, Chapter 7].

It can be seen that a dependency on the wave period exists, mainly re�ected on the platform

pitch signal for platforms of larger column spacing. Larger wave periods tend to yield smaller

responses. The fact that the low-draft platforms have a larger eigenfrequency in pitch (see

Figure 6.7) does not explain why these platforms should give a smaller response for excitations

closer to the eigenfrequencies. Eventually, this analysis shows that the platform eigenfrequencies

are likely not the reason for the performance di�erence among the designs.
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B.3 Harmonic Response

Figure B.3 shows the harmonic response for the column spacings d ≤ 24 m. In Figure 6.16 it

could be observed that the instantaneous center of rotation due to sinusoidal wave excitations

moves from positions far below SWL to the hub for the low-draft platform. In Figure B.3 it

can be seen that the transition of the center of rotation happens only for the largest considered

spacing of d = 24 m. For platforms of smaller breadth, the pitch motion is almost completely

suppressed yielding to a surge-motion, only. In fact, this behavior can also yield a good perfor-

mance in terms of tower-sectional loads since no moments due to gravity are present.
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Figure B.3: Harmonic response for upper range of column spacings (d = [22, 23, 24] m) of FOWT
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tom) at v0 = 13.9 m/s with heave plate height hhp = 4.5 m. Solid black line: FOWT overall center of
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B.4 Assessment of Numerical Models for Three Concepts

In Section 6.4.5, the code-to-code comparison was shown for three wind speeds for the deep-

draft platform. For the medium-draft and the low-draft only the highest wind speed was shown.

The others are included in this section. Figure B.4 shows modeling di�erences between FAST

and SLOW, comparable to the deep-draft design. Here, however, the coupled surge, pitch and

rotor speed resonance at the pitch-eigenfrequency is smaller than for the deep-draft.

At the above-rated wind speed of v̄hub = 17.9 m/s, Figure B.5 shows a remarkably good

agreement between the models with only a small underprediction of the �rst-order wave response

by the SLOW models.

The low-draft shape at the below-rated wind speed, shown in Figure B.6, does not have the

coupled resonance of βp and Ω at the platform-pitch mode anymore for FAST. Above rated,

Figure B.7 the agreement is still good, with FAST showing slightly more energy at the lower

part of the wave spectrum. The reason for this is not clear. The aerodynamic forcing seems to

be of higher relative importance as the di�erences between the rotational sampling for SLOW

and the fully turbulent FAST model is more visible here.
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Figure B.5: Model comparison v̄hub = 17.9 m/s, Hs = 4.3 m, Tp = 10.0 s, medium draft d = 19 m: lin-
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Figure B.6: Model comparison v̄hub = 7.1 m/s, Hs = 1.7 m, Tp = 8.0 s for low-draft d = 24 m: linear
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